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A B S T R A C T

Using an expensive-to-evaluate numerical model, such as a finite element method (FEM) model, is
deemed unavoidable in solving modern geotechnical engineering problems. At the same time, the ap-
plication of reliability analysis in dealing with uncertainties (e.g. soil properties) is increasing rapidly.
This could pose a time-wise problem for an FEM model since reliability analysis normally takes much
more than only one realization (function call) of the model. It becomes a bigger problem when a
design optimization process is taking place. More often than not, design optimization is performed
by a ”trial-and-error” method in practice, which the process itself would even take longer just to give
engineers the ”sense” of achieving an optimal design (in terms of safety and economy). Therefore, the
actual optimality of the design is not systematically proven and quantified. This research proposes a
novel reliability-based design optimization (RBDO) method by combining existing theories regarding
active-learning Kriging-based Monte Carlo Simulation (AK-MCS) and (1+1)-Covariance Matrix Adap-
tation evolution scheme ((1+1)-CMA-ES). To achieve accuracy and efficiency, the method consists of
four enrichment stages. These enrichment stages ensure the method accurately and efficiently predicts
the optimal design combination by considering the reliability constraint. The chosen case study is
the reinforcement design of the Starnmeer polder dyke in the Netherlands, which is simulated as an
FEM model. Within a limited number of function calls, the proposed RBDO method could accurately
predict the optimal dimensions of the dyke that delivers the targeted reliability index. The reliable
performance of the proposed method is further demonstrated by solving three analytical optimization
problems.

Keywords: RBDO, Kriging, AK-MCS, MCS, (1+1)-CMA-ES, geotechnical reliability, FEM, dyke rein-
forcement

iv



A C K N O W L E D G E M E N T

Alhamdulillah, I would like to thank Allah SWT for giving me the strength to complete my master
thesis. Apart from numerical modeling, I have been intrigued by the application of reliability analysis
in geotechnical engineering problems since the first day I heard about it. I find it to be far superior and
makes much more sense compared to the traditional deterministic approach that civil engineers use
in general. Unfortunately, its application takes forever to conclude when one deals with a numerical
model (FEM). Therefore, when I was introduced to the concept of Kriging metamodel and reliability-
based design optimization (RBDO) to deal with a FEM model, I started to feel the urge and passion to
find a way to make it applicable in practice with a common personal computer.

Firstly, I would like to express my gratitude to Dr. ir. Bram van den Eijnden as my main supervisor,
for inspiring and introducing me to the topics of Kriging metamodel and RBDO (among others). Bram
has been guiding me to achieve the skills needed to complete the master thesis even far before the start
of the thesis itself. Since I am also highly interested in solving engineering problems through computer
programming, I am so glad and grateful that Bram was there. Personally for me, it feels like I was
learning from Bram throughout my whole master’s study, which I enjoyed every second of it. I hope
someday I could repay my debt and continue working under his guidance.

Furthermore, I would like to thank my supervisors, Prof. Dr. Michael Hicks and Dr. ir. Robert Lan-
zafame. Michael has introduced me to the concept of reliability analysis in geotechnical engineering
and provided valuable support during the progress meetings. Robert has been giving me valuable tech-
nical and non-technical inputs throughout the entire master thesis that allowed me to have a different
perspective on understanding the topic.

Last but not least, I would like to extend my gratitude to my wife Rosi, my parents, my brother and
sister, and my family for all of the love and support, my employer PT PP for all of the support and
opportunity, and The Foundation Justus & Louise van Effen for making it possible for me to do the
master study. I would also like to thank all of my colleagues, friends, and everyone who has helped
me to complete my master’s study and made it a valuable experience.

I hope this master thesis would give contributions to those who are seeking to learn or further
understand the application of reliability analysis and RBDO in the field of geotechnical engineering.

