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ABSTRACT 

Human movement relies on noisy processes in neurons, muscle cells and sensory cells. Therefore, 

movements are variable and can never be exactly reproduced. The nervous system seems to exploit this 

movement noise for motor learning and specifically motor adaptation. However, a positive relation 

between movement noise and motor adaptation has not been consistently found in motor adaptation 

literature. Possibly, noise is comprised of distinct processes which contribute to motor adaptation in 

different ways. In Kalman filter theory, motor adaptation rate is calculated optimally from state noise 

and output noise, with state noise and adaptation rate positively correlated and output noise and 

adaptation rate negatively correlated. Therefore, if people learn (close) optimally from error, we would 

expect a similar relation. To investigate the relation between state noise, output noise and adaptation 

rate, we performed a visuomotor reaching adaptation experiment with a baseline and a perturbation 

block in 69 subjects. State noise, output noise and adaptation rate in the baseline and perturbation 

block were extracting using Bayesian fitting of a trial-to-trial state-space model. We found that 

adaptation rate in the perturbation block correlates positively with baseline state noise (r=0.27; 

95%HDI=[0.05 0.50]) and negatively with baseline output noise (r=-0.41; 95%HDI=[-0.63 -0.16]). In 

addition, the steady-state Kalman gain calculated from baseline state and output noise correlated 

positively with adaptation rate in the perturbation block (r = 0.31; 95%HDI = [0.09 0.54]). Therefore, 

noise can be viewed both as a supporting factor for motor adaptation (state noise) and as a noise factor 

hampering optimal performance (output noise), and in order to understand the relationship of noise to 

learning, one must decompose noise into its constituent components. 
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INTRODUCTION 

Humans have a unique ability to generate an almost infinitely diverse set of movements. This ability 

hinges on neuronal networks to orchestrate movements, on muscles cells to execute movement plans 

and on sensory cells to feedback the result 1. Because all these processes are noisy (see 2 for a review), 

an important property of the motor system is that movements are variable and can never be exactly 

reproduced. Noise which affects movement in a dimension relevant for a particular task might therefore 

deteriorate performance 3. Rather than movement noise being a purely negative trait though, the 

nervous system exploits movement noise for motor learning. In reward-based learning, movement noise 

is increased in novel or unrewarding situations to facilitate exploration of the task, and is attenuated 

once task details have been learned to maximize performance 4–7. Similar mechanisms seem to be at 

play in error-based motor learning in humans and might explain differences in motor adaptation rate 

between subjects. During reaching movements in a novel force field, subjects with more movement 

noise during a baseline block were found to adapt more rapidly to a force field perturbation 8. However, 

a recent meta-analysis of adaptation experiments could not confirm the positive relation between 

movement noise and motor adaptation rate as a general rule 9. Perhaps only some components of 

movement noise increase adaptation rate whereas others might even decrease adaptation rate 9. 

Trial-to-trial models of visuomotor adaptation have decomposed movement noise into state 

noise and output noise 9–11 (see Figure 1A). State noise is believed to arise from variability in processing 

of sensory information, computations underlying adaptation and maintenance of the states in time, 

which are predominantly neuronal processes 10. Indeed, noise in preparatory areas of the brain can be 

linked to behavioral variability using electrophysiology in macaques 12–14 and fMRI in humans 15. This 

noise source can be manipulated by dedicated neural networks. In Bengalese finches birds, a basal 

ganglia-premotor loop learns a melody from reward 16 and injects noise 4 to promote exploration 5 

during training 6 and development 7. Probably, dopamine acts to increase this neuronal noise source 
17,18. Indeed, explorative behavior and motor learning rate have been linked to a single nucleotide 

polymorphisms in BDNF 19,20, which affects synaptic plasticity 21,22, and to single nucleotide 

polymorphisms in dopamine receptors and enzymes 23,24. Output noise is thought to originate from the 

sensorimotor pathway and encompasses sensory and muscle noise 10. This noise source increases with 

muscle force because vigorous contraction recruits larger motor units which tend to fire at a lower 

frequency and therefore produce more unfused twitches 25,26. Differences in output noise between 

individuals might be explained by the strength of the muscle 27 and the activation pattern 28, which is 

influenced by genetics and training, and the quality of the sensors, which could be decreased in for 

example polyneuropathy. How do these noise sources relate to movement adaptation rate? 

 If humans learn (close to) optimally from movement error, the relation between adaptation rate 

and the components of noise is governed by a steady-state Kalman filter 29. Kalman filter design makes 

that adaptation rate should increase with state noise and decrease with output noise 30. Practically, this 

model predicts that people with more state noise will adapt faster (see Figure 1B and Figure 1D) 

whereas people with more output noise will adapt slower (Figure 1C and Figure 1D). However, even 

though Kalman filters have been shown to capture properties of the motor system 29,31, no attempts 

have been made to relate the distinct components of movement noise to adaptation rate. We predict 

that state noise would be associated with more rapid motor adaptation rate whereas output noise 

would be associated with slower visuomotor adaptation. To test the association between state noise, 
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output noise and adaptation rate, we performed a visuomotor adaptation experiment in 69 healthy 

subjects. We fitted the state-space model of trial-to-trial behavior (equations (1)-(4)) using Bayesian 

statistics to extract state noise, output noise and adaptation rate for each subject, and confirmed the 

hypothesis. 

