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Abstract

Additive Manufacturing (AM) plays a crucial role in the revolution towards Industry 4.0, by enabling the direct
translation of digital 3D models into physical objects while reducing process steps and minimizing human
intervention. While conventional AM machines are generally limited to three-axis movement, multi-axis AM
equipment extends the manufacturing flexibility by enabling the fabrication of freeform layers, thus creating new
opportunities to improve part quality, though at the cost of increased complexity in process planning. Wire Arc
Additive Manufacturing (WAAM) is a multi-axis technique for producing large metal components, with potential
applications in maritime, aerospace and civil infrastructure. However, this potential is hindered by factors such
as deformation during fabrication, which compromises part precision and can lead to process failure. Recently,
a computational approach has been developed to reduce distortion by optimizing the fabrication sequence.
While promising, the optimized sequence is characterized by large variations in layer thickness, rendering
them non-manufacturable. This research proposes numerical methods to evaluate and restrict layer thickness
in fabrication sequence optimization, ensuring uniform thickness within each layer and a consistent average
thickness across the entire sequence. A 3D computational framework has been developed, integrating latest
advancements in sequence optimization. To address the intensive computation in 3D, this framework features
a parallel implementation using the PETSc library. This framework enables the numerical assessment of the
method’s performance and provides a foundation for future experimental validation.
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1 Introduction

THE rapid advancements in manufacturing technologies are paving the way for Industry 4.0, where
digitization and automation are key drivers. Additive Manufacturing (AM) fits seamlessly within this

revolution by enabling the direct translation of digital 3D models into physical objects, significantly reducing
process steps and minimizing human intervention [2], [3].

Technically, AM is defined as “the process of joining materials to make objects from 3D model data, usually
layer upon layer, as opposed to subtractive manufacturing methodologies like machining” [4]. By depositing
material only where necessary, AM reduces waste compared to traditional methods, while its layer-by-layer
approach offers unparalleled geometric freedom. These features make AM ideal for producing topology-
optimized parts, which often feature complex geometries unattainable through conventional manufacturing
techniques. Notable applications are found in the automotive, aerospace, and medical sectors, where lightweight
yet strong components are in high demand [5]. However, the reliance on planar layers in traditional AM
presents a limitation. The additional degrees of freedom in Multi-Axis Additive Manufacturing systems
make it possible to transcend planar fabrication, allowing for the production of free-form layers. Although
this added flexibility complicates process planning, it also provides opportunities to enhance part quality.
Multi-axis robotic systems are capable of depositing both polymers and metals, as seen in material extrusion
for polymers [6], and Wire Arc Additive Manufacturing (WAAM) for metals [7].

Process planning for Additive Manufacturing is a complex, multi-scale process [8]. At the part scale, it
involves defining the overall construction sequence and assembly order. At the track scale, the focus shifts
to tool-path planning, which determines the precise paths and movements of the fabrication tool. Finally, at
the bead scale, control adjustments are made to parameters such as temperature and build speed. Each scale
provides opportunities to optimize and improve manufacturing quality.

Several studies have focused on Multi-Axis process planning at the part scale. Chakraborty et al. [9] developed
a slicing method which by using non-planar layers in the final stage of manufacturing improves the surface
finish, overcoming the characteristic stair-stepping effect. Fang et al. [6] designed a slicing algorithm for 5-axis
machines, optimizing layer shapes and sequence to reinforce parts against specific load cases, leveraging the
anisotropic properties of AM. Similarly, Zhang et al. [10] optimized slicing for 6-axis machines, using curved
layers to achieve, concurrently, support-free builds, smoother surface finishes, and stronger parts.

A particular challenge in Metal AM is process-induced deformation, occurring both during fabrication and
upon part separation from the substrate [7], [11]. These deformations compromise part precision—a difficult
issue to correct—and can even result in complete process failure. Research on deformations in Metal AM
has primarily focused on Powder Bed Fusion (PBF) technologies. For example, Xu et al. [5] proposed a 2D
topology optimization method incorporating self-supports and residual stress constraints, demonstrating that
reduced residual stresses lead to lower deformations and emphasizing the importance of optimal build direction.
Similarly, Misiun et al. [12] examined PBF simulation methods for designing topology-optimized structural
parts, addressing in-process deformations that risk recoater collisions and global deformations following part
separation from the base plate. While effective, these approaches are primarily design-phase methods, relying
on topology optimization, which limits their applicability when geometry is predetermined, and the focus
shifts to manufacturing.

Process-induced deformations in Direct Energy Deposition (DED) technologies, such as Wire Arc Additive
Manufacturing (WAAM), have been relatively underexplored. Multi-axis AM systems, including WAAM, offer
additional degrees of freedom that can be leveraged to adjust layer shapes and deposition sequences at the
part scale—analogous to optimizing scan strategies in PBF at the track scale. These adjustments enable more
uniform thermal distributions, reducing stress accumulation and minimizing deformation. Wang et al. [1] were
among the first to explore this approach, developing a method that optimizes layer shapes and sequences to
minimize process-induced deformation. Importantly, this method is applied in the post-design phase without
altering the part’s geometry or requiring additional material. Moreover, it is compatible with other optimization
techniques, such as topology or tool-path optimization. An example of this compatibility is seen in Wang et al.’s
[13] concurrent approach, which combines structural layout optimization with fabrication sequence optimization.
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While promising, the method proposed by Wang et al. [1], [13] often produces fabrication sequences that
do not meet the manufacturability limits of Additive Manufacturing equipment. This research proposes an
extension aimed at enhancing the manufacturability of optimized sequences by focusing on layer thickness
control, ensuring each layer maintains uniform thickness within itself, and that a consistent average thickness
is achieved across the entire sequence. In Direct Energy Deposition equipment, achieving precise deposition
control requires continuous adjustments to process parameters such as travel speed and power to maintain
consistent quality. Ensuring uniformity of layer thickness within each layer is therefore favorable for effective
quality control and to align with the equipment’s capabilities. Building on the 2D formulation proposed by
Lansu [14], we developed an improved formulation for 3D optimization, and assessed its performance through
numerical experiments. We also incorporated the latest regularization technique introduced by Wang et al.
[15]. Additionally, we created a parallel implementation using the PETSc library, providing a valuable tool for
future experimental validation.

This report is structured as follows, Section 1 begins with an introduction to the context and motivations behind
the study, outlining the core challenges in multi-axis additive manufacturing and highlighting the gaps in existing
approaches. Section 2 builds on this by reviewing the relevant background knowledge, offering a comprehensive
examination of process planning, advanced slicing techniques, and recent developments in fabrication sequence
optimization. This sets the stage for Section 3, where the methodology is presented in depth, covering the 3D
optimization framework, including the discretization of parts, the representation of the pseudo-time field, and
the process of layer extraction. In Section 4, we delve into the implementation details, focusing on the parallel
computation strategy using the PETSc library, along with the process simulation validation. Section 5 then
presents and discusses the numerical results, providing insights into optimization behavior across different part
geometries, exploring the impact of key parameters, and assessing computational performance. Finally, Section
6 draws together the key findings, addresses the current limitations, and outlines future research directions that
could build on the advancements made in this work.
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2 Background Knowledge and Related Work

This section provides the foundational knowledge and a review of related work necessary to contextualize this
research. First, in Subsection 2-A, the challenges and process planning complexities of Multi-Axis Additive
Manufacturing, with a particular focus on Wire Arc Additive Manufacturing (WAAM), are introduced. This
includes an analysis of process-induced deformations and existing strategies to mitigate these issues. Next,
Subsection 2-B reviews slicing methods for Multi-Axis Additive Manufacturing, highlighting notable techniques
that utilize free-form layers to enhance part quality and mechanical properties. In Subsection 2-C, the original
Fabrication Sequence Optimization method is introduced, along with recent advancements focused on enhancing
the manufacturability of the resulting sequences. Finally, Subsection 2-D provides an overview of a PETSc-
based parallel framework, which serves as the foundation for the implementation developed in this research to
address large-scale optimization challenges.

2-A Challenges and Process Planning in Multi-Axis Additive Manufacturing

As introduced earlier, Additive Manufacturing (AM) offers significant advantages over traditional methods,
particularly in producing complex geometries with minimal material waste. This capability is crucial for
efficiently creating topology-optimized parts, which are highly sought after in the automotive, aerospace,
and medical sectors, where lightweight yet durable components are essential [16], [3]. Multi-Axis Additive
Manufacturing equipment further extends this capability by transcending planar layer limitations, increasing
process flexibility and creating new opportunities to optimize part quality, though at the cost of more complex
process planning. This section describes the characteristics of Multi-Axis additive manufacturing equipment,
introduces Multi-Axis metal AM, and analyzes the quality challenges it presents. Additionally, relevant
strategies from the literature for predicting and managing these quality issues will be discussed.

Conventional AM machines are generally limited to three-axis movement, with the z-axis primarily serving to
transition between planar layers; hence, these systems are often designated as 2.5D. Multi-axis equipment, by
contrast, refers to systems that extend beyond 2.5D fabrication. By leveraging additional degrees of freedom,
one type of fabrication—known as multi-directional AM—still uses planar layers but allows the build direction
to change between layers. This method already offers several advantages over traditional 2.5D fabrication,
such as reducing the stair-stepping effect and enabling support-free fabrication. Fully utilizing multi-axis
capabilities enables the fabrication of complex geometries through freeform layers, which have been shown to
improve surface quality [9], enhance mechanical performance [6], and elevate overall part quality. Examples
of multi-axis AM systems are shown in Figure 1. While conventional planar slicing, and even adaptive slicing,
are relatively straightforward tasks, the Fabrication Sequence Planning for multi-axis additive manufacturing
is significantly more complex. For instance, achieving a specific curvature within a layer often requires its
thickness to be varied. However, the extent to which layer thickness can be varied within a layer depends on
the capabilities of the specific equipment being used. Moreover, both in multi-directional AM and free-form
fabrication, there is a risk of collision between the print head and the already fabricated part—an important
consideration to keep in mind during Fabrication Sequence planning.

Fig. 1: Examples of Multi-Axis Additive Manufacturing Systems. A) A six-degree-of-freedom setup using Fused
Deposition Modeling, demonstrating the fabrication of an object (in yellow) with free-form layers (Dai et al.
[17]). B) A Wire Arc Additive Manufacturing setup, consisting in a welding torch attached to a six-degree-
of-freedom manipulator. The manufactured part illustrates the characteristic poor surface finish of this method
(Image obtianed from the MX3D website: [18]).

As can be evinced, Additive Manufacturing processes, and Multi-Axis AM processes in particular, are complex,
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involving an intricate interplay of many parameters, which makes process planning a challenging task. In this
context, process planning is inherently multi-scale [8], requiring detailed control across various levels. At
the part-scale, exemplified by fabrication sequence planning, the primary focus is on the overall construction
sequence and assembly order of the component. Moving to the track-scale, the emphasis shifts to tool-path
planning, where the precise paths and movements of the fabrication tool are meticulously determined. At the
bead-scale, the process involves even finer control, focusing on the adjustment of specific parameters such as
temperature and build speed. Each scale, from part to bead, is crucial, and can be potentially optimized to
improve manufacturing quality.

As noted in the introduction, a metal additive manufacturing technology compatible with multi-axis systems
is Wire Arc Additive Manufacturing (WAAM) [7]. WAAM, a variant of Direct Energy Deposition (DED),
uses an electric arc as the heat source and wire as the feedstock material. The wire is melted and deposited
precisely where needed, building the part layer by layer. WAAM equipment typically consists of a welding
torch mounted on a multi-axis robotic arm, allowing for the printing of non-planar layers [16]. This method
is particularly effective for large-scale metal components due to its high deposition rate and relatively low
equipment costs, making it well-suited for rapid production. While WAAM parts exhibit good mechanical
properties, post-processing is often required to achieve a smooth surface finish. A significant challenge,
particularly prominent in metal additive manufacturing are process-induced deformations. Such deformations
can compromise part precision and, in severe cases, lead to complete process failure. To mitigate this problem,
and advance metal AM toward becoming a fully viable production technology [3], it is essential first to
understand the underlying mechanisms behind it. In the review article by Xie et al. [11] different researches
have been analyzed to understand the common causes of deformations and residual stresses across different
AM technologies, including Selective Laser Melting, Fused Deposition Modeling, Stereolithography, and
Digital Light Processing. The primary cause of this issue in additive manufacturing has been identified as
non-uniform material expansion/contraction. This is influenced by the material’s thermal and mechanical
properties, as well as by the specific deposition or scan strategy employed. High energy input in additive
manufacturing processes has been linked to increased residual stress and a higher occurrence of deformations.
This correlation helps explain why metal Additive Manufacturing in particular is more prone to deformation.
In their study on Direct Energy Deposition technology with a focus on Wire Arc AM, Jafari et al. [8] observed
that the high energy input in Wire Arc AM leads to the melting of substantial material amounts. As this
big portion of material solidifies and shrinks, it contributes to accumulation of stress and distortions. From
this stress state, the part would naturally try to reach an equilibrium by macroscopic distorting the deposited
material, or, if the structure cannot macroscopically distort, the stresses may lead to microscopic deformations
(such as yielding or cracking). Residual stresses might remain also after the completion of the manufacturing
process. These often result in component distortion, which becomes evident when the component is released
from the substrate, as displayed in Figure 2.

Fig. 2: Example of process-induced distortion in Wire Arc Additive Manufacturing. A) Distortion of the part
and substrate observed at the end of the process, after being unclamped (Xu et al. [19]). B) Visual comparison
between simulated and experimental distortion of a part, observed post-process after unclamping. A sequentially
coupled simulation was used to model the process (Manurung et al. [20]).

