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SUMMARY

Our planet is warming up with potentially disastrous consequences. The main
cause of this climate change is the increase of greenhouse gases in the atmo-
sphere, which are mainly emitted by burning fossil fuels to generate energy.
Therefore, fossil fuels need to be substituted to reduce emissions from the energy
sector. Renewable energies offer an alternative with reduced emissions. Among
these, wind and solar energy are growing the fastest. This thesis investigates how
the wind energy supply can be increased by improving its operational efficiency.

There are several reasons why a wind turbine may not generate its maximum
capacity, one of them being its placement. Turbines are often placed in farms,
which allows the collective use of infrastructure and minimizes land usage. The
downside is that the turbines influence one another: As a turbine extracts energy
from the wind, an area with lowered wind speed develops downstream. This area
is called wake, and other turbines affected by it will generate less energy.

The ways to address this problem can be split into pre- and post-construction
measures. Pre-construction the wind farm layout can be optimized, and post-
construction control strategies are needed to operate the wind farm optimally.
These strategies fall under the term wind farm flow control and aim to manipulate
the flow between the turbines to optimize the farm performance. A turbine’s wake
can be altered by changing the turbine’s resistance to the flow or by misaligning
the turbine with the wind direction. The former leads to a faster wake recovery,
and the latter results in a redirection of the wake, also called wake-steering.

The current state-of-the-art of wind farm flow control is to utilize wake-steering
in an open-loop control configuration. To this end, steady-state engineering
models of the wake are used to optimize the farm set points offline. This is
done for a selection of atmospheric conditions and the set points are stored in
a lookup table (LuT). During operation, the flow conditions are used to look up
the precomputed turbine set points. A problem with this approach arises as
open-loop control assumes a perfect match between the model and the actual
conditions in the field. There are reasons why this might not be the case: (i) There
is an inevitable modeling error, which creates a mismatch between the model
and the reality; (ii) conditions can arise that are offline not accounted for, e.g.,
time-varying atmospheric conditions or layout changes due to turbine downtime.

These problems can be addressed by closing the loop. In closed-loop control,
measurements are used to continuously correct the model and to adapt it to the
current state of the true wind farm. Optimal set points are then found based
on the current model state. The control strategy can, therefore, react to new
conditions. A challenge is that the optimization needs to happen online and
requires a way to incorporate sensor data into the model. Previous work has
designed closed-loop approaches using the same computationally cheap steady-
state models that were previously used for open-loop control. This was achieved
by adapting the parameters of the model based on the mismatch between the
observed and predicted measurements, like power generated. A core assumption
these models make is that the flow is in a never changing steady state. However,
flow conditions do change, and the large spacing between turbines leads to
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minutes of delay between the control action the upstream turbine takes and the
effect that the downstream turbine experiences. The question arises: What could
be achieved using dynamic wake models instead of steady-state ones? These can
incorporate wake dynamics, which could lead to better decision-making.

This thesis designs a closed-loop model-predictive wind farm flow control strat-
egy based on a dynamic wake model to maximize the energy generated by a wind
farm under time-varying conditions. The thesis is comprised of three building
blocks: (i) The development of a dynamic wake model, (ii) the derivation of a
sensor fusion strategy to identify the state of the flow field, (iii) the composition
of a control strategy that uses the model to optimize the control set points. The
building blocks are then connected to form the closed-loop control strategy.

The model building is based on the further development of an existing model,
which utilizes a steady-state wake model and reintroduces flow dynamics. In
the first step, the underlying wake model is substituted by a three-dimensional
one, and the formulation is adapted to heterogeneous flow conditions. In the
second step, the model is reformulated as a framework that links to an arbitrary
wake model. This is done to profit from advancements in the steady-state model
development and to significantly decrease the computational cost of the model.
In the third step, the dynamic model is compared to a steady-state one in a set of
high-fidelity wind farm simulations under time-varying conditions based on field
measurements. The results show that the dynamic model does provide a better
match with a simulated wind farm.

In the second part of the thesis, a state estimation methodology is introduced.
To this end, an ensemble approach is adopted, where the multiple versions of
the model are simulated in parallel. The correlation between the ensembles is
then used to correct them based on the predicted and measured wind direction
and power measurements of the turbines. A byproduct of the ensemble approach
is that each estimated state also has an uncertainty based on how much the
ensembles agree on its value.

The third part of this thesis investigates the control and optimization problem.
This part focuses on the cost function formulation and the behavior it leads to.
In a steady-state frame, the delays do not have to be taken into account, but
in a dynamic formulation, they become a challenge. We, therefore, propose a
cost-function formulation that synchronizes the control actions with their effect at
the downstream turbines. This leads to a series of smaller optimization problems
instead of one larger one.

The three building blocks of this thesis are then tested in a case study: The
closed-loop controller is employed to maximize the energy of a ten-turbine wind
farm under time-varying conditions. Both the farm layout and wind direction time
series are based on field conditions. The controller generates an overall energy
gain of up to 4 % over the baseline using noise-free wind direction measurements.
This is on par with the steady-state approach. However, the closed-loop approach
is found to be more robust to disturbed wind direction measurements - Where the
performance of the steady-state approach decreases to 1.7 % due to the sensor
noise; the closed-loop approach still achieves a 2.5 % gain.

The conclusion of the work presented in this thesis is thereby: Closed-loop wind
farm flow control based on a dynamic engineering surrogate model leads to a
more accurate and robust state estimation of the wind farm flow field but, given
no preview, does not necessarily lead to a higher energy generation than what
can be achieved with steady-state models.



SAMENVATTING

Onze planeet warmt op met mogelijk desastreuze gevolgen. De belangrijkste
oorzaak van deze klimaatverandering is de toename van broeikasgassen in de
atmosfeer, die voornamelijk worden uitgestoten door de verbranding van fossiele
brandstoffen om energie op te wekken. Daarom moet het gebruik van fossiele
brandstoffen worden geminimaliseerd om de uitstoot van de energiesector te
verminderen. Hernieuwbare energiebronnen bieden een alternatief met minder
uitstoot. Windenergie en zonne-energie groeien het snelst. In dit proefschrift
wordt onderzocht hoe de operationele efficiéntie van windenergie kan worden
verbeterd.

Er zijn verschillende redenen waarom een windturbine niet zijn maximale ca-
paciteit genereert. Turbines worden vaak in windparken op zee geplaatst, wat
collectief gebruik van infrastructuur mogelijk maakt en landgebruik minimaliseert.
Het nadeel hierbij is, dat de turbines elkaar beinvloeden: Als een turbine energie
uit de wind haalt, ontstaat er stroomafwaarts een gebied met een lagere windsnel-
heid. Dit gebied wordt zog genoemd en andere turbines die hierdoor beinvioed
worden, zullen minder energie opwekken.

De manieren om dit probleem aan te pakken kunnen worden opgesplitst in
maatregelen véér en na de bouw. Voor de bouw kan de lay-out van het windpark
worden geoptimaliseerd en na de bouw zijn er regelstrategieén nodig om het
windpark optimaal te laten functioneren. Deze strategieén vallen onder de term
stromingsregeling voor windparken en hebben als doel de stroming tussen de
turbines te manipuleren om de prestaties van het park te optimaliseren. Het
zog van een turbine kan worden veranderd door de weerstand van de turbine
tegen de stroming te veranderen of door de turbine verkeerd uit te lijnen met de
windrichting. Het eerste leidt tot een sneller herstel van het zog en het laatste
resulteert in een heroriéntatie van het zog, ook wel zogsturen genoemd.

De huidige stand van zaken op het gebied van stroomregeling van windparken
voor energiemaximalisatie is het gebruik van zogsturing in een open regelconfigu-
ratie. Hiervoor worden technische modellen voor de stabiele toestand van het
zog gebruikt om de instelpunten van het park offline te optimaliseren. Dit wordt
gedaan voor een selectie van atmosferische omstandigheden en de instelpunten
worden opgeslagen in een opzoektabel (LuT). Tijdens bedrijf worden de stromings-
condities gebruikt om de vooraf berekende turbinesetpoints op te zoeken. Er
ontstaat een probleem met deze aanpak omdat open-lusregeling uitgaat van een
perfecte overeenkomst tussen het model en de werkelijke omstandigheden in
het veld. Er zijn redenen waarom dit niet het geval zou kunnen zijn: (i) Er is een
onvermijdelijke modelleringsfout, waardoor een mismatch ontstaat tussen het
model en de werkelijkheid; (ii) er kunnen omstandigheden optreden waarmee
offline geen rekening is gehouden, bijv. atmosferische omstandigheden die in
de tijd variéren of veranderingen in de lay-out als gevolg van stilstand van de
turbine.

Deze problemen kunnen worden aangepakt door de lus te sluiten. Bij een
gesloten regelkring worden metingen gebruikt om het model voortdurend te
corrigeren en aan te passen aan de huidige toestand van het werkelijke windpark.

xiii



Xiv Samenvatting

Vervolgens worden optimale instelpunten gevonden op basis van de huidige
toestand van het model. De regelstrategie kan dus reageren op nieuwe omstan-
digheden. Een uitdaging is dat de optimalisatie online moet gebeuren en een
manier vereist om sensorgegevens in het model op te nemen. Eerder werk heeft
gesloten-lusbenaderingen ontworpen met dezelfde computationeel goedkope
steady-state modellen die eerder werden gebruikt voor open-lusregeling. Dit
werd bereikt door de parameters van het model aan te passen op basis van de
mismatch tussen de waargenomen en voorspelde metingen, zoals het opgewekte
vermogen. Een belangrijke aanname van deze modellen is dat de stroming zich in
een nooit veranderende steady state bevindt. De stromingsomstandigheden ver-
anderen echter wel en de grote afstand tussen de turbines leidt tot minutenlange
vertraging tussen de regelactie van de stroomopwaartse turbine en het effect dat
de stroomafwaartse turbine ondervindt. De vraag rijst: Wat kan er bereikt worden
door dynamische zogmodellen te gebruiken in plaats van stationaire modellen?
Deze kunnen zogdynamica bevatten, wat tot betere besluitvorming zou kunnen
leiden.

Dit proefschrift ontwerpt een gesloten-lus modelvoorspellende stromingsbestu-
ringsstrategie voor een windpark gebaseerd op een dynamisch zogmodel om de
energie opgewekt door een windpark onder tijdsvariérende omstandigheden te
maximaliseren. Het proefschrift bestaat uit drie bouwstenen: (i) de ontwikkeling
van een dynamisch zogmodel, (ii) de afleiding van een sensorfusie strategie om
de toestand van het stromingsveld te bepalen, (iii) de samenstelling van een
regelstrategie die het model gebruikt om de regelpunten te optimaliseren. De
bouwstenen worden vervolgens verbonden tot de gesloten regelstrategie.

De modelbouw is gebaseerd op de verdere ontwikkeling van een bestaand
model, dat gebruik maakt van een steady-state zogmodel en de stromingsdyna-
mica opnieuw introduceert. In de eerste stap wordt het onderliggende zogmodel
vervangen door een driedimensionaal model en wordt de formulering aangepast
aan heterogene stromingsomstandigheden. In de tweede stap wordt het model
geherformuleerd als een raamwerk dat gekoppeld is aan een willekeurig zogmo-
del. Dit wordt gedaan om te profiteren van de vooruitgang in de ontwikkeling
van het steady-state model en om de rekenkosten van het model aanzienlijk te
verlagen. In de derde stap wordt het dynamische model vergeleken met een
steady-state model in een reeks high-fidelity windparksimulaties onder tijdsvarié-
rende omstandigheden op basis van veldmetingen. De resultaten laten zien dat
het dynamische model beter overeenkomt met een gesimuleerd windpark.

In het tweede deel van het proefschrift wordt een methode voor het schatten
van de toestand geintroduceerd. Hiervoor wordt een ensemblebenadering ge-
bruikt, waarbij meerdere versies van het model parallel worden gesimuleerd. De
correlatie tussen de ensembles wordt vervolgens gebruikt om ze te corrigeren op
basis van de voorspelde en gemeten windrichting en vermogensmetingen van
de turbines. Een bijproduct van de ensemblebenadering is dat elke geschatte
toestand ook een onzekerheid heeft, gebaseerd op hoeveel de ensembles het
eens zijn over de waarde ervan.

Het derde deel van dit proefschrift onderzoekt het regel- en optimalisatiepro-
bleem. Dit deel richt zich op de formulering van de kostenfunctie en het gedrag
waar deze toe leidt. In een steady-state frame hoeft er geen rekening gehouden
te worden met de vertragingen, maar in een dynamische formulering worden ze
een uitdaging. Daarom stellen we een kostenfunctieformulering voor die de regel-
acties synchroniseert met hun effect op de stroomafwaartse turbines. Dit leidt tot
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een reeks kleinere optimalisatieproblemen in plaats van één groter probleem.

De drie bouwstenen van dit proefschrift worden vervolgens getest in een ca-
sestudy: De gesloten regelaar wordt gebruikt om de energie van een windpark
met tien turbines te maximaliseren onder tijdsvariérende omstandigheden. Zowel
de lay-out van het park als de tijdreeksen van de windrichting zijn gebaseerd
op veldomstandigheden. De regelaar genereert een totale energiewinst tot 4 %
ten opzichte van de basislijn met behulp van ruisvrije windrichtingsmetingen.
Dit is vergelijkbaar met de steady-state benadering. De gesloten regelmethode
blijkt echter robuuster te zijn bij verstoorde windrichtingsmetingen - waar de
prestatie van de stationaire methode afneemt tot 1.7 % door sensorruis, behaalt
de gesloten regelmethode nog steeds een winst van 2.5 %.

De conclusie van het in dit proefschrift gepresenteerde werk is daarmee: Closed-
loop windpark flow control gebaseerd op een dynamisch engineering surrogaat-
model leidt tot een nauwkeurigere en robuustere schatting van de toestand van
het stromingsveld van het windpark, maar leidt niet noodzakelijkerwijs tot een
hogere energieopwekking dan wat kan worden bereikt met steady-state modellen.
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INTRODUCTION



N ine years after the Paris Agreement was signed, the agreed upon 1.5 °C
upper limit for global warming has been violated for the first time. To
prevent a further escalation of the climate, we need to lower our greenhouse gas
emissions, which are the main drivers of climate change. Part of this transition
is the substitution of fossil fuels for alternatives, wind energy being one of them.
Wind turbines convert kinetic energy from the flow into electricity. By doing so,
they slow down the wind behind them. This affects other turbines, lowering their
energy generation. This thesis investigates this issue on a farm scale in the
presence of wind direction changes. This thesis presents a control scheme for
collaborative wind farm flow control to maximize the energy generated by a
farm. The control scheme, in return, has the potential to make fossil fuels more
obsolete.
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11. ONE-AND-A-HALF DEGREES CELSIUS

In 2015 the Paris Agreement was formulated during the 215t Conference of the
Parties to the United Nations Framework Convention on Climate Change (COP).
A legally binding United Nations (UN) treaty set the goal to keep the global
mean long-term temperature below 2 °C compared to the pre-industrial average,
preferably below 1.5 °C [1]. To achieve this, signing parties must communicate
their plans to reduce their greenhouse gas (GHG) emissions to reach the goals
of the Paris Agreement. This goal is set as climate change is driven by human
emissions of GHG [2].

In 2024 the Paris Agreement is 9 years old, and the 29t COP is concluded.
For this occasion, the World Meteorological Organisation has assembled a report
on the state of the climate in 2024. The global mean surface air temperature
in January - September 2024 was 1.54+ 0.13 °C above the pre-industrial
average [3]. This is above the 1.5 °C agreed upon 9 years prior. While we
cannot conclude from a single year that we have failed to meet this goal, it
illustrates the immediateness of climate change.

So, where do GHG emissions come from? From all emissions, 64 % stem from
CO; emissions due to the use of fossil fuels as energy source [4]. Therefore,
two fundamental ways exist to lower GHG emissions from energy generation:
(i) reduce the amount of energy used, and (ii) substitute GHG-emitting ways of
energy generation with alternatives.

Renewable energies offer one such alternative. They are defined by the United
Nations as ““[..] energy derived from natural sources that are replenished at a
higher rate than they are consumed. Sunlight and wind, for example, are such
sources that are constantly being replenished.’'* Throughout their lifetime, they
lead to significantly lower GHG emissions than their fossil counterparts: Wind
power GHG emissions, for instance, vary between 7.8 and 23 g CO;-eq./kWh
for wind turbines2. Coal, on the other hand, varies between 751 and 1095 g
CO2-eq./kWh [5]. Due to their historic use since the industrialization, modern
fossil-fuel-based energy sources have a technological development advantage
that modern renewable energies need to catch up to. The improvements made
to the technologies are mirrored in their Levelized Cost of Energy (LCOE), which
puts into perspective how expensive the different energy sources are. Figure
1.1 shows the LCOE development from 2010 to 2023 of on- and offshore wind
alongside photovoltaic compared to fossil fuels. A conclusion we can draw
from the data is that all three ways of generating electricity have significantly
improved in terms of economic viability. However, renewable energies still have
a low penetration value from the total final energy consumption perspective.
Figure 1.2 shows how the total final energy consumption can be split into four
sectors: (i) Industry, (ii) buildings, (iii) transport, and (iv) agriculture. The data
shows that renewable energies provide a significant share of the energy used in
each sector but do not exceed 16.8 % in any of them. The reason behind this is
twofold: the sector does not use electricity as the sole form of energy (e.g.,
heat), and renewable energies do not have the scale yet to provide sufficient
energy to substitute fossil energy sources fully.

1UN.org: What is renewable energy?, accessed 18. November 2024.

2A carbon dioxide equivalent, abbreviated as CO;-eq. is a metric measure used to compare the
emissions from various greenhouse gases. This is done by converting other gases into their
equivalent amount of CO, with the same global warming potential. Adapted from Eurostat,
statistics explained, accessed 19. November 2024



https://www.un.org/en/climatechange/what-is-renewable-energy
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Carbon_dioxide_equivalent
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Carbon_dioxide_equivalent
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Figure 1.1.: Levelized cost of electricity generated by wind, solar, and hydropower
compared to the range of fossil fuels [6].
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Figure 1.2.: Total final energy consumption by end-use sector [7].

The unfolding picture shows that renewable energies are maturing to a point
where their energy is more advantageous than fossil fuel energy from a financial
and environmental standpoint. Still, they only form a small percentage of the
used energy. This begs the question of how the renewable energy supply can
be increased to substitute fossil sources further. One option is to increase the
installed capacity, e.g., erect new wind turbines or build new solar farms. The
other option is to improve the capacity factor, which describes the ratio of actual
energy produced by a source compared to its maximum. Wind energy, for
instance, had a capacity factor of 41 % to 36 % in 2023 for on- and offshore
installations, respectively. This is relatively high compared to the capacity factor
of solar with 16.2 %, but lower than the 53 % achieved by hydropower [6].
Since the main global contributors of renewable electric energy in 2023 were
hydropower (47 %), on- and offshore wind power (26 %), and solar power
(18 %) [7], it makes sense to investigate if their capacity factor can be increased.
As also seen in Figure 1.1, wind energy is already a promising candidate to
supply a significant share of renewable energies, with offshore wind being more
expensive. We therefore investigate how the supply of wind energy can be
further increased.

1.2. WIND ENERGY

Wind energy works by converting the kinetic energy of the flow into rotational
kinetic energy of the rotor into electrical energy. To this end, horizontal axis
wind turbines have blades with an aerodynamic profile; see Figure 1.3. As
moving air passes along the blade profile, it creates a pressure and suction
side, which accelerates the rotor and causes it to spin. This effect results in
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the first conversion from kinetic flow energy to rotational kinetic energy. The u

Figure 1.3.: Simplified illustration of the flow passing along a wind turbine blade. The
turbine also features a wind vane as well as an anemometer to measure
wind direction and speed, respectively.

second conversion happens in the generator by electromagnetic induction: The
working principle here is that a moving magnetic field will induce a current in a
static wire [8]. In practice, the wind turbine rotor is connected to a shaft, which
rotates multiple magnetic poles within the generator’s stator. The stator houses
wires, which capture the induced currents and make them available to the grid.
This conversion creates a force that counteracts the movement of the rotor,
slowing it down. Put together, the blades cause the wind turbine rotor to speed
up while the generator slows it down, which is in balance at a certain rotor
speed. This balance is impacted by the resistance the generator creates and
the blade pitch, which regulates how the air passes across the blade. Another
component that affects this balance is the orientation of the turbine relative
to the flow: a fully aligned turbine will have a more consistent flow across its
blades. It will, therefore, operate in a more optimal state.

Since we set out to maximize the wind turbine’s energy, it is useful to
understand what influences this value. The energy generated by a wind turbine
is the power it delivers accumulated over time. The aerodynamic power p of a
wind turbine in below-rated conditions can be calculated as follows [9, 10]:

1 2,,3
p= Epnr uzcp, (1.1)

where p denotes the air density, mr? the rotor area, u the wind speed of flow and
¢p the power coefficient. The latter combines the aerodynamic effectiveness of
the turbine based on the blade pitch and its orientation. To maximize the energy
of a wind turbine, we need to maximize its power. Therefore, the question
arises: which components of Equation (1.1) can be influenced to maximize the
turbine power? The air density can not be altered; the wind speed, however,
depends on the turbine’s location and height. The rotor area can be set during
construction. Furthermore, the characteristics of ¢p are subject to aerodynamic
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design and operation and can also be influenced. Based on these relations, wind
turbines have grown in size. The quadratic relation between turbine radius and
power generation creates a strong return-on-investment effect for each meter
for which the turbine blades can be extended. However, increased material
demands, structural boundaries, and transportation limitations limit this way of
maximizing the turbine power.

The way to further increase the generated power is to distribute its generation
across multiple turbines and place them in wind farms. This also comes with
advantages related to the shared infrastructure, such as cables or transformers,
as well as serial production effects and joint maintenance. However, placing
wind turbines together comes with its downsides.

1.3. FROM ONE TO MANY TURBINES

As discussed in Section 1.2, wind turbines work by extracting kinetic energy
from the flow. As a result, the flow slows down behind the turbine. This area
of lower wind speed is called a wake. Wind turbine wakes can span multiple
factors of the diameter of the turbine that caused them. They do recover as they
start mixing with the surrounding faster air. Wind turbine wakes of upstream
turbines can affect downstream turbines in a wind farm. Going back to Equation
(1.1), this leads to a decrease Au in the wind speed experienced by the turbine.
Since the power generated depends on u3, a slight reduction of u causes much
more significant losses. Figure 1.4 shows Equation 1.1 again, extended by the

) Blade design
Rotor size Blade control
Generator control

p=gpm ? (u—Au) ¢

Tower height | | Wind farm layout
Turbine location | | Wind farm flow control

Figure 1.4.: Different approaches to maximize the power generated by a wind turbine,
indicated by the part of the equation they affect.

reduction in wind speed due to wakes. We can now annotate the different parts
of the equation that we can influence and the related strategies to maximize the
power generated by a turbine. The losses induced by wakes can be reduced in
two ways: The wind farm layout can be optimized to minimize wake losses. This
can be achieved by larger spacing and moving the turbines out of each other’s
wake based on predominant wind directions. An accompanying approach is to
use the turbine’s degrees of freedom to change its wake shape. This is known
as wind farm flow control (WFFC).
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1.4. WIND FARM flow CONTROL

Wind farm flow control is an umbrella term for control strategies that alter the
flow between the turbines and collectively achieve a farm-wide goal [11]. The
underlying premise is that an upstream turbine can change its wake to benefit a
downstream turbine. Additionally, turbines share sensor information to gain a
better collective insight into their surroundings to determine their best course of
action.

In this thesis, we motivate the goal of energy maximization, but wind farm
flow control can also be applied to other cost functions. One would be to
track a reference power signal with the wind farm [12]. This eases the power
fluctuations on the grid and makes the farm output more predictable. A second
goal is lifetime preservation - this may entail reducing the turbulent impact on
other turbines or de-rating damaged turbines and compensating for their loss
with other ones [13]. While these topics are occasionally discussed in this thesis,
they are not the main topic and will not further be motivated.

14.1. THE ACTUATED WAKE

To better understand the possibilities of performing WFFC, a look at the actuators
of a turbine is needed. A wind turbine can alter three degrees of freedom: (i) its
orientation, (ii) its blade pitch, and (iii) its generator torque. The latter two
change how much and where the rotor extracts energy from the flow. The
turbine orientation changes how the flow passes along the rotor plane.

a) Baseline wake
| ——
b) Pulse wake

&0 =

c) Helix wake

ME Faculty

Figure 1.5.: Dynamic induction control approaches to control the wake shape in laminar
flow compared to the baseline (a). Collective periodic pitching of the blades
results in the Pulse (b), pitching the blades with a phase-offset between
them results in the Helix (c). The mechanical engineering faculty building of
the TU Delft is given as a reference. The turbine and thus wake size is based
on the DTU 10 MW turbine [14].
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The effects that can be achieved by varying these degrees of freedom can
be summarized into two types: (i) wake redirection and (ii) wake shrinking.
The latter is mainly achieved by actuating the blade pitch and changing the
generator torque. Applied as a static strategy, the blades pitch out of the wind
to reduce the energy they extract. This shortens the wake and minimizes the
impact on a second turbine. This control approach is called axial-induction-based
control or static induction control [11]. Static induction control has shown to be
useful in field tests in a tightly spaced turbine configuration with < 4 turbine
diameters distance with full alignment between the turbines [15, 16]. Successive
field tests further support the findings but also show that it is difficult to prove
consistent gains using static induction control methods [17]. However, as static
induction control lowers the force of the turbine against the flow, also the
blockage layer changes and decreases [18]. This might lead to a case where
data from previous field experiments might underestimate the efficiency of the
control method. There is also an opposing approach, where the turbine force
onto the flow is deliberately increased [19]. This causes the wind turbine to
behave more like a bluff body and induces oscillating motions in the wake,
which can increase its recovery [20]. This has made way for a more dynamic
approach to induction control: By altering the thrust of the turbines dynamically,
the wake mixing with its environment may be enhanced, which leads to a faster
recovery and a higher amount of power generated [21]. These results were
based on an optimization framework that has full knowledge of the state of the
flow, which makes it unfeasible for real application. The resulting actuation
signal was therefore reformulated as a sinusoidal variation of the turbine thrust,
which can be applied as an open-loop WFFC strategy [22]. The change in thrust
can be achieved by collectively pitching the blades. The resulting pulsating
wake is illustrated in Figure 1.5 (b) alongside the baseline wake (a) and the
faculty building of Mechanical Engineering at the TU Delft3. If the periodic blade
pitching is applied with a phase offset between the blades, a helical wake shape
emerges [23]. One advantage of this method is that the power generated by the
actuated turbine does not fluctuate as much as with the collective change of
thrust. The Helix wake is depicted in Figure 1.5 (c). The discussed methods
all aim to lower the impact of the wake by either extracting less energy from
the flow or by enhancing the wake mixing with the environmental flow. A
fundamental assumption often made with these strategies is that there is full
alignment between the turbines and that they are relatively densely spaced. If
this is not the case, the efficiency of the proposed methods can decrease, and a
redirection of the wake becomes a more profitable approach [24].

Redirecting the wake is called wake steering and is achieved by misaligning
the rotor with the predominant wind direction [25]: As the air passes the angled
rotor plane, a pair of counterrotating vortices forms behind the turbine, leading
to a wake deflection, see Figure 1.6 b) and c) [26]. The amount of wake
deflection increases with the misalignment angle and the distance to the turbine.
The amount of possible wake deflection is large enough to justify wake control
for a wide selection of turbine down- and crosswind spacings [24]. This makes it
an attractive choice for WFFC applications, and multiple companies offer control
solutions based on wake steering [27]. At this point, wake steering is the most
advanced approach of WFFC; however, it is still a relatively young approach,

33DBAG, accessed 26. November 2024.
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and during its current design phase, steady-state conditions are assumed. This
might yield that control approaches are not fully optimized yet and can be
improved. We will, therefore, further investigate steady wake steering as the
primary approach to WFFC in this thesis and will explore how it is applied under
time-varying atmospheric conditions.

a) Baseline

c) Curled wake

b) Misaligned é
\

Figure 1.6.: In baseline operation, the wake develops in a straight line (a). If the turbine
is misaligned, the wake is deflected to the side (b). This is due to a pair of
counter-rotating vortices that curl the wake up and push it to the side (c,
adapted from [26]). Figure (a) and (b) show hub-height slices of the wake,
(c) a cross-section of (b).

14.2. FLOW SENSORS

To determine the appropriate actuation signal, the wind farm controller needs to
know the current state of the environment. In its simplest form, this relates
to the wind direction and speed at the turbine; in its most complex form, this
relates to knowledge about the full turbulent flow field and its future.

The first step is to investigate turbine individual measurements. The power
generated, for instance, can be used, along with the rotor speed, to estimate
the effective wind speed [28, 29]. Dedicated sensors available with turbines are
the wind vane, which indicates the wind direction at the turbine location, and
the anemometer to measure the wind speed, see Figure 1.3. The information of
the wind speed and direction at the turbine can now be paired with information
about the wind farm layout to perform WFFC. However, given the location of the
sensors, their measurements are likely affected by the turbine operation and
surrounding flow, which leads to signal noise and biases, which are amplified for
downstream turbines by the wakes of upstream turbines. One way to combat
the noise is to average the value, which simultaneously reduces the amount of
data. This measure has led to the adaptation of 10-minute averaged data, which
can hide flow dynamics important to wind farm flow control [30]. An alternative
is the use of turbine measurements collectively. This can be done by taking
the absolute or weighted average [31]. In practice, this does not compensate
for possible biases or uncertainties. This has led to the development of more
sophisticated approaches, which specifically aim to combat these issues [32,
33]. Another common approach is to use auxiliary measurements from sensors
located away from the immediate proximity of the rotor. One tool to achieve
this are measurement-masts, as used by, e.g., [16]. These are a collection of
flow measurement instruments distributed across different heights and near the
turbines but unaffected by their blades and flow. They can provide reference
measurements for the turbine but require their own structure to be of a similar
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height to the turbines. This is especially disadvantageous and costly in an
offshore environment. More advanced sensors exist to measure the flow
conditions away from the turbine without a mast. Most prominently, LiDARs
(light detection and ranging) have become more specialized and available in
wind farms. They can measure the wind speed and direction at defined points
in space based on particles flying in the air. Due to their capabilities, they
have become a standard asset during measurement campaigns, e.g., [16, 34,
35]. They come with their challenges, such as the amount of cumulated data,
the temporal and spatial resolution, the signal-to-noise ratio, and their cost.
There has also been work that explores how LiDARs can be used for WFFC
purposes [36, 37]. The currently most proven application of LiDAR-assisted
control aims to reduce turbine loads [38]. Dual-Doppler radars operate similarly
but using a microwave signal instead of a laser. Their temporal and spatial
resolution is lower than what can be achieved by a LiDAR; however, they do
range further. They have mainly been used as a reference and to analyze wind
turbine and farm wakes, e.g., [39, 40], but the required post-processing and
uncertainty makes them difficult to use for online decision making [41].

This brief review of available flow sensors shows that the information
about the current state of the flow field is limited. Widely available sensors,
such as the turbines themselves with their instrumentation, return a coarse
and polluted measurement signal of the flow. More advanced sensors like
LiDARs and dual-Doppler radars are expensive and difficult to utilize for online
decision-making. Additionally they remain the exception and cannot be expected
to be available with every wind farm. Based on these findings, a sensor fusion
strategy is needed to provide the basis for control decisions. Further, the
controller needs to solely rely on the data that is available at runtime.

1.4.3. LINKING MEASUREMENTS TO CONTROL ACTIONS

A wind farm flow control strategy needs to combine both ends: It needs to
process and utilize sensor data to find the appropriate reference settings for the
available actuators to achieve a farm-wide goal, which, in this thesis, is energy
maximization. Linking measurements to control actions can be done in two
ways: as a model-free approach or in a model-based manner.

Model-free approaches collect input and output data to identify their relation
and utilize it to achieve their goal, e.g. [42-44]. The advantages of this approach
are that little to no prior system knowledge is required and that the algorithm
can adapt to the exact dynamics at hand. The disadvantage is that the approach
takes an increasingly long time to identify the input-output relation, depending
on its complexity. Model-based approaches circumvent the learning step by
employing a surrogate model of the actual system, in this case, the wind farm
and its flow dynamics. This allows the transfer of knowledge about the system
dynamics into the control strategy; however, it requires a sufficiently accurate
model.

Wind farms possess characteristics that make both model-free and model-
based control approaches challenging to apply. First and foremost, the
turbine-to-wake-to-turbine interaction is of a highly nonlinear aerodynamic
nature. It changes based on the current state of the atmosphere, the surface
topography, and inflow conditions. Wind turbines are spaced far apart, which
causes delays between a control action and its effect on a downstream turbine.
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This can lead to cases where wind direction changes might jeopardize control
actions optimized for the initial wind direction. Additionally, the size and financial
scale of a wind turbine, and by extension farm, make it difficult to perform
experiments on. If experiments are performed, there is no reference wind
farm in precisely the same conditions to compare the achieved performance.
The scale of the turbines also makes the simulation of wind farms difficult, as
simulators need to connect the aerodynamic effects at a blade-profile scale with
the flow development across multiple kilometers.

These issues, combined with the limited measurement capabilities discussed
in Section 1.4.2, have sparked the development of various wind turbine and
wind farm models from high-fidelity numerical codes (e.g., [45, 46]) that allow
the closest description of an actual turbine behavior to low-fidelity codes
(e.g., [47-49]) that approximate the happenings within a wind farm at a low
computational cost. A model-based control strategy can benefit from these
developments. In this context, we decide to further investigate possibilities for
model-based WFFC, to benefit from the previous model developments, and to
adapt them for control purposes.

1.4.4. MODEL-BASED WIND FARM flOW CONTROL

This form of WFFC needs to make two choices: (i) the surrogate model to
represent the wind farm, and (ii) the way control set points are derived and
applied at runtime. Both choices are discussed in the following paragraphs.

WAKE MODEL

The choice of the model is essential, as it dictates what kind of control is
possible. A more sophisticated model like a Large-Eddy Simulation (LES)
coupled with an optimizer can lead to the discovery of new ways of wake
actuation [22]. This approach also marks the most demanding approach in terms
of computational effort and required knowledge about the flow field. The LES
can be down-sampled for more efficient control set point derivation [50], but
this approach also requires full knowledge of the flow domain state.
Medium-fidelity wake models, like 2-dimensional Reynolds-averaged
Navier-Stokes solvers [51, 52], attempt to capture the flow and wake
Dynamics at a reduced computational cost by limiting its dimensionality to a slice
at hub height. This can lead to nonphysical effects while applying wake steering,
as the wake deflection characteristics are inherently three-dimensional [53].
Free-vortex methods allow for a three-dimensional wake simulation at a low
computational cost [54-56]. They solely model the path and interaction of
vortex particles shed by the rotor. This method can simulate the wake
deflection induced by turbine misalignment, as well as dynamic induction control
approaches. However, as the wake breaks down, the approximation tends to
become numerically unstable, which makes the method increasingly difficult
to use for > 2 turbine simulations and for long-distance wake interaction [57].
Another group of medium fidelity models is described by the Dynamic Wake
Meandering (DWM) Model [58]. The approach models the wake as successively
shed turbulence boxes that propagate downstream. The transport speed and
direction are determined by the present turbulence, which recreates effects such
as wake-meandering. Further developments of the method have proven to be
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useful for load assessments in a farm context and as medium-fidelity verification
of low-fidelity control approaches [59, 60].

Steady-state engineering wake models offer the computationally cheapest
approximation of wind turbine wakes, e.g., [47-49]. These derive and fit
analytical equations to describe the wake shape, deflection, and reduction of
wind speed. Inputs for the models are typically the background wind speed,
predominant wind direction, as well as the ambient turbulence intensity. Initially
derived for single turbine wakes, wake superposition methods allow the use
of the wake models in farms. Their simplicity and speed have made them
a common tool to use for tasks line wind farm layout optimization and yield
assessments [61-63]. However, the simplifications come at the cost of flexibility
and accuracy: The wake models inherently introduce a model error compared
to the instantaneous flow based on the steady-state assumption. For control
purposes, they can only simulate what they have been designed to represent,
e.g., a wake model with no deflection term cannot simulate wake steering.
By extension, these models cannot contribute to the discovery of novel WFFC
physics, only to the optimization and further development of known ones.

The combination of steady-state wake models with the principles of the DWM
model led to the development of dynamic engineering wake models [64]. These
induce passive Lagrangian tracers in the flow, which propagate state changes
at the rotor plane into the flow field, where they can affect other turbines.
Steady-state engineering wake models are then used to calculate the wake
impact. This description of a delay dynamic, coupled to engineering wake
models, was initially proposed in [64] and has mostly laid dormant since. Given
that it describes the mean dynamic wake behavior, it only relies on mean
dynamic quantities, such as the predominant wind direction and speed. This
substantially lowers the requirements for the sensor needs and makes a derived
control strategy more accessible. In this thesis, we, therefore, continue the
development of this wake modeling approach for WFFC purposes.

Over the course of this thesis, this type of wake model has had a renaissance.
Next to the contributions made in this thesis, several similar models have been
published. This namely includes the work of [65], which derives a version that
can capture wake meandering by splitting wake and flow field dynamics, [66]
which also resorts to modeling flow and wake dynamics apart, [67] who makes
the assumption of a tracer inherent flow field state, and [68] which embeds the
wake in an LES precursor for the purpose of hardware-in-the-loop experiments.
A similar yet fundamentally different approach is presented by [69, 70]: this
model presents the wind farm as a network of edges and nodes. The dynamics
are achieved by delaying communication between the turbines based on their
distance and the atmospheric conditions. The connection between these models
and the contributions made in this thesis is discussed in Section 1.5.

CONTROLLER

Model-based WFFC can be applied in an open- or closed-loop configuration, as
can be seen in Figure 1.7. The closed- or open-loop distinction relates to how
the model is used: in closed-loop, the state of the model is estimated based on
measurements. The model and the decision process, therefore, react to the
state at hand. In open-loop, the measurements are used to look up control
precomputed set points. As a result, there is no remaining flexibility to react to
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Figure 1.7.: Combined block diagram of the (a) open- and (b) closed-loop model-based
wind farm flow control approaches. The figure is adapted from [11].

states not part of the precomputed database. An advantage of open-loop WFFC
is that the control set points can be optimized offline.

Open-loop control has been the predominant form for wind farm flow control,
e.g. [35, 71, 72]. The offline optimization is formulated as a steady-state
problem to maximize the power generated by the wind farm. Generally, this
problem is not convex, which needs to be taken into account during optimization.
One tested approach is based on generic algorithms [73], and other approaches
use gradient-based information, e.g., [72, 74]. Recently, dedicated algorithms
have been developed that derive control set points for wind farms iteratively
by testing a broad, coarse range of control set points, which are successively
refined [75]. This makes use of the fact that the wake models are relatively
cheap to evaluate, while small differences in the final misalignment angle have
a small impact on the cost function.

There is little work on the yaw angle optimization using dynamic engineering
wake models. One publication uses the dynamic model to perform a grid search
to find steady state yaw angles during a synthetic turbine shut-down event in a
three-turbine wind farm [76]. A first attempt at closed-loop control has been
made using a steady-state wake model [77]. This work continuously identified
the wind speed, direction, and wake shape and successively optimized the
turbine orientation to maximize the steady-state power generated. Similarly, [78]
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also closes the loop on the parameters of the steady-state wake model, which
describes its shape. This approach is also presented by [79], in addition to a
wind speed estimation.
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Figure 1.8.: Schematic of economic model predictive control applied to wake steering:
first, a set of yaw angle time series is chosen, which vary within the action
horizon Tan. These are then evaluated using the model across the prediction
horizon Tph. A cost function J combines the results into a single number,
which is optimized. Once no more improvements are made, the optimal time
series is applied, and the time advances by the update time step 7,. During
this time, measurements are taken from the true system, and the state of
the model is corrected. Then the optimization is repeated.

A receding horizon approach is used to apply model-based closed-loop control
using a dynamic surrogate model. In the case of this thesis, this refers to
economic model predictive control (eMPC). In a classic MPC framework, the
model would be used to track a reference value. However, in this thesis, we are
maximizing the energy and are therefore optimizing towards a supremum. This
difference is indicated by the addition of the term economic. This approach is
also used by similar work, e.g., [19, 57, 80]. Figure 1.8 depicts the approach
adapted to this thesis: based on the current state, a wake model is employed
to maximize the energy generated over a prediction horizon using the turbine
orientations. The turbine orientation can be varied throughout the action horizon
Tah; the energy is accumulated up until the end of the prediction horizon Tph.
Once the optimization is done, the control set points are applied to the real
system and data is used to estimate the new state of the wake model. After an
update time step, the cycle repeats and a new optimization is done.
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1.5. THIS THESIS

The state-of-the-art timeline leading up to this thesis shows that there is a gap
in wind farm flow control: While model-based steady-state WFFC methods have
been tested and refined, dynamic approaches have been limited or non-existent.
An initial dynamic engineering wake model has been proposed and preliminary
tested, but no further development has been done up to this point. Furthermore,
there is little work done on closed-loop wind farm flow control, which may
have advantages over its open-loop counterpart. To this end, we formulate an
overarching objective:

Thesis objective The development of a closed-loop economic model-
predictive control framework using wake steering and a dynamic wake
surrogate model to maximize the energy generated by a wind farm under
realistic time-varying conditions.
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Figure 1.9.: The wake model development contributions and a selection of their immediate
scientific context are mostly limited to other dynamic engineering wake
models.
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To achieve this objective, three building blocks are needed: (i) a dynamic
surrogate model, (ii) a state estimation strategy, and (iii) a controller. Thereby
the first contribution of this thesis is formulated as:

Contribution I The design and development of a dynamic wake model for
wind farm flow control purposes under time-varying conditions.

This entails building upon previous work and further refining the model for
control purposes. Figure 1.9 shows the wake model development chapters in
their relation to similar wake models. The first contribution is a 3D extension of
the previously introduced FLORIDyn model [64]. This model is further adapted
for heterogeneous flow conditions and employs a Gaussian wake model. The
model is then rewritten as a centerline model, meaning that the wake shape
and dynamics are dictated by the wake centerline. This significantly reduces
the computational cost. In this iteration, the FLORIDyn model also becomes
a framework that can add dynamics to an arbitrary steady-state wake model.
In parallel, a number of similar models are published independently [65-67].
Through a collaboration, the last model contribution of this thesis is an
open-source object-oriented framework for dynamic parametric wake models
like FLORIDyn. It is built in such a way that it can become a central interface to
these models.

The second contribution relates to the state estimation of the derived dynamic
model:

Contribution I The development of a sensor fusion strategy to identify the
state of the flow field based on available turbine data.

This contribution draws from the previous success of the Ensemble Kalman
Filter (EnKF) applied to estimate the flow field in a 2D RANS simulator [81],
and to do online parameter estimation for a steady-state wake model in a
closed-loop configuration [78]. Successive work by [82, 83] also applies this
methodology to estimate the wake location.

The last block of the closed-loop controller is the derivation of the turbine
inputs. The third contribution is therefore formulated as follows:

Contribution Il The derivation of a control strategy that provides control
set points in a wind farm to maximize its energy generated.

This contribution needs to adapt a problem that is typically viewed in a
steady-state frame into a dynamic one with time-varying atmospheric conditions.
To this end, a receding horizon optimization is used, similar to the work of [19,
21, 57, 80]. The contribution further needs to demonstrate how to formulate and
solve the optimization problem. Lastly, the three blocks need to be combined
and tested for their performance:
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Figure 1.10.: State-estimation contribution and its immediate scientific context.

Contribution IV A case study that combines the building blocks and tests
the derived closed-loop economic model-predictive wind farm flow control
strategy.

The scientific context for the control contributions Ill and IV is given in Figure
1.11. Note that this is a selection of the relevant literature, which is further
extended in the chapters themselves. This work aims to address wind farm flow
control in a closed-loop manner under-time varying inflow conditions. This was
previously done using steady-state wake models [77, 78, 84], but not yet with
dynamic models. During the thesis [57, 80] proposed an adjoint optimization
framework for wind farm flow control under time-varying conditions. This work
builds on the previous success of adjoint optimization in LES, performed by [19,
21]. The FLORIDyn wake model is not designed for adjoint optimization, which is
why a dedicated strategy is developed in contributions Ill and IV.

THESIS OUTLINE

The derivation of a dynamic wake model is addressed in Chapter 2, 3, and 4:
Chapter 2 revises a previously designed dynamic wake model for heterogeneous
and changing environmental conditions. The computational load of the model
is then greatly reduced in Chapter 3 by a reformulation. This rework of the
model also increases the flexibility of the wake model. This is demonstrated in
Chapter 4, where the derived model is used to investigate the performance of a
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Figure 1.11.: The immediate scientific context of the model-based control contributions in
this thesis. Note that this selection either focuses on dynamic models or
steady-state models applied in closed-loop.

steady-state controller over a long time horizon. Chapter 5 then addresses the
inclusion of measurement data and adapts an ensemble-based state estimation
methodology for the previously derived surrogate model. The model-based
control approach is then developed and tested in Chapter 6 - 7. Here, Chapter 6
provides an approach that reformulates the energy maximization cost function
to neglect the inherent delays between the turbines. Chapter 7 integrates the
newly formulated cost function alongside its alternatives in a closed-loop case
study. The findings of this thesis are concluded in Chapter 8, which also gives a
set of recommendations for future work.

The following chapters 2 to 7 have each been published/submitted as
a stand-alone journal or conference paper. Therefore, each chapter
will motivate its own work and draw its own conclusions. The related
publications are marked with each chapter.
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Figure 1.12.: Connection of the thesis chapters to the closed-loop control framework.
Chapter 2-4 address the model development, and Chapter 5 proposes a
state estimator. Chapter 6 investigates the control problem. Lastly, a case
study of the combined closed-loop is presented in Chapter 7.
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THE REVISED FLORIDYN MODEL:
IMPLEMENTATION OF HETEROGENEOUS flow
AND THE GAUSSIAN WAKE

This chapter is based on the following publication:
[1] M. Becker, B. Ritter, B. Doekemeijer, D. van den Hoek, U. Konigorski, D. Allaerts, and J.W. van
Wingerden, The revised FLORIDyn model: implementation of heterogeneous flow and the Gaussian
wake, Wind Energy Science (2022), 10.5194/wes-7-2163-2022.



I n this chapter, a new version of the FLOw Redirection and Induction Dynamics
(FLORIDyn) model is presented. The new model uses the three-dimensional
parametric Gaussian FLORIS model and can provide dynamic wind farm simu-
lations at a low computational cost under heterogeneous and changing wind
conditions.

Both FLORIS and FLORIDyn are parametric models which can be used to simulate
wind farms, evaluate controller performance and can serve as a control-oriented
model. One central element in which they differ is in their representation of flow
dynamics: FLORIS neglects these and provides a computationally very cheap
approximation of the mean wind farm flow. FLORIDyn defines a framework which
utilizes this low computational cost of FLORIS to simulate basic wake dynamics.
This is achieved by creating so-called observation points (OPs) at each time step
at the rotor plane which inherit the turbine state.

In this work, we develop the initial FLORIDyn framework further considering
multiple aspects. The underlying FLORIS wake model is replaced by a Gaussian
wake model. The distribution and characteristics of the OPs are adapted to
account for the new parametric model but also to take complex flow conditions
into account. To achieve this, a mathematical approach is developed to combine
the parametric model and the changing, heterogeneous world conditions and
link them with each OP. We also present a computationally lightweight wind
field model to allow for a simulation environment in which heterogeneous flow
conditions are possible.

FLORIDyn is compared to Simulator for Offshore Wind Farm Applications (SOWFA)
simulations in three and nine-turbine cases under static and changing environ-
mental conditions. The results show a good agreement with the timing of the
impact of upstream state changes on downstream turbines. They also show a
good agreement in terms of how wakes are displaced by wind direction changes
and when the resulting velocity deficit is experienced by downstream turbines.
A good fit of the mean generated power is ensured by the underlying FLORIS
model. In the three-turbine case, FLORIDyn simulates 4 s simulation time in
24.49 ms computational time. The resulting new FLORIDyn model proves to be a
computationally attractive and capable tool for modelbased dynamic wind farm
control.
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2.1. INTRODUCTION

In recent years, the topic of wind farm control has gained traction as renewable
energies become more and more relevant for the current and future energy
mix. Maximizing the power generated by a wind farm is not a trivial task as the
turbine-to-turbine interaction is characterized by the complex flow, large delay
times and an ever-changing environment. In order to describe the wind field,
parametric steady-state approximations have been developed. These describe the
mean behavior of the flow with parametrized analytical expressions rather than
differential equations. A first approach was presented by [2], which motivated
years later the development of more refined steady-state models, such as the
Zone FLORIS model [3]. With these low-computational-cost and easy-to-implement
wake descriptions, it is possible to develop a model-based control algorithm. These
control strategies have managed to improve the power generated in high-fidelity
simulations e.g., [3] and in field experiments [4]. The success of parametric
steady-state models opens up the question of whether it is possible to overcome
one of their great shortcomings: the lack of dynamics. A lowcomputational-
cost dynamic wake description can be used to more accurately describe the
wake behavior on smaller timescales, during turbine state changes and during
environmental changes. This could lead to more sophisticated control approaches
and wind farm analysis methods.

There have been efforts to implement parametric models in a dynamic manner,
some of which are described here. For a more in-depth discussion of the current
state of the art, the interested reader is referred to the review by [5] and more
recently, [6]. In the current literature, we have identified two major trails of
publications, which will be briefly discussed below.

