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Electrical TCAD Study of the Low-Voltage
Avalanche-Mode Superjunction LED

R.J.E. Hueting, Senior Member, IEEE, H. de Vries, S. Dutta, and A.J. Annema, Member, IEEE

Abstract—The CMOS silicon avalanche-mode light-
emitting diode (AMLED) has emerged as a potential light
source for monolithic optical interconnects. Earlier we pre-
sented a superjunction light-emitting diode (SJLED) that
offers a higher electroluminescent intensity compared to a
conventional AMLED because of its more uniform field dis-
tribution. However, for reducing power consumption low-
voltage (<15V) SJLEDs are desired, not explored before. In
this work we present a TCAD simulation feasibility study of
the low-voltage SJLED for various doping concentrations
and device dimensions. The results show that for obtaining
a constant field, approximately a tenfold more aggressive
charge balance condition in the SJLED is estimated than
traditionally reported. This is important for establishing a
guideline to realize optimized RESURF and SJLEDs in the
ever-shrinking advanced CMOS nodes.

Index Terms— Avalanche breakdown, Diode,

Emitting Diode (LED), Power, silicon

Light-

[. INTRODUCTION

In the 1950’s it was discovered that silicon (Si) pn-
junctions operating in avalanche breakdown exhibit broad-
spectrum electro-luminescence (EL) at short wave lengths
(A ~ 350-900nm), although with a low internal quantum
efficiency (nrap ~ 107°) [1], [2]. After this discovery it took
practically half a century for research on Si avalanche-mode
light emitting diodes (AMLEDs) to gain momentum ( [3]- [9]).
This can be partly attributed to the advancement of commercial
CMOS technology driven by the strong demand for more on-
chip functionality. In addition, Si AMLEDs exhibit significant
spectral overlap with the responsitivity of Si photodiodes [10]
which is beneficial for on-chip optical interconnects.

Due to a wide variety of commercial CMOS technologies,
various approaches have been reported to increase ngap of
AMLED:s:

o Additional carrier injection via a third terminal in AM-
LEDs [11].
o Carrier energy and momentum engineering [12], [13].
o The superjunction light-emitting diode (SJLED) [14],
[15].
In this work we focus on the last approach. The basic idea
of the SJLED is to mimic a p-i-n diode, see Fig. 1(a), at
avalanche breakdown. The constant electric field distribution
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Fig. 1. Schematic top view of the (a) p-i-n diode and (b) SJLED. In
theory the p/n poles are infinitely repeated in the y-direction. Line A-
A’ indicates the axis of symmetry of the device. The drift length of
both devices and pole width are indicated by L respectively d. The
anode/cathode regions have a doping of 1019 cm—3. (c) Breakdown
field distributions of a 5V and 15V p-i-n diode compared to their effective
field obtained from a 1D nonlocal avalanche model (dotted curves) using
Egs. (3)-(4). (d) Breakdown voltage (BV) against L of the Si p-i-n
diode obtained from TCAD simulations [23] and measurements (open
red symbols) [27]. The grey dashed line represents results obtained from
Fulop’s approximation [30], showing a discrepancy for smaller L.

at breakdown (€, (x)) in the drift (or “active”) region of the
p-i-n diode, see Fig. 1(c), results in a higher EL-intensity
thus nrap compared to conventional pn junctions with the
same breakdown voltage (BV) [14]. In the latter &,(x) is
triangularly shaped and hence only near the peak field, light
emission spots will form.

However, to realize a p-i-n diode in standard CMOS tech-
nology is difficult. Therefore, the widely adopted reduced
surface field (RESUREF) effect [16], [17], [18] in power devices
is used by placing multiple parallel p/n-layers or “poles”, i.e.
superjunction RESURF, see Fig. 1(b). In this way the p/n
poles can be fully depleted at avalanche breakdown akin to
the intrinsic region of a p-i-n diode.

For obtaining the optimal RESURF condition, thus a con-
stant &, (x), the product of pole width (d) and pole doping
concentration (/N) must satisfy the charge balance condition
[19], [17], [16]:
2¢eg

q Y
where &, is the critical (or breakdown) field of the one
dimensional (1D) vertical (y-direction) p/n poles, €4 is the
permittivity, and ¢ is the elementary charge. Typically, the
charge balance condition in Si is reported to be N - d < 10'2

N-d5 ey ()
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cm™?2 [16], but this value increases for higher N (Z 10'®
cm~3) since the ionization rate strongly depends on the field;
this increases &, of the 1D p/n poles [20]. Moreover because
of mobility reduction &, ,, increases with N as well. Provided
that Eq. (1) holds, the BV of the SJLED is determined by
&z, as in the p-i-n diode.

At breakdown the constant field in the p-i-n diode (and
optimized SJLED) reaches the critical field (&,(z) = &4)
uniformly. Consequently, as shown in Fig. 1(d) BV =~ |& ;|-
L, where L is the drift length. Importantly, for low-voltage
(LV) devices &, strongly increases for smaller L, see also
Fig. 1(c). It can be derived that

b
In (anL)’

where a,, = 7.03-10° cm™! and b,, = 1.23 - 10° V/cm for Si.