 

MATERIALS AND METHODS 

Subjects 

We included right-handed subjects aged 18 – 35 years between October 2016 and December 2016, 

without any medical conditions that might interfere with motor performance. Prior to the experiment, 

right-handedness was confirmed in all subjects using the Edinburgh handedness inventory. Any score 

higher than 0 was accepted. Subjects were recruited from the Erasmus MC University Medical Centre 

and received a small financial compensation. The study was performed in accordance with the 

Declaration of Helsinki and approved by the medical ethics committee of the Erasmus MC University 

Medical Centre. 

 

Visuomotor adaptation 

Experimental procedure  

Subjects performed a visuomotor adaptation task 32,33 using a custom-built robotic device (previously 

described in 34,35). They were seated in front of a horizontal projection screen while holding a robotic 

handle in their dominant right hand. The projection screen displayed the location of the robotic handle 

(“the cursor”), start location of the movement (“the origin”), and target location of the movement (“the 

target”) (see Figure 2A). Position of the origin on the screen was fixed throughout the experiment, 

approximately 40 cm in front of the subject at elbow height. To remove direct visual feedback of hand 

position, subjects wore an apron that was attached to the projection screen around their neck. 

Subjects were instructed to make straight shooting movements from the origin towards the 

target and to decelerate only when they passed the target. A trial ended when the distance between the 

origin and cursor was at least 10 cm or when trial duration exceeded 2 seconds. At this point, 

movements were damped with a force cushion (damper constant 3.5 Ns/m, spring constant 35 N/m) 

and the cursor was displayed at its last position until the start of the next trial to provide position error 

feedback. Furthermore, velocity feedback was given to keep movement velocity in a tight range. The 

target dot turned blue if movement time on a particular trial was too long (>600 ms), red if movement 

time was too short (<200 ms) and remained white if movement time was in the correct time range (200-

600 ms). During presentation of position and velocity feedback, the robot pushed the handle back to the 

starting position. Forces were turned off when the handle was within 0.5 cm from the origin. 

Concurrently, the cursor was projected at the position of the handle again and subjects had to keep the 

cursor within 1 cm from the origin for 1 second to start the next trial. 

The entire experiment lasted 900 trials with all three target directions (angle of -45°, 0° or 45°) 

occurring 300 times in random order. The experiment included vision unperturbed, vision perturbed and 

no vision trials (see Figure 2B). The three different trial types were used to build a baseline and a 

perturbation block (see Figure 2C). The baseline block contained a high number of no vision trials and 

was specifically designed to quantify movement variability. The perturbation block incorporated 

incremental small-step perturbation and was designed to extract motor adaptation rate. 
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Data Collection 

The experiment was controlled by a C++ program developed in-house. Position and velocity of the robot 

handle were recorded continuously at a rate of 500 Hz. Velocity data was smoothened with an 

exponential moving average filter (smoothing factor=0.18s). Trials were analyzed from movement start 

(defined as the time point when movement velocity exceeds 0.03 m/s) to movement end (defined as the 

time point when the distance from the origin is equal to or larger than 9.5 cm). Aiming error was defined 

as the signed (+ or -) angle between the vector connecting origin and target and the vector connecting 

movement start and movement end including the visual perturbation. Clockwise errors were defined as 

positive, counter-clockwise errors as negative. Peak velocity was found by taking the maximum velocity 

in the trial interval. We calculated peak velocity to investigate its relation with state noise and output 

noise. Trials with (1) a maximal displacement below 9.5 cm, (2) an aiming error larger than 30° or (3) a 

duration longer than 2 seconds were removed from further analysis (2% of data). 

 

State-space model estimation 

We used a trial-to-trial learning model to capture state noise, output noise and adaptation rate 10: 

 

 𝑥[𝑛 + 1] = 𝐴𝑥[𝑛] − 𝐵𝑒[𝑛] + 𝜂 (1) 

 𝑦[𝑛] = 𝑥[𝑛] + 𝜖 (2) 

 𝑒[𝑛] = 𝑦[𝑛] + 𝑝[𝑛] (3) 

 𝜂~𝑁(0, 𝜎𝜂
2), 𝜖~𝑁(0, 𝜎 𝜖

2) (4) 

 

In this model, 𝑥[𝑛] is the internal aiming state, i.e. the motor command, and 𝑦[𝑛] the aiming output, i.e. 

the actual movement. Error e[𝑛] on a particular trial is the sum of 𝑦[𝑛] and the perturbation 𝑝[𝑛]. The 

learning terms are 𝐴, which represents retention of the state over trials, and 𝐵, the fractional change 

from error 𝑒[𝑛]. Aiming state and output are affected by noise processes 𝜂 (state noise), modeled as a 

zero-mean Gaussian with variance 𝜎𝜂
2, and 𝜖 (output noise), modeled as a zero-mean Gaussian with 

variance 𝜎 𝜖
2. State noise is stored directly in the movement states and therefore leads to correlated 

fluctuations in movement behavior. In contrast, output noise 𝜖 is only stored indirectly in movement 

states and results in much faster, uncorrelated behavioral noise than state noise 𝜂. 

