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Abstract

Fully automated vehicles have the potential to increase road safety and improve traffic flow
by taking the human element out of the driving loop. They can also provide mobility to
people who are unable to operate a conventional vehicle. Safe automated vehicles must be
able to respond in emergency situations or drive on slippery roads in bad weather conditions.
Therefore it is crucial to have a safe and robust control strategy that can use the full handling
capabilities of the vehicle.

This thesis presents how safe reinforcement learning can be used to design a steering policy
that can drive an automated vehicle at the limit of friction.

The steering policies are trained using the Lyapunov Safe Actor-Critic (LSAC) algorithm.
LSAC is a combination of the Soft Actor-Critic (SAC) algorithm and a Lyapunov stability
analysis to solve constrained control problems.

The performance of LSAC is tested in a vehicle simulator against SAC and Model Predictive
Control (MPC) in a series of tests that include changing lanes at different speeds, recovering
from a destabilizing collision, and driving on a race track at the limit of friction.

The experiments show that LSAC outperforms MPC and SAC control strategies in terms of
safety and vehicle stability. LSAC can recover from larger disturbances than MPC and SAC.
A control strategy is presented that will keep the vehicle stable when driving at the limit of
friction but can use the maneuverability of an unstable vehicle when is it necessary to avoid
dangerous situations. Additionally, a policy is presented that can find the fastest way around
a race track while staying within the track limits.
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“The world is not really stochastic. If you’ve noticed – a robot doesn’t just
spontaneously start shaking. Unless you hook up an RL algorithm to it.”
— Emanuel Todorov





Chapter 1

Introduction

1-1 Motivation

1-1-1 Automated driving

Advanced Driver Assistance Systems (ADAS) are defined as "vehicle-based intelligent safety
systems which could improve road safety in terms of crash avoidance, crash severity mitigation
and protection and post-crash phases" [1]. Well known examples of ADAS are features like
Adaptive Cruise Control, Blind Spot Monitoring, and Electronic Stability Control. ADAS
are driving aids that assist the driver in operating the vehicle safely but can not drive the
vehicle autonomously.
Higher levels of automation that can drive the vehicle autonomously are known as Automated
Driving Systems (ADS). ADS are classified in 6 different SAE levels [2], see Figure 1-1. For
SAE levels 0-2 the driver is expected to continuously supervise the car and must be ready
to take over control when requested. SAE levels 3-5 are systems that can -depending on
the environment- drive autonomously without supervision. Arguably the best-known ADS is
Tesla’s Autopilot [3], which is considered a level 2 ADS by the SAE definitions.
The application of automation and specifically high-level ADS in vehicles can have many
benefits. Taking the human element out of the driving loop is expected to result in fewer
(fatal) accidents and better traffic flow in congested traffic. It can also provide mobility and
freedom to those who are unable to drive manually operated vehicles, and people could spend
the time traveling in cars more productively [4, 5].

1-2 Background

1-2-1 Challenges of automated driving

There are still many challenges to be solved towards level 5 automated driving [6]. There are
ethical and moral dilemmas to consider [7] as well as technical challenges to overcome.
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Figure 1-1: The SAE levels of automated driving [2].

One of the technical challenges is the control problem. A robust control strategy is required
that chooses the best steering, throttle, and braking actions based on an observation of the
environment under all conditions. This means correctly identifying and anticipating the
different cars, bicyclists, and pedestrians, as well as driving through bad weather and on
slippery roads.

1-2-2 Driving near the friction limit

Steering the vehicle at low speeds such as parking or urban driving is not too difficult because
the vehicle will respond nearly linear to the steering inputs. This is true for most normal
driving situations where the vehicle is operating well within the limits of the maximum tire
friction.

However, for safe operation under all circumstances, the vehicle must also be able to operate
near the friction limit. The friction limit is the maximum amount of force that the tires can
generate and is mainly determined by the friction between the tires and the road. Near the
friction limit the response of the vehicle can be very non-linear, making it difficult to control.

Driving near the friction limit is often associated with racing, but it is an important aspect
of safe driving as well. In an emergency stop, the Anti-lock Braking System (ABS) keeps the
tires near the friction limit to generate as much braking force as possible. The friction limit
is also easily reached on low friction (slippery) surfaces such as wet roads and ice, or loose
surfaces like sand and snow. The maximum tire forces for different surfaces are illustrated in

R. Cornet - 4302087 Master of Science Thesis



1-3 Related work and research gap 3

Figure 1-2. Therefore it is important to have a control strategy that can operate the vehicle
near the friction limit to keep the vehicle safe.
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Figure 1-2: Normalized tire forces (Fx/Fz) as a function of slip ratio κ for driving on different
surfaces with tire-road friction coefficient µ.

1-2-3 Vehicle stability and maneuverability

The vehicle can become unstable and difficult to control when the tires are near the friction
limit. The vehicle is unstable when it is rotating to fast (spinning) or sliding sideways too
fast (drifting). When the vehicle is unstable there is no guarantee that there is an action that
will bring the vehicle closer to stability [8], essentially meaning a loss of control. Typically
on-board safety systems like the Electronic Stability Program (ESP) will prevent the vehicle
from becoming unstable.

But in some situations instability can be beneficial. Trained racing drivers can use it for more
maneuverability in corners by drifting a vehicle around tight corners. This extra maneuver-
ability can be crucial in emergency situations, for example for avoiding a collision. There may
be a safe path that avoids the collision that can only be reached if the vehicle is temporarily
brought in an unstable state. Then it is highly undesirable that systems like ESP will not
allow it.

1-3 Related work and research gap

1-3-1 Classic control for automated vehicles

In classic control there are multiple paradigms to balance safe navigation and vehicle stability
at the limit of friction.

Simple control law can be used [9, 10] but more sophisticated strategies are using Model
Predictive Control (MPC) [11, 12] and Nonlinear Model Predictive Control (NMPC) [13, 14].

MPC is a model-based control technique that requires a model of the system in question.
The control actions are optimized with a model of how the system responds to inputs. For
automated driving, this would be a model that describes how the car responds to steering,
throttle, and braking inputs and how the car interacts with the environment. Building a

Master of Science Thesis R. Cornet - 4302087



4 Introduction

representative model can be difficult and time-consuming, especially for complex systems
with unknown dynamics.

MPC is widely used because of its ability to solve constrained control problems. Constraints
are boundaries that can be set in control problems and are often related to the safety or
physical limits of a system. For example; if the objective is to accelerate a car from 0 to 100
km/h, a constraint of 1 m/s2 on the acceleration ensures that the car accelerates comfortably
and not at full power.

1-3-2 Reinforcement Learning for automated vehicles

Reinforcement Learning (RL) is a machine learning technique for training an agent by in-
teracting with the environment or from data gathered from the system. This eliminates the
need to make models of complicated systems.

RL has been proven successful on a wide range of different tasks that would be nearly im-
possible using classic control methods. Examples include playing intricate video games at
competitive levels [15, 16, 17], intricate robot control [18, 19, 20, 21, 22, 23, 24, 25, 26] and
image recognition and object detection [27, 28, 29, 30].

Using RL for driving automated vehicles has been explored before as well. Experiments
show that reinforcement learning can be used to drive a car in urban environments based
on camera vision [31, 32], navigate in traffic [33] and follow target trajectories [34]. Others
have successfully trained policies for on-ramp and highway merging manoeuvres [35, 36, 37],
highway driving [38, 39, 40], automated parking [41, 42, 43] or driving games with simplified
car physics [44, 45]. Even applications of reinforcement learning in racing [46, 47] and drifting
[48] environments have shown promising results.

1-3-3 Research gap

The previously mentioned work using RL for automated vehicles is focused on correctly iden-
tifying the environment, planning a path through the environment, or tracking a predefined
path. For real-world applications, it is crucial to have a control strategy that can use the full
handling capabilities of the vehicle when necessary. This could help avoid a collision or keep
the vehicle safe on slippery surfaces.

To the best of our knowledge, there are at this moment in time no publications on using safe
RL in automated vehicles with a focus on vehicle safety and stability at the limit of friction.

1-4 Research objective and approach

1-4-1 Objective

The objective of this work is to formulate a control policy that can be used to safely navigate
automated vehicles at the limit of friction using safe RL.
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The goal for the controller is to keep the vehicle within the limits of vehicle stability while
following a target path at high speed. The stability limits may only be violated when the
extra maneuverability is needed to keep the vehicle in the safe limits of the environment.

The controllers will only manipulate the steering angle of the front wheels, the throttle and
brake inputs are regulated externally.

Additionally, a policy is trained to find the fastest way around a racetrack by optimizing the
racing line to show the versatility of safe RL.

1-4-2 Approach

The safe RL policies for vehicle steering are trained using the Lyapunov Safe Actor-Critic
(LSAC) algorithm [49][50][51]. LSAC is a combination of the Soft Actor-Critic (SAC) algo-
rithm [52][53] with Lyapunov stability analysis and can solve constrained control problems.
The constraints are used to define vehicle stability and the safe limits of the road.

SAC has outperformed most other learning algorithms in the benchmark tests of OpenAI’s
Gym [54] environment, but it is limited to unconstrained control problems.

The performance of the LSAC policies is compared against SAC and an MPC strategy based
on the work of Funke et al. [11, 12]. The MPC is built in the MATLAB and Simulink
environments.

The policies are trained and tested in a vehicle simulator that is built in OpenAI’s Gym
environment. An identical simulator is built in Simulink to test the MPC strategy.

The controllers will be tested in the following scenarios:

• Navigating through traffic at 50, 75 and 100 km/h

• Recovering from destabilizing impacts

• Driving on a race track and maintaining vehicle stability

• Safe navigation on a race track and maintaining vehicle stability

• Finding the racing line on a race track inside track limits

1-5 Outline

The main text of the thesis is structured as follows: Chapter 2 explains the vehicle simulation
and how the environment is defined. The implementation of the MPC baseline is discussed
in Chapter 3. Chapter 4 explains the basics of RL and the details of the SAC and LSAC
algorithms specifically. Chapter 5 discusses the details of the training process and how the
algorithms interact with the simulation environment. The experiments and results can be
found in Chapter 6. Chapter 7 discusses the findings of this work and the recommendations
for future work.
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Chapter 2

Vehicle Simulation, Environment and
Constraints

2-1 Introduction

Developing and testing new control strategies on real vehicles is generally not a viable option.
It can be unsafe, time-consuming, and very costly. A good alternative is to use a vehicle
simulator. In this work, a vehicle simulator is used to develop and train the control policies,
as well as to evaluate the performance of the different control strategies.

For research purposes there are many simulators available, such as CARLA [55], TORCS [56],
DeepDrive [57] and Constellation [58]. For this work, it is chosen to build a new simulator
that is structured to be part of OpenAI’s Gym [54]. Gym is an open-source toolkit for devel-
oping reinforcement learning algorithms and is compatible with the machine learning platform
TensorFlow [59]. An identical copy of the simulator is built in the MATLAB environment to
connect with the MPC strategy that is implemented in Simulink.

The simulator calculates the motion of the vehicle and provides an environment to drive in.
The environment is a combination of a target path to follow and a target speed that is tracked
by an external controller. The simulated vehicle is a rear-wheel drive passenger car. This
chapter presents the properties and characteristics of the simulated car and the equations of
motion used in the simulation.

The vehicle will be disturbed far outside the normal operational window in the experiments.
The RL algorithms may also explore solutions outside the normal driving scope. Therefore
is it crucial that the simulation is guaranteed to return valid and finite states at all times.
Novel definitions of the tire slip ratios (Section 2-4-2) and a modified tire model (Section
2-4-3) ensure that this is the case.
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8 Vehicle Simulation, Environment and Constraints

2-2 Vehicle description and dimensions

The vehicle is a rear-wheel drive passenger car with a mass of 1600 kg, a wheelbase of 2.7 m,
and a track width of 1.52 m. These dimensions are comparable to a modern family sedan. All
other relevant vehicle dimensions are given in Table 2-1, with the corresponding assignment
in Figure 2-1.

Figure 2-1: Schematic representation of the planar vehicle model and the definitions of the main
forces, velocities and angles.

Table 2-1: Vehicle dimensions, weights and parameters

Parameter Value Unit Description
m 1600 [kg] mass of vehicle
lf (b) 1.1 [m] distance from CoG to front axle
lr (a) 1.6 [m] distance from CoG to rear axle
L 2.7 [m] wheelbase
B (d) 1.52 [m] track width
hs 0.51 [m] height CoG
hf 0.08 [m] height front roll center
hr 0.13 [m] height rear roll center
Izz 2100 [kg m2] rotational inertia around Z-axis
Ck 105000 [N/-] longitudinal tire stiffness
Cα,f 57000 [N/rad] front tire cornering stiffness
Cα,r 36000 [N/rad] rear tire cornering stiffness
er 0.35 [-] friction reduction coefficient
rw 0.3 [m] wheel rolling radius
Jw 1 [kg m2] wheel rotational inertia
g 9.81 [m/s2] gravitational constant
δmax 0.75 [rad] max steering angle
δ̇max 2π [rad/s] max steering rate
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2-3 Vehicle handling 9

2-3 Vehicle handling

2-3-1 Neutral steer, understeer, and oversteer

The handling of a vehicle is defined as how it responds to steering inputs at different speeds.
Different vehicles can show very different handling characteristics. A vehicle can be under-
steered, neutral steered, or oversteered.

A neutral steering vehicle will -with a fixed steering angle- keep the same turning radius when
the speed is increased.

An understeered vehicle will underrotate in corners. This is because the front tires reach their
friction limit before the rear tires, αf > αr. For a constant steering angle and increasing speed,
the cornering radius will get larger and larger. Although an understeering car is slipping, it
remains stable.

