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Abstract 

Thermal variability is essential for assessing outdoor thermal comfort and walkability in urban 
areas, as it provides thermal-adaptive and alliesthesial opportunities along a walk. This is 
evidenced by temperature fluctuations that promote passive, intermittent cooling and warming 
through radiation, convection, and evaporation among buildings, trees, and water bodies. These 
cooling and warming spots facilitate thermal recovery for pedestrians, as reflected in their 
metabolic rate, skin and core temperatures, and sweat productions. This paper investigates 
dynamic thermal comfort along a 3.6 km walk in Rome, Italy, using mobile measurements and 
simulations (ENVI-met, BIO-met, and Rayman) to explore dynamic thermal indices for 
forecasting thermophysiological changes due to sun and wind. Two novel thermal indices, 
𝑑𝑃𝐸𝑇 and 𝑚𝑃𝐸𝑇, were compared with the static PET maps under non-extreme (September 
2021) and extreme (July 2022) weather. The results indicate that both indices capture the 
temporal progression of environmental and personal parameters. However, they exhibit distinct 
spatial-temporal patterns owing to their sensitivity to fluctuating thermal conditions. The 
discussions highlight the need for further lab and field thermophysiological studies to improve 
dynamic thermal indices for urban climate walk simulations. 
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Nomenclature 

Abbreviations/Symbols Descriptions (Units/Scales) 
Clo Clothing level 
CWS Ciampino weather station 
EE Energy expenditure (𝑘𝐶𝑎𝑙/𝑚𝑖𝑛) 
G Global radiation (𝑊/𝑚ଶ) 
MET Metabolic rate (met, or W) 
MRT Mean radiant temperature (°C) 
OSM Open street map 
OTC Outdoor thermal comfort 
PET Physiological equivalent temperature (°C) 
RH Relative humidity (%) 
SVF Sky view factor (0-1) 
𝑇௔  Air temperature (°C) 
𝑇௖௟௢௧௛ Cloth temperature (°C) 
𝑇௖௢௥௘  Core temperature (°C) 
𝑇௚ Globe temperature (°C) 
𝑇௦௞௜௡ Skin temperature (°C) 
u Wind speed (𝑚/𝑠) 
UCW Urban climate walk 
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Introduction: Passive cooling and warming in outdoor spaces 
Unlike indoor climates, urban climates are characterised by significant heterogeneity in air 
temperature, humidity, radiation, and wind. Passive cooling and warming spots can be tactically 
sequenced through urban design and retrofit focusing on optimising urban shade and breeze. 
The fundamental mechanisms of passive heat exchange between built environments and their 
users can be categorised into radiative, convective, and evaporative domains (Table 1).  

Table 1: Multiscalar passive cooling and warming opportunities in urban environments 

Urban physics Mitigation at neighbourhood scale Adaptation at human scale 
Radiant-cooling  Building shades, tree shades Short sleeves, cooling vests, hats 
Convective-cooling  Breeze from the park and wind corridor Inhaling cooler air, cold drinks 
Evaporative-cooling Trees, vegetated walls & roofs, misting Sweating, swimming 
Radiant-warming Unshaded spaces, beaches Heavy clothes, scarfs and masks 
Convective-warming  Heat exhausts from buildings Hot showering, hot drinks 
Evaporative-warming Seaside or running rivers in winter Thermal spring, onsen 

 
In summer, pedestrians seek shady and breezy spaces in urban environments to dissipate excess 
heat gained on unshaded streets, squares, bridges and bus stops, etc. Buildings with heavy 
thermal mass help stabilise indoor temperatures and cool the streets through radiant cooling, 
which is particularly effective in alleys and arcades with limited sky exposure and shaded 
facades. In Rome, small alleys protect pedestrians from direct solar heat, while narrow street 
canyons enhance convective cooling by channelling winds from various directions (Figure 1). 
Urban terrain can also twist wind profiles and add vertical flow components at Spanish steps, 
for example. The stone pines, typically seen in Italian cities provide cooling effects by 
intercepting direct and reflected short- and long-wave radiations at the canopy level and through 
evapotranspiration at the leaf level. However, the Tiber River in Rome has a limited capacity 
to produce a significant cooling or warming effect due to its volume and velocity constraints. 

