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Abstract
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Master of Science

Distributed Transactions on Serverless Stateful Functions using Coordinator
Functions

by Martijn de Heus

Lately, serverless computing has gained much attention. Function-as-a-Service (FaaS)
is the most prominent serverless model. The FaaS model allows cloud users to
write simple functions, and the cloud provider takes care of the deployment, main-
tenance, and scalability of those functions. However, FaaS can be improved upon
significantly. Existing FaaS services do not solve some significant and challenging
cloud computing problems regarding state and communication, such as function-
to-function calls and transactions. Work has been done to improve this early it-
eration of serverless computing by incorporating state in the equation; leading to
Stateful Function-as-a-Service (SFaaS). However, transactions on SFaaS remain an
open problem, even though they are crucial to allow more use cases to operate using
SFaaS.

This thesis examines existing SFaaS systems and their data correctness guaran-
tees. Based on existing SFaaS systems, this thesis proposes a programming model for
both serializable transactions and sagas orchestrations using coordinator functions.
The programming model is implemented in Apache Flink StateFun. The implemen-
tation is based on existing research on traditional database technology.

The implementation’s performance is evaluated using an enhanced version of
the Yahoo! Cloud Systems Benchmark (YCSB); YCSB is extended to include a trans-
actional operation. The implementation reaches 1840 sagas workflows per second
and 1200 serializable transactions at sub-200ms latencies on 5 workers with 2 CPUs
each.
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Chapter 1

Introduction

10 years ago, the cloud was an extremely promising technology capable of reshap-
ing IT operations (Armbrust et al., 2009). Cloud providers use economies of scale to
reduce computing costs and simplify computing for cloud users. For example, cloud
users may benefit from on-demand compute services provided and maintained by
cloud providers. Besides greatly simplifying operational challenges, cloud comput-
ing can also reduce or remove up-front investment requirements and lower the entry
barrier for technology startups significantly, boosting innovation (Gupta, Seethara-
man, and Raj, 2013).

However, the promise of cloud computing has only partly been fulfilled. Op-
erations in the cloud are not yet as simple as promised, and in some cases, op-
erations became even more complex. This unfulfilled promise has recently led to
"serverless" cloud computing becoming increasingly popular. A Berkeley View on
Serverless Computing states: "It provides an interface that greatly simplifies cloud
programming, and represents an evolution that parallels the transition from assem-
bly language to high-level programming languages" (Jonas et al., 2019). Serverless
computing allows cloud users to deploy applications on cloud infrastructure us-
ing high-level APIs while abstracting away most operational concerns, including
deployment, auto-scaling and resource management. Meanwhile, it provides an op-
portunity for cloud providers to reduce costs by optimizing resource usage.

Out of different models that may be described as serverless computing, Function-
as-a-Service (FaaS) has gained the most attention (Jonas et al., 2019; Baldini et al.,
2017a; Hellerstein et al., 2018; Eyk et al., 2017; Baldini et al., 2017b; Akhter, Fragk-
oulis, and Katsifodimos, 2019). FaaS allows users to deploy a simple function taking
input, processing this input, and resulting in output(s). The functions themselves are
typically stateless, simplifying the cloud provider’s operations since they can run
functions anywhere without any dependencies. However, this also means a func-
tion requiring state has to do the following: (1) fetch data from an external database,
(2) perform some logic based on the read data and the input of the function, and (3)
write the data back to an external database, all within a function’s execution. This
means functions are idle while waiting for external databases’ response, introducing
extra latency and defeating one of the purposes of FaaS to optimize resource usage.
This also introduces unnecessary generic code to communicate with the external
system, defeating the purpose of FaaS to abstract this away and allow the devel-
oper to focus on code implementing business logic only. Besides this, state manage-
ment challenges such as state management across functions (e.g., efficient function-
to-function calls and transactions across functions) and fault-tolerant exactly-once
semantics remain open problems.
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1.1 Stateful Function-as-a-Service

To improve upon FaaS, provide a more complete programming model, and allow
more classes of applications and use cases to run using serverless computing, there
is ongoing work to create Stateful Function-as-a-Service (SFaaS) systems. Most no-
table systems are StateFun1, Cloudstate2, Cloudburst3 (Sreekanti et al., 2020), Beldi4

(Zhang et al., 2020) and Azure Durable Functions5.

1.1.1 Transactions

These systems each have different approaches and varying programming models.
StateFun, Cloudstate, and Azure Durable Functions provide a relatively similar pro-
gramming model encapsulating state within a function instance. In contrast, Cloud-
burst and Beldi provide functions access to shared mutable state in a distributed
key-value store. The different systems have different consistency guarantees. Beldi
(Zhang et al., 2020) is the only system that supports multi-key transactions with
isolation guarantees. Other systems lack any notion of transactions, even though
transactions are described as one of the most significant challenges with modern
micro-services-like architectures (Katsifodimos and Fragkoulis, 2019), and would al-
low many additional use cases to be implemented on SFaaS systems. SFaaS systems
do provide an opportunity to coordinate state management and implement transac-
tions within the centralized SFaaS back-end, something that is currently impossible
with popular decentralized micro-services architectures.

1.2 Research questions

To shape this thesis, the following research questions are formulated:

1. What SFaaS implementations exist today, and what are their data correctness
guarantees?

2. What are shared features of existing SFaaS implementations, and how can they
be used to find a conceptual solution for transactions that can be implemented
in SFaaS systems?

3. What programming model can be used to implement transactions in SFaaS
systems intuitively?

4. What isolation guarantees can be provided for transactions in SFaaS systems,
and how do these affect performance?

5. How can SFaaS systems, with and without transactions, be evaluated?

1.3 Contributions

The thesis and its contributions are structured as follows. Chapter 2 describes pre-
liminary concepts to provide common definitions throughout the thesis. After this,
the thesis makes the following contributions:

1https://statefun.io
2https://cloudstate.io/
3https://github.com/hydro-project/cloudburst
4https://github.com/eniac/Beldi
5https://docs.microsoft.com/en-us/azure/azure-functions/durable/

https://github.com/eniac/Beldi
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1. The current state of SFaaS systems is summarized and discussed in chapter 3.

2. Two fundamental properties provided by multiple SFaaS systems that form a
basis to implement transactions are identified and formalized in section 4.1.

3. A concept and programming model to implement transactions in SFaaS sys-
tems with these fundamental properties is presented (section 4.2).

4. The concept is implemented in StateFun, including serializable transactions
and sagas workflows (chapter 5). The implementation is publicly available on
GitHub6.

5. An approach to evaluate cloud systems with transactions is presented in sec-
tion 6.1.1.

6. The performance of the introduced transactions in StateFun is evaluated in
chapter 6.

After these contributions, the conclusion (chapter 7) summarizes the work by
answering the posed research questions. Chapter 8 discusses the results, presents
avenues for future research, and describes practical ideas to further improve Flink
StateFun.

6https://github.com/delftdata/flink-statefun-transactions

https://github.com/delftdata/flink-statefun-transactions
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Chapter 2

Preliminaries

This chapter introduces some fundamental concepts and definitions that are required
to understand the rest of this thesis. Firstly, this chapter introduces definitions of dif-
ferent levels of data correctness. Next, this chapter presents well-known approaches
to achieve these levels of data correctness. This chapter also describes fault-tolerance
in distributed systems, including techniques to implement fault-tolerance and reli-
able communication in distributed systems. This chapter concludes with a short
description of benchmarks used to evaluate data systems.

2.1 Data correctness

When building an application, application developers face decisions regarding the
trade-off between data correctness and performance. It is essential to understand
this dilemma thoroughly to make an informed decision. Over the years, terminology
precisely defining different levels of data correctness have been introduced. This ter-
minology should also enable clear communication between application developers
and engineers developing the underlying systems. The levels of data correctness are
separable in two categories; consistency levels (also often referred to as consistency
models) and isolation levels. Application developers (and system implementors) of-
ten slightly misunderstand these levels and use them interchangeable or combined
into a single concept. This section aims to clarify these concepts by describing each
individually (sections 2.1.1 and 2.1.2) before reflecting on their relationship (section
2.1.3).

Firstly, consistency levels describe how different clients (or processes using the
data) observe data in distributed systems. This applies to distributed systems where
multiple processes interact with the data (and the system may replicate the data).
Specifically, consistency levels describe how these different processes observe the
data and writes made by other processes.

Secondly, isolation levels describe the execution of transactions (or sets of op-
erations). Specifically, isolation levels describe the semantics of concurrent trans-
actions. Transactions and isolation levels also apply to traditional non-distributed
single-process systems, unlike consistency levels.

2.1.1 Consistency levels

Consistency is a broad term and used in many different contexts. Even in data man-
agement and distributed systems, two popular concepts include the word consis-
tency; ACID transactions (Haerder and Reuter, 1983) and the CAP theorem (Gilbert
and Lynch, 2002). Isolation levels describe ACID transactions, and section 2.1.2 de-
scribes the definition of consistency in this context. The consistency levels discussed
here relate to consistency as defined by the CAP theorem. The CAP theorem refers to
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Concept Definition
Consistency Consistency means that any two clients (or processes)

should always read the same data at any point in time,
even if connected to different nodes.
This guarantee corresponds to linearizability as described
below.

Availability Availability means that clients should always receive a
(non-error) response from the system, even if some system
nodes die.
Availability is loosely interpretable as the time it takes a
system to respond and usable as intuition for the trade-off
between performance and correctness (or consistency).

Partition tolerance Partition tolerance means the system continues to function
even in the case of network partitions. A network partition
means there is no communication between two nodes in
the system.
Network partitions are usually outside the developers’
control, and therefore, partition tolerance is usually a re-
quirement for distributed systems.

TABLE 2.1: Definitions of guarantees in the CAP theorem

consistency, availability, and partition tolerance guarantees. Table 2.1 includes the
definitions of the CAP guarantees. The CAP theorem states that distributed systems
can only ever comply with two of the three guarantees. Note that the CAP theorem
includes no reference to transactions; therefore the consistency levels do not apply
to transactions.

Consistency levels, as discussed here, provide more insight into the consistency
guarantee as defined by the CAP theorem. They describe different compliance levels
with the consistency guarantee and allow developers and users to reason about the
guarantees of the system they are using or developing. The CAP theorem applies to
systems that may replicate data across nodes to increase performance and availabil-
ity. Clients may connect to different nodes containing replicas of the same shared
data. Consistency guarantees describe whether all clients read the same data, even
though they might be connected to other instances that each have a copy of the data.

Below 5 different consistency levels are described including example schedules.
In the example schedules, W(X, 1) represents a write operation writing 1 to X. R(Y):
2 represents a read operation where 2 is read from Y. Before the operations start,
all data is 0. The consistency levels are introduced in decreasing order of strictness.
Every example schedule is also a valid schedule for consistency levels introduced
after; or in other words, a stricter consistency level allows a strict subset of schedules
permitted by a more lenient consistency level.

Strict consistency

Strict consistency is the strictest model of consistency. It ensures that any process or
client always observes the most-recent write for an item. It does this by ensuring
a global ordering of both reads and writes based on real-time. Figure 2.1 shows an
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t1 t2 t3 t4 t5 t6 t7

P1 W(X, 1) W(X, 3)

P2 W(Y, 2)

P3 R(Y): 2 R(X): 1

P4 R(X): 1 R(X): 3

FIGURE 2.1: Example schedule that is strictly consistent

example schedule of strict consistency. In this schedule, read operations always read
the value that is most recently written.

This consistency level is fully deterministic and allows for straightforward rea-
soning about the behavior of a system. Strict consistency depends on a global order-
ing of all operations. This global ordering is often very costly (in terms of perfor-
mance) or even impossible to implement.

Linearizability

t1 t2 t3 t4 t5 t6 t7

P1 W(X, 1) W(X, 3)

P2 R(X): 3

P3 R(Y): 0

P4

W(Y,2)

R(Y): 0

FIGURE 2.2: Example schedule that is linearizable

Linearizability (Herlihy and Wing, 1990), also called atomic consistency (Lamport,
1986), is a consistency level in-between sequential consistency and strict consistency.
The CAP theorem refers to this consistency level with its consistency guarantee. This
consistency level definition is different from the other consistency levels as it ac-
knowledges that operations may take time and may overlap (or, in other words, be
performed concurrently). Linearizability allows these overlapping operations to be
ordered before or after each other (in the global order) independent of which oper-
ation started or finished earlier. Therefore, linearizability is not deterministic, like
strict consistency. However, like strict consistency, a single global order of all opera-
tions based on real-time still exists; so if one process has observed or written a value,
all following processes should observe the same data. The introduction of overlap-
ping operations makes this consistency level more applicable to real-world systems
and practical than strict consistency.

Figure 2.2 shows a linearizable schedule. In this schedule, P3 and P4 may read
both 2 and 0 as these read operations overlap with W(Y, 2) in P2. This is a difference
with strict consistency. However, if P3 would read 2 at t3, P4 also has to read 2 as the
operation of P3 finishes before the operation of P4 starts.
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t1 t2 t3 t4 t5 t6 t7

P1 W(X, 1)

P2 W(Y, 2)

P3 R(X): 1 R(Y): 0 R(Y): 2

P4 R(Y): 2 R(X): 1

FIGURE 2.3: Example schedule that is sequentially consistent

Sequential consistency

Sequential consistency is a weaker form of consistency than strict consistency and
linearizability. Sequential consistency is based on a definition by Lamport: "The
result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program." (Lamport, 1979). In
other words, sequential consistency ensures that there is some single global ordering
of operations. However, this ordering is not necessarily based on real-time and may
also not necessarily be observed by all processes instantly as for strict consistency.

In figure 2.3, it can be observed that in the global ordering W(X, 1) precedes
W(Y,2) because P3 can observe 0 at t6 while P3 has already observed 1 at t3. This
ordering means that since P4 has already observed 2 at t4, P4 must also observe 1 at
t5. If P4 would not have observed 1 at t5, this schedule would not be sequentially
consistent.

A difference with strict consistency and linearizability in this example schedule
is that P3 may still observe 0 at t6.

Causal consistency

Causal consistency is a weaker level of consistency than sequential consistency. Where
sequentially consistent schedules require a global ordering for all operations, causally
consistent schedules only require this relative ordering for causally-related opera-
tions (Ahamad et al., 1995). Causally-related operations are based on the happens-
before relation as defined by Lamport (Lamport, 1978).

Figure 2.4 shows a schedule that is causally consistent. Figure 2.4 shows that
W(Y, 2) (t4) is causally dependent on R(X): 1 (t3). This means that after P4 has
observed 2 at t7, P4 now must observe 1 at t8 since it observed an operation that was
causally dependent on this operation.

This schedule is not sequentially consistent. P5 observes 0 at t6 while observing
1 at t5, meaning it observed the ordering as W(Z,1) precedes W(X, 1). Later, P4 ob-
serves 1 at t8 and 0 at t9, meaning it observed the ordering as W(Z, 1) precedes W(X,
1). This is a violation of sequential consistency, but since W(Z, 1) and W(X, 1) are
not causally dependent they can be observed in any order under causal consistency.

The causal consistency level can be implemented in a system while maintaining
the availability and partition tolerance guarantees as defined by the CAP theorem.
This is not the case for stricter consistency levels. This makes causal consistency a
popular choice for systems.
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t1 t2 t3 t4

P1 W(Z, 1)

P2 W(X, 1)

P3 R(X): 1 W(Y, 2)

P4

P5

t5 t6 t7 t8 t9

P1

P2

P3

P4 R(Y): 2 R(X): 1 R(Z): 0

P5 R(Z): 1 R(X): 0

FIGURE 2.4: Example schedule that is causally consistent

Eventual consistency

Eventual consistency is a very weak consistency level. It provides no guarantee on
order in any way. The only guarantee it does provide is that when writes stop, all
processes will agree on each data item’s value at some point in time.

Besides the five consistency levels introduced here, other consistency levels exist
based on the data visible to any client or process during its current session (Terry
et al., 1994). These are sometimes referred to as client-centric consistency levels and
include monotonic reads and read-your-writes. These models are not considered in this
thesis.

Data loss and CRDTs

A system with a weak consistency level is vulnerable to data loss. Data loss may
happen when two replicas of the data diverge. The basic consistency guarantee of
eventual consistency, to which all other consistency levels must also adhere, requires
that these diverged replicas converge at some point. So, diverged replicas must
be merged at some point. The simplest and a commonly used approach to merge
replicas is last-writer wins. When using last-writer wins, the system keeps one of
the replica’s state and discards the other versions. What replica to keep is usually
based on time, even though time in distributed systems is not accurate. Discarding
replicas can cause data loss if a discarded replica processed an operation that was
not processed by the retained replica.