An oversteered vehicle will overrotate because the rear tires are saturated before the front
tires, αf < αr. The driver has to lower the steering angle or even steer in the opposite
direction of the corner to prevent the vehicle from spinning around. An oversteering vehicle
is unstable and can be difficult to control. This is challenging behavior and that is why in
this work an oversteered vehicle is used to test the controllers.

2-3-2 Understeer gradient Kus

Whether a vehicle will understeer or oversteer is captured in the understeer gradient Kus.
For Kus > 0 the vehicle is understeered and for Kus < 0 oversteered. The front and rear
tire cornering stiffnesses are the largest contributions to Kus, but other factors such as load
transfer and suspension geometry have an effect as well.

A good approximation of Kus for the simulated vehicle in this work can be made by evaluating
the front and rear cornering stiffnesses:

Kus = m · g
lf + lr

(
lr
Cα,f

− lf
Cα,r

)
= −0.414 [deg] (2-1)

Thus, the simulated vehicle is oversteered and will tend to overrotate in corners when the
vehicle is pushed to its limits.

2-3-3 Critical speed vcrit

Oversteered vehicles have a critical speed vcrit. For vcrit the required steering angle for any
corner becomes zero. The critical velocity for the simulated vehicle:

vcrit =
√
g · L
−Kus

= 60.55 m/s (2-2)
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10 Vehicle Simulation, Environment and Constraints

2-4 Equations of Motion

In this section the equations of motion of the simulated vehicle are listed. Each subsection
details the specific equations and assumptions of a subsystem of the vehicle. All equations
are integrated with explicit first order Euler integration with a step size of h = 0.001 seconds:

yn+1 = yn + hf (tn, yn) (2-3)
with f (tn, yn) the derivative of yn at t = tn.

2-4-1 Wheel dynamics

The rotation speed ω of every wheel is is determined by:

ω̇ = Fxrw − Tnet
Jw

(2-4)

With Fx the longitudinal force on the wheel, rw the effective rolling radius, Tnet the sum of
the applied braking and driving torque, and Jw the rotational inertia of the wheel.

2-4-2 Tire slip definitions

The tires generate forces in the longitudinal direction (Fx) and the lateral direction (Fy) when
the car is moving. Fx and Fy are the result of the relative motion between the tires and the
road, called slip. Longitudinal slip is expressed as slip ratio κ, lateral slip is expressed as slip
angle α.

Original Slip Ratio (OSR)

The tire states are calculated from the rotation of the wheels and the planar motion of the
vehicle. The conventional definitions for tire slip are referred to as the Original Slip Ratio
(OSR) [60].
The longitudinal tire slip κ is defined as the speed difference at the tire-road interface scaled
by the longitudinal velocity:

κOSR = ωrw − u
|u|

(2-5)

The lateral slip angle α is the angle between the lateral and longitudinal velocity vectors v
and u:

αOSR = δ − tan−1
(
v

|u|

)
(2-6)

with δ steering angle of the wheel.
The Original Slip Ratio (OSR) is valid for general handling simulations at medium to high
speeds but at low speeds this definition is numerically unstable. For |u| → 0 Equations 2-5
and 2-6 are undefined.
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2-4 Equations of Motion 11

Integration stability

Explicit integration of the wheel dynamics is unstable at low speeds when using the OSR
slip definitions. The linearized system of the wheel and tires becomes increasingly stiff when
|u| → 0 or |v| → 0.

The stability of the integration can be determined from the eigenvalues of the linearized
system. For explicit Euler integration with step size h the wheel dynamics (Equation 2-4) are
stable for u and v greater than the marginal velocities ūm and v̄m [61]:

|ūm| =
h

2Cx

(
r2
w
Jw

+ 1
me

)
(2-7)

|v̄m| =
h

2
Cy
me

(2-8)

with Cx and Cx the longitudinal and lateral tire stiffness and me the effective corner mass.
Different slip definitions are needed to run a valid simulation for u and v smaller than the
marginal velocities ūm and v̄m.

Lagged Slip Ratio (LSR)

A common solution is an alternative slip definition called the Lagged Slip Ratio (LSR) [62].
LSR expresses κ and α as differential equations:

˙κLSR = −|u|
Lx
κLSR + ωrw − u

Lx
(2-9)

˙αLSR = −|u|
Ly
αLSR + v

Ly
(2-10)

This is the slip definition used in commercially available vehicle simulation software such
as CarSim and ADAMS/Car [63]. However, the LSR definition is still unstable for explicit
integration methods.

Advanced Slip Ratio (ASR)

In this work the Advanced Slip Ratio (ASR) [64, 65] definitions will be used for κ and α.
ASR is a new slip definition that is stable for explicit Euler integration and has proven to
produce accurate results, even compared with implicit integration for LSR.

ASR is defined as:

κASR = ωrw − u
max(|u| , ηūm) (2-11)

αASR = δ − tan−1
(

v

max (|u| , ηv̄m)

)
(2-12)
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12 Vehicle Simulation, Environment and Constraints

where η is a safety coefficient, set to 1.1 as suggested in [64].

The experiment in Figure 2-2 shows the stability of ASR and the instability of OSR for speeds
under the marginal velocity ūm. ūm for a single corner model with me = 400 kg, Jw = 1 kg
m2, r = 0.3 m, Cx = 105000 N/-, h = 0.001 s:

ūm = 4.856 m/s (2-13)

For an initial velocity of -10 m/s and an applied driving torque of 50 Nm:
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Figure 2-2: Vehicle velocity u over time from a simulation using the OSR and ASR slip definitions
for an vehicle accelerating from -10 m/s with an applied torque of 50 Nm. Experiment ran with
explicit Euler integration with a step size of 0.001 s where the marginal velocity ūm is 4.856 m/s.
OSR = Original Slip Ratio, ASR = Advanced Slip Ratio. [64, 65]

From the experiment in Figure 2-2 it is clear that OSR suffers large instability for |u| < ūm
while ASR remains completely stable for |u| → 0.

2-4-3 Tire modelling

Simulating the behavior of tires accurately is still one of the biggest challenges in vehicle
simulation. A tire model calculates the forces generated by the tires (Fx and Fy) as a result
of tire slip κ and α. There are many tire models, each for specific purposes [66]. For example,
tire models can be focused on analyzing ride quality or on simulating vehicle handling.

Well known models suitable for simulating vehicle handling include the Magic Formula [60],
Delft-Tyre and Dugoff [67]. The Magic Formula is not based on physical modeling of the tire
but it is an empirical model based on test data and function fitting. It is regarded as one
of the best models for racing and vehicle handling simulators and the basis of MF-Tyre and
MF-SWIFT [68] used in simulation software as ADAMS, Virtual.lab Motion and CarSim.
With 20+ parameters to tune it is also quite unwieldy.

Instead in this work an adaptation of the Modified Dugoff model [69] is used. It strikes a
good balance between model accuracy and mathematical simplicity [70].
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Modified Dugoff

The Modified Dugoff tire model [69] is a simple set of equations to calculate the longitudinal
(Fx) and lateral (Fy) forces generated by the tire . Modified Dugoff is an adaptation of the
original Dugoff model [67] to give more realistic behavior at larger slip angles.
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Figure 2-3: Lateral tire force Fy vs. slip angle α (left) and longitudinal tire force Fx vs. wheel
slip κ (right) for the Dugoff and Modified Dugoff tire models. The dashed lines are the original
Dugoff model, the solid lines are the Modified Dugoff model.

The longitudinal tire forces Fx and lateral tire forces Fy in the Modified Dugoff tire model:

Fx = Cxσxf (λ) (2-14)

Fy = Cyσyf (λ) (2-15)

where
σx = κ

1− κ (2-16)

σy = tanα
1− κ (2-17)

f(λ) =
{
λ (2− λ) , if λ < 1
1, if λ ≥ 1

(2-18)

λ =
µFz (1− κ)

(
1− er

√
κ2 + tan2 α

)
2
√

(Cxσx)2 + (Cy tanα)2
(2-19)

Stable Modified Dugoff

The experiments in this work will include extreme cases of vehicle handling. The vehicle
will be disturbed in violent maneuvers and the RL algorithms may explore vehicle states far
outside the valid range of the Modified Dugoff tire model. It is important that the tire model
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returns valid forces at all times and the simulations do not crash due to infinite of undefined
values.

To guarantee valid behavior at all times this work introduces the Stable Modified Dugoff
model. The modifications do not influence normal operation but will keep the simulation
from crashing during collisions, fast vehicle rotation, or pure lateral motion.

The following limitations are made to the Modified Dugoff tire model:

• The longitudinal slip ratio κ is limited to [-0.99, 0.99] because for κ ∈ [−1, 1], σx is not
finite (divide by 0).

• |tan(α)| is limited to < 1, because for α ∈ [−90, 90], tan(α) is not finite. This only
affects the force generation for slip angles α > 45 deg.

The Stable Modified Dugoff model is plotted against the Modified Dugoff model for all possible
tire states in Figure 2-4.
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Figure 2-4: Lateral tire force Fy vs. slip angle α (left) and longitudinal tire force Fx vs. wheel
slip κ (right). The solid lines are the Stable Modified Dugoff tire model,the dashed lines represent
the Modified Dugoff tire model.

2-4-4 Vehicle body motion

The motion of the vehicle body is a result of the forces generated by the tires. Any aerody-
namic effects are ignored.

Normal load and load transfer

The vertical load on a wheel Fz changes as the vehicle accelerates, decelerates or moves
through corners. This effect is called load transfer. Fz is a function of the longitudinal and
lateral accelerations; as well as the height of the center of gravity and height of the front and
rear roll centers. The subscripts indicate the location of the wheel; fl = front left, rr = rear
right.
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Fz,fl = m · g
2L · lr − ax · Fz,long − ay · Fz,lat,f (2-20)

Fz,fr = m · g
2L · lr − ax · Fz,long + ay · Fz,lat,f (2-21)

Fz,rl = m · g
2L · lf + ax · Fz,long − ay · Fz,lat,r (2-22)

Fz,rr = m · g
2L · lf + ax · Fz,long + ay · Fz,lat,r (2-23)

with
Fz,long = m · hs

2 · L (2-24)

Fz,lat,f = m · lr
L
· hf
B

(2-25)

Fz,lat,f = m · lf
L
· hr
B

(2-26)

Force conversion from wheels to body

The forces from the tire model are oriented in the wheel reference frame and need to be
converted to the vehicle reference frame to account for the steering angles δ:

Fx,i = Fxw,i cos δi − Fyw,i sin δi (2-27)

Fy,i = Fxw,i sin δi + Fyw,i cos δi (2-28)

with δi the respective steering angle of each wheel. For the front wheels, left and right δ are
assumed equal and Ackermann geometry is not included. The steering angle δ for the rear
wheels is assumed 0 and any steering from body roll is ignored.

Individual wheel contributions to planar motion

Fx = Fx,fl + Fx,fr + Fx,rl + Fx,rr (2-29)

Fy = Fy,fl + Fy,fr + Fy,rl + Fy,rr (2-30)

T = (Fy,fl + Fy,fr) lf − (Fy,rl + Fy,rr+)lr + (Fx,fl − Fx,fr + Fx,rl − Fx,rr)
1
2B (2-31)
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Accelerations

u̇ = Fx
m

+ (r · v) (2-32)

v̇ = Fy
m
− (r · u) (2-33)

ṙ = T

Izz
(2-34)
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2-5 Simulation environment 17

2-5 Simulation environment

The environment is the virtual world of the simulated vehicle. Specifically, the environment
creates different roads for the vehicle to drive on in the experiments. It also defines a target
path (Section 2-5-1) and target velocity (2-5-3) for the vehicle to follow. The environment
also provides the location and orientation of the vehicle with respect to the target, called the
path states (Section 2-5-2).

2-5-1 Target path

A target path for the vehicle to follow is created in the environment. The path is defined
as a function of K(s) where K is the curvature of the path at distance s on the path. The
curvature K is the inverse of the corner radius R, K = 1

R .

E(s) is the position in east (X) direction, N(s) the position in the north (Y) direction, and
φ the orientation. Given starting point E0, N0 and starting orientation φ0 the path can be
expressed in the Cartesian coordinate system:

φ(s) =
∫ s

0
K (x) dx+ φ0 (2-35)

E(s) =
∫ s

0
cosφ (x)dx+ E0 (2-36)

N(s) =
∫ s

0
sinφ (x)dx+N0 (2-37)

A sample corner with target path, path curvature and target speed is given in Figure 2-5.

0 20 40 60

[m]

0

20

40

60

[m
]

Target path

0 50 100 150

Path distance [m]

0

0.01

0.02

0.03

0.04

K
 [
1
/m

]

Curvature

0 50 100

Path distance [m]

14

16

18

20

22

V
ta

rg
e

t [
m

/s
]

Target speed

Figure 2-5: A sample path (left), the curvature of this path (middle) and the target velocity
(right).

2-5-2 Path states

The position of the vehicle relative to the target path is defined with three variables. All
distances are with respect to the center of gravity (CoG) of the vehicle.
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18 Vehicle Simulation, Environment and Constraints

The distance from the CoG to the nearest point on the target path is the lateral error e.
The location on the path that is closest to the vehicle is path distance s. The heading angle
between the vehicle and the path is the heading error ∆φ. The schematics are shown in
Figure 2-6:

Figure 2-6: Path states e (lateral error), ∆φ (heading error) and s (distance on path) are defined
from the center of gravity (CoG) of the vehicle to the nearest point on the target path.
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2-5-3 Limit velocity Vmax and target velocity Vtarget

The maximum possible speed of a vehicle through a corner depends on many factors such as
road surface and vehicle handling. Vmax is an approximation of the theoretical longitudinal
speed limit for each point on the target path, based only on the tire-road friction µ and
corner curvature K. It is derived from simplified tire theory and the assumption of steady-
state cornering. The target velocity Vtarget is then set as a percentage of Vmax.