Particularly for reducing power consumption, LV SJLEDs
are desired but for BV < 5V nonlocal avalanche (NLA)
effects will dramatically drop the EL-intensity [21], obviously
not desired. In addition, band-to-band tunneling (BTBT) ef-
fects [22] will then play a role. So far SJLEDs have been
studied for BV 2 25V. In this work we report a TCAD
simulation study to investigate the impact of the N - d value
on the uniformity of &, (z) and BTBT effects in LV SILEDs
(BV < 15V), both important for increasing nrap, aiming at
(relatively) LV light generation.

|€c,z| = (2)

Il. RESULTS AND DISCUSSION

Earlier, we reported TCAD and experimental data of
SILEDs for 25V < BV < 50V [14]. Best results were
obtained for N ~ 2:10'7 cm™—3 and a minimum d ~ 0.38um,
both defined by technology constraints. The SILEDs (L = 2
pm) showed about a 1.7 fold increase in breakdown voltage
(BV = 50V) compared to that of conventional (pn-junction)
AMLEDs (BV = 29V) of the same size and realized in the
same technology. Also, the EL intensity that was measured
for the same current from 400 nm to 870 nm (with a peak
at 650 nm) wavelength, was almost 2 times higher than that
of conventional counterparts as confirmed by the two times
higher measured coupling efficiency (~8-10~?) for the former.
Those reported results therefore show that the SJLED has
a more uniform field distribution. However for that SJLED,
N-d ~7.7-10'2 cm™2 which is higher than the charge balance
condition [16], implying that so far we did not obtain optimal
RESURFE.

Fig. 2 shows &;(x) = &, of the 15 V p-i-n diode (L =
350nm) obtained from TCAD simulations [23]. Throughout
this work we have used Selberherr’s local impact ionization
model [24] that considers for fields higher than 4-10° V/cm
(applicable in this work) impact ionization coefficients ac-
cording to () = Gy (p) - €XP (—(b”‘g&)ﬁnw)), where a,
= 6.71-10° cm™!, b, = 1.69 - 10° V/em, and f8,¢) = 1.
For comparison, &,(x) is shown of the SILED with N - d ~
7.7-10'2 cm~2 [14], taken from the line A-A’, see Fig. 1(b).
As expected, in the SILED &, (z) is not constant: at the left
junction there is a peak field. This will result in more light
emission near this junction (this could not be observed in our

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 2. Breakdown field distribution of the 15V p-i-n diode and 15V
SJLED obtained from TCAD simulations (both L = 350nm), using
reported values for N =~ 2 - 10'7cm—23 and d ~0.38um [14]. For
the SILED & (x) is taken from line A-A’ (Fig. 1(b)), and through the
junction of a p/n pole as indicated by, e.g., line B-B’ (Fig. 1(b)).

experiments [14] possibly due to the limited image resolution)
rather than throughout the whole drift region as would be the
case for the p-i-n diode. Clearly, for increasing the EL intensity
the latter is desired.
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Fig. 3. 2D potential contour plots at breakdown in unit cells of (a) the
SJLED for N =~ 2:107cm—3, d =~ 0.38um, L = 350nm (see also
Fig. 2), (b) and (c) the optimized SJLED for N =10'8cm~—3 and d =
10nm and L=350nm, respectively, 32nm. (d) Example of a 2D meshing
plot used for obtaining figure (b) showing a dense mesh in the drift region
(350 mesh points in a-direction and 30 mesh points in y-direction).

We have performed extensive TCAD simulations to opti-
mize the SJLED for BV =5V and 15V by incorporating three
doping concentrations: N = 1016, 2.10'7, and 10'® cm—3.

Fig. 3(a) depicts a 2D potential contour plot at breakdown in
a unit cell of the SJLED with previously mentioned values of
N and d [14], showing that the potential lines are not equidis-
tant and strongly curved. For comparison contour plots are
shown of optimized counterparts for N=10%cm~3, d=10nm
and L=350nm (Fig 3(b)), respectively, 32nm (Fig 3(c)) both
indicating optimal RESURF. For the p-i-n diode the same
results are obtained where we have used about 1,200 (4,000)
mesh points for L=32nm (350nm), in which the drift region
has 32 (350) mesh points in z-direction and 10 mesh points
in y-direction. For the optimization of the SJLED we have
used about 1,200-22,000 mesh points depending the doping
and size. Here, in the drift region we have used for L=32nm
(350nm) 32 (350) mesh points in x-direction and 30-40 mesh
points in y-direction, see for example Fig. 3(d).