We fitted the state-space model described in equations (1)-(4) to the data of individual subjects 

using Markov-chain Monte-Carlo sampling 36 implemented in OpenBugs (ver 3.2.3, OpenBugs 

Foundation available from: http://www.openbugs.net/w/Downloads) with three 50,000 samples chains 

and 20,000 burn-in samples. A single estimate per subject 𝑠 was made for 𝐴[𝑠] and 𝐵[𝑠] using all trials. 

Separate estimates were made per subject in the baseline and perturbation block for 𝐵𝐵𝑙𝑜𝑐𝑘[𝑠], 

𝜎𝜂,𝑏𝑙𝑜𝑐𝑘
2 [𝑠] and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘

2 [𝑠] (similar to 8). We used a logistic normal distribution as a prior for 𝐴[𝑠] and 

𝐵𝐵𝑙𝑜𝑐𝑘[𝑠], a normal distribution as a prior for 𝐵[𝑠] and an inverse gamma distribution as a prior for 

𝜎𝜂,𝑏𝑙𝑜𝑐𝑘
2 [𝑠] and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘

2 [𝑠]: 

 

 
𝐴[𝑠] ~ 

1

1 + exp (𝑁(𝜇𝐴, 𝜎𝐴,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2 ))

, 𝐵[𝑠] ~ 𝑁(𝜇𝐵, 𝜎𝐵,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2 )  

(5) 
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𝐵𝐵𝑙𝑜𝑐𝑘[𝑠] ~ 

1

1 + exp (𝑁(𝐵[𝑠], 𝜎𝐵,𝑏𝑙𝑜𝑐𝑘𝑠
2 ))

 
(6) 

 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘
2 [𝑠] ~ 1/𝑔𝑎𝑚𝑚𝑎(10−3, 10−3), 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘

2 [𝑠] ~ 1/𝑔𝑎𝑚𝑚𝑎(10−3, 10−3) (7) 

 

Priors for 𝜇𝐴 and 𝜇𝐵 were selected from a normal distribution and priors for 𝜎𝐴,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2 , 𝜎𝐵,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

2  and 

𝜎𝐵,𝑏𝑙𝑜𝑐𝑘𝑠
2  from a gamma distribution: 

 

 𝜇𝐴 ~ 𝑁(𝑙𝑜𝑔𝑖𝑡(0.99), 10−3), 𝜇𝐵 ~ 𝑁(𝑙𝑜𝑔𝑖𝑡(0.04), 10−3) (8) 

 𝜎𝐴,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2  ~ 𝜎𝐵,𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

2  ~ 𝜎𝐵,𝑏𝑙𝑜𝑐𝑘𝑠
2  ~ 1/𝑔𝑎𝑚𝑚𝑎(10−3, 10−3) (9) 

 

We used the mode of the samples per parameter and subject for further calculations. Similarly 

to Cheng and Sabes 10 we investigated the validity of the model estimates by correlating the estimates 

with the variance statistics of the data. 

First, steady-state noise and lag-1 autocorrelation are closely linked to state noise 𝜎𝜂 and output 

noise 𝜎𝜖. Since learning is small in the baseline set, for this data we can neglect the effect of learning 

term 𝐵, in which case noise and lag-1 autocorrelation of the aiming direction can be expressed as: 

 

 

𝜎𝑦 = √(𝜎𝜖
2 + ∑ 𝐴2𝑘𝜎𝜂

2

∞

𝑘=0

) 

(10) 

   

 
𝑅(1) =

∑ (𝐴2𝑘+1𝜎𝜂
2)∞

𝑘=0

𝜎𝜖
2 + ∑ 𝐴2𝑘𝜎𝜂

2∞
𝑘=0

 
(11) 

 

Therefore, aiming noise increases with both state noise 𝜎𝜂 (see figure 2D) and output noise 𝜎𝜖 (see 

figure 2F) whereas aiming lag-1 autocorrelation increases with state noise 𝜎𝜂 (see figure 2E) but 

decreases with output noise 𝜎𝜖 (see figure 2G). Figure 2H visualizes the effect of state and output noise 

on aiming direction, and we expect similar relations in the baseline block of our experiment. 