A solution to this data loss are conflict-free replicated data types (CRDTs) (Shapiro
et al., 2011). CRDTs are data types that can be merged using a function that is com-
mutative, associative, and idempotent. This means that diverged replicas can al-
ways be merged, independent of any order, leading to the same results and without
losing any data. A simple example of a CRDT is a set. Merging two sets always
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leads to the same results, independent of the order and even when performing the
operation multiple times. CRDTs can be used in weak consistency levels for higher
performance while still guaranteeing no data loss. These replicated data structures
may still be in diverged states during operation, so there is no other guarantee for
consistency.

2.1.2 Isolation levels

As described before, consistency levels apply to single operations in distributed sys-
tems, whereas isolation levels apply to transactions in both non-distributed systems
and distributed systems. Transactions are sets of operations. A simple example of a
transaction is the transfer of x credit from one user to another. This would result in
the following set of operations: (1) read balance i of user A to ensure i > x, (2) write
i � x back to the balance of user A, (3) read balance j of user B and (4) write j + x
back to the balance of user B. Problems may be caused when these operations inter-
leave with other operations. For example, if in between (3) and (4) another process
subtracts all credit from the balance of user B, the system will be in an incorrect state
after j + x is written at (4).

The ACID properties define properties transactions (sets of operations) should
comply with to prevent incorrect state and maintain data correctness (Haerder and
Reuter, 1983). These properties are described in table 2.2. The completion of a trans-
action may result in a committed transaction, meaning the transaction was successful,
or an aborted transaction, meaning the transaction failed.

Property Description
Atomicity Atomicity means that the set of operations in a transaction

should be treated as a single atomic unit. This atomic unit
should fail (abort) or succeed (commit) as a whole. For exam-
ple, in case of a failed operation because of a server crash, all
other operations part of the transaction should also fail (leaving
the system unchanged).

Consistency Consistency in ACID refers to a consistent state of the database.
Depending on the application, rules may exist to which the sys-
tem must comply. A transaction should bring the system from
one valid state to another valid state.

Isolation Isolation means that even though transactions may be executed
concurrently, they must result in the same database state as if
they would be executed sequentially.

Durability Durability means that once a transaction has been completed,
the resulting state should be durable. In other words, the result-
ing database state must always be recoverable, even in situa-
tions like system crashes.

TABLE 2.2: Descriptions of properties for ACID transactions

Especially guaranteeing isolation turned out to be a challenging problem to solve,
particularly in the context of the trade-off against performance. Isolation levels de-
fine subtle differences in compliance with the isolation property, similar to how con-
sistency levels apply to the consistency guarantee of the CAP theorem.
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The strictest isolation level is serializability. Serializability means the result of
any concurrently performed transactions is exactly the same as if these transactions
were performed in some sequential order by a single process. The other isolation
levels are best described in terms of anomalies that may occur when a system imple-
ments that isolation level. Table 2.3 shows four different isolation levels as defined
by an SQL standard (Berenson et al., 1995). The isolation levels are shown in de-
creasing order of strength and include their anomalies. These different anomalies
are described below.

Isolation level Dirty read Non-repeatable read Phantom read
Serializable + + +

Repeatable read + + -

Read committed + - -

Read uncommitted - - -

TABLE 2.3: Isolation levels presented with their exposure to anoma-
lies (-)

Dirty read

A dirty read refers to reading a value written as part of a running transaction that
may still abort. The read value may therefore be incorrect or dirty. If this occurs,
there is no isolation between transactions, and reading an incorrect value may have
many consequences depending on the application. The read committed and higher
isolation levels are not vulnerable to this anomaly.

An example of a solution to this is using an exclusive lock. An exclusive lock
prevents other operations from reading and updating a written value until the run-
ning transaction completes. Instead of directly reading the value, the operations
may queue to be processed when the lock is released (when the running transaction
completes).

Non-repeatable read

A non-repeatable read refers to reading two different values for a data item as part
of the same transaction. A non-repeatable read occurs when another operation (or
transaction) has updated a value between the two reads performed by a transaction.
Depending on what decisions are made based on the read data, this may lead to an
inconsistent state. The repeatable read and stricter isolation levels are not vulnerable
to this anomaly.

An example of a solution to this is using shared locks. A shared lock prevents
other operations (or transactions) from updating a read value until the lock is re-
leased (after the running transactions complete). Other transactions may still read
this value.

Phantom read

Phantom reads are very similar to non-repeatable reads, but they apply to aggregated
data instead of single-key data. For example, when both the minimum and the aver-
age value of a set of data items are queried. In this case, simply locking the existing
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data items is not sufficient since new data items that are also part of the aggregated
set may be added in between. The strictest isolation level, serializability, protects
against this anomaly.

More subtleties and anomalies have been discovered since the introduction of these
isolation levels, specifically to dissect the serializable level into more precise con-
cepts (Attar, Bernstein, and Goodman, 1984). However, these are not meaningful for
this thesis and are not described to avoid over-complication.

2.1.3 Relationship between consistency and isolation levels

After dissecting both consistency levels and isolation levels, it is noticeable that they
are different; consistency levels consider how operations are observed by other pro-
cesses in distributed systems, while isolation levels specify how transactions are run
concurrently while providing isolation guarantees. Isolation levels apply to all sys-
tems, whereas consistency levels only apply to distributed systems.

However, it is also apparent that they are related when transactions are per-
formed in distributed systems. If a transaction is performed in an eventually con-
sistent system, it would be impossible to provide any guarantees as a client may
observe the results in any order. So, consistency level guarantees are required to
perform transactions that provide some isolation guarantees in a distributed setting.
However, there are no guarantees about transactions in a strictly consistent system,
meaning some isolation level is still required to perform transactions in strictly con-
sistent distributed systems.

The combination of the consistency level and the isolation level is required to
reason on a distributed system’s data correctness. This has lead to many terms com-
bining both a consistency level and an isolation level. An example of this is strict
serializability or strong one-copy serializability (Bailis et al., 2013), which is the combi-
nation of linearizability (consistency level) and serializability (isolation level). This
is considered a very strong data correctness model.

2.2 Distributed transaction protocols

Most modern cloud systems optimize performance over data correctness by imple-
menting low consistency and isolation levels or providing no guarantees at all. This
led to systems in which it is difficult to reason about correctness and that are hard to
use. Besides simplifying these systems, implementing stronger correctness guaran-
tees also enables the use of these systems by a wider variety of applications (Cattell,
2011).

This does not mean no options to implement data correctness exist. Consensus
protocols like Paxos (Lamport, 1998) and Raft (Ongaro and Ousterhout, 2014)) can
be used to agree on the global order of operations and achieve high consistency lev-
els. However, these protocols are not directly applicable for transactions and isola-
tion guarantees and are therefore not described in this thesis. Options to implement
transactions and isolation levels have also been researched in traditional database
systems for decades (Haerder and Reuter, 1983). This section introduces different
relating concepts and techniques.
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2.2.1 Two-phase locking

Two-phase locking is a concurrency control protocol that is used to implement the
serializable or repeatable read isolation levels (Bernstein, Hadzilacos, and Goodman,
1987). Two-phase locking is not necessarily a distributed protocol but can be applied
in both a non-distributed and a distributed setting. Two-phase locking consists of
two phases, the growing phase where locks are obtained and the shrinking phase
where locks are released. Two types of locks can be distinguished, a shared lock and
an exclusive lock.

Shared lock

A shared lock is sometimes also referred to as a read lock. Once a transaction reads
a data item, it obtains a shared lock on the data item. The lock is released when the
transaction completes. This shared lock prevents other operations from writing to
this data item. However, they may still read the data item. If another transaction
reads the data item, this transaction will also obtain a shared lock on the data item.
Only once all shared locks are released, a write operation may be performed on the
data item.

Exclusive lock

An exclusive lock is sometimes also referred to as a write lock. Once a transaction
performs a write operation on a data item, it obtains an exclusive lock. It may only
do so when no shared or exclusive locks are active on the data item. This exclusive
lock prevents both read and write operations. The write lock is released when the
transaction completes.

The rule of two-phase locking is that a transaction may no longer obtain other locks
once a lock is released. So, transactions acquire locks during their lifetime (growing
phase) and release the locks when they either commit or abort (shrinking phase).
Whenever a lock is released, no new locks may be acquired. This ensures that no
other operations have unsafe access to data items in a running transaction, ensuring
isolation.

Depending on the lock’s scope, either the repeatable read or serializable isola-
tion level can be implemented using locks. In the example of a single table, locks on
individual rows are sufficient to ensure the repeatable read isolation level, but not
necessarily the serializable isolation level as this also considers aggregates of rows.
Another option would be to lock the entire table to ensure serializability. This im-
plementation choice not only affects the isolation level but may also have significant
effects on the performance. Two-phase locking is a form of pessimistic locking.

Deadlocks

A problem that occurs when using two-phase locking is deadlocks (Coffman, Elph-
ick, and Shoshani, 1971). A deadlock can occur when concurrent transactions try to
obtain locks on the same data items. The simplest example of a deadlock considers
two transactions A and B. Both A and B require an exclusive lock on data items x
and y. Transaction A first acquires an exclusive lock on data item x while transac-
tion B acquires an exclusive lock on data item y. When transaction A tries to obtain
a lock on data item y it can not do so and has to wait until transaction B completes.
At the same time, transaction B tries to acquire a lock on data item x but can not
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do so and has to wait until transaction A completes. Both of these transactions can
now no longer complete and the locks will never be released. This is a deadlock.
A deadlock may also occur on a bigger scale involving more transaction and data
items. Deadlocks may be ignored, prevented, or detected and then dealt with.

When a deadlock is ignored, a timeout must be set for a transaction to be aborted
artificially and retried as otherwise deadlocks will continue to accumulate and the
entire system will come to a halt. This approach may cause significant overhead on
the system.

Wait-die and wound-wait approaches may be used to prevent deadlocks. When
a transaction tries to acquire a lock on an already locked item, the wait-die ap-
proach checks both transactions’ timestamp. When the new transaction’s timestamp
is lower than the timestamp of the transaction holding the current lock, the new
transaction is allowed to wait. When the new transaction’s timestamp is higher, the
new transaction is killed. The wound-wait approach works the other way around.
The new transaction is allowed to wait when its timestamp is higher than the times-
tamp of the transaction holding the current lock. When the new transaction’s times-
tamp is lower, the transaction holding the current lock is killed. Both these ap-
proaches prevent deadlocks and are easy to implement. A downside of these ap-
proaches is that transactions that do not necessarily lead to deadlocks are also killed.

A wait-for graph may be constructed to detect deadlocks. In this graph, nodes
are transactions, and directed edges represent transactions blocked by other transac-
tions. Whenever a cycle in this graph exists, a deadlock exists. In the simple example
shown above, there would be two nodes A and B that both have a directed edge to
the other node resulting in a cycle. This is more complex to implement than wait-die
or wound-wait, but does not unnecessarily kill transactions.

2.2.2 Two-phase commit

Two-phase commit is an atomic commit protocol for distributed systems (Gray,
1978). It coordinates a transaction across different instances and ensures the op-
erations are atomic. To do this the two-phase commit protocol relies on a single
coordinator. Instances that are involved in the atomic transaction are called partici-
pants. Two-phase commit has two phases; the prepare phase and the commit phase.
In the prepare phase, (1) the coordinator sends prepare messages to all participants
to make them aware of the upcoming operation they need to perform. Then, (2) the
participants reply to the coordinator whether they are able to perform the operation.
The coordinator collects the replies from all participants. The coordinator can now
abort the transaction or commit the transaction in the commit phase. If all participants
replied that they can perform the operation, the coordinator commits the transac-
tion and (3) sends a commit message to all participants. (4) The participants then
perform the operation. When any single participant replied they can not perform
the operation or failed to reply, the coordinator aborts the transaction. To abort the
transaction, (3) the coordinator sends abort messages to all participants and (4) the
participants do not perform the operation.

The two-phase commit protocol is originally solely used for atomicity. However,
it can be extended with the two-phase locking protocol to implement serializabil-
ity in a distributed setting. To do this, participants lock data items involved in the
transaction between the prepare message and the commit or abort message. So, during
the prepare phase, locks across different instances are acquired (growing phase), and
during the commit phase, these locks are released (shrinking phase). Even though
two-phase commit can be used in this way to implement strong isolation levels, its
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primary function is to ensure the atomicity of a transaction across different instances
and it should not be confused with two-phase locking. The combination of two-
phase commit and two-phase locking is also vulnerable to deadlocks. Deadlocks
in a distributed setting are even harder to detect, since they require extra network
communication to detect and resolve them.

2.2.3 Sagas

Two-phase commit can be quite costly, which is why the sagas protocol (or pattern)
was introduced (Garcia-Molina and Salem, 1987). Sagas is also an atomic commit
protocol for distributed systems. While initially introduced for long-lived transac-
tions, the increased performance and more straightforward implementation of the
sagas protocol has led to it being widely used across distributed applications and
specifically in popular micro-service architectures. Sagas do not lock and, therefore,
often perform better than two-phase commit. However, this also means that they do
not provide any isolation guarantees and only provide a read uncommitted isolation
level. Sagas is also often used to describe the orchestration of a workflow consist-
ing of operations on various distributed applications and not necessarily always as
a transaction in the strict sense.

Sagas relies on compensating operations. When using sagas, operations that are
part of a transaction are performed on different instances. Whenever any operation
fails, sagas ensure that compensating operations are performed for operations that
are part of the same transaction, and that succeeded. Compensating operations, in
this case, undo any effect that the original operation had. When using sagas, there
is no locking between the original and the compensation operations. This means
that other operations may be performed on the data item in between the original
operation and the compensating operation.

Sagas are usually applied in event-driven systems. This means an operation is
often an incremental change to the state (for example addCredit(5)) rather than a com-
plete overwrite (for example setCredit(10)). When implementing sagas, compensat-
ing operations should always succeed. Otherwise, the system will not return to a
consistent state (consistent as by the ACID definition). There are two popular ap-
proaches to implement sagas.

Choreography

When using choreography to implement sagas, there is no orchestrator, but instances
that are part of the transaction communicate to complete the transaction. To do this,
a single instance that successfully completes an operation calls the next instance to
perform an operation. This is chained forward to include operations over multiple
instances. When an instance fails to perform its operation, they call the previous
instance to perform its compensating operation. This is then chained backwards to
all previous instances to perform their compensating operations.

A benefit of choreography is that it does not depend on a single instance. How-
ever, a downside is that all instances need to be aware of the transaction and that the
transaction details are spread across different instances. Instances may have sepa-
rate code bases (for example, for micro-services), meaning that a single transaction’s
details are spread across several code bases.
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Orchestration

Orchestration does rely on a single instance; the orchestrator. This orchestrator is
aware of all instances, operations, and compensating operations of the transaction.
The orchestrator messages instances that participate in the transaction with the oper-
ation they should perform. It collects the replies of the participants. If no operations
failed, the orchestrator is done. However, if any operation failed, the orchestrator
should message all instances that successfully performed an operation to perform
a compensating operation. This shares some resemblance with two-phase commit
where there is also a single coordinator, however, sagas do not do any locking, and
two-phase commit does not require compensating operations.

This approach does depend on a single instance. A benefit of orchestration is
that all logic of the transaction is centralized in the orchestrator, and participants
only have to be aware of their own operations.

2.2.4 Calvin

A more recent approach to implement transactions with strong isolation and consis-
tency guarantees is Calvin (Thomson et al., 2012). For example, FaunaDB1 imple-
ments a protocol based on this to implement distributed transactions within their
system (Freels, 2018). Calvin requires replicated and partitioned storage systems to
agree on a single deterministic order of processing transactions before processing
them. It does this by introducing an initial sequencing component in all instances.
This sequencing layer accepts incoming transactions and decides on a single deter-
ministic global order with all other instances using the Paxos consensus algorithm.
After this order has been decided, each instance performs the transactions in this
order. Because all transactions are performed in the same order, every replica will
arrive at the same results. This additional sequencing step does increase latency. An-
other limitation of this approach is that the entire read/write set of the transaction
must be known ahead of time to ensure a correct deterministic order (Ren, Thomson,
and Abadi, 2014).

