
Evaluating Souper: A Synthesizing Superoptimizer

Emirhan B. Demir
Supervisors: Dennis Sprokholt, Soham Chakraborty

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Abstract

Modern compilers exploit syntax & semantics to optimize input programs. Often
such optimization rules are arduous to get right and the output is not guaranteed to be
globally optimal. Superoptimizers take a different approach to this problem by travers-
ing the program space. This study focuses on Souper, a synthesizing superoptimizer
which makes use of an enhanced counter-example-guided inductive synthesis loop to
find optimizations. We first detail the working mechanism of the superoptimizer and
its components, then we explain our attempts at reproducing the results mentioned
by Souper’s authors. Finally, we give three program classes each exercising different
aspects of the superoptimizer and how these are useful in gaining insight into Souper’s
optimization capabilities and use cases.

1 Introduction
Most modern compilers have an optimization step where the compiler attempts to optimize
the input program based on syntax and semantics. These optimization rules are written
manually and more often than not require great amounts of intellectual effort. A superopti-
mizer tries to enhance this optimization step with a different approach. Instead of achieving
optimizations based on the input program’s syntax and semantics it traverses the program
space to find a valid and globally optimized solution.

The idea of superoptimization is not a new concept, first attempts to enhance or replace
optimization passes in conventional compilers date back to 1987 [10]. There have been
a number of approaches to find optimized programs that compilers cannot achieve with
optimizations strategies they currently make use of [4], [6].

Still, since superoptimizers are not yet in widespread use we lack insight into their
optimization capabilities and suitable use cases. In this study we are focusing on Souper
[13], a synthesizing superoptimizer.

At the first glance Souper’s superoptimization process may seem like it comprises many
free-flowing components. The relationships between these components and the superopti-
mization process can be summarized as follows:

• Compiling from source to LLVM [8] IR.

• Extracting candidate optimizations from LLVM IR.

• Synthesizing optimizations using CEGIS [6].

• Incorporating these in LLVM.

Given a program, using an LLVM front-end we can extract LLVM IR which Souper
can use to find optimization candidates. Once these candidates are found Souper utilizes
an improved CEGIS loop to synthesize a potentially optimized and equivalent program.
Finally, the optimization can be incorporated back into LLVM to be outputted as binary.
The steps given above are explained in more detail in the sections to follow.

This study attempts to reproduce results presented by Souper’s authors and aims to
find the program classes where Souper can infer optimizations that a classical optimizing
compiler might fail to achieve. The research questions answered can be phrased as:

• Can the original results obtained with Souper be reproduced?

• What program classes does Souper work best in?

2

To answer these questions, it is first necessary to reproduce the results mentioned in the
original paper to have a baseline of Souper’s optimization capabilities. Then, we devised
three program classes that test Souper’s specific features and components. These three
program classes are programs with high cyclomatic complexity, programs that Souper cannot
fully extract from, and finally those with undefined behaviour. For all the programs listed
above the metric for evaluating the optimization result is the size of the output binary and
the resulting Souper intermediate representation.

2 Intermediate Representations
Both LLVM’s and Souper’s intermediate representations are referenced quite frequently
throughout this paper. Therefore, we believe that detailing both intermediate represen-
tations -especially Souper’s- further would benefit establishing some common ground and
defining the necessary primitives the rest of the paper makes use of.

2.1 LLVM
Low Level Virtual Machine compiler infrastructure [8] can be divided into 3 main compo-
nents. A front-end for a certain programming language which takes source code as input
and outputs LLVM intermediate representation. Second, an optimizing mid-end which uses
the extracted intermediate representation, applies opt passes and outputs optimized IR.
Finally, an instruction set specific back-end which converts the optimized IR into architec-
ture specific instructions that can be executed. This architecture allows LLVM to support
a plethora of programming languages and CPU architectures while still having a single op-
timizing component. A notable feature of LLVM’s intermediate representation is control
flow through ϕ nodes. Souper also makes use of these nodes in order to reason about the
incoming control flow within a program.