 
Figure 1: Study area around the Cavour metro station in Rome, Italy 

Urban climate walks (UCW) have gained considerable attention in fields of outdoor thermal 
comfort (OTC) and urban walkability over the past decade. UCW studies aim to understand 
how pedestrians experience thermal variations shaped by buildings, trees, water bodies, and 
human activities, and how these thermal contrasts influence their comfort perceptions and 
spatial behaviours. However, thermal experiences of pedestrians have rarely been examined 
through a time-series approach, especially concerning their physiological, psychological, and 
behavioral responses to passive cooling and warming spots across different neighbourhoods, 
where these thermal-recovery spots play a key role in improving neighbourhood walkability. 
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Literature Review: Dynamic human thermal comfort 
A significant and relatively early work relevant to UCW studies is ‘Movement in the 
Architecture of the City: A Study in Environmental Diversity’ by André Potvin (1997), who 
conceptualised methods for microclimatic measurements of transients based on sun and wind 
exposure in Cambridge and Cardiff in the UK. These measurements and urban-analytical 
methods were later redeveloped and applied across various urban contexts; some incorporated 
thermal alliesthesia theories (Liu et al., 2021) in hot cities like Phoenix (Dzyuban et al., 2022) 
and Casbah (Smail et al., 2024), while others combined physiological measurements with 
questionnaires, as seen in studies conducted in Rome (Vasilikou & Nikolopoulou, 2020; Peng 
et al., 2022) and Hong Kong (Jiang et al., 2024). Although dynamic OTC research is emerging, 
many thermophysiological experiments still employ standardised protocols for intermittent 
cooling and warming with uniformed radiant and convective stimuli outdoors, similar to those 
used in thermal chambers. This is mainly due to the rigid constraints of physiological 
experiments, which require stable and controlled boundary thermal conditions that real urban 
contexts always fail to provide, given the unpredictable weather and anthropogenic activities.  
 
Another expedient approach to studying thermophysiological responses to non-uniformed 
thermal variations induced by urban morphology is numerical simulations. Most CFD-based 
software is designed to be deterministic in predicting urban microclimates and static/dynamic 
OTC across heterogeneous urban fabrics. While not as commonly adopted in thermoregulatory 
science due to their limited ability to account for uncertainty, sensitivity to small input changes, 
and challenges with non-linear systems compared to stochastic methods, deterministic OTC 
software provides useful thermophysiological forecasting for walkability research, particularly 
for UCW route planning before experiments. Such forecasts require spatial-temporal 
progression by considering factors like metabolic rate and sweat conditions in various motion 
states, beyond what can be interpreted from microclimate modelling alone. The virtual 
demonstrating of dynamic thermal comfort simulation would benefit urban designers, and 
inform thermal-transitional urban spaces and potential interventions during early-stage design. 
Subject to reliable validations with ground-truth measurements, numerical simulations of 
dynamic OTC can guide the design of climate-responsive streets, squares, and parks that are 
not only protected from thermal extremes but also crafted for thermal allesthesia and pleasure. 
 
This paper investigates dynamic OTC on a 3.6 km walk around Cavour metro station in Rome 
through mobile measurements and numerical simulations. An exploratory research question is 
posed: Using OTC software, can current static thermal indices, e.g., PET, be developed into 
dynamic ones that incorporate thermophysiological forecasting in virtual UCW demonstrations? 
 
Materials and methods 
Two workstreams, physical and digital, have been conceptualised to gather and analyse 
microclimate maps and thermophysiological timeseries data for dynamic OTC assessments. 
Physical tools listed in Tables 2, 3, and 4 include a mobile weather station, Kestrel Heat Stress 
Tracker 5400, Ricoh Theta 4 Spherical Camera, and a Fitbit 4 wristband (Figure 2-a) for pulse 
rate and GPS tracking (Figure 2-b). Additionally, four iButton thermocron sensors (DS1922) 
were taped on the neck, right scapula, left hand, and right shin for reading skin temperatures. 
The physical measurements serve as ground-truth references to validate and calibrate digital 
tools (Figure 2-f), which require morphed weather files (Figure 2-c) and geometry data (Figure 
2-d) to define boundary thermal conditions at neighbourhood scale. The digital tools listed in 
Tables 2, 3, and 4 include the microclimate simulation tool ENVI-met (Figure 2-e) and OTC 
simulation tools BIO-met (Figure 2-g) and Rayman (Figure 2-h), which integrate static and 
dynamic thermal indices for visualising dynamic OTC results in 2D and 3D (Figures 2-i, -j). 
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Figure 1: Methodological framework consisting of physical- and digital workstreams for dynamic OTC studies 