Different methods have been proposed in literature to reduce process-induced residual stresses and deformations.
Xu et al. [5] introduced an innovative approach in their study by proposing a 2D topology optimization
that integrates self-supports and aggregated residual stress constraints for a Powder Bed Fusion process.
Their findings revealed an intriguing correlation: imposing a limit on the maximum residual stress not only
achieved its intended purpose but also inadvertently reduced residual distortion. Furthermore, they identified
that selecting an optimal build direction was crucial in mitigating stresses without adversely impacting
the stiffness performance of the structure. In a similar study, Misiun et al. [12] focused on identifying an
effective Powder Bed Fusion process simulation method to design topology optimized structural parts with
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enhanced manufacturability. Their research addressed both in-process deformations, which could lead to
re-coater collisions, and global deformations occurring post-separation of the part from the base plate. The
optimized designs often incorporated modified shapes and support-like structures. Notably, the study observed
that deformations during the process were counterbalanced by additional distortions post-separation. Another
innovative approach to mitigate deformation involves adjusting the part’s geometry during pre-processing,
informed by an understanding of the specific process and deformation patterns. This technique has been
successfully implemented by Relativity Space in building fully additive manufactured rockets [21]. While
the methodologies proposed by Xu et al. [5] and Misiun et al. [12] are promising, they primarily operate
in the design phase and involve topology optimization, making them less applicable when the geometry is
predetermined and the focus is solely on manufacturing. Additionally, both methods result in the creation of
support structures, which, despite their benefits in stress and deformation reduction, lead to increased material
wastage. It is also noteworthy that most research focusing on deformation issues, including these studies, is
centered on Powder Bed Fusion technology, with relatively limited exploration in the field of Direct Energy
Deposition.

An important step in the presented studies, is to perform computational simulations to predict, control, and
potentially exploit these side-effects of the process [22]. However, as previously discussed, the occurrence
of deformations in metal additive manufacturing processes is influenced by a complex interplay of factors.
These include specific process parameters and the unique mechanical and thermal properties of the materials
employed. Such intricacies make process simulation particularly challenging. There are three primary methods
for simulating Additive Manufacturing processes: Fully Coupled Simulation, Sequentially Coupled Simulations,
and Mechanical Simulations (usually with the Inherent Strain Method).

• In Fully Coupled Simulations, thermal and mechanical equations are solved simultaneously. This approach
accounts for how temperature variations impact material properties and, in turn, how these changes
influence temperature distributions. Such simulations are highly accurate, capturing the interdependencies
between thermal and mechanical phenomena. However, they are computationally demanding. At times,
these simulations also encompass multi-physics aspects, including fluid dynamics, to predict the behavior
of materials in the molten pool [23].

• In Sequentially Coupled Simulations, the process begins with thermal analysis, where a time-evolving
temperature field is calculated. These thermal results are then utilized as inputs for subsequent mechanical
analysis [24]. The equations in these simulations are solved in a sequential order, thereby capturing the
coupling between thermal and mechanical phenomena in a unidirectional manner. While the results of
sequentially coupled simulations are generally less accurate than those from fully coupled simulations,
they offer greater computational efficiency.

• The Inherent Strain Method instead, does not require a thermal simulation, but only focuses on the
mechanical aspect. It was firstly developed to predict deformations in metal welding by Umeda et al. [25],
and later adapted to AM. It considers the thermal shrinkage as a prescribed mechanical strain associated
to the deposition of each layer [12]. Equivalent nodal forces are computed from these strains and thus
the macroscopic displacement field can be derived. This method is very efficient but has low accuracy.
However, time-wise often it is the only feasible option for optimization problems. The Inherent strain
values are usually obtained through experimentation or accurate fully coupled simulations.

The studies by Xu et al. [5] and Misiun et al. [12], along with most research addressing optimization problems to
minimize process-induced deformations, primarily utilized the Inherent Strain Method due to its computational
efficiency.

To understand the inherent strain method, consider the melting and solidification process of a material portion.
As it cools, the material solidifies and undergoes volumetric shrinkage, as schematically illustrated in Figure 3
for a two-dimensional case [1]. This shrinkage is represented by a thermal strain tensor, ε∗, whose values, as
mentioned earlier, can be obtained through experimental data or detailed process simulations. This tensor is then
used to compute the element’s equivalent nodal forces, which are subsequently assembled into the right-hand
side of the Finite Element Method (FEM) linear system. The Equation used is fe(ε

∗) = [D]T[C]ε∗ where D
is the strain–displacement relation matrix, and C denotes the elasticity matrix. Anisotropic shrinkage can also
be accounted for by scaling the values of the inherent strain tensor according to the deposition direction [1].
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Fig. 3: Schematic illustration of material cooling and the resulting shrinkage process.

2-B Overview of Relevant Slicing Methods

As outlined in Section 2-A, Process Planning in Additive Manufacturing operates across multiple scales, with
slicing being a fundamental component at the part scale. Traditional slicing algorithms divide the design
into planar layers. However, Multi-Axis Additive Manufacturing systems enable the division of the part
into non-planar, free-form layers. Although this additional flexibility adds complexity to process planning,
it provides opportunities to improve part quality and address challenges associated with planar deposition,
such as reducing or even eliminating the reliance on support structures. This section reviews notable slicing
algorithms for multi-axis systems documented in the literature.

1) Reinforced FDM: Multi-Axis Filament Alignment with Controlled Anisotropic Strength
One inherent challenge in Additive Manufacturing, closely tied to its layer-wise fabrication, is the anisotropy
of mechanical properties in the manufactured part. Additively Manufactured parts, indeed, exhibit anisotropic
mechanical properties, with higher strength within the layer plane (in-plane strength) and reduced strength
between layers (out-of-plane strength) due to weaker interlayer bonding. This anisotropy is present in both
planar and free-form layer fabrication. However, free-form layers offer the opportunity to mitigate this limitation
by tailoring layer shapes and orientations. Specifically, the tangent to each layer can be locally aligned with
the principal stress directions, allowing the anisotropy to be leveraged for reinforcement. By optimizing the
deposition paths and layer geometries, the part can better withstand specific mechanical loads, enhancing its
overall structural performance. This is exactly what Fang et al. [6] did in their study on Reinforced FDM:
Multi-Axis Filament Alignment with Controlled Anisotropic Strength. This study is particularly interesting for
its approach to encoding the Fabrication Sequence and for its consideration of multiple objectives—not only to
ensure part strength but also to prioritize manufacturability. In fact, the study emphasizes that manufacturability
is considered more crucial than reinforcement itself.

Fig. 4: (a) The bunny-head model H is represented by a tetrahedral mesh T . (b) Principal stress values are
visualized using color mapping to highlight stress distribution within the model. (c) A vector field V (x) is
optimized according to reinforcement principles and fabrication constraints to ensure both structural strength
and manufacturability. (d) A scalar field G(x) is subsequently generated by enforcing the gradient ∇G(x) to
align with the optimized vector field V (x). (e) Preliminary curved layers are produced by extracting iso-surfaces
from the scalar field G(x), forming the basis for the fabrication sequence. Image source: Fang et al. [6].
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In this method, the Fabrication Sequence is represented by a scalar field G(x), from which layers can be
extracted as iso-surfaces, as illustrated in Figure 4 (d) and (e). The field G(x) is optimized to ensure that the
part withstands a specific applied load.

The method begins by discretizing the part H into a tetrahedral mesh T . A commercial FEA software (Abaqus)
is then used to simulate the application of the load that the part must endure. This simulation outputs a stress
distribution, represented as a 3 × 3 stress tensor σ(e) for each tetrahedral element e ∈ T , centered at the
positions xe.

From these stress tensors, the principal stresses σ1, σ2, σ3 and their associated eigenvectors are obtained
through eigenvalue decomposition, where σ1 > σ2 > σ3. Among all tetrahedrons in T , a subset T ∗,
referred to as the critical region, is identified. An element belongs to this subset if it meets two conditions:
|σ1| > k1|σmax| and |σ2| > k2|σ3|, where k1 and k2 are tunable parameters. Here, σmax represents the maximum
principal stress magnitude across all elements in the domain. This filtering process isolates regions within H
where stresses exceed a critical threshold, and the first two principal stresses are sufficiently larger than the third.

For each tetrahedron in T ∗, the direction τmin, corresponding to the smallest principal stress σ3, is identified.
The condition for the optimal scalar field gradient is then defined as ∇G(x) being as much as possible parallel
to τmin, leading to the objective formulated in Equation 1.

Es =
∑
e∈T ∗

Ve∥∇G(xe)× τmin(e)∥2, (1)

where Ve is the element’s volume. Instead of optimizing G(x) directly, a vector field V (x) is optimized,
represented in discrete form by storing one vector for each element e ∈ T . Although the optimization method
involves additional complexities beyond the scope of this research, an essential aspect to consider is how
layer thickness is controlled to ensure manufacturability. Indeed, due to the limitation of currently available
hardware, the thickness of each layer that can be Additively Manufactured has a limited range [dmin, dmax].
This is considered in the optimization through the additional objective in Equation 2,

Et =
∑
e∈T

Ve (∥∇G(xe)∥ − c)
2 → {gi} = argmin

∑
e∈T

we∥∇G(xe)− v̂e∥2, v̂e = c
ve

∥ve∥
. (2)

In the above equation, gi represents the nodal values of G(x). The equation at the right of the arrow actually
illustrates how the objective is formulated: the difference between the gradient of the field, ∇G(x), and the
optimized vector field, V (x), is minimized. The vector field V (x) is normalized and scaled by a factor c,
which ensures that both the direction and layer thickness are accounted for in the optimization. This approach
effectively aligns the gradient of the scalar field G(x) with the desired vector field V (x), controlling layer
orientation and thickness simultaneously.

2) Curved Layer Slicing based on Isothermal Surface
Another notable slicing technique is Curved Layer Slicing based on Isothermal Surface by Shan et al. [26]. Their
research aims to leverage the increased degrees of freedom provided by Multi-Axis Additive Manufacturing
machines to enhance the surface finish of parts. The method generates curved layers by solving a heat transfer
problem, as outlined in Equation 3. The solution to this problem creates a smooth and continuous temperature
field, which is well-suited for representing a fabrication sequence.

In this approach, two types of boundary conditions are applied: Dirichlet boundary conditions are imposed on
the top and bottom surfaces, constraining these surfaces to be treated as single layers, while Neumann boundary
conditions are applied to the sides, designating them as thermally insulated. Similar to the method proposed by
Fang et al. [6], layers in this approach are represented as iso-surfaces extracted from a scalar field. However,
since this scalar field is derived from solving a heat equation, its gradient is not uniform. Consequently, the
threshold values for extracting iso-surfaces must be carefully selected to ensure a consistent distance between
layers, thereby achieving uniform layer thickness. The strategy to select these threshold values can be obserevd
in Equation 4.
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ρCp
∂T

∂t
= k∆T (3)

Ti = Ti−1 − d · |∆T | (4)

Fig. 5: Visualization of the boundary conditions applied to the domain and the resulting fabrication sequence
produced by extracting the iso-surfaces from the temperature field. Image source: Shan et al. [26].

An important aspect observed in Equation 4 is that, given a target layer thickness value d, the average gradient
magnitude within a layer can be used to approximate the threshold value Ti for the next iso-surface, ensuring
that it lies at a distance d from the previous one.

2-C Fabrication Sequence Optimization

As outlined in the previous section, Direct Energy Deposition—and specifically, Wire and Arc Additive
Manufacturing technologies—can leverage Multi-Axis Equipment to go beyond planar layers, enabling the
deposition of free-form layers. Although this approach requires more complex process planning, it presents
a significant opportunity. By adjusting layer shapes and deposition sequences, similar to optimizing scan
strategies in Powder Bed Fusion, a more uniform thermal distribution within the part can be achieved, thereby
minimizing deformation and stress buildup issues highlighted in section 2-A. Building on these principles,
Wang et al. [1] provides foundational research on Fabrication Sequence Optimization for Multi-Axis AM
processes, focusing on optimizing the shape and sequence of free-form layers to minimize process-induced
deformations. This section discuss one study targeting the mitigation of thermal-induced deformations through
optimized fabrication sequences [1], covering also a recently introduced regularization technique [15], which
has also been integrated into the present study.

1) Fabrication Sequence Optimization Base Formulation
To understand the Fabrication Sequence Optimization method, the first step is to understand how the additive
manufacturing process sequence is represented. The process begins by defining a design domain, which is
discretized into a 2D grid of square elements. Within this discretized domain, the structural layout of the part
to be manufactured is encoded in a density vector, ρ, where each element is assigned a binary density value
— 1 or 0 — to indicate the presence or absence of material at a given point within the domain. A continuous
scalar field called the pseudo-time field, denoted by t, is then defined over the previously established structural
layout. Here, each element posses a pseudo-time variable te ∈ [0, 1], where this interval is normalized: 0
represents the start and 1 the end of the fabrication process. The values te ∈ [0, 1], one for each element in
the domain, are taken as design variables in this optimization.

In the research by Wang et al. [1], the optimization objective is to minimize process-induced deformations.
This requires simulating the manufacturing process at each iteration step. Following the options outlined
in Section 2-A, and in line with the majority of the literature, Wang’s study employs the Inherent Strain
Method. Moreover, elements are not treated individually but are grouped into layers, allowing the simulation to
model the deposition of entire layers simultaneously. This approach is less accurate but more computationally
efficient, aligning with similar techniques presented in the literature [22]. The number of process steps, and
thus of layers N is prescribed. To delineate these layers, the pseudo-time field t is divided into intervals
[Tj−1, Tj ], with j = 1, . . . , N and Tj =

j
N , where N is the total number of layers. An element is included in a

particular layer if its pseudo-time variable falls within the time interval associated with that layer. To partition
the pseudo-time field t, and thus extract the layers in a differentiable way, thus suitable for gradient-based
optimization methods, a smooth Heaviside Projection displayed in Equation 5 is used.
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Fig. 6: Visualization of three steps in the Fabrication Sequence Optimization process. A) Encoding of the part’s
structural layout in the density vector ρ. B) Definition of the pseudo-time field t based on the established
structural layout. C) Extraction of an N -layer sequence from the time field through equispaced time intervals.

t̄[T ]
e = 1− tanh(βtT ) + tanh(βt(te − T ))

tanh(βtT ) + tanh(βt(1− T ))
(5)

In the above Equation, T represents the threshold value of the projection, while βt represents its sharpness.