The first research trail begins with the Aeolus SimWindFarm Toolbox [7], which
is publicly available. The toolbox uses the Jensen model [2], coupled with a
dynamic description of the centerline and a wind field grid. The centerline would
imitate the wake meandering effect based on passive tracers, traveling with the
synthetically generated turbulent wind speed. A number of limitations have been
imposed for this toolbox: the mean wind speed and direction are constant, the
flow field is calculated in 2D, and the turbines operate with fixed yaw angles.
The toolbox has enabled the work of [8], who used the Frandsen multiple wake
model [9] and added a description of turbine dynamics to estimate fatigue loads.
The model is then used to perform induction control based on lookup tables of the
thrust and power coefficients with the goal to redistribute loads. This work later
inspired the dynamic wind farm simulator, introduced in [10]. The model adds
wake steering to the fatigue load estimation and induction control capabilities. To
model the effect of yawing the turbine, the deflection formulation of [11] is used.
Based on data from the in-house code Bladed, the author formulates the effect
of yaw misalignment on the power coefficient by a polynomial expression based
on the blade pitch. The wind field is represented by low- and a high-frequency
wind speed variations. The low-frequency variations are correlated across the
wind farm and cause wake meandering and advection. The highfrequency part is
uncorrelated between the turbines and is superimposed with the wake deficits.
Lastly, the wake model is switched to the Ainslie model [12].

A second trail of publications can be found starting with [13], where the authors
use the previously mentioned Jensen model and extend it to incorporate the
impact of time-varying extraction of kinetic energy of turbines due to induction
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control. Assuming a constant wind direction and wind speed, the authors derive a
linear approximation of the wake advection velocity based on the laws of momen-
tum conservation and mass conservation. The result is a one-dimensional partial
differential equation to describe the dynamic wake behavior. The model neglects
possible changes of the wake expansion due to a changing thrust coefficient
and also does not incorporate yaw angle changes. In [14], the authors extend
their model to also take the effects of yawing into account. Most recently, this
approach inspired the development of the Floating Offshore Wind Farm Simulator,
published in [15]. The authors extend the momentum conservation equations
to incorporate time-varying free-stream wind velocity effects. Additionally, they
couple the model to a dynamic description of floating platforms, restricted by
mooring lines. The authors closely follow [16] to derive a parametric Gaussian
velocity shape for their model.

Alongside the two discussed trails of publications, the dynamic wake mean-
dering (DWM) Model was developed. The DWM model, first presented by [17]
and later calibrated and refined by [18], proposes an approach much closer to
established CFD methods. The model follows a pseudo-Lagrangian approach and
creates turbulence boxes around the wake deficit which is created by the turbine.
These boxes are then subject to a synthetic turbulent wind field, which allows the
modeling of the wake meandering effect. The DWM model puts a focus on load
estimation next to the power generated and simulates the turbine by coupling
a CFD actuator disc model with an aeroelastic model. Compared to the other
mentioned models, the DWM model presents a synergy of CFD methods with
engineering approaches.

Another early attempt to derive a dynamic model from a parametric steady-
state model was published by [19] who utilized the just published FLORIS model
(FLOw Redirection and Induction in Steady-state, [3]) and created the FLORIDyn
model (FLOw Redirection and Induction Dynamics). FLORIDyn creates so-called
observation points (OPs) at the rotor plane which travel downstream at hub height
with the effective wind speed. Their path follows the zone boundaries described
by the FLORIS model. The wake deficit and shape depend on the yaw angle
and the induction factor. Changes in these variables travel with the OPs and
cause a delayed effect at downstream turbines. The authors derive a state-space
representation of the model behavior and validate it in a six-turbine simulation
against the high-fidelity large eddy simulation environment SOWFA [20]. The
state-space representation is then used to implement a Kalman filter for flow field
estimation [21]. The model does have shortcomings: due to the two-dimensional
flow, shear and veer effects can not be captured, the simulations only work in one
wind direction and they do not capture turbulent effects. Furthermore, due to the
way the OPs travel, parts of the wake can overlap and can create a faulty wake
representation.

In this paper, we aim to overcome these issues and bring the FLORIDyn approach
into a form where it can incorporate heterogeneous and changing flow conditions,
wind shear, and added turbulence levels. To achieve these changes, we rework the
framework to use a Gaussian FLORIS model [16]. This requires a new formulation
of the OP behavior. Due to these changes, the wakes can also incorporate
locally different and changing flow conditions, such as wind speed, direction
and ambient turbulence intensity. To drive the model, a concept of a wind field
model is presented as well. The framework is then compared to the simulation
environment SOWFA in three- and nine-turbine cases. Furthermore, in order to
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allow for collaboration and extension, the code is published in its entirety [22].
The resulting Gaussian FLORIDyn model is a capable, open-source alternative to
the few other existing in-house parametric dynamic models, developed for wind
farm control purposes.

The remainder of this paper is organized as follows: Section 2.2 discusses
the relevant characteristics of the former FLORIDyn framework and how it is
adapted. The simulation results are presented in Section 2.3, which also discusses
the computational performance. Section 2.4 concludes the paper and gives
recommendations for future work.

2.2. A NEW PARAMETRIC DYNAMIC WIND FARM MODEL

In this Section, the new Gaussian FLORIDyn model is introduced. To prevent
confusion, we will refer to the models of Gebraad et al. as the Zone FLORIS
model [3] and the Zone FLORIDyn model [19]. The Gaussian model by [16] will be
referred to as Gaussian FLORIS model.

As the new Gaussian FLORIDyn model is building upon previous work, Sections
2.2.1 and 2.2.2 briefly introduce the terminology and properties of the underlying
Gaussian FLORIS model and the Zone FLORIDyn framework. The novel Gaussian
FLORIDyn model makes changes to the Zone FLORIDyn framework. These are
discussed in Section 2.2.3. Section 2.2.4 describes how heterogeneous envi-
ronmental conditions are taken into account. To get the power coefficient (Cp)
and the thrust coefficient (Ct) values closer to the validation platform SOWFA, a
lookup table was generated (Section 2.2.5). Lastly, a basic wind field model is
given in Section 2.2.6. It is built to provide the heterogeneous field conditions to
evaluate the FLORIDyn model.

In the wake coordinate system, K1, x1 describes the downwind direction, yi
the horizontal crosswind direction and z; the vertical crosswind direction (Fig.
2.1). In this coordinate frame, the rotor center is always located at [0, 0, 0]T. This
coordinate system is not to be confused with the longitudinal (xg), latitudinal (yo)
and vertical (zog) world coordinate system Kp.

2.2.1. THE GAUSSIAN FLORIS MODEL

The core of the used Gaussian FLORIS model is based on the work of [16]. This
work describes a parametric, three-dimensional wake with a Gaussian-shaped
wind speed recovery. As it has been applied and described in previous publications
(e.g., [23]), only the basic terminology is introduced here as well as the wake
shape. In the present work of this paper, the model has been extended with the
calculation of added turbulence as proposed by [24]. The power calculation has
been extended by the cos(y)Pr adaptation to the yaw angle [25] and an efficiency
term n for tuning [3]. Figure 2.1 depicts an illustration of the wake with its three
areas: the potential core, the near-wake area and the far-wake area. For all areas
a reduction factor r = Au/usree can be calculated, where ufree is the free wind
speed and Au is the wind speed deficit. The potential core is a region from jets in
a coflow [26]. Here, it is used to approximate the immediate region behind the
rotor plane. Within the potential core, r is constant. In the near and far field area
r reduces to 0, following a Gaussian shape with the extremum at the centerline
or border of the potential core. The recovery rate is based on o, and o; in the
respective crosswind directions. The potential core width is described by wy, pc
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and wz,pc, which continuously decrease for the length of the potential core xc.
Lastly, the deflection § returns the position of the centerline.

The mentioned variables are dependent on turbine states, such as the thrust
coefficient Ct and the yaw angle vy, the ambient turbulence intensity Iy, and
a set of 10 parameters. The parameters adjust wake properties such as the
recovery rate, the expansion rate, the sensitivity to added turbulence levels and
the influence of the yaw angle. The values of the parameters are listed in Table
2.1 in Section 2.3.

Center line

[ Potential core
............ [ Near wake
___________________ ] Far wake

Figure 2.1.: Sketched shape of the wake with the different sections, the deflection and areas
of equal relative reduction by the Gaussian shape.

2.2.2. THE ZONE FLORIDYN MODEL

An initial FLORIDyn model was published in [19]. The model is based on the
previously published Zone FLORIS model, which approximates the wake shape
with three zones: near field, far field and mixing zone [3]. Every zone has
a formulation of the velocity recovery in downstream direction. To introduce
dynamics, observation points (OPs) are created at the rotor plane at each time
step.

Figure 2.2.: Creation and propagation of the OPs: In (1) a set of OPs is created, inherits the
turbine state and travels downstream, following the FLORIS wake shape, shown
in (2). In (3) the turbine state changed and the new OPs inherit a different state
(now colored white) and follow the new, dark indicated, wake shape (4).
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The OPs serve the purpose to describe the local FLORIS wake characteristics
at their location. To do that, they inherit the turbine states at the time of their
creation which are necessary to calculate the FLORIS wake. With time, each OP
travels downstream, representing a mass of air traveling in the wind. Their travel
path is determined by the borders of the FLORIS wake zones. The speed they
travel with is equal to the effective wind speed they represent. Figure 2.2 shows
the basic concept. Initial OPs are colored black to stress that they inherited the
same state. The OPs created after the yaw step are colored white, showing that
their inherited state differs.

With this framework, the steady-state wake represents the known FLORIS
wake, but other than in FLORIS, changes propagate through the wake instead of
instantly affecting turbines downstream. If, for instance, the yaw angle of the
turbine changes, the new generation of OPs will inherit the new angle while old
OPs still travel according to the previous angle.

In the case of overlapping wakes, an OP travels into the wake of another turbine.
The OP locates the closest up- and downstream OPs from the foreign wake and
interpolates their reduction factor at its location. In this model, the resulting
reduction of the free wind speed is calculated as follows:

nt
Ueff,oP(Ufree,0P, Fown, I'f,0P) = Ufree,0P(1 — rown) l_[(l —ri), (2.1)
i=1
[ —
rt,op

where ufree,op is the free wind speed at the OP’s location. This wake interaction
model could also be exchanged for another formulation. The wind speed reduction
rown is based on the OP’s own wake and r; is the interpolated reduction of one of
the nt upwind turbines.

To calculate the effective wind speed at the rotor plane, the model calculates
an effective velocity reduction factor rr for every turbine at every time step. The
algorithm combines the reduction of each upstream turbine by a root sum square.
Within one wake, the reduction factors of the zones are summed, weighted by the
overlapping area with the rotor plane.

2.2.3. CHANGES TO THE FLORIDYN APPROACH

Due to the changed underlying FLORIS model, the FLORIDyn approach needs to
be adapted. Specifically, the move to a three-dimensional flow field requires a
fitting distribution of the OPs, which is discussed in Section 2.2.3. This opens
up the possibility to reformulate the calculation of the effective wind speed at
the rotor plane, which is presented in Section 2.2.3. The travel speed of the OPs
is addressed in Section 2.2.3. In this Section 2.2.3 we use the wake coordinate
system K3, indicated by the lower index 1 (eg. y1,0r). The relation between world
and wake coordinate system will be explained in Section 2.2.4.

DISTRIBUTION OF THE OBSERVATION POINTS

By changing the underlying FLORIS model, the travel path of the OPs and their
distribution has to be rethought. The Gaussian FLORIS model does not have
defined borders, and it is three-dimensional. To cover the crosswind wake area
regularly for any number of OPs, an algorithm based on the sunflower distribution
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was used [27]. The algorithm returns a relative crosswind coordinate (vy, v;) €
[—0.5,0.5] for a given number of OPs. We used 50 OPs per time step. To cover
the majority of the Gaussian wake influence, the wake width was chosen to be
+30y and £30; from the centerline and the potential core. The following equation
is used to calculate the position of an OP in the wake coordinate system:

y1,0p(Vy,0p, Oy, Wy,pc, 8) = Vy,0p(60y + Wy,pc) + 5, (2.2)
21,0p(Vz,0pP, Oz, Wz,pc) = Vz,0p(60z + Wz,pc). (2.3)

Note that this model only assumes a horizontal deflection. To add a vertical
deflection, due to rotor tilt for instance, Equation (2.3) needs to be adapted
accordingly. For simplicity’s sake gy is used, which represents gy, nw for 0 <xi <
Xc and oy, for x1 > xc. Respectively, o0, is defined the same way. The variable
6 describes the deflection of the centerline. If OPs travel below z; = 0 they are
ignored. Since vy, and v, aare not changed during the simulation, they can be
calculated a priori. They are then used in every time step for the new generation
of OPs. OPs with the same relative coordinate follow each other and form what is
called a chain. The number of chains is equal to the number of OPs created at
each time step.

WIND SPEED AT THE ROTOR PLANE

Since OPs are created at the rotor plane and they interact with foreign wakes,
they can be used to estimate the effective wind speed for the power generation.
To do that, they have to be distributed across the rotor plane rather than the
wake area:

y1,0p(Vy,0p, ¥) Ix;=0 = Vy,opD COS Y, (2.4)
z1,0p(Vy,0P) Ix;=0 = Vz,0pPD. (2.5)

The next step is to determine the area represented by every OP. This is done
offline by generating a Voronoi pattern ( [28], [29]) with the OPs’ relative location
as seeds and a circular boundary with radius 0.5. The area of the resulting
polygons is normalized by the rotor area and used as weight. All weights are
stored in the vector w.

During the simulation, the OPs calculate the reduction of foreign wakes rfop on
themselves as shown in Equation (2.1). Stored in a vector Ff=[rf1, - ,rf,nop]T
the effective wind speed at the rotor plane is calculated as follows:

Ueff = W (Ffo ), (2.6)

where o stands for the element-wise multiplication and & represents a vector of the
free wind speeds at the locations of the OPs. An OP considers itself influenced by
a foreign wake if the closest foreign OP is less than %D away. This is an arbitrary
chosen threshold to reduce the number of OPs for the interaction interpolation.
As the outer wake OPs represent the most recovered sections of the wake, this
still results in a smooth influence transition.

TRAVEL SPEED

In the former version of the FLORIDyn model, the OPs travel with the effective
wind speed they represent. Regions in the center of the wake with lower effective
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wind speeds therefore propagate the changes slower than the outer areas. While
this seems an intuitive choice, it leads to problems. Initial simulation results
showed that, in comparison to the SOWFA simulation, the effects of a state
change arrive noticeably slower in FLORIDyn at downstream turbines. Also, due
to the difference in OP travel speed, the outer regions adapt their shape earlier in
a downstream location, which leads to overlapping areas with the slow regions,
which have not adapted yet. This makes the wake representation not injective
anymore: multiple OPs occupy and describe the same space at the same time
with varying properties.

In this article, the OPs are assumed to propagate with the speed of the free-
stream wind rather than the effective wind speed in accordance with Taylor’s
frozen turbulence hypothesis [30]. The decision is supported by experimental
results from [31] and has also been used by other similar codes, e.g. [7]. This
also solves the issue of the overlapping wake areas since neighboring OPs travel
at the same speed and follow the same state changes. Another implication of this
adaptation is that OPs no longer need to calculate the influence of foreign wakes at
every time step. This would be used to determine their effective wind speed and
thus how far they travel downstream in one time step. The only OPs which need to
calculate the foreign influence are the ones at the rotor plane in order to determine
the effective wind speed according to Equation (2.6). These model assumptions
also significantly decrease the computational load during the simulation. The
downside of the change is that the effects of state changes now arrive too fast
and abrupt at downstream turbines, which will be seen and discussed with the
simulation results in Section 2.3. In future work, the wake propagation speed
could be a tuning parameter which is set depending on atmospheric conditions
such as the turbulence intensity for instance [32].

2.2.4. INCLUDING DIRECTIONAL DEPENDENCY AND OBSERVATION POINT
PROPAGATION

In this section, we address how the OPs, and therefore the wakes, react to a wind
direction change. We assume that a wind direction change only affects the wake
orientation and that the wake structure and downstream evolution (as defined
by the underlying FLORIS model) can be seen independent from the free-stream
behavior. It is therefore possible to split the two aspects into two coordinate
systems: the world coordinate system Ko and the wake coordinate system Kj.
The free flow conditions are described in Ko, whereas the wake properties are
described in K1. An OP links these two coordinate systems.

The underlying FLORIS model is described in K1, where the origin x; =y1 =21 =
0 is located in the center of the rotor plane. The downwind distance is denoted
as x1, y1 describes the horizontal crosswind distance and z; the vertical one. Ko
does not have a special orientation apart from zg = 0 being the ground level and
the zp axis pointing upwards. In this work, xo describes the west-east axis, yo the
south-north axis. To transform a location vector 71, described in K1 of a turbine
with the rotor-center location %, into Fy the rotational matrix Ro1 is used:

X0 X0, T cosp —sing 0] [x1
Fo=|Yo| =to+Roi1(@)'1= |YoT1|+ |[sSing cose Of|y1]. (2.7)
z0 z0,T 0 0 1| |z1

This equation assumes a uniform wind direction ¢ at every location. This will
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not be the case for the formulation used for the OP propagation later on in Eq.
(2.9). Each OP has two location vectors, Fo,op and 71,op, one for each coordinate
system. The OP’s position update and its reduction factor is calculated in K£1. Ko
is used to calculate the wake interaction and to determine the wind speed, the
wind direction and the ambient turbulence intensity. At the OP’s creation, 71,0p is
determined by the Equations (2.4) and (2.5) for the crosswind coordinates; the
downwind coordinate is set to 0. Its world location, gy op, is then determined by
Equation (2.7) with the wind direction @, 7 at the turbines location. To iterate
the location of an OP from time step k to time step k + 1 the downwind step is
calculated first in K1:

X1,0p(k + 1) = x1,0r(k) + uop At, (2.8)

where At is the time step duration and uopp is the magnitude of the wind vector
lig,op at the OPs location Fg,op. The direction will be applied in Eq. (2.9). For
the scope of this work, Ug,op can only have non-zero components in xo and
Yo direction. With x1,0p(k + 1) the new crosswind locations yi,op(k + 1) and
Z1,0p(k + 1) can be calculated with the Equations (2.2) and (2.3), respectively.
This completes the transition 71,0p(k) — F1,0r(k + 1). Note that only x1,0p(k) is
needed to determine the OP’s location in K1. At the cost of calculating y1,op(k)
and z1,op(k) again at each time step, they do not have to be stored as states. To
update 7o op(k) the step which the OP took in K1 has to be translated into Ko:

Fo,op(k + 1) = Fo,0op(k) + Ro1(@o,0p)[F1,0p(K + 1) — F1,0p(K)], (2.9)

where @g,op is the wind direction at Fg,op(k). Note that ¢g,op refers to one OP’s
individual wind direction; other OPs may have different values. This means that
each OP propagates on its own and non-uniform wind directions can be simulated.
Figure 2.3 shows the OP step in the wake and world coordinate system. In Figure
2.3-1 and 2.3-2 the wind direction is constant, indicated by the arrow left to the
yo axis. The OP calculates its step in the wake coordinate system (dotted arrow)
and updates its location vectors. These are here simplified to fp and ry. In 2.3-3
the wind direction changes and the former FLORIS wake description is invalid
and greyed out. With the new wind direction Ro1(¢o,0p) is calculated differently.
The OP can calculate its step in the wake coordinate system as before, but its
translation K1 — Ko changed. Note that neither o nor 71 are influenced by the
changed wind direction. Their magnitude and orientation remain the same in their
respective coordinate systems, however, their orientation towards each other
changes.

2.2.5. CALCULATION OF C AND Cp

The thrust coefficient Ct is often approximated following the actuator disc theory:
Ct(a) = 4a(1 — a), where a is the axial induction factor. To circumvent this
approximation, simulations or experiments can be used to create lookup tables.
Since most equations of the Gaussian FLORIS model are dependent directly on Ct
rather than a, we used lookup tables generated in SOWFA to align FLORIDyn's
thrust coefficient with what the turbines in the validation environment experience.
For completeness, we also use lookup tables for the power coefficient Cp. The
tables are generated for the DTU10 MW reference turbine [33]. It has to be added
that these tables are generated from a grid of high-fidelity simulations, where
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@ Yo @Yo

Figure 2.3.: This figure visualizes the working of Equation (2.9), which is applied for each
OP individually. In the transition from (1 — 2), the position update of an OP in a
time step with a constant wind direction is depicted. The transition from (3 — 4)
shows the position update when the wind direction changes. In this case, the
wake coordinate system is rotated around the OP’s location to match the new
downstream direction. This causes the apparent origin of the wake in the world
coordinate system to change, which is visualized by the grey turbine.

the coefficients were read after the simulation converged to a steady state. The
tables can, therefore, only approximate the effect of a changing turbine state
and changing wind field conditions onto Ct and Cp. Control approaches for axial-
induction-based controllers, such as the one presented by [34], successfully use
similar lookup tables, which is why we assume these to be sufficient. Nevertheless,
an extension for dynamic circumstances would be a valuable addition for future
work but is also connected to a significant computational effort.

In the tables, the coefficients are described dependent on the blade pitch angle
B and the tip speed ratio A(w, ueff), where w is the angular velocity of the rotor.
However, neither FLORIS nor FLORIDyn can provide A and . What they can
provide is ueff. Combined with the assumption that each turbine follows a greedy
control strategy and maximizes Cp(A, B) for the given wind, we can formulate
the coefficients dependent only on uef: first, maximize Cp within the physical
limitations of the wind turbine for all wind speeds, then use the Ap,max and Bp,max
to calculate the respective Ct. The resulting curves can be seen in Figure 2.4.
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Figure 2.4.: Greedy control settings of the un-yawed 10 MW DTU reference turbine based
on the effective rotor wind speed.
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Unfortunately, the resulting Ct(ueff) values can get very high, especially for
low wind speeds. This conflicts with some FLORIS equations, which comprise the
term +/1— Ct and become complex for Ct values above 1. To avoid these issues,
Ct(ueff) is limited to its value at the Betz limit: Ct|q=1/3 = 0.8 [35]. Another
complication is the calculation of the added turbulence levels as it is the only
equation which requires the axial induction factor. In this case, the calculation
of Ct(a) was inverted to determine a(Ct), based on the actuator disc theory, as
follows:

1
a=§(1—v1—C-|-). (2.10)

Yaw effects on Ct and a are neglected here. In future work this expression could
be substituted, for instance by the polynomial approximation of [36]. It extends
a(Ct) to Ct values above 1. However, as Ct is limited in this work, this extension
is not necessary. The power coefficient is the remaining aspect which was used
unaltered from the lookup tables. For the tested wind speeds below 11 ms 1 the
power coefficient is constant at Cp = 0.4929. The effect of ¥ is approximated by
multiplying Cp with cos(y)P». For simplicity’s sake we assume pp to be a constant
value. This could be extended by the work presented by [37] which takes the
presence of other wakes into account. Similarly, [38] presents an adaptation for
locally varying wind profiles.

2.2.6. WIND fiELD MODEL

In order to drive the FLORIDyn model, the wind field needs to be able to simulate
heterogeneous, changing environmental conditions. The implemented solution
is inspired by the work of [23]. The basic assumption is that measurements of
the wind field variables are available at certain locations. This could be due to
satellite data, lidar measurements, met masts or other sensors. The value of a
measurement for the location of an OP is then interpolated between the measure-
ments available. To reduce the computational effort of an interpolation at every
time step, a nearest-neighbor interpolation (NNI) is desirable. To get a sufficient
resolution of the measurements to justify an NNI, the sparse measurements m
have to be mapped to dense measurement grid points mg:

Mg =Mm, (2.11)

where the matrix M describes the mapping and can be calculated offline. The
ith row in M describes the percental composition of mg,; from m. As a result, the
sum of every row in M is equal to 1. This way, a more complex interpolation
can be reduced to a matrix multiplication and a NNI at runtime. In this work, a
linear interpolation is used to map the measurements to the grid points, which are
spaced in a 20 x 20 m grid. OPs outside of the grid defined by mg use the closest
grid point. This method is also independent from the quantity measured. In this
work, the wind speed, the wind direction and the ambient turbulence intensity
were interpolated with the presented method.

However, the presented method is only meant for values changing in the xg and
yo direction. The wind speed is the only field measurement which is also changed
in the zg direction; wind direction and ambient turbulence intensity are assumed
to be constant in the vertical direction. Following [23] the power law is applied:

20

u(zo) = (Z—) SU(ZO,m), (2.12)

0,m
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where zg m is the height of the measurement and as is the shear coefficient. The
shear coefficient approximates the combined effect of atmospheric stability and
surface roughness. A small value describes unstable flow conditions. Examples
for characteristic as values due to surface roughness are 0.11 over water, 0.16
over grass, 0.20 over shrubs, 0.28 over forests and 0.40 over cities [39]. In this
work zp,m is equal to the hub height z, of the turbine.

2.3. SIMULATION RESULTS

In this section, the Gaussian FLORIDyn model is compared to SOWFA with the
focus on turbine interaction. Two wind farm layouts are considered for compar-
ison: three consecutive turbines and a nine-turbine cluster arranged in a 3 x 3
configuration. The DTU 10 MW reference turbine is used for all simulations. Table
2.1 summarizes the FLORIS and FLORIDyn parameters used in the simulations.
The FLORIS parameters kq and kp are from [40] , k7 q to kf,qg are set based on
FLORISSE_M [41], and a*, B* follow the findings of [16]. The efficiency n was
tuned based on turbine TO in the three turbine baseline case; pp was tuned based
on the three turbine yaw case (Section 2.3.1 and 2.3.1 respectively). For FLORI-
Dyn, n¢ relates to the number of OP chains per turbine and nop to the number of
OPs per chain. The value of nop was set to cover the entire relevant downstream
domain of a turbine; nc was set to maintain a sufficient density of OPs at the
location of other turbines. In FLORIDyn, one time step is 4.0 s long.

Table 2.1.: Parameters used in the simulation with the values they influence

FLORIS
Wake expansion Added turbulence
Ka kb kf,a kf.b kg, c ks, d
0.38371 0.003678 0.73 0.8325 0.0325 -—-0.32
FLORIS FLORIDyn Wind
Potential core Power Chains, OPs Shear
a* B* n Pp Nc nop as
2.32 0.154 0.8572 2.2 50 200 0.08

Table 2.1 also includes the wind shear coefficient, as, which was approximated
based on the free flow in SOWFA. The inflow boundary conditions for SOWFA are
provided by a precursor simulation which simulates a horizontally homogenous,
conventionally neutral atmospheric boundary layer including Coriolis effects. The
SOWEFA settings differ for the three turbine case and the nine turbine case and
will be explained in the respective sections.

2.3.1. THREE TURBINE CASE

The three turbines are placed 5D = 892 m apart from each other in down-
wind direction. Turbine TO is located at (608 m,500 m), and Tl and T2 are
at (1500 m, 500 m) and (2392 m, 500 m) respectively. The mean wind speed
at hub height is approximately 8.2 ms~1 with an ambient turbulence intensity
of roughly 6 %. The mean wind direction is constant along the x axis. The full
SOWFA flow field domain spans 3 x 1 x 1 km and was simulated with a time
step of At = 0.04s. The base cells of the flow field are 10 x 10 x 10 m. The
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Figure 2.5.: Scaled layout of the three-turbine case with the wind direction indicated by an
arrow on the left. The 0°, 10° and 20° yaw orientations from TO are indicated as
turbine symbols with the according orientation. The colored background areas
indicate the zones of cell refinement.

refinement areas are centered in the domain and have no offset from the ground.
The first refinement is 2.4 x 0.8 x 0.5 km with 5 x 5 x 5 m cells, the second one
is 2.2 x 0.6 x 0.35 km with 2.5 x 2.5 x 2.5 m cells. Figure 2.5 shows the to-scale
layout including the areas of cell refinement. In SOWFA, the turbines are modeled
with the built-in Actuator Line Method (ALM) implementation [42].

To give a better idea of the low-frequency, less-turbulent dynamics, the power
generated in SOWFA is also presented filtered by a zero-phase second-order
low-pass filter. This non-causal filter is added to aid the visual interpretation of
the simulation results. The filter has a damping ratio of d = 0.7 and a natural
frequency of w = 0.03 s~ L. This allows for a more equal comparison as FLORIDyn
is sampled at a lower frequency and turbulence is only included as a flow field
metric.

A regular second-order low-pass filter with the same d and w is used for the
FLORIDyn data. This causal filter visualizes how low-pass filtering would affect
the predicted power generated. This could have advantages due to the changes
made to the OP travel speed in Section 2.2.3, which can lead to a very abrupt
wake interaction, as will be discussed in Section 2.3.1. However, the filter also
naturally adds a phase shift to the data, an effect which might not be desired.

Note that the two filters have different purposes: The non-causal SOWFA filter
aims to help to interpret the simulation results, while the causal FLORIDyn filter
explores if and when the use of a low-pass filter would be advantageous or if it
would decrease the quality of the results.

COMPARISON OF THE WIND FARM START-UP AND STEADY-STATE

In Figure 2.6 the power generated by the turbines in FLORIDyn is compared to the
SOWFA simulation. The dynamics in this simulation are the turbulent wind field
and the settling of the wake. In the unfiltered data, the interaction in FLORIDyn
sets in earlier and more abrupt than in SOWFA. This is due to the OPs traveling at
the free wind speed, as explained in Section 2.2.3. The slight curvature of the drop
att ~ 100 s can be explained by the wind shear: OPs at a lower altitude travel at
a slower free wind speed than OPs at a higher altitude and therefore arrive later
at the downstream turbine and therefore affect the turbine later. There are two
major aspects to address in order to close the gap between the SOWFA and the
FLORIDyn start-up: on the one hand, the way state changes propagate through
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Figure 2.6.: Wind farm start-up and steady-state comparison of the power generated in
SOWFA and in FLORIDyn. The unfiltered data is plotted in the left figure, and
the filtered data is on the right. The SOWFA data is filtered with a zero-phase
(noncausal) low-pass filter and FLORIDyn with a causal low-pass filter.

the wake; on the other hand, how a downstream turbine reacts to the new wind
field. To give an idea of how a change of the latter aspect would influence the
plot, Figure 2.6 also shows low-pass-filtered FLORIDyn data in comparison to zero-
phase-filtered SOWFA data. The FLORIDyn data align much more with the SOWFA
data but still show discrepancies in terms of dynamic response and steady-state
quality of the solution. It should be emphasized that the inFLORIDyn-applied filter
does not affect the wake, it only adds an artificial dynamic response to the power
calculation. This is important when heterogeneous and changing wind directions
are taken into account.

The power generated after the wind farm start-up remains steady in FLORIDyn.
This is because there are no turbulent wind speed changes in FLORIDyn. In this
state, FLORIDyn is equal to the underlying FLORIS model; therefore, errors in this
state need to be solved by adapting the FLORIS model. This could be done by
parameter tuning, which has only been done partially in this work (n and pp; see
introduction Section 2.3).

To incorporate the turbulent wind speed changes, at least to a certain degree,
an estimation of the wind speed at the turbine location would be necessary. This
could be done by including wind speed sensor data or estimating the wind based
on the power generated [21] or based on a torque balance equation [43].

A notable aspect of this simulation is the influence of the added turbulence.
Because TO adds turbulence to the wind field, the wake of turbine T1 recovers
faster. Turbine T2 thus experiences higher wind speeds and generates more
power than it would without the additional turbulence. This effect can also be
observed in the SOWFA data. The old Zone FLORIDyn model is not able to capture
this effect due to the underlying Zone FLORIS model. It shows how the FLORIDyn
framework is inherently dependent on the capabilities of the employed FLORIS
model.

COMPARISON DURING A YAW ANGLE CHANGE

In this simulation, the yaw angle y of turbine TO is changing from 0° to 20°
in steps of 10°, starting at t = 200 s and 800 s. The change rate of y is set
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Figure 2.7.: Comparison of the power generated in SOWFA and in FLORIDyn with changing
yaw angles. The transparent bars indicate the time window in which turbine TO
increases its yaw angle by 10°. The left plot shows the unfiltered data, and the
right one shows the filtered data. The SOWFA data is filtered with a zero-phase
(noncausal) low-pass filter, FLORIDyn with a causal low-pass filter.

to 0.3° s~1. Figure 2.7 shows the unfiltered SOWFA data in comparison to the
unfiltered FLORIDyn data on the left, as well as the filtered data on the right.
Filtering was performed as described in the introduction of Section 2.3.1.

In FLORIDynN, turbine T1 shows a slight reaction to the yaw changes of turbine
TO at roughly t 320 s and more significantly at t 920 s. The influence of
the state change then travels further and impacts T2 at t ~ 430 s and, as well
more significantly, at t & 1030 s. In SOWFA, the reaction is obscured by turbulent
influences. However, an increase in average power can be seen for T1 and T2
throughout the entire simulation. Figure 2.8 shows the baseline simulation in
comparison to the SOWFA simulation, in absolute values and the difference. The
data of both simulations can be compared since they use the same wind field. It
allows for a more accurate determination of the reaction time to the upstream
change. Turbine T1 starts to react to the first yaw angle change at t 320+ 8 s,
T2 att ~ 434+ 8 s. Given the distance to TO, this translates to a travel speed of the
first influence between [6.98,7.97] ms—1 to T1 and [7.38, 7.90] ms—! to T2. This
indicates that first effects of the yaw angle change do travel at almost free-stream
velocity and the times align with the FLORIDyn prediction. However, FLORIDyn
does lack the dynamic nature of the interaction, which means the response of
the wake to the state change of the upstream turbine and the response of the
downstream turbine to changes in the wake. Given that all OPs travel at their
free-stream velocity, turbine state changes are directly picked up by the OPs and
transported, and the FLORIDyn turbine reacts immediately when the OP arrives.
The low-pass-filtered results provide an idea of how a dynamic response could
change the results. The unfiltered difference between the SOWFA simulations is
given in the Appendix 2.A.1. Figure 2.7 also shows that FLORIDyn underestimates
the gain in generated energy in the steady-state region. The error likely lies with
the underlying FLORIS model as it is a steady-state error. Better parameter tuning
would likely decrease or even eliminate the error.
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Figure 2.8.: Comparison between the zero phase filtered (zp.f.) SOWFA data in the baseline
case (bl.) and in the yaw case. On the left are absolute values, and on the right
is the difference between the yaw case and the baseline case. The transparent
bars indicate the time window in which turbine TO increases its yaw angle, first
from 0° to 10°, then to 20°.
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Figure 2.9.: Complete nine turbine FLORIDyn flow field in comparison to SOWFA at t = 600 s.
The wind direction change is indicated in the lower left corner of the SOWFA
plot.

2.3.2. NINE TURBINE CASE

In order to test the model in a changing environment, a simulation with nine
turbines was performed. The turbines are arranged in a three-by-three grid with
900 m distance to the closest turbines and 600 m to the edge. The setup is
presented in Figure 2.9 as well as the numbering of the turbines. The wind field
performs a 60° uniform wind direction change from 15° to 75°, as indicated in
Figure 2.9. The change starts at t = 600 s with 0.2° s~ and ends at t = 900 s.
The change in wind direction is achieved by using SOWFA’s built-in utility to
specify the wind speed and wind direction at a certain height and time. For the
remainder of the simulation, the wind field conditions remain steady. To keep the
computational load of the SOWFA simulation low, the DTU 10 MW turbines were
simulated with the Actuator Disc Method (ADM). This also allows a coarser grid and
time resolution: The domain is discretized in 10 x 10 x 10 m cells, and the SOWFA
time step length is set to 0.5 s. The flow field spans 3x 3x 1 km. The average wind
speed during the simulation is 8.2 ms—! and the ambient turbulence intensity is
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Figure 2.10.: Nine turbine flow field at hub height during the wind direction change at
t =700 s (top), t = 800 s (center) and t = 900 s (bottom). The FLORIDyn
flow field is on the left and includes grey arrows as an indicator of the current
wind direction. On the right is the corresponding snapshot from the SOWFA
simulation.

approximately 6 %. During the simulation, the turbines maintain a yaw angle of
0° and turn with the wind. For simplicity we assume ideal wind direction tracking
capabilities and apply a prescribed motion. For more information see the dataset
which contains the SOWFA files for the case and the precursor simulation [44].
Figure 2.10 shows the flow field during the wind direction change, starting at
the time instances t = 700 s, t = 800 s and 900s. The SOWFA slices are taken
at hub height. To show the center of the FLORIDyn flow field, only OPs between
0.5 zn < zop < 1.5 zj, are plotted. As the wake expands, more chains leave these
bounds, which leads to a sparser description of the wake in the plot. Due to the
changes to FLORIDyn described in Section 2.2.3, the OPs do not influence each
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Figure 2.11.: Power generated in the nine-turbine case. The grey area marks the time
window in which the wind direction linearly changes by 60°. The plots are
arranged to fit the layout of the wind farm in Figure 2.9. The data shows the
zero-phase filtered (zp. f.) and the unfiltered (unf.) SOWFA data, as well as
the filtered (f.) and unfiltered FLORIDyn data.

other in the field and OPs with a higher velocity can appear among OPs with a
lower velocity. The net effect of multiple OPs is only calculated at the rotor plane.
The grey arrows in the FLORIDyn plots indicate the current wind direction. The
plots of both simulations visualize how the wakes slowly transition to the new
wind direction, forming a bow shape in the process. FLORIDyn seems to describe
the general path of the SOWFA wakes quite well. It also capture some effects like
shorter, wider wakes of T4 and T5 at t =900 s.

To more accurately judge the timing of FLORIDyn, Figure 2.11 shows the gener-
ated power of all nine turbines. The plots are arranged in the same way as the
turbines in the flow field plots. All plots show the filtered and unfiltered data of
FLORIDyn and SOWFA. The filtering is identical to the filtering in Section 2.3.1.
The grey area marks the time window of the wind direction change. Looking at
the magnitude of the generated power, FLORIDyn predicts the average of the free
stream turbines TO, T3, T6, T7 and T8 quite well, but the remaining turbines show
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a noticeable offset in generated power. This could be due to speed-up effects
and is briefly discussed in Appendix 2.A.2. The interesting aspect is the timing
of the wake interaction from upstream turbines with downstream turbines. The
generated power by T4 shows the passing of the wake of T6 during the wind direc-
tion change. Noticeable is the accuracy with which the unfiltered FLORIDyn data
align the unfiltered SOWFA data. Table 2.2 lists the points in time at which the
power generated is minimal in SOWFA and in FLORIDyn, as well as the difference.
This shows that FLORIDyn predicts the maximal wake influence 5.5 s later than in
SOWFA. The filtering of the FLORIDyn data significantly worsens the quality of the

Table 2.2.: Points in time at which the power generated in the nine-turbine case is minimal
due to wake interaction.

Turbine 1 \ Turbine 2 | Turbine 4  Turbine 5
Min.1 Min. 2 Min.1 Min. 2 Min. 1 Min. 1
SOWFA (s) | 833.5 996.5 822 972 826.5 809
FLORIDyn (s) 832 992 836 992 832 836
Error (s) | —1.5 —4.5 +14 +20 +5.5 +27

result, in contrast to the simulations of the three-turbine case. The filtering was
applied on the data from the rotor plane. Thus, only modifying the way a turbine
perceives the incoming, foreign wake in FLORIDyn will not improve the simulation
for changing environments. As a result, future research has to improve the way a
turbine dynamically influences its own wake. Turbine T1 shows similar behavior to
T4: the generated power shows the wake influence of T3 first, but it also shows, af-
ter the wind direction stopped changing, the influence of the outskirts of the wake
of T6. While the timing of this interaction shows good agreement, the magnitude
of the interaction is considerably lower in FLORIDyn than in SOWFA. This could
be due to a too fast recovering FLORIS wake, an inadequate wake superposition
method or due to local turbulence levels, which FLORIDyn can not capture. T5
shows the overlapping influence of the wakes of T6 and T7. The two overlapping
Gaussian influences do form a longer period of reduced generated power. This
can be seen in both simulations. Table 2.2 shows the largest timing error between
SOWFA and FLORIDyn for this wake influence. This could stem from an inaccurate
wake interaction model and the way added turbulence is treated. T2 shows the
most overlapping influences by the wakes of T3, T4, T6 and T7 in this order. While
the first two overlapping interactions show good agreement, FLORIDyn shows
poorer agreement with SOWFA for the influence of T6 and T7. Again, the SOWFA
simulation suggests a larger decrease in generated power. A reason could be that
the way wakes combine is not described accurately enough. The timing of the
wake of T7 seems to be a bit too late as well. However, the SOWFA simulation
recovers to its steady-state at about the same time as FLORIDyn. Additionally, all
turbines, with the exception of T6, experience a small influence of the upstream
turbines in the steady-state configuration. This effect is not noticeable in the
SOWFA simulations. Concluding, FLORIDyn describes the timing of passing wake
influences quite well. However, there are discrepancies in terms of magnitude
and possibly in the way wakes combine their effects on downstream turbines.
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2.3.3. COMPUTATIONAL PERFORMANCE

Table 2.3 contains the average computational time per time step, which is equiv-
alent to 4 s simulation time. This can be compared to SOWFA, which can take
around 5.8:102 s to 5.4-103 s per core, per time step, depending on the setup [45].
The FLORIDyn measurements were performed for two and three consecutive tur-
bines and a 2 x 2 and 3 x 3 turbines wind farm. The times exclude plotting and the
simulation setup time. A setup can take up to 3 s, depending on how much data
needs to be imported. The measurements were taken on a MacBook Pro (2019),
2.3 GHz 8-Core Intel i9 CPU, 32GB of 2667 MHz DDR 4 RAM, an SSD and MacOS
Catalina (10.15.7). The simulation environment is Matlab 2020a without the use of
toolboxes, such as the parallel computing toolbox, and without precompiled code,
besides what is built into the simulation environment. These results naturally
vary with the layout, atmospheric behavior, simulation settings, etc., and are only
meant to give an estimation of the performance.

A first takeaway is that FLORIDyn simulates all cases faster than real-time:
Within 4 s, the simulation can perform between 164 and 6.5 simulation steps,
depending on the number of turbines simulated. This results in 656 ssjm in-
simulation time for two turbines and goes down to 26 ssim for nine turbines
in 4 s of real-time. This opens up the needed computational headroom for a
model-based real-time control strategy and the necessary optimization. On the
other hand, the times also do not offer a large time window for optimization. For
instance, in the three-turbine yaw case, it takes roughly 300 ssjm in simulated
time until the yaw changes have propagated from the first turbine to the last
turbine. To optimize the control actions with this model for the near future, parallel
computing would be needed. With an increasing number of turbines, this time
window decreases.

Generally, the computational time increases quadratically with n%— nt, as nt
turbines need to determine if they are in the wake of another turbine and calculate
the influence. This growth in computational effort is assumed to decrease with
larger wind farms: As the spacial dimension grows, not every turbine needs to
consider all other turbines for interaction. Nevertheless, the simulation times will
exceed what is practical for a wind farm with > 3 turbines.

There are multiple opportunities to improve performance that have not been
utilized so far. The main aspect that increases computational effort is the interac-
tion among the turbines. The first step can be to calculate the turbine interactions
in parallel. A second step is to find a way to efficiently determine if a turbine
is influenced by a wake. Furthermore, the number of OPs per turbine can be
decreased and tuned: not all chains need to be equally long, and OPs that wander
out of the domain can be disregarded. Then, there is the fundamental question of
whether the proposed structure of FLORIDyn can be improved, for instance, by
using less but more efficient OPs. Eventually, the programming platform can be
switched to a choice that allows more specific optimization, e.g., C, C++, or Julia.

Table 2.3.: Computational performance
Number of turbines 2 3 4 9
Total number of OPs 2-104 3.104 4.10% 9.10%
tcomp. time per step (S) | 2.44-1072 5.87-1072 1.09-107! 6.13-107}
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2.4. CONCLUSIONS AND RECOMMENDATIONS

In this paper, a new FLORIDyn model is presented and compared to SOWFA
simulations. This model utilizes a Gaussian FLORIS model and concepts from the
previously published FLORIDyn framework by [19] to create a three-dimensional,
dynamic and computationally lightweight wind farm model. The new FLORIDyn
model is further capable of simulating its wakes under heterogeneous and time-
varying flow conditions. To achieve this, we presented a mathematical approach
to decouple wake and flow characteristics into two coordinate system which are
connected by observation points. To simulate changing environmental conditions,
a method to map sparse flow field measurements to a finer grid was presented
which avoids the interpolation cost at runtime. The new FLORIDyn model shows
good performance compared to SOWFA in terms of timing and is able to predict
accurately when a downstream turbine is experiencing influences from upstream
turbines.

Despite the considerable advancements over the old FLORIDyn implementation,
there are still several aspect of the model which can be improved. The central
aspect is how turbines influence wakes and how wakes are perceived by turbines.
In this work we have decoupled the OP propagation speed from the effective
wind speed, which effectively leads to a simpler, lightweight model while the
wake behavior is still dynamically described. However, this way state changes
reach downstream turbines too soon and in a sudden manner. Ideally this can be
overcome by finding better, computationally lightweight methods to model the
influence of changing turbine states on the wake needs and also how a turbine
reacts to dynamic changes in the flow. Another aspect that can be improved is
related to the interface between FLORIDyn and FLORIS. FLORIS has been sub-
ject to many developments and improvements, and FLORIDyn can utilize these
improvements if it improves the interface: with a generic interface, newer devel-
opments can be included and existing code can be used in a sustainable manner.
The simulations also show that parameter tuning has to be more accessible and
possibly needs to be performed online in some cases. The next aspect which
could be improved is the coupling of FLORIDyn with the turbulent environment
of the real wind farm (or its surrogate). Combined with the changes to the OP
propagation speed from this work, this can lead to a more uneven OP distribution
with dense areas where high wind speeds decrease and sparse areas where low
wind speeds increase. An extension to the model could feature a method to
combine and generate OPs, depending on the density of OPs. Although, this could
also lead to undesired information loss, depending on the implementation. To
achieve better results, the wind field model has to be replaced or enhanced by
estimators. The latter would provide a more accurate estimate of wind speed,
direction and ambient turbulence intensity for the FLORIDyn simulation. In the
long term, a dynamic description of the environment could become part of the
FLORIDyn model. This could also include effects like induction zones and speed-
up between the turbines. The last aspect to consider for improvement is the
performance. In its current implementation, FLORIDyn delivers its results at a low
computational cost. This has to be maintained, if not improved, to allow its use
for dynamic real-time closed-loop control algorithms in the future. The simulation
also needs to be structurally improved to keep its low computational cost for wind
farms with large numbers of turbines.

Concluding, the new FLORIDyn model is a promising concept with unique
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strengths. With FLORIS in its core, it utilizes an existing, successfully employed
model and provides a new dimension in a challenging environment at a low
computational cost. The model can already be adapted to work in a closed-loop
control design and shows more potential if the mentioned aspects are improved.
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2.A. ADDITIONAL PLOTS AND ASPECTS OF THE SIMULATION RESULTS
2.A.1. UNfILTERED DIFFERENCE BETWEEN YAWED AND BASELINE CASE
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Figure 2.12.: Difference between the yaw case in SOWFA and the baseline case with unfil-
tered and zero-phase-filtered data. Filtering was performed before calculating
the difference. The dotted lines mark the start of the yaw angle changes of TO.

Figure 2.12 shows the difference between the power generated in SOWFA in the
yaw case (Section 2.3.1) and the steady-state base line case (Section 2.3.1). Both
simulations are performed in the same turbulent environment, something which
would be impossible to achieve in realistic conditions. This way, the difference
allows for a clearer interpretation of the influence of the yaw step, at least the
timing. In comparison to Figure 2.8, Figure 2.12 shows the unfiltered data as well
as the filtered one for all three turbines. T1 shows between t =312 s and 329s a
first reaction due to the changed wake of TO. T2 shows a first reaction between
t =426 s and 442 s. The filtered data shows a slightly earlier influence due to the
nature of a zero phase filter.