Muhammad Rayyan
Delft, July 2022

v



C O N T E N T S

Abstract iv
List of Figure vii
List of Tables viii
List of Algorithms viii
Acronyms ix
List of Symbols xi
1 introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research questions and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 literature study 3

2.1 Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Active-learning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Optimization method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Classical RBDO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Advance metamodel-based simulation RBDO methods . . . . . . . . . . . . . . . . . . . . 7

2.6 Differences between the current research and existing works . . . . . . . . . . . . . . . . . 8

3 method definition 9

3.1 Reliability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Kriging metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Noisy FEM and metamodel response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 (1+1)-Covariance Matrix Adaptation-Evolution Scheme . . . . . . . . . . . . . . . . . . . . 12

3.5 A four-stage-enrichment RBDO method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 method implementation 27

4.1 Example 1: a simple column under compression . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Example 2: a short column under oblique bending . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Example 3: a cantilever soil retaining wall under sliding mode of failure . . . . . . . . . . 35

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 case study 40

5.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 conclusion 47

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 49

a (1+1)-cma-es algorithm 52

b rbdo method algorithm 54

vi



L I S T O F F I G U R E S

Figure 1.1 The model case study: Starnmeer Polder dyke reinforcement, the Netherlands
(Hicks et al. [2019]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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ĝp Metamodel predictor
Gk MCS output prediction vector of the real performance function
G Monte carlo response
G(x) Real performance function
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1 I N T R O D U C T I O N

1.1 background and motivation
The Finite Element Method (FEM) application is an integrated part of modern geotechnical engineering
problem-solving. The increased use of FEM to accurately solve various geotechnical engineering prob-
lems is deemed ”unavoidable” these days. However, the application of a FEM-based analysis in geotech-
nical engineering is, more often than not, expensive to evaluate (in terms of computational effort and
time). On the other hand, despite its relatively recent development, the application of reliability-based
design and analysis of geotechnical engineering structures is increasing steadily. Reliability analysis is
very useful in quantifying uncertainties, therefore it is perfectly suitable to be applied in a field of study
that deals with uncertainties on a regular basis, such as geotechnical engineering. Unfortunately, de-
spite the rapid advancement of technology, FEM-based analyses of geotechnical engineering problems
still normally take more than 20 seconds (if not minutes) to conclude. This means that a reliability
analysis by using a Monte Carlo Simulation (MCS) with 106 realizations would take more than 231 days
to conclude! On the other hand, a geotechnical engineering structure (or any engineering structure in
this matter) needs to be designed as safely and economically as possible. Therefore, it is a common
practice for a civil engineer to perform the classic trial-and-error approach to get the most (or ”deemed”
as the most) optimal design (in terms of safety and economy). This trial-and-error process itself could
be time-consuming since it is not systematically performed. Moreover, a trial-and-error process could
not quantify the accuracy (or confidence) level achieved by the chosen design since it mostly relies on
the ”hunch” or ”engineering judgment” of the engineer himself.

Therefore, for a specific geotechnical engineering problem, there is a need in performing a sys-
tematic optimization method to achieve the most economical design possible while also fulfilling a
certain reliability target within an acceptable computation time. To overcome the problem, an effective
Reliability-Based Design Optimization (RBDO) method that can be applied to an FEM-based geotechni-
cal engineering problem is needed. The application of an advanced metamodeling-based RBDO method
to an FEM-based geotechnical engineering problem seems very promising in future practice. However,
despite the development of metamodeling-based RBDO is becoming more and more well-established in
other engineering practices, its use in geotechnical engineering has not been really proven yet as the
case references are still relatively limited.

The FEM model to be analyzed in this research is a dyke reinforcement by the means of berm ex-
tension, which is inspired by a case study of the Netherlands’ Starnmeer Polder Dyke reinforcement
as analyzed in Hicks et al. [2019] (Figure 1.1). The FEM model will be simulated with PLAXIS 2D
(Brinkgreve et al. [2020]). The goal is to make a design that makes the berm extension dimensions (W
& H) to be as small as possible while also fulfilling its reliability target at the same time.

Figure 1.1: The model case study: Starnmeer Polder dyke reinforcement, the Netherlands (Hicks et al. [2019])

1



1.2 research questions and objective 2

1.2 research questions and objective
Based on the problems described above, the following main question and sub-questions are formulated
for this research:

”How to efficiently and accurately perform a design optimization of a dyke reinforcement problem
with an expensive FEM-based performance function while also fulfilling the reliability target?”

• How to combine a metamodel and an optimization process into an RBDO method?

• How to achieve the accuracy of the RBDO method?

• How to achieve the efficiency of the RBDO method?

• What is the optimal design for the dyke reinforcement based on the proposed RBDO method?