This projection function is used to compute two density vectors: ρ{j} and ∆ρ{j}. Here, ρ{j} represents the
entire structure manufactured up until the jth time-step, meaning every element deposited before time-step Tj

has a value of ρe ≈ 1. In contrast, ∆ρ{j} represents the density distribution of the single layer deposited at
the jth time-step, with non-zero density values assigned to elements where te lies within the interval [Tj−1, Tj ].

These two vectors ρ{j} and ∆ρ{j} are then used to assemble respectively the stiffness matrix K and the forcing
vector f , through a penalization scheme.

ρ{j} = ρ · t̄{j},
∆ρ{j} = ρ · (t̄{j} − t̄{j−1})

(6)

Ke(ρe) = (Emin + (1− Emin)ρ
p
e)K0, (7)

∆ε∗{j}(t)
∣∣
e
=
(
∆ρ{j}(t)

∣∣
e

)q
ε∗. (8)

Fig. 7: Visualization of the density vectors ρj and ∆ρj , representing, respectively, the material deposited up
to and including the j-th time interval and the material being deposited in the j-th time interval.

As shown in Equation 7, each element begins with the same elemental stiffness matrix K0, which is then
scaled according to its density value ρe ∈ ρ{j}. Similarly, Equation 8 illustrates the penalization applied to
the elemental inherent strains, where each element starts with the same inherent strain vector ε∗, subsequently
scaled by the density value ∆ρ{j}

∣∣
e
∈ ∆ρ{j}. The parameters p and q serve as the penalization factors for

the stiffness and force vectors, respectively, and they satisfy the condition p ≤ q. This penalization scheme
effectively applies forces that approximate the thermal loads generated by the deposition of layer j onto the
structure deposited up to the j-th manufacturing step.

As can be evinced from Equation 7, all elements of the domain contribute to the stiffness matrix K{j}, the void
and not-yet-fabricated elements are treated as quiet elements. This means they possess a very low stiffness value
to prevent the matrix from becoming singular. Consequently, the dimensions of the equilibrium equation remain
constant. The Equilibrium Equation 9 is applied thus to the entire domain. Assuming small displacement, the
total displacement field u, is determined by aggregating the incremental displacements ∆u{j}.
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K{j}∆u{j} = f{j}, j = 1, . . . , N,→ u =

N∑
j=1

∆u{j} (9)

With the displacement field at hand the objective function can be computed as in Equation 10, where Q is a
matrix which combine the nodes displacements to compute the desired distortion metric.

J = uTQu (10)

This optimization includes two types of constraints: a Continuity Constraint and a Speed Constraint. The
Continuity Constraint enforces continuity in the pseudo-time field t, preventing the formation of local minima
and maxima, which would render the results non-manufacturable. Local minima would indicate areas requiring
support structures, while local maxima would represent enclosed voids. The Speed Constraint ensures that
an equal volume of material is deposited within equal time spans, effectively preventing layers from being
emptied during optimization.

Once the objective, constraints, and their sensitivities are calculated, the optimizer—here, the Method of Moving
Asymptotes—computes [27] the updated design variables t.

Fig. 8: Examples of optimized fabrication sequences obtained using the formualtions from Wang et al. [1], [15].
The sequences present visibly irregular layer shapes.

2) Fabrication Sequence Optimization with Layer Thickness Control
Analyzing the results of the formulation presented in Wang et al. [1], [15], as shown in Figure 8, reveals that
although the distortion objective is minimized, the resulting layers are too irregular in shape to be realistically
manufacturable. To address this, Lansu [14] proposed a modified formulation that improves control over layer
thickness and uniformity.

To the distortion objective presented in Equation 10, the modified formulation adds a secondary objective,
referred as Layer Uniformity Objective which can be observed in Equation 11.

L = α

N∑
j=1

Lj with Lj =
∑
e∈T

∆ρ{j}e (Me −mj)
2 (11)

In the equation, ∆ρ
{j}
e ∈ ∆ρ{j} is computed in the same way as in Equation 6. Here, Me represents the

gradient magnitude value for element e, and mj is the average gradient value for layer j. This objective,
similar to the one presented in the research by Fang et al. [6], aims to minimize a quantity similar to the
variance of the gradient magnitude across each layer, thereby promoting uniformity.

Two additional constraints are introduced: a Layer Thickness Constraint and a Minimum Volume Constraint.
The Layer Thickness Constraints include 2×N individual constraints, two for each layer. As shown in Equation
12, the thickness of a layer is approximated by using the average gradient magnitude value mj and the time
interval [Tj−1, Tj ] corresponding to the jth layer. This approach is similar to the method used in the Isothermal
Surface Slicing Technique by Shan et al. [26].
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dmin ≤ dj ≤ dmax with j = 1, . . . , N (12)

dj = (Tj − Tj−1)
1

mj
with j = 1, . . . , N (13)

However, adding the Layer Thickness Constraints alongside the Speed Constraints over-constrains the
optimization, as fixing both the layer volume and layer thickness inadvertently constrains the ”length”
dimension as well. To accommodate both constraints, the time steps Tj , where j = 1, . . . , N , are also treated
as design variables. This adjustment necessitates an additional constraint—the Minimum Volume Constraint—to
prevent overlap between the time steps values.

Fig. 9: Comparison between two optimized Fabrication Sequences: one obtained without layer thickness control
(left) and the other obtained using the modified formulation from Lansu [14] for layer thickness control (right).

In Lansu’s work [14], the method appears to successfully control layer thickness in the presented results
(Figure 9); however, the results are limited, raising concerns about the robustness of the approach. In the basic
formulation, the role of each constraint was clearly defined, but in this modified formulation, the individual
roles are less transparent, making it difficult to determine whether any constraints might be counteracting
one another. For example, in the original formulation, the speed constraint was used to prevent layers from
shrinking. However, in this modified approach, it is unclear why the speed constraint is still necessary, as the
same effect seems intuitively to be achieved by the layer thickness constraint.

3) Fabrication Sequence Optimization with Thermal Regularization
From the results of the original formulation by Wang et al. [1], it can be observed that the Continuity
Constraint does not always successfully prevent the formation of local minima and maxima, rendering some of
those results non-manufacturable. To address this, a recent study by Wang et al. [15] introduced an improved
approach using a regularization technique to more effectively enforce these critical properties in the field.

The regularization involves indirectly determining the pseudo-time field t by computing it as the solution to
a Heat Equation, rather than optimizing t directly. This approach leverages the inherent properties of the heat
equation’s solution (Equation 14) to naturally enforce the required properties on the pseudo-time field. Thus, the
new design variables are the diffusivities κ defined on the structural layout in the same way as the pseudo-time
field t. For the boundary conditions, a Dirichlet temperature condition is imposed on the base plate, while
conduction is restricted to occur only within the structural layout. This setup imposes a Neumann boundary
condition with no heat conduction on the outer boundaries of the geometry.

∇ · (κ∇τ)− αT τ = 0. (14)

In the above Equation, τ represents the virtual temperature field, κ(x, y, z) denotes the spatially varying thermal
diffusivity, modeling how quickly heat diffuses through the material, and the term αT τ is a drain term, modeling
heat loss in proportion to the virtual temperature. Fixing the base plate virtual-temperature at a value of 1 the
pseudo time-field can be easily obtained from the virtual temperature field thorugh t = 1− τ .
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2-D Overview of The PETSc Topology Optimization Framework

Since this research primarily focuses on 3D large-scale Fabrication Sequence optimizations, a parallelized
implementation is necessary. Given the similarity between the Fabrication Sequence optimization method
and density-based topology optimization, existing tools from the literature on topology optimization can be
repurposed effectively. Specifically, the fully parallel, open-source topology optimization framework using
PETSc developed by Aage et al. [28] will be utilized. This section provides background information on the
advantages of parallel computing and introduce the just cited framework.

1) Introduction to Parallel Computing
Parallel computing is fundamentally rooted in the concept that executing multiple arithmetic operations
simultaneously, rather than sequentially, enhances performance [29]. Initially, parallel computing was
predominantly utilized to expedite computations with high time and memory requirements. The potential for
speed-up was initially described by Amdahl’s law in 1967, which stated that the improvement in performance
due to parallelization is limited by the fraction of the task that cannot be parallelized. However, Gustafson’s
law, introduced in 1988, presented a different perspective by focusing on increasing the problem size while
maintaining a constant overall execution time. This approach implies that for larger problems, the impact
of the non-parallelizable portion becomes less significant, allowing for better scalability and effective use of
parallel computing resources.

Historically, parallel computing systems were largely dedicated to complex scientific problems. Today, however,
they are integral to a wide range of computing devices available in the market [30].

Parallel computing systems are generally classified based on their memory organization: Shared Memory
Systems and Distributed Memory Systems [31]. In Shared Memory Systems, while data sharing between
processors is more straightforward, each processor must coordinate with others for memory access. This
coordination often requires complex synchronization and can lead to delays, particularly when multiple
processors access the same memory area at the same time. In contrast, Distributed Memory Systems
comprise a network of nodes, each with its own memory, which allows for data transfers between nodes. While
this arrangement mitigates direct access conflicts, it introduces potential delays due to inter-node communication.

Fig. 10: Representation of Distributed Memory parallel architecture (on the left) and Shared Memory architecture
(on the right)

Parallelization significantly improves memory usage efficiency, which in turn further influences and reduces
overall computation time. By distributing tasks, data is processed in smaller segments across multiple
processors or cores, allowing each processor to manage a smaller, more manageable memory portion. This
approach helps to overcome the limitations of memory capacity per processor, while effectively increasing the
system’s overall memory capacity. Furthermore, as processors have become faster, largely due to increased
transistor density (Moore’s Law), they can process data at a much faster rate than what memory systems can
supply. Thus, often a single processor is delayed waiting for data from memory. Parallel processing alleviates
this bottleneck effect. With multiple processors operating together, more data can be handled simultaneously,
thereby minimizing periods of inactivity [32].

In the ideal scenario of parallel computing, a process is fully divisible into independent sub-processes that run
concurrently. This allows for theoretical maximum efficiency or linear speedup, where doubling the processors

12



could halve the computation time. However, achieving this is challenging due to communication overhead and
synchronization issues.

2) Fully Parallelized Topology Optimization Framework using PETSc
A well known framework in the field of structural optimization is the one by Aage et al. [28], which provides a
realatively easy to use and portable code, based on the open-source library PETSc, made for high performance
and scientific computing. Although the optimization problem in this thesis research is not directly Topology
Optimization, it shares many similarities in terms of formulation, which render the cited framework a valuable
starting point for the implementation.

PETSc is an acronym for Portable and Extendable Toolkit for Scientific Computing. It includes most of the
necessary building-blocks for writing, analyzing, and optimizing large-scale numerical simulations [33]. The
main provided tools are sparse matrices, vectors, iterative linear solvers, non-linear solvers and time-stepping
scheme, eliminating the need to write low-level math libraries and speed up the development process [28].
PETSc is mainly based on distributed memory systems and uses Message Passing Interface to manage
communications between the nodes.

The framework developed by Aage et al. [28], is represented in Figure 11. In the picture, the red boxes represent
fundamental parts of the framework, thus require very little to no modifications:

Fig. 11: Layout of the optimization frame-
work. The names in the boxes refer to the
main program and to the classes containing
physics, optimization settings, filtering, out-
put, MMA and the PETSc library. The arrow
to the left indicates the complexity of the
different components, i.e. the higher in the
diagram the simpler the code

- The MMA Class contains a fully parallelized implementation of the Method of Moving Asymptotes
(MMA) (Svanberg 1987 [27]) as descripted by Aage and Lazarov [34]

- MPIIO is an output class to dump arbitrary field data into a single binary file
- The PETSc library contains the lower-level building blocks of the framework.

While the Linear Elasticity class in the framework is primarily designed for compliance minimization problems
and thus requires modifications for this research, it highlights the importance of using an efficient linear system
solver. Such a solver should prioritize not only simplicity but also aim to reduce the overall wall clock time of
computations [35]. The preferred choice are iterative solvers because they require less communications to arrive
at the solution since they mainly perform operations like vector addition and scalar multiplication, (matrix-vector
multiplications break down in those) which rely on local data [34].
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3 Methodology

This section offers a comprehensive and detailed view of the 3D Fabrication Sequence Optimization with
Layer Thickness Control. First, an overview of all steps is provided, which can be followed with the help of
Figure 12. Then, each step is described in detail in subsequent subsections. Finally, the complete formulation
is assembled and presented. Following the pioneering work on Fabrication Sequence Optimization by Wang et
al. ([13][1][15]), the goal of this optimization is to determine a manufacturable fabrication sequence to produce
a given part through multi-axis Additive Manufacturing, while minimizing process-induced deformations. With
optimized fabrication sequence it is meant individuating the optimal shape and sequence of layers, while
excluding considerations about tool-path planning. Particular attention is given to the manufacturability of the
layers; therefore, a modification of Lansu’s [14] Layer Thickness Control formulation has been investigated.