2.A.2. AVERAGED VELOCITY IN THE NINE TURBINE CASE

Figure 2.A.2 shows the averaged wind speed in the nine turbine case from t =
500 s to 600 s at hub height in SOWFA. 34 slices were used to average. The wind
speed is binned into 11 wind speed sections which are plotted as contours. During
the time of averaging the wind direction is constant. The average wind speed of
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Figure 2.13.: Averaged wind speed from t =500 s to 600 s, divided into 11 speed sections.

the incoming air is at approximately 8 ms—1. However, between the turbine rows,
the wind speed increases to a higher level, up to 9.44 ms—! in some places. This
could be explained by speed-up effects: The turbines act as resistances in the flow
field, and the wind speed in the place of least resistance, between the turbines,
increases. The effect has been observed and described in [46] as well for instance.
Due to the speed up, the turbines further downstream experience higher wind
speeds than the ones in free stream and generate more energy. Figure 2.11
quantifies the effect, where T2, T4, and T5 generate significantly more energy
than T6, for instance. After the wind direction change, the effect leads again T2
and T4 to generate more power. T1 is now in the situation T5 was in initially and
also generates more energy. T5, however, drops to a lower level. Without an
added model for effects like these, FLORIDyn (and FLORIS) will not be able to
accurately describe the wind field.
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FLORIDYN - A DYNAMIC AND flEXIBLE
FRAMEWORK FOR REAL-TIME WIND FARM

CONTROL

This chapter is based on the following publication:

[47] M. Becker, D. Allaerts, and J.W. van Wingerden, FLORIDyn - A dynamic and flexible frame-

work for real-time wind farm control, Journal of Physics: Conference Series (2022), 10.1088/1742-
6596/2265/3/032103.



his paper presents a new framework of the FLOw Redirection and Induction

Dynamics (FLORIDyn) model. It is able to dynamically simulate the wake
behaviour in wind farms under heterogeneous and changing environmental con-
ditions at a low computational cost. The novelty of this work is the improved
segregation of wake dynamics and wake influence: the framework creates Ob-
servation Points (OPs) at each turbine, which propagate wind field states and
turbine states downstream and follow the wind direction of the free stream veloc-
ity. These observation points cover the dynamic aspects of the simulation. The
OPs, along with the stored states, are now used to derive so-called Temporary
Wind Farms (TWF), which approximate the effective intra-farm wind conditions
at a given location. Within these TWF, the flow conditions are homogeneous and
steady state. This way, arbitrary wake models can be used to calculate the farm
influence on the location. The FLORIDyn framework also provides interfaces to
flow field estimators, which is tested with an effective wind speed estimator. A
nine turbine case is used to highlight the quality and performance of the simula-
tion result. Compared to its predecessor, the new FLORIDyn framework decreases
the computational cost by one to two orders of magnitude, which makes it a
promising candidate for real-time model predictive dynamic wind farm control.
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3.1. INTRODUCTION

As wind turbines extract kinetic energy from the wind and transform it into electric
energy, they leave an area of decreased wind speed in the flow field. This area
is called the wake and can influence downstream turbines in a wind farm by
decreasing the amount of energy these can extract from the wind. The wake is
shaped by uncontrollable environmental influences and controllable turbine states.
An optimization of the latter can increase the power generated by the entire wind
farm: for instance an increase of the misalignment of the wind turbine with the
wind direction can redirect the wake and reduce the influence on downstream
turbines [48]. This control strategy is known as wake steering which is considered
to be a viable solution for wind farm control [49]. One way to implement wake
steering is to use a surrogate wind farm model to find the optimal control settings.
The parametric FLORIS (FLOw Redirection and Induction in Steady state) model
has made this approach feasible by being computationally cheap, easy to tune and
implement, whist being accurate enough to lead to performance improvements in
higher fidelity simulations and wind tunnel experiments [3, 50]. A downside of
FLORIS is that it neglects the dynamic behaviour of the wake and the surrounding
flow and only a few implementations are capable of simulating heterogeneous
environments and thus optimally suitable for dynamic wind farm control [51].

There have been a few proposals to address the lack of dynamics, one of which
is the FLOw Redirection and Induction Dynamics (FLORIDyn) model, presented
in 2014 by Gebraad et al. [19]. The approach is to use so called Observation
Points (OPs) which travel downstream, starting at the rotor plane and inherit the
turbine state and the wind field state. With this information and the boundaries
of the FLORIS wake, the OPs calculate their path and propagate downstream.
This way turbine state changes propagate with the OPs downstream and have a
delayed effect at other turbines. While the model pioneered in its methodology
and shows promising results, it also has some flaws: Firstly, the wind direction
is fixed and the model does not allow for heterogeneous conditions. Secondly,
the used Zone FLORIS model has since been overhauled and more capable and
accurate parametric models have been developed. Thirdly, due to the OP travel
behaviour, parts of the wake could overlap causing inconsistent edge cases.

In 2022, Becker et al. addressed a number of shortcomings of the Zone FLORI-
Dyn model and extended it with new features [1]. These are, among others,
the implementation of the 3D Gaussian FLORIS model, the inclusion of hetero-
geneous and changing flow conditions and a new method for Observation Point
(OP) distribution in the wake. While the Gaussian FLORIDyn model is able to
keep the computational cost low, the simulation times grow exponentially and
become unfeasible for model based control approaches for a wind farm with a
large number of turbines. The OPs also discretize the Gaussian shape and limit
the function by their distribution. The design is quite interconnected with the
Gaussian model and does not provide a simple interface to switch the parametric
model as desired.

This paper aims to structurally rework aspects of the Gaussian FLORIDyn model
to solve or reduce the issues it has, while maintaining its strengths. The presented
work evolves a concept from the Gaussian FLORIDyn model: To simulate a
wake in heterogeneous conditions, the implementation decoupled wake and
flow properties in a wake and a world coordinate system. We develop this
approach further to introduce Temporary Wind Farms (TWFs) which approximate
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the behaviour of static turbine wakes under heterogeneous conditions. However,
this formal addition has significant implications, as it changes the way FLORIDyn
interacts with the underlying FLORIS model and the resource requirements of
FLORIDyn. FLORIS is now treated much more as a generic model with an interface.
This allows an exchange of the used wake model. This new structural framework
can create a dynamic wake from any (steady state) wake representation, also
from those which include secondary wake steering effects. This will also allow to
include the most recent developments of the FLORIS models and such alike. The
approach also lowers the computational cost in our simulations and allows a scale
in which dynamic real time wind farm control with a large humber of turbines
becomes more viable.

The remainder of the paper is structured as follows: Section 3.2 presents the
new FLORIDyn framework.

A nine turbine case is presented in Section 3.3, along with the computational
cost of the framework. Section 3.4 concludes the work presented in this paper.

3.2. DEVELOPMENT OF A GENERIC FLORIDYN FRAMEWORK

First, the propagation of OPs and states is described (Sec. 3.2.1), the novel
framework is then described in Section 3.2.2. How to couple the framework with
measurement data is discussed in Section 3.2.3. Section 3.2.4 concludes the
methodology by highlighting specific aspects of the used implementation which
diverge from previous models.

3.2.1. PROPAGATION OF OBSERVATION POINTS AND STATES

This section describes the mathematics! of the OPs, which represent the wake
of a turbine. In the new FLORIDyn framework, OPs only follow the centerline.
This is in contrast to previous versions, where OPs were distributed across the
entire wake area. For each turbine, a new OP is created every time step, while
the oldest one is disregarded. Each OP has three sets of states: the location of
the OP, denoted as xop, the turbine state xt and the wind field state xwr. The
propagation follows the concept introduced in [1] where the downwind step is
calculated in the wake coordinate system K1 and then translated to the world
coordinate system Ko:

xop,0(k + 1) = xop,0(k) + Ro1(Xwr,¢) [Xopr,1(k + 1) — Xop,1(K)], (3.1)

step in K1

where Xop = [xop,o,xop,l]T denotes the location state of the OP with xop,0 =
[X0, y0,20]" in the world coordinate system and xop,1 = [x1, y1,21]" in the wake
coordinate system. Note, that x; denotes the downwind direction and y1, z1 the
crosswind coordinates, y1 from right to left, z; from down to up as shown in

1The notation of Section 3.2.1 and 3.2.2 is as follows: small italic letters denote scalars (e.g. x),
bold small letters denote column vectors (e.g. x) and bold capital letters denote matrices (e.g. R).
Coordinate systems are denoted by K. Square brackets organize equations or define matrices and
vectors, round brackets are function inputs or properties. Lower indices of vectors first specify the
parent object or type, then the coordinate system and lastly the extracted value. Depending on the
context, some part of the index might be missing, but the order remains. If the extracted value is
specified, the vector might reduce to a scalar and is written accordingly, e.g. Xop,0 — Xop,0,y. Lower
indices of matrices denote which coordinate system they transform into which, e.g. Rp1 transforms
K1 into Kg, such that xg = Rp1X1.
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Figure 3.1. The wind field state is written as xwr and xwr,p only refers to the
wind direction ¢. The rotational matrix Rg1 rotates the OP propagation step in
K1 around the z-axis in mathematical positive direction and therefore transforms
vectors from K1 to Ko:

cosp —sing O
Roi1(p)=|sing cosgp O (3.2)
0 0 1

The positional update in the wake coordinates is calculated as follows:

Xop,1,x(k + 1) = xop,1,x(K) + At XwF,u (3.3)
Xop,1,y,z(k + 1) = 8(xop,1,x(K + 1), XT, XwF) (3.4)
where At is the simulation time step, xwr,y is the free wind speed and 6 denotes

the deflection function. When an OP is created, xop,1 = 0 and Xop,0 = tp where tp
is the world location of the wind turbine rotor center.

.’vx‘\y

Figure 3.1.: Visualization of the coordinate system Ko and the two K; systems of two
turbines. The figure also shows the OPs flowing downstream as well as the
turbine location vectors tr, o and the wind direction ¢.

The description of xT and xwr is purposefully kept generic as these states may
vary with the used parametric model. The turbine state xt can be summarized as
all states that are turbine specific and are needed to calculate the wake shape.
Examples are the yaw angle y or the axial induction a. The wind field state xwr
contains all states necessary to propagate the wake and to calculate it. In the
presented formulation the free wind speed and the wind direction are mandatory,
but xwr can also include the ambient turbulence intensity for instance. States in
Xwr are also considered to be measurable by sensors at other locations than the
turbine and could be corrected by state estimation methods.

3.2.2. EXTRAPOLATION FROM OPS AND THE CREATION OF TEMPORARY WIND
FARMS

The reduction of the number of OPs leads to a sparse wake description. Where

other FLORIDyn formulations have the possibility to justify a nearest neighbour in-

terpolation due to a high density of OPs, the current description cannot. Therefore
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a method to extrapolate the wake influence is presented. The general problem is
posed as follows:

What is the influence of the turbines T at the world location 1p?
For each turbine T; € T we choose the two OPs (OP! and OP2) in front and behind
the closest point on the centerline of T; to lIg. Then we linearly interpolate between
OP1 and OP? to obtain OP* in such a way that the distance to lg is minimal:

T
X —X Ip—x
W= [opz,o OPl,O] [0 opl,o] (3.5)

=
[xopz,o - Xopl,o] [XOP2,0 - Xopl,o]

which returns the weight w € [0, 1]. The Ko location of OP* is then given by
Xop*,0 = Xopl,0 + W[Xgp2 g — Xopt,0] = (1 — W)Xgp1 o + WXgp2 g - (3.6)

This is visualized in Figure 3.2. The weight is then also used to interpolate the
other states xpp+ 1, X7+ and xwr*, equivalent to Eq. (3.6). In the edge cases
where the first or last OP of T; is the closest OP, no interpolation is performed and
OP* = OPEd9e, This means, that if only one OP is used, the framework extrapolates
from that OP and directly returns the underlying parametric wake model. After
applying Eq. (3.6), every turbine in T is represented by an OP* close to lp.

The next step is to locate lg in K1 of turbine T;, based on the states represented
by OP*. This is done by rotating the vector lg — xgp~* ¢ (pointing from OP* to lp)
from the world frame Ko to the wake frame K1 of T; with the inverted rotational
matrix: Rgll = Rgl = Ry9. This vector is then added to the K1 position of OP*:

I7,1 = Xop*,1 + R1o(Xwr*,) [lo — Xop*,0] - (3.7)

As a result, I1,1 can be calculated for all turbines T; € 7. The vector I, 1 stems
from the origin of K¥, the turbine coordinate system of T; based on the states

of OP*. This means that if the wind field states of OP! and OP? (which OP* is
derived from) have changed since their initialization, the origins of ICI and K1 are
not at equal locations in Kg. Figure 3.2 illustrates this.

With this information we can create a Temporary Wind Farm (TWF). The TWF
approximates the environment around lp and can be seen as the effective wind
farm at the requested location: This includes all turbines in 7 as perceived by
the OPs* close to lg. By using the data from the OPs*, locations of the turbines
in the TWF can differ from their real world locations, as shown in Figure 3.2. A
new coordinate system K is created which is characteristically similar to £1: The
wind direction is fixed along the x; axis, y> is the crosswind direction and the
z» axis is pointing upwards. First, we place lp in K3: its location can be chosen
arbitrarily, but for convenience we will choose I, =[0, O, lo,z]T which ensures that
z2 =0 is ground level if elevation is not part of the simulation. The wind turbines
can be located by reversing the vectors Ir, 1:

tr,2=01L—R21(0)I7,1. (3.8)

Since K1 and K, share the same wind direction, R21(0) is a 3 x 3 identity matrix.
The turbine states are given by the respective OP*. The wind field states however
are not entirely defined, only the wind direction is fixed. In practice however, we
can assume that the wind field states of the different OP* will be very similar as
they are also in local proximity to each other. In our implementation we averaged
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Figure 3.2.: The top figure shows the interpolation of OP* and how it is used to calculate the
position of lg in ICI of T;. The wind direction is steady and K; of the turbine is

equal to £F of OP*. During a wind direction change, the center line propagates

to its new steady state, which leads to a change of xyf*,, and therefore to a
temporary mismatch between the locations of the origins of £} and K1 in Ko

(lower figure).

between the two closest OP*, weighted by the distance to lg. The TWF is now
complete and approximates the wake and wind field conditions around lp as a
wind farm in homogeneous conditions. The TWF in K2 can be evaluated in an
arbitrary wake model to return the influence of 7 at I which approximates the
influence of 7 at lp.

Note that due to the way the TWF are derived, existing steady state wake
models can be used to their full extent: The presented framework does not
require a certain wake shape or wake merging method. With multiple turbines in
one TWF, secondary wake steering effects could be captured as well. This ensures
that novel developments in these wake models can also be tested in a dynamic,
heterogeneous environment.

Another aspect is that the computational load can be scaled by limiting the
size of T. If downstream turbines do not have an influence on upstream turbines
in the used wake model, they can be disregarded from 7. The same goes for
turbines with a significant upwind or crosswind distance to lg. This allows a split
of an entire wind farm into many smaller wind farms which can be evaluated in
parallel.
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3.2.3. INTERFACES AND THE IMMERSION AND INVARIANCE ESTIMATOR

The presented framework simplifies the state architecture of the simulation and
purposefully treats turbines as sensors and actuators providing information to
the OPs. The OPs in return provide an estimate of the intra wind farm flow.
Estimators of flow field metrics can convert measurement data into metrics which
the FLORIDyn framework can use and store as states in the OPs.

In this work, we present one implementation with the Immersion and Invariance
(1&1) estimator as described in [52]. It returns the effective wind speed at the
rotor plane Ueff,r based on the generator torque and the rotor torque. A required
component is the power coefficient table Cp which is depend on factors such as
the blade pitch and tip-speed-ratio. The used look-up tables were obtained in
FAST. The estimator is derived for wind turbines without yaw misalignment, which
limits its use until it is adapted.

Since FLORIDyn uses the free wind speed to propagate the OPs, Ueff,r has to be
converted to Ufree,r. For free stream turbines we neglect induction and blockage
effects and assume that Geffr = Ufree,r- The FLORIDyn framework delivers an
estimate of the reduction of the wind speed for downstream turbines, which can
be used to calculate Gfree r by dividing defr,r by the reduction.

3.2.4. IMPLEMENTATION

This section briefly summarizes the details of the implementation used in this
work. The implementation follows in its core [1] but diverges in some aspects
highlighted here.

Rotor plane discretization The rotor plane is discretized to calculate the in-
fluence of turbine wakes and sum it, weighted by the areas of the subdivided
plane. We propose the use of the Isocell algorithm which splits a circle into n
equally sized and regularly distributed parts [53]. The downside of this algorithm
is that it can only provide sets for certain values of n. This limitation is found
to be acceptable as the steps between possible values of n are relatively small
(n=23,12,27,48,75,108,147,...). In this work 48 rotor points (RP) were used,
distributed in the y1, z1 plane and translated, according to the yaw orientation
and turbine position, into Kg. Only the rotor center is used as location to set up
the TWF. The resulting distribution can be seen in Figure 3.1.

Thrust and power coefficient In [1] look-up tables were used to get values
for the thrust and power coefficient. As these look-up tables turned out to be
incomplete and needed to be limited to be useful, we decided to fall back to the
actuator disc method and calculate the coefficients based on the axial induction
factor.

Parameter set The presented FLORIDyn framework was also used in a param-
eter uncertainty quantification study [54]. The study was conducted with the
FLORIS parameter set found by [51] as starting point (see Table 3.1) and is also
used in this study. Additionally, the efficiency term n was set to be neutral, the
yaw correction coefficient pp was set following [1].

Added turbulence Influence of the added turbulence is implemented as pre-
sented in [24]. This formulation only defines a downwind development of the
added turbulence and no crosswind part. A recommendation is to include all
turbines within 2D crosswind distance and 15D upwind distance [23]. Under
changing environmental conditions, this leads to sudden changes in the added
turbulence levels as turbines enter or leave the proposed area.
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Table 3.1.: Parameters used with the aspects they mainly influence

Wake expansion Added turbulence

ka kb kf,a kf,b kf,C kf,d
5.37-10"! —-8.48-10~% 7.84 4.57 4.3-1071 —2.46-1071
Near wake length Power

a* B* n Pp

1.088 2.22-1071 1 2.2

Instead of looking upstream for influencing turbines, one can also look down-
stream to identify the turbines influenced by the wake. In the previous FLORIDyn
implementation the distributed OPs were used to determine the area of influ-
ence [1]. In the here presented Framework, OPs do not cover the wake area
anymore and rather extrapolate their influence from the centerline. Following this
approach the added turbulence value is weighted by the Gaussian distribution of
the wake. To achieve a similar width as in [1], the width factor is multiplied by
three.

3.3. CASE STUDY

The presented case is a nine turbine simulation case in Section 3.3.1. The wind
field is turbulent and changes the flow direction during the simulation. Section
3.3.2 discusses the computational cost aspect of the framework in comparison to
the previous implementation.

3.3.1. NINE TURBINE CASE

The wind farm layout is a regularly spaced 3 x 3 layout in a 3 x 3 km domain. The
turbines are placed 900 m apart from each other and 600 m from the domain
edge. The validation simulation is done in SOWFA, where the DTU10MW reference
turbines are simulated with the Actuator Disc Method and the domain is discretized
in 10 x 10 x 10 m cells without refinement areas and the time step is set to 0.5 s.
The flow is turbulent with an ambient turbulence intensity of ~ 6% and a mean
wind speed of 8.2 ms~1. During the simulation the wind direction uniformly
changes from 255° to 195°, with a constant change rate from simulation time
t =600 s to 900 s. The turbines remain perpendicular to the wind direction during
the change. This case was also used in [1].

Figure 3.3 shows the power generated by the four downstream turbines during
the simulation. The figure compares four different versions of the same simulation:
The FLORIDyn framework with and without the I&l estimator, the validation data
(here SOWFA) and what FLORIS would return. The grey area in the plots highlights
the time during which the wind direction changes.

Looking at the difference between steady state and dynamic models, we can
see that FLORIS is not able to accurately predict the timing of the wake influence

of upstream turbines on downstream turbines due to the wind direction change.

The power generated also shows single peaks where the validation data shows
multiple occurrences of interaction. The FLORIDyn framework returns identical
results during steady state. Furthermore, FLORIDyn is able to predict the timing
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Figure 3.3.: Generated power by the FLORIDyn framework without and with the &l estimator,
in comparison to the validation data and FLORIS. The grey area indicates the
time in which the wind direction turns. Only the four down stream turbines are
plotted here, their location is marked on the left side as well as the change of
wind direction.
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Figure 3.4.: Flow field comparison during a wind direction change between SOWFA (1)
and the new FLORIDyn framework, with I1&l estimator (2) and without (3), the
Gaussian FLORIDyn model (4), as well as FLORIS (5). The snapshots are taken
at simulation time t =700 s.

of the wake interaction. The model does lack information about the wind speed
changes, which can lead to significant differences in power generated, compared
to the validation data. These differences become minimal when the 1&l estimator
is added. Due to the dynamic nature of the I&l, the wind speed estimate is
experienced with a minor phase shift and does not contain higher frequency
components from the validation data. These results could potentially be even
more improved by adequate tuning of the I&l parameters. The downside of
the use of the I&l estimator is that it removes the FLORIDyn influence from the
calculation of the power generated as it directly provides the effective wind speed.
But it is in return possible to use the turbine as a sensor and to provide a wind
field state estimate to the OPs.

The flow fields at hub height in Figure 3.4 compare the validation data with
the FLORIDyn framework with and without I&l estimator, the Gaussian FLORIDyn
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model and the FLORIS model. FLORIS shows the current wind direction, as the
model immediately reacts to the new wind direction and the far wake does not
slowly adapt, as is the case with the validation data and all FLORIDyn variants. The
Gaussian FLORIDyn shows a mosaic-like flow field due to the nearest neighbour
interpolation employed to get the influence of the OPs. The novel FLORIDyn
framework allows an accurate use of the FLORIS wake, adapted to the wind
direction change. Adding the I&l estimator results in a very similar wake shape
but a much more detailed flow field which can incorporate locally different wind
speeds based on realistic turbine data.

3.3.2. PERFORMANCE

Figure 3.5 shows the computational performance of the presented FLORIDyn
framework in seven test cases, four of which have also been tested with the 1&I
estimator, and three which have been simulated in the previously published Gaus-
sian FLORIDyn model [1]. The measurements tell how long it takes to simulate one
time step. They are only roughly representative, as the performance will vary with
the wind farm layout, the environmental conditions, the implementation and the
hard- and software?. The times capture only the simulation and no visualization,
nor initialization. Each measurement is the mean of 250 or more simulation time
steps. The 9; turbine case is the same case as discussed in Section 3.3.1. The
1, 2,3 and 95T cases feature a turbulent wind field but steady wind direction. The
23 and 54T cases are derived from real wind farm layouts. The cases run with a
constant wind speed and direction.

One observation is that the new framework, in comparison to the previous
Gaussian FLORIDyn, decreases the computational cost by one to two orders of
magnitude, depending on the case. The new implementation also scales better,
to a point where a 54 turbine case can be simulated at a similar speed as a three
turbine case in the previous implementation. This improvement allows more
optimization steps in the same time, which, in return allows the application of
more demanding control strategies. The TWF concept is also by design suited for
parallel computation, something which was not performed in this study.

Another observation is that the added computational cost of the I&l estimator
varies between the cases. This is due to the fact that the estimator runs with the
frequency of the measurement data from the turbines. The 2 and 91 T case have
2 Hz data, the 1 T case 5 Hz and the 3 T case 25 Hz. The FLORIDyn framework
runs at 0.25 Hz in all cases. Unfortunately we do not have the data to run the I&l
estimator in the 93, 23, 54 turbine cases.

3.4. CONCLUSION

This paper presents a formal definition of the FLORIDyn framework. It decouples
the wake propagation under heterogeneous, changing conditions from the wake
shape description. This allows the use of wake models which are designed for
steady state conditions. The new interface to a generic wake model is achieved
by creating temporary wind farms which approximate intra wind farm flow at any
given location. They translate the heterogeneous environmental conditions into
a steady state homogeneous space in which the wake model is evaluated. This

2Simulations performed in Matlab 2021a, single threaded on a laptop (Intel Core i7 vPro 10th Gen, 16GB
RAM).
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Figure 3.5.: Computational performance of the new FLORIDyn framework with and without
the I&l estimator in comparison to the Gaussian FLORIDyn model. Note the
logarithmic time scale and the number of turbines for the different cases. The
FLORIDyn framework values are mean value of 10 consecutive simulations.

allows the dynamic use of most recent steady state wake model implementations
with minimal effort and makes the concept usable for future generations of
engineering wake models.

This paper also demonstrates how measurements from a turbine can be included
into the FLORIDyn framework: The 1&I effective wind speed estimator is used to
convert the turbine into a sensor for the simulation, which significantly decreases
the differences in the power generated and improves the intra wind farm flow
estimate.

Compared to the previous Gaussian FLORIDyn model for heterogeneous condi-
tions, the FLORIDyn framework is able to decreased computational effort by one
to two orders of magnitude. This is a necessary step in order to provide real time
control inputs in a realistic wind farm scenario with a large number of turbines.
The temporary wind farms also provide a basis for parallel computing, something
which was not part of this research.

For future work we propose to implement the framework into a model based
closed loop control strategy. Within the FLORIDyn framework a suitable engineer-
ing model can be used to evaluate desired quantities of interest under changing
environmental conditions. This could be for instance a wake steering strategy
to maximize power while taking loads into account. Additionally other flow field
estimators can also be implemented to improve the connection of FLORIDyn with
data from wind farms.
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A DYNAMIC OPEN-SOURCE MODEL TO
INVESTIGATE WAKE DYNAMICS IN RESPONSE
TO WIND FARM flow CONTROL STRATEGIES

This chapter is based on the following publication:
[55] M. Becker, M. Lejeune, P. Chatelain, D. Allaerts, R. Mudafort, and J.W. van Wingerden, A dynamic
open-source model to investigate wake dynamics in response to wind farm flow control strategies,
Wind Energy Science (2025), 10.5194/wes-10-1055-2025.



ind farm flow control (WFFC) is the discipline of manipulating the flow

between wind turbines to achieve a farm-wide goal, like power tracking, load
mitigation, or power maximization. Specifically, steady-state control approaches
have shown promising results in both theory and practice for power maximization.
But how are they expected to perform in a dynamically changing environment?
This paper presents an open-source wake modeling framework called OFF. It
allows the approximation of the performance of WFFC strategies in response to
environmental changes at a low computational cost. It is rooted in previously
published dynamic parametric engineering models and offers a flexible and
adaptable platform to explore these models further. The presented study tests
the modeling framework by investigating the performance of different wake
steering controllers in a 10-turbine wind farm case study based on a subset of
the Dutch wind farm Hollandse Kust Noord (HKN). The case study uses a 24-hour
wind direction time series based on field data and verifies subsets of the time
series in LES. The results highlight how dependent yaw travel is on the controller
settings and suggest where users can strike a balance between power gains
and actuator usage. They also show the structural differences and similarities
between steady-state and dynamic engineering models. The comparison to LES
shows what time scales the surrogate models cover and how accurately. While
steady-state models capture turbine power signal dynamics up to ~ 1/570 Hz, the
dynamic wake description can predict dynamics up to ~ 1/360 Hz with a better
correlation and normalized root-mean-square-error. Further results show that the
dynamic wake description is mainly advantageous over steady-state wake models
for shorter periods (< 20 min). The paper also opens up the discussion about the
effectiveness of wind farm flow control in a time-marching manner as opposed to
a steady-state viewpoint.
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4.1. INTRODUCTION

Wind energy is an essential part of the modern renewable energy mix and,
therefore, part of the increasing share of energy that is covered by renewables.
With this increasing share comes a higher responsibility. Where previously only
individual turbines would contribute to the electrical grid, numerous wind farms
provided 19% of the electricity demand in the EU in 2023 [56]. With this increased
relevancy, the question arises of whether wind farms are used to their full extent.
Their efficiency could be limited, among other reasons, by unintended turbine
downtime, maintenance or non-ideal operation. Wake losses are included in
the latter, as front-row turbines extract kinetic energy from the wind, and they
inevitably slow down the flow behind them. The turbines downstream thereby
experience a lower wind speed and generate less power in response. To combat
this effect, wind farm flow control (WFFC) methods focus on lessening the losses
induced by wakes. This is achieved by modifying the behavior of the turbines
from a greedy control approach to a collaborative one.

Multiple control approaches exist to address this issue. They can be sorted by
the degrees of freedom they use: (i) the blade pitch (e.g. ., [57], [58]) (ii) the
generator torque (e.g. [59]) and (iii) the (mis-)alignment of the turbine with the
flow (e.g. [60], or [61]). Broadly speaking, (i) and (ii) change how much energy
is extracted from the flow field. Applied dynamically, the blade pitch can also
increase wake mixing behind the turbine, which leads to a faster wake recovery.
In contrast, using (iii), the alignment of the rotor allows the controller to deflect
the wake in the lateral direction. This control strategy can be used to direct the
wake away from downstream turbines and is referred to as wake steering. The
remainder of the paper focuses on this effect and methods to determine the
effectiveness of control strategies using wake steering.

To research, test and optimize control strategies for wind farms, surrogates of
the real plant are needed. This mitigates risks, lowers costs, increases flexibility
and makes the problem more accessible. Alongside wind tunnel experiments
(e.g., [16, 62]), simulations are the predominant way to approximate wind farm
behavior. Within the world of simulations, three groups can be distinguished:
high-, medium-, and low-fidelity simulations. High-fidelity models, such as large-
eddy simulation (LES), provide the most accurate approximation of the flow field
(e.g. [20, 63]). This does come at an increased computational cost, which has
confined their application to the verification or exploration of new phenomena
not yet captured by lower-fidelity models. At the other end of the spectrum,
low-fidelity simulations reduce the wake behavior to a set of simple analytical
equations that are efficient to solve. This, however, means that they can only
describe what they have been designed for: typically a single time-averaged
snapshot of the flow field (e.g. [2, 16]). Low-fidelity models are therefore routinely
used to, for instance, optimize the orientation of all turbines in a wind farm for
the entire wind rose, to make estimates of the annual energy produced (AEP) or
to optimize the wind farm layout.

Growing concerns about fatigue effects on wind turbine integrity, along with the
rising need for ancillary service provision, have driven recent research toward a
new generation of dynamic medium-fidelity models. These models are designed
to address more immediate and transient phenomena, effectively bridging the gap
between high- and low-fidelity approaches. By capturing the critical dynamics of
high-fidelity simulations at a fraction of the computational cost, they move beyond
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steady-state assumptions, unlocking new possibilities for wind farm operations.
Key applications include, for example, intra-hour power production predictions for
grid regulation (e.g. [64]), as well as multi-objective wake steering strategies that
optimize the power output while simultaneously mitigating the turbine’s loads
(e.g. [65]).

Medium-fidelity wake models are primarily categorized by the equations they
use to model flow physics, balancing computational cost with accuracy. While 2D
linearized Reynolds-averaged Navier-Stokes (RANS) methods have demonstrated
some initial success at estimating simple wake states, they have been shown to
improperly account for wake deflection [66]. In contrast, free-vortex methods
(e.g. , [67], [68], or [69]) explicitly resolve vortex dynamics, providing deeper
insights into large-scale wake behavior. This capacity, to account for phenomena
such as wake deflection and wake curling, makes free-vortex methods ideal
candidates to investigate wake steering. However, the computational burden
associated with these methods makes them unsuitable for large parameter spaces,
such as those encountered in offshore wind farms involving dozens of turbines.
Additionally, they tend to become numerically unstable for large distances and
are, therefore, limited in terms of the wake length they can describe accurately.

The dynamic wake meandering model, initially proposed by [17], also opts for
a Lagrangian parametrization of the wake, describing it as a cascade of velocity
deficits without explicitly solving vortex dynamics. Since its introduction, the
DWM approach has been further calibrated and validated by numerous studies
comparing it against both numerical and field data [18, 70, 71]. Building on
these early successes, it has been integrated into simulation software such as
FAST-Farm [72] and HAWC2FARM [73]. More recently, the DWM model has been
reinterpreted into a series of lighter, control-oriented wake modeling frameworks
that include FLORIDyn [1, 19, 47, 74], OnWARDS [75], UFloris [76], and SWiPLab-
WFM [77]. A common feature of these models is that they all adopt a Lagrangian
description of the flow while relying on engineering wake models to capture the
wake’s influence. However, though similar, these models take different paths
notably regarding how they handle the ambient flow field and wake deflection.
They also differ in terms of the steady-state surrogate wake model, which is
generally fixed for the presented designs. And, while steady-state models have
been summarized in unified toolboxes (FLORIS [78], PyWake [79], or FOXES [80]),
dynamic engineering models have not.

The purpose of OFF (abbreviation based on OnWARDS, FLORIDyn and FLORIS),
the dynamic wake modeling framework presented in this paper, is to provide a
unified, open-source toolbox that allows for easy comparison between different
implementations. Specifically, the framework aims to:

e design and implement an interface with established steady-state models,
such as FLORIS [78] or PyWake [79];

e provide a framework for prototyping Lagrangian dynamic wake models
through standardized input-output structures, facilitating the replicability of
results;

e offer accessibility through open-source code written in Python.

Such a tool shall eventually allow for benchmarking and comparisons of dynamic
and steady-state wake model designs and for further exploration and development
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of dynamic WFFC strategies at a low computational cost (as already utilized by,
e.g. [81, 82]). Further scientific contributions of this paper are:

e an investigation into the timescales captured by steady-state wake models
versus those captured by dynamic wake models, providing insights to help
users make informed choices based on their specific needs;

¢ a verification of the presented code using LES in a neutral ABL with a 10-
turbine wind farm;

e a dataset based on a total of 54 h of LES simulation with varying controller
settings and changing wind directions to use for further wake model analysis
and synthesis.

The following paper is split into five sections. While Section 4.1 introduces
the context of the work, Section 4.2 describes the presented model and its
architecture, as well as details of the implementation used to generate the results
from this paper. Section 4.3 then presents a case study where a selection of yaw
steering controllers are investigated in the presented model, followed by Section
4.4, where a selected range of controllers are implemented in the LES. The section
goes on to compare the LES results to the results predicted by the dynamic model
as well as by the steady-state model. Lastly, Section 4.5 concludes the paper and
suggests pointers for future work.

4.2. MODEL DESCRIPTION

The framework called OFF is designed to run generic particle-based dynamic wind
farm flow simulations using three sets of states: (i) turbine states xt, (ii) ambient
states xamp and (iii) observation point (OP) states xpp. Turbine states consist of
all states necessary to describe the turbine’s impact on the wake, e.g. the turbine
yaw angle and its axial induction. The ambient states characterize the flow field,
with information about wind speed, direction, and ambient turbulence intensity.
The observation point states finally map the world (i.e. inertial) coordinate
system to the wake one, thereby allowing the reconstruction of a snapshot of
the flow field across the wind farm. The states are then updated through three
consecutive steps - prediction (Equation(4.1)), correction (Equation (4.2)), and
control (Equation (4.3)):

[x1(k), Xamb(k), Xor(k)] = fprediction (XT(k— 1), Xamb(k—1), xop(k—1), €),

(4.1)
[x7(k), Xamb(k), Xor(K)] = feorrection (XT(K), Xamb(k), Xop(k), m(k), €), (4.2)
x71(k) = feontrol (XT(K), Xamb(k), Xop(k), m(k), c), (4.3)

where ¢ denotes a set of parameters, k the time step, and m a set of measure-
ments. The prediction step advances the model by itself: it propagates and
updates the information gathered at the previous time steps. The correction
step then uses the current measurements to alter the predicted states, partially
reconciling them with the real-flow field. The last step finally determines the
control actions the turbine takes based on the current state and measurements.

Summarizing, the OFF framework offers a prototyping environment for the
development and assessment of new dynamic flow modeling strategies. The
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Interface +  State dynamics Wl fieat]
Data I/O ambient, wake, and turbine states
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Figure 4.1.: Nested software architecture used for the results presented in this paper: the
OFF framework provides the interface to the wake solvers, as well as the
controller. In this paper, the FLORIDyn framework is used to model the state
dynamics, like the wake advection. The framework approximates the flow field
at the location of each turbine and uses FLORIS to calculate measurements like
effective wind speeds and power generated.

update steps are kept generic, thereby allowing the user to specify its own update
strategy, for instance, by switching the dynamic solver or wake model used.
Figure 4.1 depicts the version of the code used here that follows the FLORIDyn
framework and uses FLORIS v4 as a surrogate model. The implemented update
steps are further detailed in the following sections: Section 4.2.1 further specifies
the FLORIS and FLORIDyn models used, and Section 4.2.2 explains how external
data are fed into the simulation. Lastly, Section 4.2.3 introduces the control law
used in this paper.

4.2.1. PREDICTION: WAKE AND TURBINE MODELING

The prediction step is segmented into three parts: (i) propagate the states, (ii) run
the steady-state surrogate model to get turbine measurement predictions and
OP advection speeds for the next time step, and (iii) retrieve information relevant
to the controller. The states related to a single turbine T at the X, y, z location
bt x, lryy, btz are propagated as follows:

x1(k) =A1 x7(k—1), (4.4)
Xamb (k) = A1 Xamb(k —1), (4.5)
xop,x(k) = A2 [xop x(k— 1) + At Xamb,u(k— 1)1 + [t 0,..., 017,

Xop,y (k) = A2 [Xop,y(k — 1) + At Xamb,y(k — 1)1 + [I1,y, 0, ..., 01",

xop,z(k) = Az xop2(k— 1)+ [17,2,0,...,0]", (4.6)
1 O 0 0 O 0
1 O 1 O
A= o , A= L , (4.7)
0 1 O 0 1 O

where the matrices A1 and A, handle the state propagation. With Aj, all states
besides the first one are propagated one entry further, and the last one is disre-
garded. The state closest to the turbine is effectively doubled. With Ay the first
state is not doubled but overwritten by a new input. States propagated with A;
do not have a new input yet; e.g. , there is no new wind speed value available at
this time in the simulation cycle. Therefore, the current wind speed is kept as a
prediction. The OP position states, however, do have a new input, which is the
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rotor center location, why they are propagated with A. Equation (4.6) updates
them with the turbine location lrx, lty, lt,z, referring to the rotor center, as a new
state. In a floating-turbine scenario, this could be used to induce a changing
turbine and wake location due to repositioning. Note that similar, more detailed
state-space descriptions can be found in [19, 76, 83]. A difference between these
formulations and the one employed in OFF is that OFF’s formulation does not
include vertical or horizontal OP deflection based on the yaw and tilt angle of the
turbine. Rather, the impact of yaw and tilt turbine misalignment on the wake
shape is solely simulated in the wake model. The code internally decomposes
the wind speed and direction into its u and v components to avoid unexpected
behavior when switching between 360 and 0 deg. These are then used along with
the time step At to advance the location of the OPs through a Lagrangian update;
see Equation (4.6). The w component is ignored for simplicity. Accounting for the
vertical deflection of the wake center might become necessary in some contexts,
e.g. , for simulations including terrain. However, it was not deemed necessary
for the application presented here, i.e., an offshore wind farm with no tilting.
Note that this implementation also assumes that the OP advection speed is equal
to the freestream wind speed. Alternatives are the introduction of a constant
fraction of the wind speed, see for instance [84] or the use of the effective wind
speed predicted by the wake model, see for instance [85]. One may also decide
to decouple ambient particle advection from the OP advection, thereby allowing
the capture of additional wake dynamics such as wake meandering [75]. These
approaches, however, increase the computational cost of the model, as it requires
the evaluation of the wake equations for every OP at every time step. Equation
(4.5) does not include inputs as new ambient state information is introduced
via the correction step; see Section 4.2.2. Similarly, new turbine states may be
introduced in the correction or in the control step; see Section 4.2.3.

After the states are propagated, the wake model is evaluated to retrieve pre-
dicted measurements. This process uses the so-called TWF, which provides a
localized approximation of the ambient and wake conditions at a specific turbine
location. More specifically, the temporary wind farm (TWF) maps the current
dynamic state of the simulation to the corresponding steady-state configuration
at any desired position, making it interpretable by the underlying wake model,
i.e. FLORIS. For more details, we refer to [47]. A block diagram example is given
in Figure 4.2. The graph shows the equivalent of a three-turbine wind farm where
turbines T1 and T2 wake turbine T3. Turbines T1 and T2 both receive input from
the wind field; add their own states; and pass them on to the first OP, which adds
its own states. The set of the three state vectors is then propagated downstream.
Downstream, T3 is subject to the wakes of T1 and T2. To calculate the wind speed
reduction, one ghost OP is interpolated for each impacting wake. The ghost OP is
based on the two closest OPs in the wake and minimizes the distance between
the chain of OPs and the turbine T3. Its state is a distance-based interpolation of
the two parent OPs. The state information of the ghost OPs subsequently approxi-
mates the ambient conditions and wind farm surrounding turbine T3. The TWF is
then passed on to the steady-state surrogate model for evaluation. This returns
predicted measurements like the effective wind speed and power generated. At
each time step, a new individual TWF is generated for each of the nt turbines.
This leads to nT TWF simulations, where each of them contains nt turbines. The
resulting computational cost is discussed in Section 4.4.6. This work interfaces
with the FLORIS toolbox and uses the Gauss Curl Hybrid model [86] with default
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Figure 4.2.: Schematic of the state transportation of turbine states, ambient states, and
observation point states in a three turbine example. T1 and T2 wake T3. The
OPs closest to T3 in the wakes of T1 and T2 are used to create a temporary
wind farm (TWF) to simulate the resulting conditions for T3 in the wake model.
The colored cubes indicate the states that are passed between the different
elements of the software.

settings and parameters. No parameter tuning was performed to represent the
performance achievable with the default settings. The turbine model within
FLORIS is based on the cp(u) and ct(u) tables (u being the wind speed ahead) of
the DTU 10 MW [33], corrected with the blade element momentum theory based
cosine-loss law for yaw misalignment. [87, 88]. Specifically, the classical value of
1.88 is retained for the cosine power-loss law exponent. We nonetheless acknowl-
edge that this constant power-loss model does not account for the variability of
operating conditions and will therefore likely affect the optimal steering angles
computed, as noted by [89].
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4.2.2. CORRECTION: LINKING MEASUREMENTS AND STATES

In this work, only ambient states are corrected. Schemes to correct the wake
location exist [90, 91] but are outside of the scope of this paper. Three ambient
states are considered in the presented version of the model: wind direction,
wind speed, and ambient turbulence intensity. Out of these three, only the
wind direction varies in the presented simulations. By design, OFF assumes that
measurements are taken at the locations of the turbines. The correction step has
to alter the simulation states xamp to incorporate the new information provided.
The basic assumption is made that the wind direction changes uniformly for the
entire wind farm. As a result, all wind direction states are overwritten with the new
measurement, which is assumed to be noise-free. Practically, this is due to the
fact that the measurements used for the wind direction in the experiments stem
from a single location; more details are given in Section 4.3.1. In an alternative
setup with more measurement locations available, a sensor fusion strategy is
necessary. Possible approaches to use turbine measurements to correct ambient
states in the field exist, like a weighted map, as done by [23], a Kalman filter, as
done by by [21]; or an Ensemble Kalman filter, as applied by [83].

4.2.3. CONTROL: STATE-BASED DECISION MAKING

The employed controller is based on [92] and implements a yaw steering dead-
band controller that relies on a look-up table (LuT) aggregated using FLORIS.
Specifically, this LuT associates each wind direction with a set of optimal steering
angles. In a dynamic environment, the controller now has to apply the optimized
angles based on the current (estimated) ambient conditions. To this end, the
controller has an estimate of the wind direction ¢, which is updated based on
its own value in comparison with the measured wind direction. The estimated
wind direction is then used to evaluate the LuT and provide new set points. More
precisely, the yaw steering control law is formulated as follows:

or(k) = feit (@m(K), @m(k—1), ..., em(0)) (4.8)

o) = {qp;l((k) ; 11050~ 64K > 1 o7 ki S 1 00— 600| > 9im (4 )
QLK — otherwise

Y(K) = fLut(9(k)), (4.10)

where T marks the time step of the last update of ¢(k) to a new value. The
measured wind direction at the time step k and its filtered version are denoted
by om(k) and ¢¢(k), respectively. The control law has four elements that need to
be supplied: the low-pass filter, fii; the dead-band width, ¢;m; the integration
coefficient k;; and the LuT, fiyt. These elements determine the behavior of the
wind farm, and their adequate tuning is a prerequisite to efficient wake steer-
ing. The selection of the parameters ¢|im and k; is the subject of the case study
presented in Section 4.3. The ffit function is omitted for simplicity; instead we
assume an ideal noise-free measurement of the wind direction. The LuT is first
populated using the serial-refine yaw optimizer integrated into FLORIS [93]. While
the presented control law focuses on wind direction changes, for completeness,
the provided LuT also includes inputs for other freestream atmospheric conditions,
such as hub-height turbulence intensity (TI) and free wind speed. These parame-
ters are kept constant in the case study discussed in Section 3. During the LuT
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creation, Tl is kept constant at 6 %, the wind direction is discretized into 1 deg
bins, and the wind speed from 6 ms~1 to 10 ms—! in 1 ms~1! steps. The baseline
controller follows the same update law, with the difference that it enforces turbine
alignment with ¢(k). The controllers are continuously updated with every 5 s time
step of the simulation; the limits of the intentional misalignment with the main
wind direction are set to £30 deg.

4.3. CASE STUDY

The ““Case study’’ section is split into two parts: Section 4.3.1 discusses the
selection and processing of the field data and the resulting simulation conditions.
Section 4.3.2 then showcases the use of the OFF model to predict the performance
of controllers and how a pre-selection can be made from a large number of
controllers.

4.3.1. SIMULATION SETUP
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Figure 4.3.: (a) The full 23 h and 45 min wind direction time series investigated in this work.
The series is based on field data recorded by a vertical LiDAR at the HKN site

during the 28t of March 2023 [94], depicted in grey. The low-pass filtered data
is given in black. Three marked subsets of the time series have been simulated
in LES for verification purposes. Each LES TF has a length of 3 h, along with
a 20 min initialization period. Critical wind directions are marked in (a) and
depicted relative to the farm layout in (b).

The case study is based on the southwestern corner of the Hollandse Kust Noord
(HKN) wind farm, which consists of 10 turbines, here modeled as DTU 10 MW
reference turbines with a diameter of D = 178.3 m [33]. The layout has been
scaled to preserve the same relative distances between the turbines compared
to the original ones. It features three critical wind directions for which three or
more turbines stand in line, namely for ¢ & 175, 201, and 265 deg. To effectively
challenge the controllers, a wind direction time series that is both realistic and
includes variations across all three directions (along with smooth transitions
between them) is desirable. Accordingly, to drive the simulation, we use 23 h
and 45 min of data recorded by a vertical ZephIR 300M wind lidar at the HKN
site on March 28, 2023, as shown in Figure 4.3 [94]. This date is before the
wind farm went online, which happened in December 2023%. The lidar provides
horizontal and vertical wind speeds, along with wind directions, at various heights.

lwww.crosswindhkn.nl, accessed 28% of October
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Figure 4.4.: Lidar location within the HKN wind farm site with respect to the neighboring
wind farms Prinses Amalia Windpark (PAW) and Egmond aan Zee (EaZ), as well
as its distance to the closest considered turbine. The measurements used in
this study range from 172 deg to 304 deg, part of which, 190 to 211 deg, may
be influenced by PAW. Note that the data used were recorded before HKN went
online.

For this study, measurements at 108 m and 133 m were used to interpolate
the wind direction at a hub height of 119 m. In order to recover the underlying
wind direction changes, the ensuing signal was then zero-phase low-pass-filtered
using a fourth-order Butterworth filter with a cut-off frequency of 1/600 Hz,
equivalent to [95]. The filtered output, as well as the wind direction input for the
precursor, was eventually fed to the yaw steering controllers. For the controller,
this results in an unrealistic noise-free signal, which would otherwise be a function
of a filter or distributed estimation algorithm, e.g., [96-98]. Since this work
aims to demonstrate the surrogate model capabilities and not necessarily the
effectiveness of an integrated wake steering controller, the added complexity of a
wind direction estimator has been left out. Figure 4.4 depicts the lidar location in
the context of the HKN wind farm site and its closest neighboring wind farms?2.
The figure shows that the used wind direction range overlaps with the direction
in which the Prinses Amalia Windpark is located, which may have an impact on
the measurements. Therefore, for the purposes of this paper, changes in wind
speed are neglected, and a constant mean wind speed of 8 ms~! is imposed
for all simulations. This wind speed corresponds to the turbine’s below-rated
operation region, where the impact of wake losses is most significant, thereby
offering the greatest potential for power maximization using wake steering. The
OFF simulations ran with a shear coefficient of 0.12, a turbulence intensity of 6 %
and no veer. Each turbine uses 200 OPs to describe the wake. With a time step
of 5 s and a freestream wind speed of 8 ms~1, this results in 8 km of simulated
wake, or 44.9 D, which reaches beyond the boundaries of the simulated farm
(approximately 5 x 5 km region).




84 4. A dynamic open-source model

1O:I I I I_I

Pim
o

0.01 0.03 0.b5 0.07 0.09

k\
1 1 1 1 1
80% 40% 40% 80%
@, trigger k, trigger

Figure 4.5.: Comparison of the trigger condition that leads to an updated wind direction
based on Equation (4.9). Red means that the controller is updated more often
based on an exceeded dead band, and blue means that the integrated error
crosses the threshold more often. Marked squares indicate controller settings
selected for verification in Section 4.4

4.3.2. PREDICTED CONTROLLER PERFORMANCE

The controller Equation (4.9) updates the wind direction estimate based on either
of two conditions: (i) the difference between the current wind direction and the
measured direction is larger than @i, or (ii) the integrated error exceeds the
threshold. To ensure a sensible range of parameters, we investigate the balance
between these two conditions: Fig. 4.5 compares which of the two triggers
dominates and causes a LuT reevaluation. The results show that the chosen range
of ¢jim €[2,10] and k; € [0.01, 0.09] leads to both cases: either a predominant
role of the threshold or one of the integration constant.