Weather files were downloaded from Ciampino Weather Station (CWS) and compiled as 
forcing files for multiple rounds of ENVI-met simulations (850 by 720m) covering two periods: 
23–24 September, 2021 (non-extreme period) and 21–22 July, 2022 (extreme period), when the 
highest heatwave of the decade was recorded for 37°C in air temperature. Each simulation ran 
from 5:00 am on the first day to 4:59 am on the third day, with data from 1:00 to 2:00 pm on 
the second day cropped for comparison with measurements. Validation was conducted using 
the non-extreme period data in 2021 (Diurnal 𝑇௔ = 20.7 ± 3.0°C, u = 2.7 ± 1.2 m/s), as 
measurements on extreme heatwave days in 2022 (Diurnal 𝑇௔= 29.4 ± 4.6°C, u = 2.6 ± 1.4 m/s) 
had not been fully launched. The preparation of urban geometrical data, including the meshing 
(3 by 3 by 3m) of building facades, roofs, pavements, trees, grasses, water bodies, and the 
terrain factor and telescoping ratio (13% above the highest rooftop), is essential before running 
the ENVI-met simulation (Table 2). Since information on building materials, tree canopy sizes, 
and species is largely missing from dati.lazio.it, these details were manually corrected using 
spherical camera measurements and Google Earth, and then logged in QGIS and Grasshopper. 

Table 2: Digital twinning of urban geometry and material data for ENVI-met and Rayman modelling 

Urban assemblies 
ENVI-met 
simulation 

Rayman 
simulation 

2D/3D GIS data 
(sizes, heights) 

Material attributes 
(albedo, emissivity) 

Facades, roofs, road 
surfaces, pavements 

input input (not used) dati.lazio.it Ricoh camera, 
Google earth 

Trees, grass, water 
bodies 

input input (not used) dati.lazio.it (only 
location data 
available) 

Ricoh camera, 
Google earth 

Topography input (not used) input (not used) dati.lazio.it, OSM N/A 

 
Metrics 
Mean Radiant Temperature (MRT) is a key OTC indicator in UCW assessments, representing 
the combined effect of all surrounding surface temperatures and radiation on a pedestrian. MRT 
can be estimated via 𝑇௔, 𝑇௚ and u measurements from the Kestrel 5400 devices (Equation 1).  

 𝑀𝑅𝑇 = ቂ(𝑇௚ + 273.15)ସ +
ଵ.ଵ⋅ଵ଴ఴ⋅௨బ.ల

ఌ⋅஽బ.ర ൫𝑇௚ − 𝑇௔൯ቃ
଴.ଶହ

− 273.15 (1) 

Where 𝜀 and 𝐷 are the emissivity (0.95) and diameter (0.15m) of the globe, respectively.  
In addition to MRT, 𝑇௔ and u were also used in ENVI-met simulation validation. Wind direction 
was not chosen for validation due to the greater uncertainty produced by the backpacked Kestrel 
devices during the UCW measurement. Since both simulation periods were cloudless, the 
manual forcing of global radiation input was disabled, instead using the solar path module 
provided by ENVI-met. Other non-atmospheric metrics, such as sky view factor (SVF) and 
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altitude, were measured but not used as simulation inputs. Therefore, they remain unvalidated 
in this paper and pending validation in future studies (Table 3). 

Table 3: Variables for thermal-environmental measurement and simulation (*indicates measurement data 
collected but pending validation in future studies). 

Physical variables 
ENVI-met 
simulation 

BIO-met 
simulation 

Rayman 
simulation 

Measurement/Validation 
tools 

𝑇௔ (°C) input, output input input Kestrel 5400, CWS 
RH (%) input, output input input Kestrel 5400*, CWS 
𝑇௚ (°C) N/A N/A N/A Kestrel 5400, CWS 
MRT (°C) output input input, output Equation (1) 
u, (m/s) input, output input input Kestrel 5400*, CWS 
Wind direction (deg) input, output N/A N/A Kestrel 5400*, CWS 
G (W/m2) or Cloud cover (0-8) input N/A input CWS 
SVF (0-1) output N/A input Ricoh spherical camera* 
Longitude (deg./min.) input N/A input Fitbit 4, OSM 
Latitude (deg./min.) input N/A input Fitbit 4, OSM 
Altitude (m) input N/A input Fitbit 4*, OSM 
Hour, Day, Year input N/A input Fitbit 4, CWS 