U + = ΔUj

x0

z0

κ

Pseudo 

κ

Initialization

t

Optimization Loop

Optimized Sequence

(A) (B) (C)

(E) (D)

(F) (G)

Fig. 12: Schematic representation of the Fabrication Sequence Optimization Method. A) The part geometry
is defined, discretized, and boundary conditions for the process simulation are applied. B), C), D), and E)
illustrate the steps within the optimization loop. B) The diffusivity field κ, defined on the structural layout,
is used to compute the pseudo-time field t (C) by solving the heat equation 15. D) Each layer is extracted
from the pseudo-time field using a smooth Heaviside projection and utilized to compute the stiffness matrices
K and thermal load vectors f for process simulation. E) The total displacement field is calculated and used
to compute the desired distortion measures. The loop continues until convergence or the maximum iteration
limit is reached. F) and G) depict the optimized displacement field and fabrication sequence, respectively. Steps
included in the flowchart but not depicted in the visualization are the computations of objectives and constraints,
along with their sensitivities, and the subsequent update step using the Method of Moving Asymptotes.
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3-A Method Overview

The optimization process begins with the Part Discretization phase (Section 3-B), where the part design is
encoded in a structured grid of hexaedral elements. Each grid element is designated as either filled or empty,
representing the material distribution. This results in a vector, ρ, where each element has a value of 1 (filled)
or 0 (empty), corresponding to the material state. This operation is commonly referred to as Voxelization. In
this phase the fixed base-plate boundary conditions is set as well. (Figure 12 A)

Next, the Fabrication Sequence is defined based on the discretized structural layout (Section 3-C). The
sequence is represented as a scalar field (pseudo-time field t) encoding the deposition order of the elements,
where each element is assigned a normalized time value, te ∈ [0, 1], with 0 marking the start and 1 the end of
the process. To ensure a realistic additive manufacturing sequence, the pseudo-time field must exhibit critical
properties such as the absence of local minima. The Thermal Regularization method by Wang et al. [15] is
employed to achieve these requirements. This method, instead of defining directly the te values on the grid,
computes the time field t by solving a heat equation with spatially varying thermal diffusivity κ. Local maxima
are permissible in the field but only if they occur on the boundaries of the part geometry (Figure 12 B and C).

Unlike more common slicing methods ([26], [6]), in this method the number of manufacturing layers, N , is
predetermined. Layers are extracted from the pseudo-time field using a Smooth Heaviside projection (Section
3-D), enabling the field to be segmented in a differentiable manner. The threshold values of the projection
functions are evenly spaced between 0 and 1, defined as Tj =

j
N for j = 0, 1, . . . , N . (Figure 12 D)

During manufacturing, each element’s addition causes structural deformation. However in this research,
elements are considered lumped together in layers, and each layer’s deposition is simulated using the inherent
strain method (Section 3-E, Figure 12 E). The total process displacement field vector, obtained by summing
each layer’s contribution U =

∑
j ∆Uj is then used to compute the objective function (Section 3-F). The

objective function can represent different distortion measures, such as minimizing displacement at specific
points or ensuring surface flatness.

Given the technological limitations of additive manufacturing equipment in industry, it is crucial to control the
shape of the layers to ensure they align with the equipment’s capabilities. This research addresses this aspect by
extending previous formulations from the literature. Specifically, a second objective is introduced to minimize
the non-uniformity of thickness within each layer (Section 3-G), along with a constraint to directly control the
average layer thickness value (Section 3-H).

3-B Part Discretization and Density Vector Definition

This optimization method shares similarities with traditional density-based topology optimization, where the
design domain is discretized into a structured grid of trilinear hexahedral elements. However, in this approach,
the part geometry is predefined rather than evolving during optimization. For simple part’s geometries, like the
ones used in this research’s numerical examples, the geometry can be directly defined in the structured grid
through a mathematical function. An example is shown in Figure 13.

The part is thus encoded in a binary density vector ρ associated with the structured grid, in which values of 1
indicate material presence and values of 0 represent void. The boundary conditions relative to the manufacturing
process simulation are also defined at this stage, with the build plate acting as a fixed constraint on the
corresponding nodes of the discretized part.

3-C Fabrication Sequence Representation

The pseudo-time field is defined on the discretized part geometry and encodes the material deposition sequence
during the manufacturing process. Each element is assigned a continuous, normalized time value te ∈ [0, 1],
where 0 represents the start and 1 the completion of manufacturing. This method of representing the fabrication
sequence has been previously utilized in the literature, notably by Wang et al. [1], [13] and Fang et al. [6]. The
complete sequence of deposition is thus encoded in the pseudo-time field vector t associated to the structured
grid.
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Fig. 13: Visualization of the part discretization in the structured grid of hexaedral elements. In this example the
density function ρ(x, y, z) is defined as follows: it takes the value 1.0 if z < z0 or x > x0, and z > (x−z0−ϵ).
Otherwise, ρ(x, y, z) is equal to 0.0. The fixed build plate conditions applies to all the nodes on the bottom
face of the geometry.

In realistic multi-axis additive manufacturing, to avoid the use of support structures, new material can only be
deposited on either the build plate or on already deposited material. This imposes key mathematical constraints
on the time field, specifically the absence of local minima. Local minima would imply material being deposited
in mid-air. Instead, local maxima in the field are acceptable, but only if lying on the boundary of the part
geometry, since otherwise they would represent inaccessible enclosed voids.

To ensure the pseudo-time field t meets these requirements, it is not directly taken as a design variable like
in Wang et al. [1], but is instead derived from the solution of a heat equation. This solution consists in a
temperature field T defined on the nodes of the grid, which is then used to compute the elemental pseudo-time
values. It is important to distinguish this temperature field (which for clarity will be called virtual) from
the thermal field arising from the actual metal additive manufacturing process. This regularization technique
was developed in Wang et al. [15] , and inspired by research in computer graphics where it is used as a
computationally efficient way of approximating a geodesic distance field. The considered heat equation in
differential form is:

∇ · (κ∇τ)− αT τ = 0, (15)

where τ here is the virtual temperature field, κ(x, y, z) represent a spatially varying thermal diffusivity,
modeling how quickly heat diffuses through the material, while the term αT τ is a drain term, which models
loss of heat proportionally to the virtual temperature.

The inclusion of the drain term αT τ is advantageous as it eliminates the need for inhomogeneous Dirichlet
boundary conditions. This avoids having to predefine the position of the last deposited material in the
manufacturing process, as is done, for instance, in the Isothermal Surface Curved Layer Slicing method by
Shan et al. [26]. The heat equation is subject to the following boundary conditions: On the boundary adjacent
to the build plate, Γ0, the temperature is held constant at τΓ0 = 1. All other boundary segments are thermally
insulated, meaning (∇τ · n)Γ\Γ0

= 0, where ∇τ is the spatial gradient of the temperature field and n denotes
the normal vector to the boundary.

The diffusivity field κ(x, y, z) varies spatially and in the discretization it is represented by individual scalar
values assigned to each element within the domain. However, only the diffusivity values κ of elements that
fall within the structural layout defined by ρ are designated as design variables. Elements outside this layout,
where ρe = 0, are assigned a diffusivity of κe = 1e − 3, mainly restricting heat conduction to the structural
layout, thus approximating the thermal insulation boundary condition explained above.

Equation 15 is discretized using the Finite Element Method resulting in the linear form,

KTT = b, (16)
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Fig. 14: Visualization of the diffusivity field κ(x, y, z) (left) and the pseudo-time field t (right), both defined
over the structural layout. The pseudo-time field is derived from the diffusivity field by solving Equation 15.
Both fields are shown at an arbitrary iteration of the optimization loop.

where T is the nodal virtual temperature vector. b is the thermal load vector encoding the boundary conditions.
KT is the global system matrix.

KT =
∑
{e}

Ke
T +

∑
{e}

Ke
C, (17)

KT is assembled from Ke
T which correspond to the thermal diffusivity, and Ke

C which correspond to the drain
term as shown in Equation 17. These two elemental matrices are derived from the shape functions Ni and Nj

by using:

Ke
T =

∫
Ωe

κe

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

)
dΩ, (18)

Ke
C =

∫
Ωe

αTNiNjdΩ. (19)

The solution of this linear system of equations (Equation 16) gives the nodal virtual temperature distribution
T , from which the pseudo-time field t can be computed as t = 1 − τ = 1 − GT , where G is a sparse
transformation matrix used to convert nodal values to elemental values. For all the numerical experiments in
this research, all the elements of the design variable vector κ are initialized to κe = 0.1. The drain term αT

instead, is derived from,

αT =
β

lc
2 , (20)

where β is a non-dimensional parameter, and lc
2 is the square of a characteristic length of the design domain.

From previous research [15], β in the range β ∈ [0.1, 1], have been found to lead to better convergence in the
optimization.

To obtain a smoother virtual temperature field T and, consequently, a smoother time field t, an averaging
step can be introduced instead of directly using the heat diffusivities to solve the heat equation. This approach
smooths the heat diffusivity by averaging its values over elements within a specified radial distance. For each
element, the averaged diffusivity is computed based on its neighbors within the defined radius. This is formalized
as:

κavg = Hκ, (21)

where H is a square matrix constructed to apply the averaging operation. Each entry in H is assembled to
represent the influence of neighboring elements within the specified radial distance on the diffusivity of a given
element.
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To summarize, as can be observed in the complete optimization method overview Figure 12, at each iteration
of the optimization the updated design variables κ are used to solve the Heat Equation 15, and obtain the new
Fabrication Sequence t, which is then used, in the next steps to simulate the fabrication process and evaluate
the layer thickness constraints.

3-D Layer Extraction via Heaviside Projection

In this research, the focus is on optimizing the manufacturing process at the part scale. Thus, it was chosen to
treat groups of elements as lumped layers rather than individually, thereby simulating the collective impact of
adding these elements, at each stage of the manufacturing, on the overall objective.

N time intervals are defined as [Tj−1, Tj ] for j = 1, . . . , N , where N is the predetermined total number of
layers. An element is assigned to a particular layer if its pseudo-time te value falls within the corresponding time
interval of that layer. However, to formulate this segmentation operation in a manner suitable for gradient-based
optimization methods, a differentiable Heaviside projection displayed in Equation 22 was employed.

t̄{j}e = 1− tanh(βtTj) + tanh(βt(te − Tj))

tanh(βtTj) + tanh(βt(1− Tj))
(22)

The bar above te → t̄e indicates the value of the pseudo-time variable after the projection operation. In
Equation 22, two important quantities are present: βt, which controls the sharpness of the projection, and Tj ,
which controls the threshold value of the projection. The projection and the effect of its paramters can be
visualized in Figure 15

Fig. 15: Visualization of the Smooth Heaviside Projection function from Equation 22. The left image shows
two projections with different threshold values, while the middle image demonstrates how these projections
are combined to isolate a single layer. The right image illustrates the effect of varying sharpness values on the
projection.

From the segemntation operation two density vectors are computed ρ{j} and ∆ρ{j} where,

ρ{j} = ρ⊙ t̄{j},

∆ρ{j} = ρ⊙ (t̄{j} − t̄{j−1}),
(23)

ρ{j} is the density vector associated to the portion of the structure manufactured up until the j-th stage, while
∆ρ{j} is the density vector associated with a single layer. The symbol ⊙ represent the point wise multiplication
operation. In the layer extraction process there are two exceptions for the first and the last layer. For the first layer
∆ρ{1} is computed as ∆ρ{1} = ρ⊙ t̄{j}. For the last layer, ∆ρ{N} is computed as ∆ρ{N} = ρ⊙(1− t̄{j−1}),
while ρ{N} = 1.

3-E Process Simulation using the Inherent Strain Method

Recalling that the primary objective in this optimization, is to minimize the thermally induced deformation
during the additive manufacturing process, the entire process must be simulated at each optimization iteration,
and the total distortion of the part must be computed. Although the method formulation can work with any of
the process simulation approaches introduced in the background knowledge Section 2-A, the Inherent Strain
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Method was chosen in this research due to its computational efficiency and its widespread use in similar
applications within the literature. However, this method involves significant approximations, making the overall
optimization primarily qualitative at this stage.

Taking a single element as example, as it gets deposited during the Additive Manufacturing process it transforms
from a liquid to a solid state, and undergoes shrinkage. The Inherent Strain Method models this effect purely me-
chanically by assigning a thermal strain tensor in 3D, denoted as ε∗ = {εx, εy, εz, γxy, γyz, γzx}T , to each newly
deposited element. These strain values are derived either empirically or through detailed process simulations. For
the numerical test in this study the inherent strain are arbitrarily set to ε∗ = {−1e−2,−1e−2,−1e−2, 0, 0, 0}T.
From these strains, equivalent nodal forces acting upon the nodes of the elements can be computed.

fe(ε
∗) = [D]T[C]ε∗, (24)

where D is the strain–displacement relation matrix, and C denotes the elasticity matrix.

The quest of computing the contribution of each layer addition to the total deformation during the process
translates to solving a set of N linear systems formulated as:

K{j}∆U{j} = f{j}, j = 1, . . . , N (25)

where ∆U j is the displacement vector associated with the addition of the j-th layer, Kj is the stiffness
matrix, and f j is the forcing vector assembled from the equivalent nodal forces of the strains (Equation 24),
both relative to the j-th layer. The total deformation U can be thus computed by summing the contributions
from each layer ∆U{j},

U =

N∑
j=1

∆U{j}. (26)

To assemble the stiffness matrix K{j} associated with the addition of the j-th layer, the Solid Isotropic Material
with Penalization (SIMP) method is used. In this approach, every element has the same base stiffness matrix
K0, which is scaled according to its projected density value through:

K{j}
e (ρ{j}e ) =

(
Emin + (1− Emin)(ρ

{j}
e )p

)
K0, (27)

where ρ
{j}
e belongs to ρ{j} previously calculated through Equation 23. Here, p is a penalization factor,

typically set to a value between 3 and 4, which increases the stiffness contrast between solid and void elements.

The forcing vector f{j} associated with the j-th layer addition, is similarly assembled from each element’s
equivalent nodal forces vector through a penalization operation dependent on its projected density value:

∆ε∗{j}(t)
∣∣
e
=
(
∆ρ{j}(t)

∣∣
e

)q
ε∗, (28)

fe = [D]T[C]∆ε∗{j}
∣∣
e
. (29)

One important feature of this process simulation method is that, Equation 25 can be solved in parallel for the
addition of each layer as demonstrated from Munro et al. [22] in the analysis of a linearity assumption, initially
proposed for simplifying the simulation of powder-bed processes with only planar layers.
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3-F Distortion Objective Calculation

Once the total Displacement Vector U is obtained from the process simulation, it can be used to compute the
Distortion Objective J through:

J = UTQU (30)

where Q is a matrix that combines the displacement values of specific nodes based on the type of objective
being considered. Different distortion objectives are possible, two examples inspired from previous research in
2-Dimensions by Wang et al. [1] are demonstrated below.