Based on the questions formulated above, the objective of this research is: to optimize an expensive
FEM-based dyke reinforcement design by using an RBDO method consisted of an active-learning
metamodel combined with an optimization scheme to fulfill the reliability target while making the
computation effort inexpensive and time-efficient.

1.3 research overview
To solve the research questions mentioned above, a novel RBDO method will be introduced in this
research. The method is developed by combining the existing well-known metamodeling and opti-
mization theories with strategies that further improve the accuracy and efficiency of the method. This
development is realized through algorithms implemented in Python programming language, while the
FEM case study is modeled in PLAXIS 2D.

The proposed RBDO method works by constructing a metamodel based on a certain number of en-
richments (or ”training data” from the original model), which is then used to perform performance
function evaluations in place of the expensive original FEM model evaluations (or ”function calls”).
Moreover, the optimization method will be used to locate the optimal design variables. Since the main
aim of the RBDO method is to find an optimal set of design variables within a limited number of func-
tion calls for the FEM-based case study, the method is developed by putting accuracy and efficiency as
the main consideration. The accuracy will be obtained by selecting the right amount of enrichment for
the metamodel, while the efficiency will be obtained by performing the enrichment in the right points
(or in the right ”place”).

The research is structured as the following. Chapter 2 discusses the literature study of existing re-
lated RBDO approaches. The chapter also points out the differences between this research and existing
RBDO researches. Chapter 3 explains the proposed RBDO method by introducing the metamodel and
the optimization process, and further explains how to couple them. The chapter also explains the en-
richment stages and other strategies which are developed to achieve accuracy and efficiency. Moreover,
Chapter 4 demonstrates the accuracy and efficiency of the proposed RBDO method compared to other
existing RBDO methods by solving existing analytical problems. This chapter also shows the generality
of the method, therefore, it can be applied to geotechnical engineering problems other than the case
study. Furthermore, the RBDO method is applied to the case study in Chapter 5. The chapter discusses
how the RBDO obtain the optimal design of the case study’s noisy FEM model within a limited number
of function calls. To sum up, Chapter 6 summarizes the RBDO method and its performance, including
the advantages and disadvantages. Finally, the algorithms of the proposed RBDO method (based on
Chapter 3) are provided in Appendices A and B, therefore, one can have a better understanding of the
method.



2 L I T E R AT U R E S T U DY

The existing recent research regarding metamodeling and RBDO will be discussed in the following sub-
sections. Furthermore, the literature study will also provide the reasons why the methods performed
in this research are chosen.

2.1 metamodeling
Metamodel (also known as ”surrogate model”), in short, is a simpler function (model) that is con-
structed to ”imitate” the complex and expensive real performance function to a certain accuracy. Meta-
model is constructed based on a set of ”training data”, which is normally called as Design of Experi-
ments (DOE). Therefore, it is expected of the metamodel to be more accurate when it has more data in
the DOE. Selecting the right DOE is crucial in constructing an accurate and efficient metamodel. With
the right metamodel, an expensive-to-evaluate performance function’s (like an FEM model) response
could be predicted to a certain accuracy within orders of magnitude less computational time. This
makes the application of reliability analysis of an expensive model to be much less time-consuming.
Moreover, the metamodel-based reliability analysis framework could be further improved to accommo-
date an accurate and efficient RBDO application. An illustration of a metamodel prediction can be seen
in Figure 2.1.

Figure 2.1: An illustration of a metamodel Ĝ that tries to re-create a real performance function G (Echard et al.
[2011]).

There have been numerous types of metamodel. One of the commonly applied one is Response
Surface based on Polynomial Chaos expansion (Sudret and Kiureghian [2002] and Blatman and Sudret
[2009]) which are used for their speed and high global interpolation accuracy. However these meth-
ods have complex and impractical definitions of the DOE (Echard et al. [2011]). Another well-known
metamodel is the Support Vector Machine (SVM) (Claudio and Alí [2002]). SVM is a kernel-based meta-
modeling technique initially formulated for classification problems, and later extended to regression
problems (Teixeira et al. [2021]). However, the selection of its parameters is relatively complex and less
straightforward.

