
 
 

Delft University of Technology

A hybrid mimetic spectral element method for three-dimensional linear elasticity problems

Zhang, Yi; Fisser, Joël; Gerritsma, Marc

DOI
10.1016/j.jcp.2021.110179
Publication date
2021
Document Version
Final published version
Published in
Journal of Computational Physics

Citation (APA)
Zhang, Y., Fisser, J., & Gerritsma, M. (2021). A hybrid mimetic spectral element method for three-
dimensional linear elasticity problems. Journal of Computational Physics, 433, Article 110179.
https://doi.org/10.1016/j.jcp.2021.110179

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jcp.2021.110179
https://doi.org/10.1016/j.jcp.2021.110179


Journal of Computational Physics 433 (2021) 110179
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A hybrid mimetic spectral element method for 

three-dimensional linear elasticity problems

Yi Zhang ∗, Joël Fisser, Marc Gerritsma

Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS Delft, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 4 February 2021

Keywords:
Mimetic spectral element method
Hybridization
Domain decomposition
Variational principle
Lagrange multiplier
De Rham complex

We introduce a domain decomposition structure-preserving method based on a hybrid 
mimetic spectral element method for three-dimensional linear elasticity problems in 
curvilinear conforming structured meshes. The method is an equilibrium method which 
satisfies pointwise equilibrium of forces. The domain decomposition is established through 
hybridization which first allows for an inter-element normal stress discontinuity and then 
enforces the normal stress continuity using a Lagrange multiplier which turns out to be 
the displacement in the trace space. Dual basis functions are employed to simplify the 
discretization and to obtain a higher sparsity. Numerical tests supporting the method are 
presented.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Structure-preserving or mimetic methods are numerical methods that aim to preserve fundamental properties of the con-
tinuous problems, like conservation laws (for example equilibrium of forces in elasticity), at the discrete level. The mimetic 
spectral element method (MSEM) [1] is a novel arbitrary order mimetic method that usually uses the mixed formulation. 
It has been applied to, for instance, Stokes flow [2], the Poisson equation [3], the Grad-Shafranov equation [4], the shallow 
water equations [5], and, recently, linear elasticity [6]. The mixed formulation, together with high order methods, generally 
leads to large and dense matrices. This is particularly the case when one considers the three-dimensional mixed elasticity 
formulation which solves for three physical quantities, namely displacement, rotation and stress, simultaneously in a global 
discrete system. Displacement and rotation fields consist of three components while the stress tensor field has nine compo-
nents. This makes the MSEM an expensive method for three-dimensional linear elasticity. An effective way to overcome this 
drawback is to use the hybrid finite element method [7,8], a domain decomposition method which breaks up the problem 
into smaller sub-problems.

Within the world of mimetic methods we distinguish between various numerical methods. A particular branch of these 
methods is the mimetic finite difference methods, see [9] and its references. The virtual element method [10,11] is another 
way in which mimetic ideas are represented. In yet another branch the mathematical language of differential forms and 
similarities between differential forms and algebraic topology is exploited, [12,13]. A pioneering work of implementing 
these ideas in numerical analysis was first conducted by Bossavit [14] in computational electromagnetism. Later, a common 
framework of using differential forms and algebraic topology for mimetic discretizations was developed by Bochev and 
Hyman [15]. Some important contributions in the context of finite element discretizations were then made by Arnold, Falk 
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and Winther, [16,17]. The extension to spectral element methods is given by the MSEM. Initially, the MSEM was introduced 
using the mathematical language of differential forms, which is preferable but less popular than conventional vector/tensor 
calculus for the mathematical description of physics [18]. It is possible to translate the mathematical language of differential 
forms into vector/tensor calculus to reach a larger audience. The work in, e.g., [4,6] and the present paper are examples.

In solid mechanics, finite element methods are developed based on variational principles. In classic finite element meth-
ods, stiffness matrices representing the variational principle in elements are established and assembled. Elements are then 
coupled in the global stiffness matrix through the strong inter-element continuity. Unlike classic finite element methods, 
hybrid finite element methods first allow for an inter-element discontinuity and then impose the continuity with the help 
of a Lagrange multiplier [7]. This process is usually called hybridization. The first hybrid finite element method, the assumed 
stress hybrid method [19], was proposed by Pian in the 1960s. Other hybrid finite element methods in solid mechanics are, 
for example, the assumed displacement hybrid method [20] and the assumed stress-displacement hybrid mixed method 
[21]. The advantage of the addition of the extra continuity equation with the associated Lagrange multiplier is that it may 
be possible to solve for the interface Lagrange multiplier first, after which the global system decouples into independent 
problems at element level. This is particularly efficient for spectral element methods where the number of interface un-
knowns is relatively small compared to the global number of unknowns. The mortar element method [22–24], a domain 
decomposition method which couples different non-overlapping subdomains uses a similar idea. The idea of hybridization 
also plays an important role in the finite element tearing and interconnecting (FETI) method [25,26]. For linear elasticity, 
one of the main problems in hybrid finite element methods is the appearance of so-called spurious kinematic modes or zero 
energy modes, see, for instance, [27–29]. These spurious modes consist of non-solid body deformations which do not affect 
the stress field indicating that such hybrid formulations are non-wellposed. In [30], the well-posedness of problems arising 
from the hybrid variational principles and the error behavior of the hybrid method are studied. Hybridizing certain existing 
mixed finite element methods is studied in [31].

In this work, we introduce a hybrid mimetic spectral element method (hMSEM) based on a new hybrid variational 
principle for three-dimensional linear elasticity problems. The method is an arbitrary order structure-preserving method 
which satisfies pointwise equilibrium of forces and, to our knowledge, is the first method that manages to reduce the 
computational cost of the MSEM without the introduction of spurious kinematic modes. Besides the computational cost 
reduction as a result of the hybridization, additional reduction is obtained through the use of dual basis functions [32–34]
which significantly increases the sparsity of the discrete system. Dual basis functions can also be applied to the original, 
non-hybrid, MSEM to improve its efficiency.

The layout of the paper is as follows: In Section 2, a brief introduction to the three-dimensional linear elasticity prob-
lem is given, which is followed by an introduction of a hybrid mixed formulation and its weak formulation in Section 3. 
The proposed method is then explained in detail in Section 4. Numerical experiments are presented in Section 5. Finally, 
conclusions are drawn in Section 6.

2. Three-dimensional linear elasticity

In R3 with coordinate system {x, y, z}, let u = {
ux u y uz

}T be the displacement vector. The rotation vector ω is given 
by

ω =
⎧⎨⎩ωx

ωy

ωz

⎫⎬⎭ = 1

2

⎧⎨⎩ 0 −∂/∂z ∂/∂ y
∂/∂z 0 −∂/∂x

−∂/∂ y ∂/∂x 0

⎫⎬⎭
⎧⎨⎩ ux

u y

uz

⎫⎬⎭ . (1)

We use D to represent the divergence matrix,

D =
⎧⎨⎩∂/∂x ∂/∂ y ∂/∂z 0 0 0 0 0 0

0 0 0 ∂/∂x ∂/∂ y ∂/∂z 0 0 0
0 0 0 0 0 0 ∂/∂x ∂/∂ y ∂/∂z

⎫⎬⎭ .

Its transpose, DT , then is the gradient matrix. The strain vector ε = {
εxx εyx εzx εxy εyy εzy εxz εyz εzz

}T can be 
written as ε = DTu + RTω, where R is a matrix given by

R =
⎧⎨⎩0 0 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎫⎬⎭ .