Vmax

The maximum force that a tire can generate be approximated by the friction circle. The
vector of the longitudinal tire forces Fx and lateral tire forces Fy can never be greater than
the normal force Fz times the tire-road friction µ:

√
F 2
x + F 2

y ≤ µFz (2-38)

F
y

F
x

 F
z

 F
x
2 + F

y
2

Figure 2-7: The tire friction circle from Equation 2-38 approximates the maximum tire forces
Fx and Fy for a given tire-road friction coefficient µ.

Dividing out the vehicle mass gives the limit of accelerations:

√
a2
x + a2

y ≤ µg (2-39)

with g the gravitational acceleration. In steady state cornering the longitudinal acceleration
ax = 0, so the lateral acceleration ay must satisfy:

ay ≤ µg (2-40)

For steady state angular motion the lateral acceleration ay is a function of corner curvature
K and the longitudinal velocity Vx:

ay = V 2
xK (2-41)

Combining Equations 2-40 and 2-41 and setting Vx = Vmax gives the theoretical limit Vmax:
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Vmax =
√
µg

K
(2-42)

Vtarget

At Vmax the tires are completely saturated according to the friction circle theory in Equation
2-38; Fy = Fy,max. The desired friction utilisation µdes in that case is 100%.
µdes ∈ [0,1] is used to scale Vmax to Vtarget. For µdes = 0.75, the target velocity Vtarget is such
that the tires will operate at 75% of the maximum tire force generation. The relation between
Vtarget, Vmax and µdes:

Vtarget =
√
µdesµg

K
= √µdes · Vmax (2-43)

Defining Vtarget as a percentage of Vmax with µdes rather than in absolute speed makes it
convenient to compare vehicle performance in different corners or on different surfaces. The
target velocity Vtarget for the sample path in Figure 2-5 for different µdes can be found in
Figure 2-8.
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Figure 2-8: Target velocity Vtarget for different values of desired friction utilisation µdes for the
sample path from Figure 2-5.

The notation of √µdes · Vmax is used in the experiments in Chapter 6 to denote Vtarget in
different scenarios.

2-5-4 Relating Vmax to normal driving

The maximum velocity Vmax is quite an abstract concept. This section explains how Vmax
and Vtarget relate to normal driving speeds.
Studies on driving comfort suggest that the lateral acceleration ay in corners should be kept
below 2 m/s2, and the range for normal driving does generally not exceed 4 m/s2 [71].
For driving on dry asphalt with µ = 1 and g = 9.81 m/s2, the maximum lateral acceleration
is 9.81 m/s2 (Equation 2-39):
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ay ≤ µg = 9.81 m/s2 (2-44)

If instead ay is limited to 2 m/s2 for comfort the friction utilization µdes is limited to 20% of
the maximum:

Vcomfort =
√

2
9.81 · Vmax =

√
0.204 · Vmax (2-45)

For regular driving where ay is limited to 4 m/s2 the friction utilization µdes is limited to
41%:

Vregular =
√

4
9.81 · Vmax =

√
0.408 · Vmax (2-46)

In the experiments for driving near the friction limit values for µdes are between 0.80 and
0.90. This is in the same range as tested by [12].

2-6 Longitudinal speed control

The target velocity of the vehicle Vtarget is provided by the environment. The longitudinal
speed control is done externally because the tested control strategies are only set up to
manipulate the steering of the vehicle.

The vehicle tracks Vtarget with a simple proportional control law. Positive engine torque is
applied to the rear wheels, the braking torque is applied to all wheels.

The controller is limited to 400 Nm of engine torque to each of the rear wheels, for a total of
800 Nm of engine torque. Braking torque is limited to 600 Nm per wheel on the front axle
and 400 Nm per wheel on the rear axle for a total braking torque of 2000 Nm.

For reference, this is enough power to accelerate the vehicle from 0 to 100 km/h in 5.8 seconds
and brake from 100 to 0 km/h in 3.7 seconds.

The braking force is distributed between the front and rear according to the static weight
distribution (60/40)%.

The desired torque Tdes is set as:

Tdes = clip (1000 · (Vtarget − V ) ,−1000, 400) [Nm] (2-47)

The throttle and braking system apply the desired torque Tdes to the wheels:

Tnet(fl,fr) =
{

0 if Tdes ≥ 0 (accelerating)
0.6 · Tdes · sign (ω) if Tdes < 0 (braking)

(2-48)

Tnet(rl,rr) =
{
Tdes if Tdes ≥ 0 (accelerating)
0.4 · Tdes · sign (ω) if Tdes < 0 (braking)

(2-49)
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2-7 Constraints

Two sets of constraints are used to describe the safe limits of the vehicle with respect to
vehicle stability and the environment. The constraint on vehicle stability is explained in
Section 2-7-1, the environmental constraint in Section 2-7-2. These constraints are based on
the work of [72].

2-7-1 Stability constraints

Limits on the lateral velocity Uy and yaw rate r are introduced to act as a stability boundary.
If the vehicle goes outside these boundaries, there is no guarantee that there exists a control
input in the next time step that will get the states back inside or closer to the boundaries.
Given longitudinal velocity Ux the stability envelope is defined as:

Uy,max = Uxαr,sat + lrr (2-50)

rmax = gµ

Ux
(2-51)

Lateral velocity U
y

Y
a
w

 r
a
te

 r

Figure 2-9: Stability constraints [72] with limits on the lateral velocity Uy and yaw rate r. The
lateral velocity limit prevents sliding of the vehicle sideways, the yaw rate limit prevents the vehicle
from spinning around.

αr,sat is the saturation angle of the rear tire where the maximum lateral force Fy,max is
generated. For |α| > αsat, ∆Fy ≤ 0. αsat is approximated as [60, 73]:

αsat = tan−1
(3ηµFz

Cα

)
(2-52)

where η is a derating factor to account for combined slip conditions:

η =
√
µ2F 2

z − F 2
x

µFz
(2-53)
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2-7-2 Environmental constraint

The environmental envelope is a set of safe path states for the vehicle. It describes where the
vehicle can be without leaving the road or colliding with objects. In this work, only the lateral
tracking error e of the CoG is considered, and not the orientation and outside dimensions of
the vehicle. For every point s in the environment, e must satisfy:

emin(s) ≤ e(s) ≤ emax(s) (2-54)

Figure 2-10: Environmental constraint to limit the vehicle to stay in the boundaries of the road.
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Chapter 3

Model Predictive Control

3-1 Introduction

This chapter discusses the implementation of Model Predictive Control (MPC) as a perfor-
mance baseline for the experiments in this work. The MPC in this work is an adaptation
from the safe driving strategy presented in [11] and [12], with environmental constraints from
[72] and stability constraints from [8]. The MPC is built in the Simulink environment with
the Model Predictive Control ToolboxTM.
Model predictive control is a model-based control method. A model of the system is used
to predict future states and optimize the planned control inputs. The control inputs are
optimized for a short time in the future called the prediction horizon. After the first action
is executed the optimization starts again for the next prediction horizon.
MPC is often used for its ability to solve constrained control problems. Constraints are custom
limits on a system that are often used to ensure safe operation. For example, constraints can
be used to limit the rate of change in temperature in a chemical plant. In this work constraints
are used to limit the car to be safe and stable; see Sections 2-7-1 and 2-7-2.
MPC is a transparent and predictable control method but it requires a representative model of
the system. Creating an accurate model of the system can be a difficult and time-consuming
task, especially for complex systems or systems with unknown dynamics.

3-2 Overview of operation

A nominal path is set up in the environment as defined in Section 2-5-1. This gives the
controller information about the current path states (e, ∆φ, s) and how the path will evolve
over the prediction horizon. The primary objective of the controller is to minimize the path
tracking errors e and ∆φ.
The controller is given 2 constraints. The first constraint is on vehicle stability (Section 2-
7-1). This prioritizes vehicle stability over path tracking. The second constraint is on the
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environment (Section 2-7-2). This constraint can force the vehicle in unstable states if it is
necessary to avoid driving off the road.

3-3 MPC prediction model

3-3-1 Bicycle model

The vehicle motion is captured in the kinematic bicycle model. A bicycle model is a two-wheel
representation of a car used to capture the most essential vehicle dynamics in a simple set
of equations. The relative simplicity of this model makes it viable to use in real-time MPC
applications without the need for excessive computational power [74, 75].

Figure 3-1: A schematic overview of the bicycle model and the path states that are used to
predict the vehicle motion in the MPC. Schematic from [12].

Vehicle states

The following equations of motion describe the lateral velocity Uy and yaw rate r:

U̇y = Fyf + Fyr
m

− rUx (3-1)

ṙ = aFyf − bFyr
Izz

(3-2)

Here Fyf and Fyr are the front and rear lateral tire forces, m is the mass of the vehicle, a and
b are the distances from the front and rear wheels to the center of gravity (CoG), and Izz is
the rotational moment of inertia of the vehicle.

Fyf is the variable manipulated by the MPC. How Fyf is related to steering angle δ can be
found in Section 3-3-4.
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Path states

The path states are defined as the heading error ∆φ, lateral error e and the location on the
path s, see Section 2-5-2. The corresponding equations of motion for the path states are:

∆φ̇ = r − ṡK(s) (3-3)

ė = Ux sin ∆φ+ Uy cos ∆φ ≈ Ux∆φ+ Uy (3-4)

ṡ = Ux cos ∆φ− Uy sin ∆φ
1−K(s)e ≈ Ux

1−K(s)e (3-5)

3-3-2 State Space model

The equations of the bicycle model can be captured in a state space formulation to use in
MPC. In the notation ẋ = Ax+BFyf + C as in [12]:


U̇y
ṙ

∆φ̇
ṡ
ė

 =


0 −Ux 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 Ux 0 0




Uy
r

∆φ
s
e

+


1/m
a/Izz

0
0
0

Fyf +


Fyr/m

−Fyr · b/Izz
−ṡK(s)

Ux/1−K(s)e
0

 (3-6)

This notation shows that the only manipulated variable is Fyf , while the C matrix essentially
represents external disturbances in the system. Converted to the more common ẋ = Ax+Bu
notation:


U̇y
ṙ

∆φ̇
ṡ
ė

 =


0 −Ux 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 Ux 0 0




Uy
r

∆φ
s
e

+


1/m 1 0 0 0 0
a/Izz 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





Fyf
Fyr/m

−Fyr · b/Izz
−ṡK(s)

Ux/1−K(s)e
0


(3-7)

For the implementation in MATLAB this is modelled as a system with 1 manipulated variable
(Fyf ) and three measured disturbances (Fyr, −ṡK(s), Ux/1−K(s)e):


U̇y
ṙ

∆φ̇
ṡ
ė

 =


0 −Ux 0 0
0 0 0 0
0 1 0 0
0 0 0 0
1 0 Ux 0




Uy
r

∆φ
s
e

+


1/m 1/m 0 0
a/Izz −b/Izz 0 0

0 0 1 0
0 0 0 1
0 0 0 0




Fyf
Fyr
−ṡK(s)

Ux/1−K(s)e

 (3-8)

Matrix A is updated every time step with Adaptive Model Predictive Control to reflect the
changing velocity Ux.
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3-3-3 Predicting Fyf and Fyr

A tire model is needed to predict Fyf and Fyr from vehicle states Ux, Uy and r for every step
in the prediction horizon. The vehicle motion is converted to slip angle α and normal force
Fz, then the tire model converts this to Fyf and Fyr.

To give MPC the full advantage its internal tire model is the same as the tire model of the
simulation vehicle. This is the Stable Modified Dugoff tire model and can be found in Section
2-4-3.

Slip angle α can be estimated from longitudinal velocity Ux, lateral velocity Uy, yaw rate r
and steering angle δ. In practice some of these states can be difficult to measure, but in this
work they are assumed to be known or observable. The slip angles for the front and rear
wheels for the bicycle model are defined as:

αf = tan−1
(
Uy + ar

Ux

)
− δ (3-9)

αr = tan−1
(
Uy − br
Ux

)
(3-10)

Fz is the normal force on the tires, which changes due to weight transfer during acceleration
or deceleration. In the bicycle model, the lumped weight on the entire axle is used.

For the front axle:
Fzf = 1

L
(mbg − hFx) (3-11)

For the rear axle:
Fzr = 1

L
(mag + hFx) (3-12)

For each step k in the prediction horizon Fyf and Fyr are then given by the tire model:

F ky,f = ftire
(
F kz,f , α

k
f

)
(3-13)

F ky,r = ftire
(
F kz,r, α

k
r

)
(3-14)

3-3-4 Fyf to δ conversion

The output from the MPC controller is Fy,f ; the desired lateral force on the front tires.
However the input on the car is the steering angle δ. To translate Fy,f to the steering angle
for the front wheels δ is expressed as:

δ = tan−1
(
Uy + ar

Ux

)
− f−1

tire(Fy,f ) (3-15)

In this expression f−1
tire is the inverse of the tire model.
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3-3-5 Prediction horizon

The controller optimizes the inputs over the prediction horizon. The prediction of the states
in the prediction horizon during a cornering maneuver is shown in Figure 3-2. It shows that
the bicycle model is a valid approximation for the reality of the real (simulated) vehicle.
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Figure 3-2: The MPC prediction (dotted, blue) during a cornering maneuver vs. the actual
evolution of the states (solid, black).

3-4 Constraints

Constraints are limits on model states or outputs. They can represent physical limits such as
the maximum steering angle, or desired behavior such as speed limits or minimum distances
to the edges of the road. Here the constraints are used to limit lateral velocity Uy and yaw
rate r, as well as limit the vehicle to the safe boundaries of the road (Figure 3-3). These
constraints are to keep the car stable and safe.
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Figure 3-3: The constraints that are applied on the vehicle stability (left) and the environment
(right). See Sections 2-7-1 and 2-7-2.