Google Spanner2 has implemented a similar approach where agreement on the
order is required before processing. Spanner uses a TrueTime mechanism to ensure
the ordering of transactions across machines (Corbett et al., 2013). However, True-
Time requires atomic clocks and GPS, often not available and not feasible in many
cases.

Both Calvin and Google Spanner are examples of approaches that optimize data
correctness over performance by design.

2.3 Processing guarantees

Besides data correctness, communication is also a considerable problem in distributed
systems, because the network is unreliable (Bailis and Kingsbury, 2014). When com-
puter A sends a message to computer B, two problems commonly occur. Firstly, the
message of computer A may never arrive at computer B. Secondly, the response
of computer B may never arrive at computer A. So when computer A does not re-
ceive a response from computer B, two scenarios are possible; either the message
from A to B did not arrive or the response message from B to A did not arrive. In
this case computer A does not know whether computer B processed the message

1https://fauna.com/
2https://cloud.google.com/spanner



2.4. Fault tolerance 17

and does not know whether the message should be send again. There are different
solutions to this problem along with different levels of processing guarantees. Pro-
cessing guarantees reflect how often the receiver has actively processed the message
and how often the message may have affected its state. Similar to the data correct-
ness levels, increasing the processing guarantees comes at performance costs. These
levels are described below according to the example communication between com-
puter A and computer B sketched above.

At-most-once processing

At-most-once processing means a message may either never be processed or pro-
cessed once. In this case, computer A sends the message to computer B once and
does not care about the response. This means the message may either arrive once or
not at all. The state of the receiver may therefore either reflect the message or not
reflect the message.

At-least-once processing

At-least-once processing means a message may either be processed once or multiple
times. To achieve this, computer A keeps re-sending the message to computer B
until it receives a response. The message may arrive multiple times at computer B,
resulting in at-least-once processing. At-least-once processing guarantees the state
of the receiver is updated by the message once or multiple times.

Exactly-once processing

Exactly-once processing means the state of the receiver will always be updated exactly-
once by the message. This can be implemented by attaching a unique incremental
identifier to the message. Then, the same approach as at-least-once processing can
be used on the side of the sender. However, because of the unique incremental iden-
tifier, the receiver can distinguish messages it has already received before and ensure
it will only process a message once.

Exactly-once processing can also be achieved by sending idempotent messages
while using at-least-once processing. Idempotent messages can be applied multi-
ple times without changing the result. An example of this is adding an item to a
set. If the item was already added to the set, the resulting set would not change
when performing the operation again. In this case, idempotent messages should be
implemented at the application level rather than the system ensuring exactly-once
processing itself.

2.4 Fault tolerance

Fault tolerance is a term that describes the property of a system that can cope with
failures without losing data. An example of a failure is a computer crashing. Fail-
ures are a common problem in large distributed systems, so fault tolerance is an
important property. This section describes two common approach to achieve fault
tolerance.
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2.4.1 Active Replication

An approach to achieve a fault-tolerant system is replication. Replication is com-
monly implemented in traditional relational databases and means a copy of the
database is always running in the background as a backup. This is called primary-
secondary replication. In case of a failure in the database’s primary copy, the sec-
ondary copy can directly step in and take over. This does require the primary and
secondary copy to maintain the same state, meaning that any update to the database
now becomes a distributed transaction consisting of an update to the primary and
the secondary instance. This can be achieved with a two-phase commit, but this
decreases performance significantly.

2.4.2 Rollback recovery

Another solution that can be used to achieve fault tolerance is rollback recovery
(Carbone et al., 2017). Rollback recovery is commonly implemented in stream pro-
cessing systems. A system’s input must be persisted somewhere to use rollback
recovery, for example, in Apache Kafka. After a failure, the system can always reach
the same state by processing the input again. However, this may take very long
in long-running applications, leading to the introduction of checkpointing. Check-
pointing mechanisms periodically store a snapshot of the system in a persistent stor-
age system, such as a distributed file system. Whenever a failure occurs, the system
can restart from this checkpoint and only process the input that arrived after the
checkpoint to reach the same state it had before.

2.5 Stateful stream processing

Stateful stream processing systems are an abstraction that provides some guarantees
out-of-the-box. Streams are data in motion. This data can be read, processed, and
forwarded by stream processors. Stateful stream processors keep aggregate state
based on the data they have processed. Stream processors can read and process data
produced by various data sources, such as message queues like Kafka, relational
databases (using change data capture), or direct HTTP events. Stream processors
may output processed data to various sinks, such as Kafka, relational databases, or
document stores like mongoDB3. A well-known stateful stream processing system
is Apache Flink.

2.5.1 Fault-tolerance and delivery guarantees

Stream processing systems commonly use rollback recovery and checkpointing to
provide fault-tolerance guarantees. On top of this, stream processors may also ex-
tend processing guarantees to delivery guarantees. These delivery guarantees are
not strictly limited to stream processing systems but are most common in stream
processing systems. Delivery guarantees require a durable source (or input mes-
sages). Kafka is an example of a durable source. Delivery guarantees ensure the en-
tire system provides at-least-once or exactly-once semantics from every input mes-
sage at the source to every output in the sinks, including any state updates to stateful
streaming operators in between.

3https://mongodb.com/
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2.6 Benchmarking

The recent developments in cloud technology and the increasing usage of Web ap-
plications have led to an extreme variety of data-related use cases. These varying use
cases have resulted in many diverse systems, ranging from document stores such as
mongoDB to distributed file systems like Amazon S34. Each of these systems offers
its own trade-offs and may be beneficial for some use cases and perform less well
for other use cases.

2.6.1 YCSB

The large variety of use cases and systems makes it difficult to compare systems
using a standardized benchmark. The Yahoo! Cloud Serving Benchmark (YCSB) is an
effort to provide a flexible yet standardized benchmark definition for cloud systems
(Cooper et al., 2010). YCSB is extremely straightforward, and therefore its results
are easily interpretable and explainable. Since many novel systems do not provide
strong data correctness guarantees and specifically no transactions (Cattell, 2011),
YCSB can not be used to evaluate performance on transaction workloads.

2.6.2 TPC-C

On the other hand, the TPC-C benchmark has existed since 1992 (Raab, 1993). TPC-C
has been used to benchmark fully-fledged relational database management systems,
including transactions. This was possible since these systems’ requirements were
well-defined, and most systems included the same or similar features (as use cases
were also less diverse). However, TPC-C requires the system to have many addi-
tional features that are currently not commonly supported in modern cloud systems.
Because of this, TPC-C is not fit to benchmark these systems.

2.6.3 DeathStarBench

DeathStarBench is a more recently introduced benchmark. DeathStarBench intro-
duces five applications (including a social media network and a banking system)
and their associated micro-services designs. DeathStarBench aims to evaluate the
performance of micro-services-like architectures throughout the technology stack,
from application framework to network overhead to hardware design. However,
the micro-services introduced by DeathStarBench are complex, and it is not appar-
ent how to reason about the system’s behavior based on the results.

Both TPC-C and DeathStarBench are complex and not easily interpretable, and YCSB
is extremely simple. This calls for a benchmark that covers the ground in-between. It
should require fewer features than TPC-C and be easier to interpret than DeathStar-
Bench, but still evaluate the performance of transactions. Some attempts were made
to introduce a benchmark like this (Dey et al., 2014), but none are widely adopted.
This lack of adoption may be because many systems still lack support for transac-
tions.

4https://aws.amazon.com/aws/s3/





21

Chapter 3

Serverless computing

The chapter presents related work on serverless computing. Firstly, the basic defini-
tions in cloud computing are given. Secondly, the concept of serverless computing
is presented. Next, a novel serverless model, stateful functions-as-a-service, is dis-
cussed, including implementations of this model.

3.1 Cloud computing

Cloud computing has gained much popularity recently and is a promising model
for computation. Cloud computing’s central idea is to outsource operational IT
concerns to either public cloud providers (public cloud) or a specialized department
within an organization (private cloud). The cloud provider provides services to its
users. According to "A Berkeley View on Cloud Computing" (Armbrust et al., 2009)
this has the following hardware-related advantages:

1. The illusion of infinite computing resources available on demand. This means users
no longer have to plan ahead and provision enough resources for their upcom-
ing load because they can quickly get these resources on demand.

2. The elimination of an up-front commitment by Cloud users. This is specifically re-
lated to public clouds. Users can rent available compute resources and services
by the hour and do not have to make up-front investments in IT infrastructure.

3. The ability to pay for use of computing on a short-term basis as needed. This allows
for a lot of flexibility for cloud users. They can use resources while requiring
them and simply release them when they are no longer needed.

These benefits are beneficial for many organizations. The services that cloud
providers usually provide can be categorized into the following three categories.

Infrastructure-as-a-Service (IaaS)

Infrastructure-as-a-Service (IaaS) is the simplest form of cloud services. It provides
users with simple compute resources on-demand. These resources usually include
CPU, memory and storage. The most well-known example of this is AWS EC2 in-
stances1.

1https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/
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Platform-as-a-Service (PaaS)

Platform-as-a-Service (PaaS) is a more complex form of cloud services. The cloud
provider hosts some software on their infrastructure and allows users to interact
with and use it without actually maintaining the software itself. Examples of this
include a hosted and maintained version of Kafka2, a hosted version of Kubernetes3,
or even fully managed relational database systems4. PaaS may also be scaled up and
down by the cloud provider automatically based on the cloud user’s load. Because
of this, PaaS alleviates many operational concerns for the cloud user. They no longer
have to provision IaaS instances and deploy software on top of it. Besides this, cloud
providers often provide availability and reliability guarantees for the services they
offer.

Software-as-a-Service (SaaS)

Software-as-a-Service (SaaS) are complete hosted software deployments made avail-
able to users and are directly usable. Examples of this are Salesforce 5 and Dropbox6.
SaaS may directly solve and optimize processes for cloud users.

The examples mostly referred to AWS, but many other big cloud providers offer
similar services, such as Microsoft Azure or Google Cloud Platform.

3.2 Serverless computing

The cloud has already simplified many operational concerns; however, not all promises
have yet been fulfilled. Using the cloud and realizing its full potential requires thor-
ough knowledge of provided services, and orchestrating and configuring cloud ser-
vices in a large system is not easy. The serverless computing model aims to solve
this. A Berkeley View on Serverless Computing states the following about server-
less computing: "It provides an interface that greatly simplifies cloud programming,
and represents and evolution that parallels the transaction from assembly language
to high-level programming languages" (Jonas et al., 2019).

Serverless computing models should provide the user with the ability to deploy
simple code and automatically leverage all benefits the cloud has to offer. It should
be able to auto-scale deployments of the user code, even to zero, and the user should
only pay for the actual execution of the supplied code. This model can be described
as a PaaS model that is extremely simple to use. Currently, several services are avail-
able that are described as serverless.

3.2.1 Function-as-a-Service

The most well-known serverless model is Function-as-a-Service (FaaS). It has be-
come increasingly popular over the last years (Jonas et al., 2019; Baldini et al., 2017a;
Hellerstein et al., 2018; Eyk et al., 2017; Baldini et al., 2017b; Akhter, Fragkoulis,
and Katsifodimos, 2019). A popular commercial implementation of FaaS is AWS

2https://aws.amazon.com/msk/
3https://aws.amazon.com/eks/
4https://aws.amazon.com/rds/
5https://www.salesforce.com/
6https://www.dropbox.com/

https://aws.amazon.com/msk/
https://aws.amazon.com/eks/
https://aws.amazon.com/rds/
https://www.salesforce.com/
https://www.dropbox.com/
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Lambda7, and OpenLambda8 (Hendrickson et al., 2016) is a popular open-source
implementation. FaaS allows cloud users to upload code in the form of a simple
function to the cloud. The cloud user can configure some triggers and input to in-
voke the function. The cloud provider then deploys an ephemeral instance of that
function, takes the input, and executes the function. The functions are usually state-
less so that they can be deployed anywhere and executed entirely in parallel, making
it easy for the cloud provider to auto-scale the function. Cloud users can now solely
focus on the application logic, knowing that the cloud provider takes care of all op-
erational concerns.

Limitations of FaaS

Even though the FaaS model is very popular and a great step towards serverless
systems, there are some limitations. These limitations are described in a paper by
Hellerstein et al. (2018). The following four limitations are mentioned:

1. Limited Lifetimes. Current available FaaS services only allow very short-lived
function executions.

2. I/O bottlenecks. Available FaaS services have no access to state. This means
network communication has to be used to fetch data and to store state updates.
The network that functions can use is often slow.

3. Communication Through Slow Storage. Functions are not directly accessible
through network. Functions are only accessible through intermediate services
or gateways. When a function calls another function, communication is done
via a slow storage system rather than a direct network call.

4. No Specialised Hardware. Current FaaS offerings do not allow cloud users
to specify specific hardware requirements for functions and workloads. An
example of this is when access to a GPU would significantly increase the per-
formance of training machine learning models.

Problems one and four are not inherent problems with the computation model
but have more to do with configuration. However, problems two and three seem not
easily solvable.

Another problem with currently available FaaS services is that they are not fault-
tolerant or reliable. Whenever an execution of a function fails, either the function
stops, and the execution will be incomplete, or the function will be executed again
with the same input. When the function fails, it could have already written some
data to an external datastore but not yet performed all its write operations. Stop-
ping the execution will leave the datastore with only half of the writes. Executing
the function again will lead to double results unless the operations are idempotent
(currently recommended by the cloud providers). Both these scenarios are undesir-
able.

SAND is a more recent approach to implement FaaS (Akkus et al., 2018). SAND
acknowledges the problems described earlier and specifically aims to improve func-
tion communication related to problem three. SAND deploys functions that are con-
tained in the same application in the same container. This greatly improves function

7https://aws.amazon.com/lambda/
8https://github.com/open-lambda/open-lambda

https://aws.amazon.com/lambda/
https://github.com/open-lambda/open-lambda
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communication within the application because (1) no new container has to be de-
ployed for the called function, and (2) the message to the called function can be sent
locally on the same instance, decreasing latency. This greatly improves the perfor-
mance of workloads that require function communication but does not solve the
data problem described as problem 2.

3.2.2 Serverless data storage

Besides serverless computation models, cloud providers also offer data storage with
serverless properties. Two storage models are commonly offered by cloud providers.
Services like AWS DynamoDB or Azure Cosmos DB provide auto-scaling key-value
storage and services like AWS S3 offer auto-scaling file storage. Both these key-value
storage and file storage systems have a payment model based on usage. These mod-
els are extremely flexible, but do not provide the user with a lot of guarantees re-
garding transactions or even consistency in some cases.

3.3 Stateful Function-as-a-Service

A new paradigm called Stateful Function-as-a-Service aims to find solutions to both
problems 2 and 3 of FaaS services as described above. Stateful Function-as-a-Service
offers the same possibilities as FaaS but also allows the function access to managed
state. This access to state addresses problem 2. Besides that, they simplify invoking
other functions improving communication between functions, and address problem
3.

This chapter discusses four existing open-source SFaaS systems, namely State-
Fun, Cloudstate, Cloudburst, and Beldi. The differences between these approaches
are mostly caused directly by the choice of architecture and the enabling technology
for the systems. This chapter introduces these architectures (3.3.1), discusses their
programming models (3.3.2), and consistency guarantees (3.3.3).

3.3.1 Architecture

Each of the four mentioned SFaaS systems is based on different technologies. This
section describes the architectures of the different systems.

Cloudstate

Figure 3.1 shows Cloudstate’s architecture. Cloudstate is based on Akka10. It builds
on top of the actor model (Hewitt, Bishop, and Steiger, 1973) and specifically on Akka
Cluster and Akka Persistence (or stateful actors). Cloudstate runs in kubernetes11.

Cloudstate requires a sidecar to be deployed in the same pod as a user-defined
function, as shown in figure 3.1. These sidecars form an Akka cluster, and each
sidecar maintains some stateful actors based on the user-defined function deployed
with it. A user-defined function may have multiple instances that each encapsulate
their own state. Function instances are uniquely identified by an ID. All function

10https://akka.io/
11https://kubernetes.io/
11https://cloudstate.io/docs/cloudstate-solution.html

https://kubernetes.io/
https://cloudstate.io/docs/cloudstate-solution.html


3.3. Stateful Function-as-a-Service 25

FIGURE 3.1: Cloudstate architecture9

instances are represented by stateful actors. If multiple instances of the same user-
defined function are deployed, the function instances may be partitioned or repli-
cated across the deployed instances. Cloudstate provides two types of stateful func-
tions; event-sourced and CRDT. In the case of event-sourced functions, only a single
stateful actor per function instance exists, and these are partitioned across multiple
instances of the user-defined function. For CRDT functions, multiple stateful actors
per function instance may exist, so these are both partitioned and replicated across
multiple instances of the user-defined function.