 
Table 4 presents a part of thermophysiological tools that monitor pulse rates, skin temperatures 
and provide geolocation data, which are crucial for calculating physiological metrics like BMI, 
energy expenditure (EE), and metabolic equivalent of workload (MET). BMI is determined 
through weight and height measurements obtained from a questionnaire, while EE is calculated 
based on heart rate, weight, age, and gender, with data sourced from Fitbit 4 devices. 
Physiological validation was not carried in this paper due to insufficient sample size (n = 1). 

Table 4: Variables for thermophysiological measurement and simulation in BIO-met and Rayman (*indicates 
measurement data collected but pending validation in future studies). 

Physiological variables BIO-met simulation Rayman simulation Measurement tools 
𝑇௦௞௜௡ (°C) output N/A iButton thermocrons* 
𝑑𝑇௦௞௜௡/𝑑𝑡 (°C/min) output N/A iButton thermocrons* 
𝑇௖௢௥௘  (°C) output N/A Ingestive sensors (not used) 
𝑇௖௟௢௧௛   (°C) output N/A Thermal imaging (not used) 
MET (met, or W) input (static), output input (static), output Fitbit 4 wrist bands* 

 
Thermal indices 
Measurement data were imported into the pythermalcomfort package (Tartarini et al., 2020) to 
calculate Physiological Equivalent Temperature (PET) under static conditions like standing and 
sitting. This Python package allows modification of personal variables to compare with ideal 
indoor climate reference conditions: 𝑇௔ = 𝑇௚, wind speed (u) at 0.1 m/s, clothing insulation (clo) 
at 0.9, and metabolic rate (MET) at 1.37 plus basic metabolism (Equation 2). 
 𝑃𝐸𝑇 =  𝑓(𝑇௔, 𝑅𝐻, 𝑀𝑅𝑇, 𝑢, 𝑀𝐸𝑇, 𝑐𝑙𝑜, 𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑤𝑒𝑖𝑔ℎ𝑡, ℎ𝑒𝑖𝑔ℎ𝑡) (2) 
ENVI-met enables static PET simulation based on temperature, humidity, radiation, convection 
around the body, and recently introduced a novel 𝑑𝑃𝐸𝑇  index in the BIO-met module—a 
dynamic thermal indices that accounts for a constant walking speed, clothing insulation, height, 
weight, and other factors (Vatani et al., 2024). The personalised inputs reflect changes in 𝑇௖௢௥௘, 
𝑇௦௞௜௡ and 𝑉௦௪௘௔௧ production along UCW routes, including initial indoor acclimated conditions. 
The main difference between static PET and 𝑑𝑃𝐸𝑇 is that 𝑑𝑃𝐸𝑇 updates at each time interval 
along routes, accounting for the 'thermal delay' effect of changing microclimates (Equation 3). 

 𝑑𝑃𝐸𝑇(𝑡)  = ∫ 𝑃𝐸𝑇(𝑇env (𝑡), 𝑇௖௢௥௘(𝑡), 𝑇௦௞௜௡(𝑡), 𝑇௖௟௢௧௛(𝑡), 𝑉௦௪௘௔௧(𝑡), 𝑣௪௔௟௞௜௡௚(𝑡))𝑑𝑡
்

଴
  (3) 

Since the literature for 𝑑𝑃𝐸𝑇 simulation is rare, it remains a black-box approach. So this paper 
introduces another thermal indices, 𝑚𝑃𝐸𝑇 (Rayman) to benchmark against 𝑑𝑃𝐸𝑇 (ENVI-met) 
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and the static PET (Rayman + ENVI-met). According the 𝑚𝑃𝐸𝑇 literature (Chen & Matzarakis, 
2018), it introduced complex multi-node body and clothing models to predict thermoregulation 
and heat transfer through convection, radiation, and evaporation, and requires initial skin and 
clothing temperatures to iterate 1200 times (20 minutes) for heat transfer and energy fluxes 
between the body, clothing, and surrounding thermal environment (Equation 4). 