The stress vector σ = {
σxx σyx σzx σxy σyy σzy σxz σyz σzz

}T
can be computed using the constitutive relation, 

σ = C−1ε, where C , given by
2
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C = 1

E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0 −ν 0 0 0 −ν
0 1 + ν 0 0 0 0 0 0 0
0 0 1 + ν 0 0 0 0 0 0
0 0 0 1 + ν 0 0 0 0 0

−ν 0 0 0 1 0 0 0 −ν
0 0 0 0 0 1 + ν 0 0 0
0 0 0 0 0 0 1 + ν 0 0
0 0 0 0 0 0 0 1 + ν 0

−ν 0 0 0 −ν 0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

is the compliance tensor. E and ν represent Young’s modulus and Poisson’s ratio of the material, respectively. Equilibrium 
of forces states that Dσ + f = 0, where f = {

fx f y f z
}T

is the body force vector, and equilibrium of moments implies 
Rσ = 0. If we put the stress components in a 3 by 3 tensor, equilibrium of moments then implies that the stress tensor is 
symmetric.

We now consider a bounded, connected domain � with boundary ∂� = �u ∪ �t , where �u ∩ �t = ∅, �u �= ∅. On 
�u , the displacement u is prescribed; u|�u = û = {

ûx û y ûz
}T . On �t , the surface traction t is prescribed; t|�t = t̂ ={̂

tx t̂ y t̂z
}T

. The three-dimensional linear elasticity problem then can be formulated as

Cσ − DTu − RTω = 0 in �, (2a)

Dσ + f = 0 in �, (2b)

−Rσ = 0 in �, (2c)

u = û on �u, (2d)

t = Nσ = t̂ on �t , (2e)

where the body force f is known, and N is a matrix given by

N =
⎧⎨⎩nx ny nz 0 0 0 0 0 0

0 0 0 nx ny nz 0 0 0
0 0 0 0 0 0 nx ny nz

⎫⎬⎭ ,

where nx , ny , nz are components of the unit outward normal vector, n = {
nx ny nz

}T
. It is straightforward to prove that 

the solutions u and ω of problem (2) satisfy relation (1).

3. A hybrid mixed formulation

3.1. Notations

Throughout the paper, we restrict ourselves to the Hilbert spaces L2(�), H1(�), H(div; �), trace spaces H1/2(∂�) and (
H1/2(∂�)

)′
[35], and their extensions to [·]3 in R3. The dual spaces are expressed with the notation (·)′ . For example,(

H1/2(∂�)
)′ = H−1/2(∂�).

The subspace H0(div; �; �) is defined as

H0(div;�;�) := {ϕ|ϕ ∈ H(div;�), trϕ = Nϕ = 0 on �} .

Without loss of generality, in this section, we will assume the Neumann boundary condition to be t̂
∣∣
�t

= 0.

3.2. A mixed formulation

Given f ∈ [
L2(�)

]3
and û ∈ [

H1/2(�u)
]3

, for (σ , u,ω) ∈ [H0(div;�;�t)]3 × [
L2(�)

]3 × [
L2(�)

]3
, a variational formula-

tion based on the principle of minimizing the complementary energy, (i), subject to constraints of equilibrium of forces, (ii), 
and equilibrium of moments, (iii), is written as, [6],

L(σ , u,ω; f , û) = 1

2
(σ , Cσ )� − 〈̂u, t〉�u︸ ︷︷ ︸+ (u, Dσ + f )�︸ ︷︷ ︸

(ii)

− (ω, Rσ )�︸ ︷︷ ︸
(iii)

, (3)
(i)

3
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where (·, ·)� denotes the L2-inner product and the duality pairing, 〈·, ·〉�u , between û ∈ [
H1/2(�u)

]3
and t = trσ ∈[(

H1/2(�u)
)′]3

stands for a boundary integral. Its stationary points weakly solve the problem (2), and the correspond-

ing mixed weak formulation is: Given f ∈ [
L2(�)

]3
and û ∈ [

H1/2(�u)
]3

, find (σ , u,ω) ∈ [H0(div;�;�t)]3 × [
L2(�)

]3 ×[
L2(�)

]3
such that(

σ , Cσ
)
�

+ (
u, Dσ

)
�

− (
ω, Rσ

)
�

= 〈̂
u, t

〉
�u

, ∀ σ ∈ [H0(div;�;�t)]3 , (4a)(
u, Dσ

)
�

= − (
u, f

)
�

, ∀ u ∈
[

L2(�)
]3

, (4b)

− (
ω, Rσ

)
�

= 0, ∀ ω ∈
[

L2(�)
]3

. (4c)

3.3. The hybrid formulation

To construct a hybrid mixed formulation, we first let a mesh, denoted by �h , partition the domain � into M disjoint 
subdomains, �m , m = 1, 2, · · · , M , and use �i j to denote the interface between subdomains �i and � j .

Given f ∈ [
L2(�m)

]3
and ̂u ∈ [

H1/2(∂�m ∩ �u)
]3

, for (σ , u,ω,λ) ∈ [H0(div;�m; ∂�m ∩ �t)]3 × [
L2(�m)

]3 × [
L2(�m)

]3 ×[
H1/2(�i j)

]3
, a hybrid variational formulation is expressed as

L(σ , u,ω; f , û) =
∑

m

[
1

2
(σ , Cσ )�m

− 〈̂u, t〉∂�m∩�u + (u, Dσ + f )�m
− (ω, Rσ )�m

]
−

∑
i j

〈
λ, t i + t j

〉
�i j

, (5)

where t i and t j are surface tractions of subdomains �i and � j (�i ∩ � j �= ∅), i.e., t i = Niσ i , t j = N jσ j , and, on �i j , Ni =
−N j . Across the interface of subdomains, the surface tractions t i and t j can differ from each other. To enforce the continuity, 
we introduce the Lagrange multiplier λ ∈ [

H1/2(�i j)
]3

and add the surface integral constraint to the variational formulation. 
If we perform variational analysis of (5) with respect to σ in a particular subdomain, for example, the subdomain �m who 
is a neighbor of subdomains �n (�mn �= ∅), we have(

σ , Cσ
)
�m

− 〈̂
u, t

〉
∂�m∩�u

+ (
u, Dσ

)
�m

− (
ω, Rσ

)
�m

−
∑

n

〈
λ, t

〉
�mn

= 0.

If the solution is sufficiently smooth, we can perform integration by parts to the third term,(
u, Dσ

)
�m

= − (
DTu,σ

)
�m

+ 〈
u, t

〉
∂�m

,

and use the fact 
(
ω, Rσ

)
�m

= (
σ , RTω

)
�m

, we would obtain(
σ , Cσ − DTu − RTω

)
�m

+ 〈
u − û, t

〉
∂�m∩�u

+
∑

n

〈
u − λ, t

〉
�mn

= 0, ∀ σ ∈ [H0(div;�m; ∂�m ∩ �t)]3 .

This implies

Cσ − DTu − RTω = 0 in �m,

and

u = û on ∂�m ∩ �u,

u = λ on ∂�m \ ∂�.