Obj-1. Minimizing the displacement of a single or group of nodes. The square of the displacement magnitude
of a set of nodes is computed by

J1 =

m∑
i

[(ux
i )

2
+ (uy

i )
2
+ (uz

i )
2
], (31)

where subscript i refers to the index of the m nodes of interest, and the superscripts x, y, and z indicate the
x, y, and z components of the displacement vector, respectively.

Obj-2. The flatness of a horizontal edge is computed by

J2 =
1

n(I)
∑
i∈I

(
uz
i −

1

n(I)
∑
i∈I

uz
i

)2

, (32)

where I denotes the set of nodes that are sampled from the face of interest. The number of nodes n(I) is
equal to or larger than 3. The flatness is tested with different numbers of sample nodes.

3-G Layer Uniformity Objective Calculation

Minimizing process-induced deformation, is the primary target of this optimization method. However, unlike
polymer-based Fused Deposition Modeling (FDM) machines, achieving precise deposition control in WAAM
is more challenging, and requires a continuous adjustments to process parameters. Therefore, maintaining
uniformity in layer geometry is favorable to ensure that the optimized layers align with the equipment’s
manufacturing capabilities.

To address this, the formulation incorporates a secondary objective to promote layer uniformity by minimizing
thickness disparities within each layer. Instead of directly calculating the exact layer thickness at every point,
which is complex, this objective is achieved by minimizing the sum of squared deviations (Equation 33) of
the pseudo-time field gradient magnitude from its mean. Reducing these deviations ensures a more consistent
gradient, resulting in a more uniform layer geometry. The generalized form of the sum of squared deviations
from the mean is:

L =

l∑
j=1

(xj − µ)2, (33)

where xj represents the individual data points (e.g., gradient magnitudes), µ is their mean, and l is the total
number of data points. This formulation minimizes the weighted sum of squared deviations from the mean,
thereby reducing variation and promoting uniformity in the system.

The Uniformity Objective formulation is thus as follows,

L =

N∑
j=1

Lj with Lj = (∆ρ{j})⊤(M −mj)
2 (34)

Here, ∆ρ{j} represents the density distribution associated with the j-th layer and it is computed from
Equation 23, M represents the vector of gradient magnitudes, and mj is a vector of the same dimension as
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M , with each element equal to the average gradient magnitude mj in the j-th layer. This formulation aims at
minimizing the variance of the gradient magnitudes within each layer.

Fig. 16: Visualization of one hexaedral element
and its node numbering

wx =
1

8
[−1, 1, 1,−1,−1, 1, 1,−1]

∂T

∂x

∣∣
e
= wx · Te

wx → assembly → Gx

(35)

Since the magnitude of the gradient, which is independent of sign, is of interest, the nodal virtual temperatures
T can be conveniently used to compute it, instead of the pseudo-time field t. For each element, the gradient
magnitude is determined using its nodal virtual temperature values, as illustrated in Figure 16 and its associated
Equation 35. This computation can be expressed in vector form as:

M =
√
Vx ⊙ Vx + Vy ⊙ Vy + Vz ⊙ Vz (36)

Vx = GxT Vy = GyT Vz = GzT (37)

where Gx, Gy , and Gz are matrices used to combine the nodal virtual temperature value to compute
respectively the x, y, and z components of the gradient. The symbol ⊙ represent the point wise multiplication
operation. As example, the gradient computation for the x component is displayed in Equation 35.

To compute instead the average gradient’s magnitude over a layer mj , the following expression is used:

mj =
M⊤∆ρ{j}

1⊤∆ρ{j} (38)

where ∆ρ{j} is computed through Equation 23.

3-H Optimization Constraints

Together with the uniformity objective, to improve the manufacturability of the resulting optimized Fabrication
Sequences, a Layer Thickness Constraint is introduced. This constraint aims at controlling the average thickness
value of each layer between a lower and upper boundary dmin and dmax. These two values will be dependent
on the Additive Manufacturing equipment used. The constraint is formulated as follows:

dmin ≤ dj ≤ dmax with j = 1, . . . , N (39)

dj = (Tj − Tj−1)
1

mj
with j = 1, . . . , N (40)

where mj is the average gradient magnitude value for the j-th layer, while Tj and Tj−1 define the j-th time
interval. Thus, dj effectively represents an approximation of the layer thickness. In the numerical experiments
conducted in this research, the minimum and maximum bounds for the Layer Thickness Constraint, dmin and
dmax, were derived from a target layer thickness value, dtarget ± 10%. While the number of layers, N , is
computed by dividing a reference domain length by dtarget.
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3-I Complete Formulation

To summarize, the Fabrication Sequence Optimization, for distortion minimization, with layer thickness
control, and using the heat equation for regularization is formulated as follows:

Objective Function:

min
κ

J(κ) = U⊤QU+ α

N∑
j=1

(∆ρ{j})⊤(M −mj)
2 (41)

subject to: (42)

State Equations:

K{j}(κ)∆U{j} = f{j}(κ), ∀j ∈ {1, . . . , N}, (43)
KT(κ)T = b, (44)

Constraints:

gj1(κ) : − (Tj − Tj−1)

mj
+ dmin ≤ 0, (45)

gj2(κ) :
(Tj − Tj−1)

mj
− dmax ≤ 0, ∀j ∈ {1, . . . , N}, (46)

Design Variables Range:

1e−3 ≤ κe ≤ 1, ∀e. (47)

The objective function J consists of two components: the first addresses the distortion objective, as discussed in
Section 3-F, and the second focuses on the layer uniformity objective, introduced in Section 3-G. A parameter
α is included to control the relative importance of the uniformity objective compared to the distortion objective.

There are two types of state equations. The first type pertains to the computation of process-induced
deformations. For each of the N manufacturing stages, a linear system must be solved. From the solutions to
these N systems, the displacement contributions from each layer, ∆U{j}, are obtained and used to compute
the total deformation U , as explained in 3-E. The second state equation is the Heat Equation 15, solved at
each optimization iteration, and used to obtain a monotonic pseudo-time field t from the diffusivity design
variables κ through the thermal regularization method, as detailed in 3-C.

There is one type of constraint, which is the layer thickness control constraint. Its purpose is to ensure that
the approximated thickness for each layer remains within the specified range, dmin ≤ dj ≤ dmax. This results
in two inequalities per layer, leading to a total of 2N constraint functions.

The optimization problem is solved using a gradient-based numerical method, specifically the Method of Moving
Asymptotes (MMA) [27]. As a gradient-based approach, this requires the calculation of sensitivities for both the
objective function and the constraints. Since there are two FEM solves involved between the design variables
and the objective function, two adjoint steps need to be performed. The complete sensitivity analysis is detailed
in Appendix A.
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4 Implementation and Validation

In this section, the implementation of the method is described, focusing on the rationale for adopting
parallelization, assessing parallel performance, and presenting part of the code validation process.

While previous research on Fabrication Sequence Optimization [1], [15], [14] focused primarily on 2D
examples, this study aims to extend and evaluate the optimization method within 3D applications. Transitioning
from 2D to 3D significantly increases the problem’s scale, resulting in a large-scale computational challenge
[34], thus involving hundreds of thousands of elements or more. This scale intensifies both computation time
and memory requirements, quickly exceeding the capacity of standard workstations. To address these demands,
a parallelized implementation suitable for high-performance computing infrastructures was developed [31].

As a foundation for developing the fully parallel implementation of Fabrication Sequence Optimization with
Layer Thickness Control, existing solutions from the literature were leveraged. Specifically, Aage et al.’s [28]
well-known Density-based Topology Optimization framework in PETSc was used, as it offers a relatively
easy-to-use and portable code, built on the PETSc library for high-performance scientific computing. Although
the optimization problem in this research is not Density-based Topology Optimization, its formulation shares
similarities, making this framework a valuable starting point for the implementation.

Following the Topology Optimization in PETSc framework as example, the adopted parallelization strategy
is domain decomposition with Message Passage Interface (MPI). This strategy involves dividing the entire
discretized domain into smaller segments, with each processor or computing unit dedicated to handling
computations for a specific segment. The more each computation remain independent from the others, the less
the necessity for inter-processor communication will be, limiting the communication overhead that can hinder
overall performance, as introduced in Section 2-D1. PETSc is mainly based on distributed memory systems
and uses Message Passing Interface to manage communications between the nodes [33].

4-A Overview of Key Components and Their Interactions

This section provides a high-level overview of the main components in the optimization framework, focusing
on each class’s role and its interactions within the overall system. To streamline the implementation, several
components from the original framework were either fully or partially reused. For instance, the MMA class,
which implements a parallelized version of the Method of Moving Asymptotes [27], and the MPIIO class,
which manages binary output files, were directly integrated. Other elements, such as parts of the Initialization
class and sections of the LinearElasticity class for Finite Element Analysis, were adapted to meet specific
requirements.

Fig. 17: Overview of Classes and Key Methods in the Optimization Framework

In the main function, essential objects for the optimization process are instantiated, and the optimization loop
is orchestrated. Within this loop, various methods from different classes are invoked to handle each substep of
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the optimization. The main function also logs iteration details, manages the continuation of the parameter β,
and outputs intermediate results to a binary file every 15 iterations.

The ConfigurationManager class defines the primary optimization parameters and updates them through
runtime options if needed. It also sets up the results directory, generating a unique name based on the chosen
parameters. Additionally, the class provides the WriteIterationRecordFile method, which saves
quantitative data—such as objective values, constraint values, and execution timings—in a .json file.

The SeqOpt class maintains essential PETSc vector objects used in the optimization, including fields like
rho (ρ), k (κ), and t (t), as well as sensitivity vectors. This class is responsible for creating a structured grid
and defining the structural layout, stored in the rho vector. Additionally, it initializes the pseudo-time field
vector based on elements’ Euclidean distances in the z-direction, which is crucial for simulating planar layers
before entering the optimization loop. The class also provides methods for scaling objective and constraint
values before passing them to the MMA optimizer.

The HeatConduction class is responsible for solving the heat equation to produce the virtual temperature
field T , defined on grid nodes via the ComputeTimeFromHeatMethod. This temperature field is used to
directly calculate the layer uniformity objective and layer thickness constraints, and thus the class also manages
these computations. Specifically, the ComputeLayerThicknessObjectiveAndSensitivity method
evaluates both the layer uniformity objective and thickness constraints, along with their sensitivities, while the
AdjointMethod_dT_to_dk method maps sensitivities from the temperature field T to the design variables
κ. This class also provides two methods, AvgFilterField and AvgFilterFieldSensitivity, used
to average the design variables κ at the start of each optimization iteration.

The LinearElasticity class manages the objects and methods related to process simulation. Its main
method, ComputeObjectiveConstraintsAndSensitivities, takes the pseudo-time field as input,
executes the FEM routine to simulate the process, and computes the displacement field U . This displacement
field is then used to derive distortion measures, and the adjoint method is applied to obtain sensitivities of
the objective with respect to the pseudo-time field variables, which will then be mapped back to the design
variables κ through the same AdjointMethod_dT_to_dk cited above.

4-B Process Simulation Validation

To validate the correctness of the process simulation code, two tests based on relevant literature were
performed. The first test involved running a process simulation and comparing the results to a reference
implementation—the 2D MATLAB implementation used by Wang et al. [1] in the original Fabrication
Sequence Optimization work. The second test, similar in approach, compared the simulation results to a 3D
reference from the work of Munro et al. [22].

1) First Test
The first test was executed by simulating the additive manufacturing process of the V-shape from Wang
et al. [1]. In MATLAB, the domain with dimensions (x : 100mm, y : 100mm) was discretized using
a structured grid of 100 × 100 elements. In the 3D PETSc implementation, the 2D shape was extruded
in the third dimension to (x : 100mm, y : 100mm, z : 10mm) with a corresponding discretization of
100 × 100 × 10 elements. The process was simulated with N = 10 planar lumped layers. The material
properties were defined as Young’s modulus E = 110GPa, Poisson’s ratio ν = 0.3, and an inherent strain
vector ε = {−1× 10−2,−1× 10−2, 0.0, 0.0, 0.0, 0.0}.

As observed in Figure 18, the displacement fields produced by the two implementations are very similar.
Although primarily qualitative, this comparison validates the accuracy of the PETSc implementation. The
slight discrepancies in displacement values may be caused by minor differences in the shape of the overhang
region. The PETSc results is 3D, but only a 2D side-view is shown in the figure.

2) Second Test
In the second test the result taken as reference is from the work of Munro et al. [22]. In the reference study,
the simulation focuses on an Additive Manufacturing (AM) process for creating a 100 mm³ cube, divided into
1000 elements arranged in a 10x10x10 grid. This manufacturing process is carried out in 10 planar layers,
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Fig. 18: Comparison of the displacement field obtained using the MATLAB implementation and the PETSc
implementation. The MATLAB colorbar is in millimeters, while the PETSc results are displayed in meters.

with the base surface being fixed. The simulation employs the inherent strain method, assuming material
properties of E = 125 GPa and ν = 0.333. The inherent strain, denoted by ε, is isotropic, meaning each
element shrinks uniformly across the part in every direction. The specific value of ε is defined in the code as
{−5e−3,−5e−3,−5e−3, 0.0, 0.0, 0.0}, indicating uniform shrinkage in the x, y, and z directions without any
shear strain.

The reference study utilizes Abaqus (CalculiX) for the implementation, in particular employing the C3D8R
element type, which consists of hexahedral elements with linear shape functions and a reduced integration
scheme. Similar to the optimization method considered in this research, the layers in the referenced study are
considered lumped, and thus the simulation is comprised of 10 steps corresponding to the addition of the 10
discrete planar layers.