int f oo (bool cond , int z) {
int x , y ;
i f (cond) {

x = 3 ∗ z ;
y = z ;

} else {
x = 2 ∗ z ;
y = 2 ∗ z ;

}
return x + y ;

}

define i32 @f (i1 %0, i32 %1) {
br i1 %0, label %3, label %5
label %3:
%4 = mul nsw i32 %1, 3
br label %8
label %5:
%6 = shl nsw i32 %1, 1
%7 = shl nsw i32 %1, 1
br label %8
label %8:
%.07 = phi i32 [%4, %3] , [%6, %5]
%.0 = phi i32 [%1, %3] , [%7, %5]
%9 = add nsw i32 %.07 , %.0
ret i32 %9
}

Table 1: Listings showing a simple function and the corresponding LLVM IR [13].

To illustrate LLVM’s intermediate representation better, Table 1 shows a simple function
written in C and the corresponding LLVM IR. As mentioned before, it is worth noticing how
conventional control flow is translated into ϕ nodes with corresponding predecessors.

3

2.2 Souper
Souper’s intermediate representation is extracted from LLVM IR and exhibits similar fea-
tures. Besides having an understanding of the intermediate representation itself in addition
to how it is extracted gives valuable insight into inner workings, capabilities, and limitations
of the superoptimizer.
Souper’s intermediate representation closely follows that of LLVM’s. In total it has 51
instructions that are derivations from LLVM’s integer and scalar instruction subset [13].
Additionally, Souper provides 10 LLVM intrinsics as instructions. These include overflow
checks for arithmetic, hamming weight calculations, and a byte swap instruction.

For each integer-typed value returning LLVM module Souper’s extractor creates a root
node for a candidate optimization. Each candidate optimization is made of a left and a
right hand side where the left-hand side contains the extracted IR and the right-hand side
contains the optimized version. In order to complete the rest of the left-hand side of a root
node it recursively follows the data flow path back [13]. During its backwards traversal
the extractor adds path conditions and blockpc constructs as it encounters ϕ nodes and
branches. Once the extractor encounters a function return value or a function entry point
extraction terminates. Similarly, extraction stops if the extractor arrives at an instruction
that Souper does not have a representation for, such as a load from memory or a floating
point operation.

%0 = block 2
%1:i32 = var
%2:i32 = shlnsw %1, 1:i32
%3:i32 = phi %0, %1, %2
%4:i32 = mulnsw 3:i32, %1
%5:i32 = phi %0, %4, %2
%6:i32 = addnsw %3, %5
infer %6
→
%7:i32 = shl %1, 2:i32
result %7

Table 2: Listing showing Souper IR for the example in Table 1. The part until the right-arrow
representing the left hand side and the part after showing the optimization found [13].

Table 2 illustrates the extracted Souper IR from the function shown in Table 1. It is
worth mentioning the similarity of the instructions present and how LLVM intrinsics such
as nsw (no signed overflow) are incorporated into instructions themselves.

3 Program Synthesis
Program synthesis is the automated construction of software and has been one of the holy
grails of software engineering [7]. Synthesis relieves the programmer from the burden of
describing how the problem should be solved instead it only requires the programmer to give
a specification of the program. The synthesizer then, generates a program that provably
satisfies this specification [4]. More formally, a synthesizer is a solver for second order
existential logic. Consider the formula

∃P ·Qx · σ(P,x)

4

where P ranges over functions, Q is a quantifier, x ranges over ground terms and σ is a
quantifier-free formula. A synthesizer generates a model that can map each second-order
variable P to some function of appropriate type [4].
Over the years program synthesis had found many practical use cases, including but not
limited to: generating optimal code sequences, automating repetitive programming tasks,
and filling in low-level details for some higher level specification. In order to explain the
synthesis method Souper follows, it is necessary to establish some preliminaries. To this
end, before detailing Souper’s synthesis process this section explains:

• Deductive vs. Inductive Synthesis

• Counter-example-guided Abstraction Refinement

• Counter-example-guided Inductive Synthesis

Deductive vs. Inductive Synthesis

If a program specification is complete, in the sense that it does not require iterative revision
and tuning it is said to be a deductive synthesis process [4]. Unfortunately, such specifi-
cations are usually not available or are hard to write, on the other hand what is in reach
most of the time are incomplete program descriptions, desirable and undesirable behaviour,
input/output examples and so on. In contrast to deductive synthesis, inductive synthesis
methods can makes use of common patterns in given facts such as these. Even though this
offers great flexibility, the resulting program may not be sound in the sense that it may
exhibit incorrect behaviour in cases the specifications failed to cover completely.

Counter Example Guided Abstraction Refinement

In order to restore soundness of resulting programs a counter example guided synthesis ap-
proach follows a similar pattern to counter example guided abstraction refinement (CEGAR)
[3]. The main working mechanism of CEGAR can be regarded as three steps. First, for a
given program an abstraction corresponding to this program is extracted, then it is checked
whether this is the abstraction formula to be reached. If this check reveals a counterexample
this counterexample is then assumed to be also in the unabstracted structure. If this is the
case an actual counterexample is found and the process returns otherwise the counterex-
ample is determined to be spurious and the abstraction is refined in the last step. In the
last step of the process the abstraction is modified so that it does not accept the spurious
counterexample found in the previous step anymore. After refinement process jumps back
to the second step of finding counterexamples.

Counter Example Guided Inductive Synthesis

Similarly, counter example guided inductive synthesis (CEGIS) [4], [6] runs in a loop where
each iteration inductive generalization is attempted based on the counter examples provided
by a verification oracle. First, the program space is searched for a candidate P that satisfy

∃P · ∀x ∈ INPUTS · σ(P,x)

then this candidate program is passed to the verification oracle which tries to find input
distinguishing P from the global solution that maps all inputs correctly. If such an input
is found it is added to the set of inputs, if not the process terminates and the program is

5

Figure 1: Simplified counter example guided inductive synthesis loop.

returned. This way the process essentially synthesizes programs that works for more and
more inputs as illustrated in Figure 1.
In general, an SMT solver is used as the verification oracle in such a synthesis process. As
defined in [5], "Satisfiability modulo theories (SMT) generalizes boolean satisfiability (SAT)
by adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other
useful first-order theories. An SMT solver is a tool for deciding the satisfiability (or dually
the validity) of formulas in these theories.".

Besides the synthesis itself the program space searched is also crucial in the overall
efficiency of the synthesizer. Even though for a finite program space synthesis is guaranteed
to terminate by either returning the correct program or exhausting the search space, it
might take a considerable amount of time. Therefore, two important aspects to consider for
a system that makes use of this synthesis method are potential ways to shrink the program
space and the manner in which this space is traversed.

3.1 Souper’s Synthesis Process
Program synthesis lies at the heart of Souper’s superoptimization process. Once an op-
timization candidate is extracted from LLVM IR as a left hand side, the superoptimizer
synthesizes a potentially optimized right hand side. In order to do so, an enhanced version
of the CEGIS loop is used [13]. Since synthesis usually involves large search spaces, to keep
superoptimization scalable and efficient the portion of the input that is going to be searched
and the number of times the verification oracle is queried should be reduced as much as
possible. Even though CEGIS does not attempt to naively enumerate the entire program
space and performs well in most cases, Souper makes use of various strategies to shrink the
search space at hand [12].

3.1.1 An outer CEGIS loop

One relatively straightforward strategy Souper uses in order to enhance the runtime and
effectiveness of CEGIS is to wrap the synthesis in an outer loop [13]. This way Souper can
put constraints on the output RHS. Doing so, Souper first attempts to synthesize right hand
sides with no new instructions and which iteration this constraint is relaxed by one.