The stateful actors communicate with user-defined functions over gRPC12. The
user-defined functions get called with an incoming message and the state of the
function instance the message is addressed to (uniquely identified by the ID). The
results of the function invocation are then passed back to the sidecar to handle. The
sidecar is responsible for the state management and the communication between
functions. Because the state management is done in the same pod as the function
executes, compute and state are co-located in Cloudstate, allowing for low latency.

The stateful functions (or stateful actors representing them) within the cluster can
communicate between themselves to deliver messages from one function to another.
Messages between function instances in Cloudstate have exactly-once guarantees.

To achieve fault-tolerance Cloudstate relies on a separate distributed datastore
that persists all the state of the stateful actors and allows recovery in case of a failure.
The persistence of Cloudstate is based on rollback recovery and a checkpointing
mechanism is implemented to prevent having to process all events again to get to
the current state.

StateFun

StateFun is based on Apache Flink14, a stateful stream processing system. Similar
to Cloudstate, multiple instances of each user-defined function can exist, each en-
capsulating its own state. However, in StateFun, these are represented as stateful

12https://grpc.io/
14https://flink.apache.org/

https://grpc.io/
https://flink.apache.org/
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FIGURE 3.2: StateFun architecture13

operators in a streaming graph instead of stateful actors. Figure 3.2 shows a sketch
of StateFun’s architecture.

StateFun supports both internal stateful functions and external stateful functions.
Internal stateful functions run in the same JVM as the stream processor (Flink) itself
and have direct access to state. This is simply an abstraction on top of a stateful op-
erators. External stateful functions communicate with an internal stateful operator
through a HTTP interface similar to the gRPC interface used for Cloudstate. The
external functions are called with the message and the state for the addressed func-
tion instance. This allows the external functions to be entirely stateless themselves.
External functions can be deployed in the same pod as StateFun workers similar
to Cloudstate for co-located compute and state or elsewhere for example in AWS
Lambda allowing for separate scaling of compute and state. StateFun supports both
internal stateful functions and external stateful functions. Internal stateful functions
(called embedded functions) run in the same JVM as the stream processor (Flink)
and directly access the state. These embedded functions are simply an abstraction
over stateful operators. External functions communicate with an internal stateful op-
erator through an HTTP interface similar to the gRPC interface used for Cloudstate.
The external functions are called with the message and the state for the addressed
function instance, allowing the external functions to be entirely stateless. External
functions can be deployed in the same pod as StateFun workers (similar to Cloud-
state) for co-located compute and state or elsewhere, for example, in AWS Lambda,
allowing for separate scaling of compute and state.

To allow for dynamic communication between functions, StateFun implements a
slight change in the stream processing system to support cyclic graphs, rather than
only supporting static DAGs.

StateFun directly inherits Flink’s fault-tolerance and exactly-once implementa-
tion. The fault-tolerance is based on rollback recovery and checkpointing. The
exactly-once semantics require an atomic commit to the data sources (ingress in
StateFun terminology) and sinks (egresses in StateFun terminology). This approach
requires durable input such as Apache Kafka and a distributed file system to persist
the system’s checkpoints.

14https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/concepts/
distributed_architecture.html

https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/concepts/distributed_architecture.html
https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/concepts/distributed_architecture.html
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Cloudburst

FIGURE 3.3: Cloudburst architecture (Sreekanti et al., 2020)

Cloudburst (Sreekanti et al., 2020) takes a different approach. Figure 3.3 shows
Cloudburst’s architecture. Cloudburst is based on Anna (Wu et al., 2018), an auto-
scaling distributed key-value store. Together Anna and Cloudburst are part of the
Hydro Project15, a research project of the RISE Lab at UC Berkeley. Functions are
executed in an entirely separate cloud runtime from Anna but have access to Anna’s
mutable shared state. The state in Anna is also cached in the cloud runtime instances
for low-latency access.

In this architecture, functions have arbitrary access to any state in Anna by key,
making it very different from Cloudstate and StateFun. The system tries to execute a
function on an instance that has the function’s required state cached. Functions can
be called synchronously or asynchronously from within other functions. Cloudburst
allows users to compose functions by combining arbitrary functions and represent-
ing them as DAGs. Then Cloudburst passes the results of a function along the DAG
edges towards the next function in the composition.

Beldi

FIGURE 3.4: Beldi architecture (Zhang et al., 2020)

Beldi (Zhang et al., 2020) is built on top of currently available serverless services
provided by cloud providers. It uses Function-as-a-Service services and serverless
key-value stores to implement its stateful Function-as-a-Service model. Beldi aims to
make FaaS workflows fault-tolerant with exactly-once guarantees and allow transac-
tions for FaaS workflows. Beldi relies on a serverless key-value store that provides

15https://hydro-project.github.io/
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linearizability and atomic updates (i.e., transactions) on the scope of a single key.
Serverless key-value stores like AWS DynamoDB and Azure Cosmos DB provide
these requirements.

Beldi introduces a runtime that itself runs on FaaS services and uses serverless
key-value stores for internal state and bookkeeping. Figure 3.4 shows the archi-
tecture. The application developer can invoke other functions and access state in
the key-value store through the Beldi runtime. Therefore, the Beldi runtime has
complete control over how the data is stored, what metadata is kept, and when to
invoke functions. This runtime keeps logs for all of the user’s functions in the key-
value store. These logs allow Beldi to re-invoke functions that failed initially. Besides
keeping logs, the Beldi runtime also appends metadata about recent writes and the
status of any lock to all data stored by the user in the key-value store. Because they
append this meta-data to the same key as the actual data, Beldi can leverage the key-
value store’s atomic update feature to commit both state updates and bookkeeping
status atomically. Beldi supports both fault-tolerance (exactly-once semantics) and
transactions using serverless services based on the logs and the metadata appended
to the data items.

To prevent the logs and metadata from growing indefinitely, Beldi implements a
garbage collector that cleans up the logs and metadata periodically.

3.3.2 Programming model

The most significant difference in programming models among these systems is the
access to state. Both StateFun and Cloudstate encapsulate state within a specific
function instance (uniquely identified by a user-defined function and an ID). In con-
trast, Cloudburst allows any function access to any state stored in Anna, even dy-
namically. Beldi allows both models; functions can keep their own state, but some
state can be accessed by arbitrary functions.

This section compares the programming models for these systems.

Cloudstate

Cloudstate has a quite bloated programming model. It requires a specific definition
of a gRPC contract in a separate Protobuf file. The complete code required is very
explicit and lengthy. Figure 3.5 shows a sketch of the Python code for a simple event-
sourced shopping cart function. The full code is included in appendix A. The state
kept by cloudstate for each function instance is defined in the class at line 2. The
function at line 4 initializes the state the first time the function is run for a particular
ID. The function defined in line 10 is used to serialize the data to store as part of a
snapshot, and the function defined in line 16 is used to recover the state from the
snapshot.

Cloudstate uses events for persistence. The processing of an incoming message
and the event are separated. In figure 3.5, the function to process the command is
defined in line 30. This function does not directly change any state but emits an
event at line 36. This event is then handled by the function defined at line 20. The
event is persisted, and the event handler function can be used to recover the state
based on earlier persisted events in case of a failure.

StateFun

16https://pypi.org/project/cloudstate/

https://pypi.org/project/cloudstate/
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1 @dataclass
2 class ShoppingCartState:
3 entity_id: str
4 cart: MutableMapping[str, LineItem] = field(default_factory=dict)
5
6 def init(entity_id: str) -> ShoppingCartState:
7 return ShoppingCartState(entity_id)
8
9 @entity.snapshot()

10 def snapshot(state: ShoppingCartState):
11 cart = DomainCart()
12 cart.items = [to_domain_line_item(item) for item in state.cart.values()]
13 return cart
14
15 @entity.snapshot_handler()
16 def handle_snapshot(state: ShoppingCartState, domain_cart: DomainCart):
17 state.cart = {domain_item.productId: to_line_item(domain_item) for domain_item in domain_cart.items}
18
19 @entity.event_handler(ItemAdded)
20 def item_added(state: ShoppingCartState, event: ItemAdded):
21 cart = state.cart
22 if event.item.productId in cart:
23 item = cart[event.item.productId]
24 item.quantity = item.quantity + event.item.quantity
25 else:
26 item = to_line_item(event.item)
27 cart[item.product_id] = item
28
29 @entity.command_handler("AddItem")
30 def add_item(item: AddLineItem, ctx: EventSourcedCommandContext):
31 if item.quantity <= 0:
32 ctx.fail("Cannot add negative quantity of to item {}".format(item.productId))
33 else:
34 item_added_event = ItemAdded()
35 item_added_event.item.CopyFrom(to_domain_line_item(item))
36 ctx.emit(item_added_event)

FIGURE 3.5: Example of an event-sourced function in Cloudstate16

Similar to Cloudstate, StateFun encapsulates state within function instances. Figure
3.6 shows an example function in StateFun. StateFun’s programming model is a lot
simpler than Cloudstates. The users are in complete control of the data object and
need to deserialize it from Protobuf messages themselves. All operations related to
state management and function communication are wrapped in the context object
that the user can access.

In the example, the state is deserialized in line 3. The state update is confirmed
in line 9. In line 14, StateFun sends an egress message to Kafka.

Cloudburst

Cloudburst’s model of access to arbitrary shared mutable state is flexible. Cloud-
burst also allows synchronously calling other functions and composing a function
from multiple other functions as a DAG. Figure 3.7 shows an example using Cloud-
burst taken from the paper introducing Cloudburst (Sreekanti et al., 2020).

In the example, a function is registered in line 6. This function will execute in
the Cloudburst runtime shown in figure 3.3. This function can be executed syn-
chronously (line 8) or asynchronously (line 11). Any Cloudburst code has access to
arbitrary state in Anna, as in lines 3 and 4.

17https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/
getting-started/python_walkthrough.html

https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/getting-started/python_walkthrough.html
https://ci.apache.org/projects/flink/flink-statefun-docs-release-2.2/getting-started/python_walkthrough.html
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1 @functions.bind("example/greeter")
2 def greet(context, greet_request: GreetRequest):
3 state = context.state('seen_count').unpack(SeenCount)
4 if not state:
5 state = SeenCount()
6 state.seen = 1
7 else:
8 state.seen += 1
9 context.state('seen_count').pack(state)

10
11 response = compute_greeting(greet_request.name, state.seen)
12
13 egress_message = kafka_egress_record(topic="greetings", key=greet_request.name, value=response)
14 context.pack_and_send_egress("example/greets", egress_message)

FIGURE 3.6: Example of a function in StateFun17

1 from cloudburst import *
2 cloud = CloudburstClient(cloudburst_addr, my_ip)
3 cloud.put("key", 2)
4 reference = CloudburstReference("key")
5 def sqfun(x): return x * x
6 sq = cloud.register(sqfun, name="square")
7
8 print("result: %d" % (sq(reference))
9 > result: 4

10
11 future = sq(3, store_in_kvs=True)
12 print("result: %d" % (future.get())
13 > result: 9

FIGURE 3.7: Example of a function in Cloudburst (Sreekanti et al.,
2020)

Beldi

Beldi Library Description
read(k) ! v Read operation
write(k,v) Write operation
condWrite(k, v, c) ! T/F Write if c is true
syncInvoke(s, params) ! v Calls s and waits for answer
asyncInvoke(s, params) Calls s without waiting

lock() Acquire a lock
unlock() Release a lock
begin_tx() Begin a transaction
end_tx() End a transaction

LISTING 3.1: Beldi’s API for functions (Zhang et al., 2020)

Figure 3.1 shows the API of Beldi. These functions can be called from any server-
less function. Functions can read state and write state back to the key-value store
and synchronously and asynchronously call other functions. All of these operations
are fault-tolerant and guarantee exactly-once semantics, unlike standard serverless
services.

Beldi also introduces both a low-level API to implement transactions with locks
and a high-level API where the application developer can begin and end a transac-
tion. All operations between the begin_txn and end_txn function calls are included
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in the transaction, even across different function executions (when syncInvoke is
used).

3.3.3 Data correctness guarantees

This last section describes the data correctness guarantees provided by the discussed
systems.

StateFun

StateFun provides the most straightforward consistency guarantees. Firstly, it pro-
vides exactly-once (also more accurately referred to as effectively-once) processing
guarantees for all messaging and state updates throughout the system, from in-
gresses (e.g., Kafka) to internal function invocations and egresses (e.g., Kafka) (Car-
bone et al., 2017; Carbone et al., 2015). In StateFun, only a single instance of each
stateful operator representing a function instance exists, processing all messages;
there is no replication (except for snapshots for fault-tolerance). This stateful oper-
ator does not process messages in parallel, resulting in isolation based on a single
stateful operator (a single function instance or state associated with a single key or
address). This isolation results in linearizability of all operations on the data and
serializability for all transactions limited to a single-key. However, all invocations be-
tween functions are entirely asynchronous, and there exist no isolation guarantees
for more complex operations consisting of multiple function invocations.

Cloudstate

Cloudstate supports two modes of consistency. Firstly, event-sourced entities pro-
vide the same guarantees as StateFun functions do. Event-sourced entities are par-
titioned, and exactly one instance of each entity is active at any given time. This
instance processes messages sequentially, ensuring isolation. Secondly, Cloudstate
supports CRDT (Conflict-free Replicated Data Types) (Shapiro et al., 2011) entities.
CRDT entities are replicated across the Cloudstate cluster allowing for high avail-
ability. These replications may diverge, meaning this model does not ensure isola-
tion, even for a single entity. This results in eventual consistency. However, CRDT
entities are protected from data loss as they are limited to CRDTs. This does limit
the data types that can be used in these entities, while on the other hand, event-
sourced entities can encapsulate arbitrary data types. Cloudstate provides the same
exactly-once semantics as StateFun for messaging throughout the system. Similar to
StateFun, it does not guarantee any isolation guarantees across multiple invocations
either.

Cloudburst

Cloudburst has a different model of data correctness. This model is based on the
CALM theory (Hellerstein and Alvaro, 2019; Ameloot et al., 2015) proposed by the
RISE Lab. The CALM theory defines a formal set of applications that can be run
coordination-free. This means it does not support sequential consistency or higher
consistency levels but can perform significantly better since coordination is never
required in a critical path (only in background tasks). Cloudburst allows caching, as
shown in figure 3.3, and therefore has many state replicas. Cloudburst only imple-
ments eventual consistency for single operations.
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Cloudburst does support function compositions as DAGs that can provide more
guarantees. Edges in these DAGs represent causal relationships and are used to im-
plement causal consistency in Cloudburst. Besides this, the paper introducing Cloud-
burst (Sreekanti et al., 2020) claims the system provides the repeatable read consistency
level. This claim is confusing because of the repeatable read isolation level. Cloudburst
does not provide the repeatable read isolation level. The authors mean by repeatable
read that within the execution of a single DAG, no non-repeatable read anomaly can
occur. This is done by passing previously read or written values for keys along with
the execution of the DAG and using these values as opposed to the latest available
value.

Cloudburst has no notion of transactions at all and does not implement any isola-
tion level. Since Cloudburst allows for arbitrary access to any state in the key-value
store or even to cached state, concurrent DAGs may perform operations on the same
state, causing the state to diverge across replicas. To merge diverged data, Cloud-
burst by default uses last-writer wins (LWW) for arbitrary data types. The timestamp
is created coordination-free by concatenating the local system clock and the node’s
ID. Even though this does provide eventual consistency or causal consistency, this may
result in data loss. Cloudburst and Anna can be used for CRDTs to merge diverged
data without data loss, but this is not the default behavior.

Beldi

Beldi aims to provide fault-tolerance and transactions for serverless services. It
achieves this by firstly ensuring exactly-once semantics for standard function opera-
tions such as invoking other functions or reading and writing to the key-value store.
This is already a notable improvement over current serverless offerings as these
usually depend on the developer implementing idempotent operations in serverless
functions.