The selected ranges of ¢jim and k; with a 1 deg and 0.01 discretization, respec-
tively, lead to 81 possible combinations of dead-band settings for two types of
controllers, LuT and Baseline (BL). All 162 controllers are evaluated using OFF with
the results reported in Figure 4.6. The figure displays the controller performance
in three dimensions: (i) energy generated, (ii) number of yaw actuator activations,
and (iii) accumulated yaw travel. Figure 4.6 (a) compares the activations with the
energy generated, (b) the energy with the yaw travel, and (c) the yaw travel with
the activations. All three figures are colored based on their ¢jim setting. Looking
at the baseline controllers in Figure 4.6 (a), it becomes apparent that a smaller
@im results in many more activations but not in an increase in energy. This is
a result of a power curve that has little sensitivity to small yaw angle misalign-
ment, possibly highlighting the need for more adequate power-loss exponent
parametrization [89]. On the other hand, the LuT-controlled cases still benefit

2Adapted from map.4coffshore.com/offshorewind/, accessed 28t of October
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Figure 4.6.: (a-c) Unfolded three-dimensional performance comparison of the dead-band
controllers across the full simulated time frame in OFF. Next to the energy
generated by the 10-turbine wind farm, there is the accumulated yaw travel
in degrees and the number of times the yaw actuators are activated. The
baseline controllers are colored in different shades of red, based on ¢jim. The
LuT controllers are colored in blue, respectively.

from the increased number of activations, but with diminishing returns. Notably,
there is little difference in the number of activations between baseline and LuT
controllers. This is due to the fact that Equation (4.9) updates the wind direction
estimates for baseline and LuT controllers alike. In contrast, the LuUT controllers
accumulate a much larger amount of yaw travel than the baseline cases, as
depicted in Figure 4.6 (b). This is to be expected as the baseline controllers only
drive the turbines to full alignment, while the LUT may vary between large positive
and negative misalignment angles. Figure 4.6 (c) shows the relation between
activations and yaw travel. The plot completes the picture drawn by (a) and
(b): while the number of actuator activations may be similar between baseline
and LuT controllers, the yaw travel is not. From these results, one could start to
deduce which controllers fall within a reasonable range for set turbine limitations.
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For instance, if there is an average yaw activation budget of 10 times per hour
per turbine, the number of relevant controllers can be reduced. In this case,
23.75 h - 10 turbines - 10 activations per hour per turbine leads to a maximum
of = 2375 activations, which limits the dead-band width at ¢;j,, = 5 deg. The
results show that if yaw travel and turbine misalignment are not of concern, a LuT
controller may result in a significant improvement in energy generated.
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Figure 4.7.: LuT controller performance normalized by the respective baseline controller
with identical ¢;m and k; settings. Three marked settings along the min-max
approximated Pareto front are chosen for verification. The coloring is based on

Plim-

In this work, we select the controllers for verification based on the performance
difference due to the switch from Baseline to LuT control. Figure 4.7 shows how
the addition of wake steering, while maintaining the same ¢|im and k;, increases
the amount of yaw steering in comparison to the increase in farm energy. The
minimize-yaw-travel and maximize-energy approximated Pareto front indicates
several candidates that offer a trade-off between the increase in energy and the
resulting increase in yaw travel. Three combinations of ¢@|im and k; along the front
are selected for LES verification: one that yields a steep increase in energy for a
relatively low increase in yaw travel (¢;im = 10deg and k; = 0.05), one that tries
to achieve the maximum energy possible (¢jim = 2deg and k; = 0.09), and one
intermediate configuration (¢;jm = 5deg and k; = 0.02).

Next to the results presented in Figure 4.6 and 4.7, which summarize the
overall performance, a wind direction resolved investigation of the results can
also be useful. Figure 4.8 (a) shows the energy generated by the baseline and
LuT controllers with @jim =5 deg, and k; = 0.02 versus the wind direction. More
specifically, a sliding time window of 600 s is used to calculate the energy, as well
as the mean wind direction and wind direction change. The result is a smooth
transition between multiple 10-minute average bins. The energy data are plotted
over the mean wind direction and, therefore, go back and forth along the x axis
(compare Figure 4.3). In direct comparison, it is evident that the LuT manages to
outperform the baseline controller as expected for large parts of the wind direction,
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Figure 4.8.: (a) Energy generated by the wind farm, calculated based on the power inte-
grated over a sliding time window of 600 s. The energy is plotted over the mean
wind direction ¢ during the 600 s for both LuT and BL control. The resulting
wind farm efficiency is given in (b) and (c). Next to the wind farm efficiency,
(b) also depicts the predicted LuT steady-state wind farm efficiency. In (c), the
efficiency is given as color, while the y axis denotes the mean wind direction
change ¢ over 600 s. The controller settings are ¢jim =5 deg, and k; = 0.02.

though, not for all of them. Figure 4.8 (b) depicts the wind farm efficiency as
the ratio of the energy generated by the LuT divided by the baseline energy.
The data show that the LuT-driven controller shows advantageous behavior for
wind directions between 160 deg and 220 deg but struggles to consistently
outperform the baseline in the wind direction transitions between 220 deg and
300 deg. Figure 4.8 (b) also depicts the wind farm efficiency as predicted by
FLORIS during the LuT creation, so under ideal steady-state conditions. The
difference between the achieved wind farm efficiency and the predicted one
shows that the changing turbine states and wind direction state can lead to
suboptimal performance and that the wind farm efficiency predicted by the LuT is,
in most cases, an upper limit, only achievable under steady-state conditions [99].
The occasional localized overshoots beyond this performance envelope can be
attributed to the dynamic nature of the simulations. For instance, in the absence
of wake steering, a downstream turbine aligned with the wind direction would
always operate within the wake of the upstream turbine. However, in a dynamic
setup, transient wind direction changes may temporarily shift the wake, allowing
the downstream turbine to operate under improved conditions and produce more
power than in the steady-state scenario. Nevertheless, these overshoots are
temporary, eventually converging back to the steady-state value or lower. This
observation highlights the need for dynamic wake models to optimize wind farm
control strategies during transient periods. Lastly, Figure 4.8 (c) shows the wind
farm efficiency over the mean wind direction, as well as the mean wind direction
change. This serves as an approximated state-space representation of the wind
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direction and how it influences the wind farm performance. Since the y-axis
depicts the wind direction change, the state of the wind direction moves left in the
lower half of the plot and right in the upper half. In conclusion, the performance
of a wake steering controller is not trivial to assess in a time-marching simulation
due to changes in the flow field and in the turbine state. As a result, the wind
farm can exhibit very different performance for the same wind direction and wind
speed.

4.4, HKN CASES THAT UNDERWENT LES

This section verifies the selected controllers from Section 4.3.2 across the three
subsets of the 24-hour period simulated in OFF and FLORIS. The OFF results are
compared to both the LES and FLORIS, allowing the effect of the added dynamics
to be investigated. Section 4.4.1 further introduces the LES setup and the three
time frames. Section 4.4.2 - 4.4.4 investigate the power generated on a turbine,
farm and statistical level respectively. This is followed by Section 4.4.5, where
the energy generated is compared between the simulations.

4.4]1. LARGE-EDDY SIMULATION

The 10-turbine wind farm is simulated as actuator discs in a 5x 5 x 1 km simulation
domain in SOWFA [20]. The domain is discretized in 300 x 300 x 100 cells and
simulated with a time step of 0.5 s. A grid resolution of 16.6 x 16.6 x 10 m was
chosen to balance computational cost and accuracy. Given the turbine rotor
diameter of 178.3 m, this results in a normalized cell width of Ax = Ay = 0.094 D,
but since the turbines are often diagonally oriented in the domain during the
simulation, there is a worst-case ratio of ¥Y2Ax = 0.132 D. The neutral turbulent
precursor is developed over 3-10% s. A surface roughness of 0.0002 m enforces a
horizontal turbulence intensity of ~ 6.2 % at hub height. The initial wind direction
is kept constant at 225 deg during the precursor to allow changes of £45 deg in
the successor phase, using the same southern and western inflow planes. Three
3 h successor phases underwent LES, as marked in Figure 4.3. A 1200 s spin-up
phase with fixed wind direction is first run in order to fully propagate the wake,
after which 10800 s of the low-pass-filtered field data is used to uniformly change
the wind direction. All three time series are offset to start with 225 deg, while the
wind farm layout is rotated in the LES thereby ensuring the same precursor can
be used across all three simulations. The veer of the precursor is < 2 deg across
the rotor plane, and the shear exponent is ~ 0.075. Figure 4.9 shows the wind
farm in the rotated domain and a qualitative visualization of the wind directions
during the simulation. The latter is achieved by a pizza-shaped histogram with
bins of 2.5 deg in width, translated onto the position of each turbine. Darker bins
indicate more frequent wind directions, lighter ones less frequent ones, thereby
visualizing the wind turbine interactions. Next to the domain orientations, Figures
4.9 (a-c) also depict information relevant to all three TFs; (a) the turbine indexes,
(b) the simulated domain size, and (c) the normalized distance between turbine
TO and the other turbines.

To link the dynamics back to the layout, time is also given in convective
timescales. This denotes the time taken by a particle to travel a characteristic
length within the domain. We choose this length to be five turbine diameters,
as this is closely related to the spacing of the turbines; see Figure 4.9(c). The
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(@) Time frame 1 (b) Time frame 2

Figure 4.9.: Collection of the three simulated LES TFs of the 10-turbine subset of the HKN
wind farm. Panels (a-c) feature pizza-shaped histograms of the wind direction
centered in the turbine locations: darker colors indicate more frequent wind
directions and, therefore, turbine interactions that happen more frequently
during the TF. Additionally, (a) depicts the turbine indexes; (b) the simulated
domain size; and (c) the relative distance between turbine TO and the other
turbines, normalized by turbine diameters. The domains are rotated such that
the initial wind direction is aligned with the precursor, and the remaining wind
direction time series can be simulated with the same inflow planes.

freestream velocity is used to normalize the characteristic length:

5-178.3m

c=

3 — =111.4s. (4.11)
ms—

4.4.2. POWER GENERATED

The power generated by SOWFA is calculated based on an actuator disc model.
Simulated on a coarse grid, these tend to overestimate the power generated by
the turbines, which is a known issue [100, 101]. The resulting mean ratio between
the power generated in SOWFA and OFF is 1.34. Based on this mismatch, the
power measurements by SOWFA in the following plots are either normalized or
marked with a ““c”’, which denotes that the power was divided by the correction
factor. Next to the LES data, the zero-phase-filtered power output data from the
LES are also used to analyze model and controller performance. This filtering
removes the influence of turbulence on turbine power, isolating the underlying
trends more consistently with the wake dynamics that OFF aims to describe. To
this end, a fourth-order Butterworth filter is used with a cutoff frequency of 1/370
Hz. The cutoff frequency is motivated by the results presented later in Figure 4.13
(b). Note that the individual turbine signals are filtered. Derivatives, like farm
power or energy, then use either the filtered turbine power or the original signal
and are marked with “Ipf” if they use the filtered data.

The match between OFF and SOWFA is investigated in three ways: (i) on a
selected turbine level for a selected controller, (ii) on a farm level for a selected
controller, and (iii) on a statistical level. Figure 4.10 and 4.11 investigate the data
collected for turbine T3. The data were recorded using the dead-band LuT and
baseline controllers with ¢im =5 deg, and k; = 0.02, one of the settings selected
for validation based on the results in Figure 4.7. Turbine T3 is selected as it acts
as an upstream turbine in TF 1, see Figure 4.9, and as a downstream turbine in TFs
2 and 3. This is mirrored in Figure 4.10, where the turbine produces its maximum
power during the initial hours of the time series. The LuT-controlled case diverges
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Figure 4.10.: Power generated (a) and efficiency with respect to the baseline (b) of turbine
T3 throughout the full simulated wind direction time series. "LES c" refers to
the corrected SOWFA data, and "Ipf" refers to the zero-phase low-pass-filtered
data. The controller settings are @jim =5 deg, and k; = 0.02. The detailed data
from the time frames are provided in Figure 4.11.

as the turbine engages in yaw steering and sacrifices power to redirect its wake.
During later periods of the simulation, T3 becomes a downstream turbine and
its power generated significantly decreases. Here, we can see an inverse effect,
where T3 benefits from the yaw steering of other turbines and generates more
power in the controlled case than in the baseline case.

Zooming in on the TFs that underwent LES, Figure 4.11 gives a more detailed
look into the match of the LES data and the OFF data. Qualitatively we observe
an overall fitting trend between the LES signal and the power predicted by OFF.
An immediate difference between the two is the influence of turbulence on the
LES signal. This causes noticeable variations that OFF cannot predict. The low-
pass-filtered signal removes this discrepancy partially and shows a signal that is
overall better aligned with the OFF signal. One aspect that gets lost due to this
filtering is the response of the turbine power to yaw angle changes: Figure 4.11(b)
shows the efficiency of the turbine during a period where turbine T3 engages
in yaw steering to lessen the wake interaction with a downstream turbine. In
OFF, the rotor misalignment causes sharp decreases and increases in efficiency,
while the change is either smoothed out by filtering or hidden in the noise for
the LES data. Reoccurring discrepancies between OFF and the low-pass-filtered
LES data appear in the form of a phase shift, mainly visible with the baseline
power signal: OFF displays slightly delayed reductions and recoveries compared
to SOWFA. This might be the product of a wake that advected too slowly, which is
notable as similar models specifically slowed their advection speed down for a
better match with reference data. Another difference between OFF and the LES
data is visible in the turbine efficiency displayed in Figure 4.11(d) and (f): OFF
tends to either match or overestimate the effect of yaw steering on the turbine
efficiency, compared to the filtered LES signal. This may be attributed to the fact
that OFF describes a middle ground between an overconfident steady-state model
and a more realistic LES.

Figure 4.12 moves from the turbine power described previously to the farm
level. As the scale increases, the differences between the signals decrease. On
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Figure 4.11.: Power generated (a,c,e) and efficiency with respect to the baseline (b,d,f) of
turbine T3 during the three simulated TFs. "LES c" refers to the corrected
SOWFA data, and "Ipf" refers to the zero-phase low-pass-filtered data. The
data are a subset of Figure 4.10.

a farm level OFF shows a qualitatively better match than on a turbine scale,
where differences become much more clear. The farm power efficiency is also
more balanced compared to the turbine level; both over- and underestimations
are present if there is a mismatch, which suggests a lower bias. The improved
performance on a farm scale may stem from different sources: (i) The fact that
turbines are distributed throughout the farm makes it more likely that if one is not
waked, another one may be. As a result under- and overestimation may cancel
out. (ii) Looking at an individual turbine, small increases in wind speed lead to a
large amplification of the power generated. As a result, mismatches create a large
error. However, in the presented farm context the power contribution of waked
turbines is small compared to the free-stream turbines. The data presented in
Figure 4.12(a) and (b) also highlight TF 1 as a difficult period for wake steering to
achieve consistent gains.
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Figure 4.12.: Farm power generated (a,c,d) and efficiency with respect to the baseline
(b,d,f) during the three TFs. "LES c" refers to the corrected SOWFA data, and
"Ipf" refers to the zero-phase low-pass-filtered data. The dead-band controller
settings are @jim =5 deg and k; = 0.02.

4.4.3. POWER SIGNAL CORRELATION

The results presented in Figure 4.10 - 4.12 show the similarities but also the
discrepancies between OFF and the LES with respect to power generated. In the
OFF environment, fluctuations in the power signal are due to (i) wind direction
changes, (ii) control set point changes, and (iii) delayed wake dynamics. By
contrast, the LES environment also reflects fluctuations due to turbulence and
wake meandering. These latter two factors contribute to higher-frequency effects,
raising the question: which frequency ranges does OFF effectively capture? And
which frequencies could also be represented in a steady-state model?

To answer this question, we investigate the correlation between the power
signals. Assuming that the discrepancies between OFF and the LES are of a
high-frequency nature, one would expect that the correlation between the two
models increases as high-frequency fluctuations are filtered out. In turn, with too
aggressive filtering, the correlation should eventually decrease as the LES signals
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lose components described by OFF. Based on these assumptions, the individual
turbine data of TFs 1-3 for the baseline and LuT dead-band (¢|j,m =5 deg, k; = 0.02)
controllers are correlated between OFF and the LES. A total of 180 h of data, or 18
h per turbine, are subsequently processed. Figure 4.13 (a) illustrates the influence
of the cutoff frequency of the fourth-order Butterworth filter applied to the LES on
the correlation score recorded by OFF while Figure 4.13 (b) depicts the resulting
average correlation error. The average correlation error is defined as the mean
distance of the turbines to 1 for all three TFs:

1
€corr = —— D> [1—corr(porr, pies)], (4.12)

ire i1

where p is the power of turbine it in TF irfg, and npt =5+ 6+ 6 = 17 is the
total number of downstream turbines considered summed across all three TFs.
Combining the baseline and controlled cases, the minimum for ecqr is achieved
for feutoff = 1/370 Hz=1/3.33 t- = 0.0027 Hz . In contrast to OFF, the collective
minimum for FLORIS is reached at 1/520 Hz = 1/4.68 t;l = 0.0019 Hz, so at a
lower frequency. This gap is explained by the added wake dynamics in OFF, as
OFF uses the same FLORIS model in its core. This cutoff also aligns with the
literature on wake meandering, which is not captured by OFF: [102] finds the
wake meandering frequency to be around 2“0;“;3, which equals 0.0022 Hz for the
presented study. [17], on the other hand, suggest a higher frequency, which, for
this study, equals 0.022 Hz. We can conclude that OFF does describe the wake
dynamics up to the wake meandering frequency. Additionally, we note that OFF
leads to a lower error than FLORIS; while OFF finds its minimum at ecorr = 0.11,
FLORIS returns ecorr = 0.19. It should be noted that the filtering timescale used
to preprocess the wind direction signal (1/600 Hz) may limit OFF’s performance,
as it filters out relevant dynamic scales. Related work by [103] suggests, for
instance, that mean wind direction changes may occur with a frequency of up to
1/270 Hz. Rerunning the LES with a higher cutoff frequency would likely increase
OFF’s effective cutoff frequency estimation; however, this was not feasible within
the scope of the present work.

Figure 4.14 provides more insight into the source of the correlation error. Figure
4.14 (a) and (b) show the correlation error in OFF, split into LuT cases (a) and
BL cases (b). This is accompanied by the results for FLORIS, depicted in (c) and
(d), also split into LUT cases and BL cases, respectively. Upstream turbines, like
TO, T1, T3, T5, and T7 for TF 1, are neglected in Figure 4.13 and 4.14 as they
are operating at close-to-maximum power in OFF and FLORIS, while their LES
counterparts are affected by turbulence, see for instance Figure 4.11 (a). As a
result, the turbines modeled in OFF and FLORIS experience no excitation, while
the LES ones do. This leads to effectively no correlation between the signals.

Looking at which turbines lead to the larger ecorr for FLORIS, the turbines in TF
1 contribute a large share, as well as turbine T9 in TF 2. Based on Figure 4.9, we
can see that TF 1 features long-distance turbine-to-turbine interactions. This fact,
paired with the varying wind direction, leads to a situation where the steady-state
approximation of FLORIS fails and where wake dynamics play a significant role in
the power generated. This also complements the observation from Figure 4.12
(b), where it was visible that TF 1 is a challenging case for the steady-state-based
LuT controller. A notable similarity between OFF and FLORIS is that the LuT cases
lead to a higher error than the baseline cases. One reason for this discrepancy
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Figure 4.13.: (a) Correlation of the downstream turbine power in OFF and the LES. The LES
data are zero-phase low-pass-filtered with varying cutoff frequencies. Each line
corresponds to the correlation of one turbine, blue lines are the data from the
controlled TFs, and red lines are from the baseline ones. The dot represents
the maximum correlation from a given turbine. The average error is depicted
in (b) and is minimal for feutoff = 1/370 = 0.0027 Hz. Additionally, there is the
line for the correlation of the FLORIS data with the LES. Its minimum is located
at 1/520 Hz. The dead-band controller settings are ¢;jm =5 deg and k; = 0.02.

could be that the turbine model does not accurately capture the impact of larger
misalignment angles. This would motivate turbine model corrections as suggested
by [104] and [89]. Additionally, this error may be partially rooted in the wake
dynamics triggered by LuT control. Indeed, LuT-based wake steering tends to
amplify changes in wind direction: a variation of just a few degrees in the wind
direction may, under certain circumstances, induce a yaw-offset angle change
that is 10 times greater than the original wind direction change [99]. This results
in more frequent and larger variations in wake states.

4.4.4. POWER ERROR STATISTICS

Section 4.4.2 first investigates the turbine power, then the farm power, as well as
the role of timescales. This discussion is limited to one set of controller settings
@lim = 5 deg and k; = 0.02. For brevity, we denote the controller settings as
(@iim, ki) in the following paragraph. Two more sets of settings underwent LES,
namely (2,0.09) and (10, 0.05). Table 4.1 summarizes characteristic error quanti-
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Figure 4.14.: Cumulative correlation error between the turbine power from the LES and
OFF (a,b) and FLORIS (c,d). The data are split into the LuT cases (a,c) and
the baseline cases (b,d). The shaded areas indicate the contribution of each
downstream turbine across the three TFs on top of each other. With (d) it is
indicated which layer relates to the corresponding TF. The dead-band controller
settings are @;im =5 deg and k; = 0.02.

ties for all controllers. The table combines the three TFs for each controller setting
to calculate the difference between the OFF prediction and FLORIS prediction. The
table lists the normalized RMSE for the turbine and farm power, as well as the
correlation of both signals. The normalization was done with the corrected LES
data. The values show that the addition of dynamics renders OFF more robust
towards the addition of yaw steering, compared to FLORIS: while the turbine and
farm NRMSE slightly decrease for OFF, there is a notable increase for FLORIS
related to the switch from BL to LuT operation. Similarly, the correlation of the
farm and turbine power decreases for both OFF and FLORIS, but the steady-state
approximation results in a larger decrease; e.qg., for (2, 0.09), the farm power cor-
relation by OFF decreases by ~ —0.03 compared to ~ —0.11 for FLORIS. However,
both OFF and FLORIS achieve similar correlation and error results for baseline
operation. An explanation can be that the LuT creates wind farm states that
are more sensitive to environmental changes. As a result, the modeled wake
dynamics become more relevant. Also notable is the NRMSE decrease for both
models with the switch from turbine level to farm level, from values between 0.17
and 0.27 to values between 0.04 and 0.06. Consequently, model inaccuracies
on a turbine level do not necessarily lead to equally large errors on a farm level.
This also indicates that going forward, improved model descriptions might lead to
less uncertainty on a turbine basis but might show diminishing returns on a farm
scale.
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Model | @iim ki Mode | T. NRMSE [-] T. Corr. [-] F. NRMSE [-]
OFF 2 0.09 LuT 0.19 0.81 0.047
FLORIS 2 0.09 LuT 0.27 0.74 0.064
OFF 2 0.09 BL 0.20 0.88 0.048
FLORIS 2 0.09 BL 0.19 0.87 0.045
OFF 5 0.02 LuT 0.18 0.83 0.043
FLORIS 5 0.02 LuT 0.24 0.76 0.056
OFF 5 0.02 BL 0.20 0.88 0.047
FLORIS 5 0.02 BL 0.20 0.87 0.045
OFF 10 0.05 LuT 0.18 0.85 0.042
FLORIS | 10 0.05 LuT 0.24 0.80 0.053
OFF 10 0.05 BL 0.20 0.88 0.048
FLORIS | 10 0.05 BL 0.21 0.86 0.047
Model Plim ki Mode F. Corr. [-] feutoff [HZ] ecorr [-]
OFF 2 0.09 LuT 0.88 1/360 0.14
FLORIS 2 0.09 LuT 0.81 1/540 0.26
OFF 2 0.09 BL 0.90 1/430 0.10
FLORIS 2 0.09 BL 0.92 1/520 0.13
OFF 5 0.02 LuT 0.90 1/360 0.12
FLORIS 5 0.02 LuT 0.84 1/520 0.24
OFF 5 0.02 BL 0.91 1/390 0.10
FLORIS 5 0.02 BL 0.92 1/520 0.15
OFF 10 0.05 LuT 0.91 1/370 0.11
FLORIS | 10 0.05 LuT 0.85 1/510 0.21
OFF 10 0.05 BL 0.91 1/370 0.09
FLORIS | 10 0.05 BL 0.91 1/500 0.16

Table 4.1.: Power error statistics for each controller tested in OFF, FLORIS and LES. From left:
T.NRMSE, the normalized root-mean-square error calculated with the corrected
turbine power LES data; T.Corr., the correlation with the unfiltered turbine power
LES signal; F.NRMSE, the normalized root-mean-square error calculated with
the corrected farm power LES data; F.Corr., the correlation with the unfiltered
farm power LES signal; fcutoff, the cutoff frequency for LES filtering; and ecorr, the
average correlation error.

4.4.5. ENERGY GENERATED

Section 4.4.2 investigates the power generated by the wind farm at different
time and turbine scales. This section complements the results with a discussion
about the energy generated. More specifically, the efficiency of the wind farm is
compared between the LES and the surrogate models. The efficiency is calculated
as the ratio of the farm energy generated using LuT control, normalized by BL
control, integrated over a time window AT:

ft+AT

Aty pLut(T) dT
_Jt nr
n(t' AT) - ft+AT

¢ Aty peL(T) dT

(4.13)

where p refers to the power generated by a turbine, At is the time step, and t is
the time. Figure 4.15 compares nies(t, AT), the wind farm efficiency simulated
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Figure 4.15.: Wind farm efficiency as predicted by the surrogate models OFF (a-d) and
FLORIS (e-h) and as simulated in the LES. The efficiency is calculated based
on the ratio of energy generated over a time window AT, which is equal for
each column of the figure, e.g. (a) and (e). The dotted white line indicates a
perfect fit, which is complemented by the linear regression of the data, given
as red line and equation. The color map is normalized by the largest bin count
based on the given time window. The darkest color is reserved for the smallest
non-zero bin count; empty bins are not filled. Note that the distribution of AT
is not equidistant.

in the LES, with nore(t, AT) and nrLoris(t, AT), the values OFF and FLORIS predict
respectively. This is done for four values of AT between 100 s and 1800 s with
data from all three TFs, and based on the ¢im = 5 deg, k; = 0.02 controllers. A
first observation is that the range of values for the farm efficiency decreases with
increasing length of AT. This shows the increasing convergence towards a more
consistent controller performance over a longer time as well as a diminishing
influence of effects at a small timescale. In comparison, between OFF and
FLORIS, OFF generally predicts a narrower fit for small values of AT, closer to
the ideal correlation line. With increasing AT, this difference diminishes, and the
distributions of FLORIS and OFF become more equal. For large AT, FLORIS shows
a structural underestimation compared to the LES data, where OFF still predicts
values along the ideal correlation line. This observation is also quantifiable
with the linear regression parameters: as AT lengthens, the linear coefficient
approaches 1, and the bias decreases. This trend is visible for both models;
however, OFF consistently presents parameters closer to the ideal values.
Figure 4.16 investigates the error in the approximation of the farm efficiency to
further quantify and compare the differences. For each TF and each simulation
environment n(t, AT) is calculated for AT € [100,1900] s and t € [tg, t1 —T1],
where tg is the start time of each TF and t; is the final time. Figure 4.16 compares
how the root-mean-square error between the n(t, T) from the LES and the n(t, AT)
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Figure 4.16.: Root-mean-square error in the wind farm efficiency in LES compared to OFF
or FLORIS. The wind farm efficiency is defined as the ratio of the energy
generated with LuT control divided by the baseline energy integrated over a
given time window.

of OFF and FLORIS changes for different T. The difference between the LES and
FLORIS improves significantly for longer averaging periods, highlighting its design
meant for long-term wind farm behavior. On the other hand, OFF benefits from
the addition of wake dynamics and shows much lower RMSE values compared
to FLORIS. However, this advantage becomes smaller as AT grows larger. As a
result, a user has to decide if the added computational cost of OFF in comparison
to FLORIS justifies the improvement in prediction. We conclude that, based on
this case study, it is advantageous to use OFF for quantities of interest shorter
than ~ 20 min. However, for longer timescales the benefit of the added dynamics
diminishes.

4.4.6. COMPUTATIONAL COST

One of the main motivations for dynamic parametric wake models like OFF, or
by extension for FLORIDyn or OnWaRDS, is the low computational cost compared
to high-fidelity numerical methods such as LES, for instance. On the other hand,
it is evident that the computational cost has to be higher than the cost of the
underlying steady-state wake model. Simplified, the computational cost of both
OFF and time-marching FLORIS can be expressed as a function of the number of
time steps nk, the number of turbines nt, and the number of observation points
nop:

OoFF=nNk-...

[OState prop.(NT, Nopr) + Otwr(NT, Nop) + N1 - [OF. run(NT) + OF. reinit. (NT)] + . ...

Oprediction
..+ Ocorr.(N1, NnopP) + Ocon.(nT):| + OF. init. + OOFF init (4.14)
OFLORIS = Nk * OF, run(NT) + OF . init + Ocon.(NT), (4.15)

where Ostate prop. refers to the cost of the state propagation, Otwr to the creation
of the TWFs, Of, run to the cost of one FLORIS evaluation, Of, reinit. and Ok init. to
the FLORIS reinitialization and initialization, Ocorr. to the state correction, and
lastly Ocon. to the derivation of the control set points. This is accompanied by
other costs, such as visualization, data storage and memory limitations, which
are excluded here.
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Performance analysis during the code development has shown that the re-
occurring computational costs of Of, reinit. Can be substantial depending on the
implementation. FLORIS was developed with other simulation goals in mind. This
leads to costs associated with the reinitialization that are mandatory for some
FLORIS applications but could be neglected for purposes of the OFF simulations.
Consequently, existing codes similar to OFF have mainly chosen to implement
their own wake model. This, in return, limits the capabilities and flexibility of
the wake model, which was one of the main motivations for the development
of OFF. Another consideration to reduce computational costs is to only run rel-
evant turbines in the steady-state simulation and thereby decrease the cost of
Of. run(nT). This could be done by excluding turbines that do not contribute to the
wake losses experienced by the turbine the TWF is dedicated to. The validity of
this approach also depends on the steady-state model capabilities. For instance,
if there is a blockage model based on nt, this simplification would introduce a
systematic model error. Lastly, parallelization is a natural approach to improving
computational complexity. The nt TWF evaluations done in one time step can be
done independently of one another, which would lead to a performance improve-
ment for up to nt cores. In this work, we investigate a large number of control
settings and, therefore, use OFF as a single-core code and split the task at hand
over multiple simulations. To give an estimate, in our 10-turbine simulations, OFF
ran with a real-time factor of 2.2 -1071 in single-core performance, resulting in
5 h 20 min CPU time for 23 h 45 min simulated time. The SOWFA simulations,
recalculated from 80 cores to 1 core, ran with a real-time factor of 2-103, resulting
in 6030 h CPU time for 3 h simulated time. Lastly, FLORIS ran with a real-time
factor of 5.2 -107>, resulting in 4.43 s wall time for 23 h 45 min simulated time.
Previous work showed that the real-time factor of a model like OFF can be reduced
to the order of 10~3 for a similar-sized wind farm with a dedicated implementation
of the Gaussian wake model [47, 75].

4.5. CONCLUSION

This paper introduces OFF, a dynamic open-source wake model designed for
wind farm flow control and wake model development, and as a unified interface
for various similar models. In this context, a generic description of a passive
Lagrangian particle wake model is provided, along with details on the specific
version used to achieve the results discussed here. In an example case, the model
is used to make an informed parameter choice for a wake steering controller
before verifying the selected settings in LES. The controller applies a wake steering
look-up table dynamically for a 10-turbine wind farm. The wind farm layout is
based on the Hollandse-Kust-Noord wind farm, and the approximately 24 hour
long period of wind direction time series used to test the controllers is based on
field data from the same location.

The results from the study show that the wind farm controller can lead to
suboptimal performance in the presence of wind direction changes compared to
what was predicted during the generation of the LuT based on a steady-state as-
sumption. The study also shows that the wake steering controller’s performance
can vary widely for the same wind direction based on the prior state of wind
direction, wakes and controllers used. Six selected sets of controller settings are
then verified in LES in three 3 hour long subsets of the wind direction change time
series. The results show overall good agreement between the LES and OFF in



100 4. A dynamic open-source model

both predicted power generated and wake steering controller efficiency. The LES,
for instance, confirms that one of the selected time frames creates a challenging
environment for the wake steering controller to return consistent gains over the
baseline operation. The results further investigate the timescales described by
both FLORIS and OFF. A conclusion drawn from the comparison is that a dynamic
wake description leads to a better correlation with the LES power signal, as well
as a lower root-mean-square error compared to a steady-state prediction.

In conclusion, OFF provides a unified interface to a dynamic wake description that
is advantageous over steady-state wake models for shorter time periods (< 20
min). The model is open-source and designed to interface with steady-state wake
model toolboxes. This has been demonstrated with the FLORIS toolbox. As a
result, users of OFF can also benefit from the ongoing development done for the
underlying wake models.

Future work should further investigate the use and effect of various steady-
state wake models in a dynamic context. This starts with further validation of the
approach and the generation of more realistic test and reference cases. One short-
coming of the presented case study is its limitation to wind direction variations.
Future work should investigate the model and control performance with realistic
wind speed variations, similar to the works of, for example, [51, 95]. It may
also involve investigating the selection of wake parameters. Since OFF describes
wakes at higher frequencies, the resulting wake shape may appear more slender
than a steady-state wake, which must account for small-scale wind direction
changes and wake meandering. The OFF code is further built in a modular way to
be expanded by other dynamic elements and to further explore their effectiveness
for the description of dynamic flows. This includes, for instance, wake advection
descriptions (e.g. [75, 85, 105]), shear and veer parameterizations (e.g. [106]),
or floating turbine dynamics (e.g. [15]). Another direction of interest can be the
employment of single-wake dynamic surrogate models in a wind farm, e.g. [107,
108].

In the long term OFF should lead towards a new dynamic wake model that
replaces modularity with reduced computational cost and a dedicated, informed
selection of the components previously explored.
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ind farm control methods allow a more flexible use of wind power plants over

the baseline operation. They can be used to increase the power generated,
to track a reference power signal or to reduce structural loads on a farm wide
level. Model based control strategies have the advantage that prior knowledge
can be included, for instance by simulating the current flow field state into the
near future to take adequate control actions. This state needs to describe the
real system as accurately as possible. This paper discusses what state estimation
methods are suitable for wind farm flow field estimation and how they can be
applied to the dynamic engineering model FLORIDyn. In particular, we derive
an Ensemble Kalman Filter framework which can identify heterogeneous and
changing wind speeds and wind directions across a wind farm. It does so based
on the power generated by the turbines and wind direction measurements at the
turbine locations. Next to the states, this framework quantifies uncertainty for the
resulting state estimates. We also highlight challenges that arise when ensemble
methods are applied to particle-based flow field simulations. The development
of a flow field estimation framework for dynamic low-fidelity wind farm models is
an essential step toward real-time dynamic model based closed-loop wind farm
control.
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5.1. INTRODUCTION

Wind turbines are frequently positioned in a wind farm in such a way as to minimize
electrical cabling costs and to utilize given space as efficiently as possible. In
this context, wake effects can have a significant impact on the power generated
by the wind farm: as one turbine extracts energy from the flow, a downstream
turbine experiences lower wind speeds and generates less energy [4]. The impact
of wakes can be reduced by wind farm layout optimization and by changing the
way wind turbines are controlled. Wind farm control (WFC) methods utilize the
degrees of freedom a wind turbine provides in order to improve the wind farm’s
performance [5]. This can be done for instance to increase power generated or to
reduce loads on the turbines to extend their lifetime.

Model based WFC methods utilize a surrogate model to find the optimal control
inputs for the wind farm. This has shown to be successful in steady state, for
instance with the method of wake steering [4], where turbines are purposefully
misaligned with the main wind direction to deflect their wake. For steady state
conditions, set points can be calculated offline and are then applied using a
look-up table during operation. More recent publications iterate on the approach
and aim to also include dynamic effects, some of which are discussed here:

Dynamic wake effects can be approximated at a low computational cost by
reducing the underlying physics. One example is the free-vortex method, which
reduces the simulation scope to vortices shed by the rotor and their interaction
with one another. Recent work has shown that the free-vortex method, paired
with an adjoint-optimisation, can be used for model predictive control [109]. In
the presented work, the algorithm is applied to a two-turbine wind farm during a
wind direction change, where the flow field conditions are prescribed on a global
scale. While successful at a small scale, the method is currently limited to low
numbers of turbines. This is due to a steep increase in computational cost and
numerical instabilities. The free-vortex method further has inherent difficulties
to accurately describe the wake behavior once the wake does break down. The
distance at which the free vortex method begins to become inaccurate is subject
to ongoing research and can vary across different implementations. Another way
of approximating dynamic effects in wind farms is to decrease the time scale
at which steady state models are used. In [110] the authors use a steady state
model but adapt it to take changing atmospheric conditions on a longer time
scale into account (minutes to hours). This way they achieved dynamic closed
loop control with a steady state model across a full diurnal cycle. The model does
not feature a dedicated flow field model, but rather averages the environmental
conditions over time. On a shorter time scale of seconds to minutes, there are
only a few models which aim to simulate the flow behavior in a wind farm at a low
computational cost in order to provide control inputs in real-time.

One such model is the FLOw Redirection and Induction Dynamics (FLORIDyn)
model, originally published in [19] and more recently revised in [1] and [47].
The model can take heterogeneous and transient flow conditions into account
and can simulate the propagation of turbine state changes through the wake.
This is achieved by creating particles, so called Observation Points (OPs), at the
rotor plane. These inherit the turbine state and the wind field state at the time
of their creation. Each OP then proceeds to propagate downstream according
to the wind speed and direction it has inherited. The turbine state, together
with the wind field state and the OP location, provide enough information to
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approximate the influence of the turbine wake in the proximity of the OP. The
FLORIDyn model uses a parametric wake model, designed for steady state, to
calculate the wind speed deficit. The model therefore adds flow and advection
dynamics to a computationally cheap steady state wake model. Multiple similar
models have been published recently, which are briefly described below.

The FOWFSim-Dyn model presented by [15] provides a basis for a dynamic
description of floating wind farms. It couples a parametric wake model with
turbines on floaters, constrained by mooring lines. Based on the inflow, the
turbines change their location and the wakes adapt. The inflow is assumed to
be uniform throughout the domain and is modeled as an imposed function of
time. The model UFLORIS is presented in [76]. It makes similar design choices as
FLORIDyn, in its switch from [1] to [47]: instead of using multiple OP chains to
cover the entire wake, the model employs only one chain of OPs along the center
line. UFLORIS employs a 2D wake and models the wind speed as part of the
Observation Point’s state. The model presented in [75] takes a different approach
and models the wind field as its own set of ambient OPs which propagate at
a different speed than the wake OPs. The model also incorporates crosswind
components at the rotor plane and is able to show meandering effects in the wake.
Similarly, [74] also employs a set of wake-OPs and ambient-OPs to differentiate
between the background flow behavior and the wake dynamics.

The emergence of various dynamic parametric wake models shows that the
field is maturing and different design choices are being explored. A common
goal for these models is to be applied in a wind farm context for real-time control
purposes. To achieve this, an estimation framework is needed to identify the
current wind field state. The identified state can then be used to simulate into
the near future and to decide on the best control actions. Without estimation,
the model does not have knowledge of the real life circumstances and does not
lead to useful predictions. In previous work [21], a Kalman Filter is proposed to
estimate the wind speed in FLORIDyn with promising results. However, the work
is lacking a wind direction estimation and this approach does not estimate the
uncertainty of the system states but rather assumes prior knowledge of it.

An alternative estimation method is the Ensemble Kalman Filter (EnKF) [111].
The EnKF follows an ensemble based data assimilation approach and aims to
estimate the state by simulating many different versions of the model. Each
realization of the model has its own state and forms one ensemble. The states
differ across all ensembles and diverge over time, if not corrected. During
the correction step, the differences between the ensemble states are used to
approximate the state-error-covariance matrix, which allows the calculation of
the Kalman gain matrix. The capability to approximate the state-error-covariance
matrix is property of the EnKF which simplifies what is a major tuning effort in
other Kalman filter implementations. Therefore, the state estimation of nonlinear
systems with the EnKF is relatively easy compared to other methods, which might
require more system information, such as derivatives. The reduced mathematical
effort comes at the cost of more computational effort in the simulations. As a
result of increasing computational capacities and the parallelizable nature of the
EnKF, this trade-off has become more tolerable. The method can be used to
estimate the state of complex nonlinear systems, as well as the uncertainty of an
identified state, a property which is useful for solving control problems in a robust
manner. Successful applications of the EnKF include flow problems [112-117],
which make it particularly interesting for wind farm flow field estimation.
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In a similar problem setting to FLORIDyn, an EnKF is used in [114] with the wind
farm model WFSim to estimate the state of the flow. The EnKF returns promising
results including the uncertainties of the states in addition to a computational
setup which can easily be adopted to keep the computational cost low. However,
an elementary difference between the work of [114] and FLORIDyn is that WFSim
has states at fixed locations, whereas FLORIDyn propagates its states and is
essentially a particle simulation. This requires an adaptation on how the EnKF
can be applied compared to its textbook examples. The work of [112] pioneered
the application of the EnKF in an adaptive mesh simulation, something which
has been further developed in [113, 115]. A recent publication [117] adapts the
problem statement by incorporating Lagrangian particles in a mesh simulation.
This work presents characteristics close to FLORIDyn and shows that the EnKF
can be applied for particle simulations. The mere fact that an EnKF framework
can be applied to a dynamic-low-fidelity model has been shown by [116]: based
on the power generated an EnKF corrects the wind speed deficit and the wake
expansion.

Similar estimation techniques to the EnKF are the Unscented Kalman Filter
(UKF) [118], and variational data assimilation, such as the Four-Dimensional
Variational method (4D-Var) [119]. The UKF propagates selected versions of
the state vector, called sigma vectors (or sigma points). The sigma vectors are
created based on the state covariance. They are then propagated in time using
the system equation and the weighted mean of the resulting states is the estimate.
The error covariance between the sigma vectors and the outputs is then used to
calculate the Kalman Gain matrix and to correct the estimate. This allows the UKF
to do state estimation for nonlinear systems [120]. The difference to the EnKF
is, that the sigma vectors are then reseeded, based on the new state covariance.
The EnKF on the other hand propagates the same ensembles further in time. A
downside of the UKF is the number of sigma vectors, which is typically twice the
number of states. For FLORIDyn, this would result in hundreds to thousands of
sigma vectors. Variational data assimilation methods optimize an initial state to
fit the past outputs produced by the model over an assimilation window. The
identified state can then be used to predict future model behavior. In particular,
4D-Var is used with success for meteorological and flow simulations [121], similar
to the EnKF. This frequently leads to the question when to choose one over the
other [122]. What makes 4D-Var unsuited for FLORIDyn is that the OPs with
the identified state leave the system boundaries and are disregarded. As a
result, the algorithm would put effort into estimating states which do not have an
influence anymore at the current time step, nor in the future. We conclude that
the EnKF remains the most practical and promising approach for the simulation
circumstances of this work.

To summarize, dynamic-parametric analytical wake models, such as FLORIDyn,
grow in popularity. They can approximate dynamic flow behavior within a wind
farm at a low computational cost, which makes them suitable for real-time closed-
loop wind farm control. In order to make meaningful control decisions, the model
state needs to be equal to the real wind farm state. To align the two states, an
estimation framework is needed. The review of existing methodologies suggests
that the Ensemble Kalman Filter is the most suitable estimation framework but
requires some adaptation.

The main contribution of this paper is an Ensemble Kalman Filter framework
to jointly estimate the background wind speed and wind direction in a wind
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farm, using the dynamic parametric wind farm model FLORIDyn. The presented
framework is innovative as wind speed and wind direction estimation are generally
treated as separate problems. The work further contributes to the recent efforts
to explore how the Ensemble Kalman Filter as a method can be used to estimate
the states of Lagrangian particle simulations. The estimation is based on already
available turbine data such as the power generated and wind vane measurements.
The results and insights of this work are also relevant for other dynamic parametric
wind farm models mentioned earlier [15, 74-76], as well as for other Lagrangian
particle simulations.

The remainder of the paper is structured as follows. Section 5.2 discusses FLORI-
Dyn’s properties and presents the resulting Ensemble Kalman Filter framework.
Results obtained with the new framework are presented in Section 5.3. Section
5.4 draws conclusions and gives an outlook for future work.

5.2. MATERIALS AND METHODS

In order to implement the proposed Ensemble Kalman Filter approach, FLORIDyn
needs to be described as a state space system. We will approach this problem
by first discussing the properties of the FLORIDyn algorithm and the resulting
differences to other simulation types in Section 5.2.1. Following these insights,
we present different ways to formulate the Ensemble Kalman Filter framework in
Section 5.2.2. We will also discuss extensions of its formulation?.

5.2.1. PROPERTIES OF THE FLORIDYN APPROACH

FLORIDyn is a particle simulation approach to model the dynamic behavior of wind
turbine wakes given environmental conditions. In practice, so called Observation
Points (OPs) are created at every time step and propagate downstream with the
free wind speed and along the main wind direction. The term free wind speed
refers to the assumed background wind speed, unaffected by the wakes. The
OPs inherit the state of the turbine at their time of creation. This allows them
to calculate the wake of the turbine at and around their location. The detailed
process is described in [47]. The wind field states used for propagation (wind
speed, direction and ambient turbulence intensity) are also part of the states of
an OP. The full state of an OP is given by its location x_ op, the turbine states
attached to it x1,0p and the wind field states xwr,op. Combining all OP states, the
system is then propagated as follows:

x (k+1) AL 0 A wr(xwr(k))| | xL(k)
xt(k+1) |[=] 0O ArT 0 xt(k) | + ...
xwr(k+1)] [ O o Awr, wr | | Xwr(k)
6(xL(k), xT(k), xwr(k)) BL 0 O It (k)
o +10 Bt 0 xT,0(k) |, (5.1)
i 0 | 0 0 Bwr| | xwr,o0(k)

1The mathematical notation of the paper is as follows: italic, non-bold letters denote scalars (e.g. x, Cp),
bold, lowercase letters denote column vectors (e.g. Xop, Mwr), column vectors with hat denote state
estimates (e.g. Xwe), with bars averages (e.g. Xwr). Bold, uppercase letters denote matrices (e.g.
A, C), matrices with tilde represent matrices modified by weighting or localization (e.g. [\,5). Square
brackets organize equations or define matrices and vectors, round brackets are function inputs,
properties or units.
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where x| refers to all OP location states, xT and xwr to all stored turbine states
and the stored wind field states respectively. The matrices A_L, At T and Awr,wr
have a similar lower-diagonal block structure which ensures that one state is
propagated to the next row for each turbine and its OPs. The propagation of
the OPs following the main wind direction and wind speed is described by the
matrix AL wr(xwr(k)). The nonlinear term 6(x.(k), x1(k), xwr(k)) describes the
centerline deflection, as the model presented in [47] describes only OPs moving
along the centerline. This term is zero in the presented work, as yaw-misalignment
is not part of the later presented case studies. A detailed description can be found
in [16]. As inputs there are the turbine rotor locations It(k), the current turbine
state xT,0(k) and the current wind field state at the turbine locations xwr,0(k).
The turbine rotor locations are used to determine where the OPs are created, the
remaining inputs serve as information stored in those newly created OPs. The full
system is described in more detail in Appendix 5.A.1.

In order to estimate the wind field states, they have to be observable. This
depends on the way the output of the simulation is defined. We assume that
we can only measure at the locations of the turbines and treat the turbines as
sensors in our framework. For the wind direction, we assume to have a wind vane
available at the turbine location. To estimate the background wind speed, we can
utilize the power generated. This way the algorithm requires the least input from
the turbine and utilizes already available data. On the FLORIDyn side, the power
generated is estimated by calculating the effective wind speed at the turbine
location and the power coefficient Cp:

1
I 5 N
Pturbine = PFLORIDyn = EArotPCP szf (5.2)
nr
aeff=afreel_[[1_ri]' (5.3)

i=1

where Usree is the estimate of the free / background wind speed, stored in the OPs,
and all other variables with hat symbol are derived estimates. The rotor area is
Arot, p denotes the air density and r; the wind speed reduction by the i-th wind
turbine wake. The power coefficient Cp = 4a(1 — a)? is calculated based on the
actuator disc theory, in this work solely based on the axial induction factor as
yaw is not part of the study [123]. We assume greedy control for all turbines and
set a to the Betz limit of 1/3. The wind speed reduction is based on the Gaussian
wake model [16] and implemented as described in [1]. Note, that the power
generated is dependent on agff, which makes an estimation of the wind speed,
and its uncertainties, even more relevant. Equation (5.3) uses the free wind
speed at the turbine locations, which is based on the OP state xwrF. It is necessary
to understand how all states are connected to the few estimates at the turbine
locations to ensure observability. In the model presented in [47] the states of
the closest upstream and downstream OP would be used to interpolate the free
wind speed. This was motivated by a similar approach in the initial FLORIDyn
implementation [19]. If we define a vector Gsee as (intermediate) output of our
system at every turbine location, the output matrix could look as follows:
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Ufree = C(K) XwF,u (5.4)
C(k)=[0 i 0 Wy Wy 0 - 0] ’ (5.5)

where C(k) is the time varying output matrix of the state space system and w1, w»
are the non-zero interpolation weights. Note that Equation (5.5) is formulated for
a two turbine case where the first turbine is uninfluenced and the second one is in
the wake of the first one. The free wind speed at the second turbine is estimated
from two OPs in the wake of the first turbine, based on the weights wi and ws.
Note that we only use the velocity entries of xywr. This formulation creates a very
sparse C matrix. Figure 5.1 visualizes this by coloring the OPs which are used to
determine Ufree.

Figure 5.1.: Interaction between OPs and a turbine: the initial case only considered the two
closest OPs (upper figure), while the weighted case considers a broader range
of OPs (lower figure) to estimate the wind field states at the downstream turbine
location.