So the Lagrange multiplier that enforces the continuity across the subdomains has a physical interpretation; it represents 
the displacement along the interface. Similar discussions about that the Lagrange multiplier in the trace space of the hybrid 
method has a physical meaning can be found in [31]. If we perform variational analysis with respect to σ , u, and ω in all 
subdomains �m and with respect to λ on all interfaces �i j , we will find that the stationary points of (5) weakly solves the 
following problem,

Cσ − DTu − RTω = 0 in �m, (6a)

Dσ + f = 0 in �m, (6b)

−Rσ = 0 in �m, (6c)

λ = u on �i j, (6d)
4
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u = û on �u, (6e)

t = t̂ on �t , (6f)

t i + t j = 0 on �i j . (6g)

Hybrid problem (6) is equivalent to the linear elasticity problem (2). The weak formulation derived from (5) is written 
as: For all subdomains �m and all interfaces �i j , given f ∈ [

L2(�m)
]3

and û ∈ [
H1/2(∂�m ∩ �u)

]3
, find (σ , u,ω,λ) ∈

[H0(div;�m; ∂�m ∩ �t)]3 × [
L2(�m)

]3 × [
L2(�m)

]3 × [
H1/2(�i j)

]3
such that(

σ , Cσ
)
�m

+ (
u, Dσ

)
�m

− (
ω, Rσ

)
�m

−
∑

n

〈
λ, t

〉
�mn

= 〈̂
u, t

〉
∂�m∩�u

, ∀ σ ∈ [H0(div;�m; ∂�m ∩ �t)]3 , (7a)

(
u, Dσ

)
�m

= − (
u, f

)
�m

, ∀ u ∈
[

L2(�m)
]3

, (7b)

− (
ω, Rσ

)
�m

= 0, ∀ ω ∈
[

L2(�m)
]3

, (7c)

− 〈
λ, t i + t j

〉
�i j

= 0, ∀ λ ∈
[

H1/2(�i j)
]3

. (7d)

We call (7) the hybrid mixed weak formulation.

4. Numerical method

The exact sequence - the de Rham complex [16,17,34],

R ↪→ H1(�)
grad−→ H(curl;�)

curl−→ H(div;�)
div−→ L2(�) → 0, (8)

is of essential importance for structure-preserving methods. For example, we have chosen σ ∈ [H(div;�)]3 and f ∈ [
L2(�)

]3

such that the equilibrium of forces, Dσ + f = 0, can be exactly satisfied for the weak formulations. However, this does not 
guarantee that the equilibrium of forces is satisfied at the discrete level unless the finite dimensional function spaces used 
for the discretization also form a de Rham complex.

In this section, we will first introduce the construction of the mimetic polynomial spaces which, as will be seen, are able 
to form a discrete de Rham complex in either orthogonal or curvilinear meshes. These spaces have been used in the MSEM 
for various problems [2–6]. For the hMSEM, by extending the original mimetic polynomials to trace spaces and introducing 
the dual polynomials, a second de Rham complex in terms of particular discrete weak operators will be constructed. The 
two discrete de Rham complexes are then applied to the hybrid linear elasticity problem.

4.1. Mimetic polynomial spaces

The finite dimensional function spaces used in this paper are the mimetic polynomial spaces spanned by either the 
primal polynomials or their dual representations (dual polynomials). The primal polynomials are constructed using the 
Lagrange polynomials and the edge polynomials [36]. The dual polynomials are basically linear combinations of the primal 
polynomials.

4.1.1. Primal polynomials in R
For completeness, we start with the well-known Lagrange polynomials. Given (N + 1) nodes, −1 ≤ ξ0 < ξ1 < · · · < ξN ≤ 1, 

over interval I = [−1, 1], the (N + 1) Lagrange polynomials of degree N are defined as

li(ξ) =
N∏

j=0, j �=i

ξ − ξ j

ξi − ξ j
, i ∈ {0,1,2, · · · , N} ,

which satisfy the so-called Kronecker delta property,

li
(
ξ j
) = δi, j =

{
1 if i = j

0 else
. (9)

Examples of the Lagrange polynomials are shown in Fig. 1 (Left). Let ph(ξ) be a polynomial of degree N ,

ph(ξ) =
N∑

i=0

pili(ξ). (10)

If we take the derivative of ph(ξ), we get
5
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Fig. 1. Lagrange polynomials (Left) and edge polynomials (Right) derived from a set of 5 nodes, −1 = ξ0 < ξ1 < · · · < ξ4 = 1. The vertical gray dashed 
lines indicate the internal nodes ξ1, ξ2, ξ3. The nodal Kronecker delta property (9) is obvious. The integral Kronecker delta property (12) can be seen, for 
example, from the edge polynomial e2(ξ) (orange solid line). Direct calculations will reveal that ∫ ξ2

ξ1
e2(ξ)dξ = 1 and ∫ ξ j

ξ j−1
e2(ξ)dξ = 0, j ∈ {1,3,4}. (For 

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

dph(ξ)

dξ
=

N∑
i=0

pi
dli(ξ)

dξ
=

N∑
i=1

[
(pi − pi−1)

N∑
k=i

dlk(ξ)

dξ

]
=

N∑
i=1

[
(pi−1 − pi)

i−1∑
k=0

dlk(ξ)

dξ

]
, (11)

where the N polynomials of degree (N − 1) are the corresponding edge polynomials [36] denoted by ei(ξ),

ei(ξ) =
N∑

k=i

dlk(ξ)

dξ
= −

i−1∑
k=0

dlk(ξ)

dξ
, i ∈ {1,2, · · · , N} .

With Newton-Leibniz integral rule and the nodal Kronecker delta property (9), it is easy to see that the edge polynomials 
satisfy the Kronecker delta property in an integral sense, namely,

ξ j∫
ξ j−1

ei(ξ)dξ = δi, j =
{

1 if i = j

0 else
. (12)

Examples of edge polynomials are shown in Fig. 1 (Right). Now, we can write (11) as

qh(ξ) = dph(ξ)

dξ
=

N∑
i=1

(pi − pi−1) ei(ξ) =
N∑

i=1

qiei(ξ). (13)

If we collect the expansion coefficients or degrees of freedom of ph and qh , we obtain two vectors, p and q,

p = {
p0 p1 · · · pN

}T
, q = {

q1 q2 · · · qN
}T

. (14)

Throughout the paper, underlined quantities will represent the vectors of expansion coefficients. From (13), we have

q = Ed p,

where the linear operator Ed,

Ed =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
0 0 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

is called the incidence matrix which is a discrete counterpart of the derivative operator. The incidence matrix is a sparse 
matrix (if N > 1) and becomes sparser when N grows. It is also a topological matrix. For example, assuming N does not 
change and the degrees of freedom are labeled in a consistent way (the topology of the nodes does not change), if we 
use a different set of nodes or map the domain I into a different domain using a continuous mapping, the basis functions 
change, but the incidence matrix remains the same. One point to emphasize is that (13) is exact, which means that the 
discretization of the derivative operator with the incidence matrix Ed is exact [37,38].

The Lagrange polynomials and edge polynomials are the primal polynomials in R. Let the finite dimensional polynomial 
spaces spanned by the Lagrange polynomials and the edge polynomials be denoted by LN and E(N−1) respectively. From 
6
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(10) and (13), we know that the range of the derivative operator on LN is in E(N−1) . Therefore, we can conclude that LN

and E(N−1) form the following de Rham complex,

LN

Ed

LN ⊂

d

H1(I)

d

E(N−1) E(N−1) L2(I)⊂

Here the underlined spaces LN and E(N−1) denote the spaces of expansion coefficient vectors of the elements in LN and 
E(N−1) respectively. This convention, in addition to the convention in (14), is also used throughout the paper.