 𝑚𝑃𝐸𝑇 =
ଵ

ଵଶ଴଴
∫  

ଵଶ଴଴

଴
𝑃𝐸𝑇൫𝑇env (𝑡), 𝑇core (𝑡), 𝑇skin (𝑡), Clomulti-layer (𝑡), 𝑉sweat (𝑡)൯𝑑𝑡 (4) 

Based on these assumptions, the final outputs from BIO-met and Rayman (𝑑𝑃𝐸𝑇 and 𝑚𝑃𝐸𝑇) 
aim to provide refined estimations of PETs, with 𝑑𝑃𝐸𝑇 depending on a stable speed along a 
designated walk, and similarly, 𝑚𝑃𝐸𝑇 expected to maintain steady states at all times (Table 5).  

Table 5: Simulations of static and dynamic OTC thermal indices 

OTC indices BIO-met simulation Rayman simulation 
PET (°C) output  output  
𝑑𝑃𝐸𝑇 (°C) output N/A 
𝑚𝑃𝐸𝑇 (°C) N/A output 

 
Validations 
The Root Mean Squared Error (RMSE) results vary between the mobile measurements and 
ENVI-met simulation results of 𝑇௔, MRT and u. See the last page Appendix for more details. 
 
Results: Non-extreme static PET simulation 
The static PET map shows that the 3.6 km UCW route covers a range of thermal conditions 
from 25°C to over 50°C even under non-extreme weathers in 2021. Most cooling spots (dark 
blue) are located in dense areas on the central, east and north, aligning with building and tree 
shades. In dense areas, warming spots (dark brown) are often wedged between cooler areas due 
to direct and reflected solar radiation from the sky and facades, with limited convective-cooling 
opportunities due to the wind blockage by buildings. Hence, the thermal alliesthesial potential 
is greater between the warming and cooling spots. To the south and west lies a vast open area 
with ruins and Roman heritage where the thermal contrasts are less pronounced due to higher 
wind speeds and reduced variations in intermittent radiant cooling or warming (Figure 3). 

 
Figure 3: Non-extreme PET map for 24 Sep 2021, 13:00 
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Results: Extreme static PET simulation 
Compared to non-extreme weather in 2021, the extreme scenario in 2022 showed an overall 
average increase of around 10°C in static PET (Figure 4), with maximum increases up to 32°C  
around building/tree shades (dark brown), and decreases of -16°C in front of the sunlit facades 
(dark blue). This suggests that extreme weather can narrow down the PET differences between 
sun and shade, compromising the intermittent warming and cooling along the UCW routes. 

 
Figure 4: PET comparison between the extreme scenario (22 Jul 2022) and non-extreme (24 Sep 2021) at 13:00 

Results: Dynamic OTC simulations 
The BIO-met simulations used skin energy balance equations at the skin node to calculate 𝑇௦௞௜௡, 
revealing different rise rates in non-extreme (blue) and extreme (red) scenarios. Both start at a 
fixed 30°C indoor baseline and increase steadily over the 50-minute simulation (from E-II to 
G-II geo-coordinates), with peak 𝑇௦௞௜௡ values reaching 35°C in non-extreme conditions and 
37°C in extreme conditions. On the second Y axis, the rate of change of 𝑇௦௞௜௡— 𝑑𝑇௦௞௜௡/𝑑𝑡 
(dots) varies more significantly in the second half of the UCW route (from B-VI to G-II geo-
coordinates), where the agent navigates sunlit and shaded pavements due to road crossings and 
turns. Under extreme climate conditions (red), 𝑇௦௞௜௡ rises and cools more rapidly (±1°C/min) 
than in non-extreme conditions, suggesting high-risk, high-gain thermophysiological patterns. 
 

 
Figure 5: 𝑇௦௞௜௡(lines, left Y axis) and 𝑑𝑇௦௞௜௡/𝑑𝑡 (points, right Y axis) results from the BIO-met simulation. 
Validation against 4-point mean skin temperature measurements (ISO 9886:2004) is needed in future study. 

E-II B-III D-V G-IV D-III B-VI F-V G-II 

Geo-coordinate + Time 
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The simulations of 𝑑𝑃𝐸𝑇 (solid lines) was followed to be compared with the static PET (dots) 
over the 3.6 km UCW route (Figure 6). Cooling and warming effects from sun, shade, and 
convective influences are evident in the static PET timeseries.  The 𝑑𝑃𝐸𝑇 results (Figure 6) 
mirrored the 𝑇௦௞௜௡ simulation (Figure 5), both starting at 20°C under indoor conditions and 
reaching 32°C in non-extreme scenarios and 45°C in extreme scenarios. However, due to 
limited literature, it remains unclear why 𝑑𝑃𝐸𝑇 shows a steadier increase than the static PET. 
 