For each step k in the prediction horizon the constraints must be satisfied as follows:

Lateral velocity:
Uky ≤ Ukxαkr,sat + lrr

k (3-16)
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Yaw rate:
rk ≤ gµ

Ukx
(3-17)

Lateral path tracking error:
ekmin(s) ≤ ek(s) ≤ ekmax(s) (3-18)

3-4-1 Constraint softening

It is not always possible to satisfy all constraints. An outside disturbance can force a violation
of one of the constraints. For example; the yaw rate of the car can be constrained but a
collision from the side can rotate the car faster than the constraint prescribes.

If the constraints are set as ’hard’ constraints it means that strictly no violation is allowed.
When a violation occurs or a violation is predicted, the controller freezes its action because
the problem is infeasible; there is no mathematical solution.

To solve this the constraints are ’softened’. Every constraint has an Equal Concern for Re-
laxation (ECR) value. Higher values of ECR mean that a larger violation of the constraint
is allowed and the constraint is ’softer’. Low values of ECR make the constraint ’harder’ and
mean that only small violations are allowed. Constraints are hard for ECR equal to zero.
The ECR values are tuned to prioritize the environmental constraint over vehicle stability.
The ECR values for each constraint are in Table 3-1.

3-5 Controller settings

The settings and tuning weights used for the Adaptive Model Predictive Controller in MAT-
LAB are listed in Table 3-1.

The controller weights are optimized on the car without constrains until the car converges to
a target from e = 3 meters quickly and without too much overshoot.

Then the constraints on vehicle stability are added and the ECR is decreased until the car
shows little to no stability violations when driving near the friction limit. Lastly, the envi-
ronmental constraint is added and its ECR is lowered until it can force stability violations
near the edge of the road.
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Table 3-1: Controller settings used for the adaptive MPC controller in MATLAB/Simulink.

Parameter Value Unit Description
Prediction horizon 1 [s] Length of the prediction horizon
Controller time step 0.02 [s] -
∆φ weight 0.2 [-] -
e weight 1 [-] -
∆φ scale 0.15 [-] Max expected ∆φ
e scale 5 [-] Max expected e
MVmax 10000 [N] Max for manipulated variable (Fy,f )
MVrate,max 10000 [N/s] Max rate of change manipulated variable
ECR MVrate,max 10 [-] Softening on MVrate
ECR Uy 50 [-] Softening on Uy constraint
ECR r 50 [-] Softening on r constraint
ECR e 0.5 [-] Softening on e constraint
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Chapter 4

Reinforcement Learning

4-1 Introduction

Reinforcement learning (RL) is a machine learning process to form a control policy for a
control problem. One of the main benefits of RL with respect to classical control methods
such as MPC is that there is no need to manually capture the important dynamics of a system
in a model. Instead, a control policy can be ’trained’ by interacting with the environment or
from data gathered previously. The desired behavior of the control policy is determined by
feedback from the environment. Good behavior is rewarded and bad behavior is penalized.
There are many examples of control problems that have been solved by RL that would be
difficult to solve with classic control methods, ranging from image recognition to walking
robots. For more examples and a list of publications, the reader is referred to the main
introduction of this thesis (Chapter 1).
Training a control policy typically takes a lot of interactions with the environment to explore
the possible solutions. That is why it is often not feasible to train directly on a physical
system. Instead, the agent is trained in a virtual environment where lots of actions can be
tried relatively quickly.
There are many different RL algorithms, with quite a few that are combinations or variations
of others. There are a few factors to consider when choosing an algorithm to use but the
main distinction is the compatibility with discrete or continuous action spaces. For example,
algorithms like Rainbow [76], ACER [77] and DQN [15] can only solve problems with a discrete
action space. For continuous action spaces there are -among others- DDPG [26], TD3 [78] or
SAC [52, 53]. Other algorithms like Policy Gradient [79], PPO [80] and A2C/A3C [81] are
compatible with both discrete and continuous action spaces.
In this work the Soft Actor-Critic (SAC) [52][53] and the Lyapunov Safe Actor-Critic (LSAC)
[49][50][51] algorithms are used. SAC is among the most popular RL algorithms for continuous
control tasks and has outperformed most others in the benchmark tests of OpenAI’s Gym [54].
LSAC is a new algorithm that combines SAC with a stability analysis to solve constrained
control problems.
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The following topics will be discussed in the remainder of this chapter. In Section 4-2 the
most important principles and definitions used in RL are explained. Section 4-3 builds on
this basis and introduces the key RL algorithms with important aspects for SAC and LSAC.
Section 4-4 and 4-5 go further into the details of the SAC and LSAC algorithms.

4-2 Principles of RL

In this section, the basic principles of RL are explained. These principles are the building
blocks of most relevant RL algorithms and in particular the SAC and LSAC algorithms that
are used later in this work.

4-2-1 Markov Decision Process

The control problems in RL are typically modeled as Markov Decision Processes (MDP). The
’Markov property’ for a control problem means that the future state only depends on the
current state and the current action. Previous states or actions do not influence future states.

A MDP consists of 4 components that form a tuple of 〈S,A, P, r〉. Here S is the set of valid
states, and A is the set of possible actions. P is the transition probability to the next state
s′ given current state s and action a:

P = P
(
s′ | s, a

)
(4-1)

r is the reward from state s and action a:

r = R (s, a) (4-2)

If a control problem has constraints it is modelled as a Constrained Markov Decision Process
(CMDP). A CMDP tuple has 5 components, namely 〈S,A, P, r, b〉. b(s, a) ∈ [0,∞〉 is the cost
of the constraint.

4-2-2 State and action space

State

The set of states S contains all valid states s for a given system. State s describes the entire
environment in a real valued vector or matrix.

It practice it not always possible to make a complete description of the system and its envi-
ronment. Instead, the state is only an observation of the environment that is gathered from
cameras or other sensors.
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Action space

The action space set A contains all possible actions for a given state and can be discrete or
continuous. A system with a discrete action space has a finite amount of valid actions for
each state. In practice, it is more common for a system to have a continuous action space
wfere -even if the action space has upper and lower bounds- there are an infinite amount of
valid actions in between for each state. Think of the steering wheel of a car; it can not just
be turned left or right but it can be turned at every angle within the steering limits.

4-2-3 Reward, return and discount

The agent learns from the feedback provided by the environment. The feedback from the
environment is called the reward r and determines how good or bad the current state and
action is. The reward as a function of the state s and the action a:

r = R (s, a) (4-3)

There are multiple ways to define the best performance given the reward r. The most common
objective is to maximize the discounted return:

R =
∞∑
t=0

γtrt+1 = rt+1 + γrt+2 + γ2rt+3 + · · · (4-4)

Discount rate γ ∈ [0, 1] provides a measure of how the agent should try to maximize the
return. If γ = 0, the agent will only care about the reward of the current state and behave
very short-sighted. If γ = 1, the agent will try to maximize all future rewards, even if it
means receiving a lower reward in the current state. Typically values close to 1 are used.

4-2-4 Agent and policy

In RL the actions a are executed by an agent. The agent selects actions based on the policy
π. The terms policy and agent are often used interchangeably. The policy defines an action
a for every state s:

π = π (a | s) (4-5)

4-2-5 Episodes

RL agents are often trained in episodes. Episodes are started in the initial states and ended
when a terminal state or time limit is reached. Randomness in the initial state helps to explore
new solutions and create a more generalized policy. Terminal states can be used to prevent
the agent from exploring states that are not useful for the learning process, for example when
it is too far from the target. A time limit can be used to avoid wasting time when the agent
is stuck in the environment.
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Episodes are also called trajectories or rollouts and are denoted with τ :

τ = s0, a0, s1, a1, s2, a2 · ·· (4-6)

4-2-6 Objective and optimal policy

The goal of the policy is to pick the actions that result in the highest return. The objective
is described as maximizing the expected return J (π):

J (π) = E
τ∼π

[R (τ)] (4-7)

The optimal policy π∗ is the policy that gives the highest J (π):

π∗ = arg max
π

J (π) (4-8)

4-2-7 Value

Almost all RL algorithms try to approximate the value of the current state and the available
actions. These are the value V and action-value Q.

Value V π is the expected return from state s and all following states s′ if the actions are
taken from policy π:

V π (s) = E
τ∼π

[R (τ) | s] (4-9)

The optimal value V ∗ is the expected return from state s and all following states s′ if the
actions are taken from the optimal policy π∗:

V ∗ (s) = max
π

E
τ∼π

[R (τ) | s] (4-10)

The action-value Qπ is the expected return from state s and all following states s′ for any
action in s and actions from policy π in all following states s′:

Qπ (s, a) = E
τ∼π

[R (τ) | s, a] (4-11)

The optimal action-value Q∗ is the expected return from state s and all following states s′
for any action in s and actions from the optimal policy π∗ in all following states s′:

Q∗ (s, a) = max
π

E
τ∼π

[R (τ) | s, a] (4-12)

The optimal policy will choose the action in state s that results in the highest return; which
is the action with the highest Q value:

a∗ = arg max
a

Q∗ (s, a) (4-13)
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4-2-8 Deep RL

In deep RL the different functions are approximated by neural networks with parameters θ
or φ. θ and φ are the weights of the nodes in the network and are initialized randomly and
optimized in the training process.

The policy network with parameters φ:

π (s)→ πφ (s) (4-14)

Value networks V and Q with parameters θ:

V (s)→ Vθ (s) (4-15)

Q (s, a)→ Qθ (s, a) (4-16)

4-2-9 Target networks and moving averages

When the values θ of network Qθ (s, a) are updated with the information from Qθ (s′, a′) it is
likely that the two will be very similar. If the network is updated after every interaction it
can lead to catastrophic interference, where the network can not properly relate the actions
to good or bad results. In practice the learning is more stable is the network is kept constant
for a little longer before updating the parameters.

This can be done by storing the updates in a separate network called the target network
Q̄θ (s, a). θ then is copied from the target network every n steps:

Qθ (s, a)← Q̄θ (s, a) (4-17)

Alternatively a moving average θ̄ can stabilize the learning.

4-2-10 Experience replay

Consecutive experiences 〈s, a, s′, r〉 in the environment can be highly correlated. The cor-
relation can cause a bias in the learned policy to a certain order of events. Ideally, the
training data should be Independent and Identically Distributed (IID). To create IID sets the
〈s, a, s′, r〉 experiences are stored in a replay buffer D and then sampled in random order from
the buffer later.
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4-3 Key RL algorithms

For a good understanding of the Soft Actor-Critic (SAC) and Lyapunov Safe Actor-Critic
(LSAC) algorithms that are used in this work, it is beneficial to go through some of the key
preceding RL algorithms. RL algorithms can be divided into two main categories; Q-learning
and Policy optimization. Some combine the strengths of both methods in a single algorithm.

4-3-1 Q-learning

The optimal action at state s is defined as the action with the highest Q value (Equation
4-13). Q-learning methods [15, 82, 83] focus on learning Q(s, a) to determine the policy.

In the basic versions of Q-learning Q(s,a) is a lookup table [82] with a row for every state and
a column for every action. The values in the table are updated with the update rule:

Qnew (s, a)← Q (s, a) + α
(
r + γ max

a
Q (st+1, a)−Q (s, a)

)
(4-18)

Here learning rate α determines the relative weight of the new values. Representing Q as a
table is only feasible for control problems with small discrete state and action spaces. It can
not be scaled up for very large or continuous state and action spaces.

In Deep Q-learning [15, 83] the value of Q(s, a) is approximated with a neural network to
solve problems with large or continuous state and action spaces:

Q (s, a)→ Qθ (s, a) (4-19)

Qθ (s, a) is initialized randomly and θ is updated by gradient descent minimizing a loss func-
tion:

L(θ) =
(
Q (s, a)−

(
r + γ max

a
Q
(
s′, a′

)))2
(4-20)

4-3-2 Policy optimization

Instead of approximating the action-value function Q(s, a), policy optimization methods [79,
80, 81] focus on optimizing the policy directly. The policy is approximated by a neural network
with parameters φ:

π (s)→ πφ (s) (4-21)

The values of φ are optimized via gradient ascent on the objective J (πφ):

J (πφ) = E[R(s, a)] (4-22)

The gradient of J(πφ) can be written as:

∇φE[R(s, a)] = E[∇φ log πφ(a | s)R(s, a)] (4-23)
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The stochastic policy gradient update is then:

φt+1 = φt + αRt+1∇φ log πφt(at | st) (4-24)

Equation 4-24 shows that the gradient ∇φ is scaled with the reward Rt+1. This means if the
reward is high, the likelihood of those actions is increased. Likewise, if the return is low, the
likelihood of those actions is decreased.
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4-4 Soft Actor-Critic (SAC)

4-4-1 Introduction

Soft Actor-Critic (SAC) is a state-of-the-art off-policy learning algorithm for continuous con-
trol problems. Off-policy means that the policy can be updated with experiences from pre-
vious iterations of the policy. Off-policy algorithms are considered sample efficient because
all available experiences 〈s, a, s′, r〉 can be used to improve the policy. In contrast, on-policy
methods can only use experiences from the current iteration of the policy.

There are several iterations of SAC, each with slight differences in its implementation [52, 53].
In this work SAC as presented in [53] is used. SAC is a combination of policy optimization
(Actor) and deep Q-learning (Critic).

4-4-2 Entropy regularization

SAC introduces the maximum entropy principle for RL by adding an entropy term to the
standard objective function. Maximizing the entropy at each state encourages exploration of
new states and actions. This addresses a downside of policy gradient methods that can get
stuck on a local maximum by finding one promising solution and not exploring outside that
solution. In practice, this leads to more exploration and in turn faster learning [84, 85, 86].

The standard objective for RL is to find a policy that maximizes the expected return (Equa-
tions 4-7 and 4-8):

π∗ = arg max
π

E(s,a)∼ρπ [R (τ)] (4-25)

A policy with the maximum entropy objective simultaneously maximizes the expected return
and the entropy H:

π∗ = arg max
π

E(s,a)∼ρπ [r(s, a) + αH(π(· | s))] (4-26)

Here α is called the temperature parameter and it is used to tune the balance between
exploring (entropy) and exploiting the current policy (expected return).