4.1.2. Primal polynomials in R3

The primal polynomials in R3 are constructed with the primal polynomials (the Lagrange polynomials and the edge 
polynomials) in R using the tensor product. We consider the reference element (ξ, η, ς) ∈ �ref = [−1, 1]3 and three sets of 
nodes, −1 ≤ ξ0 < ξ1 < · · · < ξNξ ≤ 1, −1 ≤ η0 < η1 < · · · < ηNη ≤ 1, and −1 ≤ ς0 < ς1 < · · · < ςNς ≤ 1. The tensor product 
of the primal polynomials in R gives primal polynomials in R3 that span the following primal polynomial spaces,

P := LNξ ⊗ LNη ⊗ LNς ,

E := E(Nξ −1) ⊗ LNη ⊗ LNς × LNξ ⊗ E(Nη−1) ⊗ LNς × LNξ ⊗ LNη ⊗ E(Nς −1),

S := LNξ ⊗ E(Nη−1) ⊗ E(Nς −1) × E(Nξ −1) ⊗ LNη ⊗ E(Nς −1) × E(Nξ −1) ⊗ E(Nη−1) ⊗ LNς ,

V := E(Nξ −1) ⊗ E(Nη−1) ⊗ E(Nς −1),

where the notations of the spaces, P , E , S , and V , stand for points (nodes), edges, surfaces, and volumes. We use this notation 
because the degrees of freedom of corresponding elements represent values of the elements evaluated at the points or 
integrated over the edges, surfaces, or volumes. An element in S is written as

αh(ξ,η,ς) =

⎧⎪⎪⎨⎪⎪⎩
αh

ξ (ξ,η,ς)

αh
η(ξ,η,ς)

αh
ς (ξ,η,ς)

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑Nξ

i=0

∑Nη

j=1

∑Nς

k=1 aξ

i, j,kli(ξ)e j(η)ek(ς)∑Nξ

i=1

∑Nη

j=0

∑Nς

k=1 a
η
i, j,kei(ξ)l j(η)ek(ς)∑Nξ

i=1

∑Nη

j=1

∑Nς

k=0 a
ς
i, j,kei(ξ)e j(η)lk(ς)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

and an element in V is written as

βh(ξ,η,ς) =
Nξ∑

i=1

Nη∑
j=1

Nς∑
k=1

bi, j,kei(ξ)e j(η)ek(ς).

If βh = divαh , from Section 4.1.1, we know that their expansion coefficients satisfy

bi, j,k = aξ

i, j,k − aξ

i−1, j,k + a
η
i, j,k − a

η
i, j−1,k + a

ς
i, j,k − a

ς
i, j,k−1, (15)

which basically implies the Gauss’s theorem, see Remark 1. If we label all expansion coefficients of αh and βh and put them 
into vectors α and β , we get

β = Edivα, (16)

where Ediv : S → V is the incidence matrix representing the discrete divergence operator. For example, let Nξ = Nς = 1, 
Nη = 2, and we label the coefficients of α and β as shown in Fig. 2. We have

Ediv =
{−1 0 1 0 −1 1 0 −1 0 1 0

0 −1 0 1 0 −1 1 0 −1 0 1

}
.

Similarly, we can obtain Egrad : P → E and Ecurl : E → S . The fact that curl · grad(·) ≡ 0 and div · curl(·) ≡ 0 implies 
EcurlEgrad ≡ 0 and EdivEcurl ≡ 0.

Remark 1. If αh is the discrete ξ -direction stress σ h
ξ , and βh is the discrete ξ -direction body force f h

ξ , the ξ -direction 
equilibrium of forces for the volume [ξi−1, ξi] × [η j−1, η j] × [ςk−1, ςk] then implies divσ h

ξ + f h
ξ = 0 or, in matrix format, 

Edivσ ξ + f
ξ

= 0 or, more directly,

tξξ − tξξ + t
ηξ − t

ηξ + t
ςξ − t

ςξ + fξ = 0,
i, j,k i−1, j,k i, j,k i, j−1,k i, j,k i, j,k−1 i, j,k

7
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Fig. 2. An example of labeling the expansion coefficients of α and β for Nξ = Nς = 1 and Nη = 2.

where ti, j,k , the expansion coefficients of σ h
ξ , are the (integrated) surface tractions, fξi, j,k , the expansion coefficients of f h

ξ , 
are the integral values of the body force.

In summary, we have constructed the following de Rham complex,

P

Egrad

P ⊂

grad

H1(�ref)

grad

E

Ecurl

E

curl

H(curl;�ref)
⊂

curl

S

Ediv

S

div

H(div;�ref)
⊂

div

V V L2(�ref)
⊂

For a comprehensive introduction to mimetic polynomial spaces, we refer to [2,3]. For spline basis function spaces of similar 
structures, we refer to [39,40].

4.1.3. Primal trace polynomials in R3

We consider the discrete vector valued function αh in S . The trace of αh on the face, for example, (ξ, η, ς) ∈ �ξ− =
−1 × [−1, 1] × [−1, 1] is

trξ−αh =

⎧⎪⎪⎨⎪⎪⎩
αh

ξ (−1, η,ς)

αh
η(−1, η,ς)

αh
ς (−1, η,ς)

⎫⎪⎪⎬⎪⎪⎭ ·
⎧⎨⎩−1

0
0

⎫⎬⎭ = −
Nξ∑

i=0

Nη∑
j=1

Nς∑
k=1

aξ

i, j,kli(−1)e j(η)ek(ς) =
Nη∑
j=1

Nς∑
k=1

aξ−
j,ke j(η)ek(ς).

The primal trace polynomials e j(η)ek(ς) then span a trace space on �ξ− . We denote this trace space by ∂ Sξ− . If we have 
locally labeled the coefficients aξ−

j,k , we can collect and put them in a vector, αξ− . It is clear that there is a linear operator 
Nξ− which maps α into αξ− :

αξ− = Nξ−α.

The matrix Nξ− , called the trace matrix [38], like the incidence matrices, is also a topological matrix. For example, for the 
configuration in Fig. 2,

Nξ− =
{−1 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0

}
.

If we apply the above process to all 6 faces, we can obtain trace spaces,

∂ Sξ− , ∂ Sξ+ , ∂ Sη− , ∂ Sη+ , ∂ Sς− , ∂ Sς+ , (17)

and trace matrices,

Nξ− , Nξ+ , Nη− , Nη+ , Nς− , Nς+ . (18)

Similarly, the trace spaces of P and E and corresponding trace matrices can be constructed.
8
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4.1.4. Dual polynomials
We consider the primal polynomial space V , and let ϕh, φh ∈ V . The L2-inner product between ϕh and φh is(

ϕh, φh
)

�ref
= ϕTMφ, (19)

where M is the mass matrix which is symmetric, and, because the primal polynomials are linearly independent, is also 
bijective and positive-definite. As a consequence, it is always invertible. The dual polynomials can then be defined as{· · · , ẽeei, j,k(ξ,η,ς), · · · }T := M−1 {· · · , ei(ξ)e j(η)ek(ς), · · · }T

.

These dual polynomials form another basis of the space V . See also equation (28) in [41]. From now on, we use the notation 
with a tilde to represent an element expanded with dual polynomials. For example, an element, φh ,

φh(ξ,η,ς) =
Nξ∑

i=1

Nη∑
j=1

Nς∑
k=1

φi, j,kei(ξ)e j(η)ek(ς),

in V has a unique dual representation, denoted by φ̃h ,

φ̃h(ξ,η,ς) =
Nξ∑

i=1

Nη∑
j=1

Nς∑
k=1

φ̃i, j,kẽeei, j,k(ξ,η,ς),

whose degrees of freedom are

φ̃ = Mφ. (20)

Note that φ̃h is exactly equal to φh , but only their representations are different. Now, the L2-inner product between ϕh and 
φ̃h is (

ϕh, φ̃h
)

�ref

= ϕTφ̃. (21)

It looks trivial; if we insert (20) into (21), we immediately retrieve (19), but, in practice, it can significantly simplify the 
discretization as the L2-inner product between them is equal to the vector inner product of their expansion coefficient 
vectors. More discussions will be given in Section 4.3. We can apply the same approach to other primal polynomials to 
construct dual polynomials or dual trace polynomials. For an example of the usage of the dual trace space, we refer to [24].

Examples.

