
Electrical Resistivity Tomography
Protocol for Landfill Monitoring

by

Juan Chavez Olalla

in partial fulfillment of the requirements for the degree of

Master of Science
in Civil Engineering

at the Delft University of Technology,
to be defended publicly on Friday July 28, 2017 at 3:00 PM.

Supervisor: Prof. dr. ir. T.J. Heimovaara
Thesis committee: Dr. ir. D. S. Draganov, TU Delft

Dr. ir. D. J. M. Ngan-Tillard TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

Aftercare of sanitary landfills represents a burden for future generations, for emission potential of
leachate and gases remains for hundred of years. Treatment methods have to be developed in order
to accelerate waste degradation and reduce emission potential preferably within the time-span of one
generation. Aeration seems a promising treatment method but as yet has to be proven effective
as a methodology to enhance waste degradation at full scale. Water content plays a crucial role in
evaluating aeration, but the highly heterogeneous nature of a landfill body poses a big uncertainty in
quantifying it and therefore also quantifying the effectiveness of aeration in reducing emission potential.
To improve understanding of water within a waste body, Electrical Resistivity Tomography ERT is to be
used to indirectly measure water content by obtaining electric resistivity information. However, full scale
landfills have large areas and therefore a protocol needs to be developed for generating an optimum
survey strategy, so that high resolution information is obtained while covering a large area. This thesis
presents such a protocol consisting of four parts. First, optimum spread and spacing are defined by
building a Pareto front with resolution and covered area as objective criteria. Second, array is designed
in the previously defined grid, with standard and non-standard four-electrode configurations, by using
a goodness function applied to multiple channel acquisition systems. Third, array design is tested
with synthetic models showing that smooth resistivity models are well captured by data inversion, but
array design performs poorly in a sharp resistivity model. Finally, practical aspects namely injection
time, polarization effects and unstable configurations which are usually overlooked, are shown to have
significant influence in data quality. This protocol is intended as a systematic approach to generate an
optimum ERT survey strategy which could be extended to other geophysical methods.
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1
Introduction

1.1. Justification
Traditional landfills have a emission potential which requires eternal after care in order to prevent
release of contaminants to the environment. Emission potential has environmental, economical, and
ethical implications. For this reason, the Dutch Sustainable Landfill Foundation (DSLF) aims to evaluate
the effects of sustainable landfill methodologies at existing landfills in the Netherlands [1]. This is, it
aims to apply methodologies to reduce or eliminate emission potential of contaminants in leachate and
gases in the short term. For that purpose, aeration will be implemented in order to stimulated aerobic
degradation in three experiments: one in the Wieringermeer and two in the Braambergen landfills.
There are two main goals of the experiment. First, to evaluate the effects of aeration as a measure of
stabilization of existing landfills. Second, to establish a generic procedure for application of aeration in
other landfills.

Direct sampling of solid waste is not suitable to evaluate degradation of the refuse because of the
large scale of the experiments and their highly heterogeneous nature. Instead, Key Performance Indi-
cators (KPI) are monitored, so that an insight of the degradation process is obtained. Among the most
relevant KPI are leachate flux, leachate quality, temperature, and moisture content. These indicators
give a quantitative insight into the process of degradation by means of numerical models. A numerical
model is sought that gives a response close to the observed response (KPI) and thus insight into the
model states such as the emission potential. Such models have high degree of uncertainty because of
the limited data available, for example, sampling values of KPI. Indeed, in the model developed specif-
ically for the aforementioned experiments to estimate the emission potential [2], the water content
plays a paramount role; nevertheless, information is scarce. Thus, the water content is a calibrated
parameter rather than input data as it would be preferred to be because the model strongly depends
on it.

Landfill bodies are prone to preferential fluid flow [3] which is difficult to assess deterministically.
For such complex systems, it seems practical to account for preferential flow in terms of stochastic
distribution of retention times. Thus, the total amount of water is discretized and each discrete ele-
ment is classified into mobile or immobile according to the time elapsed for them to leave the system.
Indeed, volumes of water with retention time larger than certain threshold are considered immobile;
otherwise mobile. In the model of van Turnhout [2] solute masses are transported from the immobile
water volume to the mobile through diffusion and from there, solute masses leave the system accord-
ing to the retention time of the mobile water volume they are in. This preferential-flow behavior is
one of the main concerns for applying aeration as a measure of stabilization. This is because air flow
might not cover the extension of the waste body, yet it might show an apparent clean up in the short
term. Nevertheless, concentration of contaminants in leachate would rise as soon as contaminants are
diffused to the mobile phase. Therefore, in order to assess whether waste clean up is apparent or real,
the water content of the waste body has to be characterized, so that the results are interpreted in a
robust manner through model states.
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2 1. Introduction

Electrical Resistivity Tomography (ERT) is a promising method to characterize the water content be-
cause resistivity is strongly correlated to moisture content. Moreover, ERT provides three-dimensional
information which is preferred compared to direct sampling which is zero dimensional.The geophysical
method consists in deriving a resistivity field from inversion of apparent resistivity values measured with
several electrode configurations. For this purpose, a grid of borehole electrodes was installed with the
aeration infrastructure of each of the three aforementioned experiments. This grid of borehole elec-
trodes combined with surface electrodes is to be used to map electrical resistivity of the waste body.
Although mapping water content is the final goal of the ERT monitoring program, it is crucial first to
map as accurately as possible the resisitivity. Once reliable information about resistivity is obtained,
mapping of water content is possible. ERT has been used for a wide range of applications such as envi-
ronmental, hydrological, archaeological, mineral, and hydrocarbon exploration. However, the method
shows significant discrepancies when applied to synthetic data or when compared with accurate prior
information [4]. Indeed, there is an inherent limitation of the method because of the type of equation
that describes the physical problem. Consequently, it is crucial to get the best of the method. This can
be achieved by a proper grid design, array design, and considering the effect of operational aspects in
data acquisition.

1.2. Research question
Given a base grid of borehole electrodes, what is the optimum survey strategy to monitor electric re-
sistivity?

This thesis will present a systematic approach (protocol) to find an optimum survey strategy. Opti-
mum survey strategy is understood in this study as a balance between resolution, covered area, acqui-
sition time, and data error. This is to be implemented in the monitoring program at the Wieringermeer
and Braambergen landfills. The main elements of this protocol are the selection of grid spread and
electrode spacing, experimental array design, synthetic array testing, and practical aspects for data
acquisition.