Beldi goes one step further to introduce transactions to serverless environments.
The authors claim they provide opacity isolation level, which is similar to serial-
izability for transactions. Supporting serializable transactions is a significant im-
provement over current serverless offerings and the other systems discussed in the
section.
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Chapter 4

Coordinator Functions Approach

This chapter introduces the concept of coordinator functions to implement transac-
tions on top of Stateful Function-as-a-Service systems. The coordinator functions
introduced can be used to implement both serializable transactions with two-phase
locking and two-phase commit, and sagas workflows with compensating actions.
Coordinator functions do assume the underlying Stateful Function-as-a-Service sys-
tem already provides some guarantees (described in section 4.1). Coordinator func-
tions are described in section 4.2.

4.1 Assumptions and Requirements

Out of the four discussed SFaaS systems, two have many similarities; StateFun and
Cloudstate event-sourced entities. This thesis’s coordinator functions apply to those
two systems due to their shared characteristics. These characteristics are introduced
below and are also the requirements for systems where coordinator functions apply.

Firstly, both systems encapsulate state within function instances. Encapsulating
state within function instances is a common model for SFaaS; Azure Durable Func-
tions1 also uses it.

Secondly, opposed to Cloudburst and Cloudstate CRDT entities, StateFun and
Cloudstate event-sourced entities have the following two fundamental character-
istics that greatly simplify implementing transactions (Beldi is not discussed as it
already supports transactions).

4.1.1 Exactly-once guarantees

StateFun and Cloudstate event-sourced entities provide exactly-once semantics and
fault-tolerance. Because of these features, atomicity becomes easy to achieve; even
when the system fails halfway through a transaction, the underlying fault-tolerant
exactly-once semantics guarantee it finishes the transaction. These features also
guarantee durability, as any data processing in the system is already durable. Be-
sides this, exactly-once guarantees alleviate the need to implement complex network
communication protocols for distributed transactions as the existing messaging can
be used for reliable communication.

4.1.2 Linearizability

The invocations for a single function instance are linearizable. Function invoca-
tions both read the function state and possibly write a new value. The combination
of these operations can be described as a single-key transaction. This transaction

1https://docs.microsoft.com/en-us/azure/azure-functions/durable/

https://docs.microsoft.com/en-us/azure/azure-functions/durable/
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should also be performed in isolation. Strictly, this means that the function instances
should be both linearizable and serializable. However, since function invocations
naturally encapsulate both a read and a possible write, the term linearizability is
used. Linearizability is required as function invocations need reliable access to the
correct state for transactions to be implemented. StateFun and Cloudstate event-
sourced entities are linearizable; they have only a single replica of the state and
invocations are handled in a first-in-first-out (FIFO) manner by a single process in-
ternally. Both systems also maintain this linearizable FIFO order while the remote
stateless function executes function invocations.

These primitives provided by the underlying system make it easy to reason about the
system’s behavior and implement transactions. The only existing implementation of
transactions in serverless, Beldi, relies on similar features for transactions; lineariz-
ability of the key-value store and Beldi itself implements fault-tolerant exactly-once
guarantees before implementing transactions on top of that.

4.2 Coordinator Functions

As described, coordinator functions apply to SFaaS systems where function instances
encapsulate state. This encapsulation provides benefits as different developer teams
or even different organizations may independently work on different stateful func-
tions, similar to micro-services. However, encapsulating the state in function in-
stances make it complex to access state in multiple function instances to, for example,
aggregate state or perform a multi-key transaction. Achieving these multi-function
instance operations now requires complicated logic and messaging between func-
tion instances, especially since Cloudstate and StateFun only support calling func-
tions asynchronously (and not synchronously).

Azure Durable Functions provides a similar state encapsulation model for their
stateful functions, but Azure Durable Functions also supports orchestrator functions
for common application patterns. Orchestrator functions allow stitching together
synchronous calls to function instances, greatly simplifying the implementation of
workflows across multiple function instances (such as sagas). Orchestrator functions
do not support transactions with isolation guarantees.

The approach to use coordinator functions was inspired by orchestrator func-
tions; it is possible to simply use other stateful functions as orchestrators (for sagas)
and coordinators (for two-phase commit). This thesis introduces coordinator func-
tions that greatly simplify transactions across various function instances, both with
serializability using two-phase locking and two-phase commit and without isola-
tion guarantees using sagas. Figure 4.1 shows a general picture of how coordinator
functions work. Sections 4.2.2 and 4.2.3 describe this in more detail for serializable
transactions and sagas respectively. First, section 4.2.1 introduces the definition of
transactions in SFaaS along with the programming model. Section 4.2.4 describes
changes required to original functions to participate in transactions using coordina-
tor functions.

4.2.1 Programming Model for Transactions in SFaaS

Coordinator functions are a specialized type of user-defined function that develop-
ers can use to implement transactions involving arbitrary function instances based
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1 def serializable_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(amount = message.amount)
3
4 context.2pc_invocation("account_function",
5 message.debtor,
6 subtract_credit)
7 add_credit = AddCreditMessage(amount = message.amount)
8 context.2pc_invocation("account_function",
9 message.creditor,

10 add_credit)

LISTING 4.1: Two-phase commit coordinator function.

1 def sagas_transfer(context, message: Transfer):
2 subtract_credit = SubtractCreditMessage(amount=message.amount)
3 add_credit = AddCreditMessage(amount=message.amount)
4 context.saga_invocation_pair("ycsb-example/account_function",
5 message.debtor,
6 subtract_credit,
7 add_credit)
8 context.saga_invocation_pair("ycsb-example/account_function",
9 message.creditor,

10 add_credit,
11 subtract_credit)

LISTING 4.2: Saga coordinator function.

on an input message. From a user perspective, the coordinator functions are state-
less, but internally they keep the state of the ongoing transaction and communicate
with involved function instances transparently. The coordinator functions can rely
on the existing exactly-once fault-tolerant messaging between stateful function in-
stances, greatly simplifying durability and atomicity.

The serializable transactions implemented in this thesis are slightly different
from traditional transactions; rather than transactions being a set of operations, trans-
actions are now a set of functions invocations, as seen in listing 4.1. The atomicity of
transactions covers all side effects caused by the included function invocations. So,
state updates and any function invocations to other function instances (or other side
effects) are committed or aborted atomically. This does not apply to sagas (listing
4.2); the developer is still responsible for compensating all cascading effects caused
by the original invocation with the compensating invocation.

FIGURE 4.1: Communication pattern for coordinator functions

4.2.2 Two-Phase Commit Functions

Listing 4.1 shows an example of a two-phase commit function. The user can add
function invocations to the transaction. Besides this, the user can also define desired
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side effects to perform after the transaction completes. The transactions can com-
plete in three different scenarios; successful, failed, or retry-able. The user can add
side effects to perform in each of these cases, as seen later in listing 5.2.

Figure 4.1 shows the general flow of a transaction. The coordinator function
serves the role of the coordinator in two-phase commit. After receiving a mes-
sage (1), the coordinator function invokes the involved function instances with a
prepare message (2). The involved function instances do not directly apply the side
effects caused by the invocation and store them separately instead. At this point,
the function instance also locks and stops processing new invocations. The function
instances send a message to the coordinator function whether they succeeded (3).
Based on its received messages, the coordinator function either commits or aborts
the transaction (4). The transaction completes as retry-able if the transaction could
not complete due to a deadlock. All of the communication described here is entirely
transparent to the user.

4.2.3 Sagas Functions

The sagas coordinator performs the role of the orchestrator in sagas. The coordinator
function defines a set of function invocation and compensating function invocation
pairs, as seen in listing 4.2, and side effects to perform after completing the sagas.
Since sagas do not lock, there is no possibility of a deadlock, and sagas either succeed
or fail. The coordinator function calls the function instances with the initial function
invocations (2 in figure 4.1). The invoked function instances return to the stateful
operator whether the function invocation was completed successfully or failed (3).
Because sagas do not require isolation, the function instance can continue process-
ing function invocations. Based on its received messages, the coordinator function
can decide whether to send the compensating invocations to the involved function
instances. Similar to for two-phase commit coordinator functions, all the communi-
cation is transparent to the user.

This model does require stateful functions to implement logic to handle com-
pensating invocations for any invocation that may be part of a transaction, however,
this is likely often already the case (e.g. accepting AddCredit and SubtractCredit
messages or CreateUser and DeleteUser messages).

4.2.4 Regular Stateful Functions

As described, the coordinator functions allow regular stateful functions to be exe-
cuted as part of a transaction. The aim is to be able to include any arbitrary function
in a transaction. This would allow for loose coupling between functions and coordi-
nator functions and the ability to compose complex behavior using simple functions.

For these features, there is however an important piece of information that is
required by the system; the success or failure of a function invocation. Some function
invocations may fail based on the state of the function instance. A simple example
of this is a SubtractCredit(5) message to a user function instance with balance=1
in its state. This should represent a failed execution and if the SubtractCredit(5)
message was part of a transaction, the entire transaction should fail. This is similar
to the concept of integrity constraints in relational databases.

Besides this, regular functions should also participate in the communication with
coordinators transparently and implement the correct isolation semantics.
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Chapter 5

Implementation

This chapter describes the implementation of the coordinator functions in Flink State-
Fun. First, it describes the internals of StateFun in section 5.1, then section 5.2 de-
scribes changes made to the system to implement coordinator functions.

5.1 StateFun internals

The coordinator functions this paper introduces are implemented in Flink Stateful
Functions, also going by the name of StateFun. It is necessary to understand the
internals of StateFun to interpret the addition of this thesis.

5.1.1 Functions

Functions are at the core of StateFun. User-defined functions are uniquely described
by a function type that consists of a namespace and a name. StateFun function types
define state managed by StateFun. Multiple function instances of any function type
can exist in parallel and are uniquely identified by an ID. This means any function
instance can be uniquely addressed by the combination of the function type and the
ID, together referred to as the address. The invocation of a function type and its ac-
companying state are always scoped to the current address. So, function instances
may be loosely compared to rows in a relational database or documents in a doc-
ument store. Function instances also share similarities with stateful actors in actor
programming models.

Table 5.1 shows how function instances can be invoked in StateFun.

Method Description
Ingresses Events outside StateFun can enter the system through in-

gresses. Examples of ingress systems are Apache Kafka and
AWS Kinesis. For some ingresses, delivery guarantees span
across the ingresses (and egresses). This does require re-
playable ingresses.

Internal messages Function instances may be invoked by other function in-
stances or even by themselves.

TABLE 5.1: Methods to invoke StateFun functions

A function invocation may perform any combination of one or more of the side
effects presented in table 5.2. These side effects are managed by StateFun and the
configured delivery guarantees apply.
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Method Description
State updates The stateful functions have access to their state and may up-

date this state.

Egresses Similar to how ingresses create entrypoints to the StateFun
system, egresses are controlled exits from the system.

Invocations Function instances may invoke other function instances.
Other function instances may be invoked with any Proto-
col Buffer (Protobuf)1 message by their unique address (type
and ID).

Delayed
invocations

Function instances may invoke other function instances with
a delay. This delay is handled within the StateFun cluster.
This may be used, for example, for internal timeouts or re-
minder notification systems.

TABLE 5.2: Side effects caused by StateFun functions

Besides these defined side effects, developers are free to cause other side effects in
a function’s execution (for example by calling a third-party system), however these
side effects are not managed by StateFun and exactly-once guarantees do not apply
out-of-the-box.

5.1.2 Streaming graph

FIGURE 5.1: StateFun stream processing graph (Tai, 2020)

StateFun is powered by stream processing using Flink. It uses a quite simple under-
lying stream graph to handle messaging and state. Figure 5.1 shows this underlying
stream graph (Tai, 2020). It consists of three operators; the ingress and router opera-
tor, the function dispatcher, and the feedback operator.

Firstly, the Ingress and Router Operators accept messages from ingresses, convert
them into envelopes used for internal messaging, and route them to the correct Func-
tion Dispatcher Operators using a simple .keyBy based on the address.

Secondly, the Function Dispatcher Operators hold the state of the function instances.
Each Flink worker has an internal representation of all function types, however, the
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FIGURE 5.2: Stateful Functions deployment styles

state of different instances is partitioned across the workers. The .keyBy operation
ensures the messages are routed to the worker responsible for the state of the func-
tion instance. The Function Dispatcher Operator then loads the function type and
invokes the function with the message and the state of the addressed function in-
stance. After the function execution, egress messages are published to the appropri-
ate egresses and function invocations passed to the feedback operator. The outbound
function invocations get passed to the feedback operator through another .keyBy op-
erator based on their addresses.

Thirdly, Feedback Operators are co-located on the StateFun workers with the Func-
tion Dispatcher Operators. The Feedback Operator receives the function invocations
from other function instances that are addressed to their co-located Function Dis-
patcher Operator because of the network shuffle caused by the second .keyBy. The
message is then put in a local feedback mailbox to which the Function Dispatcher Op-
erator has access. This is the mechanism that allows dynamic messaging in StateFun
based on stream processing.

This streaming graph directly inherits Flink’s fault-tolerance mechanisms with
rollback recovery and checkpointing to distributed file systems. Besides this, it also
supports end-to-end exactly-once guarantees based on Flink’s source connectors for
ingresses and and sink connectors for egresses. This is particularly useful since Flink
already supports a range of data sources and sinks.

5.1.3 Deployment styles

StateFun identifies three deployment styles for functions. These are visualized in
figure 5.2.

Embedded functions

Embedded functions run inside the same JVM as the Statefun worker. The functions
have direct access to state and are directly invoked by messages in the StateFun
cluster. In figure 5.2 embedded functions are shown as A.
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FIGURE 5.3: Original communication flow for remote functions

1 message InvocationBatchRequest {
2 Address target = 1;
3 repeated PersistedValue state = 2;
4 repeated Invocation invocations = 3;
5 }
6
7 message InvocationResponse {
8 repeated PersistedValueMutation state_mutations = 1;
9 repeated Invocation outgoing_messages = 2;

10 repeated DelayedInvocation delayed_invocations = 3;
11 repeated EgressMessage outgoing_egresses = 4;
12 }

LISTING 5.1: Protocol buffer for regular function

Remote functions

StateFun integrates with existing FaaS services using remote functions. Remote
functions are deployed entirely separate from the StateFun cluster, for example on
AWS Lambda. These remote functions are shown in figure 5.2 at E. Remote func-
tions are internally represented by embedded functions, shown in figure 5.2 as C.
The remote function and representative embedded function instance are also shown
in figure 5.3. The embedded function is responsible for communicating with the re-
mote function and state management. The boxes in the grey box represent the state
kept by the embedded function. Exactly-once guarantees apply to this state.

Messages arrive at the embedded function through a queue in StateFun (message
1 in figure 5.3). The embedded functions handle messages one by one in first-in-first-
out order. When a new function invocation arrives (message 2), and if the remote
function is currently not executing other invocations, the incoming invocation is sent
to the remote function. If the remote function is busy processing other function
invocations, the message is appended to the next batch to be sent to the remote
function to ensure isolation and linearizability. The embedded function keeps track
of invocations currently being executed by the remote function with the in-flight
status, shown in figure 5.3.

The embedded function sends either a single invocation or a batch of invoca-
tions to the remote function with the InvocationBatchRequest message, as seen
in listing 5.1 (message 3 in figure 5.3). Besides the invocation(s) to the function
(line 4), the message also contains the current state (line 3) to provide the state-
less remote function with access to the state. The remote function returns with
an InvocationResponse message containing the updated state and any side effects
caused by the invocation(s) (message 4). When the embedded function processes
the response (message 5), the managed user state is updated, the side effects are



5.2. Implementation Coordinator Functions 41

performed (message 6), and any batched invocations are sent to the remote function
with the updated managed user state.

The remote functions can be implemented in any programming language. A
Python SDK is currently actively maintained as part of StateFun.

Co-located functions

Co-located functions are deployed on the same machine as a StateFun worker, for
example as a sidecar in a kubernetes pod. This is shown in figure 5.2 at D. This is
more performant than remote functions since the StateFun worker can invoke the
function through local network. Communication with co-located functions is done
via the same protocol and co-located functions are internally represented the same
as the remote functions. The embedded function in figure 5.2 is represented by B
(note that B is the same as C). However, co-locating functions do not provide the
possibility of separately scaling the computation layer.

Remote and co-located functions can be added to the StateFun cluster through a
module YAML-file containing a (load-balanced) service endpoint and the state to be
managed by StateFun along with optional configuration settings.

5.1.4 Event-driven database

FIGURE 5.4: Event-driven database model (Ewen, 2020)

The StateFun project inverts the relationship between the database and the applica-
tion. Rather than have the application call the database, the database now calls the
application. This is represented in figure 5.4. This model combines state manage-
ment with messaging and can guarantee exactly-once semantics across both. This
solves two complex issues in distributed systems (state management and messag-
ing), greatly simplifying scalable cloud applications.