1. If βh = divαh ∈ V is expanded with primal polynomials and φ̃h ∈ V is expanded with dual polynomials, from (16) and 
(21), we have(

φ̃h, βh
)

�ref
=

(
φ̃h,divαh

)
�ref

= φ̃
T
Edivα. (22)

2. If αh ∈ S is expanded with primal polynomials and φ̂ ∈ ∂ S is expanded with dual trace polynomials, we have〈
φ̂, trαh

〉
∂�ref

= φ̂
T
Nα, (23)

where the trace space ∂ S := ∂ Sξ− × ∂ Sξ+ × ∂ Sη− × ∂ Sη+ × ∂ Sς− × ∂ Sς+ , see (17), and N can be obtained by assembling 
the trace matrices in (18). �

Remark 2. Given φ ∈ L2(�ref), to calculate the gradient of φ, since its space does not admit a strong gradient operation, we 
need to employ integration by parts and do it in a weaker way with respect to the inner product,∫

�

gradφ · αd� :=
∫
∂�

φ̂α · nd� −
∫
�

φ divαd�.

At the discrete level, if we expand φ into φ̃h ∈ V with dual polynomials, expand φ̂ into φ̂h ∈ ∂ S with dual trace polynomials, 
and expand α into αh ∈ S with primal polynomials, we have(

gradφ̃h,αh
)

=
〈
φ̂h, trαh

〉
−

(
φ̃h,divαh

)
.

�ref ∂�ref �ref

9
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We then can define a discrete weak gradient, ˜grad : V × ∂ S → S . Let ϑ̃h :=˜grad
(
φ̃h, φ̂

) ∈ S be expanded with dual polynomi-
als, from (22) and (23), we can find that

ϑ̃ = NTφ̂ − ET
divφ̃. (24)

This discrete weak gradient essentially is an implementation of integration by parts using the introduced polynomials. 
Because the incidence matrix Ediv and the trace matrix N are both topological, such an implementation leads to a simple 
approach for performing the weak gradient at the discrete level. Similarly, one can define c̃url and d̃iv and thus construct a 
second discrete de Rham complex [34]:

0 ← P × 0
d̃iv←− E × ∂ P

c̃url←− S × ∂ E
˜grad←− V × ∂ S ←↩ R.

In the same way as shown for ˜grad, c̃url and d̃iv also have topological matrix representations consisting of the corresponding 
incidence matrix and trace matrix, which is beyond the scope of this paper. See [34] for a comprehensive explanation.

Note that the presented approach of constructing dual polynomials is the most straightforward one. For alternative 
approaches, we refer to, e.g., [32,33].

4.2. Coordinate transformation

The primal and dual polynomials introduced so far are just for the reference element �ref . Let �m be an arbitrary 
element and �m be a C1 diffeomorphism, �m: �ref → �m ,{

x y z
}T = �m(ξ,η,ς),

whose Jacobian matrix is denoted by J . Let Pm , Em , Sm , and Vm represent the corresponding mimetic polynomial spaces 
in �m . The primal basis functions in �m are obtained by transforming the primal polynomials in �ref with the following 
transformations, [6,37]:

1. The transformation between ψh(ξ, η, ς) ∈ P and ψh
m(x, y, z) ∈ Pm is given by

ψh
m(x, y, z) =

(
ψh ◦ �−1

m

)
(x, y, z), ψh(ξ,η,ς) =

(
ψh

m ◦ �m

)
(ξ,η,ς).

2. The transformation between ϕh(ξ, η, ς) ∈ E and ϕh
m(x, y, z) ∈ Em is given by

ϕh
m(x, y, z) = (

J T)−1
(
ϕh ◦ �−1

m

)
(x, y, z), ϕh(ξ,η,ς) = J T

(
ϕh

m ◦ �m

)
(ξ,η,ς).

3. The transformation between αh(ξ, η, ς) ∈ S and αh
m(x, y, z) ∈ Sm is given by

αh
m(x, y, z) = J

detJ

(
αh ◦ �−1

m

)
(x, y, z), αh(ξ,η,ς) = J −1detJ

(
αh

m ◦ �m

)
(ξ,η,ς). (25)

4. The transformation between βh(ξ, η, ς) ∈ V and βh
m(x, y, z) ∈ Vm is given by

βh
m(x, y, z) = 1

detJ

(
βh ◦ �−1

m

)
(x, y, z), βh(ξ,η,ς) = detJ

(
βh

m ◦ �m

)
(ξ,η,ς).

For example, let σ h ∈ [S]3 be the Cauchy stress tensor, the Piola transformation (25) converts between σ h and the first 
Piola-Kirchhoff stress tensor σ h

m ∈ [Sm]3.
Note that, although the mapping changes the primal polynomials and therefore changes the metric-dependent mass 

matrices, it does not affect the metric-independent topological incidence matrices. Thus we have the following de Rham 
complex for �m ,

Pm

Egrad

Pm
⊂

grad

H1(�m)

grad

Em

Ecurl

Em

curl

H(curl;�m)
⊂

curl

Sm

Ediv

Sm

div

H(div;�m)
⊂

div

V Vm L2(�m)
⊂

m

10
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The way of constructing the dual polynomials remains the same, and, for example, the relations (22)-(24) are still valid in 
�m . Therefore, we obtain the second discrete de Rham complex for �m ,

0 ← Pm × 0
d̃iv←− Em × ∂ Pm

c̃url←− Sm × ∂ Em
˜grad←− Vm × ∂ Sm ←↩ R.

And, because the trace matrices are also topological, the matrix representations for the ˜grad, c̃url and d̃iv remain unchanged 
under the mapping.

4.3. Discretization

We now can present the discretization of the hybrid mixed weak formulation (7) with the mimetic polynomials con-
structed in previous subsection. Suppose �h is an orthogonal or curvilinear conforming hexahedral mesh in the computa-
tional domain � and, for each element, e.g., �m , there exists a C1 diffeomorphism �m that maps the reference element 
�ref into it. We first use the Gauss-Lobatto-Legendre (GLL) nodes as the basis nodes to construct particular GLL polynomial 
spaces, and, from now on, the aforementioned notations, for example Sm and Vm , refer to their transformations in �m . We 
also set up the Gauss-Legendre (GL) polynomial spaces which are one degree lower, and we use the notation P̊m to denote 
corresponding nodal space. This particular choice is for the discrete rotation, ωh ∈ [

P̊m
]3

, which is the Lagrange multiplier 
that enforces the symmetry of the stress tensor or equilibrium of moments. For comparison and completeness, we will first 
briefly introduce the discretization with the mimetic spectral element method (MSEM) [6].

4.3.1. Mimetic spectral element method
With the MSEM, we discretize the mixed weak formulation (4) in a conventional continuous mesh. In each element 

�m , the space [Sm]3 is selected to approximate [H(∇·;�m)]3 for the stress σ ; the space [Vm]3 is selected to approximate [
L2(�m)

]3
for the body force f ; the space 

[
P̊m

]3
is selected to approximate 

[
L2(�m)

]3
for the displacement u and the 

rotation ω. All discrete variables are expanded with the primal polynomials. Such a discretization will eventually lead to the 
following discrete system,⎧⎨⎩ Mm (WE)T −RT

m
WE 0 0
−Rm 0 0

⎫⎬⎭
⎧⎨⎩σ

u
ω

⎫⎬⎭ =
⎧⎨⎩

Bmû
−W f

0

⎫⎬⎭ . (26)

Comparing this discrete system to the mixed weak formulation (4) reveals what each entry represents. Note that E repre-
sents the metric-independent topological incidence matrix, the matrix W is a dense matrix for the inner product between 
elements from 

[
P̊m

]3
and [Vm]3, and the matrix Bm is a boundary integral matrix. For more insights of (26), see equations 

(20) and (21) in [6]. We denote the left hand side local matrix for element �m by Fm . Once the discrete systems for all el-
ements are constructed locally, we can assemble them, which ensures the continuity of the surface traction across elements 
and leads to a global system. This leads to a global linear system ready to be solved, and we denote its left hand side global 
matrix by F .