2
Methodology

2.1. General approach
The protocol formulated in this study is meant to make specific guidelines for monitoring resistivity in
landfills. These specific guidelines are derived from general guidelines found in literature for geophysics
and ERT. The protocol consists of four concatenated parts. In part one, grid spread and electrode spac-
ing are defined. The objective criteria to evaluate grid designs are the model resolution and the covered
area by the designs. In part two, survey array is designed by choosing four-electrode configurations in
a systematic manner, i.e., configurations are ranked according to their influence in the model resolu-
tion. In part three, the performance of the array design is evaluated with synthetic data. This is done
in terms of one to one comparison between true and inverted resistivity. In part four, the influence
of practical aspects on the data error is studied. Finally, the survey strategy is formulated from the
previous analysis.

2.2. Part I: Spread and spacing
The survey design in this study aims to retrieve high resolution information while covering the largest
possible area. Since the design is constrained by the number of electrodes that can be used in a single
survey, these two criteria are in contradiction. For instance, in order to retrieve information with higher
resolution, more electrodes are needed, but in turn the covered area is smaller. Therefore, a trade-off
between these two criteria, resolution and area, is to be found. In order to do so, several design
alternatives are evaluated in terms of the two objective criteria, namely resolution and covered area.
This is done until a set of designs (Pareto set) is found for which there is no other design that would
improve one criteria without deteriorating the other criteria [5] (Figure 2.1). From the Pareto set, the
most suitable design is chosen. The construction of a Pareto set is computationally expensive; thus,
a limited number of operational-feasible designs are evaluated. In the subsequent subsections, it is
explained how resolution and covered area are calculated.

2.2.1. Model resolution
In geophysics, model parameters are estimated, so that when an appropriate physics-based model
is applied to those parameters, the response is similar, within an error range, to the measured re-
sponse. An example of parameter estimation (inversion) is least squares fitting in which the square
error between fitting points (measured data) and a equation output (model response) is minimized. A
qualitative idea of resolution is drawn from this illustration. If there are more data points than model
parameters to be fitted, then the resolution of each of the model parameters is one. In ERT, the in-
verse problem maintains certain similarities with the least square fitting problem. Nonetheless, some
differences are noticeable such as the model response is a non-linear function of the model parameters.
Also, there are an infinite number of model responses that satisfy the measured response. Thus, in
order to solve the inverse problem, regularization is applied. For instance, a type of regularization is to
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4 2. Methodology

Figure 2.1: Pareto set (red line).

assume the distribution of parameters is smooth or the parameters are close to a fixed value. However,
these assumptions influence the reliability of the inverted parameters. Thus, it is desired that the model
parameters are estimated from the measured data. In qualitative terms, a model parameter that is
completely estimated from the measured data has a resolution of one whilst a model parameter that
is partly estimated from the data and partly from the regularization has a resolution lower than one.
Formally, the model resolution (Equation 2.1) comes from the weighted damped least squares solution
of the linearized inverse problem [6]:

𝑅 = (𝐺ፓ𝐺 + 𝐶)ዅኻ𝐺ፓ𝐺 (2.1)

where 𝐺 and 𝐶 are the sensitivity and regularization matrices, respectively (explained bellow).

In the inversion process, the resistivity field is discretized and the resistivity of the discrete elements
are the model parameters to solve for. Consequently, the model resolution is a square matrix of size
equal to the number of model parameters. Each row of the resolution matrix contains information
about the resolvability of a specific model parameter. For instance, the 𝑖𝑡ℎ row of the resolution matrix
contains information about the resolvability of the 𝑖𝑡ℎ model parameter, i.e., how much each model
parameter influence the solution of a specific inverted model parameter. Therefore, the diagonal ele-
ments of the resolution matrix say how a inverted model parameter influences itself. The diagonal is
generally used as an indicator of resolvability rather than the complete matrix. The structure of the
resolution matrix is shown in Figure 2.2. In this matrix, 𝑖 and 𝑗 go from 1 to the number of model
parameters.

𝑅።፣ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑅ኻኻ 𝑅ኻኼ … 𝑅ኻ፣

𝑅ኼኻ 𝑅ኼኼ … 𝑅ኼ፣

⋮ ⋮ ⋱ ⋮

𝑅።ኻ 𝑅።ኼ … 𝑅።፣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Figure 2.2: Structure of the resolution matrix.
The model resolution is composed of the sensitivity matrix 𝐺 (Equation 2.2) and the regularization

matrix 𝐶. 𝐶 contains the damping factor, a priory information and type of constraint.

𝐺።,፣ =
𝜕 (𝑉።)
𝜕 (𝜌፣)

(2.2)

The sensitivity matrix is composed of the partial derivatives of the model responses with respect to



2.3. Part II: Array design 5

the model parameters [7]. This matrix has as many rows as configurations and as many columns as
model parameters. The structure of the sensitivity matrix is shown in Figure 2.3. In this matrix 𝑖 goes
from 1 to the number of configurations and 𝑗 goes from 1 to the number of model parameters.

𝐺።,፣ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ᎧፕᎳ
Ꭷ᎞Ꮃ

ᎧፕᎳ
Ꭷ᎞Ꮄ … ᎧፕᎳ

Ꭷ᎞ᑟᑞ

ᎧፕᎴ
Ꭷ᎞Ꮃ

ᎧፕᎴ
Ꭷ᎞Ꮄ … ᎧፕᎴ

Ꭷ᎞ᑟᑞ

⋮ ⋮ ⋱ ⋮

Ꭷፕᑟᑔ
Ꭷ᎞Ꮃ

Ꭷፕᑟᑔ
Ꭷ᎞Ꮄ … Ꭷፕᑟᑔ

Ꭷ᎞ᑟᑞ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Figure 2.3: Structure of the sensitivity matrix.