6

3.1.2 Pruning without Dataflow Analysis

A more substantial step up in synthesis efficiency is possible through pruning the search
space. Souper attempts to do so in a multitude of methods. Ones mentioned here do not
make use of dataflow facts Souper can extract and instead rely on more general rules and
properties [12].

• Synthesizing constants directly As opposed to trying to verify potential opti-
mizations with constants directly, Souper leaves them as symbols and once a correct
optimization is found the symbols are synthesized to constant directly.

• Using a cost model Souper utilizes a cost model to prune potential right hand sides
that are more expensive than the left hand side specification.

• Ad hoc pruning strategies Souper applies various pruning strategies such as ex-
ploiting commutativity, not generating instructions with all constant operands etc.

3.1.3 Pruning with Dataflow Analysis

Given the specification
f(x) = (x ∗ x ∗ x)|1

consider the partially symbolic candidate

g(x) = H(x) << C

Where H represents a directed acyclic graph of arbitrary and not enumerated instructions
or a so-called hole the result of which is bit shifted to the left by a constant C [12]. If such a
candidate can be eliminated, the amount of times the verification oracle needs to be queried
goes down considerably.

Based on the specification a dataflow analysis can reason that the least significant bit
of the result is always set because of the bitwise-or operation. Similarly, looking at the
candidate it can be concluded that, since a bit shift by zero is meaningless the least significant
bit of g is always cleared. These dataflow facts clearly conflict. Therefore this branch of the
search tree can be pruned [12].

In other words, the pruning problem is: given a specification f and a partially symbolic
candidate g is it possible to prove that there is no concrete instantiation of g that refines f
[12]? To answer this question Souper searches for a fact about f that conflicts with at least
one fact that is true for all instantiations of g. Souper looks for two kinds of conflicts:

• Root conflicts
Souper uses three forward dataflow analysis to look for root conflicts [12]:

– Known bits
Attempts to prove that each output bit is always either 0 or 1

– Integer ranges
Attempts to prove that the output is within a range of integer values

– Bivalent bits
Attempts to prove that each output bit can be flipped by choosing two different
input values

7

• Leaf conflicts
Souper uses three backward dataflow analysis to look for root conflicts [12]:

– Required bits
Attempts to prove that individual input bits influence the output

– Don’t care bits
Attempts to prove that individual input bits do not influence the output

– Forced bits
Tracks individual bits in symbolic constants which are forced to be a particular
value, given a specific output value

4 Methodology
As introduced previously, this paper aims to evaluate Souper by reproducing its original
results and devise different program classes to test its optimization performance. In order
to have meaningful results and draw consistent conclusions, we have decided upon com-
mon evaluation metrics. These metrics are threefold: output Souper IR, binary size, and
compilation speed.

In order to see how well Souper can actually extract its IR and find possible optimizations,
it is crucial to examine resulting IR of optimization candidates found. In addition to showing
how well Souper can handle specific program cases this method also casts some light on the
working details of the superoptimizer and its capabilities. This metric also allows Souper to
be evaluated independently, in contrast to merely using it as a compiler extension.

When it is incorporated with the compilation process, however how successful the su-
peroptimizer may be to be feasible as a compiler aid it must not increase output binary size
drastically.

At the same time, when Souper is used as an online optimizer due to the fact that it adds
an additional pass to LLVM’s optimization process, compilation is expected to take longer,
still, compilation speed is a useful metric to provide insight into feasibility of incorporating
Souper into compilation. The last two of the above-mentioned metrics are also employed
in the original paper [13], this makes the comparison process with the original results more
straightforward.

5 Reproducing Original Results
In order to have a preliminary understanding of Souper’s inner workings and capabilities
we attempted to reproduce the results presented in the original paper[13]. In other words,
the aim is to see whether under the same experimental conditions, the same results can be
obtained consistently.

It is important to see Souper’s optimization synthesis with some of the small test pro-
grams as well as to see how Souper’s capabilities may be useful for a project of a larger
scale. To this end, the optimization results presented in the paper for small programs and
for clang-3.9.0 are reproduced.