4-4-3 Soft Actor-Critic

SAC uses neural networks to approximate the policy and the Q-values. The policy network
models the policy with the mean and covariance of a multivariate Gaussian distribution.

The policy network with parameters φ:

π (s)→ πφ (a | s) (4-27)

The approximations of the Q-functions tend to overestimate the actual Q-values. To overcome
this SAC uses two Q-functions Q1 and Q2 and at every step, the lowest value of both is used.
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Value networks Q1 and Q2 with parameters θ1 and θ2:

Q1 (s, a)→ Qθ1 (s, a) (4-28)

Q2 (s, a)→ Qθ2 (s, a) (4-29)

The objective for the parameters of the Q-function is defined as JQ(θ):

JQ(θ) = E(st,at)∼D

[1
2
(
Qθ (st, at)−

(
r (st, at) + γEst+1∼p [Vθ̄ (st+1)]

))2] (4-30)

where the value function V (st) is given by:

V (st) = Eat∼π [Q(st, at)− α log π(at | st)] (4-31)

θ is optimized with stochastic gradient ascent. The gradient of JQ(θ) is approximated by
∇̂θJQ(θ):

∇̂θJQ(θ) = ∇θQθ(at, st) (Qθ (st, at)− (r (st, at) + γ (Qθ̄ (st+1, at+1)− α log (πθ (at+1, at+1)))))
(4-32)

θ̄ is an exponential moving average of θ to stabilize the learning process, see Section 4-2-9.

The policy is updated by minimizing the Kullback–Leibler divergence:

Jπ(φ) = Est∼D
[
Eat∼πphi [α log (πφ (at | st))−Qθ(st, at)]

]
(4-33)

The gradient of Jπ(φ) can be approximated by ∇̂φJπ(φ):

∇̂φJπ(φ) = ∇φα log (πθ (at | st)) + (∇atα log πθ (at | st))−∇atQ (st, at))∇φfφ (εt; st) (4-34)

In Equation 4-34 the policy πφ is expressed as fφ (εt; st) for lower variance, see [53] for more
details:

at = fφ (εt; st) (4-35)

with ε is input noise.

The algorithm is summarized in Table 4-1.
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Table 4-1: SAC algorithm overview

SAC
Input: θ1, θ2, φ . Initial parameters
θ̄1 ← θ1, θ̄2 ← θ2 . Initialize target network weights
D ← 0 . Initialize empty replay pool

for each iteration do
for each environment step do

at ∼ πφ(at | st) . Sample action from the policy
st+1 ∼ p(st+1 | st, at) . Sample transition from the environment
D ← D ∪ (st, at, r(st, at), st+1) . Store the transition in the replay pool

end for
for each gradient step do
θi ← θi − λQ∇̂θiJQ(θi) for i ∈ 1, 2 . Update Q parameters
φ← φ− λπ∇̂φiJπ(φ) . Update policy weights
α← α− λ∇̂αJ(α) . Adjust temperature
θ̄i ← τθi + (1− τ)θ̄i for i ∈ 1, 2 . Update target network weights

end for
end for

Output: θ1, θ2, φ . Optimized parameters
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4-5 Lyapunov Safe Actor-Critic (LSAC)

4-5-1 Introduction

It is difficult to predict the behavior of a (trained) RL policy. The main objective for a
policy is typically defined as maximizing the discounted return, which means optimizing the
behavior for the long term. As a consequence, it may take bad decisions now because it
expects a benefit from it in the future. For safety-critical tasks such as automated driving,
this may not be the right approach. A single bad decision can have fatal consequences.
Lyapunov Safe Actor-Critic (LSAC) [49][50] introduces a new way to address the safety of RL
policies with a theoretical guarantee of stability. LSAC is a combination of Lyapunov stability
analysis with the SAC algorithm. The proposed Lyapunov analysis can also be combined with
other algorithms as CPO (LCPO) and PPO (LPPO).
This chapter provides a broad overview of the principles of the LSAC algorithm, for the proof
and derivations of the stability theory the reader is referred to the work of Han et al. in [49].

4-5-2 Stability and Lyapunov analysis

Definition of stability

The stability of a system is its ability to recover to an equilibrium position from (external)
disturbances [87]. The definition of stability addressed by LSAC is called ultimately uniformly
bounded (UUB) stability.
A UUB system will stay inside a set of safe states. If the system is disturbed or started
outside the safe set it will move back to the safe set in finite time. The safe set of states must
have a non-zero size; if the size of the safe set approaches 0 the system must always return
to the origin. In that case, the system is said to have mean square stability (MSS). For an
automated car, the UUB limits can be the edges of the road; a UUB vehicle will not leave
the road and if it is pushed off the road it will drive back on in finite time T .
The UUB definition is valid for systems bounded with limit d > 0, and ∀ d ∈ (0, c) there is a
finite time T = T (d, d) independent of t0 [49]:

Es0bπ(s0) ≤ d→ Estbπ(st) ≤ d ∀t ≥ t0 + T (4-36)

Here bπ is the expected undiscounted safety cost from the constraint under policy π:

bπ(s) = Ea∼πb(s, a) (4-37)

The UUB principle from Equation 4-36 is visualized in Figure 4-1.

Lyapunov analysis

Lyapunov functions are used in control theory to analyze the stability of dynamical systems
around the equilibrium position. A Lyapunov function Lmust be a continuously differentiable
scalar semi-positive definite function; L : S → R+.
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Figure 4-1: Visualization of the UUB principle presented in Equation 4-36.

Consider the following system:
ẋ = f(x) (4-38)

with Lyapunov function L(x) and its time derivative L̇(x):

L̇(x) = d

dt
L (x(t)) = ∂L

∂x
· dx
dt

= ∇L · ẋ = ∇L · f(x) (4-39)

If L̇(x) for a state trajectory τ is semi-negative definite, the system will move down the slope
of L(x) in finite time reach a state where L = 0 and thus be stable.

UUB guarantee for RL

Consider a system with the safe set of states Ω constrained by d̄:

Ω =
{
s ∈ S | bπ(s) < d̄

}
(4-40)

If the system is UUB there must exist a set of Lyapunov functions L(s) and positive constants
α1, α2 and α3 for all states in safe set Ω:

α1bπ(s) ≤ L(s) ≤ α2bπ(s) (4-41)

For the states outside the safe set Ω in the edge set ∆

∆ =
{
s ∈ S | bπ(s) ≥ η, η ∈ [0, α−1

2 α1d̄]
}

(4-42)

must hold:

Es∼τ
(
Es′∼πL(s′)− L(s)

)
≤ −α3Es∼τ bπ(s) (4-43)

Since the constraint is only active in the edge set ∆ the agent is free to explore to the edges
of safe set Ω.
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4-5-3 Lyapunov Safe Actor-Critic

The objective function for the LSAC policy is:

J(π) = E(s,a,s′)∼D[β[log(πθ(fθ(ε, s) | s))]−Q(s, fθ(ε, s))]
+ E(s,a,s′,b)∼De [λ(Lc(s′, fθ(ε, s′))− Lc(s, a) + α3b(s, a))] (4-44)

where D stores the environment transitions in safe set Ω and De stores the transitions in the
edge set ∆.

Two Q functions (Q1, Q2) with target networks (Q′1, Q′2) are used (as in SAC) to stabilize the
learning process, see Section 4-2-9.

The gradient of the objective function J(π) is then:

∇θJ(π) = ED[∇θβ log(πθ(a | s)) +∇a(β log(πθ(a | s))−miniQi(s, a))∇θfθ(ε′, s)]
+ EDe[λ∇a′Lc(s′, a′)∇θfθ(ε, s′)] (4-45)

Again, like SAC the value function is augmented with the entropy to improve exploration:

V (s) = Ea∼π(Q(s, a)− β log(π(a | s))) (4-46)

The objective for the Q-functions JQ1 and JQ2 is to minimize:

JQ(θ) = E(st,at)∼D[12(Qθ(st, at)− (r(st, at) + γEst+1∼ρ[Vθ̄(st+1)]))2] (4-47)

The Lyapunov critic Lc:

Lc(s) = Ea∼πLc(s, a) (4-48)

The objective function for the lyapunov critic is given by:

J(Lc) = E(s,a)∼D[12(Lc(s, a)− Ltarget(s, a))2] (4-49)

Here Ltarget is the target for Lc defined by the cost of constraint:

Ltarget(s, a) = c(s, a) (4-50)

The tuning parameters β (temperature) and λ (lagrangian) have the following objectives:

J(β) = E(s,a) D) − β[log(πθa | s) +Ht] (4-51)

J(λ) = E(s,a)∼D − λ
[
Lc
(
s′, fθ(ε, s′)

)
− Lc(s, a) + α3c(s, a)

]
(4-52)

The LSAC algorithm is summarized in Table 4-2.
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Table 4-2: LSAC algorithm overview

LSAC
Input: φQ, φLc , θ . Initial parameters
φ̄Q ← φQ, φ̄Lc ← φLc , θ̄ ← θ . Initialize target network weights
∆ . Initialize edge set
λ . Initialize Lagrangian multiplier
R, Rc . Initialize replay and edge replay pool

for each iteration do
for each environment step do

at ∼ πφ(at | st) . Sample action from the policy
st+1 ∼ p(st+1 | st, at) . Sample transition from environment
R ← R∪ (st, at, r(st, at), b, st+1) . Store transition in replay pool R

if st ∈ ∆:
Rc ← Rc ∪ (st, at, r(st, at), b, st+1) . Store transition in replay pool Rc

end for
for each gradient step do
φQ ← φQ + αφQ∇φQJ(Q) . Update Q parameters
φLc ← φLc + αφLc∇φLcJ(Lc) . Update Lc parameters
θ ← θ + αθ∇θJ(π) . Update policy weights
λ← max(0, λ+ αλLλ) . Update Lagrange multiplier
β ← β + αβ∇βJ(β) . Adjust temperature

φ̄Q ← τφQ + (1− τ)φ̄Q . Update the target networks
φ̄Lc ← τφLc + (1− τ)φ̄Lc
θ̄ ← τθ + (1− τ)θ̄

end for
end for

Output: φQ, φLc , θ . Optimized parameters
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Chapter 5

Training Setup and Interaction with
the Environment

5-1 Introduction

This chapter discusses the general settings of the RL algorithms such as the state observations,
network structures, and hyperparameters. It also covers how rewards can be designed to get
the desired behavior. Details that are specific to a single experiment are discussed in Chapter
6.

5-2 OpenAI GYM

The vehicle simulator for the agent to train in is built as a part of OpenAI’s Gym [54]. Gym
is an open-source toolkit to test and compare learning algorithms on a library of standard
tasks. These tasks include balancing cart poles and pendulums, and a collection of Atari
video games. After each action A, the environment returns the next state S′ and reward r
back to the learning algorithm. The environment is reset after a terminal state is reached or
a time limit per episode is exceeded.

5-3 Hyperparameters

The hyperparameters for SAC are set as suggested by the authors of SAC in [53]. The
hyperparameters for LSAC are identical to SAC, with the addition of learning rate for the
Lyapunov critic and α3. The hyperparameters are the same for all experiments. The values
are summarized in Table 5-1.
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Table 5-1: Hyperparameters used for the SAC and LSAC algorithms. The hyperparameters are
set as suggested by the authors of SAC in [53].

Parameter Value
learning rate Actor 1·10−4

learning rate Critic 3·10−4

learning rate Lyapunov Critic (LSAC only) 3·10−4

α3 (LSAC only) 0.8
discount(γ) 0.99

replay buffer size 1·106

number of hidden layers 2
number of hidden units per layer 256
number of samples per minibatch 256

target entropy -1
target smoothing coefficient (τ) 0.005

target update interval 1
gradient steps 1

5-4 Observed state

The state vector (observation) of the environment contains a selection of vital vehicle states.
To make a fair comparison between RL and MPC the state does not contain any information
that MPC does not have access to. The state vector includes the 19 states from Table 5-2.
States 1-8 are the vehicle motion and path tracking errors. States 9-19 provide a preview of
the upcoming road segment over 1 second, with 0.1 second intervals (k0.1, k0.2, ...k1.0). The
road preview is visualized in Figure 5-1.

MPC path preview

RL path preview

Figure 5-1: The observation of the environment and preview of the target path as seen by the
MPC and RL controllers. Over the preview horizon of 1 second, the MPC has 50 preview points,
the state vector for the RL algorithms only has 10 preview points.

5-5 Neural networks structure

The neural networks used in this work are multilayer perceptron (MLP) networks with 2
hidden layers. Each hidden layer has 256 nodes with a non-linear activation function. Each
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Table 5-2: The state vector observed by the Reinforcement Learning algorithms for each environ-
ment step. States 1-8 describe the motion of the vehicle and path tracking errors to the target.
States 9-19 are the preview of the upcoming road segment over the next second, with 0.1 second
intervals (k0.1, k0.2, ...k1.0).

State Description
u Longitudinal velocity
v Lateral velocity
r Yaw rate
e Lateral error
∆φ Heading error
ax Longitudinal acceleration
ay Lateral acceleration
δ Steering angle
kc Current curvature
k0.1 Curvature at t+0.1 s
k0.2 Curvature at t+0.2 s
k0.3 Curvature at t+0.3 s
k0.4 Curvature at t+0.4 s
k0.5 Curvature at t+0.5 s
k0.6 Curvature at t+0.6 s
k0.7 Curvature at t+0.7 s
k0.8 Curvature at t+0.8 s
k0.9 Curvature at t+0.9 s
k1.0 Curvature at t+1.0 s

node is fully connected to every node in the next layer. The input for the policy network
πφ is the observed state from Section 5-4 and the output is mean µφ and standard deviation
σφ. The output of the value networks Qθi are the Q values, and the output of the Lyapunov
network Lθ for LSAC is the Lyapunov value.