2.2.2. Covered area
The covered area in a single survey is determined by the spatial distribution of the electrodes. When the
area of investigation is large, a principal direction is defined in which electrodes are oriented. Multiple
lines are reproduced with the same orientation and at a fixed separation. This is done until all the
electrodes are used. The transverse separation of the electrode lines is determined in this study by
following generic guidelines found in literature [8]. Therefore, array design and data acquisition are
two-dimensional because of the limited number of electrodes available; nevertheless, the inversion can
be three-dimensional. The covered area is calculated as

𝐴𝑟𝑒𝑎 = 𝐿 ∗ 𝑡 ∗ 𝑛, (2.3)

where 𝐿 is the longitudinal spread, 𝑡 is the transverse separation between lines, and 𝑛 is the number
of lines covered by the available number of electrodes.

2.3. Part II: Array design
Four-electrode configurations are most commonly used in ERT because of operational convenience and
resolution properties. Using pole-pole or pole-dipole configurations present some disadvantages such
as the need of a far electrode in order to guarantee pole-pole conditions or low resolution compared to
four-electrode configurations [9]. Traditional array design has been limited to the use of standard arrays
such as dipole-dipole, Schlumberger and Wenner arrays. Nevertheless, for special grid geometries,
standard arrays are cumbersome to implement. Moreover, the information content of data collected
using traditional arrays is low compared to the total information that can be collected with four-electrode
configurations. An obvious alternative to exploit the ERT method would be to collect data using all
possible four-electrode configurations, comprehensive data set. However, this becomes unpractical in
terms of survey time and computational power even for small number of electrodes. This is illustrated
by the set of all non-reciprocal configurations, comprehensive set, available which scales with the fourth
power of the number of electrodes [10]

𝑛፜፨፦፩፫፞፡፞፧፬።፯፞ =
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

8 . (2.4)

For this reason, a robust approach is needed to design arrays by choosing the best four-electrode
configurations out of the comprehensive set. The best configurations are those who produce the high-
est increment in the model resolution. Several systematic approaches to select configurations are found
in the literature such as the compare R method [11] and the goodness function [12]. The chosen ap-
proach used in this study is the goodness function because is the less expensive in terms of computing
time. In multiple channel acquisition systems, data can be complemented by filling empty commands
with non-standard configurations. Thus, the goodness function used in this study was modified in order
to choose the best configurations while filling empty commands at the same time.
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2.3.1. Goodness function
This method aims to increase the values of the diagonal elements of the resolution matrix. The good-
ness function is expressed as follows:

𝐺𝐹። =
፧፦

∑
፣዆ኻ

𝐺፜ፚ፧፝።፣
𝐺፬፮፦፣

(1 −
𝑅፛ፚ፬፞፣፣
𝑅፜፨፦፩፣፣

) (2.5)

where 𝑛𝑚 is the number of model cells, 𝐺፜ፚ፧፝።፣ is the sensitivity of the candidate set of configura-
tions, 𝐺፬፮፦፣ is a normalization factor, 𝑅፛ፚ፬፞፣፣ and 𝑅፜፨፦፩፣፣ are the diagonals of the base and comprehensive
model resolution, respectively. A more comprehensive description of the goodness function is found in
Stummer et al. [12]. Equation 2.5 ranks configurations according to their sensitivity (Equation 2.2) and
their effect on the model resolution. Such that, configurations that are sensitive to model parameters
with low resolution have a higher ranking.

The complete implementation of the goodness function is described in the following algorithm and
illustrated in Figure 2.4:

1. Compute the threshold resolution 𝑅፜፨፦፩ of the comprehensive data set

2. Choose a base set of configurations dipole-dipole

3. Compute the resolution 𝑅፛ፚ፬፞ of the base data set

4. Define the candidate set of configurations by removing from the comprehensive data set the base
set

5. Carry out orthogonality check (dot product) between the sensitivity of the candidate set and the
base set. Then, discard configurations whose dot product is larger than a predefined threshold

6. Apply the goodness function to the remaining candidate configurations

7. Choose best ranked configurations and add them to the base set

8. Fill empty commands with the best ranked configurations and according to the working principle
of the acquisition system being used

9. Repeat from step three until the array design is complete

2.4. Part III: Array performance in synthetic data
2.4.1. Water flow model
A geohydrological model, which is representative of landfill conditions, is used for synthetic data gen-
eration. This is a two-phase gas-liquid fully coupled flow model. It was implemented in COMSOL
Multiphysics to study aeration mechanics in landfills [13] and will be used as a source of synthetic
data. This model assumes a linear change of porosity in depth going from high on top to low at the
bottom. Neumann boundary conditions are given for water flow and Dirichlet for air flow at the top.
At the bottom, Robbins boundary conditions are applied for water flow and Dirichlet for air flow. The
infiltration rate of water, top boundary condition, is changed in order to analyze two possible scenarios,
namely wet and dry. The steady state solution of the differential equations shows the water saturation
going from low at the top to high at the bottom. The water content goes from high at the top to low
at the bottom (see Figure 2.5) which is a consequence of the porosity profile.

From this model, the volumetric water content is correlated to resistivity by means of Archie’s law:

𝜌 = 𝑎𝜌ኻ𝜃ዅ፦ (2.6)
where 𝜌ኻ is the electrical resistivity of the leachate, 𝜃 the volumetric water content, and 𝑚 and 𝑛

are empirical parameters. From Grellier et al. [14] 𝑎 = 1, 𝑚 = 2.5, and 𝜌ኻ is chosen to be 2 ohm-m in
order to fit the resistivity in the range observed in the field.



2.5. Part IV: Practical aspects for data acquisition 7

Figure 2.4: Diagram for experimental design.

2.4.2. Checker board model
Since the flow model shows a smooth transition of resistivities and the inversion algorithm uses smooth-
ness type of constraint, the inverted model parameters are in agreement with the true model parame-
ters (flow model). Therefore, a checkerboard type of model is crucial in order to make a fair assessment
of the array design, for smoothness constraint is not in agreement anymore with the true resistivity
field (checkerboard model). This model consists of a background resistivity similar to that obtained in
pre-design surveys. Circular anomalies with high resistivity are added to the background model also in
accordance to the anomalies found in pre-design surveys (Figure 2.6).

2.5. Part IV: Practical aspects for data acquisition
2.5.1. Injection time
The resistivity system (Syscal Pro, Iris Instruments) allows the use of different injection times. The
injection time is preferred to be short in order to reduce survey time. Nevertheless, using short injec-
tion time might lead to a faulty measurement in mediums prone to induced polarization because the
voltage field is not stable [15]. Measurements with different injection times are taken and compared
in order to determine a suitable injection time.