It is here where the inherent issue lies of applying the Ensemble Kalman Filter
Framework. The EnKF will be discussed in more detail in Section 5.2.2, but the
main idea is that the estimator works by employing multiple versions of the
model, all evolving slightly differently over time. As this is the case, the wind
speed states of different ensembles diverge and so do the locations of the OPs.
Since the formulation of C is so sparse, different OPs and therefore different
states contribute to the wind speed estimate in each ensemble. The estimator
framework is built around the premise to estimate and correct the same state
across all ensembles, which is no longer the case. Therefore, the formulation
of C has to be altered and its non-zero entries have to be wider spread, which
leads to more robustness across different ensembles. Furthermore, it has to be
ensured that the same states are identified across all ensembles. To solve this
task a method from a very similar model is utilized: Lejeune et al. [75] employ a
spatio-temporal averaging approach to weight the wind field states. We adopt
this approach in FLORIDyn by weighting every OP based on its downwind and
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crosswind distance to the location of interest and based on the time passed since
its creation. At the location of interest, the weighted average of all OPs’ states
returns the free wind speed estimate. We calculate the weights using a Gaussian
function [75]:

dg d? [t—top]?
W(ddw, dcw, tOP) = eXp — SW + ) ;W eXp (——2 , (56)
2 w,dw Uw cw 2Uw,t

where dgw and dcw are the downwind and crosswind distance to the location of

interest, top is the time at which the OP was created and t is the current time.

Figure 5.1 indicates how a broader range of OPs is now considered. This weighting
also introduces three new tuning constants ow,dw. Ow,cw and ow,t, which control
the downwind, crosswind, and temporal width of the Gaussian weighting function,
respectively.

This way of calculating the weights is applied in two places. First, the calculation
of the C matrix is adapted. Its entries become larger for close and younger OPs,
and become smaller for older, further away OPs. The same method is now also
applied to the calculation of the propagation distance of the OPs, represented
by ALwr(xwr(k)) in Equation (5.1). This change overcomes the issue of one OP

overtaking the other and preserves the low frequent changes in the wind field.

In addition to the weight-parameters used in [75] for the wind speed, a new set
of weight parameters are introduced for the wind direction state. This allows
for a more adaptive tuning. As discussed in Section 5.3, we assume the wind
direction to have a much larger area of "validity”’ than the wind speed, which
we assume to be more local. Additionally, we also assume that wind direction
measurements change more uniformly, which is why we decrease the weight with
time stronger than with the wind speed estimates. To implement this change,
the matrix AL,wr(Xwr) in Equation (5.1) has to be extended by a weighting matrix
WweE, as well as weighting its input:

AL wr(k, X1, xwr) = AL wr(Wwr(k, 1) xwr) Wwe (k, x() . (5.7)

The structure of Wyr(k, x.) is given in Appendix 5.A.2. The changed version of
Equation (5.1) is given in Equation (5.8). A visual representation of the weights
can be seen as part of the results in Figure 5.11.

5.2.2. ENSEMBLE KALMAN FILTER FORMULATION

The Ensemble Kalman Filter works by employing a model multiple times with
varying starting states [111]. Additionally, it is assumed, as with all Kalman Filter
formulations, that both the states and the measurements are corrupted with a
Gaussian white noise disturbance. This randomly generated noise, along with
the different starting states, ensures that the states of the different ensembles
diverge over time. The average of a state across all ensembles is its estimate and
the variance its uncertainty.
Equation (5.1) is adapted as follows:
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x (k+1) ALl 0 Apwr(k, xe kwe) | [ xL(k) |
xrk+1) |=| 0 Art 0 xt(K) |+ ...
Xwr(k + 1) ] (1] AwE, wr ﬁWF(k)_
x(k+1) A; x(k)
S0 (K), xT(k), *we (k)] [BL 0 0 ][ It(k) o
0 +|10 Bt 0 xTo(k) |+| O |,
0 0 O Bwr| |Xwro(k) HwF
————’
A; B u H
(5.8)

where pwr is the added noise to the wind field state. The noise combines the
noise for wind speed py ~ A(0, Qu) and wind direction gy ~ N(0, Qp), which
are assumed to be Gaussian noise. All ensembles are propagated in time using
Equation (5.8) with individually generated noise.

Due to the fact that xwr is perturbed individually for all ensembles, and that
the values of Xwr are coupled to x_, this state also changes differently for all
ensembles. Depending on how far the ensembles have diverged from one another,
the xwr states are at different locations in the different ensembles. The EnKF
framework however assumes the states to describe the same location. This is an
inherent characteristic for all simulations which include, or consist of, Lagrangian
markers, particles traveling based on their own state. In literature there are two
proposed ways to address this issue: The first option is to map the ensemble states
to a common grid. The state correction is then applied at common locations. The
corrected states are then mapped back onto the individual ensemble states. An
alternative is to enhance the state with the markers position. These are then also
estimated and corrected. The idea is that the location of the OPs is correlated with
the states causing the propagation. This method can significantly increase the
size of the problem, but also returns more information. In the case of FLORIDyn,
this framework would then also correct the location of the wake. To decrease the
complexity of the problem, we apply the former method. Rather than creating a
new grid, we first calculate the mean position of the OPs x| across all ensembles
and then apply the weighting (Equation (5.6)) to find the representative state of
the ensemble at x.. This can be seen as a coordinate transformation from the
states of the ensemble to the mean states of all ensembles. The corrected state
would then need to be projected back onto the ensemble states, however, an
inversion of the weighting matrix is numerically difficult. We therefore further
simplify this step by assuming that the inverse is equal to an identity matrix. This
assumption is supported by the fact that the weighting matrix has a diagonally
dominant structure for the OPs which are in the wind field area. It is to be expected
that this assumption can not hold for more diverging wind directions and for areas
where no state correction is possible.

From this point onwards we will refer to the resulting state of Equation 5.8 as
forecast state, marked by an f as upper left index. If measurements are available,
the forecast state f)“(WF,el. of ensemble e; is corrected using the difference in
predicted outputs and measured outputs with Equation (5.9). The result is the
analysis state 9Xwr, e;. The general formulation of the analysis step is as follows:
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IRWE, e, = TRWEF, e, + K[de[ - g(XL, e XT, fﬁWF,er)] (5.9)

TRWE, e; = TRWE, e , (5.10)

where K is the Kalman gain matrix, g(XL, e XT, f)"(WF, ez) describes the nonlinear
output function which converts the ensemble field state to the predicted measure-
ments and dg, is a set of polluted system measurements. We assume xt to be
equal across all ensembles. If no measurements are available, Equation (5.10) is
used to determine the analysis state instead of Equation (5.9).

We assume that the wind direction and wind speed are uncorrelated and can
be corrected independently. Therefore, the calculation of the Kalman gain matrix
is split into Ky to correct the wind speed and K, to correct the wind direction.
For the correction of the wind speed the power generated is used as a nonlinear
output, for the wind direction we assume a direct measurement at the turbine
location. Therefore, the output function also varies and Ky and K, have to be
calculated in a similar, yet different manner. This will be discussed in Section 5.2.2
and 5.2.2 respectively. Figure 5.2 shows a block diagram of the correction from
the point of view of a single ensemble. It visualizes how the estimated wind field
states are converted into estimates at the turbine location. The wind direction
is determined by a time varying output matrix, the wind speed by a nonlinear
function which converts the wind speed in power generated. Both estimates are
then compared to the polluted measurements. The difference is multiplied with
the respective Kalman gain matrix and the forecast states are corrected and fed
back into the ensemble. Figure 5.3 visualizes which calculations are executed
for all ensembles, and which calculations only once. The calculations are mainly
based on the EnKF literature and adapted for this case, for more information on
the EnKF see [111, 124].

ENKF CORRECTION OF THE WIND SPEED

To calculate the Kalman gain matrix Ky we follow an approach also used in [117]
which allows the use of a nonlinear output function. First the averaged state error
matrix /Eg,,, is calculated:

1
Ef)‘(WF’u = [foF,u,el —foF,u, foF,u,ez —fXWF,u, cee ‘fXWF,u,ene —fXWF,u] ,

Nne—1
(5.11)
where f)‘(WF,u,e[. describes the wind speed estimate of the i-th ensemble and f)'(wp,u
describes the average across all ne ensembles. The same is done for the output
of the ensembles:

E,s=—[Pe1—P, Pe,—P, ..., Pp.—P], (5.12)
where Ise,. denotes the estimation of power generated by the i-th ensemble, which
is directly dependent on f)"(WF,u as shown in Equation (5.2) and (5.3). We can now
calculate the state-output error correlation covariance matrix, Equation (5.13),
and the output error covariance matrix, Equation (5.14):
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Figure 5.2.: Block diagram of an ensemble with correction. The left box (——) describes
the state propagation within the ensemble. If no measurements are available,
the system keeps progressing the state and all ensembles diverge due to
the influence of noise. The right box (—-) describes the comparison of the
measurements with the estimates and the resulting correction. Elements
connected to the wind direction are colored in dark blue, elements related to
the wind speed are colored in orange. Products and functions have a one-line
frame, values have a double line frame.

eCfﬁWF,u, P= EfﬁWF,u E:S— (5.13)
Cpp =EpE (5.14)

v
Il
v -

In parallel, the power measurements P from the wind turbines have to be polluted:

P, =P+e€ip €,p~N(O Rp) (5.15)

where €;p is an artificial error with a Gaussian distribution, an average of 0 and
the covariance matrix Rp. The matrix Rp is a parameter which needs to be set
based on prior knowledge and tuning. If no random perturbations are added to the
measurements, the variance of the analyzed ensembles becomes too low [125].
The wind speed is then corrected as follows:

—1
Ky, = ecf)“(wau, p [eCF‘,, pt Rp] (5.16)

TRwr e = TRwrue + Ku[Pe,— Pe,(Rwrue)] - (5.17)
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ENKF CORRECTION OF THE WIND DIRECTION

We assume to have a measurement of the wind direction available at the turbine
locations. The state error fEXWF,(D is calculated equivalently to Equation (5.11).
Contrary to the wind speed estimation, it is then used to calculate the state error
covariance matrix:

eCXWF,¢r Xwrp = fEXWF,(p fEIWF,w . (5.18)

To get the relation between the states and the output, the output matrix Cy e,
is needed. It is given by the rows of the weighting matrix Wwr(k, x.) which
combine fxwr,o to a wind direction estimate at the OP at the rotor plane, see
Equation (5.7). Due to the fact that OPs are slightly differently located in each
ensemble, Cy ¢, is slightly different in each ensemble. We assume that Cy e, =
Cpe,---Cope, to a degree where the basic assumptions of the EnKF still hold.
However, we are diverging from the traditional calculation by generating individual
Ko.e; for each ensemble, based on the different Cyp e, matrices. The wind direction
measurements ¢ are also polluted with an error €, ~ N(0, Ryp), equal to the
power measurements in Equation (5.15). As with Rp, Ry is a parameter which
needs to be set. The resulting analysis step is described by:

-1
Ko.e; = Cxur,xuro Cope, [c(p,ei ©Cxurgr xuro Cp o, + Rq,] (5.19)
aﬁWF,(p,e,- = fﬁWF,q),ei + Kop,e [¢ei - cq)fﬁWF,(p,e[] . (5.20)

Note how the Equation pair (5.19) & (5.20) differs from (5.16) & (5.17): Equation
(5.19) uses the state-error-covariance matrix and a linear output matrix, where
Equation (5.16) uses the output-error-covariance matrix and the output-to-state-
error-covariance matrix. As a result, Equation (5.20) corrects based on a linear
relation of the output to the estimated state, while Equation (5.17) compares
outputs with a nonlinear relation to the estimated state.

Figure 5.3 shows the difference between the single Ky for the wind speed
reduction and the multiple matrices to correct the wind direction. Generally, this
approach is not desirable as it requires more calculations and therefore more
computational effort. We chose it as we had access to the exact output matrices
and were therefore able to reduce the number of approximations in the correction.
Furthermore, the later discussed test case is a nine turbine case, which means
that the to-be-inverted part of the Kalman gain calculation is a 9 x 9 matrix, which
resembles a manageable computational cost. As the number of turbine grows, a
single Ky matrix becomes much more desirable.

LOCALIZATION

The EnKF works under the premise that enough ensembles are simulated to
approximate the correlation among the states and measurements. In order to
decrease the number of ensembles needed for the error covariance approximation,
prior knowledge of the system can be used to modify the covariance matrices.
In practice, this is done by calculating an additional covariance matrix based on
the distance of the states to each other. This covariance matrix is then multiplied
with the state-error covariance matrix and the output-to-state error covariance
matrix to generate localized versions without nonphysical cross-correlations:
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Figure 5.3.: Block Diagram of the correction across all ensembles. The yellow, top boxes
describe all ensembles, running in parallel. If no measurements are given, the
forecast state is used as analysis state and the ensembles diverge further. If
measurements are given, the wind speed (orange) and direction (dark blue)
states are corrected. The measurements and their perturbations are given at
the bottom of the figure with thin double lined frames. Without perturbation,
the variance of the ensembles would become too low [125].
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where o is the Hadamard product, Cx , x, is the localization covariance between
all states, Cx,, x,; the localization covariance between all states and the OPs
at the turbine locations and Cx, ,x_; the localization covariance between the
OPs at the turbine locations among each other. As the initial OPs are placed at
the turbine location, Cx 1, x r and Cx,, x ; are subsets of Cx_, x, . To calculate the
localization covariance we follow [126] and use a piece wise defined polynom with
a characteristic cut-off length [. Every element ¢;;(d, l) of the covariance matrix
connecting OP; and OP; is then calculated as follows, based on their distance d to
one another:

1 d=0
cij(d, )= ;%[%}5:%[%]4:%[%’]3_%[%]2+1 O<d<l|
—w [ -3 [1] - 5[] 0‘%[%] ~5¢+4-3[{] l;d<dzz

<
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The equation is based on the work of [127], which also offers alternative functions.
The state and output covariance matrices in Equation (5.16) and (5.19) are
subsequently replaced by their modified equivalents, defined in Equation (5.21).

5.3. RESULTS AND DISCUSSION

This section presents the results of the introduced framework. The parameters
chosen for the simulation are discussed in Section 5.3.1. In Section 5.3.2, we
apply the framework to a test case where FLORIDyn is used as both the reference
system and the ensemble system. In a second step, Section 5.3.3 showcases a
setup where an LES simulation is used as reference.

5.3.1. ENSEMBLE KALMAN FILTER AND LOCALIZATION PARAMETERS

Table 5.1 lists the used parameters for the EnKF framework and the new weighting
method introduced in FLORIDyn. For the other FLORIDyn parameters, see [47].
The number of ensembles defines how well the covariance matrices are approx-
imated, but with every ensemble also a new FLORIDyn simulation has to run.
Preliminary tests suggested that 50 ensembles yields acceptable results: the
estimate becomes noisy for few ensembles (< 20) and the results do not change
significantly for higher numbers (tested up to 150). The correction frequency
Cf determines how often the framework gets called and has to be a multiple
of the FLORIDyn simulation frequency, which is set to 0.25s~1. The noise on
the measurements and states is assumed to be uncorrelated and is therefore
described by an identity matrix, multiplied by a factor. The factors were chosen
based on the variance of the measurements in the LES simulation. The noise
perturbation for the wind direction had to be increased to allow for a faster cor-
rection. The cut-off length for the localization function was set in accordance to
be roughly double of the spatial component of the weighted average function,
scaled by +/10/3, which is motivated by the findings of [128]. The values for the
weighted average calculation of the wind speed are inspired by [75] but were
modified. The initial values were lower for oy t,y and higher for oy, gw,y. This led
to unreasonable weighting areas during major wind direction changes. Therefore,
we adapted the values to hold value longer but over shorter downwind distance.
The weight for the crosswind distance ow,cw,u Was also set lower, which led to very
little interaction between downstream turbines and passing wakes. The value was
therefore increased. The wind direction weights are set by manual tuning and
intuition: as the wind direction changes, the entire flow field changes and we can
assume a more global effect than with wind speed. If the age of the OPs would
not be punished more heavily by the weighting, old wind direction measurements
would prohibit a change. We therefore chose to give the wind direction state a
wide influence area but a short lifespan. All values should be seen as educated
estimates and not necessarily as part of a final parameter set.

5.3.2. FLORIDYN AS VALIDATION PLATFORM

To understand the behavior of the developed algorithm, we first use FLORIDyn
itself as a validation platform. This allows us to model flow conditions, which
could be hard to generate in high-fidelity simulations. We also can carve out
the differences of the FLORIDyn model by itself and FLORIDyn within the EnKF
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Table 5.1.: Parameters used in the Ensemble Kalman Filter framework

Ensemble Kalman Filter Localization
ne (-) Cf (s71) ly (M) lp (M)
50 1/12 +/10/3-500 +/10/3-1000
Noise per 4 s
Rp (MW) Rp (deg)  Qu(ms™!)  Qp (deg)
0.1‘InT 3'In-|— 0'4'In0P 3'Inop
Weighted Average
Ow,dw,u (M) Ow,cw,u (M) Ow,t,u (S) Ow,dw,e (M) Ow,cw,p (M) Ow,t,p (S)
256 126 256 512 512 50

] Wind direction (deg)  Wind speed (ms-1)
TOt° T1 T2 1

(195 deg
T31. T4 T5 _\ 255 deg
3 P00’ 50000 280 deg 250

200 400 600 800 1000
Time (s)

Figure 5.4.: The left figure depicts the wind farm layout which is used in Section 5.3.2 and
5.3.3, along with the main wind directions in both cases. The right figure depicts
the transition between the flow variables for the different turbines during the
FLORIDyn reference simulation.

framework. This gives us an idea about the contribution of the EnKF framework. To
this end, we consider a 9-turbine case subject to heterogeneous wind speed and
wind direction changes. The 3 x 3 wind farm layout is described in Figure 5.4. All
nine DTU 10 MW turbines [33] are placed with equidistant spacing of 900 m, which
is roughly equivalent to 5 turbine diameters. The FLORIDyn model is propagated
as described in Equation (5.8), excluding the noise term. During the 1200 s
simulation duration, both the wind direction and speed change heterogeneously
throughout the field. The wind direction is initialized with 255 deg and then
changes at rates between 0.2 deg s~! and 0.05 deg s~* to 280 deg. Figure 5.4
shows the start and end directions, as well as the transitions for the different
turbines. The wind speed is changed in a similar manner from 8 ms~! to 10 ms™1
at rates between 0.02 ms—2 and 0.01 ms—2. Yaw-misalignment is not part of the
presented case.

Figure 5.5 depicts the power generated by the center row turbines, T3, T4 and
T5. The leftmost turbine, T3, experiences only free stream conditions and the
only change in power generated stems from the increase of wind speed. As the
EnKF needs to adapt to the changing wind speed, the predicted power generated
trails the reference with a delay of ~ 10 s. The other two turbines, T4 and T5,
are subject to upstream wakes and show a reduction in power generated due to
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Figure 5.5.: FLORIDyn as reference: the black line shows the FLORIDyn simulation, the
orange line the estimate with 1, 2 and 3 standard deviations.

passing wakes during the wind direction change. Both also show that the EnKF
predicts the reduction in power generated, but contrary to the prior case, and
counter intuitively, the EnKF does not follow the reference simulation but leads it.
To understand this effect, we have to look at the state correction: the EnKF has the
capability to change the states of shed OPs whereas the FLORIDyn simulation only
adds new data to the OPs at the turbine locations. As a result, downstream OPs in
the EnKF simulation correct their state while they initially remain unaffected in
the FLORIDyn simulation. The effect is that the wake in the EnKF adapts sooner
to the new wind direction and crosses the downstream turbines earlier than in
the FLORIDyn simulation. This difference can be seen in Figure 5.6 where the

Reference state EnKeF state Difference

=)
Difference (deg)

Figure 5.6.: Estimated background flow field wind direction compared to the reference at
t=564s.

reference state is compared to the EnKF estimate along with the respective wake
locations in white and black. The EnKF simulation shows a similar heterogeneous
state distribution as the reference but at a higher value. The resulting difference
shows that the EnKF is uniformly at the same or higher value than the reference
simulation. The difference plot also shows how the EnKF wake has progressed
further south than in the reference case. Figure 5.7 depicts a similar behavior
where the reference states show bigger differences in the background wind speed
than the estimated state. The estimated state is more uniform and suggests a
more steady change of the wind speed throughout the flow field. To conclude, the
framework creates smoother, low-pass filtered flow fields. The EnKF adds a spatial
connection to the FLORIDyn simulation that it, in this implementation, would not
have otherwise. This is due to the correction capabilities of the EnKF: the state-
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Figure 5.7.: Estimated background flow field wind speed compared to the reference at
t=804s.

error-correlation calculation and the wider localisation area connect and change
states which are not necessarily connected by the spatio-temporal averaging
alone, which is applied in FLORIDyn. This could be changed by narrowing the
localisation window or by widening the spatio-temporal average influence. The
EnKF is furthermore able to track heterogeneous flow field changes.

5.3.3. SOWFA AS VALIDATION PLATFORM

We now consider a more realistic and complex setting, in which we use the
developed EnKF FLORIDyn framework to estimate the flow field state during
a 60 deg wind direction change. We use a high-fidelity large-eddy simulation
performed with SOWFA (Simulator fOr Wind Farm Applications)[129] as ground
state. Section 5.3.3 describes the simulation setup and case. The wind speed
and direction state estimation results are discussed in Section 5.3.3 and 5.3.3
respectively. Section 5.3.3 highlights the influence of spatial weighting on the
state correction. Finally, Section 5.3.3 looks at the power generated.

SIMULATION CASE

The wind farm layout is identical to the case discussed in the previous Section
5.3.2 and is shown in Figure 5.4. Differences are that the wind direction changes
from 255 deg before t =600 s to 195 deg at t =900 s and afterwards. In SOWFA
the turbines are subject to turbulent inflow at roughly 6 % ambient turbulence
intensity and an average wind speed of 8.2 ms~1. The case has been used in
previous FLORIDyn publications, such as [47] and has been described in greater
detal in [1]. The SOWFA setup files and output data are available at [44].

For the evaluation two snapshots are considered: one at t; = 600 s, when the
wakes are fully developed within the wind farm boundaries, and one at t; =840 s,
during the wind direction change. Animations of the full simulation are available
at [130], along with data to recreate the flow field plots and power generated.

WAKE LOCATION AND ESTIMATED WIND SPEED

Figure 5.8 shows the SOWFA flow field at t; and t2, as well as the SOWFA flow
field overlaid with the FLORIDyn OPs and contour lines. The estimated flow field
overlaps well with the SOWFA simulation and follows the curved wakes, caused
by the wind direction change. At its current development stage FLORIDyn can
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not model wake meandering effects, which are present in the SOWFA flow field.
The estimated FLORIDyn wind speed state is depicted in Figure 5.9, along with

10Wind speed (ms-1) Wind speed (ms-1) 10

2

1 2 1 2 Distance (km) 2 1 2

Figure 5.8.: The left figure pair depicts the SOWFA flow field before and during the wind
direction change at t; = 600 s and t; = 840 s respectively. The right pair
superimposes contour lines of the estimated FLORIDyn flow field, as well as the
OPs.

the standard deviation, calculated by the relation between the ensembles. The
wind speed estimate is relatively uniform, which is also the case in the SOWFA
simulation. Coarser patterns of lower and higher wind speeds can be seen for the
three turbine rows. The lower row of T6, T7 and T8 does also show the same lower
wind speeds in the SOWFA simulation (Consider Figure 5.4 as reference for the
turbine numbering). The standard deviation is below 0.3 ms~! and does not show
a meaningful pattern. During the wind direction change, the standard deviation
rises for some downstream areas but remains bounded. The filter properties
of spatio-temporal averaging strongly contribute to this result, as small scale
changes are averaged out. The area influenced by the averaging is shown in
Figure 5.11 and is further discussed in detail in Section 5.3.3.

10 Wind speed (ms '1) Standard deviation (10-1 ms '1)

Figure 5.9.: The estimated effective wind speed flow field is depicted in the left figure pair,
once in steady state at t; = 600 s and once at t; = 840 s, during the wind
direction change. The right figure pair shows the respective standard deviation.
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WIND DIRECTION STATES

The wind direction changes uniformly throughout the wind farm and is not subject
to turbulent changes, such as the wind speed. Therefore, noise is only introduced
by means of system noise and added measurement noise. If these are chosen
too low, the EnKF trusts the model state too much and adapts too slow during the




122 5. Ensemble based flow field estimation

actual state change. Knowledge about the flow field effects is crucial to set the
noise magnitude: in this simulation, the wind direction changes with 0.2 deg s™*.
Consequently the system noise and measurement noise have to be chosen higher.
The Gaussian noise is set to 0.75 deg s™! for both the measurement and the
system noise. In steady state however, the difference between estimate and true
state is minimal. This can be seen in Figure 5.10. During the wind direction change,

Standard deviation (10-1 deg)

Difference to true wind direction (101 deg)

+5

W ke O N O

5 0
1 2 1 2 Distance (km) 1 2 1 2

Figure 5.10.: The left figure pair shows the difference to the true value and the value
extrapolated from the OPs’ wind direction states. A blue color indicates that
the extrapolated wind direction is trailing the true value during the direction
change. The true values are 255 deg at t; =600 s and 207 deg at t; =840,
left and right respectively. The right figure pair shows the standard deviation
of the state values, based on the variance across the ensembles.

the error increases, but due to the introduced noise, the states are corrected and
the error remains within small bounds within the wind farm. Outside of the wind
farm little to no corrections are made and the states keep diverging across all
ensembles, visible in Figure 5.11. This is also mirrored in the standard deviation
plotin Figure 5.10, where the areas between the wind turbines, with wake overlap,
show the lowest values.

WEIGHTING AND CORRECTIONS

The previous results underlined the importance of the applied spatio-temporal
weighting, as well as the localisation. The results also show how the weighting
changes the way FLORIDyn acts as a simulation and how it defines boundaries to
what the EnKF can correct. This section looks at a part of the simulation in detail
to quantify and understand these implications.

Figure 5.11 focuses on the upper third of the wind farm area and the states
within it. During steady state the focus lies on the OP states of the turbines TO, T1
and T2. During the wind direction change the wakes of TO, T1 and T2 leave the
observed area, which is why the now more present wakes of T3, T4 and T5 are
discussed instead. The displayed metrics from top to bottom are the wind speed
state of the OPs, the wind direction state of the OPs, the weights for the wind
speed averaging, the weights for the wind direction averaging and the SOWFA
flow field overlapped with the FLORIDyn contour lines.

The wind speed state plots show the estimate of all OP states for three turbines
with £1, 2, 3 standard deviations, as well as a reference line at 8.2 ms~1. The
reference is the mean wind speed across the wake free flow field and only gives an
indicator of where the estimate should be. The figures also show the development
of the standard deviation separately as black line. The leftmost states are closest
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Figure 5.11.: This figure compares the simulation state at the start and during the wind
direction change. The top two figure rows visualise the states of all OPs
connected to Turbine 0 to 2, at t; = 600 s and of all OPs connected to Turbine
3 to 5, at t; = 840 s. The figures show the state value of the OPs with
1,2 and 3 standard deviations (std) as orange plot and y-axis, and the std
alone as black plot and y-axis. A grey area marks the OPs which have left the
wind farm boundaries. The x-axis denotes the state index, e.g. 10 relates to
the 10t OP. The dotted lines mark a reference value: for the wind direction,
this is the true value, for the wind speed, this is the average precursor speed.
Below the OP states are three rows of flow field plots. They show a third of the
wind farm to allow for a more detailed look. The upper two show the weights
used for the weighted average calculation, see Equation (5.6). The lower row
shows the SOWFA flow field overlapped with the contour lines of the FLORIDyn
simulation.

to the turbine, the rightmost furthest away. The grey areas indicate where the
states leave the wind farm boundaries. Every 10th state (or OP) is marked in the
weight plots to aid the interpretation across the plots.

Looking at the wind speed state it is notable that the standard deviation remains
rather constant at or below 0.2 ms~1 within the wind farm bounds, but then
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increases as the OPs move farther away from the wind farm region. This means
that within the wind farm, the turbines and their measurements keep the variance
bounded. As the OPs leave the wind farm bounds, this effect diminishes and the
system noise leads to a divergence of the ensembles. A noticeable difference
between the variance of the wind speed states and the later discussed wind
direction states is the fact that the wind speed variance does not significantly
decrease within the wind farm bounds. This might be expected as the OPs
travel past downstream turbines, which act as correcting sensors. The lack of
significant correction can be explained by the wind speed weight plot. It shows
the influence by the OPs based on the spatio-temporal weighting. Due to the
weighting parameters chosen for the wind speed, the area of the influence of an
OP has very little overlap with a neighbouring wake. The states within a wakes
therefore tend to develop more independently from other wakes, in this wind
direction. During the wind direction change however, the wakes cross and areas
of locally lower variance can be seen in the wakes of T3 and T4. These OPs with
lower variance are roughly in the direct neighbourhood of the wind turbines T1
and T2. For instance, the OPs of T3 passed T2 60 s (= 15 time steps) prior to the
snapshot - this reduced the variance of the OPs in the proximity of T2, which then
traveled further. The lowered variance can now be seen around OP 70 in the wake
of T3.

The reduction of the variance is more dominant with the wind direction states,
as the framework assumes a wide area of influence of OPs due to the spatio-
temporal weighting. This allows the EnKF to cross-correct from one wake to
another. The weighting plot also shows how the wide area of influence decreases
with the age of the OPs: OPs close to their turbine have high values, but already
the weights of OP 10 and 20 have decreased significantly. In contrast, the wind
speed state weights remain longer at a high level. The wind direction weights
therefore encourage corrections of OPs close to the turbines. Thus, the estimated
variance decreases in the proximity of the turbines, an effect which is also visible
in Fig. 5.9. The weights and therefore the connection of measurement-to-state
decreases rapidly outside of the wind farm boundaries and the ensembles diverge.
During the wind direction change, the states within the wind farm are successfully
corrected, while states outside of the wind farm are not. Different from the wind
speed states, the wind direction reference resembles the true state, which is why
the value is given in absolute difference rather than absolute values.

POWER GENERATED

The power generated is not one of the estimated states, but it is inherently linked
to them, as shown in Equation (5.2). Figure 5.12 depicts the power for six out
of the nine turbines in the EnKF framework and SOWFA. The EnKF estimates the
power generated 2700 times during the simulation, 300 values per turbine, every
4 s. Out of these, 73.5% are within one standard deviation (as estimated by the
EnKF) from the SOWFA value, 90.7% within two and 95% within three. This does
not quite match the Gaussian ideal distribution of 68%, 95% and 99.7%. The
mean error lies at 0.0452 MW, about 1 % of the absolute power, the root-mean
squared error at 0.4936 MW, which is about 11 %. The small mean error seems
to justify the assumption that the surrogate model is error-free on average, which
is a necessary assumption for the EnKF. However, the wind speed state noise
might be underpredicted. Another metric which is sometimes used for the EnKF is
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Figure 5.12.: Power generated from six of the nine turbines. This reduction was made as
the other turbines are mostly in free stream conditions and do not add more
information. The black line depicts the SOWFA simulation as reference, orange
shows the EnKF estimate including 1, 2 and 3 standard deviation boundaries.
As the wind direction changes from t = 600 s to 900 s, T1, T2, T4 and T5
experience a reduction in wind speed due to the passing wakes. This leads to
the sudden reduction in the generated power.

how often the estimate is above or below the measured value. If we understand
the true system as another ensemble, the ratio should be about 50%. For the
power generated, this value lies at 53.56% in favor of an underestimate. Note
that these simulations have been run without parameter tuning of the underlying
analytical wake model, which would influence these results.

Figure 5.13 shows a comparison of the same EnKF setup with different correction
times, once where the state is corrected every 12 s and once every 60 s. The
vertical lines mark the times at which the states are corrected. Note, that the
time window has been reduced to the last 600 s of the simulation to allow for a
clearer picture.

The simulation with the larger correction step shows a much wider variance
cone than the simulation with a shorter step, as the ensembles have more
time to diverge. Nevertheless, the EnKF is able to track the reference signal
under most conditions. A significant decrease of the estimation quality becomes
apparent during the wake passing, which is much delayed, compared to the
SOWFA simulation. In a dynamic wind farm control scenario, this could result
in delayed actions which try to improve on a situation that already happened.
The delay stems from the fact that FLORIDyn as surrogate model assumes a
steady state input - during the estimation the wind direction and speed do get
corrected but are then held until the next correction. This could be exchanged
for a momentum driven approach, which continues to change the state based
on the previous rate of change. This is subject to further research. If such an
extension would be valuable can only be judged based on real measurement data
and conditions. The implication for this case are that the estimated wakes adapt
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too slow and the difference leads to a delayed wake overlap prediction, as well as
an overshooting of the power signal. The overshooting is also present in some of
the power estimates for turbines in the case with a shorter correction step, see T4
or T5 in Figure 5.12 in a similar context. The dataset [130] contains additional
plots for intermediate correction times of 24, 36 and 48 s.

8
| T1,12 5 {1T1,60s

Power generated (MW)

600 900 600 900

Time (s)

Figure 5.13.: Comparison of the predicted power generated by Turbine 1 in an EnKF frame-
work which is updated every 12 s to one which is updated every 60 s. The
vertical lines indicate the frequency of correction.

N
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—————- FLORIDyn with [&I EnKF estimate
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Figure 5.14.: Comparison of the power generated by T1 in different FLORIDyn implementa-
tions. The grey area indicates the time window during which the wind direction
changes.

Lastly, Figure 5.14 compares the EnKF estimate of the power generated to previ-
ous FLORIDyn results in [47]. Previous work used the Immersion and Invariance (I
& |) estimator to estimate the effective wind speed based on the rotor speed and
generator torque [52]. The base model uses a set wind speed and a prescribed
wind direction change. While the base model is unable to mirror the influence
of the turbulent wind speed in the reference simulation, it is able to predict the
timing of the wake overlap, as well as the approximate magnitude. Adding the I&
| estimator couples FLORIDyn to the reference simulation and removes the need
for a prescribed wind speed. It also allows a close tracking of the power generated.
This model however still needs a prescribed wind direction. There is furthermore
no state correction. The EnKF framework includes both, wind speed and direction.
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It is further able to correct previously generated states and provides certainty
bounds for the estimate. On the downside is that this model needs to simulate
multiple versions of the same simulation, while previous results were obtained
with one simulation.

5.4. CONCLUSION

The presented work formulates an ensemble-based wind farm flow field estimation
framework which can estimate the background wind speed as well as the wind
direction. It is based on the dynamic parametric wind farm model FLORIDyn
and utilizes the Ensemble Kalman Filter approach to correct wind speed and
direction across the simulation. The approach was tested in a 3 x 3 wind farm
case with heterogeneous and changing flow conditions. The results show, that the
framework is able to follow the flow field changes. Its estimate and corrections
strongly depend on the spatio-temporal averaging and localization parameters.
These can limit but also enable state corrections and are a vital part of the
inner workings of framework. This work also shows that the EnKF can be used to
estimate the state of purely Lagrangian particle based simulations. It further gives
an idea on how a state augmentation with the particle position can be avoided by
instead projecting the ensembles onto common particle positions. This is under
the assumption that the particles across different ensembles are not too far apart.
Given the broader context of wind farm flow control, this work presents an
essential building block for a realistic closed-loop dynamic control approach for
operational wind farms. Future work will need to address how the framework
works in larger wind farms and what the correct parameter choices are under
realistic circumstances, as well as what framework extensions are necessary.
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5.A. STATE SPACE DESCRIPTION

This appendix describes two aspects of the state space description of FLORIDyn
more in detail: Appendix 5.A.1 presents the system matrix and the input matrix
of the FLORIDyn model. Appendix 5.A.2 then discusses how spatio-temporal
weighting is applied in the system matrix.

5.A.1. SIMPLE PROPAGATION

The following equations describe the state propagation in the FLORIDyn model
and the structure of the matrices:

xu(k+1) | [ALL 0 ALwrOxwr(k)] [ xL(k)
xt(k+1) |=] 0 ArT 0 xt(k) | +---
xwe(k + 1) |0 1] Awr, wr | | Xwr(K)
[8(xL(k), xT(k), xwr(k))] [BL O O It (k)
0 +|/0 Bt O x71,0(K)
| 0 | 0 0 Bwr | | xwr,o0(k)
(5.23)
The matrix AL is given by
ALLT, 0 0 0
0 A1, O 0
ALL= : : (5.24)
0 0 ALLT, 0
0 0 0 AL’L’T”T nr-Nop,7-NLXNT-NOP,TMNL
0 0 0
ALLop, 0 0
AT = 0 ALLopr, ; (5.25)
0 o 0 AL'L'OP”OP'T Nop,T-NLX Nop,T*NL
AL op =1In, (5.26)

where I, is the n. x ni identity matrix and n_ describes the number of location
states per OP. The number of turbines is given by nt and nop,1 describes the
number of OPs per turbine. The matrices At and Awr,wr are similar, they only
differ in the size of their smallest components: the matrices At 1,0p and Awr,wr,op
differ in size as the number of stored turbine and wind field states is different.

The matrix A wr(xwr(k)) is described by the same structure than A( |, only the
smallest component differs:

Atcos(pop) O
AL wr,op = | Atsin(¢opr) O (5.27)
0

nLxnwe
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where At is the time step of the simulation and ¢op is the wind direction at the
location of the OP. The number of wind field states is given by nwr. We assume
here that the first state is the wind speed.

The input matrices feed inputs into the first OPs of the turbine. For the location
data, this is defined as follows:

B, 0 O 0
0 BL,Tz o o
B =| : - . : 5:28)
0 cee 0 BL,TnT_l 0
0 cen 0 0 BL,TnT NT+NL-NopT X NT+NL
Bt = [Ig 0] ' >
N -Nop,TXNL

We assume here the same use of location states as described in [1, 47], where
world coordinates are stacked on wake coordinates. The other two input matrices
are defined similarly, with the difference that By, and Bwr,1, consist only out
of an identity matrix in the first rows and not as in B_ 1, accompanied by zero
columns:

Bwr.T, = ["3#] . (5.30)

Nwe-Nop,T X Nwr

5.A.2. WEIGHTED PROPAGATION

To apply a spatio-temporal weighting of the wind field states the time-varying
matrix Wwe(k, x.) is introduced and applied as follows:

AL wr = AL wr(Wwe(k, 1) xwr) Wwe (k, X1 (5.31)

The matrix weights all OP states with respect to a location of interest. The location
of interest in this case are the OPs themselves. As a result, row i contains the
weights to sum the influence of all OP states onto OP i. The weights are calculated
by Equation (5.6) and then normalized by the sum of the row. To calculate the
time weight, the location of the OP within the state vector can be used along with
the time step of the simulation At. If a variable time step is used, this needs to be
adapted. In the presented work, only the wind speed and direction are weighted.
Weights are denoted as w;jy or wije, where i is the OP of interest, j the OP
influencing OP; and u or ¢ represent the wind speed or direction respectively.
Furthermore, we use three wind field states: The wind speed, direction and
ambient turbulence intensity. No weighting is applied to the latter, but could be
implemented in a similar fashion. The matrix Wy is then assembled as follows:
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Wwr(k, X)) =...
Wwr,1,1(k, x0)  Wwr,1,2(k, x) -+ Wwr, 1,00 (K, X01)
Wwr,2,1(k, X0)  Wwr2,2(k, X)) -+ Wwr,2,ng (K, XL)
WWF,nop,l(kI xL) WWF,nop,Z(k, xL) cee WWF,nop,nop(k/ xL)
(5.32)
wiju(k, xL) 0 0
Wwr,ij(k, xL) = 0 Wij,e(k, XL) 0 (5.33)
0 0 W,',j,|0

1 ifi=j

Wijlo = {O otherwise - (5.34)

Note that the row-sum of Wy (k, x.) must return a vector of 1.
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TIME-SHIFTED COST FUNCTION DESIGN

This chapter is based on the following publication:
[131] M. Becker, D. Allaerts, and J.W. van Wingerden, Time-shifted cost function design for more
efficient dynamic wind farm flow control, 2024 IEEE Conference on Control Technology and Applications
(CCTA) (2024), 10.1109/CCTA60707.2024.10666535.



ynamic wind farm flow control is the art and science to maximize the energy

yield of large wind farms. In this paper we will address the problem of large
time delays between control actions of the different turbines in the farm and
the delayed impact on the downstream turbines. We propose and show how a
time-shifted cost function approach can render the receding horizon optimization
problem more efficient and can mitigate the unavoidable turn-pike effect. We
further show how the resulting setup can be used to break the optimization
problem apart into several smaller optimization tasks to reduce the computational
load. We demonstrate that the proposed changes do allow an economic model
predictive control strategy to engage into collaborative wind farm control for long
term gains, while a more traditional cost function approach leads to greedy turbine
behavior. As a result, we take a crucial step towards a mature implementation of
dynamic model based wind farm flow control.
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6.1. INTRODUCTION

Wind farms form an integral part in the renewable energy mix of the future. They
combine the necessary infrastructure with an allocated location for kinetic wind
power extraction. In this context a conflict arises: The more wind turbines are
placed in the same area, the more they influence one another. As one turbine
extracts the kinetic energy from the wind, it leaves a wake of lower wind speed
behind it. This leads to power losses at turbines operating in the wake of an
upstream turbine [132].

The goal of wind farm flow control is to mitigate these wake losses by changing
the turbine state and by extend the wake shape. One such control strategy is
wake steering, where the rotor plane is intentionally misaligned with the main
wind direction [50, 133]. As a result, the wake is deflected and can be steered
away from downstream turbines. Steady-state control approaches do exist for
this strategy, and have been found effective in field experiments [4]. These
approaches do neglect the wake dynamics by design, so the question remains
if a dynamic model-based control approach can improve upon the results of a
steady state control strategy. While dynamic control-oriented wind farm control
models have been proposed [1, 134] there are limited to no results available on
how these models can outperform existing control algorithms.

One central barrier for dynamic wind farm flow control are the time delays
between the control actions and the effect on downstream turbines. The delays
make it necessary to simulate the wind farm at least until the point at which the
upstream control changes arrive at the downstream turbine and often more time
is needed to escape the turnpike effect [109, 135]. The turnpike effect arises when
optimization parameters have effects which lie beyond the prediction horizon of
the simulation. In the case of dynamic wind farm flow control, this usually leads
to a greedy control of the upstream turbine: As it needs to sacrifice some of its
power to enable the gains of a downstream turbine, it chooses to maximise its
own power again at the end of the time horizon. The resulting disadvantages at
the downstream turbine lie beyond the time horizon and are not captured by the
cost function anymore. In practice this means that a part of the solution found by
the optimization problem has to be disregarded. Workarounds do exist: One way
to reduce the impact is to fixate the last variables of the action horizon [95], or to
attach large costs to moving them. Faced with a similar issue, [84] uses a time
shifted signal to identify the impact of a dithering signal in a model-free control
approach.

We propose to extend the approach of using a time shifted signal, and to
dynamically choose which turbines to consider for the cost function based on the
time it takes for control actions to propagate downstream. This way, the cost
function is reduced to the impact of the control actions at the upstream turbine
synchronised with the impact at the downstream turbine(s).

The main contributions of this paper are threefold:

e We propose a new time-shifted cost function for dynamic wind farm control
to mitigate the turnpike effect.

e We propose a novel clustering algorithm to break down the control problem
in smaller uncoupled optimization problems.

e We demonstrate the concept with a proof-of-concept simulation study.
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This paper is structured as follows: Section 6.2 describes the methodology
used. In Section 6.3, the main results are presented. Finally, in Section 6.4 the
conclusions will be drawn.

6.2. METHODOLOGY

We first describe the general problem setup in Sec. 6.2.1. In Sec. 6.2.2 we derive
the time delays between the turbines. Using these delays we deduce a way to
optimize the turbine behaviour across a given action horizon in Sec. 6.2.3. Sec.
6.2.4 comments on the choice of the prediction and action horizon length and on
means to further reduce the computational effort.

6.2.1. GENERAL SETUP

The receding horizon problem as we use it consists of an action horizon of T3, time
steps, and a prediction horizon of Tph time steps. Fig. 6.1 (a) depicts this time
line. For each time step in the action horizon and for each turbine we consider a
optimization variable 6; x, where i € [1, nt] is the index of a turbine (e.g. T1) and
k €[1, Tan] is a time step. In our problem, these optimization variables directly
relate to the turbine yaw angle y in degrees. Therefore, they are also constrained:
The absolute difference between two consecutive parameters may not be larger
than the turbine yaw rate limit allows. In Fig. 6.1 (a) this is indicated by the
triangular areas behind the trajectory. Fig. 6.1 (b) shows a sketch of a possible
reaction of the power generated by a two turbine wind farm, T1 and T, to the yaw
angle of T1: T initially sacrifices power by changing its yaw angle. Meanwhile T>
produces very little power as it is negatively affected by the wake of T71. As the
change propagates through the wake and arrives at T, the downstream turbine
is less impacted by the wake and the power increases.

6.2.2. TIME DELAY ESTIMATION

In order to determine when a downstream turbine will be affected by the control
signal, we need to approximate the advection speed. This is the speed with
which the changes in the flow field propagate downstream. Two predominant
approaches exist to determine the advection speed: (i) the use of a constant
fraction of the free wind speed or (ii) the use of a wake model and the resulting
knowledge of the effective wind speed in the wake. The latter method is used for
instance by [75] and comes at the computational cost of solving the related model
equations. The approach of a constant fraction of the free wind speed has been
numerically derived and used by [84] and [32], and has been experimentally
studied by [136]. In this work we assume uagy = 0.7 - Ufree, following [84] as they
are focusing on the same turbine-to-turbine interactions relevant to control. The
time offset between two turbines is therefore calculated by

XT-T,

_—, (6.1)
0.7 - Ufree

where t;; describes the time it takes for changes at the rotor plane of T; to arrive
at T;. The downwind distance from T; to T, is denoted by XT—T;- Since we consider
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VT

Figure 6.1.: A receding horizon example where the optimization parameters 61, of turbine
T1, here representative for the yaw angle y1,, are adapted in (a) from the
current time step until Tah. The effect of these changes can be observed over
Tph time steps in (b). The power of T1 suffers due to the yaw angle change, but
the power of T2 increases after some delay. The wind turbines and wakes are
sketched in (c) .
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discrete time steps, we round t;-.; to the closest previous time step:

7 -—V‘“’J (6.2)
Tl ] :

Equally important to the downstream distance of the turbine is the crossstream

distance due to the wake expansion. In this work we disregard turbines with a

larger crossstream distance than £2 D, where D stands for the turbine diameter.

6.2.3. COST FUNCTION ASSEMBLY

Our goal is to move from a single cost function to multiple smaller cost functions:
To this end we initially consider all optimization parameters to be independent.
Then, if two or more parameters affect the same system output, they become
part of a set. For each set of optimization parameters we derive one cost function
that combines their impact on the system outputs. This process is described in
greater detail in the following paragraphs.

1 PTl D. i
L y 4 1

o : (2)
L

o

- ht

r
-

Figure 6.2.: (a) The relational matrix T* between the turbine outputs P (columns) and
the optimization parameters 6 (rows). The combination of linked optimization
parameters leads to (b), indicated by one example. Combining consecutive
outputs then leads to T, depicted in (c), with one highlighted example.

Basic formulation Each optimization parameter 6; x belongs to a turbine T; with
i€[1,n7] and a time step k € [1, Tanh]. The output of the turbine, its power, is
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denoted as Pr,(k). As time marches, each 8; has an initial effect on Pr,(k), but
then delayed with T;-; time steps also on the downstream turbine T; and thus
P7,(k + Ti-j). To bring this relation into matrix form we define the vectors P and 6:

Pr,(1) 61,1
Pr,(2) 01,2
P= . , 0= . (6.3)
PTnT (Tph) Onr,Tan

We then define a matrix T*. The (i, j)-th element of T* is 1 if the i-th element of
0 affects the j-th element of P and 0 otherwise. Fig. 6.2(a) depicts an example
how this matrix could look like for a four turbine wind farm.

Combine coupled optimization parameters If one column of T* has two or more
1-entries, multiple optimization parameters affect this output. This means that
we cannot consider these optimization parameters as independent and need to
optimize them together. We combine the entire rows of the affected parameters

by a logical OR operation and combine the parameters into a new set ;. Fig.

6.2(b) shows which rows of (a) have been combined.

Connect consecutive sets The previous step combined all parameters that need
to be connected. The following step is not required but further reduces the
number of optimization parameter sets for convenience: If two sets, O; and 0O;,
optimize consecutive-in-time parameter sets they can be combined: (’)l.* =0;u 0,
where Ol.* denotes the updated set. In practice this means that consecutive time
steps are connected to a single, longer time series. This does change how many
optimization parameters are in one set, but it does not change how many turbines
are considered in one optimization. The condition for the corresponding operation
in the relational matrix is a diagonal similarity of the rows. See Fig. 6.2(b) where
diagonally equal rows share the same color. Their combination leads to the matrix
T, depicted in Fig. 6.2(c).

Cost function derivation Each row of T describes a way to map P to a number
of smaller optimization problems that each optimize a subset of 8. In our case,
this is the relation between the power generated by the turbines and the yaw
angle of the turbines. The resulting cost function is the negative sum of the power
generated:

ﬁ;i_n]i(ei) =—t;P(6)) (6.4)

where i relates to optimization problem i, @; denotes the optimization parameters
in O; and t; is the i-th row of T. In this particular case the cost of actuation has
an intrinsic negative impact on the power, which is why we do not include it again
as a negative term in the cost function.

Simulation order & clusters Eq. (6.4) is a general description of all optimization
problems to solve. What it does not offer is an order in which the problems need
to be solved. For our system, we have to ensure that the yaw rate is below a
given limit. This means that we depend on an initial yaw angle at the start of our
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optimization problem in order to deduct the consecutive ones. This dependency
can be derived from T. Fig 6.3 shows as an example how the optimization problem
in the first row relies on previously deducted results for T2, T3, and T4 in row 2.
Row 2 further relies on row 3 and row 3 on row 4. Therefore, the solve-order of the
optimization problems is 84 — 83 — 8, — 07. Two things are worth noting: first,
to solve optimization 4 we only need to simulate two time steps. This means that
we can reduce the number of optimization parameters, the number of simulated
turbines and also the time. Secondly, in a larger wind farms independent solving
graphs appear, as not all turbines do influence each other. This offers to reduce
the computational cost by splitting the optimization in smaller, independent wind
farm clusters.1

Figure 6.3.: The arrows indicate which row depends on the results of another row. In this
case row 1 depends on 2, which depends on 3, which depends on 4. As a result,
we need to solve optimization problem 4 — 3 — 2 — 1. The blocks indicate
which part relates to which turbine. In order to solve row 4, we only need to
evaluate T4.