 Second, the covariance 𝜎𝑝𝑦 between the perturbation and aiming direction depends solely on 

the learning parameters 𝐴 and 𝐵 and is therefore useful to assess the validity of adaptation rate 𝐵 in the 

perturbation block. The covariance 𝜎𝑝𝑦 becomes increasingly negative for higher adaptation rates (see 

Figure 2I). A visualization of slow and fast learners is given in Figure 2J. We expect a similar relation in 

the perturbation block of our experiment. 

We investigated the relation between adaptation rate, state noise and output noise using the 

parameters 𝐵𝐵𝑙𝑜𝑐𝑘[𝑠], 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘[𝑠] and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘[𝑠]. In addition, we calculated the steady-state Kalman 

gain for every subject 𝐾𝐵𝑙𝑜𝑐𝑘[𝑠] in the baseline and perturbation blocks from 𝐴[𝑠], 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘[𝑠] and 

𝜎𝜖,𝑏𝑙𝑜𝑐𝑘[𝑠] by first solving the Riccati equation for the steady-state covariance 𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠]: 
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 𝐴[𝑠]𝑇𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠]𝐴[𝑠] − 𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠]

− 𝐴[𝑠]𝑇𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠](𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠] + 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘[𝑠]2)
−1

𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠]𝐴[𝑠]

+ 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘[𝑠]2 = 0 

(12) 

 𝐾𝐵𝑙𝑜𝑐𝑘[𝑠] = 𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠]/(𝑃∞,𝑏𝑙𝑜𝑐𝑘[𝑠] + 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘[𝑠]2) (13) 

 

As control analyses for the fitting procedure, we generated two data sets for our experimental 

protocol using equations (1)-(4) and the estimated model parameters. In the first dataset, the relation 

between 𝐵𝐵𝑙𝑜𝑐𝑘[𝑠], 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘[𝑠] and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘[𝑠] was left unchanged (original dataset), whereas for the 

second dataset the noise parameters 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘[𝑠] and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘[𝑠] were separately permuted in such a way 

that any regression coefficient between the noise parameters and the adaptation rate would be smaller 

than 0.05 (permuted dataset). For both datasets, we re-estimated the model parameters according to 

the procedure described above and expected high test-retest correlations. Second, we re-estimated the 

relation between movement noise and adaptation rate. We expected this relation to remain intact for 

the original dataset and to disappear for the permuted dataset. 

 

Statistics 

We calculated normalized Bayesian linear regression coefficients to investigate the relation between 

adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 and noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 (Openbugs, three 50,000 samples chains and 

20,000 burn-in samples). The dependent variable was modeled as a t-distribution with the regression 

model as the mean. As priors, we used uniform distributions (range -1 to +1) for the coefficients, normal 

distributions for the intercepts (zero mean, precision 10-6), gamma distributions for the model error 

(shape and rate parameter 10-3) and a shifted exponential prior (rate parameter 1/29) on the degrees of 

freedom 36. This way, we evaluated (1) an intercept model, (2) an intercept with state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 

model, (3) an intercept with output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 model and (4) an intercept with state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 

and output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 model. The quality of a model was determined by calculating the difference in 

the deviance information criterion (DIC) between that model and the intercept model (Δ𝐷𝐼𝐶 =

𝐷𝐼𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐷𝐼𝐶𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑀𝑜𝑑𝑒𝑙). The DIC assigns a score to a model by penalizing the complexity and 

rewarding the fit. Better models have lower DICs and better models therefore have a negative Δ𝐷𝐼𝐶. In 

addition, we tested correlations between parameters with Bayesian Pearson correlation coefficients, 

using similar priors as for the linear regression.  

Statistical results are reported as the mode of the effect size with 95% highest density intervals 

(HDIs). Model estimates are plotted as the mode with 68% HDIs, similar to the standard deviation 

interval. 

 

RESULTS 

Modelling learning and noise in reaching adaptation 

The study sample consisted of 14 men and 55 women (age M=21 years, range 18 - 36 years). Mean 

handedness score was 79 (SD=19, range 45 – 100). Standard deviation of aiming direction (light brown) 

calculated across the 69 subjects illustrates the differences in movement behavior between people 

(Figure 3A). The state-space model (dotted green line) which captures retention of adaptation 𝐴, 
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learning from error 𝐵𝐵𝑙𝑜𝑐𝑘, state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 and output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 shows good agreement with 

the average aiming direction (brown line). 

Figures 3B and 3C show example subjects with low or high baseline state noise 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (see 

Figure 3B) and low or high output noise 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (see Figure 3C). Agreeing with our group level 

predictions (see Figures 2 D-G), we found a positive correlation between state noise 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 

aiming noise 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (r = 0.30; 95%HDI = [0.08 0.54]), between state noise 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and aiming lag-

1 autocorrelation 𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1) (r = 0.68; 95%HDI = [0.50 0.85]) and between 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and aiming noise 

𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (r = 1.00; 95%HDI = [0.96 1.00]) and a negligible correlation between 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and aiming 

lag-1 autocorrelation 𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1) (r = -0.06; 95%HDI = [-0.30 0.17]).  