4.3.2. Hybrid mimetic spectral element method
With the hybrid mimetic spectral element method (hMSEM), we discretize the hybrid mixed weak formulation (7) in a 

discontinuous mesh where we consider each element as a separate subdomain. In element �m , the same finite dimensional 
spaces as mentioned in Section 4.3.1 are selected to approximate the spaces for σ , ω, and f . While, for u, the space [Vm]3

is selected, and, to obtain a higher sparsity, it is expanded using the dual polynomials. To approximate the spaces 
[

H1/2(·)]3

for the Lagrange multiplier λ, the spaces 
[
∂ S(·)

]3
with a dual polynomial basis are selected. With these selections, we can 

obtain the following discrete hybrid system:⎧⎪⎪⎨⎪⎪⎩
Mm ET −RT

m −NT◦
E 0 0 0

−Rm 0 0 0
−N◦ 0 0 0

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

σ
u
ω
λ

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
NT

û û
− f

0
0

⎫⎪⎪⎬⎪⎪⎭ . (27)

For σ and ω, the expansions are the same for MSEM and hMSEM. We have(
σ h, Cσ h

)
�m

= σ TMmσ , σ h, σ h ∈ [Sm]3 ,

and (
ωh, Rσ h

)
�m

= ωTRmσ , ωh ∈ [
P̊m

]3
, σ h ∈ [Sm]3 .

From (22), we know that
11
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(
uh, Dσ h

)
�m

= uTEσ , uh ∈ [Vm]3 , σ h ∈ [Sm]3 .

Using the symmetry, the discrete terms with RT
m and ET can be derived. The trace matrices, N◦ and Nû , follow from〈

λh, th
〉
∂�m\∂�m∩�u

(23)= σ TNT◦λ, λh ∈ [∂ S◦]3 , th ∈ [
(∂ S◦)′

]3
, (28)

and 〈̂
uh, th

〉
∂�m∩�u

(23)= σ TNT
û û, ûh ∈ [∂ S û]3 , th ∈ [

(∂ S û)′
]3

. (29)

For example, if ∂�m ∩ �u = �ξ− , we have

∂ S◦ = ∂ Sξ+ × ∂ Sη− × ∂ Sη+ × ∂ Sς− × ∂ Sς+ , ∂ S û = ∂ Sξ− ,

and trace matrices N◦ and Nû then can be obtained by assembling the corresponding trace matrices in (18). In particular, 
if �m is an internal element, we have Nû = 0, and, if the mesh only has one element �0 and �u = ∂� = ∂�0, we have 
N◦ = 0, and the discrete hybrid system becomes⎧⎨⎩ M0 ET −RT

0
E 0 0

−R0 0 0

⎫⎬⎭
⎧⎨⎩σ

u
ω

⎫⎬⎭ =
⎧⎨⎩

NTû
− f

0

⎫⎬⎭ . (30)

A comparison between this system and (26) clearly reveals that, by using the dual spaces, extra sparsity and simplification 
are gained due to the absence of W and the replacement of Bm by NT (W is a dense matrix and Bm is a dense and 
metric-dependent matrix).

Remark 3. To gain the extra sparsity and simplification, we only need to use, in (28) and (29), the fact that the L2-inner 
product between an element expanded with primal polynomials and an element expanded with dual polynomials is just 
the vector inner product between their expansion coefficient vectors. Therefore, we do not need to explicitly construct the 
dual polynomials for the discretization. After solving the system, if we want to reconstruct those solutions expanded with 
the dual polynomials, the dual polynomials have to be constructed, which is relatively inexpensive because they can be 
constructed locally and, therefore, in parallel. Alternatively, we can convert the dual degrees of freedom to primal ones, see 
(20), and reconstruct them with the primal basis polynomials. This can also be done element-by-element.

Following the fact that the mass matrix Mm is positive definite, a sufficient condition of the discrete system (27) being 
well-posed is that matrices E, Rm and N◦ are surjective [42]. By construction, matrices E and N◦ are surjective (see Sec-
tion 4). By approximating the space for the rotation ωh using nodal spaces based on Gauss nodes, matrix Rm is surjective. 
A detailed analysis about choosing the approximation for the rotation ωh can be found in Section 10 of [6].

As elements are now discontinuous, only the trace variable λ needs to be solved in a global sense. For neatness, we now 
write the discrete hybrid system (27) as⎧⎪⎪⎨⎪⎪⎩

A BT CT DT

B 0 0 0
C 0 0 0
D 0 0 0

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

σ
u
ω
λ

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
a
b
0
0

⎫⎪⎪⎬⎪⎪⎭ .

By applying the Schur complement, we can derive a local system for λ:

Smλ = ρ, (31)

where

Sm = D A−1 DT − DBDT −DC−1DT,

ρ = ρa + ρb,

ρa = [(
D A−1 − DB

)−DC−1 (C A−1 − CB
)]

a,

ρb = (
D A−1 BTA−1 −DC−1C A−1 BTA−1)b,

D = D A−1CT − DBCT,

C = C A−1CT − CBCT,

B = A−1 BTA−1 B A−1,
12
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A = B A−1 BT.

The linear operator Sm is usually called the discrete Steklov-Poincaré operator or the Schur matrix [38,43]. Assembling local 
systems (31) for all elements gives a global system for λ whose the left hand side matrix is denoted by S. Once this system 
is solved, solving remaining local systems for σ , u, and ω becomes trivial.

Remark 4. Note that we have considered each element as a discontinuous subdomain. Alternatively, we can place multiple 
elements in one subdomain and use the Lagrange multiplier to couple the big subdomains. For example, see [44]. This gives 
more freedom for the hybridization.

Remark 5. With the hybridization, the total number of degrees of freedom increases, but the number of the interface degrees 
of freedom is relatively small. As a result, S (the global system of hMSEM) is much smaller than F (the global system of 
MSEM). We will use �(·) to represent the size of a square matrix. For example, S is a �S by �S matrix. If, for example, the 
degree of the GLL polynomials is N (Nξ = Nη = Nς = N ≥ 1), we will have

�S = 3(I + Bt)N2,

and

�F = 3M
[

3N2 (N + 1) + 2N3
]
− 3 (I + Bt) N2,

where I is the total number of internal element interfaces, Bt is the number of element faces on the boundary �t , and M
is the total number of elements. And we have

6M = 2I + B = 2I + Bt + Bu

if Bu is the number of element faces on the boundary �u and B is the total number of element faces on the boundary. Let 
χ = I/B ∈ [0,∞) and � = Bt/B ∈ [0,1), we can get the following system size ratio,

�S

�F
= 6χ + 6�

10χ N − 6� + 5N + 3
,

which decreases when χ or N increases or � decreases. This ratio reveals how efficient the hMSEM is in terms of decreasing 
the size of the system to be solved. See (32) and Table 2 for some examples.

The hMSEM, compared to the MSEM, benefits from the extra simplicity during the discretization and leads to linear 
systems that are easier to solve. As for the accuracy, although the hMSEM will not improve the accuracy for uh and ωh in 
terms of the L2-error and for σ h in terms of the H(div)-error, it improves the accuracy for uh in terms of the H̃1-error 
(with respect to the discrete weak gradient operator ˜grad). When we compute the discrete weak gradient of uh , the solution 
of the Lagrange multiplier, λh , can serve as the boundary value, see Remark 2. Let qh be the discrete weak gradient of uh ,

qh :=˜grad
(

uh,λh
)

.

Then we get

qh = NTλh − ETuh.

As a result, we can obtain superconvergence: The convergence rate of the H̃1-error of uh is the same as (instead of one 
order lower than) that of the L2-error under h-refinements (for example, see Fig. 7).