5.2 Implementation Coordinator Functions

This section describes the implementation of the addition of coordinator functions to
StateFun. For this thesis, coordinator functions are implemented for remote and co-
located functions, though this approach can also be applied to embedded functions.
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Function Description

Both coordinator function classes

send_on_success(type, id, message) Sends a message to another function instance if the transaction is successful
send_after_on_success(delay, type, id, message) Sends a delayed message if the transaction is successful
send_egress_on_success(type, egress_message) Sends a message to an egress if the transaction is successful
send_on_failure(type, id, message) Sends a message to another function instance if the transaction failed
send_after_on_failure(delay, type, id, message) Sends a delayed message if the transaction failed
send_egress_on_failure(type, egress_message) Sends a message to an egress if the transaction failed

Two-phase commit functions

2pc_invocation(type, id, message) Add a function invocation to the transaction
send_on_retryable(type, id, message) Sends a message if the transaction aborted because of a deadlock
send_after_on_retryable(delay, type, id, message) Sends a delayed message if the transaction aborted because of a deadlock
send_egress_on_retryable(type, egress_message) Sends a message to an egress if the transaction aborted because of a deadlock

Sagas functions

saga_invocation_pair(type, id, message, compensating_message) Add a pair of a message and a compensating message to the transaction

Regular functions

FunctionInvocationException Raised to fail the function invocation

LISTING 5.2: Coordinator functions’ Python API.

5.2.1 Representative Embedded Functions

The embedded functions representing the remote function are used to implement
coordinator functions for this thesis. B and C in figure 5.2 and the grey box in fig-
ure 5.3 show these embedded functions. The logic for transactions is implemented
in these embedded functions, hidden from the user and using the existing exactly-
once guarantees. Some changes in the user’s programming model were required to
implement transactions, as shown in listing 5.2.

5.2.2 Updates to Regular Functions

1 message InvocationResponse {
2 repeated PersistedValueMutation state_mutations = 1;
3 repeated Invocation outgoing_messages = 2;
4 repeated DelayedInvocation delayed_invocations = 3;
5 repeated EgressMessage outgoing_egresses = 4;
6 + repeated bool failed_invocations = 5;
7 }

LISTING 5.3: New protocol buffer for regular function

For arbitrary function instances to be involved in serializable transactions and sagas,
they need to be able to communicate to the embedded function that an invocation
failed based on the instance state. An extra Boolean field is added to the Protobuf
response of the remote function to communicate these failures, as seen in line 6 in
listing 5.3. Since invocations may be batched, a list (repeated) field is used.

The developer also needs to be able to fail a function invocation explicitly. The
developer can throw an introduced Python exception, the FunctionInvocationException,
to do this. Programmers may define their own subclasses of this exception for spe-
cific failures. When an exception is thrown, all side effects created by this invocation
up to that point are discarded. If an invocation part of a transaction or sagas, the
invocation will fail and return no side effects. However, for a regular invocation,
the developer may define an exception handler to perform any side effects. In the
example in figure 5.4, when the invocation is part of a transaction or sagas, it will
directly fail when no user exists. However, in a normal execution, it will execute
the function defined on line 18 and produce a message to an egress to reply to the
incoming message.
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1 class NotFoundException(FunctionInvocationException):
2 def __init__(self, request_id):
3 super().__init__(request_id)
4
5 @functions.bind("example/user_function")
6 async def account_function(context, message: Read):
7 # Get state
8 user = context.state('user').unpack(User)
9

10 if not user:
11 raise NotFoundException(message.request_id)
12 else:
13 response = Response(request_id=request_id, status_code=200, state=user)
14 egress_message = kafka_egress_record(topic="responses", key=request_id, value=response)
15 context.pack_and_send_egress("ycsb-example/kafka-egress", egress_message)
16
17 @functions.bind_exception_handler(NotFoundException)
18 async def handle_not_found(context, request_id):
19 response = Response(request_id=request_id, status_code=404)
20 egress_message = kafka_egress_record(topic="responses", key=request_id, value=response)
21 context.pack_and_send_egress("ycsb-example/kafka-egress", egress_message)

LISTING 5.4: Sample programming model for regular function

The batching mechanism also requires some changes, namely, additional book-
keeping for sagas and isolation for serializable transactions. These changes are de-
scribed in sections 5.2.5 and 5.2.4.

5.2.3 Coordinator Functions

The coordinator functions are also deployed as remote functions. StateFun can dis-
tinguish between regular functions, two-phase commit coordinator functions, and
sagas coordinator functions by their function classes, as described in the module
configuration YAML-file. Coordinator functions are represented by different stan-
dardized embedded functions than regular functions. The embedded representa-
tions of coordinator functions communicate with the remote function through a dif-
ferent Protobuf interface. The remote coordinator functions also have a different
programming model than regular functions; the coordinator functions are stateless
from the developer’s perspective. The embedded representations of the coordina-
tor functions do keep internal state to keep track of the progress of the transaction.
Figure 5.5 shows the general communication flow for sagas and serializable trans-
actions. Messages 1, 2, and 3 are the same in both cases; the coordinator function
instance is simply messaged and calls the remote function with the invocation. The
messages annotated with a * are not always present in both scenarios.

5.2.4 Two-phase Commit Function

The two-phase commit coordinator function allows serializable transactions in State-
Fun using two-phase commit and two-phase locking. The developer can describe
transactions based on an input message using the functions described in listing 5.2.
Listing 5.5 shows an example of the code for a serializable transaction. The pro-
gramming model is intentionally extremely simple; the developer can simply add
function invocations to the transaction and include the desired side effects for each
completion scenario based on the input message.

The two-phase commit coordinator function also requires a new Protobuf re-
sponse message from the remote function to the embedded function. Listing 5.6
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FIGURE 5.5: Communication flow for transactions

1 def handle_transfer(context, message: Transfer):
2 # Send messages
3 subtract_credit = SubtractCredit(amount = message.amount)
4 context.pack_and_send_atomic_invocation("ycsb/account_function",
5 message.outgoing_id,
6 subtract_credit)
7 add_credit = AddCredit(amount = message.amount)
8 context.pack_and_send_atomic_invocation("ycsb/account_function",
9 message.incoming_id,

10 add_credit)
11
12 # Send on success
13 response = Response(request_id=message.request_id, status_code=200)
14 egress_message = kafka_egress_record(topic="responses",
15 key=request_id, value=response)
16 context.pack_and_send_egress_on_success("ycsb/kafka-egress", egress_message)
17
18 # Send on failure
19 response = Response(request_id=message.request_id, status_code=422)
20 egress_message = kafka_egress_record(topic="responses",
21 key=request_id, value=response)
22 context.pack_and_send_egress_on_failure("ycsb/kafka-egress", egress_message)
23
24 # Send on retryable (e.g. deadlock)
25 response = Response(request_id=message.request_id, status_code=401)
26 egress_message = kafka_egress_record(topic="responses",
27 key=request_id, value=response)
28 context.pack_and_send_egress_on_retryable("ycsb/kafka-egress", egress_message)

LISTING 5.5: Sample programming model for two-phase commit
function
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shows this Protobuf message. It includes an arbitrary number of invocations to in-
clude in the transaction and side effects based on the different completion scenarios.
Figure 5.5 shows this message as message 4.

1 message TpcFunctionInvocationResponse {
2 repeated Invocation transactional_invocations = 1;
3 InvocationResponse success_response = 2;
4 InvocationResponse failure_response = 3;
5 InvocationResponse retryable_response = 4;
6 }

FIGURE 5.6: Protocol buffer response of two-phase commit functions

The transactions’ communication flow is shown in figure 5.5. After receiving the
details of the to-be-performed transaction in message 5, the two-phase commit with
two-phase locking protocol starts:

PREPARE & two-phase lock growing phase Firstly, the embedded coordinator func-
tion instance stores the side effects to perform on completion and a map with the in-
volved function instances and a boolean for the completion status. Then, the coordi-
nator function instance sends an invocation to all involved function instances (mes-
sage 6). The receiving function instances can identify this invocation as a PREPARE
message and do not batch it with other invocations to ensure isolation. If a batch
already exists in the embedded function instance, the function invocation is queued
after this batch (as seen in figure 5.5). The concept of queued batches does compli-
cate the batching mechanism as it used to be a simple append-only batch. When
the invocation is sent to the remote function (message 8), the details of the trans-
action (the ID and the address of the coordinator function instance) are stored in
the details in-flight batch. The function instance performs the isolated PREPARE
function invocations as normal (message 8, 9 and 10). After the embedded function
receives the result of the function invocation (message 10), it sends a message to the
coordinator function (message 11) based on the result. If the function invocation
was successful, the function instance now stores the function invocation results as
staged side effects and sets its lock. It does not continue processing requests
to wait for either a COMMIT or ABORT message. If the function invocation failed (i.e.,
a FunctionInvocationException was thrown during the execution at the remote
function), the function instance continues processing requests because it knows the
transaction will be aborted.

ABORT & two-phase lock shrinking phase When the coordinator function instance
receives a failure from any function instance (message 12), it directly aborts the trans-
action. The coordinator function instance sends an ABORT message to all involved
function instances (message 13) and performs the side effects for a failed transaction.
The function instances receiving an ABORT message discard any side effects stored
in the staged side effects, release the lock, and continue processing other invo-
cations. Function instances may also receive an ABORT message while the PREPARE
message is still queued or in progress. The PREPARE message is then removed from
the queue, or the upcoming response is ignored, respectively.

COMMIT & two-phase lock shrinking phase When the coordinator function receives a
success response from all the involved functions (message 12), it commits the trans-
action. It performs the appropriate side effects and sends a COMMIT message to all
involved function instances (message 13). When the function instance receives a
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COMMIT message, it performs the staged side effects, releases the lock, and con-
tinues processing other requests.

Deadlock detection

Deadlocks may occur when using two-phase commit with two-phase locking. Since
the participants in the transaction are distributed, a method to deal with distributed
deadlocks is required. A wait-die deadlock prevention approach fits the system well;
however, this would unnecessarily abort transactions. Instead, the Chandy-Misra-
Haas algorithm is used to detect distributed deadlocks in a decentralized way.

Figure 5.7 shows how the Chandy-Misra-Haas algorithm is implemented. Func-
tion instances that are part of a transaction notify their coordinator instance with
the addresses of the coordinators of any PREPARE messages queued in front of them
after they receive message 7 in figure 5.5. This is message 1 in figure 5.7. The co-
ordinator function instance then sends a probe to the coordinator instances of any
blocking transactions, notifying them they are waiting for them (message 2 in figure
5.7). Other coordinator function instances forward these probes to any coordinators
that they are waiting for themselves (messages 3 and 4 in figure 5.7). In the case of a
deadlock, a coordinator function would always receive a probe sent by itself, detect-
ing they are in a deadlock. The coordinator function keeps track of which functions
it is currently blocking (or already sent probes for) to prevent probes from being
forwarded indefinitely.

FIGURE 5.7: Deadlock detection visualisation

Whenever a deadlock is detected, it immediately completes as a retry-able trans-
action; it aborts the transaction and performs the appropriate side effects. A two-
phase commit function may send itself a delayed invocation with the same message
(and possibly a counter attached) using the retry-able side effects to perform a retry.
This is left to the developer, so the system remains flexible.

5.2.5 Sagas Function

The second introduced function class is the sagas function. The sagas function pro-
vides a standardized way to implement sagas workflows. Sagas workflows can be
described as transactions with the read uncommitted isolation level (no isolation at
all). This method does not require locking and thereby aims for higher performance
compared to the two-phase commit function.
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1 def handle_transfer(context, message: Transfer):
2 # Send messages
3 subtract_credit = SubtractCredit(amount=message.amount)
4 add_credit = AddCredit(amount=message.amount)
5 context.pack_and_send_invocation_pair("ycsb-example/account_function",
6 message.outgoing_id,
7 subtract_credit,
8 add_credit)
9 context.pack_and_send_invocation_pair("ycsb-example/account_function",

10 message.incoming_id,
11 add_credit,
12 subtract_credit)

LISTING 5.6: Sample programming model for sagas function

1 message SagasFunctionInvocationResponse {
2 repeated SagasFunctionPair invocation_pairs = 1;
3 InvocationResponse success_response = 2;
4 InvocationResponse failure_response = 3;
5 }
6
7 message SagasFunctionPair {
8 Invocation initial_message = 1;
9 Invocation compensating_message = 2;

10 }

LISTING 5.7: Protocol buffer response of sagas functions

The programming model for the sagas coordinator function is very similar to
that of the two-phase commit function. Listing 5.2 shows the available functions for
a sagas function and listing 5.6 shows an example. Defining the side effects is not
shown in this figure as it is the same as for two-phase commit functions, without
side effects for retry-able cases since there are no deadlocks using sagas. The most
important detail is in lines 7 and 8 and lines 11 and 12, where the function explicitly
requires both an initial message and a compensating message to be set.

Figure 5.7 shows the Protobuf response of a sagas remote function. As opposed
to the list of single invocations added to a transaction using the two-phase commit
protocol, the sagas function requires invocation pairs.

Figure 5.5 also shows the communication flow of sagas transaction:

Initial function invocations When the embedded sagas coordinator instance returns
from the stateless remote function (message 5), it stores a map of the involved func-
tion instances with their completion status (NULL for now). It stores the side effects
to be performed at completion and sends the initial invocations to their function in-
stances (message 6). The function instance can append this sagas function instance
to the batches since they do not require isolation. However, the batch should keep
track of at what indices sagas invocations are (along with the address of their coordi-
nator instance) to identify the completion status when the result returns from the re-
mote function instance (message 10). These indices and their respective coordinator
instance addresses are kept in the details in-flight batch while the invocations
are sent to the remote function (message 8). When the response arrives, the func-
tion instance messages the coordinator function instances of any sagas invocations
in the batch with the completion status. If the coordinator function instance receives
a success message from all involved function instances (messages 12), it performs
the appropriate side effects, and then it is done.
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Compensating function invocations When any involved function instance returns a
failure to the coordinator, the coordinator can directly perform the appropriate side
effects. The coordinator function should also send the appropriate compensating
invocation to any function instances that executed its invocation successfully. The
coordinator now has to wait until all function instances have returned, and if any
return successfully, the coordinator instance should send its compensating invoca-
tion. The compensating invocation is then processed as a regular invocation to the
function instance. The coordinator instance is done when it received a message from
all function instances.
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Chapter 6

Evaluation

This chapter describes the evaluation of the coordinator functions. Firstly, the ex-
perimental setup, including the used benchmark, is presented. Secondly, the exper-
iments and their results are presented.

6.1 Experimental setup

This section starts by introducing the workload that is used to evaluate the system.
Secondly, the application and the infrastructure that is used are described. Lastly,
the evaluation metrics are described.

6.1.1 Workload

As described in chapter 2, there currently is no widely-used benchmark to evaluate
cloud systems, including transactions. For the evaluation of coordinator function
a small adaption is made to the popular Yahoo! Cloud Serving Benchmark (YCSB)
(Cooper et al., 2010).

In YCSB, the first step is to insert records into the system. Every record has a
unique ID and several fields. After the insertion stage, operations are performed
on the inserted state. YCSB defines read and write operations as part of their core
workloads. The proportions of these operations in the complete workload may vary
to evaluate the system’s different properties.

Since StateFun with coordinator functions also supports multi-address transac-
tions, a new multi-address operation is added based on an extension introduced by
Dey et al. (2014). This operation is called a transfer. The operation atomically sub-
tracts balance from one address and adds this to another. This means that records
also include an integer balance field.

Including the addition of the transfer operations, the workload can consist of the
following three operations.

• read: The read operation reads the state associated with a single key and
outputs it to the egress.

• write: The write operation updates a field associated with a single key and
outputs a success message to the egress.

• transfer: The transfer operation requires two keys and a specified amount.
It subtracts the amount from the balance of one key and adds it to the other.
Depending on the transaction’s result, it either outputs a success message or a
failure message to the egress.
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YCSB defines multiple distributions to determine the record ID for the next oper-
ation. The experiments done for this thesis use a uniform distribution. The uniform
distribution simplifies the interpretation of the results and the reasoning about the
system’s properties. It should be taken into account that this does not necessarily
represent real-world use cases, in which often some keys are more popular than oth-
ers.