The same numerical experiment was performed using the PETSc implementation developed our research,
but with some differences in implementation. In this research’s process simulation, the layers are not treated
discretely; instead, they are extracted from the pseudo-time field through a smooth Heaviside projection. An
additional difference is that a full integration scheme is used in this research implementation. For reference,
the C3D8R elements used by Munro et al. utilize reduced integration and hourglass control [36], [37].

The results from this method’s implementation are compared to the reference paper in Figure 19.

Fig. 19: Comparison between the results of Munro et al. [22] and those obtained through the PETSc
implementation. The results designated by B) represent the reference results, while those designated by A)
are produced using the implementation developed in this research.

The results shown in Figure 19 appear to match, confirming the validity of the PETSc implementation. However,
slight differences in the deformation shape are visible, likely attributable to the use of reduced integration with
hourglass control in Munro’s work [22], instead of the full integration used in this research’s implementation.

4-C Sensitivity Analysis Validation

In order to verify the correctness of the implemented analytical sensitivity calculation (detailed in Appendix
A), a finite difference test has been carried out. The finite difference test compares, for different perturbation
steps h, the percentage error between the analytically computed sensitivity and the one computed through
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Fig. 20: Plots of the finite differences sensitivities check

finite difference. The perturbation is applied to the diffusivity value κe of a single element in the domain. The
expression used to compute the error is provided in the following Equation 48.

Error =
|Sanalytical − Sfinite difference|

|Sanalytical|
× 100, (48)

A reduced-dimensional problem has been used with a full density domain of size 2× 2× 2 and a discretization
of 10× 10× 10 elements. The number of layers N is set to 4, with βt fixed at 10 and α = 1. The perturbation
steps range between 101 and 10−3.95, covering 4 decades with 20 logarithmically spaced substeps per decade.
The plots in Figure 20 successfully validate the sensitivity analysis. It is important to note that, while there
are 8 constraints in total, their sensitivities occur in identical pairs. As a result, only 4 unique constraints are
displayed. The objective represent the combined distortion and uniformity objective.
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5 Numerical Results

The method was implemented in C++ utilizing the PETSc library. This section presents a series of
numerical experiments aimed at characterizing the method’s behavior. Following the approach outlined in
the Part Discretization section, trilinear hexahedral elements were used. The analysis will primarily focus
on qualitative aspects, with material properties chosen for illustrative purposes. Specifically, all the part
dimensions, and displacement magnitudes in the plots are defined in meters [m], while the material is
defined by a Young’s modulus of E = 1[Pa], a Poisson’s ratio of 0.3, and isotropic inherent strains of
ε∗ = {−1 × 10−2,−1 × 10−2,−1 × 10−2, 0.0, 0.0, 0.0}. The final subsection is dedicated to an analysis of
parallel performance, emphasizing scalability.

5-A Characterizing Optimization Behavior Across Various Part Geometries

The first three numerical results, conducted with similar optimization settings, illustrate the method’s behavior
across different part geometries. The parts shown in Figure 21 — labeled from left to right as V-Shape,
Bracket Shape, and Asymmetric Shape — were inspired by Wang et al. [1] to highlight varying characteristics
of the method. In each case, a Dirichlet boundary condition is applied to the nodes on the base face of the
part, fixing them to the build plate (shown in red in Figure 21). The distortion metric used across all examples
follows the formulation in Equation 31, with the selected node group m visualized in aquamarine in Figure
21. Every experiment is run for a total of 400 iterations.

Additionally, a continuation scheme for the projection sharpness parameter βt was employed across all examples,
initialized at 10 and increased by 20 every 15 iterations. Both the Layer Uniformity Objective and Distortion
Objective are normalized by dividing their values by their respective values from the first iteration and
multiplying the result by 100, ensuring that both objectives start at a value of 100. Subsequently, the relative
weight parameter α from Equation 41 is applied to the normalized Layer Uniformity Objective as shown in
Equation 41. In this subsection’s experiments α is always set to 1.

Fig. 21: Display of geometries used in the first three numerical experiments: A) V-Shape, B) Bracket Shape, and
C) Asymmetric Shape. The image highlights the base-plate (in red), which imposes a fixed boundary condition
on the nodes at the bottom face of each geometry. Nodes considered in the distortion measurements used as
objectives are shown in aquamarine.

1) V-Shaped Component
The first test was conducted on a V-Shape model, inspired by one of the 2D geometries employed by Wang et
al. [1], but extruded into the third dimension. The domain measures 2 × 1 × 2, discretized into 80 × 40 × 80
elements, with nodes on the build plate constrained as fixed. In this example, the distortion measure considers
the displacement of the nodes belonging to the top-right edge, as illustrated in Figure 21A. The target layer
thickness is set to dtar = 0.1, making N = 25 a reasonable choice for the number of prescribed layers for the
optimization. This estimate is based on the part’s dimensions, following a similar approach to the formula
introduced by Wang et al. [1], N ≈ lc

dtar
, in which lc is the characteristic length of the structural layout. The

relationship between dtar and the upper and lower thickness bounds, dmax and dmin, is detailed in Section 3-H.
To ensure a fair comparison between planar and optimized layer fabrication, only 20 layers are used in the
planar case, as fewer layers with thickness dtar = 0.1 fit along the z-axis.

As shown in Figure 22, the method successfully produces a fabrication sequence that minimizes the distortion
objective while maintaining uniform layer thickness. Specifically the distortion objective is reduced from
3.9 × 10−1 in the planar fabrication case, to 7.9 × 10−4 in the optimized case. Additionally, the average
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Fig. 22: Comparison between two fabrication sequences: planar layers on the left and optimized layers on
the right. The displacement fields from the process simulation demonstrate the effectiveness of the optimized
fabrication sequence in minimizing the displacement of the top edge nodes, compared to the planar fabrication
case.

thickness of each layer is controlled within specified upper and lower bounds. Variations in thickness within
each layer are minimized but permitted to achieve curved layer shapes. A close examination of the optimized
sequence reveals a distinctive feature of this method. Unlike previous formulations, this approach allows layer
volumes to diminish. Consequently, only 24 of the 25 prescribed layers are present in the optimized sequence.
This reduction does not compromise the process simulation, as a small constant (1 × 10−9) is added to the
element density values ρe during layer extraction via Heaviside projection, to avoid numerical problems, while
rendering disappearing layers practically non-influential on the displacement field.

Fig. 23: Comparison of optimized fabrication sequences obtained using different method formulations. A)
Sequence generated with the original formulation by Wang et al. [1], with added thermal regularization as per
Wang et al. [15]. B) Sequence obtained using the A) formulation, though with the addition of the uniformity
objective (Equation 34). C) Sequence produced using the complete formulation presented in this study.

To better understand the effect of each component in this optimization problem formulation (Section 3-I), two
additional numerical experiments with different formulations were conducted on the same geometry:

The first employed formulation (Formulation 1), is the original approach by Wang et al. [1], with the addition
of thermal regularization from Wang et al. [15]. In this version, the Continuity Constraint is removed, as the
continuity of the scalar field is inherently maintained by the thermal regularization. This formulation does not
employ layer thickness constraints; instead, Speed Constraints are used. These constraints ensure that the same
amount of material is deposited within equal time intervals, as represented by Equation 49, where V ∗ denote
the total volume of the component. Given that the number of layers is prescribed as N , the cumulative volume
up to the j-th layer is j

N V ∗. This constraint is also employed to avoid the shrinkage o layers.

V j(t) =
∑
e

ρje(te) · ve =
j

N
V ∗, j = 1, . . . , N, (49)

As observed in Figure 23A, while this formulation successfully minimizes the objective to 8.3 × 10−5, it
produces a sequence that is challenging to manufacture. The layers exhibit highly irregular geometry with
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substantial thickness variations, which, additionally, complicates post-processing for visualization purposes.

The second formulation (Formulation 2) closely resembles the one used for the first example shown in
Figure 23A, but with the addition of the Uniformity Objective introduced in Equation 34. The resulting
sequence, displayed in Figure 23B, shows significantly more regular layers compared to the first case. While
the thickness within each layer is now uniform, there is a high variability in the average thickness between
layers across the entire sequence, allowing different layers to have different average thickness values. The
third formulation (Formulation 3), instead, is the complete one, thus employing the Uniformity Objective and
the Layer Thickness Constraint, but not the Speed Constraints. The results, are shown both in Figure 22 and
Figure 23.

To quantitatively assess the impact of layer thickness constraints in the complete formulation (Formulation
3), a comparative analysis was performed against the formulation that includes only the uniformity objective
(Formulation 2). In this analysis, the average thickness value and the thickness variance for each layer were
geometrically computed in a post-processing step and compared between the two formulations. Specifically,
layer boundaries were extracted as isosurfaces from the two optimized fabrication sequences. From each
isosurface, a group of 1,000 points was sampled. For every sampled point, the distance to the closest point
on the subsequent isosurface in the sequence was calculated. These distances were then used to compute the
average thickness and thickness variance, providing a quantitative measure of layer uniformity.

This process is schematically illustrated in Figure 24, where two consecutive isosurfaces are denoted as Ωj

and Ωi. To prevent erroneous thickness calculations in cases where the two surfaces have significantly different
areas, an approximation was applied: if the distance between two points exceeds 30% of the target thickness dtar,
the point is discarded, and a new point is sampled to maintain accuracy. From the plot in Figure 24, it can be
observed that, in the case without thickness constraints, the variance of the thickness within individual layers is
comparable to that in the complete formulation. However, the average layer thickness varies significantly across
the sequence, highlighting the need for thickness constraints to ensure consistency throughout the fabrication
process. In this analysis, the first and last layers are excluded due to challenges in accurately extracting their
bounding isosurfaces. However, this exclusion does not compromise the validity of the analysis.

Fig. 24: Comparison between Formulation 2 and Formulation 3. The left image provides a schematic
representation of the distance calculation process between consecutive isosurfaces. The middle image presents
a plot comparing the average thickness and variance for each layer in the two formulations. The right image
shows a side view of the resulting sequences, with A corresponding to Formulation 2 and B to Formulation 3.

2) Bracket-Shaped Component
A second test was performed on a 2D Bracket Shape model from Wang et al. [1], extruded into the third
dimension. The domain measures 3 × 1 × 2, discretized with 120 × 40 × 80 elements. Nodes on the build
plate are constrained as fixed. The number of prescribed layers is set to N = 30 with a target thickness of
dtar = 0.07. The distortion measure in this example considers the displacement of the nodes belonging to the
bracket hole, as shown in Figure 21B.

The distortion objective was successfully minimized from 1.98×101 in the planar fabrication case to 6.12×10−1

, as shown in the displacement fields in Figure 25. The convergence of the optimization process is depicted
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Fig. 25: Comparison of displacement fields computed through process simulation for two Fabrication Sequences:
Planar layers (left) and optimized free-form layers (middle). Side view of the optimized fabrication sequence
for the bracket shape (right)

in Figure 26, which displays the trends for both the Uniformity and Distortion objectives. The values in the
plot are normalized relative to the highest value assumed by their respective objectives during the optimization.
However, note that the initial value (corresponding to iteration 1) in the plot does not correspond to the planar
fabrication case. The visualization in Figure 26 enable a qualitative analysis of the manufacturability of the
resulting sequence. Each layer appears to have a uniform thickness within itself, with thickness values consistent
across the whole sequence, satisfying the Uniformity Objective and Layer Thickness Constraints. Also in this
case, while the total number of layers for optimization is predefined at N = 30, the optimized sequence includes
only 28 layers.

Fig. 26: Visualization of the optimized fabrication sequence, highlighting the features of the last layers (left).
Convergence plot of the Uniformity and Distortion objectives (right), both normalized by their respective
maximum values recorded during the optimization iterations.

To better appreciate the layers shapes, in Figure 27, 10 out of 30 manufacturing steps are displayed.

Fig. 27: Visualization of 10 different stages of the optimized fabrication sequence for the bracket shape
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3) Asymmetric Shaped Component
Another notable result arises from the asymmetric shape (Figure 21C), selected specifically to test the
method’s performance on a more complex geometry. The domain of this part measures 3 × 1 × 2 and
is discretized with 120 × 40 × 80 elements. Nodes on the build plate are constrained as fixed. The
target layer thickness is dtar = 0.07 and the number of prescribed layers is set to N = 30. In this example,
distortion is measured by tracking the displacement of nodes along the top-right edge, as illustrated in Figure 21.

Figures 28 shows the optimized sequence. Similar to the previous example, the optimized sequence consists of
only 28 layers instead of the prescribed 30. In the figure attention is drawn to several internal layers, where
a prominent concavity is observed. Moreover, the figure displays the convergence plot for the optimization,
normalized similarly to the one shown for the previous numerical experiment. The distortion objective is
successfully minimized from the planar case 9.66 × 10−1 to 9.2 × 10−4 in the optimized case, as can be
observed from the displacement field in Figure 29.

Fig. 28: Left Image: Optimized sequence of layers for the Asymmetric Shape. The blue boxes highlight features
in the layers that may pose manufacturing challenges. The numbers represent the relative order of deposition
of the highlighted layers. Right Image: Convergence plot of the Uniformity and Distortion objectives, both
normalized by their respective maximum values recorded during the optimization iterations.