5-6 Reward design

5-6-1 Introduction

The reward defines the objective of the task by providing feedback after every action. The
feedback from the environment ultimately determines what the optimal behavior is to achieve
the highest score. The reward also has a significant influence on training times. Finding a
solution can take unreasonably long when rewards are sparse. It is good practice to shape the
rewards to give continuous feedback on the policy, rather than only at the end of the episode
[88].
If the rewards are not considered carefully, the resulting policy can be found to exhibit
undesirable behavior, or try to ’cheat’ the system to get the highest return [89]. For example;
in training, it was found that the highest reward for trajectory following could be obtained
by purposefully slowing the vehicle down by excessive steering.
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Therefore designing the reward can be a tedious task, and it is often an iterative process
of observing and retraining until the desired behavior is reached. Recent discoveries on
automated reward design [90] have shown great potential but it is outside the scope of this
work.

5-6-2 Survival bonus

The general design for the rewards in this work is to give a positive reward for every step
taken. This means that the highest score can be achieved by staying alive and avoiding
terminal states. Bad behavior is penalized by subtracting a cost from the survival bonus, so
that the optimal policy still results in the desired behaviour. A reward function to minimize
some error a with a survive bonus of 1:

r = 1− aerror (5-1)

The benefit of the survival bonus is that the optimal policy will avoid terminal states. This
can also be a drawback; where instead of going for the target directly, a higher score can be
obtained by getting close to the target but never reaching it and thus finishing the episode.

5-6-3 Scaling and weighing rewards

When multiple objectives are considered it is easier to compare the relative weights if the
rewards are scaled to be the same order of magnitude. In this work the rewards will generally
be scaled to be ∈ [−1, 1]. Relative importance of objectives are weighed with factor ω. For
example:

r = 1− ω1

(
aerror
alimit

)
− ω2

(
berror
blimit

)
(5-2)

5-6-4 Effect of exponential rewards on vehicle behavior

The tracking error from the target path in this work is denoted by |e|. A good reward function
to minimize the tracking error could be 1 − |e|x. It was found that the exponent x in the
reward had a significant effect on the resulting policy. Agents trained with |e|2 or |e| did
not converge to the origin of |e| = 0 but overshot and oscillated around it. On the other
hand, a very steep penalty around the origin such as |e|0.2 resulted in a stable, non-oscillating
solution. This is visualized in Figure 5-2.

5-6-5 Rewarding smooth steering behaviour

RL control policies can exhibit pretty erratic and noisy behavior. An erratic input on vehicle
steering applications is uncomfortable and wasteful of energy; it should be as smooth as
possible.
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Figure 5-2: Different exponentials of the reward function of lateral error |e| (left) vs the resulting
vehicle behavior (right). The vehicle shows stable convergence for rewards that are steep around
the origin. Rewards that are less strict around the origin result in policies with oscillating behaviour.

With only the lateral error |e| in the reward, the steering actions are constantly jumping
between extremes. Penalizing the difference in steering angle between steps (∆δ) did not
calm the steering down, even with the previous control input added to the observed state.
Instead, for an increasing penalty on ∆δ only the performance of the main objective (path
tracking) got worse. This agrees with the findings in [44].

The best results for the straight road sections in this work were found by penalizing the
absolute steering angle |δ|. This discourages the agent from performing unnecessary control
inputs. See Figure 5-3.
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Figure 5-3: Steering behaviour for different reward functions. Policies with lower penalties on
the steering angle |δ| show very volatile steering actions. Penalizing steering angle |δ| results in a
smooth control policy.

For experiments in more complex environments, the steering cost was found less effective.
The benefit of slowing the vehicle down by wild steering inputs was too beneficial for the
task of path tracking. The best solution was found by scaling all rewards by the vehicle
velocity. This indirectly rewards the smoother control policies that do not slow the vehicle
down. Other methods for creating smooth control policies [44, 91] have been proposed but
are outside the scope of this work and incompatible with the SAC and LSAC algorithms.
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5-7 Running agent and environment at different rates

5-7-1 Drawbacks of a fast updating environment

The vehicle simulator updates with a frequency of 1000 Hz. This is necessary for the stable
integration of the equations of motion. Running the simulator at lower frequencies would give
numerical instability or otherwise less accurate results. However, running the control policy
at such high frequencies can be very undesirable for several reasons.

First of all, for every second of driving in the simulation environment, the agent will have
to take 1000 actions and the environment will return 1000 new states and rewards. This
means 1000 [s, a, s′, r] transitions and policy updates on the GPU. This is computationally
very expensive and thus time-consuming. Even on a modern GPU, every second of simulation
takes about 9 seconds of real-world time. This negates one of the main benefits of training in
a virtual environment; namely speed.

Another reason why such a fast control policy is undesirable is that a solution can be found
that relies on controlling the system at such a high frequency. This was found in Atari
video games where control policies trained with reinforcement learning had a superhuman
performance by applying a different action every frame [92]. For vehicle driving and many
other simulated tasks, it is not necessary to change the input every millisecond for a good
control policy. Many physical systems will not even respond at that rate.

Lastly, in slower-paced control tasks such as strategy games, the effects of an action tend to
take a while to become apparent. It was found that the agents are quicker to relate current
actions to long term results if the policy does not get unnecessary updates that provide little
new information [93]. In a way, automated driving is a slower-paced control task as well
because the steering on corner entry can make a difference on corner exit, and updates at
1000 Hz do not necessarily provide new information.

5-7-2 Solution

A solution in video games can be to not return every rendered frame to the agent. Instead,
each action by the agent is held constant for several frames, and only after those frames have
passed a single update is given back. This is sometimes referred to as frameskip.

In this work, a similar approach is used. Every steering action of the agent is held constant
for 20 steps (0.02 [s]) in the simulation environment before an update is returned. The control
policy thus runs at 50 Hz while the simulation can run at 1000 Hz. 50 Hz is chosen because
the MPC runs at 50 Hz as well, giving a fair comparison.

5-8 Agent selection

In practice it is found that agents trained on the same task in the same environment with the
same rewards can find different solutions. This can be found in the real world as well, where
racing drivers can obtain similar lap times with very different driving styles.
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For each task, at least five agents are trained with the same settings. After evaluation, only
the best agent with the desired behavior is used in the final results. The training for an agent
is restarted if it gets stuck for too long at a local minimum.
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Chapter 6

Experiments and Results

6-1 Introduction

In this chapter MPC, SAC and LSAC are tested in a vehicle simulator at a range of different
driving tasks. For every task, the methods of training the RL agents are given, including
rewards, safety costs, and training times.

6-1-1 Supplementing videos

Videos of the experiments and simulations are available on YouTube on the channel ’LSACau-
tomatedvehicles’, https://www.youtube.com/channel/UCaoRIfyEY-rA7fcTdSxM8sA/. It is
strongly suggested to watch the videos together with the report, it gives a much clearer insight
into the behavior and performance of the controllers than the static figures in the report.

6-1-2 List of experiments

The controllers are tested in two different environments and cover a range of different driving
tasks.
The first experiments will be done on a straight piece of road with 5 lanes. Each lane has a
width of 3 meters. The driving speeds in the experiments cover urban, rural, and highway
driving scenarios. The experiments in this environment are:

• Navigating through traffic at 50, 75 and 100 km/h (Section 6-3)

• Recovering from destabilizing impacts (Section 6-4)

The rest of the experiments will be done on a race track to provide a more complex driving
challenge. The track has a length of 565 meters and a constant width of 10 meters. The
target velocity for each corner on the track is defined by Equation 2-43 and ranges between
∼40 and ∼100 km/h. The experiments on the track cover the following driving scenarios:
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• Driving on a race track and maintaining vehicle stability (Section 6-5)

• Safe navigation on a race track and maintaining vehicle stability (Section 6-6)

• Finding the racing line on a race track inside track limits (Section 6-7)

An overview of the environments can be found in Figure 6-1:
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Figure 6-1: Overview of the 5-lane road (left) and the race track (right) environments that are
used to evaluate the performance of the different controllers. The lanes have a width of 3 meters,
the race track has a length of 565 meters and a constant width of 10 meters.

6-1-3 Target velocity Vtarget and friction utilisation µdes

In every experiment the vehicle will try to follow the target speed Vtarget. The target speed
will be expressed as √µdes ·Vmax where µdes ∈ [0, 1] is the desired utilization of the maximum
available friction. For µdes = 0.75 the target speed Vtarget is such that the vehicle will use
75% of the available tire-road friction. The derivation and background of Vmax, Vtarget and
µdes can be found in Section 2-5-3.
How the target velocity around the race track changes for different values of µdes is shown in
Figure 6-2.

6-1-4 Figure notations

To show dynamic vehicle behavior in static images the results of the experiments are visualized
using the notations from Figure 6-3. Each control strategy has its own color; MPC is blue,
SAC is orange and LSAC is yellow. The trajectories of the vehicle are drawn with a thin,
light coloured line. When the vehicle is unstable the trajectory is drawn with a thick, darker
colored line. The vehicle is unstable when the yaw rate limit or the lateral velocity limit from
Section 2-7-1 is exceeded. The vehicles are plotted at a 300% scale on the race track for better
visibility.
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Figure 6-2: Target velocity Vtarget for different values of the desired friction utilization µdes around
the race track.
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Figure 6-3: This figure is a reference for the colors and notation used to display the results of
the experiments. The vehicles and trajectories are blue for MPC, orange for SAC, and yellow for
LSAC. The steering wheels are colored, the driven wheels are black. The vehicles in the track
environment are plotted at a 300% scale for better visibility. The thin line sections represent the
traveled trajectory. The overlaying thick line sections indicate that the vehicle is in an unstable
state as defined in Section 2-7-1. That means that either the yaw rate limit or the lateral velocity
limit is exceeded.
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6-2 Training agents for the straight environment

6-2-1 Introduction

This section explains how SAC and LSAC agents can be trained to follow a trajectory on a
5-lane road section. The goal is to minimize the distance to the target path. The performance
of the controllers is tested in two different experiments:

• Navigating through traffic at 50, 75 and 100 km/h (Section 6-3)

• Recovering from destabilizing impacts (Section 6-4)

The first experiment is a test of the general driving abilities under normal circumstances. The
second experiment tests the robustness of the controllers under an outside disturbance.

6-2-2 Training

Episodes

The SAC and LSAC agents are trained for 2e6 time steps each. This is around 11 hours
of driving time in the simulation environment. The training episodes are time-limited to 8
seconds per episode, and then the environment is reset. There are roughly 5000 episodes in
2e6 time steps.

The vehicle is started in a different location and at a different speed at the beginning of each
training episode. The goal is to move the car from the initial position to the center of the
road as quickly as possible. The initial velocity is picked from ∈ [50, 100] [km/h], the lateral
error e from ∈ [−4, 4] [m], and the heading error ∆φ from ∈ [−20, 20] [deg].

An episode is ended if |e| > elim (10 m), |∆φ| > ∆φlim (90 deg) or the time limit (8 sec) is
reached.

Reward and constraints

The SAC and LSAC agents are rewarded for minimizing tracking error |e| and penalized for
all steering actions |δ|. This penalty on the steering is necessary to get a smoother steering
policy, see Section 5-6-5. The reward is visualized in Figure 6-4. The reward drops sharply as
e and δ move from the origin. The components of the reward are scaled with their respective
limits so all components are in the same order of magnitude.

reward r(s, a) = 1− 0.7
( |e|
elim

)0.2
− 0.3

( |δ|
δlim

)0.2
(6-1)

Here the maximum lateral error elim is 10 [m] and the maximum steering angle δlim is 40
[deg].

Additionally, the LSAC agents are constrained with a safety cost to keep the vehicle within
the stable limits of vehicle handling:
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Figure 6-4: Visualization of the reward r ∈ [0, 1] from Equation 6-1. The agents are rewarded
for minimizing the tracking error e and penalized for steering actions δ. The reward drops sharply
as e and δ move from the origin.

safety cost b(s, a) =
(max(0, |v − vmax|)

|v|
+ max(0, |r − rmax|)

|r|

)
(6-2)

Where vmax and rmax are the limits for stable driving for the lateral velocity v and yaw rate r
respectively. The average reward and safety cost per episode during the training process can
be seen in Figure 6-5.
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Figure 6-5: The average reward of the SAC (left) and LSAC (right) agents per episode during the
training progress. The shaded area shows the variance between the different agents. The agents
are rewarded for minimizing the tracking error e and penalized for steering actions δ (Equation
6-1). The safety costs for the LSAC agent are for violations of the stability constraint (Equation
6-2).
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6-3 Navigating trough traffic

6-3-1 Introduction

The goal of this experiment is to change lanes on a 5 lane road every 50 meters to simulate
navigating through traffic. The vehicle is started on the middle lane and every 50 meters the
target moves to an adjacent lane. The controllers will be tested at low, medium, and high
speeds. The first test is at 50 km/h to represent typical urban driving speeds. The second
test is at 75 km/h to represent driving on rural roads and the third test is at 100 km/h to
show the behavior at highway speeds.
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Figure 6-6: Target path for navigating through traffic on a 5 lane road. The target lane changes
every 50 meters. The test is repeated for 3 different velocities; 50, 75 and 100 km/h.
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6-3-2 Navigating through traffic at 50 km/h
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Figure 6-7: Top: Vehicle trajectories for vehicles changing lanes every 50 meters at 50 km/h.
The thick line sections on the vehicle trajectory indicate that the vehicle is outside the stable
region as defined in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle
states and limits during the experiment.
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6-3-3 Navigating through traffic at 75 km/h
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Figure 6-8: Top: Vehicle trajectories for vehicles changing lanes every 50 meters at 75 km/h.
The thick line sections on the vehicle trajectory indicate that the vehicle is outside the stable
region as defined in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle
states and limits during the experiment.
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6-3-4 Navigating through traffic at 100 km/h
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Figure 6-9: Top: Vehicle trajectories for vehicles changing lanes every 50 meters at 100 km/h.
The thick line sections on the vehicle trajectory indicate that the vehicle is outside the stable
region as defined in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle
states and limits during the experiment.
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6-3-5 Discussion

The goal of this experiment was to move the vehicle to the center of the target lane, with the
target lane changing every 50 meters. MPC and LSAC are constrained to keep the vehicle
stable, SAC is only concerned with minimizing the tracking error.