5. Numerical results

To demonstrate the proposed method, we apply it to three tests: A patch test, a manufactured solution test and a test 
with a singularity. In order not to pollute the results by the linear solver, we use a direct solver for all tests.

5.1. Patch test

We do a patch test in the domain (x, y, z) ∈ � = [−1, 1]3 for polynomial degree Nξ = Nη = Nς = N with the analytical 
solution for the displacement field given by

ux = x2 yz2 + 3xy2z − 2z, u y = (x + 2y − z)2, uz = (3x − y)2 + xyz2.

Analytical solutions for the rotation, stress, and body force follow. An orthogonal mesh of 2 × 2 × 2 uniformly distributed 
elements (unit cubes) is set up, boundaries are set to �u = ∂�, �t = ∅, and material properties are set to E = 1, ν = 0.3. We 
13
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Table 1
Results of the patch test.

N
∥∥uh

∥∥
H1-error

∥∥ωh
∥∥

L2-error

∥∥σ h
∥∥

H(div)-error

∥∥Rσ h
∥∥

L2-error

∥∥∥Dσ h + f h
∥∥∥

L∞-error

1 1.65418E+01 8.39351E+00 1.30794E+01 6.73218E+00 6.21725E−15
2 2.21819E+00 2.37423E−01 9.64492E−01 8.77608E−02 2.37286E−13
3 7.20554E−13 7.70876E−13 1.19742E−12 7.88552E−13 5.67179E−12

solve the linear elasticity problem with the hMSEM and expect that the solutions converge down to the machine precision 
when N ≥ 3. Results shown in Table 1 verify our expectation. The constant equilibrium of forces, demonstrated by the 
results of the L∞-error of 

(
Dσ h + f h

)
, shows that the discretization of the divergence operator with the incidence matrix 

is exact.

5.2. Manufactured solution

In this test, we investigate the performance (both accuracy and efficiency) of the proposed hMSEM and compare it with 
that of the MSEM in both orthogonal and curvilinear meshes using a manufactured solution. The manufactured solution is 
taken from [11]. Its analytical solution for the displacement field is given as

ux = −3Fν

4E
xyz, u y = F

8E

[
3νz

(
x2 − y2

)
− z3

]
, uz = F

8E

[
3yz2 + ν y

(
y2 − 3x2

)]
+ 2 (1 + ν)

E
U (x, y),

where F is a load coefficient, and

U (x, y) = F
(
3y − y3

)
8

+ Fν
(
3x2 − 1

)
y

8 (1 + ν)
− 3Fν

2π2 (1 + ν)

∞∑
n=1

(−1)n

n3π cosh(nπ)
cos(nπx) sinh(nπ y).

The analytical solutions for the rotation, stress, and body force are

ωx = 3F

8E

(
1 + 2

3
ν − y2 + z2

)
− 3Fν

2π2 E

∞∑
n=1

(−1)n

n2 cosh(nπ)
cos(nπx) cosh(nπ y),

ωy = −3F v

4E

[
xy − 2

π2

∞∑
n=1

(−1)n

n2 cosh(nπ)
sin(nπx) sinh(nπ y)

]
, ωz = 3Fνxz

4E
,

σxx = σyy = σxy = σyx = 0, σzz = 3F

4
yz, σxz = σzx = 3Fν

2π2 (1 + ν)

∞∑
n=1

(−1)n

n2 cosh(nπ)
sin(nπx) sinh(nπ y),

σyz = σzy = 3F
(
1 − y2

)
8

+ Fν
(
3x2 − 1

)
8 (1 + ν)

− 3Fν

2π2 (1 + ν)

∞∑
n=1

(−1)n

n2 cosh(nπ)
cos(nπx) cosh(nπ y),

fx = f y = f z = 0.

Material properties E , ν , and the load coefficient F are set to E = 20, ν = 0.3, and F = 10.
The computational domain is selected to be (x, y, z) ∈ � = [0, 1]3, and the boundary �t is selected to be the face x = 1. 

To generate the mesh, we first generate an orthogonal mesh of M = K 3 uniformly distributed elements, (r, s, t) ∈ �̊i, j,k =[
i−1

K , i
K

]
×

[
j−1
K ,

j
K

]
×

[
k−1

K , k
K

]
(i, j, k = 1, 2, · · · , K ), in the Cartesian domain (r, s, t) ∈ �̊ = [0,1]3. The mesh in � is then 

obtained using a mapping �̊ : �̊ → �,⎧⎨⎩ x
y
z

⎫⎬⎭ = �̊(r, s, t) =
⎧⎨⎩�x(r, s, t)

�y(r, s, t)
�z(r, s, t)

⎫⎬⎭ =
⎧⎨⎩r + c sin(πr) sin(π s) sin(πt)

s + c sin(πr) sin(π s) sin(πt)
t + c sin(πr) sin(π s) sin(πt)

⎫⎬⎭ ,

where c is a deformation coefficient. When c = 0, the mesh is orthogonal. When c �= 0, the mesh is curvilinear. The trans-
formation mapping, �i, j,k : �ref → �i, j,k , then is given by

�i, j,k = �̊ ◦ �i, j,k,

where �i, j,k is the linear transformation that maps �ref into �̊i, j,k . Two examples of the mesh are shown in Fig. 3.
With this configuration, the mesh has I = 3K 2 (K − 1) internal element interfaces, B = 6K 2 element faces on the bound-

ary among which Bt = K 2 are on �t . Therefore, we have χ = I/B = (K − 1) /2, � = Bt/B = 1/6. The polynomial degree is 
set to be Nξ = Nη = Nς = N . As a result, we can obtain the following system size ratio,
14
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Fig. 3. Meshes of 33 elements for c = 0 (Left) and c = 0.25 (Right).

Table 2
Some samples of the system size ratio (32).

N K

2 4 6 8 10 12

1 0.333333 0.454545 0.5 0.523810 0.538462 0.548387
3 0.125 0.161290 0.173913 0.180328 0.184211 0.186813
5 0.076923 0.098039 0.105263 0.108911 0.111111 0.112583

Fig. 4. Condition number comparison of S and F for N ∈ {1,3}, K ∈ {1,2,3,4,5}, and c ∈ {0,0.25}.

�S

�F
= 3K − 2

5K N + 2
, (32)

see Remark 5. It is clear from this ratio that the hybridized method has a increasingly better performance compared to the 
non-hybridized method as the polynomial degree N increases. And for a given N , the ratio increases and approaches the 

limit 
3

5N
as K increases. To give readers a more explicit impression, we provide some samples of this ratio in Table 2. In 

Fig. 4, we compare the condition numbers of the global systems. It is seen that the condition number of S is much smaller 
than that of F for certain N and K , which is not surprising because S is much smaller. A more interesting observation is 
that the former increases in a significantly lower speed under refinements. These results imply that the hMSEM, compared
to the MSEM, needs far less computational power in the same mesh. In Fig. 5 where eigenspectra of S are present, we 
can see that all eigenvalues are away from zero. This supports the statement that the proposed hMSEM is free of spurious 
kinematic modes; S is not singular.

We then compare the accuracy of the hMSEM to that of the MSEM. Results are shown in Table 3. It can be seen that the 
hMSEM and the MSEM have the same accuracy with respect to the L2-error of the solutions uh , ωh , and σ h for different 
basis function degrees (N = 1, 3) and element densities (K = 2, 4, 6) regardless of whether we are considering orthogonal 
meshes (c = 0) or heavily distorted meshes (c = 0.25). Note that, in this case,∥∥∥σ h

∥∥∥
L2-error

=
∥∥∥σ h

∥∥∥
H(div)-error

,

because Dσ h = − f = 0 is exactly satisfied, see Fig, 8.
15
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Fig. 5. Eigenspectra of S for N = 1, K = 2, and c ∈ {0,0.25}. The radii of the black circles are the moduli of the eigenvalues of the maximum or minimum 
modulus.