YCSB allows to variably define the number of fields and the size of the values
associated with each field. In this evaluation, all records have ten fields containing
a single random string of 128 bits and a single integer field. Any WRITE operation
simply replaces the random string for one field.

6.1.2 Application

Benchmark clients Kafka cluster StateFun cluster

Account function

Transfer function

Workload

Ingress

Egress

Invocation

Result

Invocation

Result

FIGURE 6.1: Application architecture

To support the operations defined in 6.1.1, a StateFun system is implemented with
the following two functions:

Account function

The account function is a regular function containing the record state for each key (or
address). It processes messages to read the state, update the fields, and subtract or
add balance as part of a transaction. It throws an exception and fails the transaction
if the key does not exist or if there is not enough balance to subtract the transaction
amount.

Transfer function

The transfer function is a coordinator function that takes a message consisting of two
different keys and an amount. It will define a transaction consisting of two function
invocations, one to each of the function keys. This function is both implemented as
a two-phase commit function and as a sagas function.

Figure 6.1 shows a diagram of the system under test. The workload is published
in the Kafka cluster. StateFun reads from Kafka as an ingress and invokes the ap-
propriate functions. The result of each ingress message is published to Kafka as an
egress.

The system under test is deployed on an HPC cloud with instances with up to
80 vCPUs (SurfSara1). In this cloud, two VMs are run with enough vCPU to sup-
port the system under test’s configuration. The two VMs form a Kubernetes cluster

1https://userinfo.surfsara.nl/systems/hpc-cloud

https://userinfo.surfsara.nl/systems/hpc-cloud
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FIGURE 6.2: Graph showing when the maximum throughput is
reached

(with an additional master node) to simplify deployment and management of the
system’s different components. All components shown in figure 6.1 can be horizon-
tally scaled as necessary. The Kafka cluster is given enough resources to ensure it
can handle the load. Since the remote functions may be deployed on FaaS services
such as AWS Lambda, they are also deployed on enough resources to handle the
load on them. This ensures the bottleneck of the system is the StateFun cluster. The
number of StateFun workers and the CPU available to them is varied across different
experiments.

6.1.3 Evaluation metrics

The system is evaluated using two metrics. The maximum throughput shows the
number of workload operations the system can handle per second, and the latency
shows the time it takes to process the operation.

The maximum throughput of each workload and system configuration is found
by steadily increasing the input throughput created by the benchmark clients in
Kafka until the StateFun cluster can no longer consistently handle the load. The
output throughput of StateFun in Kafka is measured and compared against the in-
put throughput to see whether the system can handle the load. At some point, the
output throughput starts fluctuating as seen in figure 6.2 between 1250 and 1500,
and the output throughput drops far below the input throughput; at this point, we
define this value as the maximum throughput for the configuration.

The Kafka event time for the ingress and egress event of correlated operations is
used to measure end-to-end latency. The latency is dependent on the throughput. In
the experiments, the throughput is often set to 80% of the maximum throughput to
allow consistent operation of StateFun and measure the latency. When comparing
latencies, the different throughput rates at which the latency was measured should
be considered.
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FIGURE 6.3: Maximum throughput for the original StateFun vs.
StateFun with coordinator functions

6.2 Experiments

This section presents the results of five experiments. Firstly, the system including co-
ordinator functions is compared against the original StateFun to evaluate the over-
head caused by the changes. Secondly, the overhead of transactions using both sagas
and two-phase commit is evaluated and compared. Thirdly, the overhead of un-
successful transactions is compared for sagas and two-phase commit. Fourthly, the
time that two-phase commit holds locks and needs to detect deadlocks is measured.
Lastly, the scalability of the system is evaluated.

6.2.1 Experiment 1: System overhead

In this first experiment, the performance of the StateFun system with coordinator
functions is compared against the original StateFun system on workloads without
any transactions. Specifically, the overhead of the additional logic and internal state
that is added to regular functions to enable transactions is evaluated. Figure 6.3
shows the maximum throughput achieved by the original system and the system
with coordinator functions for various numbers of keys (or function instances). Fig-
ure 6.4 shows the different latencies for these systems across workloads. The exper-
iments are performed using 3 StateFun workers, each with 4 CPUs.

The first observation that can be made when looking only at the original StateFun
system is the decrease in throughput when more function instances exist. This is due
to the batching mechanism. Sending batched messages can increase the performance
of StateFun in three different ways. Firstly, less network communication between
StateFun and the remote function is required. Secondly, the side effects caused by
batched invocations are already bundled at the remote function and only cause a
single incoming response message in StateFun as opposed to multiple. Thirdly, only
the state at the end of all batched write invocations is returned to StateFun to be
stored. Batching does increase latency for the higher percentiles, which can be seen
in figures 6.4c and 6.4a. We also observe that no differences exist anymore between
5000 and 10000 keys, meaning that there is no noticeable batching in the system at
this point.



6.2. Experiments 53

(A) Mean (B) Median

(C) 95th percentile

FIGURE 6.4: Graphs comparing latencies of orginal StateFun (OS) and
StateFun with coordinator functions (CF) at different throughputs for

read-only and write-only workloads

Figure 6.3 also shows that there is no noticeable throughput difference between
a workload with only read and a workload with only write operations. This is be-
cause both operations need to access the remote function, making the communica-
tion layer the bottleneck. StateFun may improve the throughput of read operations
by allowing read-only requests for state associated with remote functions to directly
fetch state from the internal embedded function without calling the remote function.
A downside of this approach would be that there would no longer be any control of
the state’s read model.

Figures 6.4a and 6.4c show higher latency for the read workload as opposed to
the write workload at 100 keys. This difference is caused by the batching mecha-
nism. For a write workload, only the final state after a batch has executed on the re-
mote function needs to be returned to the StateFun cluster from the remote function.
For the read workload, the state has to be serialized multiple times as a response to
each read operation. This results in higher latency for read operations when batches
become bigger.

When comparing the performance of the system with coordinator functions against
the system without coordinator functions in figure 6.3, a decrease of 20% in through-
put can be observed for 100 keys. This decrease lowers to 10% when the number of
keys increases, i.e., when there is fewer batching. This decrease is caused by the
changed batching mechanism that allows for isolated function invocations and adds
some bookkeeping for function invocations part of a saga or a serializable transac-
tion.

Lastly, the latencies in figure 6.4 are slightly higher for the system with coordi-
nator functions. The added latency is caused by the additional logic required the
implement the coordinator functions. Figures 6.4a and 6.4c show higher latencies
for the original system at 29K throughput. However, this is only caused by batch-
ing; when the original system is run at the same throughput (22K) as the system with
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(A) 100 keys (B) 2000 keys

(C) 5000 keys (D) 10000 keys

FIGURE 6.5: Maximum throughput for workloads with increasing
proportions of transfer operations in the workload

coordinator functions, it performs slightly better, as seen in figure 6.4.

6.2.2 Experiment 2: Transactional overhead

The second experiment shows the performance of transactions in the system. In
these experiments, a certain proportion of the workload is transfer operations and
the remaining proportion is equally shared between read and write operations. The
experiments are performed on 3 StateFun workers with 4 CPUs each. Figure 6.5
shows the achieved throughput when increasing the proportions of transfer oper-
ations both using sagas and two-phase commit. It also shows the absolute number
of transfer operations in the workload. For context, it shows indicators for the ab-
solute amount of total internal function invocations (taking into account additional
internal invocations required for serializable transactions and sagas) and the abso-
lute amount of total remote function invocations (each transfer operation causes
3 remote function invocations). In the evaluation for two-phase commit functions,
messages sent to detect deadlocks are not included in the total invocations number;
therefore, the indicator is a lower bound. Figure 6.6 shows the measured latencies.
In the experiments, the accounts are given enough balance to ensure all transactions
succeeded.
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(A) Mean (B) Median

(C) 95th percentile

100 keys
Sagas Tpc

0.1 0.5 1.0 0.1 0.5 1.0
11K 3K 2K 1.5K 0.4K 0.2K

5000 keys
Sagas Tpc

0.1 0.5 1.0 0.1 0.5 1.0
9K 3K 2K 8K 2K 1.2K

(D) Throughputs at which latency was measured

FIGURE 6.6: Graphs comparing latencies for sagas and two-phase
commit coordinator function for different keys and transaction pro-
portions in the workload at 80% of the respective maximum through-

puts

The first observation from figures 6.5a and 6.5b is that for few keys, sagas per-
form much better than two-phase commit. This difference has two reasons: 1) sagas
can still benefit from the batching mechanism since they do not require isolation,
and 2) the locking for in two-phase commit severely limits the throughput. How-
ever, it is also interesting that for a higher number of keys in figure 6.5c and 6.5d,
two-phase commit performs comparably to sagas even though it provides much
stronger guarantees. This is because there is less contention on a single function in-
stance, decreasing the effect of locking and no benefit of batching as already seen in
figure 6.3. For these experiments, a uniform key access distribution is used, while in
real-world systems, this is likely skewed towards more access to some popular keys.

A second observation from figure 6.5 is that the total function invocations still
drops when the proportion of transactions increases. The total function invocations
account for the additional messaging required to coordinate transactions. This result
is slightly unexpected and means that the internal coordinator function’s logic and
state management is more resource-consuming than regular functions, leading the
overall throughput of workloads with a high proportion of transfer operations to
be relatively low.

Figure 6.6 shows the latency at lower keys is much higher for two-phase commit
functions. Even though the sagas functions leverage batching, the two-phase com-
mit function’s locking is costlier. As expected, figure 6.6 also shows higher latency
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FIGURE 6.7: Throughput with different proportions of rolled back
transfer operations for workloads with 50% and 100% transfer op-

erations

for transfer operations as opposed to other operations. This result is expected be-
cause transfer operations require access to two remote functions sequentially (first
to the coordinator functions and then, in parallel, to two regular functions) and re-
quire additional messaging. Figure 6.6 shows few differences in latencies for 5000
keys.

6.2.3 Experiment 3: Rollback overhead

The third experiment provides insight in the overhead of rollbacks associated with
transfers. Figure 6.7 shows the maximum throughput for workloads with 50% and
100% transfer operations where a different proportions of transfer operations fail
for sagas and two-phase commit coordinator functions. The experiments are run
using 3 Flink workers, each with access to 4 CPUs.

When using two-phase commit, a rollback does not significantly increase the
load on the system. This is expected as the two-phase commit coordinator function
needs to send a second message anyways, either an abort or commit message.

For sagas transfer operations, an increased proportion of transfer operations
to be rolled back decreases the throughput. This is expected as the rollback of a saga
transfer requires additional compensating messages to be send in the system that
are not necessary in the case of a successful transfer. It can be observed that the
difference is quite small when there are only 50% transfer operations in the work-
load. But when the workload consists only of transfer operations, the difference
in throughput becomes more evident. Between 0% rollback transfer operations
and 100% rollback transfer operations for 5000 keys, the throughput drops by 20%.
This is more noticeable than the 10% drop in throughput for 100 keys. The difference
in the decreased throughput can be explained by the fact that compensating oper-
ations can still benefit from batching for 100 keys, and the effect of batching is less
noticeable for 5000 keys.
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(A) Time regular locks are held (B) Time to detect deadlocks

Keys Transfer Deadlocks /
proportion transfer ops

100 0.25 9/12014 (0.07%)
0.5 27/24107 (0.11%)
0.75 82/35875 (0.22%)

5000 0.25 0/60121
0.5 0/120089
0.75 0/179794

(C) Deadlock frequency

FIGURE 6.8: Details of locking behaviour for a workload for 100 and
5000 keys with various proportions of transfers without rollbacks.

The boxplots show the 5th and 95th percentiles.

This shows that the throughput of sagas transfer operations suffers when more
operations have to be compensated, however it also shows that sagas still outper-
forms two-phase commit in the case of only rolled back operations.

6.2.4 Experiment 4: Lock timing

In the fourth experiment, the behaviour of locking and deadlocks when using two-
phase commit coordinator functions is measured. Figure 6.8 shows the results. The
experiments are run for 100 and 5000 keys for different proportions of transfer
operations in the workload. The experiments are run using 3 Flink workers, each
with access to 4 CPUs.

In figure 6.8a, we see that there is few difference in the median across the different
workloads. The time that is shown is measured between the moment the function in-
stance sends the response to the prepare messages to the coordinator function until
the function instance receives either a commit or abort message and it sends the next
batch to the remote function. This is the additional time the function instance is idle,
as opposed to just in between batches when there are no transfer operations (or
sagas are used). It can be observed that when the proportion of transfer operations
is higher, the higher percentiles of the time locks are held increases significantly.

Figure 6.8c shows the number of deadlocks as opposed to the total number of
transfer operations in the workload. It shows that no deadlocks occurred for work-
loads on 5000 keys, this makes sense since the contention is low. For 100 keys, figure
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FIGURE 6.9: Maximum throughput for the system with 5000 keys for
different numbers of StateFun workers for workloads with different

proportions of transfer operations

6.8c shows an increasing number of deadlocks when the proportion of transfer op-
erations in the workload increases. However, the percentage of deadlocks across all
transfer operations is still small.

Figure 6.8b shows the time it takes to detect a deadlock. This time is measured
between the response to the prepare message of a function instance to the coordina-
tor function instance and the moment the coordinator function concludes it is in a
deadlock and aborts the transaction. This corresponds to the exact time to perform
the Chandy-Misra-Haas algorithm. Figure 6.8b shows that the median of the time
this takes is similar. However it also shows the higher percentile of time to detect a
deadlock is higher when there are more transfer operations in the workload.

6.2.5 Experiment 5: Scalability

In the last experiment, the effect of additional StateFun workers on the performance
is evaluated. These experiments are performed with StateFun workers with 2 CPUs.
Figure 6.9 shows the results.

Figure 6.9 shows that sagas’ scalability efficiency from 1 to 5 workers is 90%
consistently for any proportion of transactions. This result shows that sagas can
leverage some of the parallelism provided by StateFun and Flink.

For two-phase commit transactions, the scalability efficiency from 1 to 5 work-
ers starts at 87% at 10% transfer operations and drops to 75% for 100% transfer
operations. This result shows that two-phase commit transactions leverage some
of the parallelism provided by StateFun and Flink.

The difference in the scalability efficiency between sagas and two-phase commit
is explainable because two-phase commit functions require an additional COMMIT
message for successful transactions. This COMMIT message has to go through the
network, decreasing the performance for more workers. The sagas coordinator does
not need to send compensating messages for successful sagas. It is interesting for fu-
ture research to evaluate the scalability when more sagas fail, so more compensating
messages over network are required.
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Chapter 7

Conclusion

To conclude this thesis, this chapter attempts to answer the research questions posed
in the introduction.

1. What SFaaS implementations exist today, and what are their data correctness
guarantees?

Chapter 3 discusses four existing implementations of SFaaS systems. Beldi is in-
troduced in October 2020 and implements fault tolerance exactly-once invocations
and transactions using existing serverless services such as AWS Lambda and Dy-
namoDB. The exactly-once guarantees only span those two services.

Cloudstate and StateFun also provide fault-tolerant exactly-once semantics but
only support transactions on the scope of a single function instance (or linearizability
of function invocations). However, the exactly-once semantics of Cloudstate and
StateFun do span several different data sources and sinks.

Cloudstate also provides a second model that replicates state for availability but
only supports causal consistency. This model is limited to conflict-free data types to
avoid any data loss. Cloudburst provides a more flexible programming model than
Cloudstate and StateFun and a weaker consistency level (up to causal consistency).

Besides Beldi, there is no notion of transactions in any of the current SFaaS sys-
tems.

2. What are shared features of existing SFaaS implementations, and how can they
be used to find a conceptual solution for transactions that can be implemented
in SFaaS systems?

In chapter 4.1, a standard model was defined where stateful functions encapsulate
some state. Multiple instances of this stateful function may exist simultaneously,
each encapsulating its own state. These function instances are comparable to rows
in a database or keys in a key-value store. This model is used by StateFun and
Cloudstate, as well as Azure Durable Functions.

Chapter 4 also identifies two other features that StateFun and Cloudstate (and
Azure Durable Functions) share and provide fundamental building blocks to im-
plement transactions; fault-tolerant exactly-once guarantees and linearizable func-
tion invocations for each function instance. These two features are the exact same
assumptions the only current implementation of transactions, Beldi, makes. Beldi
relies on a linearizable key-value store with atomic operations for a single key and
implements fault-tolerant exactly-once messaging before implementing transactions
on top of that.