Example subjects with a low and high adaptation rate are shown in Figure 3H. Again, according 

to the model prediction (see Figure 2I), we found a negative correlation between adaptation rate 

𝐵𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 and covariance 𝜎𝑝𝑦 on a group level (r = -0.83; 95%HDI = [-0.97 -0.69]). 

 

Relation between state noise, output noise and adaptation rate 

By comparing regression models with the DIC, we found that adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 is best modeled 

with state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 and output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 (combined model) rather than with one of the noise 

processes (state model and output model) or only the intercept (intercept model) (see Table 1). This 

conclusion was valid for the within-baseline block regression, the between-baseline block and 

perturbation block regression and the within-perturbation block regression. In accordance with Kalman 

filter theory (see Figure 1B-1C), state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 correlated positively with adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 and 

output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 correlated negatively with adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 (see Table 1, and Figure 4A-B for 

the between-blocks results). This conclusion was also supported by positive correlations between 

steady-state Kalman gain 𝐾𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, calculated from state noise 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and output noise 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,, 

and adaptation rate 𝐵𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (r = 0.40; 95%HDI = [0.18 0.63] 188.0), between 𝐾𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 

𝐵𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 (r = 0.31; 95%HDI = [0.09 0.54]; see Figure 4C) and 𝐾𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛, calculated from state 

noise 𝜎𝜂,𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 and output noise 𝜎𝜖,𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛, and adaptation rate 𝐵𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (r = 0.39; 95%HDI = 

[0.17 0.62]). 

 As control measurements, we investigated for a generated ordered and permuted dataset (1) 

test-retest correlations of the model parameters and (2) the relations between 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘, 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 and 

𝐵𝐵𝑙𝑜𝑐𝑘. High test-retest correlations were found for both the ordered and permuted dataset (see Table 

2). Second, adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 was better modeled for the ordered dataset but not the permuted 

dataset with state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 and output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 than with only an intercept (see Table 1). In 

addition, the correlations between state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 and adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 and output noise 

𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 and adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 remained intact for the ordered dataset but disappeared for the 

permuted dataset. These results indicate that the relation between state noise 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘, output noise 

𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 and adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 originate from the data rather than the fitting procedure. 

Finally, we investigated how state and output noise correlated with baseline peak velocity. A 

negligible correlation was found between baseline peak velocity and baseline state noise r = 0.03; 

95%HDI=[-0.20 0.25]; whereas a small positive correlation was found between baseline peak velocity 

and baseline output noise r = 0.23; 95%HDI=[0.00 0.47]. 
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DISCUSSION 

We investigated the relation between components of movement noise and visuomotor adaptation rate. 

If humans learn (close to) optimally from movement error, it can be predicted from Kalman theory that 

state noise correlates positively with adaptation rate and output noise negatively 29. To test this 

hypothesis, we performed a visuomotor reaching adaptation experiment in 69 subjects and extracted 

state noise, output noise and adaptation rate using a state-space model of trial-to-trial behavior. Indeed, 

we found that adaptation rate during the perturbation block correlates positively with baseline state 

noise (r=0.27; 95%HDI=[0.05 0.50]) and negatively with baseline output noise (r=-0.41; 

95%HDI=[-0.63 -0.16]). In addition, the steady-state Kalman gain calculated from baseline state and 

output noise correlated positively with adaptation rate in the perturbation block (r = 0.31; 95%HDI = 

[0.09 0.54]). Therefore, noise can be viewed both as a supporting factor for motor adaptation (state 

noise) and as a negative factor hampering optimal performance (output noise). In order to understand 

the relationship of noise to learning, one must decompose noise into its constituent components. 

  

State noise and output noise in error-based learning 

Wu et al. showed that subjects with more noise in force production during unperturbed reaching 

movement in a baseline block had a higher adaptation rate when counteracting a novel velocity-

dependent force field in a perturbation block 8. Using similar state-space models to the one used in this 

paper 37,38 it would be possible to dissociate force noise in state and output noise as well. In light of our 

findings, we expect state noise to be the dominant process in their baseline block. In contrast, He et al. 

could not confirm any relation between movement noise and adaptation rate in a meta-analysis of 

adaptation experiments 9. Possibly, this null result stems from lumping state and output noise, which we 

found to have opposing effects, together as a single noise source. However, it is also conceivable that 

the design of the experiments in the meta-analysis was not optimal for characterizing the subtle relation 

between noise and adaptation rate. For example, one of the five studies in the meta-analysis 39 used a 

large sudden 30° perturbation to characterize adaptation rate, which might activate explicit learning 

mechanisms 40,41. We believe future studies into noise and learning would benefit from Bayesian state-

space modeling of data and a system identification approach to the design of the experiment. 