2.5.2. Polarization effects
Data error can be estimated from repeated measurements, yet a better estimator of data error is the
reciprocal error [15]. Reciprocal measurements imply longer acquisition time compared to repeated
measurements which is not desired. Therefore, a strategy is sought to reduce reciprocal errors, so that
a good estimator of data error would be obtained with repeated measurements only. Reciprocal errors
can be significantly reduced by reducing electrode polarization [16]. That is, rearrange the injection
sequence in such a way that the longest time is elapsed for an electrode to work as potential electrode
after it worked as current electrode.
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Figure 2.5: Water saturation (left) and water content (right).

Figure 2.6: Checkerboard model.

First, a brief discussion on the working principle of a multiple channel acquisition system is pre-
sented. A command with 𝑀 channels is formed by two injection electrodes (𝐶) and 𝑀 + 1 potential
electrodes 𝑃. For example, command 𝑖 is formed as follows:

𝐶።ኻ, 𝐶።ኼ, 𝑃።ኻ, 𝑃።ኼ, 𝑃።ኽ, ..., 𝑃።(ፌዄኻ).

Then, the 𝑀 measurements of command 𝑖 are:

𝐶።ኻ𝐶።ኼ𝑃።ኻ𝑃።ኼ, 𝐶።ኻ𝐶።ኼ𝑃።ኼ𝑃።ኽ,...., 𝐶።ኻ𝐶።ኼ𝑃።ፌ𝑃።(ፌዄኻ).

The problem of rearranging commands can be formulated as a minimization problem. The objective
function is defined as a cost function [16]

𝑐 =
፧

∑
።዆ኻ

1
𝑑።
, (2.7)

where 𝑑። = 𝑗 − 𝑖 and 𝑗 is the first subsequent command containing a potential electrode that was
used as a current electrode in the 𝑖𝑡ℎ command. Table 2.1 illustrates how the cost is calculated for a
hypothetical case of a ten-channel acquisition system and five commands.

Table 2.1: Cost function calculation

i C1 C2 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 j d=j-i 1/d
1 1 4 2 3 5 6 7 8 9 10 11 12 2 1 1
2 1 5 2 3 4 6 7 8 9 10 11 12 3 1 1
3 1 8 2 3 5 6 7 9 10 11 12 13 4 1 1
4 1 12 2 3 4 5 6 7 8 9 10 11 inf inf 0

c 3

A simulated annealing algorithm is applied following Wilkinson et al. [16] in order to minimize the
cost function. The global optimization toolbox of Matlab was used for this purpose.



2.5. Part IV: Practical aspects for data acquisition 9

2.5.3. Geometrically unstable configurations
The comprehensive data set contains configurations whose geometric factor is highly sensitive to elec-
trode positions. This type of configurations are not convenient for data acquisition, for electrode
positions are in practice rather inaccurate. Geometrical sensitivity is reflected on field data as high or
negative values of apparent resistivity [17]. The methodology presented in Wilkinson et al. [16] is used
in order to filter out these configurations. Unstable configurations are those whose geometric relative
error is larger than five [16]

𝑅ፄ = 𝑠/𝐾, (2.8)

where 𝑠 is the sensitivity of the geometric factor to errors in the positions:

𝑠ኼ = (𝜕𝐾𝜕𝐴 )
ኼ + (𝜕𝐾𝜕𝐵 )

ኼ + ( 𝜕𝐾𝜕𝑀)
ኼ + (𝜕𝐾𝜕𝑁)

ኼ, (2.9)

where 𝜕𝐾/𝜕𝐴, 𝜕𝐾/𝜕𝐵, 𝜕𝐾/𝜕𝑀, 𝜕𝐾/𝜕𝑁 are the sensitivities of the geometric factor to electrode
positions A, B, M, and N, respectively:

(𝜕𝐾𝜕𝐴 )
ኼ = ( 𝜕𝐾𝜕𝑥ፀ

)ኼ + ( 𝜕𝐾𝜕𝑦ፀ
)ኼ + ( 𝜕𝐾𝜕𝑧ፀ

)ኼ; (2.10)

(𝜕𝐾𝜕𝐵 )
ኼ = ( 𝜕𝐾𝜕𝑥ፁ

)ኼ + ( 𝜕𝐾𝜕𝑦ፁ
)ኼ + ( 𝜕𝐾𝜕𝑧ፁ

)ኼ; (2.11)

( 𝜕𝐾𝜕𝑀)
ኼ = ( 𝜕𝐾𝜕𝑥ፌ

)ኼ + ( 𝜕𝐾𝜕𝑦ፌ
)ኼ + ( 𝜕𝐾𝜕𝑧ፌ

)ኼ; (2.12)

(𝜕𝐾𝜕𝑁)
ኼ = ( 𝜕𝐾𝜕𝑥ፍ

)ኼ + ( 𝜕𝐾𝜕𝑦ፍ
)ኼ + ( 𝜕𝐾𝜕𝑧ፍ

)ኼ, (2.13)

where 𝑥, 𝑦 and 𝑧 are the positions of the electrodes and Δ𝑥, Δ𝑦 and Δ𝑧 are the position errors. The
geometric factor 𝐾 is:

𝐾 = 4𝜋
ኻ
፫ᐸᑄ −

ኻ
፫ᐸᑅ −

ኻ
፫ᐹᑄ +

ኻ
፫ᐹᑅ +

ኻ
፫ᐸᖤᑄ

− ኻ
፫ᐸᖤᑅ

− ኻ
፫ᐹᖤᑄ

+ ኻ
፫ᐹᖤᑅ

= 4𝜋
𝐻 , (2.14)

where 𝑟።፣ is the distance between electrode i and j and the positions of the image wells are related
to the positions of the real wells 𝑥𝑖ᖣ = 𝑥𝑖, 𝑦𝑖ᖣ = −𝑦𝑖 and 𝑧𝑖 = 𝑧𝑖.