6.2.4. CHOOSING Tag AND Tpy

One of the central motivations of this work was to avoid the turnpike effect. The
time shifted cost function approach introduced in Sec. 6.2.3 does a first step
towards that goal by only combining turbine outputs that have an effect on the
optimization parameters. But a poor choice of the prediction and action horizon
will lead to a turnpike effect nevertheless. For instance, if we chose Tph = Tah = 1
the effect of the control action will never reach a downstream turbine and the
turbines will behave greedy. To avoid this we use the results from Sec. 6.2.2 and
set a minimum for Tph:

Tph = Tah + Max {Tr-1}. (6.5)
i,je[1,n7]

It may be valid to set a Tph,max Which violates Eq. (6.5). The entries of the diagonal
block in T are then shifted beyond Tph and are neglected. The violation could be
based on an assumed maximum wake length or to lower the computational cost.
Another measure to reduce computational cost would be to not simulate turbines
at times when their output is not used, see the zero-columns in Fig. 6.2(a-d). In
that case we alter Eq. (6.5) to only simulate the turbine j for as long as needed by
other turbines:

Tph,j = Tah + X, {tr-7}- (6.6)

Note that it might still be necessary to simulate the wakes of the turbines. A third
variation would be to define individual action horizons for all turbines, based on a

1The Matlab code to generate T and other derivatives is publicly available with the DOI 10.4121/54cfbca7-
243e-4a27-af2d-74cdd91471b2
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given Tph:
Tah,i £ Tph —  MaAx {TT,-—>T,-} . (6.7)
jel1,n7]

This can be especially advantageous for systems where changes propagate
through the domain, e.g. in the case of a wind speed change or gust. A front row
turbine might have a short action horizon, because it can only react to changes in
the wind, while downstream turbines can take the wind history of the front row
turbine as prediction into account.

6.3. RESULTS

In this section we describe the simulation case along with the wind farm flow
control setup in Sec. 6.3.1. The results of the case are presented and discussed
in Sec. 6.3.2.

6.3.1. SIMULATION

We use the Flow Redirection and Induction Dynamics (FLORIDyn) framework [47]
as eMPC model to evaluate the cost function and to carry out the reference
simulation. The FLORIDyn framework has been designed to simulate wind turbine
wake dynamics at a low computational cost, and is aimed to be used in a model
based closed-loop wind farm flow control strategy. To test the proposed cost
function design, we carry out three simulations:

1. a baseline simulation in which the turbines perfectly track the wind direction
to maximise their own power generated,

2. a “‘naive” economic model predictive control (eMPC) setup where FLORIDyn
is used to optimize the power generated over a given prediction horizon,

3. an eMPC setup with the same optimization setup but with the proposed cost
function structure.

The difference between approach 2) and 3) isolates the effect of the proposed
cost function.

We use a three DTU 10-MW reference turbine [33] wind farm, depicted in Fig. 6.4.
The synthetic wind direction signal is set to maintain a steady wind direction of
260 deg for the first 1000 s, followed by a constant change to 290 deg over
the following 1000 s. The 290 deg are maintained for the future. This setup
does encourage both, individual power maximisation of unwaked turbines and
collaborative wind farm flow control to maximise the wind farm performance.
In addition, the wind direction change forces changes in the yaw set points of
the turbines. The simulation is carried out with a free wind speed of 8 ms™1, an
ambient wake model intrinsic turbulence intensity level of 6 %, and with shear,
using the power-law and a coefficient of 0.28 [137].

The simulation is discretized in 5 s steps. We arbitrarily choose Th =6 — 30 s
for all three turbines, which results in 18 optimization variables. The prediction
horizon for both eMPC strategies is calculated based on Eq. (6.5). Every control
iteration, the first two steps of Tan are applied and the receding horizon is pushed
forward by 10 s. The optimization is constrained by a maximum yaw misalign-
ment by +30 deg and a maximum allowed rate of change of 0.3 deg s™!. The
optimization is solved by the interior point algorithm for constrained minimization
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Figure 6.4.: The three turbine wind farm during the wind direction change. The turbines are
placed with a 5 D distance along the West-East axis and the centre turbine is
placed —0.5 D on the South-North axis. The initial wind direction is 260 deg,
which gradually changes after 1000 s to 290 deg.

problems [138]. Both eMPC strategies are initialized with a yaw misalignment
of 0 deg and have knowledge of the future development of the wind direction.
This assumption is made for simplicity, similar to the work in related publications,
see [95, 139].

6.3.2. SIMULATION RESULTS AND DISCUSSION

The yaw trajectories of all three turbines are depicted in Fig. 6.5, where the yaw
misalignment is calculated as the difference between the main wind direction and
the turbine orientation. The baseline controller tracks the wind direction perfectly
and shows a yaw misalignment of 0 deg at all times.

The ““naive’” eMPC strategy initially uses its degrees of freedom to drive the
yaw misalignment to 0 deg. It maintains a yaw misalignment of 0 deg up until
the wind direction changes. In the second half of the simulation, the controller
engages into yaw steering. The reason is that it tries to avoid power losses in the
near future: During the cost function evaluation the controller is aware that the
wind direction will continue to change. However, the short action horizon only
allows it to move during the initial 6 steps of the prediction horizon. As a result,
the controller moves to a future wind direction to be more aligned in the near
future.

The eMPC strategy with the proposed cost function does engage into yaw
steering and misalignes T2 with the main wind direction. This steers the wake
away from the downstream turbine T3 and allows an increase in the total power
generated by the wind farm of 0.17 MW. Towards the wind direction transient, the
controller preemptively steers T1 to avoid wake interaction at a later stage, which
results in large power gains during the initial transient. Turbine T1 remains yawed
for a longer time but then recovers its position and reduces its misalignment with
the wind direction.

Fig. 6.6 depicts the generated power by each turbine over time. The baseline
and ““naive’” eMPC strategy show almost identical behaviour, as expected from the
yaw angle trajectories. However the data of the eMPC strategy with the proposed
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Figure 6.5.: Yaw angle of T1-T3 during the simulation for the baseline simulation, the ‘“‘naive”’
eMPC strategy, and eMPC strategy with the proposed cost function structure.
The dotted line indicates the activation of the controller, the dashed line the
start of the wind direction change.
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Figure 6.6.: The power generated by the three turbines in comparison. The dotted line
indicates the activation of the controller, the dashed line the start of the wind
direction change.



6.3. Results 145

cost function does show that the strategy creates gains at the downstream
turbines: During the steady state part of the simulation, T2 elevates the power
generated by T3, which is the result of the wake steering depicted in Fig. 6.5.
During the initial wind direction change, the yaw steering efforts of T1 show an
effect at both T2 and T3. While the power for the two other controllers reduces as
the wake interaction increases, the proposed controller is able to offset the wind
speed reduction. As a joint effort of T1 and T2, the power of T3 never drops as
low as it does in the baseline case or with the ‘““naive’” eMPC strategy.

The wind farm efficiency during the simulation is shown in Fig. 6.7. Once the
controller is activated, the proposed eMPC strategy is willing to sacrifice efficiency,
and therefore power, to gain efficiency in the long term. The proposed strategy
outperforms the baseline as a result, after the effects of the induced yaw angle
changes have propagated downstream. As observed in the yaw angle trajectories,
the ‘‘naive’” eMPC strategy does not engage in yaw steering and misses the
opportunity to outperform the baseline. During the wind direction transient, the
proposed method manages to offset the large drop in farm efficiency, connected
to the inevitable wake passing. It is here, where the proposed method shows
the largest gains, at its peak 11 % over the baseline. But as the change in wind
direction progresses, the wind turbines need to recover their alignment with the
main wind direction, something which the baseline has already done. Here, up to
7.6 % wind farm efficiency is sacrificed compared to the baseline.
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Figure 6.7.: Wind farm efficiency nwr calculated by total power generated divided by power
of the farm without wake effects and misalignment. The dotted line indicates
the activation of the controller, the dashed line the start of the wind direction
change. The plot contains wind farm start up effects prior to the controller
activation.

In summary, the proposed cost function construction allows the eMPC framework
to utilise the given degrees of freedom to engage into collaborative wind farm flow
control for long term gains. With a more traditional cost function, the optimization
result becomes greedy and only tries to minimise short term losses due to yaw
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misalignment.

6.4. CONCLUSION

In this paper we present a novel method that is able to automatically restructure
the optimization of a dynamic eMPC setup for wind farm flow control. It detects
sub-optimization problems based on the inherent time delays in the wind farm and
the spatial distance of wind turbines. The method further returns which problems
can be solved in parallel and which need to be solved sequentially. Based on these
factors, new cost functions are constructed which allow an eMPC framework with
a short action horizon to optimize for long term wind farm gains in both steady
state and dynamic conditions. The alternative, traditional, implementation of the
cost function leads to greedy control behaviour, unable to perform collaborative
control.

Future work should investigate the robustness of the proposed framework,
mainly towards the assumptions around the advection speed of the wake and
the flow preview. The solver and an efficient use of the optimization parameters
are two additional aspects not discussed in this work, which are essential to a
successful eMPC design for wind farm control.
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This chapter is based on the following publication:
[140] M. Becker, M.J. van den Broek, D. Allaerts, and J.W. van Wingerden, Closed-loop model-predictive
wind farm flow control under time-varying inflow using FLORIDyn, accepted for publication in Wind
Energy (2025)



ind farm flow control has been a key research focus in recent years, driven by

the idea that a collectively operating wind farm can outperform individually
controlled turbines. Control strategies are predominantly applied in an open-loop
manner, where the current flow conditions are used to look up precomputed
steady-state set points. Closed-loop control approaches, on the other hand, take
measurements from the farm into account and optimize their set points online,
which makes them more flexible and resilient.

This paper introduces a closed-loop model-predictive wind farm controller using
the dynamic engineering model FLORIDyn to maximize the energy generated by
a ten-turbine wind farm. The framework consists of an Ensemble Kalman Filter
to continuously correct the flow field estimate, as well as a novel optimization
strategy. To this end the paper discusses two dynamic ways to maximize the
farm energy and compares this to the current look-up table industry standard.
The framework relies solely on turbine measurements without using a flow field
preview. In a 3-hour case study with time-varying conditions, the derived con-
trollers achieve an overall energy gain of 3 to 4.4 % with noise-free wind direction
measurements. If disturbed and biased measurements are used, this performance
decreases to 1.9 to 3 % over the greedy control baseline with the same measure-
ments. The comparison to look-up table controllers shows that the closed-loop
framework performance is more robust to disturbed measurements but can only
match the performance in noise-free conditions.
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7.1. INTRODUCTION

A switch away from fossil fuels to less greenhouse gas-emitting (GHG) sources
of energy is necessary to prevent a climate crisis [141]. Wind energy is one
alternative that provides energy at a fraction of the GHG emissions. Wind farms
are, therefore, an essential part of the energy transition. However, they do not
provide the maximum amount of energy they could. How come? This is in part
due to the way that turbines interact: As a wind turbine converts kinetic energy
from the surrounding airflow into electricity, it leaves behind an area of low wind
speed called a wake. In wind farms, these wakes will likely influence downstream
turbines, lowering their power output. Wind farm flow control (WFFC) strategies
aim to mitigate this effect by manipulating the wake shape.

In this work, we focus on model-based approaches to WFFC. With this approach,
a model of the farm is used as a surrogate for the real wind farm. The model
predicts how the turbine wakes behave, given the atmospheric conditions and
turbine states. Different types of models exist with varying costs and capabilities.
On the one end, high-fidelity models like Large Eddy Simulations (LES) provide the
most insight into the physical phenomena that take place in a wind farm, e.g. [20,
63]. These models are typically too demanding for control which has motivated
model simplifications to achieve faster computational speeds. Medium-fidelity
models capture a coarse image of the flow. Two-dimensional Reynolds-averaged
Navier-Stokes solvers like e.qg., [45, 134, 142] fall in this category. They aim to
capture the core wake dynamics at a reduced cost by limiting the dimensionality
of the flow. However, later research showed that this simplification can render
them unuseful for wake steering applications [66]. Other models in the category
of medium-fidelity models simulate the wake propagation based on synthetic
turbulence. The Dynamic Wake Meandering (DWM) model, introduced by [17],
propagates the wake as a series of turbulence boxes. The propagation speed and
direction are then determined by the contents of the box. This approach, coupled
with an aeroelastic turbine model, can give estimates of loads onto the turbine
and its structure. Successor models like FAST.Farm [72] and HAWC2Farm [143]
provide a basis to investigate damage equivalent loads on a farm scale at a
relatively low computational cost. Another approach to model wind turbine wakes
is to simulate free-vortex particles shed by the rotor, e.g., [68, 109]. The downside
of these models is that they tend to become numerically unstable in the far-wake
region and under turbulent conditions. Low-fidelity models provide a flow field
prediction at a very low computational cost. This is achieved by modeling the

wake shape and wind speed reduction as a set of analytical equations, e.g., [16].

These models typically predict the steady-state wake shape of a single turbine
wake and use superposition methods to combine the effect of multiple wakes in a
farm. Within WFFC applications, they are used to test and optimize yaw-angle set
points for an entire farm.

Based on the computational speed provided by the steady-state engineering
models, paired with the success of the DWM model, an additional group of
models has been proposed: These models use passive Lagrangian tracers, called
Observation Points, to propagate turbine and flow field states from each turbine
downstream. The Flow Redirection and induction Dynamics model FLORIDyn
initially proposed this approach [19]. Since its introduction, the model has since
been revised [1] and further developed [47]. Similar modeling approaches exist,
e.g., [74, 75]. Their simplicity, simulated wake dynamics, and speed make them
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attractive for model-based WFFC applications.
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Figure 7.1.: (a) Closed-loop compared to (b) open-loop wind farm flow control. The figure is
adapted from [132].

Model-based WFFC is predominantly applied in an open-loop configuration [132].
This means that the yaw angle set points are optimized ahead of time; see Figure
7.1 (b). This is mainly done by employing a steady-state wake model and selecting
a set of ambient conditions. For each ambient condition, the yaw angle set points
are then optimized and stored in a Look-up Table (LuT). During operation, the
current ambient conditions, such as wind speed and direction, are identified
and used to look up the optimal yaw angles. Examples of this strategy can be
found in the field experiments conducted by e.qg., [4, 61, 144]. The issue with
this approach is that the strategy can not react to unforeseen circumstances.
Examples of this could be wind farm layout changes due to offline turbines,
unmodeled or incorrectly modeled turbine interactions, or heterogeneous and
changing flow conditions.

This is addressed by closing the loop, see Figure 7.1 (a), where the model is
continuously updated by measurements. A recent approach is to close the loop
on the parameters of the steady-state model [51, 110, 145, 146]. This entails
a coupling between the measured flow conditions and the modeled ones. The
difference is then fed back to correct aspects like the wake expansion. In [147],
they employ a similar strategy, but rather than correcting the model parameters,
they build a corrector for the model output. This version of closed-loop control
still inherently neglects the wake dynamics. Closed-loop wind farm flow control
using a dynamic wake model like FLORIDyn is still a poorly explored area of
research. [21] employs the first version of the FLORIDyn model paired with a
Kalman Filter to estimate the wind speed in a six-turbine wind farm. The same
publication also uses FLORIDyn to perform a yaw angle optimization; however,
not in closed-loop.

Control for energy maximization using dynamic models uses predominantly
a receding horizon approach called Model-predictive control (MPC), e.g., [109,
131, 148, 149]. This means that the optimization is done over a predetermined
prediction horizon. The surrogate model is used to predict how the cost function
will be impacted by the control actions taken. An optimizer is then used to
determine the ideal control actions. The optimization is followed by an update
time step, which is typically smaller than the prediction horizon. During this time,
the previously optimized time series of control set points is applied. After the
update time step has passed, a new optimization is done. MPC is typically applied
to follow a reference value, e.g. a reference wind farm power [81]. In contrast
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this work aims to maximize a cost function, which leads to a different optimization
problem. This is referred to as economic MPC (eMPC).

A re-occurring assumption in this context is the full knowledge of the flow
field (e.g. [148-151]), and full knowledge of the environmental changes ahead
(e.g., [95, 109]). The latter is often referred to as preview and can lead to
significant gains over preview-less control approaches, also for steady-state
control approaches [95, 139, 152]. Yet, it is not clear how this preview information
may be attained in a realistic WFFC scenario. The same holds true for the
previously mentioned assumption of full flow field knowledge. State-estimation
techniques can provide some of this knowledge. They use sensor data to correct
the current state of the surrogate model. This is done by comparing predicted
measurements to taken ones. Looking at FLORIDyn specifically, in the work
by [21], the turbine power generated is used to correct the local wind speed
estimate in FLORIDyn by employing a Kalman Filter. Similarly, [83] also uses
the power generated, as well as wind direction measurements, to correct a
heterogeneous flow field state in FLORIDyn using an Ensemble Kalman Filter
(EnKF). This methodology has the advantage that it provides the state estimate as
well as an uncertainty estimate. Additionally, it does not require a linear(-ization)
of the model. In the later work of [90] and [91], the wake location is corrected by
using an EnKF and a downstream turbine as a coarse sensor [153].
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Figure 7.2.: Closed-loop design applied in this paper. The wind farm provides power and
wind direction measurements at the turbine locations, which are used to correct
the FLORIDyn model state. The identified state is then used to optimize the
future yaw angle set points for all turbines. This is passed on to a low-level
controller, which applies the set points.

The literature review shows that there is a gap in closed-loop wind farm flow
control approaches using dynamic surrogate models in time-varying conditions.
Prior work has developed surrogate models like FLORIDyn to dynamically model
the wakes in a farm. It has also proposed state-estimation frameworks to align
the model’s state with the true state. How to then use FLORIDyn to obtain the
optimal control set points is still an unexplored topic.

This paper, therefore, proposes a novel closed-loop economic model predictive
control framework for farm-wide energy maximization. To this end, the paper
builds upon previous work with the following four main contributions: (i) a discus-
sion around the nature of the cost functions for energy and power maximization,
(ii) a dimensionality reduction of the optimization problem, which also leads to a
realistic turbine operation, (iii) an implicit way to limit misalignment angles and to
avoid nonlinear constraints, and (iv) the derivation of a closed-loop framework for
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dynamic model-based wind farm flow control. The proposed framework focuses
on readily available sensor data, like turbine power and wind direction measure-
ments at the turbine locations, and in contrast to previous work, does not assume
knowledge of the full flow field nor a preview of future flow field changes. A block
diagram of the closed-loop design is depicted in Figure 7.2. The derived opti-
mization strategy is applied in a ten-turbine closed-loop case study. This is done
with a wind farm simulated in LES under turbulent conditions and with realistic
time-varying wind direction changes. In this context, the paper also addresses
the impact of noisy and biased measurements on controller performance and yaw
travel.

The remainder of the paper is structured as follows: Section 7.2 discusses the
methodology of the closed-loop approach. This consists of a description of the
model (Section 7.2.1), the state estimator (Section 7.2.2), and the novel discussion
related to the controller (Section 7.2.3). The simulation methods are discussed
in Section 7.3. This entails the description of the high-fidelity environment, as
well as the tested wind conditions, sensor data, and controller settings. The
proposed framework is tested in Section 7.4, where the results are presented.
Lastly, Section 7.5 draws a conclusion of the work.

7.2. METHODOLOGY

This section introduces the components of the closed-loop control approach pre-
sented in this paper: Section 7.2.1 describes the basics of the dynamic surrogate
model, Section 7.2.2 of the state estimation. The main contribution of this paper,
the controller, is discussed in Section 7.2.3. The list of parameters used for the
components introduced in Section 7.2 can be found in Appendix 7.A, alongside
the tuning approach.

7.2.1. SURROGATE MODEL

The Flow Redirection and Induction Dynamics Model (FLORIDyn) used in this study
is based on the work presented in [47], with the extensions done in [83]. It
simulates wake dynamics by employing so-called Observation Points (OPs), which
carry states from the rotor plane downstream. The states one OP possesses are
(i) turbine states (e.g., yaw angle), (ii) flow field states (e.g., wind direction), and
(iii) its own positional states. The states are initialized at the rotor plane based
on what the turbine measures. The OP position is advanced based on the wind
speed and direction at its position.

While previously each OP would rely on its own state of the wind speed and
direction to propagate, the wind speed and direction are now the result of a
weighted average. This way, the OP takes neighboring OP states into account.
The spatiotemporal Gaussian weighting function was first adapted by [75] for
a FLORIDyn similar model and adapted in [83] to allow for better correlation
between the OPs. This benefits the assumptions made with the state estimation;
see Section 7.2.2. The FLORIDyn framework uses a Gaussian wake to model the
wake deficit, wind speed reduction and wake deflection [16].

Unlike recently presented results (e.g. [95]) the simulations presented in this
paper do not utilize any synthetic preview information of the wind direction. As
previously mentioned, FLORIDyn does have flow field information stored in the
OPs, which is propagated downstream. This provides other turbines with an
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estimate of the flow field changes ahead. During the prediction phase, each time
step, the free stream turbines copy their previous state, and downstream turbines
adapt the wind speed and direction by the weighted average of the data stored in
the surrounding OPs.

7.2.2. STATE ESTIMATION

The employed state estimation is based on [83] and uses an Ensemble Kalman
Filter (EnKF) [124, 154]. The EnKF was chosen for three main reasons: (i) it allows
the state estimation of nonlinear systems without derivation of a linearized model,
(ii) it provides uncertainties of the estimated states, which can be used for robust
decision making, and (iii) it has previously been used for similar applications, e.g.,
by [114] to estimate the flow field state of a wind farm simulation in the 2D solver
WFSim [134]. Note that other state estimation formulations for FLORIDyn-like
systems do exist. [21], for instance, employ an extended Kalman Filter. What
distinguishes a dynamic system like FLORIDyn from other EnKF applications is that
FLORIDyn is not a grid-based simulation but rather attaches its state to particles.
Therefore, the flow is described by where the particles are, which may be different
across the ensembles. The state estimation framework used addresses this issue
by projecting the OPs of all Ensembles onto a common set, which is then corrected.
To this end, two Kalman gain matrices (K, for wind speed and K, for the wind
direction) are derived from the common output matrices C, and Cy, as well as
the correlation of the ensembles. This is done differently to the state estimator
proposed in [83], where only the wind speed would be corrected this way, while
the wind direction would be corrected with ensemble individual Kalman Gain
matrices. The correction loop is depicted in Figure 7.3. The matrices W define the
weighted projection onto the common states, W1 their inverse. Since the inverse
is generally not attainable, we set it to be equal to the identity matrix. Since
W does have a sparse and strongly diagonal shape, this approximation is valid.
For more information on how the correction is derived we refer to the previously
mentioned sources. There are EnKF-based designs for FLORIDyn-like models to
correct the wake center, but these fall outside of the scope of this paper [90, 91].
Also outside of the scope of this paper fall online parameter estimation methods
using an EnKF [51, 110].

7.2.3. CONTROLLER

Section 7.2.3 compares the differences between the steady-state cost function
formulation and two dynamic cost functions. In this section, as well as in Section
7.2.3, the receding horizon optimization problem is explained, where control
actions taken within an action horizon are evaluated over a prediction horizon.
Section 7.2.3 to 7.2.3 further discuss measures to simplify the optimization
problem solved at runtime: Section 7.2.3 investigates a basis function approach
to derive the yaw angle time series, followed by a methodology to incorporate
constraints into the cost function (Section 7.2.3). Section 7.2.3 discusses how the
wind farm is decomposed into smaller sections to reduce the number of turbines
per optimization. Lastly, Section 7.2.4 discusses the reference controllers.
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Figure 7.3.: State estimation cycle for an ensemble e;. The upper section of the figure
depicts the evolution of the wind farm simulation, here depicted by f(:), the
lower left section the extraction of the measured values from the simulation. The
lower right part depicts the correction based on the mismatch of the predicted
and recorded measurements. Elements with a double outline are ensemble-
specific, elements with a single outline are the same for all ensembles.
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Figure 7.4.: Wind farm power (a), energy (b), and shifted energy (c) efficiency of a two
turbine wind farm based on the yaw control set point of TO, normalized by
the case of no misalignment. Turbine TO starts at t = 0 s with Y10 = 0 deg
and continuously changes its angle with 0.3 deg s™! to the set point, where it
remains. Turbine T1 is fully aligned with the wind direction. The dotted line
shows the break-even line, the continuous line the ideal value of Y19 based on
the time. Since the shifted approach (c) moves the power signal by T1 in time,
the data is shorter.
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COST FUNCTION

Three cost functions are compared in this work - (i) the steady state power, (ii)
the accumulated energy, and (iii) the accumulated energy disregarding the time
delays between the turbines. Each function is explained in further detail below.

The steady-state approach to formulate a cost function Jsteady state to maximize
the farm energy is to sum the power of all nt turbines:

nr
Jsteady state(8) = Zpi(e): (7.1)
i=1

where p; is the power generated by turbine i and 6 are the optimization variables.
Time is implicitly taken into account, as steady-state models do not assume any
delay effects. If time is taken into account, the energy is calculated as the integral
of the turbine power generated over time. Equation (7.1) is extended as follows
to form the dynamic cost function:

nr Tph

Jdynamic(8) = At D" " pi(6, k), (7.2)

i=1k=1

where pi(6, k) is the power generated by turbine i at time step k, and At is the time
step of the simulation. The cost function now approximates the energy generated
by the farm across all time steps k € [1, Tpn], where Tph is the prediction horizon
of the optimization. This additional time dependence inherently changes the
result for 6 that we get: The power loss due to yaw control actuation needs to
be recouped within the prediction horizon for the control action to be profitable.
This is in strong contrast to the steady-state cost function, which assumes to have
eternity available to recoup the cost of control actions.

The following example further illustrates this difference based on a two-turbine
wind farm: turbine T1 is located 5D downstream and 0.5D cross stream from the
upwind turbine TO, D being the turbine diameter. This configuration favors positive
yaw misalignment from the first turbine for power and energy maximization. In
this experiment, the control set point of TO is varied, and the power generated
from both turbines is recorded in FLORIDyn. At t = 0 s, TO starts fully aligned
with the wind direction and then changes its orientation with 0.3 deg s~ to the
reference misalignment angle. The chosen yaw speed is within the commonly
used range with up to 0.5 deg s~ [155].

Figure 7.4 shows the efficiency of the yaw misalignment angle set point over
time, (a) based on the power generated, and (b) based on the energy generated
up to the given time step. Both figures show the initial loss connected to the
misalignment of turbine TO. Turbine T1 starts to experience the benefits of the
misalignment after ~ 150 to 200 s. At this point, the steady state optimum is
reached for y1o & +16 deg, which leads to a 7% increase in power generated
compared to the baseline case. The energy generated, however, has integrated
the losses leading up to the favorable wake redirection state. This means that
this loss has to be recouped first before a yaw misalignment becomes a better
choice than the baseline behavior. The more time is given, the more attractive
larger yaw angles become: If the prediction horizon is 100 s long, Y10 =0 deg is
the optimal solution to Equation (7.2), for 300 s it is yto ~ 8 deg and for 500 s
Y710 = 12 deg is optimal. With an infinite prediction horizon, the optimal solution
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of Equation (7.2) converges to the optimal solution of Equation (7.1), as the ini-
tial loss becomes increasingly negligible compared to the accumulated energy.
This inherent characteristic of Equation (7.2) offers a conservative security, as it
guarantees to recoup the initial investment in the given time frame under the
assumption that conditions are steady. From this perspective wake steering be-
comes an investment-and-return problem, threatened by changing environmental
conditions.

The described characteristics can also lead to unwanted behavior - if enough
control degrees of freedom are given, TO will initially engage in more aggressive
control actions, followed by greedy behavior at the end of the time horizon. This
is done since the downsides of the greedy control actions towards T1 fall outside
of the time horizon. This is known as the "turnpike effect" and needs to be
considered for dynamic wind farm flow control applications [109]. Ways to limit
the turnpike effect is to not allow control actions at the end of the time horizon or
to penalize them as part of the cost function.

An alternative is offered by [131]: The presented approach aims to synchronize
the cause and effect of the control action with its impact on the actuated turbine
as well as the downstream turbines. This formulation leads to a spatiotemporal
split of the optimization problem into several smaller problems: (i) the spatial
split ensures that wind turbines that do not influence one another are optimized
separately, while (ii) the temporal split connects the cost function of the yaw
angles with their impact. The following example illustrates the working of the
algorithm using the same two-turbine wind farm. The free wind speed is set to
8ms~1, and the wake advection speed is assumed to be equal to the free stream
velocity. The simulation time step is At =5 s. It then takes 800 m/8 ms—! =100
s or Ak = 20 time steps for one particle of air to reach the downstream turbine. If
the time window during which a control action can be taken, the action horizon
Tah, is set to Tah = 10 time steps, the cost function of the yaw trajectory yto of
the upstream turbine TO is formulated as follows:

Tah

min 7ro(¥r0) = —At Y po(¥10, k) + p1(¥T0, Y11, K + AK).
k=1

This formulation sums the power of TO during its action horizon and the power of
T1 once the control actions arrive at the turbine. Note that for this formulation,
the two turbines are simulated from k = 1 until Tph 10 = Tan + Ak, but only sections
of the prediction horizon are taken into account for the cost function. The power
of T1 depends on both y1o and ¥11. Since Ak1—o > Tan, the yaw trajectory y11
can be optimized in a separate cost function:

Tah

min Fri(ym) =—At Y p1(y71, k).
k=1

For this cost function Tph,11 = Tah. As a result we can formulate two optimization
problems, ©1 = min Jro and O = min J11. In this example O1 depends on yT1,
and thus on the result of ©,. Therefore, ©1 cannot be solved independently.
0> is only evaluated over T3, time steps, and O1 over Tah + Ak1—0 time steps,
which is generally less than the otherwise necessary Tph to achieve similar yaw
steering. Additionally, the smaller optimization problems can lead to better
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convergence within the given optimization budget. More details about the time-
shifted approach can be found in [131] or in a similar application in [84]. Figure
7.4 c) shows how the optimization landscape is affected by the change.

BASIS FUNCTION APPROACH

The optimized yaw time series must fulfill two constraints: (i) its rate of change
needs to be lower or equal to the possible rate of change ry, limited by the
actuators, and (ii) it should not exceed the prescribed maximum misalignment
boundaries. This section focuses on the former aspect, while the latter is discussed
in Section 7.2.3. In addition to the limited rate of change, it is desirable to derive
yaw signals that can be realistically applied to existing yaw systems. Current yaw
systems are comprised of a yaw drive, a bearing, and a brake [155]. To move
the turbine, the brake is released and the yaw drive moves the nacelle with the
maximum rate of change to the reference position. The brake is then engaged
again to maintain the reference orientation. This behavior limits the set of feasible
yaw time series, as, e.g., a continuously changing yaw signal is undesirable. This
can be exploited to simplify the optimization problem and to reduce the number
of inputs to the optimization. To this end, we rely on a basis function ¢(6, tn),
which takes two optimization parameters, o1 and o, as arguments, as well as
th €[0, 1], which is the normalized time within the action horizon tay. The idea
is to either in- or decrease the turbine’s yaw angle with the maximum rate of
change and to allow the change period to start at an early or late point in time
within tay. The function ¢ has been designed in such a way that 01,02 €[0, 1],
which provides a generic interface for an optimization algorithm and can improve
its effectiveness of it. The basis function is further determined by ry n = ry tan,
the maximum rate of change within the normalized parameter space.

th —ts,n(0)
Iy,n,

_— 7.3
2lo1 —0.5] (7-3)

Y(o, tn) = 2[01— 0.5] sat[o,1] (
ts,n(0) = 02[1—2+]o1—0.5]],

where sat[o,17(x) is a saturation function which is equal to 0 for x < 0, x for
x € [0,1], and 1 otherwise. The variable 01 determines in which direction the
orientation changes and for how long, e.g. 01 =1 is a constant increase across
the entire action horizon, 01 = 0.5 results in a steady yaw angle. The second
optimization variable, 0, moves the starting point of the yaw angle change period.
A possible result of ¢ and the resulting Ay is shown in Figure 7.5(a). The final yaw
orientation trajectory is calculated as

t
Y(t) =v(0) + t//(o, —) Vte[O, tan]. (7.4)
taH

An example is given in Figure 7.5(b). While the proposed function does limit the
number of optimization parameters per turbine, it contains undesired regions of
insensitivity. This namely affects the case when 01 = 0.5, which results in no yaw
change and removes any effect of 0, onto the resulting trajectory. Similarly, for
01 =0 or =1, the entire duration of tay is spent yawing, which also nullifies the
impact of 0. This impacts the optimization landscape and introduces regions with
no gradient sensitivity towards 03. This affects the optimizer choice in Section
7.2.3.
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(a)
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Time

(b)

ah Time

Figure 7.5.: Example of ¢ and the resulting displacement Ay from the current orientation
(a). The percentage of the action horizon T4, that is spent yawing is determined
by 01, while 0, determines the offset at which the angle change starts. At 1,
the optimization is redone based on the updated model state. An example of
how a turbine orientation might change over successive optimizations is given
in (b).

IMPLICIT MISALIGNMENT LIMITATION

The methodology introduced in Section 7.2.3 limits the possible solution space
of the yaw angle trajectories based on the yaw rate limit. However, it does not
enforce a limit on what the resulting yaw angle might be. There are different
ways of achieving a yaw misalignment limit, one would be to set it as a constraint.
This is a linear constraint if the yaw misalignment is the input to the optimization
problem. However, if wind direction changes are present, it is beneficial to
optimize the turbine orientation instead of the misalignment, as the misalignment
is a product of the uncontrollable wind direction and the turbine orientation. This
switch, along with the basis function approach discussed in Section 7.2.3, leads to
a nonlinear constraint of the yaw angle misalignment. This creates an additional
layer to implement and can increase the complexity of the optimization problem.
We instead chose to manipulate the power calculation in such a way that large
yaw angles become much less attractive. This removes the constraint and makes
an implicit part of the cost function. To this end, we formulate a weighting function
for the power generated:

1 1
Wy (Y, Ymax, Ymin) = |:E tanh(50[—v + Ymax]) + §:| EE
1 1
[—Etanh(SO[—y+ymin])+ 5] (7.5)

The weighting function reduces the power generated by 50% at the limit yaw
angles and smoothly transitions from the unmodified part of the power curve to
the lowered part outside of the limits. The limits were chosen as Ymax = —Ymin =
33 deg. Note that Equation (7.5) reduces the power for yaw angles that are still
within but close to the bounds. As a result, yaw angles > 33 deg are already
unattractive to the optimizer.
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WIND FARM DECOMPOSITION

Figure 7.6.: Demonstration of the wind farm decomposition into smaller subsets, based on
the £2 D crosswind distance selection. Turbines that are grouped together
share the same color.

To reduce the computational cost of the optimization and to ensure a faster con-
vergence, a decomposition of the wind farm in smaller subsets is useful [156]. This
ensures that turbines that are unaffected by other turbines, nor affect any, can
optimize for greedy behavior. Turbines that do affect one another are optimized
together. In this work, we decompose the wind farm based on the current wind
direction at each turbine’s location. Each turbine calculates which other turbines
that are within £2 D crosswind distance and downstream based on the current
wind direction, see Figure 7.6. These then become part of the optimization group
related to this turbine. We then recursively determine which turbines affect one
another. This creates a directed graph, similar to the model principles proposed
by [105]. Each group is then optimized together, meaning that only those turbines
in the group are simulated. This effectively reduces the ten-turbine wind farm to
smaller farms with one to six members. This wind farm decomposition is done
with every optimization step given the current conditions and, therefore, changes
over time.

OPTIMIZATION ALGORITHM

The presented framework uses a particle swarm optimization to solve the cost
function, which is part of the evolutionary algorithms [157-159]. The code uses
the implementation by [138]. The optimizer was chosen for the main reason that
the optimization landscape is not convex. This stems from the split nature of wake
steering, as steering in both directions might yield an improvement while one is
favorable. Another contribution is the insensitivity of yaw angle basis function
for certain parameter combinations, see Section 7.2.3. A total of 100 particles is
used for all optimizations. The stopping criterion is either a maximum number of
four consecutive iterations with no cost function improvement or 20 iterations.
These settings were chosen after also testing 2, 10 and 40 iterations. This design
further leverages the code’s capability to run multiple FLORIDyn instances in
parallel, similar to the EnKF. Gradient-based methods have been tested during the
development of the closed-loop controllers but have been outperformed by non-
gradient-based methods. The development of a dedicated optimization strategy
like the Serial Refine method [93] lies outside of the scope of this paper.

7.2.4. REFERENCE CONTROLLERS

We use two types of reference dead-band lookup-table (LuT) yaw steering con-
trollers, one that aims for 0 deg yaw misalignment and one that does implement
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yaw steering. Their design is based on the work of [92] and has further been in-
vestigated in [55]. The control framework consists of two parts: (i) the dead-band
filter for the wind direction and (ii) the yaw controller. The dead-band reads in
the wind direction measurement ¢(k) at time step k and updates its wind speed
estimate ¢ based on the difference between the two values:

o(k) if [p(k)— @(k —1)| > @iim,
b =10k)  if kbt 00— bk —1)| > Giim, (7.6)
¢(k—1) otherwise.

Equation (7.6) also consists of a second update law based on the integrated
difference between past measurements of ¢ and ¢ since the last time step T at
which ¢ was updated. The resulting ¢(k) is then used in the LuT, denoted by fi T,
which returns the yaw set points:

Y * (k) =fLut(9(K)), (7.7)
Y(k) =y(k—1) +sign(y*(k)—y(k—1))-...
min (|y* (k) —y(k—1)|, Atéy) (7.8)

The turbine yaw angle y(k) is then updated based on Equation (7.8): It is either
set to y* if the angle can be reached in At, or changes with the maximum
rate of yawing &, for At. For the baseline controller, we set A¢ = 2 deg and
ki = 0.1; for the LuT controller, we test Ap € [2,4] deg and k; = 0.1. The LuT
is calculated with FLORIDyn in steady-state conditions using the same particle
swarm optimization as discussed in Section 7.2.3. This way all controllers use the
same basis to make decisions. Figure 7.7 depicts the LuT for all turbines and wind
directions. A characteristic of this LuT is that downstream turbines show very
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Figure 7.7.: Look-up table generated with the internal FLORIDyn wake model for the refer-
ence controllers.

small misalignment angles to be optimal. This allows the downstream turbine to
move slightly out of the way of a partial wake overlap. Toolboxes like FLORIS [78]
avoid this behavior by setting downstream turbine misalignment angles to 0 deg
by default. Since the CLC controllers tested in this work will also exhibit this
behavior, it remains part of the LuT.
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7.3. SIMULATION METHODS

Section 7.3.1 discusses the high fidelity model used as real surrogate, along with
the wind direction case. This is followed by Section 7.3.2, which further specifies
the tested controllers and used measurements.

7.3.1. “TRUE WIND FARM" SETUP

The experiments are performed in closed-loop with the LES code SOWFA as the
true wind farm surrogate [20]. The wind farm is situated ina 5 x 5 x 1 km domain,
resolved in 300 x 300 x 100 cells with an average 8 ms—1 free wind speed at hub
height and a 0.5 s time step. All simulations are done with a neutral turbulent
precursor developed for 3104 s with a surface roughness length of 2-10~% m.
This leads to a low turbulence intensity case and more pronounced turbine wakes
compared to a high turbulence flow field. Based on early flow estimates, the Tl
in FLORIDyn was set to 5.4%, the precursor turbulence intensity at hub height
became Ip, yvw = 4 %. The shear resulting from the surface roughness is used
to calculate the power-law shear coefficient a based on the mean wind speed
magnitude. The ideal shear coefficient to describe the wind speed across the rotor
plane lies between 0.07 and 0.083. Based on initial precursor values, as was set
to 0.071. The mean precursor wind speed magnitude, as well as the FLORIDyn
wind speed profile, are depicted in Figure 7.8 (b). The veer across the rotor plane
is less than 2 deg in the LES and is neglected in FLORIDyn.
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Figure 7.8.: Precursor profile of the wind speed in the precursor and in the FLORIDyn
simulation.

The closed-loop approach is tested in a three-hour long case, which is based on
data collected by a vertical LiDAR at the Hollandse Kust Noord (HKN) site on the
28th of March 2023 [94]. During the measurement campaign (2019 - ongoing),
wind speed and direction are recorded at different heights, with values available
roughly every 20 s. First, the data was segmented into parts with sufficient data
points. The values at 108 m and 133 m were used to resample and interpolate the
wind direction at turbine hub height of 119 m at a regular 20 s sampling rate. The
data was then low-pass filtered with a Butterworth filter with a cut-off frequency
of 1/600 Hz, equivalent to [95]. The resulting sections were then investigated
for completeness and interesting wind direction ramp events. For this work, one
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Figure 7.9.: Schematic of the data flow for the verification and test simulations: The initial
LiDAR dataset was segmented into time series of sufficient completeness,
followed by resampling, interpolation, and zero-phase low-pass filtering. The
stored data has then been investigated for time series of long, uninterrupted
wind direction trajectories with wake interaction. Out of a 24 h period, one 3 h
segment has been chosen to be simulated in a closed loop. The simulation
has a precursor with the wind direction changes from the LiDAR data, which is
then used to drive the simulation with the wind farm. During the simulation,
measurement data is sent from the LES to a controller, which then continuously
updates a table with the yaw angle set points for all turbines.

sub-section of 3 hours is chosen. Figure 7.9 depicts the original data and how it
was prepared for the closed-loop tests. The wind farm layout and dimensions are
depicted in Figure 7.10, along with the rotated case domain to simulate varying
inflow conditions. The same setup has been used to conduct the LuT controller
study presented in [55].

We use OpenFOAM to implement spatial uniform wind direction changes fol-
lowing the predefined time series of wind directions. Within the LES domain,
the southwest planes are used as inflow planes, while the northeast planes are
outflow planes. The farm layout and initial wind direction are rotated to fit the
225 deg inflow of the turbulent precursor. The rotated layout is centered in the
domain to balance the distance to the in- and outflow planes, see Figure 7.10.
The ten DTU 10 MW turbines [33] are arranged to copy a subset of the HKN wind
farm and are modeled as actuator discs (ADM). Turbines modeled as ADMs on a
coarser grid tend to overestimate the power generated [100, 101], which is also
an issue with this setup. Therefore, with the exception of Figure 7.14, we focus on
normalized power and energy quantities.

The LES environment is extended by a wind farm-wide controller that receives
turbine measurements and can provide set points during the simulation runtime.
The measurements received from the LES include quantities like generator power
and rotor speed. Wind direction measurements are provided in one of two ways:
Either directly from the data that was used to create the precursor or based
on probes at hub height at the turbine locations. The former results in a noise-
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Figure 7.10.: Wind farm layout of the investigated case study. The wind farm is oriented as
it is in the real world, while the 5 x 5 x 1 km domain is rotated to fit the inflow
direction. The inflow planes are marked by wider lines. The triangle marks the
wind direction range of the case. The wind direction time series is chosen such
that initially T6, T8 and T9 interact, and later TO, T1, T3, T5 and T7.

free measurement of the underlying wind direction, while the latter is subject to
ambient and turbine-added turbulence.

7.3.2. TESTED CONTROLLERS AND MEASUREMENTS

This section specifies the controller configurations tested in tandem with the LES
and how they acquire their inputs.

Model predictive controllers All model predictive controllers use the Particle Swarm
Optimizer coupled to the 2 degrees-of-freedom baseline function to derive the
yaw trajectories; see Section 7.2.3 - 7.2.3. Two controllers maximize the energy
over 500 s and 1000 s. This is done by evaluating the cost function in Equation
(7.2). Another controller uses the shifted turbine power signals in time to synchro-
nize control actions with their effect on downstream turbines; see Section 7.2.3.
This leads to a varying prediction horizon based on the turbines involved in the
current optimization problem. Typical values are between 100 s and 600 s. The
controllers are summarized in Table 7.1. All controllers update the optimal yaw

Controller  Cost function Tph
PSO, MR Energy 0.5-10%s
PSO, MR Energy 1-10%s

PSO, MR  Shifted energy varying

Table 7.1.: Selection of closed-loop model predictive controllers. PSO refers to the Particle
Swarm Optimization, MR to the maximum yawing rate basis function. All con-
trollers have an action horizon of Tph = 100 s and no preview.

set points every 60 s and use an action horizon of 100 s. This allows for a £30 deg

orientation change based on the maximum yawing rate of ry = 0.3 deg s
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Reference controllers The reference yaw-steering and baseline controllers are
based on the dead-band behavior described in Section 7.2.4. The used threshold
and integral gain are given in Table 7.2. In the noise-free environment the
controllers are tested with a sampling time of 5 s to update the set points. With
the disturbed wind direction measurements the LuT controllers are updated once
every minute based on the past 1-minute average.

Steady-state model  @;jm  Optimization
FLORIDyn internal 2 deg  PSO offline
FLORIDyn internal 4 deg PSO offline

Baseline 2 deg -

Table 7.2.: List of reference controller settings. All reference controllers have a k; = 0.01 s1

Measurements The controllers depend on measurements of wind speed and
direction to provide adequate yaw angles. Table 7.3 lists the different ways data
is provided to the controllers. This concerns the background wind speed uce,
the wind direction ¢, the sampling time step, and the averaging time of the ¢
measurement. The noise-free data relates to the filtered LiDAR data that was

Uoo p 0] At average time ¢
Mode 1 - LES noisefree 15s O0s
Mode 2 - LES LES 15s 60 s
Mode 3 | given - noise free 5s 0s
Mode 4 | given - LES 60 s 60 s

Table 7.3.: Ways for the state estimator and controller to receive data from the simulation.
Mode 1 and 2 are relevant to the Ensemble Kalman Filter, Mode 3 and 4 to the
reference LuT controllers.

used to drive the precursor. It can, therefore, be considered as an ideal, noise-
free signal of the background flow. The same holds for uw, which is provided
as a constant value to the reference controllers. The EnKF for the closed-loop
controllers integrates new measurements every 15 s, but a new control decision
is taken every 60 s. The LuT controllers do not have a state and rather act
based on the current measurement, hence the lower sampling time. Figure 7.11
showcases an example of the measurements. The black source data comes from
the cleaned and zero-phase low-pass filtered field data; see Figure 7.9. The grey
probe data is recorded in the LES at the rotor center of the turbine, which is, in
this example, turbine T7. This was done to mimic a much-simplified version of the
measurements a wind vane on a turbine might record. The plot also shows how
the noise is reduced by the use of the past 1-minute averaged data instead of the
raw probe data. The probe data is characterized by higher noise levels and biases
during waked conditions, which poses challenges for the state estimation and the
dead-band controllers. Since the wake locations are unique to every simulation,
also the LuT controllers have to run online and their control actions can not be
pre-computed.
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Figure 7.11.: Wind direction data recorded at the location of turbine T7 during the simulation.
The source data is based on low-pass filtered field measurements, which is
used to drive the LES. The probe data is calculated from the u and v wind
speed components at the turbine rotor center. Orange indicates the 1-minute
average values of the probe data. The probe data becomes more noisy and
biased as the turbine is waked by other turbines, here from 1.5 to 2.5 h. Note
that the wind direction is given with respect to the LES domain.

7.4. SIMULATION RESULTS

The simulation results first investigate the wake steering behavior in Section 7.4.1.
Section 7.4.2 then compares the performance of the turbines throughout the case
study, followed by the farm-wide performance in Section 7.4.3.

7.4.1. WAKE STEERING

Figure 7.12 (a) depicts the orientation of turbine T4 during the last half hour
of the case study. During this time, the wind direction aligns T4 with T8, as
indicated by the arrow. All controllers do engage in wake steering to avoid waking
turbine T8 at 10.3 D distance. However, the magnitude of the misalignment
differs. Between minutes 160 and 175, the wind direction varies only marginally
and does not cross the line between T4 and T8. The LuT controllers engage in
the largest misalignment angles, and the Shifted CLC controller acts similarly.
The CLC 1000 s controller exhibits a smaller yaw angle, and lastly, the CLC
500 s controller shows little-to-no misalignment. Figure 7.12 (b) then shows how
the 10-minute energy of T8 reacts to the yaw steering efforts of T4: The more
aggressive yaw angles by the LuT controllers indeed leads to a better efficiency
at T8, increasing its generation by +56 %. The gain of T8, however, comes at
the cost of misaligning T4 for a long time. Figure 7.12 (c) shows the combined
efficiency of T4 and T8. The data shows that the period of outperforming the
baseline is preceded by a period of underperformance. Based on the shallow
misalignment angles, the closed-loop controllers overcome this period earlier than
the LuUT controllers, confirming the analysis done in Section 7.2.3 and that the
CLC controllers are working as intended. They do engage in wake steering control
and, based on their design, in a more or less aggressive manner. The presented
example also shows that the controllers take turbines across a longer distance
into account, something with which, e.qg. free vortex particle models of the wake
can struggle with [95].
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Figure 7.12.: The orientation of turbine T4 over time as a result of the noise-free wind
direction measurements is given in (a). The arrow indicates the wind direction
in which turbine T8 is located at 10.3 D distance. The resulting 10-minute
energy efficiency of T8 is given in (b), followed by the combined performance
of T4 and T8 in (c).