The directions of correlations between state noise and adaptation rate and output noise and 

adaptation rate agree with predictions made using Kalman filter theory. This means that humans apply a 

(near-)optimal strategy for visuomotor adaptation. Indeed, previous experiments have shown that 

steady-state Kalman filters make appropriate predictions for (1) hand localization in the presence of 

supporting and resistive forces 29 and (2) visuomotor adaptation in the presence of varying error-signal 

reliability 31. However, this prediction seems valid only for steady-state behavior: humans probably do 

not update their adaptation rate on every trial as is true for a Kalman filter 31. Our study adds that the 

motor system also takes a Kalman-like approach to the calculation of the adaptation rate based on 

intrinsic levels of state noise and output noise. 

 

State and output noise and optimal control 

Wu et al. argue that their findings challenge the optimal control theory of movement 42,43 because the 

optimal control framework does not account for the motor system shaping and using motor noise to 

promote motor learning 8. However, by dissociating motor noise into state noise and output noise these 
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two viewpoints might be reconciled. We hypothesize that the motor system uses strategies to minimize 

output noise arising from the sensorimotor system, agreeing with optimal control theory of movement, 

and regulates state noise in the central nervous system to promote explorative behavior, agreeing with 

the view from Wu et al. The motor system might control explorative behavior with state noise rather 

than output noise because state noise (1) is not signal-dependent 25, (2) can be fully regulated in the 

brain 4–7,12,16 , (3) can be easily stored in efference copies to create a movement history 44,45 and (4) 

correlates positively with learning rate in an optimal framework 30. Accepting this perspective, optimal 

control models should incorporate an extra optimization term which regulates state noise to learn new 

motor strategies when performance is lower than expected. 

 

Implications for rehabilitation 

Motor adaptation is an important component of motor rehabilitation after brain damage. Skill 

acquisition (e.g mastering wheel chair skills or walking stairs with a hemiparesis) is a major part of 

rehabilitation programs. It involves acquiring new patterns of muscle activation over extended period 

ranging from days to months 46. According to the optimal control model of movement, this process 

involves several steps relying on different areas of the brain: (1) acquiring an internal model that 

predicts sensory feedback for a given motor command (cerebellum), (2) combining these predictions 

with actual sensory information to form a belief about the states of the body (parietal cortex) and (3) 

setting feedback gains to optimally guide movement during execution (motor cortex) 1. Brain injury 

changes the relation between a motor command and sensory feedback and therefore necessitates 

reacquiring (1) proper internal models, which is similar to movement adaptation and (2) optimal 

feedback gains though extensive practice. Helping patients relearn these internal models in an early 

stage after brain damage by providing error-based feedback of movement performance might therefore 

support skill learning and prevent adopting suboptimal movement in an early stage (compensation). Our 

results highlight the importance of analyzing the sources of movement variability to optimize such 

therapies as patients with high state variability are expected to learn fast and require few practice 

sessions whereas patients with high output variability are expected to learn slowly and require many 

practice sessions. In addition, our results suggest that interventions which can promote state variability, 

either behaviorally (reward-based feedback 47) or pharmaceutically (transcranial random noise 

stimulation 48, dopamine agonists 18) might help relearn movements after injury. 
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Figure 1 State and output noise have opposing effects on visuomotor adaptation. 

A. State-space model of visuomotor adaptation. Aiming directions are planned on trial 𝑥[2] as a 

linear combination of the state on the previous trial 𝑥[1] multiplied by a retentive factor 𝐴 

minus the error 𝑒[1] on the previous trial multiplied with learning factor 𝐵. In addition, the 

movement state is distorted by the random process 𝜂. The actual aiming direction 𝑦[2]is the 

planned movement distorted by the random process 𝜖. The error 𝑒[1] is the sum of the aiming 

direction relative to the target 𝑦[1] and external perturbation 𝑝[1]. 

B. State noise and optimal adaptation rate 𝐵𝑂𝑝𝑡𝑖𝑚𝑎𝑙 (defined as the Kalman gain). The optimal 

adaptation rate increases with state noise 𝜎𝜂. In this figure, 𝜎𝜖 was kept constant at 2°. 

C. Output noise and optimal adaptation rate 𝐵𝑂𝑝𝑡𝑖𝑚𝑎𝑙 (defined as the Kalman gain). The optimal 

adaptation rate decreases with output noise 𝜎𝜖. In this figure, 𝜎𝜂 was kept constant at 0.2°. 

D. Simulated optimal learners. At trial 110, a perturbation (black line) is introduced that requires 

the optimal learner to adapt their movement. The gray learner has low state noise 𝜎𝜂 = 0.1° 

and output noise 𝜎𝜖 = 1°. The red learner has a higher state noise 𝜎𝜂 = 0.3° than the gray 

learner 𝜎𝜂 = 0.1°. This causes the red learner to adapt faster. The green learner has a higher 

output noise than the gray learner 𝜎𝜖 = 3°. This causes the green learner to adapt more slowly. 