Fig. 29: Comparison of displacement fields computed through process simulation for two Fabrication Sequences:
planar layers (left) and optimized free-form layer (middle). Side view of the optimized fabrication sequence for
the asymmetric shape (right)

4) Comments on the manufacturability of the first three numerical examples
In the first three numerical examples presented, specific layer features have been highlighted using blue square
boxes, as shown in Figures 28, 29, and 26. These features illustrate potential unresolved challenges in the
Fabrication Sequence Optimization method. Specifically, in both the bracket shape and asymmetric shape cases,
the optimizer generated layers with significant concavities (Figure 28) or layers requiring material deposition in
tight spaces (Figures 29, 26). If not addressed appropriately, these scenarios could result in collisions between the
printhead and the already deposited material during the manufacturing process. In this study, manufacturability
aspect, other than layer uniformity, have not been considered.
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5-B Parameter Study - Relative Weight Coefficient Between Objectives

As shown in Equation 41, the objective to be minimized consists of two components: the Distortion Objective
and the Uniformity Objective. The relative weight between these components is controlled by the parameter α,
where a higher value of α prioritizes uniformity over distortion minimization. The geometry used in this study
is inspired by the reversed L-shape utilized by Lansu [14] to ensure continuity between the two studies. The
domain of this part measures 3×1×2 and is discretized with 120×40×80 elements. The target layer thickness
is dtar = 0.2, with a prescribed number of layers N = 20. The parameter βt is initialized at 30 and increased
by 20 every 15 iterations with a continuation scheme. As shown in Figure 30, the build plate remains fixed, as
in the previous numerical experiments. The nodes considered for the distortion objective are those belonging
to the top-right and top-left edges, highlighted in aquamarine in the figure.

Fig. 30: Numerical experiment on the L-shape geometry to assess the influence of the α parameter on the
optimization results. The boundary conditions and the nodes considered for the distortion objective are shown
on the left, while the four optimization results corresponding to different α values are displayed on the right.

Fig. 31: (A) Visualization of the gradient magnitude field within layer 14. As α increases, the gradients become
more uniform, resulting in a more regular layer shape. (B) Plot of the normalized distortion objective and
normalized uniformity objective against the α parameter, highlighting the trade-off between uniformity and
distortion minimization.

The results of this parameter study are presented in Figures 30 and 31. The distortion objective values for varying
α demonstrate a clear trade-off between distortion minimization and layer uniformity as shown in Figure 31.
For α = 0.01, the distortion objective is 1.17× 10−2, increasing to 1.94× 10−2 for α = 0.1, 2.93× 10−2 for
α = 1, and 3.77×10−2 for α = 10. This trend indicates that as α increases, the optimization process prioritizes
uniformity, resulting in higher distortion values. In comparison, the planar fabrication approach produces a
significantly larger distortion objective of 3.54, confirming the effectiveness of the proposed optimization method
in reducing deformation across all α values.
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In the left image of Figure 31, the focus is on an example layer (layer 14). The visualization highlights the
gradient magnitude distribution across the layer for different α values. For smaller α values, the variation is
higher, leading to a less regular layer shape, while larger α values result in smoother gradients and more
uniform shapes.

To further analyze this trend, a quantitative evaluation was conducted by measuring the average layer thickness
geometrically, following a method similar to that described in Section 5-A1. The results, shown in Figure 32,
indicate that the variance generally decreases with increasing α values for most layers, though some layers
deviate from this trend. Based on these results, a reasonable compromise appears to be achieved by using α
values between 0.1 and 1. From the figures, it can also be observed that, similar to previous cases, the final
number of layers in most of the 4 sequences is 17, instead of the prescribed 20.

Fig. 32: Left: Plot of the geometrically computed average thickness value for each layer across various α values.
Right: Plot of the geometrically computed layer thickness variance for each layer across various α values.
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5-C Optimizing using fewer layers

In the proposed formulation, the Uniformity Objective (Equation 34) encourages uniformity in the gradient
magnitude within each layer. For a given layer j corresponding to the time interval [Tj−1, Tj ], subdividing
this interval into n smaller sub-intervals effectively defines additional layers. Due to the enforced gradient
magnitude uniformity, the newly created layers will also exhibit consistent gradient values and, consequently,
uniform thickness. This approach can be leveraged to perform Fabrication Sequence Optimizations with a
reduced number of layers and subsequently, in a post-processing step, extract the desired number of layers
with the required thickness from the optimized pseudo-time field.

To test this hypothesis, three numerical experiments were conducted using the same part geometry—specifically,
the V-shape introduced in Section 5-A1. The part uses the same boundary conditions and distortion measure
as in the experiment described in Section 5-A1. The domain of this part measures 2× 1× 2 and is discretized
with 80× 40× 80 elements. The parameter βt is initialized at 10 and increases by 20 every 15 iterations using
a continuation scheme. The experiments varied the number of layers used during the optimization process: 10
layers, 20 layers, and 40 layers. The target layer thickness is dtar = 0.2 for the 10 layers case, dtar = 0.1 for the
20 layers case, and dtar = 0.05 for the 40 layers case. After 400 optimization iterations, a post-processing step
was applied to extract and simulate the process with 40 layers from each of the three optimized pseudo-time
fields. The geometric properties of the layers and the corresponding distortion minimization performances are
analyzed. The results can be observed in Figure 33 and Table I. For this analysis, the side view of the optimized
Fabrication Sequence is sufficient.

Fig. 33: Side view of optimized Fabrication Sequences obtained with different numbers of prescribed layers.
A) and B) Sequence obtained with 10 prescribed layers and a sequence of 40 layers derived through a post-
processing step from the 10-layer sequence. C) and D) Sequence obtained with 20 prescribed layers and a
sequence of 40 layers derived through a post-processing step from the 20-layer sequence. E) Sequence optimized
directly with 40 prescribed layers.

Figure 33 confirms the expectations. In all the analyzed cases, the sequences obtained through the post-
processing step appear to be uniform and maintain a controlled thickness value in each layer. Table I presents
quantitative metrics, from which it can be observed that the average thickness remains approximately constant
across all three cases (d = 0.048). Interestingly, the average thickness variance in the sequences obtained through
post-processing is actually lower. This observation can be explained by considering Equation 41, where the
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Original N of Layers Avg. Variance (40 Layers) Avg. Thickness (m) Obj. Value (40 Layers) Orig. Obj. Value

Planar Case: 40 0.00 5.00× 10−2 7.04× 10−1 7.04× 10−1

10 3.38× 10−3 4.80× 10−2 1.43× 10−2 1.09× 10−2

20 3.65× 10−3 4.80× 10−2 4.31× 10−3 3.97× 10−3

40 3.82× 10−3 4.79× 10−2 2.00× 10−3 2.00× 10−3

TABLE I: Data representative of the optimized sequence properties, such as distortion objective value and
geometrically approximated thickness.

Uniformity Objective term is computed by summing across all stages, the sum of squared deviations of the
gradient’s magnitude. Since the uniformity objective is firstly scaled to a constant value (100) before being
multiplied by alpha, as the number of prescribed layers N increases during the optimization, the relative weight
of each layer’s uniformity objective diminishes in comparison to the distortion objective. The distortion objective
obtained by simulating the process with 40 layers from each optimized sequence is 1.434× 10−2 for the case
optimized with 10 layers, 4.31×10−3 for the case optimized with 20 layers, and 2×10−3 for the case optimized
with 40 layers, all significantly lower compared to planar fabrication with 40 layers which lead to a distortion
objective of 7.04× 10−1.
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5-D Code Performance Metrics

While PETSc accelerates the development process by abstracting certain implementation details, this abstraction
reduces the user’s direct control over the parallelization. Although the main objective was to enable large-scale
3D simulations to run within a reasonable timeframe, a deeper assessment of parallel performance can inform
future improvements. Thus, a performance evaluation was conducted to gauge the quality of the current
implementation, with a focus on speedup and scalability. These metrics reveal how effectively the code scales
as computational resources increase for a fixed-size problem, shedding light on both the achievable gains and
inherent limitations within the current parallel setup. All the numerical experiments were run on the same
node consisting of 4 Intel Xeon Gold 6150 CPU for a total of 72 physical cores, running at 2.70 GHz on an
x86 64 architecture, and equipped with a 25 MB L3 cache. As an initial performance measure, the numerical
experiments detailed in Section 5-A, ran on the just described hardware, took approximately 13 hours for the
V-Shape simulation and 30 hours for the other two shapes, each running for 400 iterations.

1) Problem Definition and Baseline Selection
The benchmark problem used in this analysis is the V-shaped part from Section 5-A1, discretized with
80×40×80 elements. This setup is consistent with prior test example and chosen for computational relevance.

The code was executed across different processor counts, with n ∈ {1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72}.
Each run consisted of 20 optimization loop iterations, recording timing data at each step. To account for
initialization effects (e.g., cache setup), we analyzed only the last 10 iterations, representing a more steady-state
performance. While timing was collected for runs beginning with a single core (n = 1), our analysis uses 4
cores as the baseline for performance comparisons. This choice aligns with the practical considerations of
parallel performance studies. According to theory[38], a serial optimized version of the code, run on a single
core should ideally be used as a reference. However, in this case, where such a version is unavailable, we
use 4 cores as a baseline to provide a more realistic view of code scaling in real-world scenarios. Running
a parallelized code on a single core can introduce non-representative overheads related to setup and parallel
configuration costs, which might lead to an overestimation of the performances.

Fig. 34: Scalability plot showing total iteration time
on the y-axis versus the number of processors on the
x-axis. A strong scalability analysis assumes a fixed
problem size.

np T (np) [s] S(np) E(np)
4 568.36 1.00 0.2500
8 317.19 1.79 0.2239
16 131.73 4.31 0.2697
24 92.54 6.14 0.2559
32 75.99 7.48 0.2337
40 67.68 8.40 0.2099
48 63.87 8.90 0.1854
56 66.47 8.55 0.1527
64 65.84 8.63 0.1349
72 55.49 10.24 0.1422

TABLE 2: Execution time, speedup, and efficiency
values for an increasing number of processors with a
fixed problem size.

The total iteration time, T (np) reported in Table 4, represents the average runtime required to complete an
optimization loop iteration on np cores. As shown in Figure 34, T (np) decreases as the number of cores
increases. Starting at 568.36 seconds on 4 cores, the runtime reduces to 55.49 seconds on 72 cores—a
reduction of approximately 90.2%. However, this reduction is nonlinear; instead, we observe diminishing
returns at higher core counts. For instance, moving from 4 to 8 cores decreases the iteration time by 44.2%
(from 568.36 to 317.19 seconds), whereas increasing from 32 to 64 cores results in only a 13.4% reduction
(from 75.99 to 65.84 seconds).

This pattern of diminishing returns is typical in parallel computing, often attributed to the non-parallelizable
(serial) portion of the algorithm and additional overhead, such as communication and synchronization costs.
Beyond a certain point, adding more cores minimally impacts runtime reduction. This trend follows Amdahl’s
Law [39], which provides a speedup formula accounting for the serial portion of the code. According to
Amdahl’s Law, as the core count increases, the influence of non-parallelizable code becomes more significant,
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leading to an asymptotic limit on achievable speedup. This behavior is evident in the speedup plot in Figure 35.

Fig. 35: Scalability plot showing speedup on the y-
axis versus the number of processors on the x-axis.

Fig. 36: Scalability plot showing efficiency on the y-
axis versus the number of processors on the x-axis.

The speedup metric, S(np), quantifies the performance gain from increasing the core count and is calculated
as:

S(np) =
T (4)

T (np)
(50)

where T (4) is the runtime on the 4-core baseline, and T (np) is the runtime on np cores. This metric provides
insight into how effectively the code scales with more cores. Analyzing the plot in Figure 35, we observe that
speedup initially follows a reasonable trend: at 8 cores, speedup is 1.79, close to the ideal 2.00, and at 16
cores, speedup reaches 4.31, slightly surpassing the ideal of 4.00. This suggests the code benefits substantially
from parallelization up to 16 cores, likely due to efficient workload distribution and minimal parallel overhead.
However, as core count increases, speedup begins to diverge from the ideal linear growth. For instance, at 32
cores, the speedup is only 7.48 compared to the ideal 8.00. This gap becomes even more pronounced at 72
cores, where speedup reaches just 10.24, falling significantly short of the ideal 18.00. This discrepancy indicates
both the presence of serial code that limits scalability and the impact of overhead costs that grow with core count.

To better understand the scalability limiting factors of a parallel implementations, Karp and Flatt [40] introduced
the effective serial portion metric f , defined by the formula:

f =

1
S(np)

− 1
np

1− 1
np

(51)

This metric effectively reveals whether the decrease in efficiency is primarily caused by the non-parallelizable
portion of the code or by other factors, such as load imbalance, communication costs, and synchronization
overheads.

Table 3 presents the effective serial fraction f calculated using the Karp-Flatt metric for varying processor
counts np and observed speedups S(np). The serial fraction f decreases as the number of processors increases,
stabilizing at around 0.081.

This behavior suggests that the primary limitation on further speedup lies in the serial portion of the code
rather than in overhead from communication, synchronization, or load imbalance. As f stabilizes, adding more
processors provides diminishing returns, since the remaining non-parallelizable part of the code constrains
speedup gains. This observation aligns with Amdahl’s Law, indicating that to achieve further improvements,
efforts should focus on optimizing or reducing the serial fraction of the code. The stable serial fraction thus
seems to highlight the inherent limits of parallelism for this particular workload.
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Fig. 37: Execution time of various code sub-components
(y-axis) plotted against the number of layers used in the
optimization (x-axis).

np S(np) f

8 1.79 0.496
16 4.31 0.181
24 6.14 0.126
32 7.48 0.106
40 8.40 0.092
48 8.90 0.086
56 8.55 0.084
64 8.63 0.083
72 10.24 0.081

TABLE 3: Speedup and effective se-
rial fraction f , calculated using the
Karp-Flatt metric for varying processor
counts np.

Another test has been conducted to test the scalability of the implementation for increasing number of
manufacturing process stages which can be visualized in the plot in Figure 37. As the number of layers N
increases, runtime components respond differently, reflecting distinct scaling behaviors. Heat Adjoint and Layer
Thickness Control (LTC) times per layer remain stable, indicating linear scaling, as these processes handle
each additional layer with minimal added complexity. Linear Elasticity (Primal and Adjoint) times per layer
also scale linearly with N , showing only a slight rise, suggesting manageable per-layer costs as N grows.
In contrast, MMA time per layer grows significantly with N , showing superlinear scaling. This suggests that,
unlike the other components, MMA complexity escalates with more layers, driving the total iteration time
upward and indicating that this component may limit scalability as layers increase.