8

5.1 Attempts at Compiling clang

In order to test Souper’s optimizing capabilities on a large program the authors of the original
paper had decided to compile LLVM with its C frontend clang [13]. The clang codebase is
around 2,5 million lines of code and according to their findings a clean build without Souper
takes around 13 minutes. Additionally, the authors have replicated the average workflow
of an LLVM developer by running an incremental build of clang daily. Since on most
days there are changes to widely included headers a complete build is necessary and the
build time usually stays the same. On the other hand when they included Souper in the
compilation process a clean build took 88 minutes. This is considerably longer than normal
build times, to mitigate this Souper caches potential optimizations and the corresponding
right-hand sides which reduces the compilation times of incremental builds down to around
9 minutes.

Even though the above mentioned results seem straightforward, unfortunately they are
not as easily reproducible as one might expect. In order to have a better insight into the
attempt of reproducing the original results it is worth discussing different types of utility
Souper provides.

5.1.1 Standalone Souper

The obvious way of using the superoptimizer is as its own executable. Given an LLVM bit-
code file, independent of any other program or process Souper can output the optimizations
it finds in its intermediate representation. Even though this might seem satisfactory, for
compiling larger programs with a large number of object files, this method quickly becomes
unwieldy.

5.1.2 Dynamically linking to LLVM’s opt pass

After being generated by a front-end, LLVM IR is optimized in LLVM’s mid-end. Souper
as a shared library can dynamically link to the optimization pass LLVM offers. This way
optimizations Souper may find are automatically applied to the input.

5.1.3 Drop-in Compiler

Finally, Souper offers a drop-in compilers that effectively replace clang and clang++. This
way, a source file can be directly compiled into a binary with the optimizations Souper had
found applied. Additionally, Souper can cache the potential optimizations without inferring
a right-hand side, this can be followed by inferring optimizations on the cache, overall this
offers a clear division in the compilation process and makes it more manageable. The drop-
in compilers make the process of incorporating superoptimization into the build process of
larger programs easier.

The obvious way moving forward may seem like using the drop-in compiler to build the
latest version of clang with LLVM and a back-end but after our attempts with different
configurations such as the inclusion of an external cache, the compilation process was never
successful. An obvious culprit in this case is, since the original results there have been
substantial development on clang, LLVM, and Souper itself. This creates a problem with
versions of the programs used. While the original was being written Souper would be
linked against clang 3.9 to be used as a drop-in compiler and the original experiments were
conducted on LLVM version 3.9’s codebase. In order to replicate this, we have tried to link

9

Souper against LLVM 3.9 but unfortunately this was not possible. Still, after linking Souper
with the newer toolchain we have tried to build a clang 3.9 binary again using the drop-in
compiler. When an external cache was used with this setup a clean build was possible,
which took around 51 minutes, yet this was most likely a one time fluke since it was not
reproducible with an identical setup later on. Unfortunately, except for the single occasion
mentioned, Souper got stuck and compilation was never finished.

Next, we have tried to split the compilation process into three steps in order to separate
the concerns of extracting the potential optimizations and finding right-hand sides for these
optimization candidates. In order to do so, we have built clang using the drop-in compiler
with the SOUPER_NO_INFER flag which stops the superoptimizer from inferring right-hand
sides for potential optimizations instead these candidates are only cached. Next, optimiza-
tions were inferred on the cached candidates. Unfortunately, in this step we have realized
that the number of left-hand sides were around 279 000 which -assuming an average RHS
synthesis time of 15 seconds- would take around 45 days to fully infer optimizations from. In
the paper the number of extracted left-hand sides are mentioned to be around 17 thousand
unfortunately the authors have not detailed the necessary compiler configuration for such a
result.

These attempts were also repeated using the Docker images [11] supplied in the Souper
repository [1] sadly the outcomes were the same.