7.4.2. TURBINE PERFORMANCE

Figure 7.13 shows the normalized energy gain separated for each turbine. Given
the wind direction time series and the farm layout, TO, T2, T4, and T6 are upstream
turbines, while T7, T8, and T9 are the most downstream turbines, see Figure 7.10.

The data shows that for all controllers, the upstream turbines sacrifice energy by
yawing, which is then recouped by the downstream turbines. There are differences
in the magnitude: the CLC 500 s controller amplifies the energy generation of
T1, T3, and T5 more than the generation of T7, T8, and T9. It also shows a
decreased investment for turbines TO, T2, T4, and T6. This is consistent with
the shorted prediction horizon length and with the analysis done in Section 7.4.1.
The CLC 1000 s shows more committed control actions that further lower the
energy generation of the upstream turbines but also result in larger returns for
the downstream turbines. The same holds true for the shifted CLC controller, as
well as for the LuT controllers. An advantage that the LuT controllers have over
the CLC controllers in the noise-free environment is that they are able to engage
T5 and T7 consistently.

With disturbed wind direction measurements, the performance of all controllers
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Figure 7.13.: Turbine individual difference between the energy generated in the controlled
case and the baseline, normalized by the total baseline energy. The data in
(a) relates to the controllers with noise-free wind direction measurements, and
the data in (b) to the disturbed measurements. The data is normalized by the
respective baseline.

decreases. The LuT controllers especially sacrifice performance with T3, T5, T7
and T9. This can be a sign that the long-distance wake interactions fail as the
wind direction measurement becomes more uncertain. The CLC controllers also
sacrifice performance, mainly with T1, T3, and T5. We attribute this to the lowered
yaw investment by TO due to the more uncertain wind direction.

7.4.3. FARM LEVEL PERFORMANCE

To investigate the performance of the controllers on a farm level, we compare
the wind energy as the power generated over a sliding window integral of ten
minutes. Figure 7.14 depicts the absolute and relative energy generated by the
farm throughout the case study. The absolute data shows the magnitude at which
the energy is generated. We note that the largest reductions in energy appear
around the 1.5 h mark, which relates to a brief back-and-forth shift in the wind
direction. This crosses the 5-turbine line TO, T1, T3, T5 and T7. During this event,
the controllers return their largest gains but also losses. The losses are a product
of wake steering as a method: While the turbines are slightly misaligned, the
wakes are redirected to one side of the downstream turbine. If the wind direction
changes, the wake can only be further redirected up to a certain point at which it
is worth redirecting the wake to the other side. During this switch, the baseline
wakes have likely already arrived on the new side, which means that the baseline
momentarily generates more than the control strategy.

Overall, all tested controllers return consistent gains in the noise-free case, but
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Figure 7.14.: Absolute (a-b) and relative (c-d) energy generated in a sliding time window of
10 minutes. The data in (a) and (c) is based on the noise-free wind direction
measurements, and the data in (b) and (d) on the disturbed measurements.

also in the disturbed case. Here, the performance of the controllers is generally
weaker due to the worse sensor data. Qualitatively, the CLC 500 s controller is
the closest to the BL performance and is followed by The CLC 1000 s controller.
The remaining three controllers depict a similar performance.

+15 %[

3

=

5 +10%[

=

[}

§+5%— ; b

Q

c

© +0% =L o e

g =TV T T
-5 % l

BL* LuT LuT CLC CLC CLC
2 deg 2 deg 4 deg 500s 1000s shifted

Figure 7.15.: Box plot of the ten-minute wind farm energy efficiency. The data is normalized
with the noise-free baseline. Each pair depicts the noise-free performance on
the left and the performance with disturbed wind direction measurements on
the right. The median values from the left to the right are BL* 2 deg —0.5 %,
LuT 2 deg +4.2 %, LuT* 2 deg +1.7 %, LuT 4 deg +4.1 %, LuT* 4 deg +1.4 %,
CLC 500 s +2.2 %, CLC* 500 s +1.2 %, CLC 1000 s +2.5 %, CLC* 1000 s
+1.5 %, CLC shifted +4.0 %, CLC* shifted +2.1 %. The disturbed direction
simulations are marked with *.
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To quantify the performance, the data of Figure 7.14 (c,d) is summarized as
a box plot in Figure 7.15, with the difference that all data is normalized with
the noise-free baseline performance. The two LuT controllers and the time-
shifted controller still depict similar performance during noise-free conditions:
The LUT 2 deg and 4 deg controllers have a median efficiency of +4.2 % and
+4.1 % receptively, the CLC shifted controller has a median of +4.0 %. With
disturbed wind direction measurements, the performance drops to a median of
+1.7 % and +1.4 % for the LuT 2 deg and 4 deg controllers, while the CLC shifted
controller reduces its median to 2.1 %. We can conclude that the CLC is, therefore,
more robust to sensor noise. This is mainly due to the EnKF, which by design
assumes noise to be part of the sensor signal. With noise-free data, this leads to
a disadvantage as the measurement is not considered to be fully “‘trustworthy”’,
but for disturbed measurements, this leads to a better estimate. This effect is
also visible with the other two CLC controllers: The CLC 500 s controller drops
from a median of +2.2 % to +1.0 %, the CLC 1000 s controller from +2.5 % to
+1.5 %, which is a less significant decrease than the one of the LuT controllers.

A mostly neglected aspect of the cost function is the cost of actuation. It is
only captured implicitly as a loss of the power generated by the actuated turbine.
Actuation costs can include how much and how often the turbines yaw, how much
time they spent in misalignment and how their inflow profile looks like. Recent
work has suggested ways to create data-driven ways to estimate the loads on
a turbine in a surrogate model [160, 161], but these are not yet included in the
FLORIDyn model used in this work. We therefore resort to the yaw travel as
quantity of interest.
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Figure 7.16.: Energy and yaw travel of the six controllers with both noise-free and disturbed
wind direction measurements. The data is normalized with the noise-free
baseline controller.

Figure 7.16 shows the overall energy efficiency and normalized yaw travel. A
common characteristic of the controllers under noise-free wind direction mea-
surements is that all yaw controllers exhibit an approximately 2 to 3 x larger
amount of yaw travel for a 3 to 4.5 % gain in energy. This ratio changes as the
wind direction measurements become disturbed. All controllers are affected by
the disturbed measurements, however at a different scale. Similarly to the trend
observed with Figure 7.13, the LuT are significantly more affected by poor data
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quality than the CLC controllers: All LuT controllers, including the baseline, exhibit
a yaw travel amount that is &5 to 7 x higher than the noise-free baseline, while
the CLC controllers remain between ~2.5 to 4 x higher values.

7.4.4. COMPUTATIONAL PERFORMANCE

The closed-loop algorithm has two steps: (i) the state estimation and (ii) the model
predictive optimization. In the case study, the LES is paused for both the state
estimation and the optimization. While unrealistic, this allows for more leeway
and exploration of the methodology before imposing more challenging conditions.

The state estimation is real-time compatible and roughly requires 6 s of compu-
tational time for simulation, ensemble combination, and state correction, applied
every 15 s. The optimization, however, is not realtime applicable for larger num-
bers of turbines. Currently, groups of > 3 turbines take longer than the allocated
60 s update time. These numbers are obtained in Matlab for 40 threads.

Future work should investigate the design of a dedicated optimization strategy
similar to the serial refine approach [93]. And to reduce the cost per simulation.
In its current form, also the FLORIDyn model used in the optimization uses the
spatiotemporal weighting of the OPs. This adds a considerable cost to the model,
and while it is necessary for the EnKF, it might not be for the optimization.

7.5. CONCLUSIONS

This paper introduces a novel closed-loop control framework to maximize the
energy generated by a wind farm under time-varying inflow conditions based on
the dynamic wake model FLORIDyn. The observed case-study results show that
the framework can lead up to a median energy gain over 10 minutes of +4.0 %
using a shifted cost function and +2.2 % to +2.5 % using an energy maximizing
cost function. This, however, falls short behind the tested LuT controllers with
gains of +4.1 % and +4.2 %. These results are obtained with noise-free wind
direction measurements. If disturbed measurements from the LES are used, the
performance of all controllers decreases while the yaw travel increases. However,
the closed-loop controllers are less affected by this change, highlighting their
robustness due to the Ensemble Kalman Filter and cost-function design. Their
median 10-minute energy gain reduces to +2.1,+1.5, and +1.2 %, while the LuT
performance decreases to +1.7 and +1.4 %. Future research should explore the
scalability of this approach to larger wind farms, as well as in heterogeneous flow
conditions.
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7.A. PARAMETER TUNING

The total number of parameters is high in the proposed framework. Table 7.4 lists
all parameters and constants: Six parameters to parametrize the OP weighting,
one to limit the advection speed, eleven for the wake and turbine model, eight
for the state estimation, and six for the optimization. Ideally, one would tune
all parameters to fit a generalized scenario. The number of parameters to tune
is high, which makes it difficult to replicate the related work [51, 54, 110]. We,
therefore, resort to Latin Hypercube sampling of the remaining parameters and
test the different combinations in a 20-minute sub-set simulation of the final
setup. For each simulation, a set of farm-wide error quantities is calculated:

e Mean bias in turbine power

e Mean absolute turbine power error
e Mean squared turbine power error
e Mean squared farm power error

e Farm power bias

e Mean squared turbine power error weighted by the predicted spread of the
EnKF

This is complemented by turbine individual error quantities:

e Best possible power correlation based on a variable signal time-shift
e Time-shift at which the best correlation is achieved

e Turbine power bias

e Absolute power error

e EnKF weighted power error

Out of 600 simulations, the parameter combinations that perform the best are
compared for similarities. The remaining parameters are tuned manually, in-
formed by parameters that were deemed ideal in previous studies. During this
process, n = 1 was locked to further reduce the number of parameters. How-
ever, the turbine model used in the simulations overestimates the power, see
Section 7.3.1. Since the power was used to correct the wind speed, the state
estimation returns a = 8 % too higher wind speed. This was captured by the error
quantities and corrected by adjusting the free parameters. The wake advection
factor d is smaller, and the remaining parameters lead to a faster wake recovery.
The resulting parameter set may work for this setup but may not be ideal for
generalization.
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Parameter Use Range Selected Unit Component
Ow,dw,p weighting OP, Dir. - 2.87 D FLORIDyn
Ow,cw,¢ weighting OP, Dir. - 2.87 D FLORIDyn
Owte weighting OP, Dir. - 50 s FLORIDyn
Ow,dw,u weighting OP, Vel. [0.3, 3.5] 0.6966 D FLORIDyn
Ow,cw,u weighting OP, Vel. [0.3, 2] 0.3570 D FLORIDyn
Ow,tu weighting OP, Vel. [100, 300] 206.2331 S FLORIDyn

d Advection factor [0.5, 1.0] 0.7396 - FLORIDyn
n Turbine efficiency - 1.0 - Turbine
Pp Yaw exponent (Power) [1.7, 2.7] 2.2 - Turbine
a Near wake length - 2.32 - Wake
B Near wake length [0.07, 0.39] 0.154 - Wake
Ka Wake expansion [0.17, 0.92] 0.38371 - Wake
kp Wake expansion - 0.003678 - Wake
Kfa Added turbulence - 0.73 - Wake
Ksp Added turbulence [0, 8] 0.8325 - Wake
Kfc Added turbulence [0, 0.5] 0.0325 - Wake
Ktq Added turbulence - —0.32 - Wake
ki Tl spread [1, 4] 3 - Wake
lioc.,p Localisation, Dir. - 2.8 D EnKF
O Process noise, Dir. - 0* deg EnKF
Ov,p Measurement noise, Dir. - 3 deg EnKF
lioc.,u Localisation, Vel. [3.5, 8] 6.8011 D EnKF
Ouu Process noise, Vel. [0.1, 0.5] 0.1991 m/s EnKF
Ov,p Measurement noise, Pow. [0.01, 0.3] 0.08 MW EnKF
Ne Number of ensembles - 50 - EnKF
Kenkf Estimation sample time - 3 At EnKF
Tah Action horizon - 20 At eMPC
ry Yaw rate limit - 0.3 degs™! eMPC
Niter, max Max. optimization iterations - 20 - eMPC
Kmpc Optimization sample time - 12 At eMPC
Ymax Yaw limitation - 33 deg eMPC
Ymin Yaw limitation - —33 deg eMPC

Table 7.4.: Collection of all parameters and constants, their use, the investigated range,
and selected value, as well as the component they belong to. The turbine
diameter D = 178.4m and time step At = 5 s are used to normalize some
parameters. Parameters without range have not been tuned. *The process noise
was unintentionally set to g, = 0 deg, and should, for future experiments, be
set to a higher value.
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CONCLUSIONS



I n this thesis, we set out to increase the energy a wind farm generates to
substitute fossil fuels further with fewer greenhouse gas-emitting alternatives.
To this end, an economic model predictive closed-loop wind farm flow controller
was designed. This required the development of a dynamic wake model, designing
a suitable estimator, and deriving a control strategy. This has resulted in several
contributions that are useful to the wind farm flow control community. The control
strategy proved its capabilities in a case study under time-varying atmospheric
conditions. Future work will have to assess the new controller’s performance in
field experiments and achieve the goal of this thesis in the real world.
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8.1. CONCLUSIONS
The overarching objective of this thesis was formulated in Chapter 1 as

Thesis objective The development of a closed-loop economic model-
predictive control framework using wake steering and a dynamic wake
surrogate model to maximize the energy generated by a wind farm under
realistic time-varying conditions.

To this end, the contributions of this thesis were split into three parts. The
first part, consisting of Chapter 2 to 4, a dynamic wind farm flow control model
was constructed and developed. The second part, Chapter 5, then introduced
a framework to estimate the current state of the wind farm and its surrounding
flow. The third part of this thesis is dedicated to the control problem of energy
maximization: Chapter 6 proposed a control law based on an energy cost function
that considers the delays between the turbines. This is followed by Chapter 7,
which presented a case study of closed-loop wind farm flow control using different
control laws and a high-fidelity model as a true wind farm. The conclusions of
each part are presented below.

8.1.1. DYNAMIC WAKE MODELING

The first part, dedicated to the wake model, showed that dynamic wake models do
describe the power generated by a wind farm more accurately than their steady-
state counterparts under time-varying conditions (Chapter 2 to 4). The considered
time-varying conditions are wind direction changes, turbine state changes, and
turbulent wind speeds. This was tested with up to ten turbines in cases inspired
by field measurements (Chapter 4 and 7). Centerline models have a significant
computational advantage over multi-chain models while capturing the wake in
a more true-to-model manner (Chapter 3). This comes at the cost of the ability
to advect the different wake regions at different speeds. Another advantage of
centerline models is that they can be coupled to a generic steady-state wake
model, as introduced in Chapter 3 and further demonstrated in Chapter 4. This
allows them to take advantage of further developments in the field of steady-
state wake models. The developed models have proven to be capable to predict
dynamic wake behavior at a low computational cost (Chapter 2 to 7).

8.1.2. STATE ESTIMATION

The second part of the thesis was dedicated to estimating the state of the derived
surrogate model using measurements. To this end, an effort was made to utilize
only widely available measurement signals, such as the power generated by the
turbines and wind direction measurements at the turbine location. Chapter 5
portrayed how the flow field state of a particle-based engineering model can
be estimated using an ensemble approach. The designed Ensemble Kalman
Filter is able to estimate heterogeneous and time-varying flow field conditions
and effectively couple the model with the true wind farm. A central element
that makes this state estimation different from grid-based simulations is that
particle-based simulation may have particles at different locations in each wake.
The resulting state was then used to initialize the model for the control step
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(Chapter 7). The work shows that measurements at the turbine locations are
sufficient to estimate the dynamically changing flow field for wake steering
control. Therefore, additional measurement equipment like LiDARs is not required
to perform this kind of control. The framework further proved to add robustness
towards sensor noise and biases (Chapter 7).

8.1.3. WIND FARM flowW CONTROL

Wind farm control using dynamic surrogate models inherently leads to a time-
dependent optimization problem. This has traditionally been addressed by calcu-
lating the energy generated over a prediction horizon. Depending on the degrees
of freedom, this will lead to opportunistic behavior of the turbines, like the turnpike
effect. Fewer degrees of freedom will lead to a conservative investment-return
balancing behavior (Chapter 7). Steady-state models, however, neglect the
transport delay and return the most aggressive control set points. Chapters 6
demonstrated a path between the two behaviors by synchronizing control actions
with their effect and constructing several cost functions. This has proven to
return steady-state-like performance under ideal conditions and better perfor-
mance than steady-state controllers with disturbed wind direction measurements
(Chapter 7). In a ten-turbine wind farm under turbulent and time-varying wind
direction conditions, the proposed controller achieved an overall energy gain of 3
to 4 % over the baseline, depending on the controller settings. If disturbed and
biased measurements are used, this performance decreases to 1.9 to 3 % over
the greedy control baseline with the same measurements. The comparison to
look-up table controllers shows that the closed-loop framework performance is
more robust to disturbed measurements but can only match the performance in
noise-free conditions.

8.1.4. OVERALL CONCLUSIONS

This thesis broke with the current practice to use steady-state engineering wake
models for wind farm flow control by reincorporating wake dynamics. We showed
that adding wake dynamics leads to a better prediction of turbine and wind farm
power under time-varying conditions. However, given the same preview-less ideal-
measurement conditions, we could not show that a dynamic wake description
leads to a significant gain over the control set points derived by a steady-state
model. This is mainly due to the difference in the nature of the cost function of
maximizing power compared to energy. Maximizing energy entails recouping
the investments of the control actions within a given time frame. This leads to
more conservative control actions that are less sensitive to changes but also do
not outperform the baseline by a large margin. Upon removing the intra-turbine
delays from the cost function, the magnitude of the control set points becomes
equivalent to the ones steady-state models predict. In a case study, we showed
that the closed-loop design can be more robust to sensor noise and biases than a
steady-state approach. This can be attributed to the state estimation.

We thereby conclude: Closed-loop wind farm flow control based on a dynamic
engineering surrogate model leads to a more accurate and robust state estimation
of the wind farm flow field but, given no preview, does not necessarily lead to a
higher energy generation than what can be achieved with steady-state models.



8.2. Recommendations 181

8.2. RECOMMENDATIONS

Based on these conclusions, we formulate a set of recommendations for future
work. First, Section 8.2.1 provides high-level recommendations on future wind
farm flow control developments. This is followed by a set of recommendations
individual to the three parts of this thesis: Wake modeling (Section 8.2.2), state
estimation (Section 8.2.3), and control (Section 8.2.4).

8.2.1. OVERALL RECOMMENDATIONS

A limitation of this work was the use of readily available sensor data, which led to
the limitation of using no preview during the optimization of the control decision.
Future work should investigate the possibilities to eliminate this limitation as it can
lead to significant gains in energy for both dynamic and steady-state models [95,
139, 152]. To this end, a mesoscale closed-loop wind farm flow control framework
should be designed. This would need to dynamically describe and predict the
changes in the atmosphere to derive the optimal control actions in a wind farm
over the course of minutes to hours. A sensor fusion strategy is needed to
connect information about wind farms, weather stations, and satellite data. This
information must be collected in a dynamic model describing and predicting
the flow conditions across the wind farm site and neighboring areas, e.qg. [162].
Lastly, these flow conditions must be translated into the local wind farm flow
field. This can be done using the heterogeneous flow field description of steady-
state models [23], making them quasi-dynamic, or, a dynamic wake model, as
presented in this thesis. The varying atmospheric conditions also require versatile
wake models which can simulate turbine and farm wakes in stable, as well as
unstable conditions. The proposed framework must further connect widely spread
sensor data and bridge various space and time scales, from turbine-to-turbine to
farm-to-farm. Recent work already explores some of these aspects, however, not
for active control [163, 164].

8.2.2. DYNAMIC WAKE MODELING

The dynamic engineering model in this thesis is used in cases with up to ten
turbines. Modern wind farms, however, consist of tens to hundreds of turbines,
which requires additional modeling improvements. This includes aspects like the
growing impact of turbulence throughout the farm [165], farm blockage [166],
and gravity waves [167]. Steady-state models have and still face the same
issues [86]. These corrections may also be applicable to dynamic models. Still,
they may also face their own challenges, e.g., as the farm blockage depends
on the turbine state and may, therefore, have its own dynamics in response to
control set point changes [168]. This also requires a more thorough discussion of
the relevant dynamics and time scales for wind farm flow control and integration
of well-informed uncertainty bands covering unmodeled flow field effects. During
the wake model development, the multi-OP-chain approach used in [1, 19] has
been abandoned to lower the computational cost and improve the flexibility of the
wake model. It may make sense to reintroduce the approach in the context of a
stable Atmospheric boundary layer, where different parts of the wake experience
different wind directions. The centerline approach further has the drawback that
the wake advection speed is constant throughout all wake areas. This may be
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addressed by changing how the extrapolation is done from the centerline to the
surrounding areas.

The discussed changes mainly concern the wake model; however, there is also
a need to improve the turbine model. This mainly concerns the estimation of loads
experienced by the turbine. Recent work has proposed data-driven approaches
to this problem [160, 161], which has not yet been integrated into the dynamic
model. It may also be advantageous to find analytical relations between structural
loads and easily obtainable quantities like yaw travel.

Dynamic models can furthermore be valuable for floating turbine and farm
applications. First contributions have been made in this field with the goal of
repositioning turbines to maximize the collective wind farm energy [15, 169].
Here, a dynamic model is necessary to model the impact of the changing turbine
state onto the turbines position. Steady-state models have already been adapted
to model floating turbines, which has for instance been used to optimize the
mooring line configuration to achieve an ideal passive layout of the wind farm[170].
Dynamic wake models can build upon this by simulating the wind farm in time-
varying conditions. dynamic models can further help to explore more futuristic
approaches like floating islands of renewable energy [171].

Lastly, the computational performance of the code should be improved. This
especially concerns the online application of the model for optimization purposes.
This may entail rewriting the code to better use parallelization and the available
hardware. In this context, it should be explored if the use of GPUs makes sense,
as the model will feature a large number of particles that are advanced in parallel.

8.2.3. STATE AND PARAMETER ESTIMATION

The state estimation used in a closed-loop controller should further focus on
available sensors and data sources. This entails deriving better models of sensor
individual issues, such as noise and biases, based on their position within the
wind farm. This can further be acknowledged in the correction, where, in the
current design, all turbines are assumed to exhibit the same sensor noise and
bias. Looping this information, obtained from the wake model, back may lead
to an overall improvement of the state estimation. Another aspect is that there
are three types of state estimation for engineering models: (i) flow field state
estimation like the wind speed [83], (ii) wake model parameter estimation [51,
110], and (iii) wake location [90, 91]. These approaches largely use the same
or similar available turbine measurements, e.g. the turbine power. Future work
will have to combine these and will need to find a way to attribute prediction-
measurement mismatches to the incorrectly modeled component. A decrease in
power generated, for instance, may be caused by a wind speed reduction or a
passing wake. This may be achieved by taking the varying observability of the
components into account [172].

8.2.4. CONTROL AND OPTIMIZATION

Maximizing energy is a difficult cost function, as it aims for a supremum. This
leads to an opportunistic turbine behavior for many degrees of freedom and
conservative solutions for few. Future work will have to further explore how to
balance the formulation of the cost function alongside the invested actuation to
achieve realistic turbine actuation signals. This also entails taking uncertainty into



8.2. Recommendations 183

account. These may stem from the state estimation and historical data. It remains
to be determined whether dynamic engineering wake models can significantly
improve control decisions over steady-state or graph-based models to maximize
the power generated by a farm. It is further desirable to find a manner to compare
the performance of controllers outside of the study of dedicated cases to find
more insight into their general behavior.







(1]

[2]

[3]

[4]

[5]

(6]

[71

[8]

[9]

[10]

BIBLIOGRAPHY

M. Becker, B. Ritter, B. Doekemeijer, D. van der Hoek, U. Konigorski, D.
Allaerts, and J.-W. van Wingerden. “The Revised FLORIDyn Model: Im-
plementation of Heterogeneous Flow and the Gaussian Wake”. In: Wind
Energy Science 7.6 (Nov. 2022), pp. 2163-2179. issn: 2366-7451. doi:
10.5194/wes—-7-2163-2022.

N. O. Jensen. A Note on Wind Generator Interaction. Roskilde, Denmark:
Risg National Laboratory, 1983. isbn: 978-87-550-0971-4.

P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Wingerden, P. A. Fleming,
S. D. Ruben, J. R. Marden, and L. Y. Pao. “A Data-Driven Model for Wind
Plant Power Optimization by Yaw Control”. In: 2014 American Control
Conference. June 2014, pp. 3128-3134. doi: 10.1109/ACC.2014.
6859118.

P. Fleming, J. Annoni, J. J. Shah, L. Wang, S. Ananthan, Z. Zhang, K. Hutch-
ings, P. Wang, W. Chen, and L. Chen. “Field Test of Wake Steering at an
Offshore Wind Farm”. In: Wind Energy Science 2.1 (May 2017), pp. 229-
239. issn: 2366-7451.doi: 10.5194/wes—-2-229-2017.

A. C. Kheirabadi and R. Nagamune. “A Quantitative Review of Wind Farm
Control with the Objective of Wind Farm Power Maximization”. In: Journal
of Wind Engineering and Industrial Aerodynamics 192 (Sept. 2019), pp. 45-
73.issn: 01676105. doi: 10.1016/7j.jweia.2019.06.015.

L. E. Andersson, O. Anaya-Lara, J. O. Tande, K. O. Merz, and L. Imsland.
“Wind Farm Control - Part I: A Review on Control System Concepts and
Structures”. In: [ET Renewable Power Generation 15.10 (2021), pp. 2085-
2108. issn: 1752-1424. doi: 10.1049/rpg2.12160.

J. D. Grunnet, M. Soltani, T. Knudsen, M. N. Kragelund, and T. Bak. “Aeolus
Toolbox for Dynamics Wind Farm Model, Simulation and Control”. In:
European Wind Energy Conference and Exhibition, EWEC 2010. 2010.

S. Poushpas and W. Leithead. “Wind Farm Control through Dynamic Co-
ordination of Wind Turbines Reference Power”. In: Lisbon, Portugal, Nov.
2014.doi: 10.1201/b18973-101.

S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Hgjstrup,
and M. Thggersen. “Analytical Modelling of Wind Speed Deficit in Large
Offshore Wind Farms”. In: Wind Energy 9.1-2 (Jan. 2006), pp. 39-53. issn:
1095-4244, 1099-1824. doi: 10.1002/we . 189.

E. Bossanyi. “Combining Induction Control and Wake Steering for Wind
Farm Energy and Fatigue Loads Optimisation”. In: IOP Publishing 1037
(June 2018), p. 032011. issn: 1742-6596. doi: 10.1088/1742-6596/
1037/3/032011.

185


https://doi.org/10.5194/wes-7-2163-2022
https://doi.org/10.1109/ACC.2014.6859118
https://doi.org/10.1109/ACC.2014.6859118
https://doi.org/10.5194/wes-2-229-2017
https://doi.org/10.1016/j.jweia.2019.06.015
https://doi.org/10.1049/rpg2.12160
https://doi.org/10.1201/b18973-101
https://doi.org/10.1002/we.189
https://doi.org/10.1088/1742-6596/1037/3/032011
https://doi.org/10.1088/1742-6596/1037/3/032011

186

Bibliography

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

A. Jiménez, A. Crespo, and E. Migoya. “Application of a LES Technique
to Characterize the Wake Deflection of a Wind Turbine in Yaw”. In: Wind
Energy 13.6 (2010), pp. 559-572. issn: 1099-1824. doi: 10.1002/we.
380.

J. Ainslie. “Calculating the Flowfield in the Wake of Wind Turbines”. In:
Journal of Wind Engineering and Industrial Aerodynamics 27.1-3 (Jan.
1988), pp. 213-224. issn: 01676105.doi: 10.1016/0167-6105 (88)
90037-2.

C. R. Shapiro, P. Bauweraerts, J. Meyers, C. Meneveau, and D. F. Gayme.
“Model-based Receding Horizon Control of Wind Farms for Secondary
Frequency Regulation”. In: Wind Energy (Mar. 2017). doi: 10.1002/we.
2093. (Visited on 11/16/2021).

C. R. Shapiro, D. F. Gayme, and C. Meneveau. “Modelling Yawed Wind
Turbine Wakes: A Lifting Line Approach”. In: Journal of Fluid Mechanics
841 (Apr. 2018), R1. issn: 0022-1120, 1469-7645. doi: 10.1017/ jfm.
2018.75.

A. C. Kheirabadi and R. Nagamune. “A Low-Fidelity Dynamic Wind Farm
Model for Simulating Time-Varying Wind Conditions and Floating Platform
Motion”. In: Ocean Engineering 234 (Aug. 2021), p. 109313. issn: 0029-
8018.doi: 10.1016/j.0ceaneng.2021.109313.

M. Bastankhah and F. Porté-Agel. “Experimental and Theoretical Study of
Wind Turbine Wakes in Yawed Conditions”. In: Journal of Fluid Mechanics
806 (Nov. 2016), pp. 506-541. issn: 0022-1120, 1469-7645. doi: 10 .
1017/3fm.2016.595.

G. C. Larsen, ed. Dynamic Wake Meandering Modeling. Risg R, Report
1607. Roskilde: Risg National Laboratory, 2007. isbn: 978-87-550-3602-4.

H. A. Madsen, G. C. Larsen, T. J. Larsen, N. Troldborg, and R. Mikkelsen.
“Calibration and Validation of the Dynamic Wake Meandering Model for
Implementation in an Aeroelastic Code”. In: Journal of Solar Energy Engi-
neering 132.4 (Nov. 2010), p. 041014. issn: 0199-6231, 1528-8986. doi:
10.1115/1.4002555.

P. M. O. Gebraad and J. W. van Wingerden. “A Control-Oriented Dynamic
Model for Wakes in Wind Plants”. In: Journal of Physics: Conference Series
524 (June 2014), p. 012186. issn: 1742-6596. doi: 10.1088/1742—-
6596/524/1/012186.

M. J. Churchfield, S. Lee, J. Michalakes, and P. J. Moriarty. “A Numerical
Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine
Dynamics”. In: Journal of Turbulence 13 (Jan. 2012), N14. issn: 1468-5248.
doi: 10.1080/14685248.2012.668191.

P. M. O. Gebraad, P. A. Fleming, and J. W. van Wingerden. “Wind Tur-
bine Wake Estimation and Control Using FLORIDyn, a Control-Oriented
Dynamic Wind Plant Model”. In: 2015 American Control Conference (ACC).
Chicago, lllinois, July 2015, pp. 1702-1708. doi: 10.1109/ACC.2015.
7170978.


https://doi.org/10.1002/we.380
https://doi.org/10.1002/we.380
https://doi.org/10.1016/0167-6105(88)90037-2
https://doi.org/10.1016/0167-6105(88)90037-2
https://doi.org/10.1002/we.2093
https://doi.org/10.1002/we.2093
https://doi.org/10.1017/jfm.2018.75
https://doi.org/10.1017/jfm.2018.75
https://doi.org/10.1016/j.oceaneng.2021.109313
https://doi.org/10.1017/jfm.2016.595
https://doi.org/10.1017/jfm.2016.595
https://doi.org/10.1115/1.4002555
https://doi.org/10.1088/1742-6596/524/1/012186
https://doi.org/10.1088/1742-6596/524/1/012186
https://doi.org/10.1080/14685248.2012.668191
https://doi.org/10.1109/ACC.2015.7170978
https://doi.org/10.1109/ACC.2015.7170978

Bibliography 187

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Becker. Gaussian FLORIDyn, Matlab Implementation Belonging to the
Paper: The Revised FLORIDyn Model: Implementation of Heterogeneous
Flow and the Gaussian Wake. 4TU.ResearchData. June 2022. doi: 10 .
4121/19867846.

A. Farrell, J. King, C. Draxl, R. Mudafort, N. Hamilton, C. J. Bay, P. Fleming,
and E. Simley. “Design and Analysis of a Wake Model for Spatially Het-
erogeneous Flow”. In: Wind Energy Science 6.3 (May 2021), pp. 737-758.
issn: 2366-7451. doi: 10.5194/wes—-6-737-2021.

A. Crespo and J. Herndndez. “Turbulence Characteristics in Wind-Turbine
Wakes”. In: Journal of Wind Engineering and Industrial Aerodynamics
61.1 (June 1996), pp. 71-85. issn: 01676105. doi: 10.1016/0167—
6105(95)00033-X.

D. Medici. “Experimental Studies of Wind Turbine Wakes - Power Optimisa-
tion and Meandering”. PhD thesis. KTH Stockholm, 2005.

J. H. W. Lee and V. H. Chu. “Turbulent Round Jet in Coflow”. In: Turbulent
Jets and Plumes. Boston, MA: Springer US, 2003, pp. 179-209. isbn: 978-
1-4613-5061-3 978-1-4615-0407-8. doi: 10 .1007/978-1-4615-
0407-8_6.

H. Vogel. “A Better Way to Construct the Sunflower Head"”. In: Mathemati-
cal Biosciences (1979). doi: 10.1016/0025-5564 (79) 90080-4.

G. Voronoi. “Nouvelles Applications Des Parameétres Continus a La Théorie
Des Formes Quadratiques. Premier Mémoire. Sur Quelques Propriétés Des
Formes Quadratiques Positives Parfaites.” In: Journal fir die reine und
angewandte Mathematik (Crelles Journal) 1908.133 (Jan. 1908), pp. 97-
102. issn: 0075-4102, 1435-5345. doi: 10.1515/cr11.1908.133.
97. (Visited on 07/21/2021).

G. Voronoi. “Nouvelles Applications Des Paramétres Continus a La Théorie
Des Formes Quadratiques. Deuxieme Mémoire. Recherches Sur Les Par-
allélloédres Primitifs.” In: Journal fiir die reine und angewandte Mathe-
matik (Crelles Journal) 1908.134 (July 1908), pp. 198-287. issn: 0075-
4102, 1435-5345.doi: 10.1515/¢cr11.1908.134.198. (Visited on
07/21/2021).

G. I. Taylor. “The Spectrum of Turbulence”. In: Proceedings of the Royal
Society of London (1938). doi: 10.1098/rspa.1938.0032.

D. Schlipf, D. Trabucchi, O. Bischoff, M. HofsaR, J. Mann, T. Mikkelsen,
A. Rettenmeier, J. J. Trujillo, and M. Kiihn. “Testing of Frozen Turbulence
Hypothesis for Wind Turbine Applications with a Scanning LIDAR System”.
In: Detaled Program. June 2010, p. 5.

S.J. Andersen, J. N. Sgrensen, and R. F. Mikkelsen. “Turbulence and Entrain-
ment Length Scales in Large Wind Farms”. In: Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences
375.2091 (Apr. 2017), p. 20160107. issn: 1364-503X, 1471-2962. doi:
10.1098/rsta.2016.0107.

C. Bak, F. Zahle, R. Bitsche, T. Kim, A. Yde, L. C. Henriksen, M. H. Hansen,
J. P. A. A. Blasques, M. Gaunaa, and A. Natarajan. “The DTU 10-MW Refer-
ence Wind Turbine”. In: May 2013.



https://doi.org/10.4121/19867846
https://doi.org/10.4121/19867846
https://doi.org/10.5194/wes-6-737-2021
https://doi.org/10.1016/0167-6105(95)00033-X
https://doi.org/10.1016/0167-6105(95)00033-X
https://doi.org/10.1007/978-1-4615-0407-8_6
https://doi.org/10.1007/978-1-4615-0407-8_6
https://doi.org/10.1016/0025-5564(79)90080-4
https://doi.org/10.1515/crll.1908.133.97
https://doi.org/10.1515/crll.1908.133.97
https://doi.org/10.1515/crll.1908.134.198
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1098/rsta.2016.0107

188

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. Annoni, P. M. O. Gebraad, A. K. Scholbrock, P. A. Fleming, and J.-W. V.
Wingerden. “Analysis of Axial-induction-based Wind Plant Control Using
an Engineering and a High-order Wind Plant Model”. In: Wind Energy 19.6
(June 2016), pp. 1135-1150. issn: 1095-4244, 1099-1824. doi: 10.1002/
we.1891.

F. D. Bianchi, H. D. Battista, and R. J. Mantz. Wind Turbine Control Systems:
Principles, Modelling and Gain Scheduling Design. 2007. isbn: 978-1-84628-
492-2.

H. A. Madsen, T. J. Larsen, G. R. Pirrung, A. Li, and F. Zahle. “Implemen-
tation of the Blade Element Momentum Model on a Polar Grid and Its
Aeroelastic Load Impact”. In: Wind Energy Science 5.1 (Jan. 2020), pp. 1-
27.issn: 2366-7451. doi: 10.5194 /wes—-5-1-2020.

J. Liew, A. M. Urban, and S. ). Andersen. “Analytical Model for the Power--
Yaw Sensitivity of Wind Turbines Operating in Full Wake”. In: Wind Energy
Science 5.1 (Mar. 2020), pp. 427-437. issn: 2366-7451. doi: 10.5194/
wes—5-427-2020.

M. F. Howland, C. M. Gonzélez, J. J. P. Martinez, J. B. Quesada, F. P. Lar-
rafiaga, N. K. Yadav, J. S. Chawla, and J. O. Dabiri. “Influence of Atmospheric
Conditions on the Power Production of Utility-Scale Wind Turbines in Yaw
Misalignment”. In: Journal of Renewable and Sustainable Energy 12.6 (Nov.
2020), p. 063307. issn: 1941-7012. doi: 10.1063/5.0023746.

S. Emeis. Wind Energy Meteorology: Atmospheric Physics for Wind Power
Generation. Second edition. Springer International Publishing, 2018. isbn:
978-3-319-72859-9.

A. Niayifar and F. Porté-Agel. “A New Analytical Model for Wind Farm
Power Prediction”. In: Journal of Physics: Conference Series 625 (June
2015), p. 012039. issn: 1742-6588, 1742-6596. doi: 10.1088/1742—-
6596/625/1/012039.

B. Doekemeijer, R. Storm, J. Schreiber, and Daanvanderhoek. TUDelft-
DataDrivenControl/FLORISSE_M: Stable Version from 2018-2019. Zenodo.
Jan. 2021. doi: 10.5281/ZENODO.44586609.

J. N. Sorensen and W. Z. Shen. “Numerical Modeling of Wind Turbine
Wakes”. In: Journal of Fluids Engineering 124.2 (May 2002), pp. 393-399.
issn: 0098-2202. doi: 10.1115/1.1471361.

R. Ortega, F. Mancilla-David, and F. Jaramillo. “A Globally Convergent Wind
Speed Estimator for Wind Turbine Systems”. In: International Journal of
Adaptive Control and Signal Processing 27.5 (2013), pp. 413-425. issn:
1099-1115.doi: 10.1002/acs.23109.

M. Becker. SOWFA Simulation Setup Belonging to the Paper: The Revised
FLORIDyn Model: Implementation of Heterogeneous Flow and the Gaussian
Wake. June 2022. doi: 10.4121/20026406.

M. J. van den Broek and J.-W. van Wingerden. “Dynamic Flow Modelling for
Model-Predictive Wind Farm Control”. In: Journal of Physics: Conference
Series. Vol. 1618. 2020, p. 022023. doi: 10.1088/1742-6596/
1618/2/022023.


https://doi.org/10.1002/we.1891
https://doi.org/10.1002/we.1891
https://doi.org/10.5194/wes-5-1-2020
https://doi.org/10.5194/wes-5-427-2020
https://doi.org/10.5194/wes-5-427-2020
https://doi.org/10.1063/5.0023746
https://doi.org/10.1088/1742-6596/625/1/012039
https://doi.org/10.1088/1742-6596/625/1/012039
https://doi.org/10.5281/ZENODO.4458669
https://doi.org/10.1115/1.1471361
https://doi.org/10.1002/acs.2319
https://doi.org/10.4121/20026406
https://doi.org/10.1088/1742-6596/1618/2/022023
https://doi.org/10.1088/1742-6596/1618/2/022023

Bibliography 189

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[561]

M. Bastankhah, B. L. Welch, L. A. Martinez-Tossas, J. King, and P. Fleming.
“Analytical Solution for the Cumulative Wake of Wind Turbines in Wind
Farms”. In: Journal of Fluid Mechanics 911 (Mar. 2021), A53. issn: 0022-
1120, 1469-7645. doi: 10.1017/3fm.2020.1037.

M. Becker, D. Allaerts, and J. W. van Wingerden. “FLORIDyn - A Dynamic
and Flexible Framework for Real-Time Wind Farm Control”. In: Journal of
Physics: Conference Series 2265.3 (May 2022), p. 032103. issn: 1742-6588,
1742-6596. doi: 10.1088/1742-6596/2265/3/032103.

T. Knudsen, T. Bak, and M. Svenstrup. “Survey of Wind Farm Control-Power
and Fatigue Optimization: Survey of Wind Farm Control”. In: Wind Energy
18.8 (Aug. 2015), pp. 1333-1351. issn: 10954244, doi: 10.1002/we.
1760.

J. W. van Wingerden, P. A. Fleming, T. G6¢men, |. Equinoa, B. M. Doeke-
meijer, K. Dykes, M. Lawson, E. Simley, J. King, D. Astrain, M. Iribas, C. L.
Bottasso, J. Meyers, S. Raach, K. Kélle, and G. Giebel. “Expert Elicitation on
Wind Farm Control”. In: Journal of Physics: Conference Series 1618 (Sept.
2020), p. 022025. issn: 1742-6588, 1742-6596. doi: 10.1088/1742—
6596/1618/2/022025.

P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Wingerden, P. A. Fleming,
S. D. Ruben, J. R. Marden, and L. Y. Pao. “Wind Plant Power Optimization
through Yaw Control Using a Parametric Model for Wake Effects --- a
CFD Simulation Study”. In: Wind Energy 19.1 (2016), pp. 95-114. doi:
10.1002/we.1822.

B. M. Doekemeijer, D. van der Hoek, and J. van Wingerden. “Closed-Loop
Model-Based Wind Farm Control Using FLORIS under Time-Varying Inflow
Conditions”. In: Renewable Energy 156 (Aug. 2020), pp. 719-730. issn:
09601481.doi: 10.1016/j.renene.2020.04.007.

Y. Liu, A. K. Pamososuryo, R. M. G. Ferrari, and J. W. van Wingerden.
“The Immersion and Invariance Wind Speed Estimator Revisited and
New Results”. In: IEEE Control Systems Letters 6 (2022), pp. 361-366.
issn: 2475-1456.doi: 10.1109/LCSYS.2021.3076040. (Visited on
01/13/2022).

L. Masset, O. Bruls, and G. Kerschen. “Partition of the Circle in Cells of
Equal Area and Shape”. In: Open Repository and Bibliography (May 2011),
p. 6.

V. V. Dighe, M. Becker, T. Gb¢cmen, B. Sanderse, and J.-W. van Wingerden.
“Sensitivity Analysis and Bayesian Calibration of a Dynamic Wind Farm
Control Model: FLORIDyn". In: Journal of Physics: Conference Series 2265.2
(May 2022), p. 022062. issn: 1742-6588, 1742-6596. doi: 10.1088/
1742-6596/2265/2/022062.

M. Becker, M. Lejeune, P. Chatelain, D. Allaerts, R. Mudafort, and J.-W.
van Wingerden. “A Dynamic Open-Source Model to Investigate Wake
Dynamics in Response to Wind Farm Flow Control Strategies”. In: Wind
Energy Science 10.6 (2025). doi: 10.5194/wes—-10-1055-2025.

G. Costanzo and G. Brindley. Wind Energy in Europe - 2023 Statistics and
the Outlook for 2024-2023. Tech. rep. Wind Europe, Feb. 2024. (Visited on
10/18/2024).



https://doi.org/10.1017/jfm.2020.1037
https://doi.org/10.1088/1742-6596/2265/3/032103
https://doi.org/10.1002/we.1760
https://doi.org/10.1002/we.1760
https://doi.org/10.1088/1742-6596/1618/2/022025
https://doi.org/10.1088/1742-6596/1618/2/022025
https://doi.org/10.1002/we.1822
https://doi.org/10.1016/j.renene.2020.04.007
https://doi.org/10.1109/LCSYS.2021.3076040
https://doi.org/10.1088/1742-6596/2265/2/022062
https://doi.org/10.1088/1742-6596/2265/2/022062
https://doi.org/10.5194/wes-10-1055-2025

190

Bibliography

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

J. A. Frederik, B. M. Doekemeijer, S. P. Mulders, and J.-W. van Wingerden.
“The Helix Approach: Using Dynamic Individual Pitch Control to Enhance
Wake Mixing in Wind Farms”. In: Wind Energy 23.8 (Aug. 2020), pp. 1739-
1751. issn: 1095-4244, 1099-1824. doi: 10.1002/we.2513.

M. Coquelet, L. Bricteux, M. Moens, and P. Chatelain. “A Reinforcement-
learning Approach for Individual Pitch Control”. In: Wind Energy 25.8 (Aug.
2022), pp. 1343-1362. issn: 1095-4244, 1099-1824. doi: 10.1002/we.
2734.

W. Munters and ]. Meyers. “An Optimal Control Framework for Dynamic
Induction Control of Wind Farms and Their Interaction with the Atmospheric
Boundary Layer”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 375.2091 (Apr. 2017),
p.20160100. issn: 1364-503X, 1471-2962.doi: 10.1098/rsta.2016.
0100.

P. Fleming, J. King, E. Simley, J. Roadman, A. Scholbrock, P. Murphy, J. K.
Lundquist, P. Moriarty, K. Fleming, J. Van Dam, C. Bay, R. Mudafort, D.
Jager, J. Skopek, M. Scott, B. Ryan, C. Guernsey, and D. Brake. “Continued
Results from a Field Campaign of Wake Steering Applied at a Commercial
Wind Farm -- Part 2”. In: Wind Energy Science 5.3 (July 2020), pp. 945-958.
issn: 2366-7451. doi: 10.5194 /wes—-5-945-2020.

B. M. Doekemeijer, S. Kern, S. Maturu, S. Kanev, B. Salbert, J. Schreiber, F.
Campagnolo, C. L. Bottasso, S. Schuler, F. Wilts, T. Neumann, G. Potenza,
F. Calabretta, F. Fioretti, and J.-W. van Wingerden. “Field Experiment for
Open-Loop Yaw-Based Wake Steering at a Commercial Onshore Wind
Farm in Italy”. In: Wind Energy Science 6.1 (Jan. 2021), pp. 159-176. issn:
2366-7451.doi: 10.5194/wes-6-159-2021.

P. Hulsman, M. Howland, T. Go¢cmen, and V. Petrovi¢. “Assessing Closed-
Loop Data-Driven Wind Farm Control Strategies within a Wind Tunnel”.
In: Journal of Physics: Conference Series 2767.3 (June 2024), p. 032049.
issn: 1742-6588, 1742-6596. doi: 10.1088/1742-6596/2767/3/
0320409.

P. Chatelain, S. Backaert, G. Winckelmans, and S. Kern. “Large Eddy
Simulation of Wind Turbine Wakes”. In: Flow, Turbulence and Combustion
91.3 (Oct. 2013), pp. 587-605. issn: 1386-6184, 1573-1987. doi: 10 .
1007/s10494-013-9474-8.

M. Moens, M. Lejeune, and P. Chatelain. “An Advanced Farm Flow Es-
timator for the Real-Time Evaluation of the Potential Wind Power of a
down-Regulated Wind Farm”. In: Journal of Physics: Conference Series
2767.3 (June 2024), p. 032044. issn: 1742-6588, 1742-6596. doi: 10 .
1088/1742-6596/2767/3/032044.

J. Quick, R. N. King, G. Barter, and P. E. Hamlington. “Multifidelity Multiob-
jective Optimization for Wake-Steering Strategies”. In: Wind Energy Sci-
ence 7.5 (Sept. 2022), pp. 1941-1955. issn: 2366-7451. doi: 10.5194/
wes—7-1941-2022.


https://doi.org/10.1002/we.2513
https://doi.org/10.1002/we.2734
https://doi.org/10.1002/we.2734
https://doi.org/10.1098/rsta.2016.0100
https://doi.org/10.1098/rsta.2016.0100
https://doi.org/10.5194/wes-5-945-2020
https://doi.org/10.5194/wes-6-159-2021
https://doi.org/10.1088/1742-6596/2767/3/032049
https://doi.org/10.1088/1742-6596/2767/3/032049
https://doi.org/10.1007/s10494-013-9474-8
https://doi.org/10.1007/s10494-013-9474-8
https://doi.org/10.1088/1742-6596/2767/3/032044
https://doi.org/10.1088/1742-6596/2767/3/032044
https://doi.org/10.5194/wes-7-1941-2022
https://doi.org/10.5194/wes-7-1941-2022

Bibliography 191

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

M. J. van den Broek, B. Sanderse, and J.-W. van Wingerden. “Flow Modelling
for Wind Farm Control: 2D vs. 3D". In: Journal of Physics: Conference
Series 2265.3 (May 2022), p. 032086. issn: 1742-6588, 1742-6596. doi:
10.1088/1742-6596/2265/3/032086.

Y. Marichal, I. De Visscher, P. Chatelain, and G. Winckelmans. “Towards
Physics-Based Operational Modeling of the Unsteady Wind Turbine Re-
sponse to Atmospheric and Wake-Induced Turbulence”. In: Journal of
Physics: Conference Series 854 (May 2017), p. 012030. issn: 1742-6588,
1742-6596. doi: 10.1088/1742-6596/854/1/012030.