In Table 4 results are shown about a timing analysis focused on evaluating the component-level performance.
Timings over the course of multiple iterations are used to obtain reliable averages, and understand the
relative computational cost associated with each component, aiding in the identification of the distribution of
computational effort across the optimization workflow. This timing experiment was run with 16 cores as this
configuration demonstrated the highest computational efficiency.

Component Avg Time (s) Percent Total

Heat Primal Time 0.078 0.059%
Elasticity Primal Time 28.508 21.642%
Elasticity Adjoint Time 63.006 47.831%
LTC Time 0.135 0.102%
Heat Adjoint Time 2.482 1.884%
MMA Optimization Time 37.117 28.178%

TABLE 4: Table listing the execution time of different code subcomponents and the percentage of total iteration
time each component takes.

In this implementation, a key aspect is the assembly of the Stiffness Matrix K for process simulation. Matrix
assembly is resource-intensive, and here 2×N matrices need to be constructed. While storing these matrices
for reuse in the adjoint solve step would be efficient, it would also lead to high memory demands. To balance
memory use, only one stiffness matrix is stored at a time, which lowers memory requirements but slows down
overall performance.

2) Comparison with Wang et al. [1], 3D MATLAB implementation performances
This subsection presents a direct comparison of execution time between the current PETSc-based implementation
and the MATLAB implementation described in Wang et al. [1]. The asymmetric shape numerical example used
in Wang’s work has been adopted for this comparison. The part domain measures 3×1×2 and is discretized into
60×20×40 elements. Nodes on the build plate are fixed, and the number of prescribed layers is set to N = 10.

There are slight differences between the two optimization problems. Specifically, Wang’s formulation, as
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introduced in Section 2-C1, includes a Continuity Constraint and a Manufacturing Speed Constraint, whereas
the current optimization employs only Layer Thickness Constraints and a modified objective incorporating the
Layer Uniformity term. Additionally, Wang’s optimization evaluates distortion based on the flatness of the top
surface, while the current approach measures distortion as the displacement of the top-right and top-left edges,
similar to the numerical experiment in Subsection 5-B.

Furthermore, the current approach incorporates the Thermal Regularization Method, which accounts for
approximately 2% of the total computation time. However, as observed in Table 4, the majority of computation
time is consumed by components shared between both approaches. This overlap makes the comparison of
execution times between the MATLAB and PETSc implementations valid.

Fig. 38: Optimization results obtained using the MATLAB implementation and formulation from Wang et al.
[1] (left) compared to the optimization results using the current method with the PETSc implementation (right).

In the study by Wang et al. [1], the authors report a total execution time of slightly less than 15 h for 400
optimization loop iterations. Using the PETSc implementation with 72 cores, the total execution time for the
same number of iterations was approximately 1.31 h. Compared to the reference execution time of 15 h, this
represents about 8.74% of the total, indicating a significant speedup, of approximately 11.44×. While the
amount of core used is 72, from the knowledge gained in the efficiency study, and considering the smaller mesh
dimensions, the same performances could have been probably achieved with a smaller number of processors.
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6 Conclusion

This research presented a novel 3D computational framework for optimizing fabrication sequences in multi-
axis additive manufacturing, specifically targeting layer thickness control and reduction of process-induced
deformations. The proposed framework successfully produced fabrication sequences that minimize deformation
while improving manufacturability. Compared to previously developed formulations, such as Lansu’s 2D
method [14], the approach presented here simplifies the formulation, increasing the confidence on its robustness.

The integration of the thermal regularization method for the pseudo-time field computation proved crucial
in eliminating local minima, thus leading to improved convergence and manufacturability. Robustness was
demonstrated across various part geometries, confirming that the method is versatile and can be readily adapted
for different structural layouts. The parallel implementation using the PETSc library demonstrated a significant
computational speed-up, allowing efficient evaluation of large-scale numerical experiments and establishing a
solid foundation for future experimental validation.

A quantitative assessment of the parallel performance confirmed linear scaling of iteration time with respect
to the number of prescribed layers, N . This linear relationship is critical since, in practical manufacturing
scenarios, N could be much larger than the values used in this study, potentially posing a challenge from
a computational perspective. Fortunately, two promising methods exist to mitigate this. First, leveraging
the approach by Wang et al. [1], combined with Munro et al.’s [22] work, allows for parallel computation
of the N linear system solves in the process simualtion step. This could be integrated with the domain
decomposition approach already used in this research, potentially yielding substantial speed improvements.
The second approach explored here involves optimizing the sequence with a reduced number of layers and
subsequently increasing the layer count during a post-processing step. Although this approach results in
marginally higher distortion objective values, it proved feasible, satisfying layer thickness constraints while
maintaining good layer uniformity. Importantly, distortion values remained significantly lower than those
observed for conventional planar fabrication.

The experiment with reduced layer count also highlighted possible improvements regarding objective scaling.
Specifically, as the number of manufacturing stages increases, the relative influence of the each layer
uniformity objective diminishes compared to the distortion objective. Future work should address ensuring
scale-independent weighting to maintain uniformity control across varying manufacturing scenarios.

However, some limitations persist. Controlling the thickness of the last fabricated layer remains problematic,
often resulting in greater variability. Additionally, practical considerations such as collision detection between
the printhead and deposited material have not yet been addressed, potentially impacting manufacturability in
real-world applications. The current layer uniformity objective is based on the sum of squared deviations of
the time field gradient magnitudes from the mean value, a metric that tends to increase for layers with more
elements, possibly biasing the optimization. Introducing a true variance metric may offer improvements in
achieving uniformity across layers. Further, while the method showed robustness across different geometries,
only a limited set was explored; more complex and topology-optimized components should be considered in
future studies for more comprehensive numerical validation.

Future work will aim to address these challenges. Integrating collision detection into fabrication sequence
planning would further improve manufacturability and enhance the method’s applicability in real-world
environments. Enhancing control over the final layer’s thickness will also be essential for achieving consistent
predictable behavior. A key next step involves experimental validation to establish the practical feasibility of
the proposed optimization framework and to verify its advantages over conventional planning strategies. Lastly,
moving beyond the inherent strain method towards more comprehensive process simulations could significantly
improve the accuracy of deformation predictions.
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A Appendix A
Sensitivity Analysis

A-A Sensitivity of the Distortion Objective

Ldist(κ) = u⊤Qu

Note: In the following equations, u, K{j}, ∆u{j}, and f{j} are functions of κ, but for brevity, the dependency
is not shown explicitly.

The sensitivity is calculated using the adjoint method by adding an augmented Lagrangian term.

L = Ldist + λ⊤(KTT − b)

In the equation above, KT is the global system matrix relative to the static-heat transfer FEM, T is the nodal
temperature vector, and b is the thermal load vector corresponding to the boundary condition.
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Recalling that t = 1−GT :
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By choosing λ such that the first term is equal to zero, the sensitivity expression can be simplified as follows:

−
(
∂Ldist

∂t

)⊤

G+ λ⊤KT = 0 → ∂L

∂κe
= λ⊤ ∂KT

∂κe
T

To be able to solve the adjoint equation for the Lagrangian multiplier λ, the derivative of Ldist with respect to
the time field t needs to be calculated. To do so, another adjoint problem has to be solved, thus the expression
is augmented with a new Lagrangian term γ.

L = u⊤Qu+

N∑
j=1

γ⊤
j

(
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Factoring the terms to isolate those that multiply the direct derivative of the state with respect to the design
variables, we arrive at:
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From this expression, we can identify the adjoint problem, which leads us to a simpler expression for the
sensitivities.

K{j}γj + 2Q⊤u = 0 → K{j}γj = −2Q⊤u, j = 1, 2, . . . , N

∂L

∂te
=

N∑
j=1

γ⊤
j

(
∂K{j}

∂te
∆u{j} − ∂f{j}

∂te

)

Recalling that the stiffness matrix for each element K{j}
e is obtained through the Solid Isotropic Material with

Penalisation (SIMP) method, and that the forcing vector for each element f
{j}
e is also obtained through a

penalization scheme:

K{j}
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Since both ρ
{j}
e and ∆ρ

{j}
e depend on te, the chain rule is applied for the derivatives with respect to te.
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The derivatives ∂ρ{j}
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can be trivially derived from the equations displayed in Section 3-D. ∂K{j}
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The derivative of the heat stiffness matrix ∂KT

∂κe
instead can be trivially derived from 18.

In case an averaging step like the one in Equation 21 is used, thus the heat equation is solved using the averaged
diffusivities κavg, to obtain the sensitivities with respect to κ an extra matrix multiplication has to be performed:

∂f

∂κ
=

∂f

∂κavg

∂κavg

∂κ
→ ∂f

∂κavg
H = H⊤ ∂f

∂κavg

A-B Sensitivity of the Layer Uniformity Objective

The uniformity objective formulation, presented in the methodology section in Equation 34 is as follows,

Lunif =

N∑
j=1

Lj with Lj = ∆ρ{j} · (M −mj)
2, (52)
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Where, ∆ρ{j} represents the density distribution associated with the j-th layer and it is computed from
Equation 23, M represents the vector of gradient magnitudes, and mj is a vector of the same dimension as
M , with each element equal to the average gradient magnitude mj in the j-th layer. This formulation aims at
minimizing the sum of squared deviations of the gradient magnitudes within each layer.

To compute the sensitivity of the Uniformity Objective with respect to the diffusivities κ, the Adjoint method
is necessary also in this case, Thus an augmented lagrangian term is added to the objective:

L = Lunif + λ⊤(KTT − b)

Following similar step to above,

∂L

∂κe
=

∂Lunif

∂T

∂T

∂κe
+ λ⊤

(
∂KT

∂κe
T +KT

∂T

∂κe

)

∂L

∂κe
=

(
∂Lunif

∂T
+ λ⊤KT

)
∂T

∂κe
+ λ⊤ ∂KT

∂κe
T

By choosing λ such that the first term is equal to zero, the sensitivity expression can be simplified as follows:

∂Lunif

∂T
+ λ⊤KT = 0 → ∂L

∂κe
= λ⊤ ∂KT

∂κe
T

To be able to solve the adjoint equation for the Lagrangian multiplier λ, the derivative of Lunif with respect to
the virtual temperture field T needs to be calculated.

∂Lunif

∂T
=

N∑
j=1

∂Lj

∂T

∂Lj

∂T
=

(
∂∆ρ{j}

∂T

)⊤

(M −mj)
2 +

{[
2(M −mj)⊙

∂M

∂T

]⊤
∆ρ{j}

}
− [2(M −mj)]

⊤
∆ρ{j} · ∂mj

∂T
.

The symbol ⊙ represent the point wise multiplication operation.

1) Derivative of M with respect to T
Remembering the definition of the elemental average gradient magnitude vector, where Gx, Gy , and Gz are
matrices used to combine the nodal virtual temperature value to compute respectively the x, y, and z components
of the gradient (as introduced in Section 3-G):

M =
√
u, u = Vx ⊙ Vx + Vy ⊙ Vy + Vz ⊙ Vz

Vx = GxT , Vy = GyT , Vz = GzT

∂M

∂T
=

(
1

2
√
u

)
⊙ 2(GxT ⊙Gx +GyT ⊙Gy +GzT ⊙Gz)
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2) Derivative of mj with respect to T
Remembering the definition of mj where ∆ρ{j} is computed through Equation 23:

mj =
M ·∆ρ{j}

1 ·∆ρ{j} ,

the derivative ∂mj

∂T can be decomposed in the computation of three terms, A, B and C.

∂mi

∂T
=

A−B

C

Where:

A =

(
∂M

∂T

⊤
∆ρ{j} +M⊤ ∂∆ρ{j}

∂T

)
(1⊤∆ρ{j})

B =
(
M⊤∆ρ{j}

)(∂∆ρ{j}

∂T

⊤

1

)

C =
(
1⊤∆ρ{j}

)2
3) Derivative of ∆ρ{j} with respect to T
Recalling the methodology section, ∆ρ{j} is a vector of the same dimension as t, thus with one element for
every element in the discretization, defined as:

∆ρ{j} = ρ⊙
(
t̄{j} − t̄{j−1}

)
thus:

∂∆ρ{j}

∂T
= ρ⊙

(
∂t̄{j}

∂t
· ∂t

∂T
− ∂t̄{j−1}

∂t
· ∂t

∂T

)
Given that t = 1−G · T , the partial derivative of t with respect to T is:

∂t

∂T
= −G

Replacing this into the previous equation:

∂∆ρ{j}

∂T
= ρ⊙

[(
∂t̄{j}

∂t
− ∂t̄{j−1}

∂t

)
· (−G)

]

A-C Sensitivity of the Layer Thickness Constraint

Recalling the layer thickness constraint expression:

gj1(κ) : −dj + dmin ≤ 0,

gj2(κ) : dj − dmax ≤ 0, ∀j ∈ {1, . . . , N},

with
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dj =
Tj − Tj−1

mj
,

Similarly to the Distortion Objective and the Uniformity Objective sensitivities, in order to determine the
sensitivity of the layer thickness control, the adjoint method must be employed. Following the steps detailed in
the previous sections, the sensitivity expression for the constraints can be simplified to:

∂gj
∂T

+ λ⊤KT = 0 → ∂gj
∂κe

= λ⊤ ∂KT

∂κe
T ,

Thus, to solve the adjoint problem, the derivative of dj with respect to T needs to be computed and is given
by:

∂dj
∂T

= −Tj − Tj−1

m2
j

∂mj

∂T
.

Consequently, the derivatives of the constraints gj1(κ) and gj2(κ) with respect to T are:

∂gj1(κ)

∂T
= −∂dj

∂T
=

Tj − Tj−1

m2
j

∂mj

∂T
,

∂gj2(κ)

∂T
=

∂dj
∂T

= −Tj − Tj−1

m2
j

∂mj

∂T
,

where the calculation related to the term ∂mj

∂T has been detailed in the previous section.
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