5.2 Superoptimizing Program Samples
In addition to compiling clang the authors also make use of smaller example programs in or-
der to demonstrate Souper’s workings with specific program cases. One program explained
in detail is said to exploit correlated ϕ nodes in LLVM-IR through blockpc statements
and is able to fully optimize a switch statement away, this program and the optimization
found are shown in Table 4 and Table 5. We thought replicating these programs as well
would be beneficial in gaining insight into Souper’s capabilities. Given that program at
hand is minute, replicating the results may seem extremely straightforward as merely run-
ning Souper on the bitcode representation of the source. Unfortunately, once again, this is
proven not to be the case. In our experiments with its default build, Souper is not able to
find any potential optimizations for this program. Since there were no details given about
the process of getting this result we have looked into other projects that have made use
of Souper to see the configuration they have used. One such project is Slumps [2] which
targets WebAssembly. Still, the flags its authors have used have proven to be somewhat
useful with this example program too. With these flags Souper was able to find one (1)
potential optimization which is shown in Table 3. Obviously this optimization is neither
useful nor the same as the original result.

< %4 = urem i32 %3, 4
−−−
> %4 = and i32 3, %3

Table 3: Diff of two LLVM IR files showing the optimization Souper had found. Top shows the
original file, bottom with the changes from Souper.

In conclusion, unfortunately, we were not successful in consistently reproducing the re-
sults presented by the authors of Souper.

10

6 Evaluating Souper on Different Program Classes
Besides reproducing original results, we have also solicited different program classes that
test Souper. These program classes are devised to exercise or highlight different mech-
anisms within Souper. We believe that these trials will give more insight into Souper’s
capabilities and limitations. Even though due to a lack of time these experiments were not
fully conducted we provide enough detail to sufficiently narrow down these program types
so that such a program is trivially constructable.

6.1 Programs with High Cyclomatic Complexity
One of the prominent features that make Souper’s intermediate representation different from
LLVM IR is how branching and control flow are represented. Programs that introduce a
large amount of branching are ideal in trialing this facet of Souper. In order to enumerate
this trait we have made use of the static analysis metric cyclomatic complexity.

6.1.1 Cyclomatic complexity

Cyclomatic complexity is a measure of number of basic paths that can be taken through
a program. These basic paths when combined will generate every possible path that can
be taken. Even though this metric was developed as a way to measure the testability,
maintainability, and code quality of a given piece of software, it is still useful for generalizing
to a program class that can be used to test the superoptimizer.

6.1.2 Exploiting correlated ϕ nodes

Each ϕ node in each block in LLVM IR returns the value that corresponds to this block’s
predecessor. Even though Souper doesn’t replicate this behaviour directly, it makes use of
a block type value to store information about correlated ϕ nodes.

Normally, once multiple control flow paths converge information about the path condi-
tions for these are lost even if they are useful. Using the block type introduced above and
blockpc instructions Souper can retain this information and reason about incoming control
flow.

unsigned foo(unsigned a) {
switch (a % 4) {

case 0:
a += 3;
break;

case 1:
a += 2;
break;

case 2:
a += 1;
break;

}
return a & 3;

}

Table 4: Listing showing a function where information is lost after control flow paths merge [13].

11

Take the listing in Table 4 for example, here information about the remainder of "a"
divided by 4 is useful once control encounters the return statement but at this point this
information is already lost since the control flow paths have merged. Using blockpc con-
structs Souper can make use of this information as shown in Table 5. As illustrated Souper
extracts 6 blockpc instructions and can optimize the return value of the above function to
a constant.

%0 = block 4
%1:i32 = var
%2:i32 = urem %1, 4:i32
%3:i1 = ne 0:i32, %2
%4:i1 = ne 1:i32, %2
%5:i1 = ne 2:i32, %2
blockpc %0 0 %3 1:i1
blockpc %0 0 %4 1:i1
blockpc %0 0 %5 1:i1
blockpc %0 1 %2 2:i32
blockpc %0 2 %2 1:i32
blockpc %0 3 %2 0:i32
%6:i32 = add 1:i32, %1
%7:i32 = add 2:i32, %1
%8:i32 = add 3:i32, %1
%9:i32 = phi %0, %1, %6, %7, %8
%10:i32 = and 3:i32, %9
infer %10
→
result 3:i32

Table 5: Listing showing the extracted Souper IR and the optimization found from the listing in
Table 4 [13]. The part until the right-arrow representing the left hand side and the part after
showing the optimization found

Even though the example above might seem contrived, it is useful in demonstrating
Souper’s behaviour with programs that use facts about control flow later in the execution.
Such occurrences are expected to be more frequent once more branching is introduced which
-with high probability- will also drive cyclomatic complexity high.