 
Figure 6: Static PET (dots + lines) and 𝑑𝑃𝐸𝑇 (lines) results from the BIO-met simulation 

Figure 7 shows 𝑚𝑃𝐸𝑇 (dots) simulated by Rayman, with patterns distinct from the 𝑑𝑃𝐸𝑇 (solid 
lines) in Figure 6. The static PET (crosses) simulated by Rayman in Figure 7 also differs from 
BIO-met in Figure 6, as the static PET (dots) are flattened under extreme weather, which is not 
observed in Figure 7. In Figure 7, 𝑚𝑃𝐸𝑇 vary from 2°C to 10°C above/under static PET, though 
their overall fluctuations and turning are quite similar. The gap between 𝑚𝑃𝐸𝑇 and static PET 
is more pronounced at lower values and under extreme weather conditions. This suggests that 
𝑚𝑃𝐸𝑇 predicts more significant intermittent cooling/warming effects than static PET.  
 

 
Figure 7: Static PET (crosses) and 𝑚𝑃𝐸𝑇 (dots + lines) results from the Rayman simulation 

Discussions and conclusions 
The virtual demonstrations of thermal variability along UCW routes could benefit both the OTC 
and walkability research, as evidenced by the measurements and simulation results. Conditional 
to successful validation and calibrations, static/dynamic PET visualisations by digital tools such 
as ENVI-met, BIO-met, and Rayman can forecast thermophysiological variations influenced 
by diverse meteorological conditions and urban contexts. Importantly, the dynamic UCW 
simulation is enabled by temporal progression in BIO-met and Rayman, considering increased 
wind speeds, metabolic rates, and sweat productions. New thermal indices like 𝑑𝑃𝐸𝑇  and 
𝑚𝑃𝐸𝑇  can guide decisions in selecting not just ‘cool’ or ‘warm’ paths but also ‘thermal-
alliesthesial’ paths. They help in understanding the seasonality and diurnality of thermal 
alliesthesia and identifies specific times of day or night when pedestrians experience more 

E-II B-III D-V G-IV D-III B-VI F-V G-II 

Geo-coordinate + Time 

E-II B-III D-V G-IV D-III B-VI F-V G-II 

Geo-coordinate + Time 
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pronounced or subtle thermal variations on selected routes. These simulation results can lead to 
further research into the thermal recovery of skin and core temperatures under extreme weather, 
where intermittent cooling or warming helps rebalance excessive heat gain or loss, and improve 
metabolic dysregulation over time—potentially caused by unchanged, chronic heat or cold 
stress, even if non-extreme (mild), mostly seen in open and unshielded urban areas. 
 
Combining physical and digital tools, this paper has listed existing thermal indices and explore 
their potential for redevelopment that incorporate built-environmental and thermophysiological 
parameters. However, this study has limitations. Since dynamic thermal indices have rarely 
been studied or validated for UCW studies, the conclusions were drawn cautiously, particularly 
when interpreting and comparing simulation results across different software. This is partly due 
to the lack of documentation and literature on these new indices. Therefore, the main research 
question only focuses on the workflows of measurements, simulations, and validation for UCW. 
Another limitation is the exclusion of topographical effects on urban microclimate, metabolic 
rate and sweat production. Addressing this would likely require extensive empirical lab and 
field studies with a sufficient sample size and controlled thermophysiological protocols to 
develop topographic climate walk models to improve the current dynamic UCW software. 
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Appendix 
Note that air temperature (a) and mean radiant temperature (b) results do not include walking 
scenarios as these two meteorological parameters will not change compared to the standing 
scenarios. Wind speed (c) and wind directions can change when the subjects move along the 
trajectories. Wind direction results were excluded due to the unstable conditions of the 
backpack-mounted Kestrel 5400 while walking. The MRT validation shows the poorest 
alignment between simulation and measurement, likely due to inaccuracies caused by increased 
wind speed during the walk, leading to an overestimation in the measured MRT in green (b). 

 
Figure A-1: Validation of air temperature (a), mean radiant temperature (b), and wind speed (c) between ENVI-

met simulation and Kestrel mobile measurements on 24 Sep 2021, 13:10 to 14:00.  