3
Results

3.1. Description of the case study
THe Brambergen landfill close to Almere, The Netherlands was chosen as a case study. The base
grid of electrode is composed of thirty five boreholes. Each borehole contains seven electrodes with
separation of two meters. The grid of boreholes is composed of seven rows and five columns. The
separation between boreholes is twenty one meters, so the total area covered by the grid of electrodes
is approximately 10, 000𝑚ኼ. Figure 3.1 shows the base grid of electrodes. The waste body of the land-
fill is encapsulated by a bottom liner at fourteen meters depth and a two-meter soil cover. The largest
changes in resistivity due to aeration are expected in the waste body (two to twelve meter depth), so
this depth range is defined as the target. The large spacing between boreholes makes unfeasible to
only use the base grid of boreholes, so a smaller sub grid of boreholes is sought which combined with
surface electrodes is optimum for data acquisition.

Figure 3.1: Base grid of borehole electrodes.

It is desired in this study to retrieve three-dimensional information of the resistivity field of the
landfill. This can be achieved by taking measurements in all possible directions. Nevertheless, this is

11
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only possible when the grid of electrodes covers completely the extension of the survey area. This
seldom happens, for the number of electrodes and their separation is restricted. Alternatively, three-
dimensional information can be obtained by dividing the total survey area in sub grids and roll along
them. These rectangular sub grids have considerably longer electrode lines in 𝑥 than in 𝑦 direction.
Therefore, data is collected along these long lines only. The transverse separation between long lines
is preferred to be less than twice the electrode separation [8] in the long direction. Based on this
general rule, the transverse separation is chosen as 5.25𝑚. This separation would allow to fit three
lines between boreholes if there would be enough electrodes available. Also, it is less than two times
the maximum electrode separation (3.0𝑚). In order to truly retrieve three-dimensional information,
representative data along the 𝑦 direction has to be collected in addition to that in the 𝑥 direction. In
order to do so, the survey direction has to be rotated, so the longer lines are oriented in 𝑦 direction.
However, data collected along the 𝑥 direction can be an indicator of three-dimensional structures al-
though not as good as data collected in both 𝑥 and 𝑦 direction. In any case, a grid has two type of
electrode lines. That is, lines with surface and borehole electrodes (SF-BH in Figure 3.2) and lines with
surface electrodes only (SF in Figure 3.2).

Figure 3.2: Data acquisition approach.

3.2. Part I: Spread and spacing
Twenty grid designs were evaluated in order to find a grid with an optimum spread and spacing. Op-
timum in this context means that the largest extension is covered whilst resolution is kept high. This
optimum grid is to be used in a subsequent step for array design, that is, choosing four-electrode
configurations for data acquisition. Grid designs were evaluated in terms of covered area (Equation
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2.3) and relative average resolution (relative with respect to the maximum of the twenty designs). The
average resolution was calculated as the average of the diagonal elements of the model resolution
matrix (Equation 2.1). The average was calculated for the ’SF’ lines only (Figure 3.2), for they are the
most unfavourable in terms of resolution. The sensitivity matrix (Equation 2.2) was calculated for the
comprehensive set of configurations (Equation 2.4). Although for data acquisition the comprehensive
set of configurations is unfeasible, during the array-design stage, a smaller set of configurations can be
found, so that the information content is comparable to that of the comprehensive data set [11, 12].
The regularization strength was approximated by 𝐶 = 𝜆𝐼 where 𝜆 = 2.5𝑒 − 6 following Wilkinson et al.
[11]. Detailed information of the grid design alternatives evaluated in this section is summarized in
table 3.1.

Table 3.1: Design alternatives

Design BH-SF SF Lines Elec d L t A relR
1 2 6 8 200 1.00 21.00 5.20 873.60 0.751
2 3 9 12 216 1.50 21.00 5.20 1310.40 0.448
3 4 11 15 213 2.10 21.00 5.20 1638.00 0.240
4 5 12 17 213 2.60 21.00 5.20 1856.40 0.164
5 5 14 19 212 3.00 21.00 5.20 2074.80 0.126
6 1 3 4 190 1.00 42.00 5.20 873.60 0.912
7 2 4 6 210 1.50 42.00 5.20 1310.40 0.598
8 2 6 8 204 2.10 42.00 5.20 1747.20 0.352
9 2 8 10 206 2.60 42.00 5.20 1965.00 0.265
10 2 9 11 201 3.00 42.00 5.20 2184.00 0.217
11 1 2 3 216 1.00 63.00 5.20 982.80 0.980
12 1 3 4 196 1.50 63.00 5.20 1310.40 0.656
13 2 3 5 203 2.10 63.00 5.20 1638.00 0.394
14 2 4 6 198 2.60 63.00 5.20 1965.60 0.311
15 2 5 7 202 3.00 63.00 5.20 2293.20 0.261
16 1 1 2 200 1.00 84.00 5.20 873.60 1.000
17 1 2 3 201 1.50 84.00 5.20 1310.40 0.685
18 1 3 4 194 2.10 84.00 5.20 1747.20 0.429
19 1 3 4 162 2.60 84.00 5.20 1747.20 0.333
20 2 3 5 205 3.00 84.00 5.20 2184.00 0.279

Nomenclature table 3.1:
SF-BH: Number of lines containing both borehole and surface electrodes
SF: Number of lines containing surface electrodes only
Lines: Total number of lines in the grid
Elec: Total number of electrodes in the grid
d: Separation between surface electrodes in x direction
L: Spread of the grid in x direction
t: Transverse separation of electrode lines (y direction)
A: Covered area by the grid
relR: Relative average resolution

The Pareto set is built (red line in Figure 3.3) from the evaluation of several grid alternatives. This
set defines the boundary for grid performance, so at this boundary it is not possible to improve one
objective without damaging the other. On the other hand, designs that are not part of the Pareto set
(blue crosses in Figure 3.3) have to be discarded, for there are others that perform better in terms
of area and resolution. Figure 3.3 shows that the resolution might be significantly affected by the
chosen grid. Indeed, a poorly chosen grid might lead to low resolution data. Therefore, the Pareto
set approach is effective for exploiting the potential of the geophysical method. Many grids should be
used in order to build a reliable Pareto set. In this study, 20 grids were analyzed in order to cover a
representative portion of the available grid options. Nonetheless, more designs could be evaluated in
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h]

Figure 3.3: Pareto set.

an attempt to extend the limits of the Pareto set. For example, designs with variable electrode spacing
could reach this goal. Indeed, Wagner et al. [18] showed that by allowing variable electrode separa-
tion, the resolution is increased and electrodes are more efficiently used. Nevertheless, the approach
of the aforementioned study was applied to borehole electrodes whose position is less prone to error.
Meanwhile, for the intended application of this study, positioning is not as accurate and the operation
has to carried out every time a survey is carried out, which is unpractical. Therefore, the 20 grids
evaluated are representative of the design options available. Grid designs that constitute the Pareto
set are taken for further analysis, so that a final design choice is made. These designs are 11, 14, 15,
16, 17, 18, 20 (see Table 3.1 and Figure 3.3 for details). Additionally, design number 5 was also taken
for further analysis, so that the possibility of taking transverse measurements is assessed.