D. Marten. QBlade: A Modern Tool for the Aeroelastic Simulation of Wind
Turbines. 2020. doi: 10.14279/DEPOSITONCE—-10646.

M. J. van den Broek, D. De Tavernier, P. Hulsman, D. van der Hoek, B.
Sanderse, and J.-W. van Wingerden. “Free-Vortex Models for Wind Turbine
Wakes under Yaw Misalignment -- a Validation Study on Far-Wake Effects”.
In: Wind Energy Science 8.12 (Dec. 2023), pp. 1909-1925. issn: 2366-7451.
doi: 10.5194/wes—-8-1909-2023.

T. Larsen, G. Larsen, M. Pedersen, K. Enevoldsen, and H. Madsen. “Vali-
dation of the Dynamic Wake Meander Model with Focus on Tower Loads”.
In: Journal of Physics: Conference Series 854 (May 2017), p. 012027.
issn: 1742-6588, 1742-6596. doi: 10.1088/1742-6596/854/1/
012027.

J. Jonkman, P. Doubrawa, N. Hamilton, J. Annoni, and P. Fleming. “Validation
of FAST.Farm Against Large-Eddy Simulations”. In: Journal of Physics:
Conference Series 1037 (June 2018), p. 062005. issn: 1742-6588, 1742-
6596. doi: 10.1088/1742-6596/1037/6/062005.

J. M. Jonkman, J. Annoni, G. Hayman, B. Jonkman, and A. Purkayastha. “De-
velopment of FAST.Farm: A New Multi-Physics Engineering Tool for Wind-
Farm Design and Analysis”. In: 35th Wind Energy Symposium. Grapevine,
Texas: American Institute of Aeronautics and Astronautics, Jan. 2017. isbn:
978-1-62410-456-5. doi: 10.2514/6.2017-0454.

J. Liew, T. Gé¢cmen, A. W. H. Lio, and G. C. Larsen. “Extending the Dynamic
Wake Meandering Model in HAWC2Farm: A Comparison with Field Mea-
surements at the Lillgrund Wind Farm”. In: Wind Energy Science 8.9 (Sept.
2023), pp. 1387-1402. issn: 2366-7451. doi: 10.5194 /wes—-8-1387-
2023.

R. Braunbehrens, J. Schreiber, and C. L. Bottasso. “Application of an Open-
Loop Dynamic Wake Model with High-Frequency SCADA Data”. In: Journal
of Physics: Conference Series 2265.2 (May 2022), p. 022031. issn: 1742-
6588, 1742-6596.doi: 10.1088/1742-6596/2265/2/022031.

M. Lejeune, M. Moens, and P. Chatelain. “A Meandering-Capturing Wake
Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm
Flow Prediction”. In: Frontiers in Energy Research 10 (July 2022), p. 884068.
issn: 2296-598X. doi: 10.3389/fenrg.2022.884068.



https://doi.org/10.1088/1742-6596/2265/3/032086
https://doi.org/10.1088/1742-6596/854/1/012030
https://doi.org/10.14279/DEPOSITONCE-10646
https://doi.org/10.5194/wes-8-1909-2023
https://doi.org/10.1088/1742-6596/854/1/012027
https://doi.org/10.1088/1742-6596/854/1/012027
https://doi.org/10.1088/1742-6596/1037/6/062005
https://doi.org/10.2514/6.2017-0454
https://doi.org/10.5194/wes-8-1387-2023
https://doi.org/10.5194/wes-8-1387-2023
https://doi.org/10.1088/1742-6596/2265/2/022031
https://doi.org/10.3389/fenrg.2022.884068

192

Bibliography

[76]

[77]

(78]
[79]

(80]

(81]

[82]

[83]

[84]

[85]

[86]

B. Foloppe, W. Munters, S. Buckingham, L. Vandevelde, and J. van Beeck.
“Development of a Dynamic Wake Model Accounting for Wake Advection
Delays and Mesoscale Wind Transients”. In: Journal of Physics: Conference
Series 2265.2 (May 2022), p. 022055. issn: 1742-6588, 1742-6596. doi:
10.1088/1742-6596/2265/2/022055.

V. Kipke and C. Sourkounis. “Three-Dimensional Dynamic Wake Model for
Real-Time Wind Farm Simulation”. In: 2024 32nd Mediterranean Confer-
ence on Control and Automation (MED). Chania - Crete, Greece: |IEEE, June
2024, pp. 808-815. isbn: 9798350395440. doi: 10.1109/MED61351.
2024.10566140.

NREL. “FLORIS. Version 3.4". In: GitHub repository (Nov. 2023).

M. M. Pedersen, A. Meyer Forsting, P. van der Laan, R. Riva, L. A. Alcayaga
Roman, J. Criado Risco, M. Friis-Mgller, J. Quick, J. P. Schgler Christiansen, R.
Valotta Rodrigues, B. T. Olsen, and P.-E. Réthoré. “PyWake 2.5.0: An Open-
Source Wind Farm Simulation Tool”. In: DTU Wind, Technical University of
Denmark (Feb. 2023).

J. Schmidt, L. Vollmer, M. Dérenkamper, and B. Stoevesandt. “FOXES:
Farm Optimization and eXtended Yield EvaluationSoftware”. In: Journal
of Open Source Software 8.86 (June 2023), p. 5464. issn: 2475-9066. doi:
10.21105/joss.05464.

A. Sterle, C. A. Hans, and J. Raisch. “Model Predictive Control of Wakes
for Wind Farm Power Tracking”. In: Journal of Physics: Conference Series
2767.3 (June 2024), p. 032005. issn: 1742-6588, 1742-6596. doi: 10 .
1088/1742-6596/2767/3/032005.

Y. Miao, M. N. Soltani, A. Hajizadeh, and S. Simani. “Artificial Neural
Network-based Wake Steering Control under the Time-varying Inflow”. In:
2024 10th International Conference on Control, Decision and Information
Technologies (CoDIT). Vallette, Malta: IEEE, July 2024, pp. 1988-1993. isbn:
9798350373974. doi: 10.1109/CoDIT62066.2024.10708147.

M. Becker, D. Allaerts, and J.-W. van Wingerden. “Ensemble-Based Flow
Field Estimation Using the Dynamic Wind Farm Model FLORIDyn”. In:
Energies 15.22 (Nov. 2022), p. 8589. issn: 1996-1073. doi: 10.3390/
enl15228589.

U. Ciri, M. A. Rotea, and S. Leonardi. “Model-Free Control of Wind Farms:
A Comparative Study between Individual and Coordinated Extremum
Seeking”. In: Renewable Energy 113 (Dec. 2017), pp. 1033-1045. issn:
09601481.doi: 10.1016/j.renene.2017.06.065.

H. Zong and F. Porté-Agel. “A Momentum-Conserving Wake Superposition
Method for Wind Farm Power Prediction”. In: Journal of Fluid Mechanics
889 (Apr. 2020), A8. issn: 0022-1120, 1469-7645. doi: 10.1017/ jfm.
2020.77.

C. J. Bay, P. Fleming, B. Doekemeijer, J. King, M. Churchfield, and R.
Mudafort. “Addressing Deep Array Effects and Impacts to Wake Steer-
ing with the Cumulative-Curl Wake Model”. In: Wind Energy Science 8.3
(Mar. 2023), pp. 401-419. issn: 2366-7451. doi: 10.5194 /wes—-8-
401-2023.


https://doi.org/10.1088/1742-6596/2265/2/022055
https://doi.org/10.1109/MED61351.2024.10566140
https://doi.org/10.1109/MED61351.2024.10566140
https://doi.org/10.21105/joss.05464
https://doi.org/10.1088/1742-6596/2767/3/032005
https://doi.org/10.1088/1742-6596/2767/3/032005
https://doi.org/10.1109/CoDIT62066.2024.10708147
https://doi.org/10.3390/en15228589
https://doi.org/10.3390/en15228589
https://doi.org/10.1016/j.renene.2017.06.065
https://doi.org/10.1017/jfm.2020.77
https://doi.org/10.1017/jfm.2020.77
https://doi.org/10.5194/wes-8-401-2023
https://doi.org/10.5194/wes-8-401-2023

Bibliography 193

[87]

(88]

[891]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

W. J. M. Rankine. “On the Mechanical Principles of the Action of Propellers”.
In: Transactions of the Institution of Naval Architects 6 (1865), p. 13.

R. E. Froude. “On the Part Played in Propulsion by Differences of Fluid
Pressure”. In: Transactions of the Institution of Naval Architects 30 (1889),
p. 390.

S. Tamaro, F. Campagnolo, and C. L. Bottasso. “On the Power and Control
of a Misaligned Rotor - beyond the Cosine Law”. In: Wind Energy Science
9.7 (July 23, 2024), pp. 1547-1575. issn: 2366-7451. doi: 10.5194/
wes—9-1547-2024. url: https://wes.copernicus.org/
articles/9/1547/2024/.

R. Braunbehrens, S. Tamaro, and C. L. Bottasso. “Towards the Multi-
Scale Kalman Filtering of Dynamic Wake Models: Observing Turbulent
Fluctuations and Wake Meandering”. In: Journal of Physics: Conference
Series 2505.1 (May 2023), p. 012044. issn: 1742-6588, 1742-6596. doi:
10.1088/1742-6596/2505/1/012044.

J. Di Cave, R. Braunbehrens, J. Krause, A. Guilloré, and C. L. Bottasso.
“Closed-Loop Coupling of a Dynamic Wake Model with a Wind Inflow Es-
timator”. In: Journal of Physics: Conference Series 2767.3 (June 2024),
p. 032034. issn: 1742-6588, 1742-6596. doi: 10.1088/1742-6596/
2767/3/032034.

S. Kanev. “Dynamic Wake Steering and Its Impact on Wind Farm Power
Production and Yaw Actuator Duty”. In: Renewable Energy 146 (Feb. 2020),
pp. 9-15. issn: 09601481. doi: 10.1016/ J.renene.2019.06.
122.

P. A. Fleming, A. P. J. Stanley, C. J. Bay, J. King, E. Simley, B. M. Doeke-
meijer, and R. Mudafort. “Serial-Refine Method for Fast Wake-Steering
Yaw Optimization”. In: Journal of Physics: Conference Series 2265.3 (May
2022), p. 032109. issn: 1742-6588, 1742-6596. doi: 10.1088/1742—-
6596/2265/3/0321009.

S. Knoop. Wind - Lidar Wind Profiles Measured at North Sea Wind Farm
TenneT Platforms 1 Second Raw Data. Nov. 2019.

M. J. van den Broek, M. Becker, B. Sanderse, and J.-W. van Wingerden.
“Dynamic Wind Farm Flow Control Using Free-Vortex Wake Models”. In:
Wind Energy Science 9.3 (Mar. 2024), pp. 721-740. issn: 2366-7451. doi:
10.5194/wes—-9-721-2024.

J. Annoni, C. Bay, K. Johnson, E. Dall’Anese, E. Quon, T. Kemper, and P.
Fleming. “Wind Direction Estimation Using SCADA Data with Consensus-
Based Optimization”. In: Wind Energy Science 4.2 (June 2019), pp. 355-
368. issn: 2366-7451. doi: 10.5194/wes—-4-355-20109.

D. van der Hoek, M. Sinner, E. Simley, L. Pao, and J.-W. van Wingerden.
“Estimation of the Ambient Wind Field From Wind Turbine Measurements
Using Gaussian Process Regression”. In: 2021 American Control Confer-
ence (ACC). New Orleans, LA, USA: IEEE, May 2021, pp. 558-563. isbn:
978-1-66544-197-1. doi: 10.23919/ACC50511.2021.9483088.



https://doi.org/10.5194/wes-9-1547-2024
https://doi.org/10.5194/wes-9-1547-2024
https://wes.copernicus.org/articles/9/1547/2024/
https://wes.copernicus.org/articles/9/1547/2024/
https://doi.org/10.1088/1742-6596/2505/1/012044
https://doi.org/10.1088/1742-6596/2767/3/032034
https://doi.org/10.1088/1742-6596/2767/3/032034
https://doi.org/10.1016/j.renene.2019.06.122
https://doi.org/10.1016/j.renene.2019.06.122
https://doi.org/10.1088/1742-6596/2265/3/032109
https://doi.org/10.1088/1742-6596/2265/3/032109
https://doi.org/10.5194/wes-9-721-2024
https://doi.org/10.5194/wes-4-355-2019
https://doi.org/10.23919/ACC50511.2021.9483088

194

Bibliography

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

M. F. Howland, H. M. Johlas, J. B. Quesada, J. J. Pena Martinez, W. Zhong,
and F. P. Larranaga. “On the Impact of the Yaw Update Frequency and
Wind Direction Forecasting on Open-Loop Wake Steering Control”. In: 2022
American Control Conference (ACC). Atlanta, GA, USA: IEEE, June 2022,
pp. 4218-4223. isbn: 978-1-66545-196-3. doi: 10.23919/ACC53348.
2022.9867443.

M. Lejeune, A. Frere, M. Moens, and P. Chatelain. “Are Steady-State Wake
Models and Lookup Tables Sufficient to Design Profitable Wake Steering
Strategies? A Large Eddy Simulation Investigation”. In: Journal of Physics:
Conference Series 2767.9 (June 2024), p. 092075. issn: 1742-6588, 1742-
6596.doi: 10.1088/1742-6596/2767/9/092075.

L. Martinez, S. Leonardi, M. Churchfield, and P. Moriarty. “A Comparison of
Actuator Disk and Actuator Line Wind Turbine Models and Best Practices
for Their Use”. In: 50th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition. Nashville, Tennessee:
American Institute of Aeronautics and Astronautics, Jan. 2012. isbn: 978-1-
60086-936-5. doi: 10.2514/6.2012-900.

C. R. Shapiro, D. F. Gayme, and C. Meneveau. “Filtered Actuator Disks:
Theory and Application to Wind Turbine Models in Large Eddy Simulation”.
In: Wind Energy 22.10 (Oct. 2019), pp. 1414-1420. issn: 1095-4244, 1099-
1824.doi: 10.1002/we.2376.

W. H. Lio, G. C. Larsen, and G. R. Thorsen. “Dynamic Wake Tracking Using
a Cost-Effective LIDAR and Kalman Filtering: Design, Simulation and Full-
Scale Validation”. In: Renewable Energy 172 (July 2021), pp. 1073-1086.
issn: 09601481.doi: 10.1016/j.renene.2021.03.081.

E. Simley, P. Fleming, and J. King. “Design and Analysis of a Wake Steering
Controller with Wind Direction Variability”. In: Wind Energy Science 5.2
(Apr. 2020), pp. 451-468. issn: 2366-7451. doi: 10.5194 /wes—5-
451-2020.

K. Heck, H. Johlas, and M. Howland. “Modelling the Induction, Thrust and
Power of a Yaw-Misaligned Actuator Disk”. In: Journal of Fluid Mechanics
959 (Mar. 2023), A9. issn: 0022-1120, 1469-7645. doi: 10.1017/jfm.
2023.1209.

G. M. Starke, C. Meneveau, J. R. King, and D. F. Gayme. “A Dynamic Model
of Wind Turbine Yaw for Active Farm Control”. In: Wind Energy (Dec. 2023),
we.2884. issn: 1095-4244, 1099-1824. doi: 10.1002/we.2884.

M. Abkar, J. N. Sgrensen, and F. Porté-Agel. “An Analytical Model for the
Effect of Vertical Wind Veer on Wind Turbine Wakes”. In: Energies 11.7
(July 13, 2018), p. 1838. issn: 1996-1073. doi: 10.3390/en11071838.
url: https://www.mdpi.com/1996-1073/11/7/1838.

D. Bastine, B. Witha, M. Wachter, and J. Peinke. “Towards a Simplified
DynamicWake Model Using POD Analysis”. In: Energies 8.2 (Jan. 2015),
pp. 895-920. issn: 1996-1073. doi: 10.3390/en8020895.


https://doi.org/10.23919/ACC53348.2022.9867443
https://doi.org/10.23919/ACC53348.2022.9867443
https://doi.org/10.1088/1742-6596/2767/9/092075
https://doi.org/10.2514/6.2012-900
https://doi.org/10.1002/we.2376
https://doi.org/10.1016/j.renene.2021.03.081
https://doi.org/10.5194/wes-5-451-2020
https://doi.org/10.5194/wes-5-451-2020
https://doi.org/10.1017/jfm.2023.129
https://doi.org/10.1017/jfm.2023.129
https://doi.org/10.1002/we.2884
https://doi.org/10.3390/en11071838
https://www.mdpi.com/1996-1073/11/7/1838
https://doi.org/10.3390/en8020895

Bibliography 195

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

J. Gutknecht, M. Becker, C. Muscari, T. Lutz, and J.-W. van Wingerden. “Scal-
ing DMD Modes for Modeling Dynamic Induction Control Wakes in Various
Wind Speeds”. In: 2023 IEEE Conference on Control Technology and Appli-
cations (CCTA). Bridgetown, Barbados: IEEE, Aug. 2023, pp. 574-580. isbn:
9798350335446. doi: 10.1109/CCTA54093.2023.10252400.

M. J. van den Broek, D. De Tavernier, B. Sanderse, and J.-W. van Wingerden.
“Adjoint Optimisation for Wind Farm Flow Control with a Free-Vortex Wake
Model”. In: Renewable Energy (Nov. 2022), S0960148122016226. issn:
09601481. doi: 10.1016/j.renene.2022.10.120.

M. F. Howland, A. S. Ghate, S. K. Lele, and J. O. Dabiri. “Optimal Closed-Loop
Wake Steering -- Part 1: Conventionally Neutral Atmospheric Boundary
Layer Conditions”. In: Wind Energy Science 5.4 (Oct. 2020), pp. 1315-1338.
issn: 2366-7443. doi: 10.5194 /wes-5-1315-2020.

G. Evensen. “The Ensemble Kalman Filter: Theoretical Formulation and
Practical Implementation”. In: Ocean Dynamics 53.4 (Nov. 2003), pp. 343-
367. issn: 1616-7341, 1616-7228. doi: 10 .1007/s10236-003 -
0036-9. (Visited on 12/08/2020).

0O.-P. Tossavainen, J. Percelay, A. Tinka, Q. Wu, and A. M. Bayen. “Ensemble
Kalman Filter Based State Estimation in 2D Shallow Water Equations
Using Lagrangian Sensing and State Augmentation”. In: 2008 47th IEEE
Conference on Decision and Control. Cancun, Mexico: IEEE, 2008, pp. 1783~
1790. isbn: 978-1-4244-3123-6. doi: 10.1109/CDC.2008.4738999.

J. Du, J. Zhu, F. Fang, C. C. Pain, and I. M. Navon. “Ensemble Data As-
similation Applied to an Adaptive Mesh Ocean Model: Ensemble Data
Assimilation Applied to an Adaptive Mesh Ocean Model”. In: International
Journal for Numerical Methods in Fluids 82.12 (Dec. 2016), pp. 997-10009.
issn: 02712091.doi: 10.1002/£f1d.4247.

B. M. Doekemeijer, S. Boersma, L. Y. Pao, and J. W. van Wingerden. “En-
semble Kalman Filtering for Wind Field Estimation in Wind Farms”. In:
2017 American Control Conference (ACC). May 2017, pp. 19-24. doi:
10.23919/ACC.2017.7962924.

P. Kumar Jain, K. Mandli, I. Hoteit, O. Knio, and C. Dawson. “Dynamically
Adaptive Data-Driven Simulation of Extreme Hydrological Flows”. In: Ocean
Modelling 122 (Feb. 2018), pp. 85-103. issn: 14635003. doi: 10.1016/
j.ocemod.2017.12.004.

C. R. Shapiro, G. M. Starke, C. Meneveau, and D. F. Gayme. “A Wake
Modeling Paradigm for Wind Farm Design and Control”. In: Energies 12.15
(Aug. 2019), p. 2956. issn: 1996-1073. doi: 10.3390/enl12152956.

C. Sampson, A. Carrassi, A. Aydogdu, and C. K. Jones. “Ensemble Kalman
Filter for Nonconservative Moving Mesh Solvers with a Joint Physics and
Mesh Location Update”. In: Quarterly Journal of the Royal Meteorological
Society 147.736 (Apr. 2021), pp. 1539-1561. issn: 0035-9009, 1477-870X.
doi: 10.1002/g7j.3980.

S. J. Julier and J. K. Uhlmann. “New Extension of the Kalman Filter to
Nonlinear Systems”. In: AeroSense '97. Ed. by I. Kadar. Orlando, FL, USA,
July 1997, p. 182.doi: 10.1117/12.280797. (Visited on 10/03/2022).



https://doi.org/10.1109/CCTA54093.2023.10252400
https://doi.org/10.1016/j.renene.2022.10.120
https://doi.org/10.5194/wes-5-1315-2020
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1109/CDC.2008.4738999
https://doi.org/10.1002/fld.4247
https://doi.org/10.23919/ACC.2017.7962924
https://doi.org/10.1016/j.ocemod.2017.12.004
https://doi.org/10.1016/j.ocemod.2017.12.004
https://doi.org/10.3390/en12152956
https://doi.org/10.1002/qj.3980
https://doi.org/10.1117/12.280797

196

Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

[129]

[130]

O. Talagrand and P. Courtier. “Variational Assimilation of Meteorological
Observations With the Adjoint Vorticity Equation. I: Theory: VARIATIONAL
ASSIMILATION. I: THEORY". In: Quarterly Journal of the Royal Meteorological
Society 113.478 (Oct. 1987), pp. 1311-1328. issn: 00359009. doi: 10 .
1002/973.49711347812.

E. Wan and R. Van Der Merwe. “The Unscented Kalman Filter for Nonlinear
Estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No.0OEX373).
Lake Louise, Alta., Canada: IEEE, 2000, pp. 153-158. isbn: 978-0-7803-
5800-3.doi: 10.1109/ASSPCC.2000.882463.

P. Bauweraerts and J. Meyers. “Reconstruction of Turbulent Flow Fields
from Lidar Measurements Using Large-Eddy Simulation”. In: Journal of
Fluid Mechanics 906 (Jan. 2021), A17. issn: 0022-1120, 1469-7645. doi:
10.1017/3fm.2020.805.

S. Skachko, Q. Errera, R. Ménard, Y. Christophe, and S. Chabrillat. “Com-
parison of the Ensemble Kalman Filter and 4D-Var Assimilation Methods
Using a Stratospheric Tracer Transport Model”. In: Geoscientific Model
Development 7.4 (July 2014), pp. 1451-1465. issn: 1991-9603. doi: 10.
5194 /gmd-7-1451-2014.

A. Betz. Introduction to the Theory of Flow Machines. Burlington: Elsevier
Science, 2014. isbn: 978-1-4831-8090-8.

G. Evensen. “Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic
Model Using Monte Carlo Methods to Forecast Error Statistics”. In: Journal
of Geophysical Research: Oceans 99.C5 (1994), pp. 10143-10162. issn:
2156-2202.doi: 10.1029/94JC00572.

G. Burgers, P. J. van Leeuwen, and G. Evensen. “Analysis Scheme in the
Ensemble Kalman Filter”. In: Monthly Weather Review 126.6 (June 1998),
pp. 1719-1724. issn: 1520-0493, 0027-0644. doi: 10.1175/1520-
0493(1998)126<1719:ASITEK>2.0.CO; 2.

R. Petrie. “Localization in the Ensemble Kalman Filter”. In: 2008.

G. Gaspari and S. E. Cohn. “Construction of Correlation Functions in Two
and Three Dimensions”. In: Quarterly Journal of the Royal Meteorological
Society 125.554 (Jan. 1999), pp. 723-757. issn: 00359009, 1477870X. doi:
10.1002/gj.49712555417.

A. C. Lorenc. “The Potential of the Ensemble Kalman Filter for NWP---a
Comparison with 4D-Var”. In: Quarterly Journal of the Royal Meteorological
Society 129.595 (Oct. 2003), pp. 3183-3203. issn: 00359009, 1477870X.
doi: 10.1256/gj.02.132.

National Renewable Energy Laboratory. “Simulator for Offshore Wind Farm
Applications”. In: GitHub repository (Nov. 2020).

M. Becker. Dataset Belonging to the Paper: Ensemble Based Flow Field
Estimation Using the Dynamic Wake Model FLORIDyn. Sept. 2022.


https://doi.org/10.1002/qj.49711347812
https://doi.org/10.1002/qj.49711347812
https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1017/jfm.2020.805
https://doi.org/10.5194/gmd-7-1451-2014
https://doi.org/10.5194/gmd-7-1451-2014
https://doi.org/10.1029/94JC00572
https://doi.org/10.1175/1520-0493(1998)126%3C1719:ASITEK%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126%3C1719:ASITEK%3E2.0.CO;2
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1256/qj.02.132

Bibliography 197

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

M. Becker, D. Allaerts, and J.-W. van Wingerden. “Time-Shifted Cost Func-
tion Design for More Efficient Dynamic Wind Farm Flow Control*”. In: 2024
IEEE Conference on Control Technology and Applications (CCTA). New-
castle upon Tyne, United Kingdom: IEEE, Aug. 2024, pp. 440-445. isbn:
9798350370942. doi: 10.1109/CCTA60707.2024.10666535.

J. Meyers, C. Bottasso, K. Dykes, P. Fleming, P. Gebraad, G. Giebel, T.
Gocmen, and J.-W. van Wingerden. “Wind Farm Flow Control: Prospects
and Challenges”. In: Wind Energy Science 7.6 (Nov. 2022), pp. 2271-2306.
issn: 2366-7451. doi: 10.5194 /wes—7-2271-2022.

M. F. Howland, S. K. Lele, and J. O. Dabiri. “Wind Farm Power Optimization
through Wake Steering”. In: Proceedings of the National Academy of
Sciences 116.29 (July 2019), pp. 14495-14500. issn: 0027-8424, 1091-
6490. doi: 10.1073/pnas.1903680116.

S. Boersma, B. Doekemeijer, M. Vali, J. Meyers, and J.-W. van Wingerden.
“A Control-Oriented Dynamic Wind Farm Model: WFSim”. In: Wind Energy
Science 3.1 (Mar. 2018), pp. 75-95. issn: 2366-7451. doi: 10.5194/
wes—3-75-2018.

R. Dorfman, P. A. Samuelson, and R. M. Solow. Linear Programming and
Economic Analysis. New York: Dover Publications, 1987. isbn: 978-0-486-
65491-1.

S. Macri, T. Duc, A. Leroy, N. Girard, and S. Aubrun. “Experimental Analysis
of Time Delays in Wind Turbine Wake Interactions”. In: Journal of Physics:
Conference Series 1618.6 (Sept. 2020), p. 062058. issn: 1742-6588, 1742-
6596.doi: 10.1088/1742-6596/1618/6/062058.

S. Emeis. Wind Energy Meteorology. Green Energy and Technology. Cham:
Springer International Publishing, 2018. isbn: 978-3-319-72858-2 978-3-
319-72859-9. doi: 10.1007/978-3-319-72859-9.

MathWorks. MATLAB - Optimization Toolbox Version 9.5. The MathWorks
Inc. Natick, Massachusetts, 2023.

B. A. M. Sengers, A. Rott, E. Simley, M. Sinner, G. Steinfeld, and M. Kihn.
“Increased Power Gains from Wake Steering Control Using Preview Wind Di-
rection Information”. In: Wind Energy Science 8.11 (Nov. 2023), pp. 1693-
1710. issn: 2366-7451.doi: 10.5194/wes—-8-1693-2023.

M. Becker, M. J. van den Broek, D. Allaerts, and J.-W. van Wingerden.
Closed-Loop Model-Predictive Wind Farm Flow Control under Time-Varying
Inflow Using FLORIDyn. Dec. 2024.

UNECE. Carbon Neutrality in the UNECE Region: Integrated Life-cycle
Assessment of Electricity Sources. Tech. rep. Geneva: UNITED NATIONS
ECONOMIC COMMISSION FOR EUROPE, 2022.

A. Rott, S. Boersma, J.-W. van Wingerden, and M. Kihn. “Dynamic Flow
Model for Real-Time Application in Wind Farm Control”. In: Journal of
Physics: Conference Series 854 (May 2017), p. 012039. issn: 1742-6588,
1742-6596. doi: 10.1088/1742-6596/854/1/012039.

J. Liew. “Dynamic Modelling of Wind Farms for Closed-Loop Control”. PhD
thesis. Technical University of Denmark, 2022. doi: 10.11581/DTU.
00000263.



https://doi.org/10.1109/CCTA60707.2024.10666535
https://doi.org/10.5194/wes-7-2271-2022
https://doi.org/10.1073/pnas.1903680116
https://doi.org/10.5194/wes-3-75-2018
https://doi.org/10.5194/wes-3-75-2018
https://doi.org/10.1088/1742-6596/1618/6/062058
https://doi.org/10.1007/978-3-319-72859-9
https://doi.org/10.5194/wes-8-1693-2023
https://doi.org/10.1088/1742-6596/854/1/012039
https://doi.org/10.11581/DTU.00000263
https://doi.org/10.11581/DTU.00000263

198

Bibliography

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

T. Duc, O. Coupiac, N. Girard, G. Giebel, and T. Gé¢men. “Local Turbulence
Parameterization Improves the Jensen Wake Model and Its Implementation
for Power Optimization of an Operating Wind Farm”. In: Wind Energy
Science 4.2 (May 2019), pp. 287-302. issn: 2366-7451. doi: 10.5194/
wes—-4-287-20109.

M. F. Howland, A. S. Ghate, J. B. Quesada, J. J. Pena Martinez, W. Zhong,
F. P. Larraflaga, S. K. Lele, and J. O. Dabiri. “Optimal Closed-Loop Wake
Steering -- Part 2: Diurnal Cycle Atmospheric Boundary Layer Conditions”.
In: Wind Energy Science 7.1 (Feb. 2022), pp. 345-365. issn: 2366-7451.
doi: 10.5194/wes—-7-345-2022.

I. Sood and ]J. Meyers. “Development and Validation of a Large Eddy
Simulation Based Virtual Environment for Optimal Wind Farm Control”.
PhD thesis. KU Leuven, May 2023.

P. Bachant, P. Ireland, B. Burrows, C. Qiao, J. Duncan, D. Zheng, and M.
Dua. “Development and Validation of a Hybrid Data-Driven Model-Based
Wake Steering Controller and Its Application at a Utility-Scale Wind Plant”.
In: Wind Energy Science 9.11 (Nov. 2024), pp. 2235-2259. issn: 2366-7451.
doi: 10.5194/wes—-9-2235-2024.

J. P. Goit and ]. Meyers. “Optimal Control of Energy Extraction in Wind-Farm
Boundary Layers”. In: Journal of Fluid Mechanics 768 (Apr. 2015), pp. 5-50.
issn: 0022-1120, 1469-7645. doi: 10.1017/Jfm.2015.70.

W. Munters and J. Meyers. “Dynamic Strategies for Yaw and Induction
Control of Wind Farms Based on Large-Eddy Simulation and Optimization”.
In: Energies 11.1 (Jan. 2018), p. 177. doi: 10.3390/en11010177.

J. Goit, W. Munters, and J. Meyers. “Optimal Coordinated Control of Power
Extraction in LES of a Wind Farm with Entrance Effects”. In: Energies 9.1
(Jan. 2016), p. 29. issn: 1996-1073. doi: 10.3390/en%9010029.

N. Janssens and J. Meyers. “Towards Real-Time Optimal Control of Wind
Farms Using Large-Eddy Simulations”. In: Wind Energy Science 9.1 (Jan.
2024), pp. 65-95. issn: 2366-7451. doi: 10.5194/wes—9-65-2024.

E. Simley, P. Fleming, J. King, and M. Sinner. “Wake Steering Wind Farm
Control With Preview Wind Direction Information”. In: 2021 American Con-
trol Conference (ACC). New Orleans, LA, USA: IEEE, May 2021, pp. 1783-
1789. isbn: 978-1-66544-197-1. doi: 10.23919/ACC50511.2021.
9483008.

J. Schreiber, C. L. Bottasso, and M. Bertele. “Field Testing of a Local Wind
Inflow Estimator and Wake Detector”. In: Wind Energy Science 5.3 (July
2020), pp. 867-884. issn: 2366-7451. doi: 10.5194 /wes—5-867—
2020.

G. Evensen. Data Assimilation: The Ensemble Kalman Filter. 2. ed. Dor-
drecht: Springer, 2009. isbn: 978-3-642-03711-5 978-3-642-03710-8 978-
3-642-42476-2.

M.-G. Kim and P. H. Dalhoff. “Yaw Systems for Wind Turbines -- Overview of
Concepts, Current Challenges and Design Methods”. In: Journal of Physics:
Conference Series 524 (June 2014), p. 012086. issn: 1742-6596. doi: 1 0.
1088/1742-6596/524/1/012086.


https://doi.org/10.5194/wes-4-287-2019
https://doi.org/10.5194/wes-4-287-2019
https://doi.org/10.5194/wes-7-345-2022
https://doi.org/10.5194/wes-9-2235-2024
https://doi.org/10.1017/jfm.2015.70
https://doi.org/10.3390/en11010177
https://doi.org/10.3390/en9010029
https://doi.org/10.5194/wes-9-65-2024
https://doi.org/10.23919/ACC50511.2021.9483008
https://doi.org/10.23919/ACC50511.2021.9483008
https://doi.org/10.5194/wes-5-867-2020
https://doi.org/10.5194/wes-5-867-2020
https://doi.org/10.1088/1742-6596/524/1/012086
https://doi.org/10.1088/1742-6596/524/1/012086

Bibliography 199

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

F. Bernardoni, U. Ciri, M. A. Rotea, and S. Leonardi. “ldentification of Wind
Turbine Clusters for Effective Real Time Yaw Control Optimization”. In:
Journal of Renewable and Sustainable Energy 13.4 (July 2021), p. 043301.
issn: 1941-7012. doi: 10.1063/5.0036640.

IEEE Neural Networks Council, ed. Proceedings / 1995 IEEE International
Conference on Neural Networks, the University of Western Australia, Perth,
Western Australia, 27 November - 1 December 1995. Piscataway, NJ:
IEEE Service Center, 1995. isbn: 978-0-7803-2768-9 978-0-7803-2769-6
978-0-7803-2770-2.

M. E. H. Pedersen. Good Parameters for Particle Swarm Optimization. Tech.
rep. Technical Report no. HL1001. Luxembourg: Hvass Laboratories, 2010.

E. Mezura-Montes and C. A. Coello Coello. “Constraint-Handling in Nature-
Inspired Numerical Optimization: Past, Present and Future”. In: Swarm and
Evolutionary Computation 1.4 (Dec. 2011), pp. 173-194. issn: 22106502.
doi: 10.1016/3j.swevo.2011.10.001.

J. Liew, R. Riva, M. Friis-Mgller, and T. Go¢men. “Wind Farm Control Op-
timisation Under Load Constraints Via Surrogate Modelling”. In: Journal
of Physics: Conference Series 2767.9 (June 2024), p. 092039. issn: 1742-
6588, 1742-6596. doi: 10.1088/1742-6596/2767/9/092039.

A. Guilloré, F. Campagnolo, and C. L. Bottasso. “A Control-Oriented Load
Surrogate Model Based on Sector-Averaged Inflow Quantities: Captur-
ing Damage for Unwaked, Waked, Wake-Steering and Curtailed Wind
Turbines”. In: Journal of Physics: Conference Series 2767.3 (June 2024),
p. 032019. issn: 1742-6588, 1742-6596. doi: 10.1088/1742-6596/
2767/3/032019.

U. N. S. Foundation and National Center for Atmospheric Research. Weather
Research and Forecasting (WRF) Model.

S. Porchetta, M. F. Howland, R. Borgers, S. Buckingham, and W. Munters.
Annual Wake Impacts in and between Wind Farm Clusters Modelled by a
Mesoscale Numerical Weather Prediction Model and Fast-Running Engi-
neering Models. June 2024. doi: 10.5194 /wes—-2024-58.

T. lvanova, S. Porchetta, S. Buckingham, J. Van Beeck, and W. Munters.
Improving Wind and Power Predictions via Four-Dimensional Data Assimi-
lation in the WRF Model: Case Study of Storms in February 2022 at Belgian
Offshore Wind Farms. Mar. 2024. doi: 10.5194 /wes—-2023-177.

P. Argyle, S. Watson, C. Montavon, I. Jones, and M. Smith. “Modelling
Turbulence Intensity within a Large Offshore Wind Farm”. In: Wind Energy
21.12 (Dec. 2018), pp. 1329-1343. issn: 1095-4244, 1099-1824. doi: 10.
1002/we.2257.

J. Bleeg, M. Purcell, R. Ruisi, and E. Traiger. “Wind Farm Blockage and
the Consequences of Neglecting Its Impact on Energy Production”. In:
Energies 11.6 (June 2018), p. 1609. issn: 1996-1073. doi: 10.3390/
enl10616009.

D. Allaerts and ). Meyers. “Boundary-Layer Development and Gravity
Waves in Conventionally Neutral Wind Farms”. In: Journal of Fluid Me-
chanics 814 (Mar. 2017), pp. 95-130. issn: 0022-1120, 1469-7645. doi:
10.1017/9fm.2017.11.



https://doi.org/10.1063/5.0036640
https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1088/1742-6596/2767/9/092039
https://doi.org/10.1088/1742-6596/2767/3/032019
https://doi.org/10.1088/1742-6596/2767/3/032019
https://doi.org/10.5194/wes-2024-58
https://doi.org/10.5194/wes-2023-177
https://doi.org/10.1002/we.2257
https://doi.org/10.1002/we.2257
https://doi.org/10.3390/en11061609
https://doi.org/10.3390/en11061609
https://doi.org/10.1017/jfm.2017.11

200

Bibliography

[168]

[169]

[170]

[171]

[172]

E. Bossanyi and J. Bleeg. “How Do Wind Farm Blockage and Axial Induction
Control Interact?” In: Journal of Physics: Conference Series 2767.9 (June
2024), p. 092027. issn: 1742-6588, 1742-6596. doi: 10.1088/1742—-
6596/2767/9/092027.

A. C. Kheirabadi and R. Nagamune. “Real-Time Relocation of Floating Off-
shore Wind Turbines for Power Maximization Using Distributed Economic
Model Predictive Control”. In: 2021 American Control Conference (ACC).
New Orleans, LA, USA: IEEE, May 2021, pp. 3077-3081. isbn: 978-1-66544-
197-1.doi: 10.23919/ACC50511.2021.9483056.

Y. R. Alkarem, K. Huguenard, A. S. Verma, D. Van Binsbergen, E. Bachynski-
Poli¢, and A. R. Nejad. “Passive Mooring-based Turbine Repositioning
Technique for Wake Steering in Floating Offshore Wind Farms”. In: Journal
of Physics: Conference Series 2767.9 (June 2024), p. 092056. issn: 1742-
6588, 1742-6596.doi: 10.1088/1742-6596/2767/9/092056.

P. ). Stuyfzand and J. W. Kappelhof. “Floating, High-Capacity Desalting
Islands on Renewable Multi-Energy Supply”. In: Desalination 177.1-3 (June
2005), pp. 259-266. issn: 00119164. doi: 10.1016/j.desal.2004.
12.011.

B. Doekemeijer and J.-W. van Wingerden. “Observability of the Ambient
Conditions in Model-based Estimation for Wind Farm Control: A Focus on
Static Models”. In: Wind Energy 23.9 (Sept. 2020), pp. 1777-1791. issn:
1095-4244, 1099-1824. doi: 10.1002/we.2495.


https://doi.org/10.1088/1742-6596/2767/9/092027
https://doi.org/10.1088/1742-6596/2767/9/092027
https://doi.org/10.23919/ACC50511.2021.9483056
https://doi.org/10.1088/1742-6596/2767/9/092056
https://doi.org/10.1016/j.desal.2004.12.011
https://doi.org/10.1016/j.desal.2004.12.011
https://doi.org/10.1002/we.2495

EPILOGUE

Mistakes and errors are inherent to the process of any work conducted, mine
being no exception to it. By acknowledging this fact, mistakes can become more
than annoyances and evolve into exciting lessons. Filipe Fortes captured the
experience regarding software development as follows:

Debugging is like being the detective in a crime movie where you are also
the murderer.
Filipe Fortes

In this epilogue, | present you some film stills of the ““‘crime movie” that | have
been a part of in recent years. Each figure represents a little riddle solved and a
lesson learned after an investigation. To you, dear reader, best of luck with failing,
and enjoy the process of learning from mistakes as much as possible.

201



202

Epilogue




203







12-01-1994

EDUCATION
2020-2024

2018-2020

2016

2013-2017

2004-2012

AWARDS

2023
2025

CURRICULUM VITAE

Marcus Becker

Born in Freiburg im Breisgau, Germany.

Doctoral degree in Systems and Control

Delft University of Technology, Delft, Netherlands

Thesis: A comprehensive approach to closed-loop wind
farm flow control using FLORIDyn

Promotor:  Prof. dr. ir. J.W. van Wingerden

Copromotor: Prof. dr. D. Allaerts

Master of Science in simulation and control of mechatronic systems
Technical University of Darmstadt, Darmstadt, Germany
Hosted by Delft University of Technology, Delft, Netherlands
Thesis: Maturing FLORIS towards a Dynamic Wind Farm

Model

Erasmus+
Chalmers University of Technology, Géteborg, Sweden

Bachelor of Science in Mechatronics

Technical University of Darmstadt, Darmstadt, Germany
Gymnasium

Heimschule Lender, Sasbach, Germany

Outstanding TA Award
Best Wind & Ocean Energy Research Visualisation Award 2024

205






LIST OF PUBLICATIONS

JOURNAL PUBLICATIONS
6. M. Becker, M. ). van den Broek, D. Allaerts, and J.W. van Wingerden, Closed-Loop

Model-Predictive Wind Farm Flow Control under Time-Varying Inflow Using FLORIDyn,
accepted for publication in Wind Energy (2025).

5. M. Becker, M. Lejeune, P. Chatelain, D. Allaerts, R. Mudafort, and J.W. van Wingerden, A
Dynamic Open-Source Model to Investigate Wake Dynamics in Response to Wind Farm
Flow Control Strategies, Wind Energy Science (2025). doi: 10.5194/wes-10-1055-2025

4. M. J. van den Broek, M. Becker, B. Sanderse, and J.W. van Wingerden, Dynamic Wind
Farm Flow Control Using Free-Vortex Wake Models, Wind Energy Science (2024). doi:
10.5194/wes-9-721-2024

3. M. Becker, B. Ritter, B. Doekemeijer, D. van der Hoek, U. Konigorski, D. Allaerts, and
J.W. van Wingerden, The Revised FLORIDyn Model: Implementation of Heterogeneous
Flow and the Gaussian Wake, Wind Energy Science (2022). doi: 10.5194/wes-7-2163-
2022.

2. M. Becker, D. Allaerts, and J.W. van Wingerden, Ensemble-Based Flow Field Es-
timation Using the Dynamic Wind Farm Model FLORIDyn, Energies (2022). doi:
10.3390/en15228589

1. T. Gocmen, F. Campagnolo, T. Duc, I. Eguinoa, S. J. Andersen, V. Petrovi¢, L. ImSirovi¢,
R. Braunbehrens, J. Liew, M. Baungaard, M. P. Van Der Laan, G. Qian, M. Aparicio-
Sanchez, R. Gonzdlez-Lope, V. V. Dighe, M. Becker, M. ). van den Broek, J.W. van
Wingerden, A. Stock, M. Cole, R. Ruisi, E. Bossanyi, N. Requate, S. Strnad, J. Schmidt,
L. Vollmer, I. Sood, and ). Meyers, FarmConners Wind Farm Flow Control Benchmark --
Part 1: Blind Test Results, Wind Energy Science (2022). doi: 10.5194/wes-7-1791-2022

CONFERENCE PUBLICATIONS

7. L. Starink, Z. Xie, M. Becker, D. van den Berg, and J.W. van Wingerden, Optimal
(Dynamic) Turbine Repositioning Strategies for a Floating Wind Farm Depending on
Mooring Line Stiffness, submitted to the Deep Wind conference proceedings (2025)

6. M. Becker, D. Allaerts, and J.W. van Wingerden, Time-Shifted Cost Function Design
for More Efficient Dynamic Wind Farm Flow Control, 2024 |IEEE Conference on Control
Technology and Applications (CCTA) (2024). doi: 10.1109/CCTA60707.2024.10666535

5. M. Becker, D. Allaerts, and J.W. van Wingerden, Wind Pattern Clustering of High
Frequent Field Measurements for Dynamic Wind Farm Flow Control, Journal of Physics:
Conference Series (2024). doi: 0.1088/1742-6596/2767/3/032028

4. E. Taschner, M. Becker, R. Verzijlbergh, and J.W. van Wingerden, Comparison of Helix
and Wake Steering Control for Varying Turbine Spacing and Wind Direction, Journal of
Physics: Conference Series (2024). doi: 10.1088/1742-6596/2767/3/032023

3. J. Gutknecht, M. Becker, E. Taschner, S. Stipa, D. Allaerts, A. Viré, and J.W. van

Wingerden, Active Cluster Wake Mixing, Journal of Physics: Conference Series (2024).
doi: 0.1088/1742-6596/2767/9/092052

207


https://doi.org/10.5194/wes-10-1055-2025
https://doi.org/10.5194/10.5194/wes-9-721-2024
https://doi.org/10.5194/wes-7-2163-2022
https://doi.org/10.5194/wes-7-2163-2022
https://doi.org/10.3390/en15228589
https://doi.org/10.5194/wes-7-1791-2022
https://doi.org/10.1109/CCTA60707.2024.10666535
https://doi.org/10.1088/1742-6596/2767/3/032028
https://doi.org/10.1088/1742-6596/2767/3/032023
https://doi.org/10.1088/1742-6596/2767/9/092052

208 List of Publications

2. ). Gutknecht, M. Becker, C. Muscari, T. Lutz, and J.W. van Wingerden, Scaling DMD
Modes for Modeling Dynamic Induction Control Wakes in Various Wind Speeds,
2023 IEEE Conference on Control Technology and Applications (CCTA) (2023). doi:
10.1109/CCTA54093.2023.10252400

1. M. Becker, D. Allaerts, and J. W. van Wingerden, FLORIDyn - A Dynamic and Flexible
Framework for Real-Time Wind Farm Control, Journal of Physics: Conference Series
(2022). doi: 10.1088/1742-6596/2265/3/032103

PATENTS

1. M. Becker, ). Gutknecht, E. Taschner, and J.W. van Wingerden, Wind turbine control
for cluster wake mixing (2025), WO 2025/051959 Al


https://doi.org/10.1109/CCTA54093.2023.10252400
https://doi.org/10.1088/1742-6596/2265/3/032103

]
TUDelft




	Acknowledgements
	Summary
	Samenvatting
	Contents

	Introduction
	One-and-a-half degrees Celsius
	Wind energy
	From one to many turbines
	Wind farm flow control
	The actuated wake
	Flow sensors
	Linking measurements to control actions
	Model-based wind farm flow control

	This thesis

	The revised FLORIDyn model: Implementation of heterogeneous flow and the Gaussian wake
	Introduction
	A new parametric dynamic wind farm model
	The Gaussian FLORIS model
	The Zone FLORIDyn model
	Changes to the FLORIDyn approach
	Including directional dependency and Observation Point propagation
	Calculation of CT and CP
	Wind field model

	Simulation results
	Three turbine case
	Nine turbine case
	Computational Performance

	Conclusions and recommendations
	Additional plots and aspects of the simulation results
	Unfiltered difference between yawed and baseline case
	Averaged velocity in the nine turbine case


	FLORIDyn - A dynamic and flexible framework for real-time wind farm control
	Introduction
	Development of a generic FLORIDyn framework
	Propagation of Observation Points and states
	Extrapolation from OPs and the creation of temporary wind farms
	Interfaces and the Immersion and Invariance estimator
	Implementation

	Case study
	Nine turbine case
	Performance

	Conclusion

	A dynamic open-source model to investigate wake dynamics in response to wind farm flow control strategies
	Introduction
	Model description
	Prediction: wake and turbine modeling
	Correction: linking measurements and states
	Control: state-based decision making

	Case study
	Simulation setup
	Predicted controller performance

	HKN cases that underwent LES
	Large-eddy simulation
	Power generated
	Power signal correlation
	Power error statistics
	Energy generated
	Computational cost

	Conclusion

	Ensemble based flow field estimation using the dynamic wind farm model FLORIDyn
	Introduction
	Materials and Methods
	Properties of the FLORIDyn approach
	Ensemble Kalman Filter formulation

	Results and discussion
	Ensemble Kalman Filter and localization parameters
	FLORIDyn as validation platform
	SOWFA as validation platform

	Conclusion
	State space description
	Simple propagation
	Weighted propagation


	Time-shifted cost function design
	Introduction
	Methodology
	General setup
	Time delay estimation
	Cost function assembly
	Choosing ah and ph

	Results
	Simulation
	Simulation results and discussion

	Conclusion

	Closed-loop model-predictive wind farm flow control under time-varying inflow using FLORIDyn
	Introduction
	Methodology
	Surrogate model
	State estimation
	Controller
	Reference controllers

	Simulation methods
	``True wind farm'' setup
	Tested controllers and measurements

	Simulation results
	Wake steering
	Turbine performance
	Farm level performance
	Computational performance

	Conclusions
	Parameter tuning

	Conclusions
	Conclusions
	Dynamic wake modeling
	State estimation
	Wind farm flow control
	Overall conclusions

	Recommendations
	Overall recommendations
	Dynamic wake modeling
	State and parameter estimation
	Control and optimization


	Epilogue
	Curriculum Vitae
	List of Publications