The RL agents were trained for 11 hours in the simulator but the average reward per episode
in Figure 6-5 shows that the agents are more or less ’fully trained’ in less than 2 hours. After
that, the average reward does not increase significantly from the remaining training. The
spread in reward between the different agents is very small, suggesting that the training is
stable and consistent to replicate.

The experiments show no significant difference between MPC, SAC, and LSAC at 50 and
75 km/h. In all tests, MPC has the smoothest steering inputs, whereas SAC and LSAC use
much larger steering angles.

MPC overshoots the target slightly, mainly at the lower speeds. It is likely that this can be
minimized with more careful tuning of the MPC settings.

At 100 km/h the difference between MPC, SAC, and LSAC is more pronounced. The vehicle
is barely in the target lane before the target is moved again. Here MPC starts to show
small stability violations of the yaw rate constraint; the vehicle is rotating too fast. SAC is
even worse, showing large violations of the yaw rate constraint in almost every transition.
Nevertheless, SAC does not lose control over the vehicle and the tracking performance is
good.

In contrast, the LSAC agent never violates the stability constraints. Figure 6-9 shows how
LSAC moves the vehicle right to the edges of stability but does not violate them.

Unstable driving can be dangerous and result in a loss of control. The next experiment will
test how MPC, SAC, and LSAC recover from an impact that is designed to bring the vehicle
in an unstable state.
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6-4 Recovering from destabilizing impacts

6-4-1 Introduction

In this experiment, the vehicle will be hit by another vehicle on the rear axle. An impact
perpendicular to the vehicle on the rear axle is particularly destabilizing; it tends to over-
rotate the car and force a loss of control [94]. This experiment is designed to test the robustness
of the controllers under an unpredicted outside disturbance. Dealing with disturbances is an
important aspect of safe automated driving without relying on the driver to take over.

The vehicle will be driving on the target path with a velocity of 55 km/h. This is a typical
speed in urban environments where such collisions may take place. The colliding vehicle has
a mass of 1000 kg and the test is repeated for 4 different impact velocities between 12.6 and
18 km/h. The goal is to regain control over the vehicle and return to the original target path.

6-4-2 Simulating a collision

Simulating a collision between vehicles accurately can be very difficult, especially when all
the deformations are considered. The collisions in this experiment are simplified because high
fidelity is not required to test the vehicle response. The collision is modelled as a constant
impact force Fimpact over the time of collision timpact. The average impact force Fimpact is
given as:

Fimpact = ∆V ·m
timpact

(6-3)

Here ∆V and m are the change in velocity and mass of the colliding vehicle respectively.
The colliding vehicle is a 1000 kg car that loses all its velocity (∆V ) in the collision over 0.5
seconds. The experiments are repeated for 4 different impact velocities of 12.6, 14.4, 16.2,
and 18 km/h. This corresponds to average impact forces Fimpact of 7kN, 8kN, 9kN, and 10kN.

The impact force is added to the sum of lateral forces Fy and torque T acting on the vehicle
body from Equations 2-30 and 2-31, see Figure 6-10.

F
impact

Figure 6-10: The application of the impact force Fimpact on the rear axle of the vehicle to
simulate a destabilizing collision.
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The new sum of lateral forces Fy and body torque T :

Fy = Fy,fl + Fy,fr + Fy,rl + Fy,rr + Fimpact (6-4)

T = (Fy,fl + Fy,fr)lf − (Fy,rl + Fy,rr + Fimpact)lr + (Fx,fl − Fx,fr + Fx,rl − Fx,rr)
1
2B (6-5)
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6-4-3 Recovering from destabilizing impact: impact velocity = 12.6 km/h
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Figure 6-11: Top: Vehicle trajectories after an impact perpendicular on the rear axle while the
vehicle is traveling at 55km/h. The impact is from t = 1 [s] to t = 1.5 [s] and is marked by the
shaded area. The impacts represent a 1000 kg vehicle colliding on the rear of the vehicle and
losing all its speed in the process from an initial speed of 12.6 km/h. The average impact force
Fimpact is 7kN. The thick line sections indicate that the vehicle is in an unstable state as defined
in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle states and limits
during the experiment.
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6-4-4 Recovering from destabilizing impact: impact velocity = 14.4 km/h
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Figure 6-12: Top: Vehicle trajectories after an impact perpendicular on the rear axle while the
vehicle is traveling at 55km/h. The impact is from t = 1 [s] to t = 1.5 [s] and is marked by the
shaded area. The impacts represent a 1000 kg vehicle colliding on the rear of the vehicle and
losing all its speed in the process from an initial speed of 14.4 km/h. The average impact force
Fimpact is 8kN. The thick line sections indicate that the vehicle is in an unstable state as defined
in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle states and limits
during the experiment.

R. Cornet - 4302087 Master of Science Thesis



6-4 Recovering from destabilizing impacts 69

6-4-5 Recovering from destabilizing impact: impact velocity = 16.2 km/h
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Figure 6-13: Top: Vehicle trajectories after an impact perpendicular on the rear axle while the
vehicle is traveling at 55km/h. The impact is from t = 1 [s] to t = 1.5 [s] and is marked by the
shaded area. The impacts represent a 1000 kg vehicle colliding on the rear of the vehicle and
losing all its speed in the process from an initial speed of 16.2 km/h. The average impact force
Fimpact is 9kN. The thick line sections indicate that the vehicle is in an unstable state as defined
in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle states and limits
during the experiment.
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6-4-6 Recovering from destabilizing impact: impact velocity = 18.0 km/h
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Figure 6-14: Top: Vehicle trajectories after an impact perpendicular on the rear axle while the
vehicle is traveling at 55km/h. The impact is from t = 1 [s] to t = 1.5 [s] and is marked by the
shaded area. The impacts represent a 1000 kg vehicle colliding on the rear of the vehicle and
losing all its speed in the process from an initial speed of 18.0 km/h. The average impact force
Fimpact is 10kN. The thick line sections indicate that the vehicle is in an unstable state as defined
in section 2-7-1, see Figure 6-3. Bottom: Steering actions and relevant vehicle states and limits
during the experiment.
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6-4-7 Discussion

In this experiment, the controllers were tested at their ability to regain control over the
vehicle after a destabilizing collision. It shows the importance of vehicle stability and why it
is necessary to control the vehicle near the limits of friction. Like in the previous experiment
MPC and LSAC are constrained to keep the vehicle stable, SAC is not.

Even though SAC is not constrained on vehicle stability it deals fairly well with the lower
impact velocities; it can recover from the 12.6 and 14.4 km/h impacts. However, for larger
impact velocities, it fails and the vehicle starts spinning.

Arguably MPC does perform better than SAC. The constraints help to keep the vehicle from
spinning so it eventually returns to the target path. The downside is that the vehicle slides
all over the road and eventually even outside.

LSAC outperforms both MPC and SAC. LSAC starts counter steering sooner to slow down the
rotation, even before the vehicle is unstable. As a result the vehicle never exceeds the stable
yaw rate limits, while MPC and SAC violate the yaw rate limits in almost every experiment.
Once the vehicle is back inside the stable zone it does not leave it again. Because the vehicle
is stable sooner LSAC can keep closest to the original path as well.
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6-5 Path tracking at the friction limit with vehicle stability

6-5-1 Introduction

The goal in this task is to drive around a race track at the limit of friction. The target path
to follow is the centerline of the track, see Figure 6-15. The track has a length of 565 meters
and a constant width of 10 meters.
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Figure 6-15: Target path (left), curvature (middle) and speed profile (right) of the track used
in the experiments.

MPC and LSAC are constrained to keep the vehicle stable in addition to following the target
path, SAC is not.

6-5-2 Training

Episodes

The SAC and LSAC agents are trained for 3e6 time steps in the environment, which translates
to a total driving time of around 16 hours. A full lap around the track at racing speed takes
about 35 seconds. So in the 16 hours of training the car can do roughly 1700 laps around the
track.

The vehicle is started with a random target velocity the beginning of each training episode.
The target velocity is picked from µdes ∈ [0.70, 0.85], the initial lateral error e is picked from
∈ [−0.1, 0.1] [m] and the initial heading error ∆φ from ∈ [−10, 10] [deg].

The track is randomly mirrored to be clockwise or counterclockwise at the start of each
episode, see Figure 6-16. This is to make sure the policy does not converge to a solution that
would only work in one direction.

An episode is ended if |e| > elim (10 m), |∆φ| > ∆φlim (90 deg) or the end of the lap is
reached (s > 565 [m]).

Rewards and constraints

The agents are rewarded for minimizing path tracking error |e| and minimizing unnecessary
steering actions δ that result in slowing the vehicle down:
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Figure 6-16: At the beginning of each training episode the race track is either generated normally
and clockwise (left) or mirrored and counterclockwise (right) to provide some randomness in the
environment. This makes sure the policy does not converge to a solution that only works in one
direction.

reward r(s, a) = 1− 0.7
( |e|
elim

)0.2
− 0.3

( |δ|
δlim

)0.2
(6-6)

Where the maximum lateral error elim is 10 [m] and the maximum steering angle δlim is 40
[deg]. Additionally the LSAC agents receive a safety cost for violating the stability constraints:

safety cost b(s, a) =
(max(0, |v − vmax|)

|v|
+ max(0, |r − rmax|)

|r|

)
(6-7)

vmax and rmax are the stable driving limits for the lateral velocity v and yaw rate r (Section
2-7-1). The average reward and safety cost per training episode for the SAC and LSAC agents
can be seen in Figure 6-17.
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Figure 6-17: The solid blue lines are the average reward of the SAC (left) and LSAC (right)
agents during the training progress. The shaded area shows the variance between the different
agents. The agents are rewarded for minimizing the tracking error e and penalized for steering
actions δ (Equation 6-6). The safety costs for the LSAC agent are for violations of the stability
constraint (Equation 6-7).
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6-5-3 Path tracking at 80% friction utilisation: Vtarget =
√

0.80 · Vmax
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Figure 6-18: Top: Vehicles and trajectories for path tracking with vehicle stability around the
race track. The target velocity Vtarget =

√
0.80 ·Vmax so that the vehicle uses 80% of the available

tire-road friction. Vtarget ranges from 39.0 km/h at the start to 90.2 km/h at the finish. The
thick line sections indicate that the vehicle is in an unstable state. Bottom: Steering actions and
relevant vehicle states and limits during the experiment.
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6-5-4 Path tracking at 85% friction utilisation: Vtarget =
√

0.85 · Vmax
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Figure 6-19: Top: Vehicles and trajectories for path tracking with vehicle stability around the
race track. The target velocity Vtarget =

√
0.85 ·Vmax so that the vehicle uses 85% of the available

tire-road friction. Vtarget ranges from 40.2 km/h at the start to 93.0 km/h at the finish. The
thick line sections indicate that the vehicle is in an unstable state. Bottom: Steering actions and
relevant vehicle states and limits during the experiment.
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6-5-5 Path tracking at 90% friction utilisation: Vtarget =
√

0.90 · Vmax
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Figure 6-20: Top: Vehicles and trajectories for path tracking with vehicle stability around the
race track. The target velocity Vtarget =

√
0.90 ·Vmax so that the vehicle uses 90% of the available

tire-road friction. Vtarget ranges from 41.4 km/h at the start to 95.7 km/h at the finish. The
thick line sections indicate that the vehicle is in an unstable state. Bottom: Steering actions and
relevant vehicle states and limits during the experiment.
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6-5-6 Discussion

In this task, the main objective was to minimize the path tracking error |e| around a race track
when the vehicle is driving near the limit of friction. After 16 hours of training and roughly
1700 laps around the circuit the average reward for both SAC and LSAC is still climbing
(Figure 6-17). This suggests that better performance may be obtained if the agents are
trained for longer. Due to time limitations and sufficient performance, this is not investigated
further.

MPC and LSAC are constrained to keep the vehicle stable, SAC only optimizes the main
objective of path tracking.

In terms of pure path tracking, SAC outperforms both MPC and LSAC. This is especially
apparent for higher speeds (µdes = 85% and 90%) where MPC and LSAC do not have the
same maneuverability as SAC.

SAC can operate the vehicle in an unstable state without losing control. It is drifting the
vehicle around the corners, which is typically a skill reserved for trained racing drivers. The
agent steers in the opposite direction of the corner when the vehicle starts to over-rotate to
keep it from spinning. This can best be seen in the steering actions between t = 25 [s] and
t = 30 [s]. Keep in mind that this behavior was not taught in any way, the agent was only
rewarded for minimizing the tracking error.

A downside of the large body slip angles is that it slows the vehicle down significantly. There-
fore it is difficult to judge the performance compared with the faster LSAC and MPC agents.

LSAC and MPC behavior is very similar. Both rarely violate the stability constraints, but to
keep the vehicle stable at higher speeds they must take the corner so wide that the vehicle
leaves the road. Constraining the vehicle to stability at all times limits the maneuverability
which can be crucial in emergency situations.

It is obviously undesirable that the vehicle will ultimately navigate off the road to avoid
stability violations. On the other hand, the experiments in Section 6-4 showed the importance
of vehicle stability. The next experiment tries to find a good balance between safe navigation
and vehicle stability.
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6-6 Safe navigation at the friction limit with vehicle stability

6-6-1 Introduction

The results from Section 6-5 show that when only the path tracking error |e| is considered, the
SAC agent has excellent path tracking but the vehicle is very unstable. When the stability is
constrained with LSAC and MPC the vehicle will drive off the road to avoid instability.