The coordinator functions that this thesis introduces rely on SFaaS systems where
function instances encapsulate state and that provide exactly-once guarantees and
linearizable invocations per function instance.
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3. What programming model can be used to implement transactions in SFaaS
systems intuitively?

To implement transactions in SFaaS, this thesis introduces using simple coordinator
functions. Coordinator functions themselves are stateless but can be used to de-
fine transactions with an arbitrary number of function invocations to other function
instances. The coordinator functions statically compute the definition of the trans-
action or sagas up-front based on an input message.

Besides introducing coordinator functions, the programming model of regular
stateful functions is extended to allow them to fail explicitly based on their state.
The Python API of StateFun is extended with a FunctionInvocationException to
do this.

Listing 5.2 shows the complete API for coordinator functions and the addition to
the regular functions.

4. What isolation guarantees can be provided for transactions in SFaaS systems,
and how do these affect performance?

This thesis evaluates implementations of transactions at the read uncommitted level
using sagas and at serializable level using two-phase commit and two-phase locking
in chapter 6.

The introduction of transactional functionality in StateFun decreases the per-
formance of non-transactional workloads using a uniform access distribution by at
most 20% for few keys (100), lowering to 10% for more keys (2000+).

The performance of sagas is lower than expected but still acceptable considering
the extra functionality provided by the simple coordinator function programming
model. The performance of serializable transactions is very low for few keys. This
low performance is easily explained by the locking required and the lack of batching.
Interestingly, serializable transactions perform comparatively with sagas on systems
with more keys. It should be taken into account that a uniform access distribution is
used.

Experiment 3 shows the overhead of compensating function invocations required
to rollback sagas. This means the performance difference between serializable trans-
action and sagas is smaller for workloads with many transactions and where trans-
actions are likely the fail.

The scaling efficiency of StateFun with coordinator functions is reasonable. The
system can leverage the underlying parallelization of StateFun and Flink. Sagas
achieve a consistent scaling efficiency of 90% for 1-5 workers. Serializable transac-
tions perform less well, the scaling efficiency for 1-5 workers drops from 87% for a
workload with 10% transaction to 75% for fully-transactional workloads.

5. How can SFaaS systems, with and without transactions, be evaluated?

There was no very-well suited benchmark found to evaluate SFaaS systems. The
lack of a standard benchmark is likely because SFaaS can be applied to a vast variety
of use cases. The evaluation in this thesis is based on an extension of YCSB. YCSB
is a straightforward benchmark definition that can provide some intuition on the
system’s behavior since the results are easy to interpret. However, it does not cover
any more complex use cases.

For this thesis, a small addition to the YCSB benchmark was made; a transfer
operation was added. This transfer operation represents a transaction across two
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keys (or function instances). The transfer operation is used to evaluate the perfor-
mance of transactions. The addition of transfer operations is not enough to make
YCSB suitable to evaluate a SFaaS system fully but does provide basic intuition on
the performance of transactions.
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Chapter 8

Discussion

This chapter discusses the contributions of this thesis (section 8.1) and how they
relate to other research in the same area (3). It identifies avenues for future research
(section 8.3) and presents ideas to improve Flink StateFun in the near-future based
on concepts introduced in this thesis (section 8.4).

8.1 Contributions

This thesis introduces coordinator functions to implement serializable transactions
and sagas workflows on SFaaS systems and an accompanying implementation in
StateFun.

The introduction of coordinator functions and the additional logic and state man-
agement associated with them introduces an affordable overhead of 10% on non-
transactional workloads. The introduced programming model is simple to use. It
is close to orchestrator functions already implemented in Azure Durable Functions
and proven sound. The isolation guarantees provided by coordinator functions are
also easily understandable for developers. The sagas’ performance is solid; even
though sagas introduce overhead, this is acceptable as it allows and simplifies sig-
nificantly more complex use cases. The performance of serializable transaction is less
reliable since it is dependent on locking and can not leverage the batching mech-
anism of StateFun. Still, this is acceptable due to the strong guarantees serializable
transactions provide and the simplicity of implementing them using the introduced
programming model. Experiment 3 shows that sagas introduce some additional
overhead for failed transaction, this means serializable transaction become even more
viable for workloads where many transactions are expected to fail. The scalability
of both sagas and serializable transaction is acceptable. Understandably, the scala-
bility efficiency decreases as the operations access state across partitions requiring
additional network communication.

The implementation of coordinator functions is based on the remote function
deployment style provided by StateFun. This fits the direction of Flink StateFun well
since the maintainers have recently announced they are moving to a remote functions
first design1 for their upcoming release and the future.

The benchmark introduced and used in this thesis was sufficient to evaluate the
implemented coordinator function’s behavior. However, it is not yet suited to eval-
uate general SFaaS systems. It is currently unclear how SFaaS will behave and what
they will provide to developers in the future, as it is still a very early stage. This un-
certainty becomes apparent when comparing StateFun and Cloudstate with Cloud-
burst that has completely different semantics.

1http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/
DISCUSS-Releasing-Stateful-Functions-3-0-0-td49708.html

http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Releasing-Stateful-Functions-3-0-0-td49708.html
http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Releasing-Stateful-Functions-3-0-0-td49708.html
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8.2 Related work

Besides the SFaaS systems presented in chapter 3, there is other promising research
related to this thesis topic.

Firstly, Calvin (Thomson et al., 2012) was already introduced in 2012. It is an ex-
ample of an approach that is optimized both for performance and data correctness.
Calvin, or solutions similar to Calvin, can solve similar problems around data cor-
rectness and performance that coordinator functions aim to solve in this thesis and
may perform better. The strategy of optimizing for performance and data correct-
ness up-front may lead to more promising results than adapting a system optimized
for performance to implement data correctness (as done in this thesis).

Secondly, research done on Remote Direct Memory Access (RDMA) is also in-
teresting. New hardware and low-level computer engineering developments enable
traditional relational databases to scale significantly better (Barthels et al., 2019). Pre-
viously, traditional relational databases were thought not to be the solution to big-
data-related problems due to limited scalability. However, this new technology may
enable the use of relational databases for big data workloads. Relational databases
are a mature technology with decades of research behind them to make them feature-
rich and easy-to-use. Also, many developers are familiar with relational databases,
meaning that if relational databases can scale efficiently to handle bigger workloads,
they will (again) be a good option for state management. Researchers have also used
RDMA to improve stream and batch processing systems such as Apache Spark and
Apache Storm (MacArthur and Russell, 2014; Zhang et al., 2021; Lu et al., 2014).

8.3 Future work

After writing this thesis, I can identify four exciting avenues to continue research.
Firstly, adopting a system that is optimized for performance to provide data cor-

rectness guarantees, as done in this thesis, may not always lead to good results. It
seems more natural to design a system with both data correctness and performance
in mind from the start rather than to optimize for performance first and handle data
correctness in hindsight. An example of this is Calvin. More research could be done
to design scalable and cloud-native systems and architectures, starting from a data
correctness perspective.

Secondly, Cloudburst’s approach and the RISE Lab’s research developing Cloud-
burst take is to find applications that can run without strong consistency levels and
coordination for improved performance. They formalized a set of applications that
can run without coordination (CALM theory (Ameloot et al., 2015)). They could
expand on this and try to find ways to model applications to run without coordi-
nation. This sounds close to impossible but would be very interesting if it leads to
usable results. Another opportunity from taking this approach is to optimize first for
workloads that can run completely coordination-free, and after that, define a way to
implement parts of a workload that require coordination within that system. The re-
sult could look similar to how Cloudstate offers two different models (event-sourced
and CRDT) depending on the data consistency requirements.

Thirdly, continuing research on RMDA to improve relational databases for big
data workloads can lead to valuable results. It is also interesting to research how
RMDA can optimize big-data processing architectures such as stream processing
systems.
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Lastly, a direction of future research can be to define the goals of SFaaS better. To
better understand the goals and challenges of SFaaS, a range of sample applications
can be developed using SFaaS, modeling different use cases. The performance of
different existing SFaaS may be compared on these sample applications. The raw
performance is interesting to compare and their semantics, ease-of-use, and fit for
the specific use case. This analysis should provide insight into how SFaaS systems
should behave. Another approach is to address the lack of meaningful benchmarks
for these systems. The development of benchmarks forces us to think of generic
features and behavior desirable in SFaaS systems and structure and validate past
ideas (such as the coordinator functions introduced in this thesis).

8.4 Future Improvements for Flink StateFun

Flink StateFun is an exciting system with powerful primitives, such as linearizable
operations on function instances and exactly-once guarantees. The concept of the
event-driven database as described in section 5.1.4 seems promising. However, there
are few features currently in Flink StateFun, which may prevent users from using it.
Most importantly, features related to access to data and especially access to data
across multiple function instances are missing. Section 6.2.1 already mentions a pos-
sible improvement; read access to state of an embedded representation of a remote
function without requiring to go over the network to the remote function first. This
section presents more ideas to make Flink StateFun more usable.

8.4.1 Index Functions

Currently, function instances in StateFun are only reachable through their exact ad-
dress, including the ID. If the ID is unknown to the developer, the state encapsulated
in the function instance can not be reached. Index functions may solve access to sin-
gle function instances. Similar to coordinator functions, index functions are stateful
functions with a specified purpose and programming model. Index functions exist
based on a function type. This index function can be messaged to find the IDs of all
function instances of that type. Another purpose of an index function may be to find
a function instance’s ID based on a secondary index. The developer would have to
write the code to find the secondary index based on the Protobuf state of function
instances, i.e., a simple map function. The index function may either respond with
the ID of the function instance with the desired secondary index or forward an in-
vocation to the correct function instance(s). This approach does require all function
instances of a type to send their state to the index function after every write. Multiple
index functions may exist per function type for different secondary instances.

8.4.2 Aggregate Functions

Another problem in Flink StateFun is aggregating state encapsulated in multiple
function instances. This problem may be solved with pre-defined agggregate func-
tions. Developers may write an aggregate function that receives all state changes
from the function instances of some function type and combines them to an aggre-
gate value.
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8.4.3 Migrate Tasks

Lastly, a problem in Flink StateFun is updating remote functions. Remote functions
can be updated independently from StateFun by deploying a new function behind
the load balancer’s address that StateFun has. However, this does not update the
state of the function instances. So if the updated remote function requires a different
state type, logic needs to be implemented in the remote function to check the type of
the state and possibly migrate the state to the new type before executing the updated
function. This form of migration has to be done indefinitely for all function updates
that change the state type since the developer is never sure whether the state type of
all function instances changed in the StateFun cluster.

Migrate tasks could be introduced to solve this problem. The migrate task re-
quires the developer to write a map function to transform the old state type into a
new state type. This migration function would be applied to all function instances
of the function type in StateFun. The remote function now only has to support a
single state type (or two for a short period when the migrate task is running). This
approach requires the migrate task to have access to all IDs of some function type.
That could work with the index function.
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Appendix A

Cloudstate programming model

This appendix shows the lengthy programming model of Cloudstate. It shows an
example of an event-sourced entity. This code is directly taken from the documenta-
tion of Cloudstate1.

Firstly, listing A.1 shows the gRPC contract that describes the entity.
Secondly, listing A.2 shows the actual code of the function.

1 // This is the public API offered by the shopping cart entity.
2 syntax = "proto3";
3
4 import "google/protobuf/empty.proto";
5 import "cloudstate/entity_key.proto";
6 import "google/api/annotations.proto";
7 import "google/api/http.proto";
8
9 package com.example.shoppingcart;

10
11 message AddLineItem {
12 string user_id = 1 [(.cloudstate.entity_key) = true];
13 string product_id = 2;
14 string name = 3;
15 int32 quantity = 4;
16 }
17
18 message RemoveLineItem {
19 string user_id = 1 [(.cloudstate.entity_key) = true];
20 string product_id = 2;
21 }
22
23 message GetShoppingCart {
24 string user_id = 1 [(.cloudstate.entity_key) = true];
25 }
26
27 message LineItem {
28 string product_id = 1;
29 string name = 2;
30 int32 quantity = 3;
31 }
32
33 message Cart {
34 repeated LineItem items = 1;
35 }
36
37 service ShoppingCart {
38 rpc AddItem(AddLineItem) returns (google.protobuf.Empty) {
39 option (google.api.http) = {
40 post: "/cart/{user_id}/items/add",
41 body: "*",
42 };
43 }
44
45 rpc RemoveItem(RemoveLineItem) returns (google.protobuf.Empty) {
46 option (google.api.http).post = "/cart/{user_id}/items/{product_id}/remove";
47 }

1https://pypi.org/project/cloudstate/

https://pypi.org/project/cloudstate/
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48
49 rpc GetCart(GetShoppingCart) returns (Cart) {
50 option (google.api.http) = {
51 get: "/carts/{user_id}",
52 additional_bindings: {
53 get: "/carts/{user_id}/items",
54 response_body: "items"
55 }
56 };
57 }
58 }

LISTING A.1: gRPC describing a sample event-sourced entity

1 from dataclasses import dataclass, field
2 from typing import MutableMapping
3
4 from google.protobuf.empty_pb2 import Empty
5
6 from cloudstate.event_sourced_context import EventSourcedCommandContext
7 from cloudstate.event_sourced_entity import EventSourcedEntity
8 from shoppingcart.domain_pb2 import (Cart as DomainCart, LineItem as DomainLineItem, ItemAdded, ItemRemoved)
9 from shoppingcart.shoppingcart_pb2 import (Cart, LineItem, AddLineItem, RemoveLineItem)

10 from shoppingcart.shoppingcart_pb2 import (_SHOPPINGCART, DESCRIPTOR as FILE_DESCRIPTOR)
11
12
13 @dataclass
14 class ShoppingCartState:
15 entity_id: str
16 cart: MutableMapping[str, LineItem] = field(default_factory=dict)
17
18
19 def init(entity_id: str) -> ShoppingCartState:
20 return ShoppingCartState(entity_id)
21
22
23 entity = EventSourcedEntity(_SHOPPINGCART, [FILE_DESCRIPTOR], init)
24
25
26 def to_domain_line_item(item):
27 domain_item = DomainLineItem()
28 domain_item.productId = item.product_id
29 domain_item.name = item.name
30 domain_item.quantity = item.quantity
31 return domain_item
32
33
34 @entity.snapshot()
35 def snapshot(state: ShoppingCartState):
36 cart = DomainCart()
37 cart.items = [to_domain_line_item(item) for item in state.cart.values()]
38 return cart
39
40
41 def to_line_item(domain_item):
42 item = LineItem()
43 item.product_id = domain_item.productId
44 item.name = domain_item.name
45 item.quantity = domain_item.quantity
46 return item
47
48
49 @entity.snapshot_handler()
50 def handle_snapshot(state: ShoppingCartState, domain_cart: DomainCart):
51 state.cart = {domain_item.productId: to_line_item(domain_item) for domain_item in domain_cart.items}
52
53
54 @entity.event_handler(ItemAdded)
55 def item_added(state: ShoppingCartState, event: ItemAdded):
56 cart = state.cart
57 if event.item.productId in cart:



Appendix A. Cloudstate programming model 69

58 item = cart[event.item.productId]
59 item.quantity = item.quantity + event.item.quantity
60 else:
61 item = to_line_item(event.item)
62 cart[item.product_id] = item
63
64
65 @entity.event_handler(ItemRemoved)
66 def item_removed(state: ShoppingCartState, event: ItemRemoved):
67 del state.cart[event.productId]
68
69
70 @entity.command_handler("GetCart")
71 def get_cart(state: ShoppingCartState):
72 cart = Cart()
73 cart.items.extend(state.cart.values())
74 return cart
75
76
77 @entity.command_handler("AddItem")
78 def add_item(item: AddLineItem, ctx: EventSourcedCommandContext):
79 if item.quantity <= 0:
80 ctx.fail("Cannot add negative quantity of to item {}".format(item.productId))
81 else:
82 item_added_event = ItemAdded()
83 item_added_event.item.CopyFrom(to_domain_line_item(item))
84 ctx.emit(item_added_event)
85 return Empty()
86
87
88 @entity.command_handler("RemoveItem")
89 def remove_item(state: ShoppingCartState, item: RemoveLineItem, ctx: EventSourcedCommandContext):
90 cart = state.cart
91 if item.product_id not in cart:
92 ctx.fail("Cannot remove item {} because it is not in the cart.".format(item.productId))
93 else:
94 item_removed_event = ItemRemoved()
95 item_removed_event.productId = item.product_id
96 ctx.emit(item_removed_event)
97 return Empty()

LISTING A.2: Python code implementing the business logic of the
function
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