An additional analysis is carried out for the previously selected designs. They are evaluated in terms
of vertical resolution, which is the average resolution with respect to depth. The values of the vertical
resolution were normalized with respect to the highest value which corresponds to that of the upper
part in design 16. The vertical resolution of the designs in the Pareto set is plotted Figure 3.4. The first
conclusion from Figure 3.4 is that grids with small spread, such as that of design 5, have extremely low
resolution, especially at the target depth. As a result, transverse measurements do not contain relevant
information, so they are not considered for array design. The highest vertical resolution is found in
grids 11 and 16, but the coverage of these grids is extremely low, so they are discarded. On the other
hand, grids 14, 15, and 20 show the largest coverage, but the lowest vertical and total resolution, with
grid 14 as the best performing in this matter. Grids 17 and 18 are a trade-off between resolution and
area. The vertical resolution of grid 17 is markedly higher than that of grid 18 in the first two meters.
Nevertheless, the target depth is from two to twelve meters, in which case both grids shows similar
behavior, but grid 18 covers a larger area. Therefore, grid 18 is selected for subsequent array design.
In brief, selecting a final grid is a subjective choice which depends on the specific needs of the user.
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Figure 3.4: Vertical resolution of the designs in the Pareto set and design 5.

3.3. Part II: Array design
Grid number 18 is selected for array design although the approach used in this stage is applicable to
any grid of electrodes. Grid 18 has four parallel lines along the 𝑥 direction with spread of 84 meters.
One of those lines is of the type SF-BH with five boreholes, whilst the other three lines are of the
type SF (Figure 3.2). Both type of lines are identical, except that the SF-BH line has additional buried
electrodes. The SF-BH line has 71 electrodes and the SF lines have 31 electrodes. Electrodes in the
𝑥 direction are spaced 2.1𝑚, buried electrodes are spaced 2.0𝑚 and the separation in the 𝑦 direction
of the lines is 5.2 𝑚. In order to cover the survey extension the roll along technique has to be applied
six times in the 𝑦 direction. In summary, two type of arrays are designed SF-BH and SF. An SF array
is designed with the goodness function (Equation 2.5). On the other hand, an SF-BH array is designed
by using the SF array as base and then adding those configurations that are most sensitive in the inter
borehole region. The reason for not using the goodness function for the SF-BH array is that a large
number of installed borehole electrodes are either not well connected to the surrounding material or
not functional. Therefore, the soundest approach is to use the optimized array that is completely func-
tional (SF line) and use borehole information as additional information when it is reliable, but without
risking the overall data acquisition.

The goodness function (Equation 2.5) is applied to the SF line in a homogeneous field according
to the algorithm shown in Figure 2.4. The model resolution matrix (Equation 2.1) was approximated
by using 𝐶 = 𝜆𝐼 where 𝜆 = 2.5𝑒 − 6 following Wilkinson et al. [11]. The approximation is valid, for in
comparing designs and configurations what is relevant is the relative value rather than the actual value
of resolution. Indeed, this relative value tends to cancel out the effect of the regularization strength.
The initial base set of configurations is a dipole-dipole and the candidate set of configurations is the
comprehensive set which for 41 electrodes equals 303, 810 configurations (Equation 2.4). The de-
velopment of average resolution versus number of configurations added to the base set is shown in
Figure 3.5. One percent of the comprehensive set, 3000 configurations, reaches 87 percent of the
maximum achievable resolution. The remaining 99 percent of the configurations have little additional
contribution to the resolution. The goodness function was modified for multiple channel acquisition,
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Figure 3.5: Average resolution development array with surface electrodes only.

so data acquisition in the field is considerable faster and more efficient than automatic filling of empty
commands. The cut-off number of configurations has to be chosen by considering that a large number
of measurements might be faulty and have to be discarded during data processing. For this reason,
the first 3000 configurations are considered to be an appropriate amount for data acquisition.

An SF-BH array has the same configurations as an SF array with an additional 308 configurations
which are a combination of borehole-to-surface and cross-borehole. These configurations are the most
sensitive in the inter borehole region. The increment in resolution of the SF-BH line with respect to the
SF line is assesses through a comparison between their vertical resolutions (Figure 3.6). This figure
shows a significant increment in resolution, especially in the target depth which is from two to twelve
meters. This increment in resolution is crucial to improve reliability of the lower part of the model which
is the most problematic in terms of interpretation. By using the SF array as base instead of applying
the goodness function directly, it is guaranteed that the borehole information has a positive effect on
the data quality, for it can be used when good or discarded when faulty.

3.4. Part III: Array performance in synthetic data
3.4.1. Performance optimized design in water flow model
Two scenarios of water flow were analyzed, namely dry (Figure 3.7) and wet (Figure 3.12) with an
infiltration rate of 0.036𝑚𝑚/ℎ and 3.24𝑚𝑚/ℎ, respectively. The resistivity field in the dry case shows
a higher portion with high resistivities as opposed to what is observed in the wet scenario in which
the portion which has high resistivity is smaller. On the other hand, the wet scenario shows a sharper
profile of resistivities due to a sharper water content profile. The performance of the SF and SF-BH
arrays were assessed in qualitative terms with the inverted models and in quantitative terms with the
vertical recovery of resistivities.

For the dry scenario, the inverted model obtained with the SF array(Figure 3.8) shows a layered
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Figure 3.6: Comparison vertical resolution lines SF and SF-BH.

profile although it shows curved layers, which are not seen in the true model. The vertical recovery of
resistivities (Figure 3.10) is identical to the true model up six meters depth for the SF line. After six
meters depth, the vertical recovery starts to deviate from the true model although in absolute sense
that deviation is not significant, but graphically it is noticeable. On the other hand, the inverted model
obtained with the SF-BH array (Figure 3.9) shows a more truthful representation of the true model.
Moreover, the SF-BH line recovers accurately the vertical resistivity field (Figure 3.11) even up to twelve
meters depth and can reproduce the rather non-smooth behavior in the lower part.