6.2 Programs Souper cannot fully extract from
As described in section 2 Souper’s extractor terminates once it encounters an instruction
Souper does not have a representation for. We believe that programs that are heavy in these
instructions would be an interesting case to test Souper on. Even though this might seem
counter-intuitive at first due to the fact that it does not necessarily play into the strengths
of the superoptimizer, such programs constitute a considerable part of most code bases.
Therefore, we believe that even though Souper might not necessarily perform the best it
can with these programs, these provide valuable insight into how Souper would perform in
"real-life" scenarios.

12

6.3 Programs with Undefined Behaviour
Much like the name suggests programs with undefined behaviour1 either contain or execute
pieces of code that the language standard does not prescribe. Almost always this is not a
desired situation to be in. Unfortunately, even in the most well written codebases cases of
undefined behavior are present.

6.3.1 LLVM & Souper’s representations of undefined behaviour

LLVM represents undefined behaviour in three different ways.

• Immediate undefined behaviour caused by actions such as bad memory accesses.

• undef value used for uninitialized register/memory locations and can hold any value
of its type.

• poison value which can turn the return values of phi and selects to poison if one
of their inputs is posion.

int x;
if (cond)

x = f();
if (cond2)

g(x);

entry:
br %cond, %ctrue, %cont
ctrue:
%xf = call @f()
br %cont
cont:
%x = phi [%xf, %ctrue], [undef, %entry]
br %cond2, %c2true, %exit
c2true:
call @g(%x)

Table 6: Listings showing a program that can invoke undefined behaviour if a condition evaluates
to false [9].

A program that can cause undefined behaviour and the corresponding LLVM intermedi-
ate representation is shown in Table 6. If the first condition evaluates to false the program
passes an uninitialized value to a function invoking undefined behaviour. As one might
expect this is represented as an undef in a ϕ block in LLVM.

Souper takes a slightly different approach to mapping undefined behaviour [13]. Due
to the lack of a memory model in Souper IR and since undef values mostly surface when
dealing with memory, Souper does not have a direct mapping for this kind of undefined
behaviour. Immediate undefined behaviour on the other hand is reduced to only one case
which is a division by zero. Lastly, poison values are represented similarly to LLVM, each
phi or select in Souper IR only propagates undefined behaviour via its selected branch.

It has been found that undefined behaviour can be benignly compiled by LLVM [13]. In
these cases Souper’s exploitation of undefined behaviour might result in the application not
working properly. Therefore, we believe this to be an interesting program class that can
introduce a layer of complexity in how superoptimization should happen when undefined
behaviour is concerned and in particular how Souper handles theses programs.

1https://en.cppreference.com/w/cpp/language/ub

13

7 Responsible Research
When the subject at hand is program synthesis and optimization the ethical implications
may be harder to point out. This study is no exception. The experiments conducted are
deterministic except for hardware dependent statistics such as compilation speed. We also
provide satisfactory detail to make these experiments fully reproducible.

Apart from input programs, the superoptimizer does not rely on any user input. One
issue that is worth addressing concerning the input from the user is the correctness of the
output program. Given an input program the superoptimizer is not expected to change the
behaviour in any shape or form. In other words the input and the output programs should
be equivalent in functionality. This is covered by the superoptimizer’s synthesis procedure.
Since each optimization candidate is compared in terms of behavior to the specification
provided the correctness of the input is preserved.