For all learners, the thick line shows the average, thin line a single realization. 
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Figure 2 Measurements of state and output noise and adaptation rate in a visuomotor adaptation 

experiment. 

A. Set-up. The projection screen displayed the location of the robotic handle (“the cursor”; yellow 

circle 5 mm radius), start location of the movement (“the origin”, white circle 5 mm radius), and 

target location of the movement (“the target”, white circle 5 mm radius) on a black background 

The position of the origin on the screen was fixed throughout the experiment, while the target 

was placed 10 cm from the origin at an angle of -45°, 0° or 45°. 

B. Trial types. The experiment included vision unperturbed and perturbed trials and no vision trials. 

In vision unperturbed trials, the cursor was shown at the position of the handle during the 

movement. The cursor was also visible in vision perturbed trials but at a predefined angle from 

the vector connecting the origin and the handle. In no vision trials, the cursor was turned off 

when movement onset was detected and therefore only visible at the start of movement to help 

subjects keep the cursor at the origin. 

C. Experimental design. The baseline block consisted of 225 vision unperturbed trials and 225 no 

vision trials. Order of the vision unperturbed trials and no vision trials was randomized except 

for trials 181-210 (no vision trials) and trials 241-270 (vision unperturbed trials). We 

incorporated these non-random parts in order to allow a direct comparison of trials in which 

state noise played a larger and smaller role. The perturbation block had 50 no vision trials and 

400 vision trials, with every block of nine trials containing one no vision trial. Every eight to 

twelve trials, the cursor was perturbed with an incremental 1.5° step. These steps started in the 

positive direction until reaching 9° and then switched sign to continue in the opposite direction 

until reaching -9°. This way, a perturbation signal was constructed with three “saw waves” 

lasting 150 trials each. The experiment was briefly paused every 150 trials. 

D. Simulation of noise and 𝜎𝜂. Aiming noise 𝜎𝑦 increases with 𝜎𝜂 (calculated for 𝐴 = 0.98, 𝐵 = 0, 

𝜎𝜖 = 2°). 

E. Simulation of autocorrelation and 𝜎𝜂. Lag-1 autocorrelation 𝑅(1) increases with 𝜎𝜂 (calculated 

for 𝐴 = 0.98, 𝐵 = 0, 𝜎𝜖 = 2°). 

F. Simulation of noise and 𝜎𝜖. Aiming noise 𝜎𝑦 increases with 𝜎𝜖 (calculated for 𝐴 = 0.98, 𝐵 = 0, 

𝜎𝜂 = 0.2°). 

G. Simulation of autocorrelation and 𝜎𝜂. Lag-1 autocorrelation 𝑅(1) decreases with 𝜎𝜖 (calculated 

for 𝐴 = 0.98, 𝐵 = 0, 𝜎𝜂 = 0.2°). 

H. Simulated learners without vision. The green and red traces show a single realization of two 

learners with either high state noise (red learner 𝜎𝜂 = 0.4° and 𝜎𝜖 = 0°) or high output noise 

(green learner 𝜎𝜂 = 0° and 𝜎𝜖 = 2°). Both sources increase the aiming noise, but state noise 

leads to correlated noise whereas output noise leads to uncorrelated noise. This property can be 

seen from the relation between sequential trials. For the red learner sequential trials are often 

in the same (positive or negative) direction. For the green learner sequential trials are in random 

directions. This is captured by the lag-1 autocorrelation. 

I. Simulation of covariance and 𝐵. The covariance 𝜎𝑝𝑦 between the perturbation 𝑝 and aiming 

direction 𝑦 gets stronger for increasing 𝐵 (simulated with 𝐴 = 0.98). 

J. Simulated learners with perturbation. The gray and blue lines show a simulated slow (𝐴 = 0.98, 
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𝐵 = 0.05) and fast learner (𝐴 = 0.98, 𝐵 = 0.2). The fast learner tracks the perturbation signal 

more closely than the slow learner. This property is captured by the covariance between the 

perturbation and the aiming direction. 
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Figure 3 State-space model of visuomotor adaptation. 

A. Visuomotor adaptation. Average aiming traces of the 69 subjects with standard deviations are 

shown in brown tone colors. The black indicates the average perturbation signal, the green line 

the model average. 

B. State noise examples. The gray line shows a subject with low state noise (𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.11° 

𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 4.0°), the red line a subject with high state noise (𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.69° 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =

5.0°). 

C. Output noise examples. The gray line shows a subject with low output noise (𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.33° 

𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 2.7°), the green line a subject with high output noise (𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0.27° 𝜎𝜖 =

5.1°). 

D-G Relation between model estimates and baseline parameters. Models estimates and 68% 

confidence intervals are shown for every subject as a dot with error bars. The black line is a 

linear regression between the model estimates and baseline parameters. Panel D shows the 

relation between model estimate 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and baseline parameter 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,, panel E the 

relation between model parameter 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and baseline parameter lag-1 autocorrelation 

𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1), panel F the relation between model estimate 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and baseline parameter 

noise 𝜎𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and panel G the relation between model estimate 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and the baseline 

parameter lag-1 autocorrelation 𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(1). 