The goal of this experiment is to find a control policy that balances path tracking and vehicle
stability while navigating safely within the limits of the environment. The desired solution
would show unstable driving behavior only when it is necessary to avoid leaving the road but
keep the vehicle stable otherwise.

6-6-2 Problem definition

The aim is to find a control policy that correctly balances three -sometimes conflicting-
objectives. Vehicle stability should be prioritized over path tracking, but the vehicle may
temporarily be brought in an unstable state if it is necessary to satisfy the environmental
constraint of not leaving the road.

In MPC the constraints can be scaled with different weights to prioritize safe navigation
over vehicle stability. In RL a different solution is required. Simply scaling the rewards of
the different objectives gives no guarantee that the most important constraints will not be
violated temporarily to optimize the long term return.

6-6-3 Proposed solution and approach

The proposed solution is as follows. The reward function will define the desired balance
between path tracking and vehicle stability by penalizing instability. The optimal policy
without constraints on the environment (SAC) should behave similarly to the results of 6-5
where MPC and LSAC take the corner wider and wider to keep the vehicle stable.

Then the LSAC agent is constrained to navigate within the safe boundaries of the road,
forcing the agent to find a non-optimal (lower reward) but safe solution.

There are several benefits of this arrangement over using regular unconstrained reinforcement
learning methods. Perhaps the largest benefit is that the desired driving behavior does not
have to be defined explicitly. Only two objectives need to be tuned in the reward; path
tracking and vehicle stability. If possible, the constraint will be satisfied with the UUB
stability guarantee of the LSAC algorithm.

6-6-4 Training

The training setup is similar to the previous experiment of Section 6-5. The agents are trained
for 3e6 time steps in the environment, which translates to a driving time of around 16 hours.

The vehicle is started with a random target velocity from µdes ∈ [0.70, 0.85]. The initial
lateral error e is picked from ∈ [−0.1, 1] [m] and the initial heading error ∆φ from ∈ [−10, 10]
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[deg]. An episode is ended if |e| > elim) (30 m), |∆φ| > ∆φlim (90 deg) or the end of the lap
is reached (s > 565 [m]).

With both the tracking error e and the stability constraints in the reward it was found that
penalizing the steering actions δ as in the previous experiments to smooth the steering input
was not effective. Instead, the entire reward is multiplied with a measure of the vehicle
velocity (u2 + v2). This does not punish steering actions directly but rather rewards the
higher vehicle speeds that result from smooth steering inputs.

The safety cost is only active when the vehicle goes outside the track limits. The average
reward and safety cost per episode during the training process are plotted in Figure 6-21.

reward r(s, a) =
(
u2 + v2

)(
1− 0.9

( |e|
elim

)0.2
− 0.1

(max(0, |v − vmax|)
|v|

+ max(0, |r − rmax|)
|r|

))
(6-8)

Where elim is 30 [m] and vmax and rmax are the limits for stable driving. The safety cost is
used to penalize the agents when the vehicle is outside the road boundaries:

safety cost b(s, a) = max (0, |e| − 5)2 (6-9)
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Figure 6-21: The solid lines are the average reward and safety cost of 5 agents during the
training progress. The shaded areas show the variance between the different agents. The agents
are rewarded for minimizing the tracking error e and vehicle instability. The safety costs are for
driving the vehicle outside the road boundaries.
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6-6-5 Safe navigation at 80% friction utilisation: Vtarget =
√

0.80 · Vmax
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Figure 6-22: Top: Vehicles and trajectories for safe navigation with vehicle stability around the
race track. The target velocity Vtarget =

√
0.80 ·Vmax so that the vehicle uses 80% of the available

tire-road friction. Vtarget ranges from 39.0 km/h at the start to 90.2 km/h at the finish. The
thick line sections indicate that the vehicle is in an unstable state. Bottom: Steering actions and
relevant vehicle states and limits during the experiment.
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6-6-6 Safe navigation at 85% friction utilisation: Vtarget =
√

0.85 · Vmax
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Figure 6-23: Top: Vehicles and trajectories for safe navigation with vehicle stability around the
race track. The target velocity Vtarget =

√
0.85 ·Vmax so that the vehicle uses 85% of the available

tire-road friction. Vtarget ranges from 40.2 km/h at the start to 93.0 km/h at the finish. The
thick line sections indicate that the vehicle is in an unstable state. Bottom: Steering actions and
relevant vehicle states and limits during the experiment.
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6-6-7 Safe navigation at 90% friction utilisation: Vtarget =
√

0.90 · Vmax
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Figure 6-24: Top: Vehicles and trajectories for safe navigation with vehicle stability around the
race track. The target velocity Vtarget =

√
0.90 ·Vmax so that the vehicle uses 90% of the available

tire-road friction. Vtarget ranges from 41.4 km/h at the start to 95.7 km/h at the finish. The
thick line sections indicate that the vehicle is in an unstable state. Bottom: Steering actions and
relevant vehicle states and limits during the experiment.
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6-6-8 Discussion

The goal of this experiment was to safely navigate around the circuit while keeping the vehicle
stable if possible.

The performance of MPC with the environmental constraint is only marginally better than
without from Section 6-5. It reacts too late to the limits of the road and is only unstable
if the vehicle is already off the road. Better performance may be possible with a different
prediction model or different tuning of the controller settings.

While the SAC behavior looks bad, it shows exactly the intended behavior; the vehicle is
stable most of the time.

The LSAC agent is generally stable as well, but it starts to violate the stability constraints
when the vehicle is at risk of leaving the road. It is important to realize that the SAC and
LSAC agents are trained with the same rewards. Without the constraint, the results of SAC
and LSAC would be the same. The difference between the agents is only because the LSAC
agent is constrained to stay inside the road boundaries.
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6-7 Racing inside track limits

6-7-1 Introduction

The results from the previous experiment show that LSAC can be used to train an agent that
only explores in the safe limits of the environment. The goal of this experiment is to show
the versatility of LSAC in constrained control tasks by finding the fastest way around a race
track while staying within the track limits.

6-7-2 Training

The agents are trained for 2e6 time steps in the simulation environment. This is around 11
hours of driving on the track. At the beginning of an episode the target velocity is picked
from µdes ∈ [0.70, 0.85], the initial lateral error e from ∈ [−0.1, 1] [m] and the initial heading
error ∆φ from ∈ [−10, 10] [deg]. An episode is ended if |e| > elim) (10 m), |∆φ| > ∆φlim (90
deg) or the end of the lap is reached (s > 565 [m]).

The fastest way around a race track is purely defined by the lap time, and the best performance
is the lowest lap time. Therefore the most accurate reward would be related -inversely- to the
lap time. But only giving a reward after an entire lap has passed is very difficult for learning.
The agent will get no feedback until it learns to drive around the track first. Learning is much
quicker and more consistent when a reward ’guides’ the agent to the desired solution.

Therefor the agent is rewarded for maximizing ṡ. ṡ is the distance covered in the direction of
the track every time step:

ṡ =
(
u cos ∆φ− v sin ∆φ

1−K(s)e

)
(6-10)

with u and v the longitudinal and lateral vehicle velocities, ∆φ the heading angle, e the
distance from the centerline of the track and K the curvature of the track. Vehicle instability
is discouraged with a small penalty. The safety costs constrain the agents to find the best
solution within the track limits. The average reward and safety cost per training episode can
be seen in Figure 6-25.

reward r(s, a) = ṡ

(
1− 0.1

(max(0, |v − vmax|)
|v|

)
− 0.1

(max(0, |r − rmax|)
|r|

))
(6-11)

Where vmax and rmax are the limits for stable driving.

safety cost b(s, a) = 0.1 ·max (0, |e| − 5) (6-12)
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Figure 6-25: The solid lines are the average reward and safety cost per episode of 5 agents
during the training progress. The shaded areas show the variance between the different agents.
The agents are rewarded for maximizing the traveled distance on the track (ṡ). The safety costs
are for driving the vehicle outside the track limits.
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6-7-3 Racing inside track limits for 85% friction utilisation: Vtarget =
√

0.85 ·Vmax
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Figure 6-26: Top: Vehicle and trajectory around the race track for a target velocity Vtarget =√
0.85 · Vmax so that the vehicle uses 85% of the available tire-road friction. Vtarget ranges from

40.2 km/h at the start to 93.0 km/h at the finish. Bottom: Steering actions and relevant vehicle
states and limits during the experiment.
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6-7-4 Discussion

In this experiment, the reward is set to maximize the traveled distance on the path each time
step (ṡ). Maximizing ṡ will maximize both the speed of the vehicle as well as optimize the
position and orientation on the track. It is clear that LSAC tries to maximize the reward by
cutting the corners and minimizing the steering inputs to hold its speed.

To quantify how much time can be gained per lap, LSAC is compared against the MPC and
SAC agents with the same target speed (

√
0.85 · Vmax) from Section 6-5. LSAC manages

to drive around the track in 30.28 seconds, which is significantly faster than MPC (32.26
seconds) and SAC (32.62 seconds). The comparison with lap times and average velocities can
be found in Table 6-1.

Table 6-1: Lap times and average vehicle speeds Vavg for MPC, SAC and LSAC for a target
velocity Vtarget =

√
0.85 · Vmax.

Controller Vavg [m/s](km/h) Laptime [s]
LSAC 18.27 (65.8) 30.28
MPC 17.85 (64.3) 32.26 +1.98 (106.5%)
SAC 17.31 (62.3) 32.62 +2.34 (107.7%)
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Chapter 7

Conclusions and Recommendations

7-1 Conclusions

Automated vehicles have the potential to increase road safety, reduce congestion, and pro-
vide mobility to those who are unable to operate a vehicle manually. Developing safe and
robust control strategies for automated vehicles is perhaps the biggest challenge towards fully
automated driving under all conditions.
Reinforcement Learning (RL) algorithms have been able to master complicated tasks such as
video games, image recognition, and robot locomotion. Tasks that can be very difficult to
solve with classical control methods can now be solved without the need to fully understand
all aspects of the problem.
One of the downsides of RL for safety-critical tasks is that there is no guarantee on the
behavior of the policies. A policy may make a bad move now because it expects a better
reward in the future. For automated vehicles, a single bad decision can have a fatal outcome.
A study of the relevant literature reveals that there are currently no publications of auto-
mated driving policies with a focus on vehicle stability and safety when driving near the
friction limit. Therefore the objective of this work is the following:

Developing a safe and robust control policy for automated vehicles using safe reinforcement
learning.

The main contributions of this work are automated driving policies developed with the
Lyapunov Safe Actor-Critic (LSAC) algorithm. LSAC is a combination of the Soft Actor-
Critic (SAC) algorithm and Lyapunov stability analysis to guarantee a uniformly ultimately
bounded (UUB) policy. LSAC can be used to solve control problems with safety constraints.
The performance of the LSAC policies is compared against SAC and Model Predictive Control
(MPC). SAC is a state-of-the-art RL algorithm for unconstrained control tasks that outper-
formed most other algorithms in a series of benchmark tests. MPC represents the best of the
classic control methods to deal with constrained control problems.
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The control policies are trained and evaluated in a vehicle simulator for the following driving
tasks:

• Navigating through traffic at 50, 75 and 100 km/h

• Recovering from destabilizing impacts

• Driving on a race track and maintaining vehicle stability

• Safe navigation on a race track and maintaining vehicle stability

• Finding the racing line on a race track inside track limits

The following conclusions can be drawn from the experiments:

There is no significant difference in performance for simple driving tasks that are well within
the limits of friction. The minor differences between MPC, SAC, and LSAC come down to
optimizing the controller settings.

When the vehicle is suddenly disturbed and forced outside the stability region, LSAC clearly
outperforms MPC and SAC. The experiments where the vehicle undergoes a destabilizing
impact on the rear the LSAC agent with stability constraint can regain control over the
vehicle in cases where MPC and SAC lose control.

Only constraining vehicle stability can lead to unsafe policies. Experiments on a race track
showed that a constrained policy will go too far off the road to avoid stability violations.

Constraining the environment instead of vehicle stability gives a policy that can safely navigate
through the environment at the limit of friction. The best all-round policy was obtained with
LSAC with constraints on the environment and a penalty for vehicle instability. The policy
will generally keep the vehicle stable, but when it gets too close to the edges of the road it
will use the extra maneuverability of unstable vehicle states to keep the vehicle on the road.

LSAC can be used to optimize the speed around a race track. Experiments on a race track
show that LSAC with constraints on the environment can be used to find the fastest way
around a racetrack while staying within the track limits. It is significantly faster than regular
SAC and MPC agents with the same target velocity.

7-2 Recommendations for future work

Many limitations in this work are deliberate to provide a fair comparison between LSAC,
SAC, and a derivation of the MPC strategy in the work of Funke et al [11, 12]. Now that
results suggest that RL and specifically LSAC is a viable alternative to MPC for automated
vehicles, further investigation to unlock the full potential is warranted. The following issues
should be considered in future work:
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7-2-1 Action space

In this work, only the steering actions of the vehicle are considered. The longitudinal speed
control is still done by an outside controller. In future work, using reinforcement learning for
both lateral (steering) and longitudinal (throttle) control -and their interaction- should be
investigated.

7-2-2 Environment

The test environments in this work are fairly simple and focused on providing a clear com-
parison between different control strategies. However, more varied environments should be
considered, as well as their effect on training times and the robustness of policies.

Previewing the environment was done by predicting the road curvature over the next second
with 0.1 second time intervals. The effect of different time horizons as well as the effect
of different preview resolutions is currently unknown. Noisy measurements are also not yet
considered.

7-2-3 Robustness and scalability

Future work should consider the robustness of the policies under heavily changing conditions
such as different road frictions. Are the policies viable on a different vehicle? Do the policies
scale from the simulator to a real vehicle? How well do the policies deal with the measurement
noise of the real world? Answering these questions can be a key component of safe automated
driving.
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