The optimization routine we have used is as follows. First
L needs to be determined for the 5V and 15V p-i-n diodes,
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BV=15V BV=5V Further, we study the [ V characteristics of the optimized
L=350nm L=32nm SJLEDs for N = 10'® cm~3, see Fig. 5, where default models
0.7 r N=108ems 160 o N=101 em and parameter values for concentratlon dependent Shockley-
0.6 r o d=50nm 1.50 “4=50nm Read Hall (SRH) [25] and Auger recombination, the charge
05 | % " carrier mobility [26] and BTBT [22] are used. The 15V
’é‘ 04 | J—10mm / 1.40 devices show lower leakage currents than the 5V counterparts
L o3 LA i 1.30 due to BTBT. Interestingly, despite the high N in the 5V
E 05 - d_50N=2-1017cm-3 1.55 S.JLED, BTBT has not increased compart?d to the 5V p-i-n
c s 4—ounm 1.50 diode due to the RESURF effect. The differences between
% 04 | \ ' the characteristics of the 15V SJLED and p-i-n diode at low
"';' d=10nm 1.45 forward and reverse bias is caused by recombination: the
Elo3 bl 140 . higher doping in the SJLED reduces the (effective) lifetime
9 | 05  d=480nm N=10cm3 1.50 4=480nm N=10'6cm [25] that in turn increases the leakage and low forward current.
= Foe In addition, the increased doping in the drift region causes
04 - [M\ a lower series resistance in the SJLED yielding a higher
maximum current density than for the p-i-n diode.
0.3 © 145 L -
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Fig. 4.  Lateral breakdown field distribution obtained from TCAD
simulations of 15V (left) and 5V SJLEDs for N = 1018cm—3 (top),
2.1017 cm—23 (middle) and 1016 cm—3 (bottom). In all cases d is varied
for obtaining a constant field for d=100nm (N = 1016 cm—23, 15V) and
d=10nm (N = 2.1017 and 1018 cm—3). One exception: for 5V and N
=101 cm—3 N . d has hardly any effect.

see Fig. 1(d). These lengths, 32nm resp. 350nm long, are then
used for the 5V respectively 15V SILEDs. Next, for each L
d is varied for all N such that a (practically) constant &, (x)
is obtained. Fig. 4 summarizes &,(z) for all SJLEDs. Using
Eq. (1) from this part of the study it can be concluded that
N -d Z10" em™2 for N = 1016 and 2 - 1017 cm ™3, while
N -d £10'2 cm™2 for N = 10'® cm™3. For the latter N - d
is estimated higher because of the higher &, (~ 1.2MV/cm
[20]). Furthermore, for 5V N = 10'¢ £,(z) is hardly affected
by d and is less uniform than for higher N. This can be
attributed to the very high &, (~ 1.48MV/cm) compared
to &,y (~ 0.3MV/cm). In summary, for low IV superjunction
RESUREF is not needed, but for all other cases for obtaining
a constant breakdown field a tenfold lower charge balance in
LV SJLEDs is required, which was not reported earlier [16].
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Fig. 5. Reverse I'V characteristics of the optimized 5 V and 15 V
SJLEDs (d=10nm for 108 ¢cm—23) compared to those of 5 V and 15 V
p-i-n diodes (dotted lines). Inset: forward characteristics of the devices.
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Finally, for BV < 5V NLA effects will become important
in 1D p*-n diodes [21]. NLA effects can play a role in 1D
p-i-n diodes [27], and consequently SJLEDs [28], as well.

It can be derived for the effective field formed by NLA that

[29]
5 kAT (x,y)
2 e
where AT, is the increase in electron temperature and A, is
the mean free path of electrons (~65nm in Si). For both the
p-i-n diode and SJLED holds [28]

_ 2q8m($)>‘e ) _ T
== {1 exp< Ae>:| . 4)

For the SJLED an effective vertical field (Enpa(y)) can
be obtained similar to that of a single sided junction [29].
Typically, the obtained Enpa(z,y) is less than the (local)
E(z,y). For determining the breakdown field Egs. (3)-(4)
should be substituted in the ionization integral that is equated
to unity. This basically implies that BV increases for the same
device dimensions once NLA becomes important [27].

By adopting Eqgs. (3)-(4), Fig. 1(c) shows that particularly
for the 5V p-i-n diode Enpax(z) < &Ex(x) (Envax(z) is
indicated by the dotted curve), hence NLA is then important.
However, it is expected that even in the 15V SJLED, NLA
will play a role because of the relatively high vertical (y-
direction) field (~ 1.2 MV/cm) at nm-scale dimension, even a
higher field than for the 5V 1D p™-n diode. Because ENLA,c,y
will then be higher than & ,, NLA relaxes the charge balance
condition (see Eq. (2)). As a result, especially for d = 10nm
N - d can then become higher than reported in this work. This
requires both a thorough experimental and theoretical future
study.

Envalz,y) = 3)

AT, (z)

[1l. CONCLUSIONS

An extensive TCAD simulation study has been performed
to optimize low-voltage superjunction light-emitting diodes
(SJLEDs). The results show that a tenfold more aggressive
charge balance condition is required than traditionally reported
for power devices. Also, because of the reduced peak field,
band-to-band tunneling is less important for SJLEDs than for
their conventional counterparts. This work will serve as a
guideline for device design in future scaled CMOS nodes.
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