H. Adaptation rate examples. The thick lines show a slow (gray, 𝐵 = 0.055) and fast subject (blue, 

𝐵 = 0.14) smoothened with a 6th order Butterworth filter. The black shows the perturbation 

signal for the fast subject. 

I. Input-output covariance. Relation between the model parameter 𝐵𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 and the input 

output covariance 𝜎𝑝𝑦 in the perturbation block. Models estimates and 68% confidence 

intervals are shown for every subject as a dot with error bars. The black line is a linear 

regression between the model estimates and baseline parameters. 
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Figure 4 Relation between noise and visuomotor adaptation. 

A-C. Relation between model estimates. Models estimates and 68% confidence intervals are 

shown for every subject as a dot with error bars. The black line is a linear regression between the 

model estimates. Panel A shows the relation between the model estimates 𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 

𝐵𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛, panel B the relation between the model estimates 𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝐵𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 

and panel C the relation between 𝐾𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝐵𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛. 
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TABLES 

   Within-baseline block 

regression 

Between blocks 

regression 

Within-perturbation 

block regression 

 Model Var. Coefficient ΔDIC Coefficient ΔDIC Coefficient ΔDIC 

Original 

dataset 

State 𝜎𝜂  0.32 

[0.06 0.53] 

-4.4 0.20 

-0.04 0.44 

-1.0 0.24 

[0.00   0.48] 

-1.8 

Output 𝜎𝜖 -0.30 

[-0.54 -0.06] 

-3.9 -0.35 

[-0.59 -0.11] 

-6.2 -0.53 

[-0.74 -0.31] 

-18.7 

Combined 𝜎𝜂 0.38  

[0.15 0.61] 

-12.4 0.27 

[0.05 0.50] 

-9.9 0.17 

[-0.05 0.38] 

-18.8 

 𝜎𝜖 -0.36  

[-0.60 -0.14]  

-0.41 

[-0.63 -0.16]  

-0.49 

[-0.70 -0.27] 

 

Generated 

dataset  

ordered 

Combined 𝜎𝜂  0.25 

[0.00 0.47] 

-8.3 0.23  

[0.01 0.48] 

-8.1 0.26 

[0.04 0.47] 

-14.9 

 

𝜎𝜖 -0.37 

[-0.59 -0.13]  

-0.37 

[-0.61 -0.15]  

-0.39 

[-0.61 -0.17]  

         Generated 

dataset 

permuted 

Combined 𝜎𝜂  -0.09 

[-0.33 0.16] 

3.8 -0.05 

[-0.31 0.19] 

4.0 0.06 

[-0.18 0.30] 

2.5 

 𝜎𝜖 0.02 

[-0.23 0.25]  

-0.01 

[-0.26 0.23]  

0.14 

[-0.09 0.39] 

 

         Table 1. Regressions analysis for the adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 with independent parameters state noise 

𝜎𝜂,𝑏𝑙𝑜𝑐𝑘, and output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘. Adaptation rate 𝐵𝐵𝑙𝑜𝑐𝑘 was determined in the baseline block (first 

data column) or the perturbation block (second and third data column). The noise parameters 𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 

and 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 were determined in the baseline block (first and second data column) or the perturbation 

block (third data column). Linear regressions were calculated on the original dataset and two datasets 

generated from the estimated model parameters. For the permuted generated dataset both the noise 

parameters were permuted over the different subjects. We compared (1) an intercept with state noise 

𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 model, (2) an intercept with output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 model and (3) an intercept with state noise 

𝜎𝜂,𝑏𝑙𝑜𝑐𝑘 and output noise 𝜎𝜖,𝑏𝑙𝑜𝑐𝑘 model with an intercept model using the difference in the deviance 

information criterion. Model coefficients are reported as the mode of the posterior distribution with 

95% highest density intervals. ΔDIC is the difference in the deviance information criterion of a model 

compared to the intercept model. 
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Parameter Generated 

dataset ordered 

Generated 

dataset permuted 

𝐵𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 0.79 [0.65 0.93] 0.75 [0.61 0.91] 

𝐵𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 0.89 [0.79 0.99] 0.89 [0.78 0.99] 

𝜎𝜂,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 0.79 [0.64 0.94] 0.87 [0.77 0.99] 

𝜎𝜂,𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 0.70 [0.53 0.87] 0.73 [0.55 0.91] 

𝜎𝜖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 0.97 [0.93 1.00] 0.98 [0.93 1.00] 

𝜎𝜖,𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 0.98 [0.93 1.00] 0.98 [0.94 1.00] 

Table 2. Test-retest correlations for an ordered and permuted dataset generated from the model 

parameters. Correlation coefficients are reported as the mode of the posterior distribution with 95% 

highest density intervals. 

 