Table 3
Results of ‖x‖L2-error and 

∥∥x − x′∥∥
L2-norm (in brackets), where x and x′ are solutions of the hMSEM and MSEM respectively, for N ∈ {1,3}, K ∈ {2,4,6}, and 

c ∈ {0,0.25}.

x K N = 1 N = 3

c = 0 c = 0.25 c = 0 c = 0.25

uh 2 6.4029E−2(2.05E−16) 1.9534E−1(2.79E−16) 3.8024E−4(5.57E−16) 2.9940E−2(1.70E−15)
4 3.2265E−2(5.40E−16) 1.1353E−1(4.61E−16) 4.8312E−5(5.67E−15) 3.6850E−3(1.48E−14)
6 2.1542E−2(7.03E−16) 7.7069E−2(8.71E−16) 1.4377E−5(4.08E−14) 1.1604E−3(1.06E−13)

ωh 2 4.7436E−2(6.76E−16) 5.1309E−2(9.59E−16) 2.8846E−4(1.22E−14) 1.2456E−2(3.17E−14)
4 2.3986E−2(2.98E−15) 3.8150E−2(3.31E−15) 8.2990E−5(2.63E−13) 1.0417E−3(1.00E−12)
6 1.6008E−2(2.10E−14) 2.2952E−2(2.25E−14) 3.0156E−5(4.08E−12) 2.3494E−4(1.02E−11)

σ h 2 9.3659E−1(1.84E−14) 2.6588(3.13E−14) 5.6919E−3(2.21E−13) 4.5920E−1(4.12E−13)
4 4.5869E−1(8.16E−14) 1.6633(6.25E−14) 1.6879E−3(4.03E−12) 6.1945E−2(1.48E−11)
6 3.0391E−1(2.58E−13) 1.1638(2.82E−13) 6.2626E−4(5.39E−11) 1.9624E−2(1.43E−10)

Fig. 6. The L2-error of ωh (Left) and the H(div)-error of σ h (Right) for N ∈ {1,3}, K ∈ {1,2,4,6, · · · ,14}, and c ∈ {0,0.25}.

In Fig. 6, we present the results of the hMSEM for the L2-error of the solution ωh and the H(div)-error of the solution 
σ h , and in Fig. 7, we present the L2-error and the H1-error of the solution uh . It is seen that optimal convergence rates 
are obtained for solutions ωh and uh with respect to the L2-error and for the solution σ h with respect to the H(div)-error. 
These results are consistent with those of the MSEM [6]. As for the H̃1-error of the solution uh , we can see that it converges 
at the same rate as the L2-error of the solution uh does, which means it converges at a rate that is one order higher than 
the optimal order; superconvergence is obtained for uh . This is because, as we have explained in the last paragraph of 
Section 4.3.2, when we compute the H̃1-error of uh the solution of its trace variable λh (as well as the given boundary 
condition û) is used. These results show that the solution λh is correct.

The results for equilibrium of forces, Dσ h + f = 0 (in this case, f = f h = 0), and equilibrium of moments, Rσ h = 0, using 
the hMSEM are presented in Fig. 8. It is clear that equilibrium of forces is satisfied to the machine precision. The increase 
16
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Fig. 7. The L2-error (Left) and the H̃1-error (Right) of uh for N ∈ {1,3}, K ∈ {1,2,4,6, · · · ,14}, and c ∈ {0,0.25}.

Fig. 8. The L∞-error of
(

Dσ h + f
)

(Left) and the L2-error of Rσ h (Right) for N ∈ {1,3}, K ∈ {1,2,4,6, · · · ,14}, and c ∈ {0,0.25}.

of the L∞-error of 
(

Dσ h + f
)

when we refine the mesh is because of the increasing accumulation of the machine error (a 
result of the rising of the total number of degrees of freedom and the increase in condition number). As for equilibrium of 
moments, it is only satisfied weakly; with the refinement of the mesh, the L2-error of Rσ h converges at the optimal rate in 
both orthogonal and curvilinear meshes.

5.2.1. Cracked arch bridge
We test the hMSEM using a problem with a singularity. The geometry of the computational domain is shown in Fig. 9. 

It simulates an arch bridge which has a crack of depth d = 0.25 developing from the bridge bottom at the middle surface 
y = 2 where the minimal bridge thickness D = 0.5 is present. The bridge has a uniform body force field f = (1, 0, 0). The 
material properties E and ν are set to E = 400 and ν = 0.3. The two walls y = 0 and y = 4 are considered as fixed walls. A 
load ̂t = {

σ̂xx σ̂xy σ̂xz
}T = {

σ̂xx 0 0
}T , where

σ̂xx = − sin(
π y

4
)e−(y−2)2

,

is applied on the bridge floor (x, y, z) ∈ 0 × (0, 2) × (0, 1). All remaining walls are considered as zero-surface-traction walls. 
These boundary conditions will tend to open the crack and therefore introduce a singularity in the solution σ h

yy at the crack 
root: For x = 0.25− , σ h

yy will increase to extremely large value, but it has to return to the designed value, σ h
yy = 0, for 

x = 0.25+ . This singularity makes this problem a challenging one. However, since the hMSEM (as well as the MSEM) places 
no degree of freedom at edges and corners of the elements, it needs no special treatment to handle this singularity. The 
polynomial degree is set to Nξ = Nη = Nς = N . A mesh of 780 elements is generated using transfinite interpolation [45,46], 
and a local refinement is made near the singularity. The solution of σ h

yy for N = 1 in Fig. 11 can reveal the local refinement 
along x-axis.

In Fig. 10, representative results of the Von Mises stress for N = 4 are shown. It is seen that near the singularity some 
unphysical oscillations are present. This is because of the complexity of the singularity and, as we use a direct linear 
solver, the mesh used in this work is not extremely refined. More local refinement near the singularity will weaken such 
oscillations. In Fig. 11, the results of σ h

yy along (x, y, z) ∈ (0, 0.5) × 2 × 0.5 for N = 1, 2, 3, 4 are presented. It is seen that 
σ h

yy is discontinuous across elements along x-axis, which is consistent with the fact that only the surface tractions across 
17
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Fig. 9. The geometry of the cracked arch bridge. The gray surface indicates the rectangular crack.

Fig. 10. The deformation plot of the Von Mises stress on surface z = 0.5 for N = 4.

Fig. 11. Results of solution σ h
yy along (x, y, z) ∈ (0,0.25+) × 2 × 0.5 for N ∈ {1,2,3,4}.

elements along the outward normal direction are enforced to be continuous by the Lagrange multiplier. It is also seen that 
the singularity in σ h

yy is well captured with this method.
The results of the complementary energy, see (3), and the resultant crack width are shown in Table 4. The crack width 

is measured at (x, y, z) = (0.5, 2, 0.5).

6. Conclusions

In this paper, we have proposed a hybrid mimetic spectral element method that solves three-dimensional linear elas-
ticity problems. It decomposes the domain into discontinuous elements (subdomains) and has the potential to lower the 
computational cost significantly compared to the existing mimetic spectral element method. Optimal convergence rates are 
18
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Table 4
Results of the complementary energy C E and the resultant crack width wc .

N = 1 N = 2 N = 3 N = 4

C E 6.9592E−02 6.8854E−02 6.8771E−02 6.8747E−02
wc 1.1392E−02 1.2987E−02 1.2968E−02 1.2968E−02

observed for the displacement and rotation solutions with respect to their L2-error and for the stress solution with respect 
to its H(div)-error, and superconvergence is observed for the displacement solution with respect to its H̃1-error. The method 
is free of spurious kinematic modes and satisfies pointwise equilibrium of forces in all meshes, orthogonal or curvilinear, 
coarse or refined.
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