For the wet scenario, the inverted model obtained with the SF array(Figure 3.13) shows a curved
layered profile as seen in the dry case. The inverted model captures the change in size of the resistivity
zones. The vertical recovery of resistivities (Figure 3.15) is identical to the true resistivity until eight
meter depth for the SF line. After eight meter depth, the vertical recovery starts to deviate from the
true model. Indeed, the wet scenario shows a non-smooth behavior in the lowest part which can not
be recovered by the SF array. As seen in the dry case, the inverted model obtained with the SF-BH
array (Figure 3.14) shows a more truthful representation of the true model. Moreover, the SF-BH line
recovers accurately the vertical resistivity field (Figure 3.16), even the lower non-smooth part.

Finally, when comparing resistivity variation between the dry and wet scenario, the SF-BH array
(Figure 3.18) shows a significantly better performance than the SF array (Figure 3.17). This compari-
son is crucial, for the implication is that the arrays are suitable for keeping track of vertical variations
in moisture content which is one of the main goals of the monitoring program. Clearly, both the SF
and the SF-BH arrays show a good performance to recover resistivity. This could be explained by the
similarity between the smooth resistivity field and the smoothness regularization of the inversion algo-
rithm. This similarity tends to average out inaccuracies. Nevertheless, the real resistivity field might
have sharp contrasts in which the inversion algorithm does not perform well.
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Figure 3.7: True resistivity field dry scenario.

Figure 3.8: Inverted resistivity field dry scenario SF line.

3.4.2. Performance optimized design in checkerboard
A checkerboard type of model (Figure 3.19) is generated in order to test the array performance. The
model consists of 16 circular anomalies with a resistivity of 25 ohm-m surrounded by a background
resistivity of 10 ohm-m. First, the inverted image with the SF array (Figure 3.20) shows a good
reconstruction of the upper row of anomalies, but the lower row does not appear in the reconstruction.
Second, the inverted image with the SF-BH array (Figure 3.21) shows a good recovery of the upper
row of anomalies, but a poor recovery of the lower row. Nevertheless, the lower row of anomalies is
slightly better reconstructed which is seen as a white strip underneath each of the anomalies in the
upper row. Therefore, the capability of the arrays to resolve a sharp resistivity field is limited even
after optimization. This is a result of the type of regularization used for the data inversion and the low
resolution in the lower region.

3.5. Part IV: Practical aspects for data acquisition
3.5.1. Injection time
A suitable injection time is sought which allows efficient data acquisition without compromising data
quality. For this purpose, field measurements taken with a dipole-dipole array are analyzed for four
injection times 8, 1, 0.5, and 0.25 seconds. The data is analyzed with histograms of data error (Figure
3.22) and apparent resistivity (Figure 3.23). Finally, a comparison of measured apparent resistivity
with different injection times is carried out (Figures 3.24 and 3.25).

Data collected with injection time of 8𝑠 show the largest error. Similarly, data collected with injec-
tion time of 1𝑠 show also a large tail in the error histogram. Data with injection time of 250𝑚𝑠 and
500𝑚𝑠 show the smallest error. Histograms of apparent resistivity show more negative and unusually
large values for injection times of 8𝑠 and 1𝑠 than for injection times of 500𝑚𝑠 and 250𝑚𝑠 although
for 500𝑚𝑠 there are less negative values of apparent resistivity. Most of the recorded negative ap-
parent resistivity values show large error, but some negative apparent resistivity values shows low error.
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Figure 3.9: Inverted resistivity field dry scenario SF-BH line.

A comparison between the apparent resistivity is done in order to determine how reliable the mea-
sured data is and which injection time is the most suitable. This comparison is done for two cases; first,
for data error less than 20 percent (Figure 3.24); second, for data error less than 5 percent (Figure
3.25). Although the data with error less than 20 percent show significantly more outliers than data with
5 percent error, 72 to 85 percent of the data can be used for inversion (table 3.2). Whereas, the data
with 5 percent error is very accurate, but only 44 to 69 percent of the data remains after filtering (Table
3.2) which might be a problem for inversion. Therefore, injection time of 500ms is recommended with
an error tolerance of 20 percent which is reasonable, for data is weighted during inversion.

Table 3.2: Valid data

8s 1s 500ms 250ms
Valid data % (error <20 %) 72 76 85 82
Valid data % (error <5 %) 44 51 63 69
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Figure 3.10: Comparison of average vertical resistivity dry scenario SF line.

Figure 3.11: Comparison of average vertical resistivity dry scenario SF-BH line.
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Figure 3.12: True resistivity field wet scenario.

Figure 3.13: Inverted resistivity field wet scenario SF line.

Figure 3.14: Inverted resistivity field wet scenario SF-BH line.
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Figure 3.15: Comparison of average vertical resistivity wet scenario SF line.

Figure 3.16: Comparison of average vertical resistivity wet scenario SF-BH line.
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Figure 3.17: Comparison variation in vertical resistivity SF line.

Figure 3.18: Comparison variation in vertical resistivity SF-BH line.
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Figure 3.19: True resistivity field.

Figure 3.20: Inverted resistivity field checkerboard model SF line.

Figure 3.21: Inverted resistivity field checkerboard model SF-BH line.
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Figure 3.22: Data error histogram.

Figure 3.23: Apparent resistivity histogram.
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Figure 3.24: Comparison apparent resistivity (data error ጺ 20 %).
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Figure 3.25: Comparison apparent resistivity (data error ጺ 5 %).
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Discussion

4.1. Part I: Spread and spacing
Building a Pareto set for finding an optimum grid is a robust approach although it is computationally
expensive. Nevertheless, the Pareto set is build only once per study case, so in the end it is a feasible
approach. Finding an optimum grid is crucial in order to exploit the ERT method. Otherwise, an op-
timum array design is not optimum when applied in a sub optimal grid. The Pareto set could also be
generated for other types of exploration methods, for example, ground penetration radar.