8 Conclusions and Future Work
Writing optimizing compilers and optimization rules is hard to get right and burdensome.
Superoptimizers take a different approach to this problem by searching the program space
looking for a globally optimal program. In this paper we have evaluated Souper which
makes use of program synthesis to solve the optimization problem. We have tried to find
out whether original results presented by Souper’s authors were reproducible and devised
different program classes to determine what kinds of programs Souper works the best with.

To provide better insight into Souper’s working principle we have described the inter-
mediate representations it makes use of, we provided an introduction to program synthesis
and how Souper synthesizes programs in particular. During Souper’s synthesis method we
have touched upon how the superoptimizer uses certain techniques to reduce the size of the
search space traversed in its inductive synthesis loop.

Then, we have presented the utility Souper offers and our attempts at reproducing the
original results put forward by the authors of the superoptimizer. Unfortunately, we were
not successful in consistently reproducing these results. All the same, we have devised three
program classes each exercising a different component or mechanism within Souper. We
believe trialing the superoptimizer on these program classes would provide useful insight
into its optimization capabilities, limitations, and use cases.
Given what is being presented possible future work to build on this paper is rather clear.
To begin with, even though we have not managed to reproduce the original results, we have
presented the utility available and approaches we have already attempted. These themselves
provide a baseline on future attempts to reproduce results. Additionally, we provide enough
detail about the mentioned program classes to construct concrete programs that belong to
these. Which could be used to evaluate Souper in a more empirical manner.

9 Acknowledgements
We thank John Regehr and Manasij Mukherjee for their help in setting up Souper.

References
[1] souper. https://github.com/google/souper.

14

https://github.com/google/souper

[2] Javier Cabrera Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Satabin, Benoit
Baudry, and Martin Monperrus. Superoptimization of WebAssembly Bytecode, page
36â40. Association for Computing Machinery, New York, NY, USA, 2020.

[3] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and Ar-
avinda Prasad Sistla, editors, Computer Aided Verification, pages 154–169, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

[4] Cristina David and Daniel Kroening. Program synthesis: challenges and opportuni-
ties. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 375(2104):20150403, 2017.

[5] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, page
337â340, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis
of loop-free programs. SIGPLAN Not., 46(6):62â73, jun 2011.

[7] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE ’10, page 215â224,
New York, NY, USA, 2010. Association for Computing Machinery.

[8] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. pages 75–88, San Jose, CA, USA, Mar 2004.

[9] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P. Lopes. Taming undefined behavior in llvm.
SIGPLAN Not., 52(6):633â647, jun 2017.

[10] Henry Massalin. Superoptimizer: A look at the smallest program. SIGARCH Comput.
Archit. News, 15(5):122â126, oct 1987.

[11] Dirk Merkel. Docker: lightweight linux containers for consistent development and de-
ployment. Linux journal, 2014(239):2, 2014.

[12] Manasij Mukherjee, Pranav Kant, Zhengyang Liu, and John Regehr. Dataflow-based
pruning for speeding up superoptimization. Proc. ACM Program. Lang., 4(OOPSLA),
nov 2020.

[13] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi Taneja,
and John Regehr. Souper: A synthesizing superoptimizer. 11 2017.

15

	Introduction
	Intermediate Representations
	LLVM
	Souper

	Program Synthesis
	Souper's Synthesis Process
	An outer CEGIS loop
	Pruning without Dataflow Analysis
	Pruning with Dataflow Analysis

	Methodology
	Reproducing Original Results
	Attempts at Compiling clang
	Standalone Souper
	Dynamically linking to LLVM's opt pass
	Drop-in Compiler

	Superoptimizing Program Samples

	Evaluating Souper on Different Program Classes
	Programs with High Cyclomatic Complexity
	Cyclomatic complexity
	Exploiting correlated nodes

	Programs Souper cannot fully extract from
	Programs with Undefined Behaviour
	LLVM & Souper's representations of undefined behaviour

	Responsible Research
	Conclusions and Future Work
	Acknowledgements