Although two dimensional data can be used for three dimensional inversion, relevant information
between lines is lost, especially if the lines are too far apart. Measurements in the transverse direction
do not provide significant three-dimensional information because of the small spread of the grid in the
transverse direction. The recommended approach to retrieve truly three-dimensional information is by
rotating the survey direction in 90 degrees.

4.2. Part II: Array design
Applying the goodness function for array design proved to be efficient in finding the best configurations.
Moreover, data acquisition in the field is fast, for the goodness function was modified for acquisition
with multiple-channel systems. An alternative to the goodness function is the compare R method
proposed by [11]. This method is more efficient in selecting optimal configurations, but is extremely
inefficient in terms of computational time. This method could be used for further improvement of array
design (selection of four-electrode configurations).

The two drawbacks found during the optimization were the size of the sensitivity matrix and the
matrix inversion needed to obtain the model resolution matrix. These problems were overcome by
using coarse discretization, but for larger problems this approach is not feasible anymore. Alterna-
tively, the diagonal of the resolution matrix can be approximated with a computationally less expensive
approach [19] and [20]. Parallel computation is also an alternative to increase efficiency, for example,
the computation of the Hessian matrix can be parallelized. Also, the compare R method is suitable
for parallelization which could be useful if combined with multiple cores in a server or in a personal
computer with scientific computing capabilities in the graphical processing unit. These alternative ap-
proaches were not needed for this study, but they might be needed if the acquisition system is able to
handle more electrodes or if a continuous survey extension is used.

Applying the goodness function to the SF-BH line is not recommended, for measurements that use
buried electrodes might be faulty. Thus, relying on borehole measurements is not a sound approach.
Instead, using a base of optimized surface measurements and use borehole information only when
reliable seems to be a safer approach to guarantee data quality. The most sensitive borehole con-
figurations should be added, so that the resolution is increased significantly in the lower part of the
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target. Instability problems during inversion are found for some borehole configurations. The root of
the instability is still unknown, but it might be caused by negative values of apparent resistivity. This
is an additional reason for not applying the goodness function directly to the SF-BH lines.

4.3. Part III: Array performance
For a smooth distribution of resistivities, both SF and SF-BH arrays perform well. However, for a sharp
resistivity field (checkerboard), the reconstructed image is faulty for both arrays. This is a result of a
sharp resistivity field inverted with smoothness regularization.

The inverted data was interpreted in terms of a one-to-one comparison between the true and in-
verted models which is not a robust method. Instead, statistical inversion is recommended such as
that presented by Day-lewis et al. [21].

4.4. Part IV: Practical aspects for data acquisition
Considering practical aspects in data acquisition might improve data quality significantly. First, it is
important to determine the necessary equipment settings to be used by means of a pre-design survey.
Subsequently, the sequence of measurements has to be rearranged in order to reduce polarization
effects. Finally, unstable configurations should be removed.

An additional practical consideration is related to the consistency of the measurements in terms of
position of the electrodes, for it is crucial for comparison purposes. Although error in electrode positions
is considered specifically in this study, electrodes should to be placed with high accuracy. Given the fact
that these monitoring experiments are intended to last for approximately ten years, reference marks
should be located in the field with a global positioning system which would also improve the operability
of the survey.
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Conclusions

Electric resistivity tomography is a promising geophysical method for monitoring waste degradation and
moisture content in landfills. Consequently, an optimum survey strategy is sought in order to retrieve
high resolution information while covering the largest possible area.

To achieve high resolution, the electrode spacing should be as small as possible and the spread of
the electrodes as wide as possible. Nevertheless, using a dense grid of electrodes is unpractical given
the need for the survey to cover a large area. On the other hand, extending the covered area, by
increasing electrode spacing, reduces the resolution. Building a Pareto front with the resolution and
the covered area as objective criteria proved to be an effective approach for analyzing in an objective
manner different grid design alternatives. However, the final grid design choice is rather subjective,
for the Pareto front is composed of several designs. The depth-average resolution was used as final
criteria to choose one design from the set of designs in the Pareto front. Building a Pareto front is also
a useful tool for discarding poor grid designs. This is important because some grid design alternatives
might seem appealing at first sight, but when analyzed in detail, their performance is poor in the sense
that they are not in the Pareto front. The optimum grid was found to have an spread of 84 meters and
a spacing of 2.1 meters. This optimum grid provides good resolution in a target depth of 2.0 to 16.0
meters and is used in the subsequent step.

The set of four-electrode configurations used for data acquisition has to retrieve high resolution in-
formation. Therefore, the comprehensive set of configurations was analyzed and those configurations,
standard and non standard, with the highest resolution were chosen. The configurations were analyzed
with a goodness function adapted for multiple channel acquisition systems. With this criteria, 90 per-
cent of the resolution of the comprehensive data set was achieved with only 1 percent of configurations.

Array design performance has to be tested in synthetic models before actual data acquisition. Ar-
ray performance proved to be good for smooth synthetic models, for the model is in accordance with
the regularization used for data inversion. On the other hand, sharp synthetic models are not well
reproduced after data inversion which is a limitation of the geophysical method and not of the design.
Buried electrodes improved significantly the information retrieved in the deeper parts of the target.

Data collected in the monitoring program is to be compared qualitatively and quantitatively during
the coming years. Therefore, data quality is an crucial factor to consider. Pre-design surveys were
carried out in order to define properly the hardware settings. Moreover, error has to be minimized
by removing geometrically sensitive configurations and by rearranging the injection sequence, so that
polarization effects are reduced. These type of considerations are often overlooked which produces
poor data quality. An injection time of 500 ms showed less outliers data compared to 8000, 1000 and
500 ms and was chosen for field survey.

In brief, this thesis presents a protocol for monitoring landfills with electrical resistivity tomography
aiming to acquire high resolution data, but at the same time being practical for monitoring the exper-
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iments in the years to come. Although this protocol consider major issues for the generation of an
optimum survey strategy, it does not cover all. In that sense the protocol is intended as a basic guide-
line, so it leaves room for improvement and inclusion of additional features depending on the specific
application which is not limited to landfill monitoring nor to electric resistivity tomography. Finally, the
acquired data is significant only if it gives insight into the system that is being analyzed, so the data
should be joined to other type of model such as a hydrogeological model.
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