A well-established stochastic metamodel approach, Kriging (developed in the fifties and sixties by
Danie G. Krige for geostatistics application), has been extensively applied in reliability analysis of
geotechnical engineering practices due to its interesting features (Kentrop [2021] and van der Werf
[2021] among many others). It is an exact interpolation method (also known as the Gaussian process

3
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predictor), which means it could predict an exact performance function value of a point that belongs
to the DOE. Moreover, thanks to its stochastic feature, Kriging could predict the performance function
value of any points and the local variance (Kriging variance) of the prediction (Echard et al. [2011]).
Therefore the local uncertainty of any prediction can be quantified from this variance (the higher the
variance is, the less certain the prediction is). Furthermore, Kriging model is particularly well-suited
for strong non-linearity Teixeira et al. [2021], thus makes it especially superior over the Response
Surface, Polynomial Chaos Expansion, and Support Vector Machine when dealing with a strongly non-
linear and noisy model response (van den Eijnden et al. [2021] and Teixeira et al. [2021]). Moreover,
the strategy in van den Eijnden et al. [2021] to overcome noisy response of FEM model will also be
considered in this research. More discussions regarding the problem of noisy data in the Gaussian
Process (Kriging) metamodel can be found in Forrester et al. [2008]. Due to its advantages and proven
effectiveness in geotechnical engineering applications, Kriging metamodel will be implemented in this
research.

The reliability method to be combined with the Kriging metamodel is MCS. The MCS reliability analy-
sis method is chosen since it is a robust sampling-based (or simulation-based) method. Despite its need
for a large sample population and number of function calls, evaluating those function calls in a meta-
model is not considered as a problem since its computational effort is orders of magnitude less than
the actual model’s. Moreover, sampling-based reliability methods are generally more accurate than
approximation (or gradient-based) methods (Rayyan [2021]). The MCS is also easy to implement and
applicable to a large domain of application (Echard et al. [2011]), including geotechnical engineering.

2.2 active-learning method
Generally speaking, an active learning method extends the DOE by including more strategic training
data to improve the accuracy of the metamodel. An example of an active learning metamodel appli-
cation is illustrated in Figure 2.2. An active learning function is the function responsible in choosing
these strategic data. Some well-known active learning methods have been developed in the last few
decades to perform sufficient performance function evaluation. Their use is helpful in determining the
best training data to be added to the DOE. Thanks to Kriging prediction and Kriging variance, active
learning methods could be perfectly combined with Kriging metamodeling.

Figure 2.2: An illustration of active learning application in selecting the most strategic DOE to improve the meta-
model (Echard et al. [2011]). In this case, the most strategic DOE should be located close to the limit
state function line.

A learning function called Expected Feasibility Function (EFF) was proposed by Bichon et al. [2008]
to estimate the next best training data by creating a function that provides an indication of how well
the true value of the response is expected to satisfy a certain constraint (performance function’s limit
state, G(X) = 0), which is then used to define an active learning reliability analysis method called
Efficient Global Reliability Analysis (EGRA). The function evaluates the data in the region around the
limit state. The data with the maximum EFF value is then chosen as the new addition to the DOE. This
method is inspired by Efficient Global Optimization (EGO) from Jones et al. [1998] and the Kriging
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contour estimation method from Ranjan et al. [2008]. Despite producing results that are far more
accurate and efficient than Most Probable Point (MPP)-based approach such as First Order Reliability
Method (FORM), EGRA was effectively tested for problems that only have two independent variables
(its effectiveness against problems with larger dimensions was still being investigated at the time). It
is worth noting that EFF was designed for EGRA (Bichon et al. [2008]), which approximates the whole
performance function. Moreover, EFF has a different concept that does not guarantee it to perform well
with Active Learning Kriging-based Monte Carlo Simulation (AK-MCS) since EFF evaluates the whole
limit state while AK-MCS only evaluates the data (points) in the Monte Carlo population that is in close
proximity with the limit state.

Contrary to EFF which evaluates the whole performance function, Echard et al. [2011] proposed a
learning function called U that only evaluates a generated Monte Carlo population nMC. The learning
function U is defined in such a way that its value can predict whether the evaluated data (point) is close
to the limit state G(x) = 0 (having a high potential of having the performance function’s sign change
from negative to positive and vice versa), having an important uncertainty (high Kriging variance), or
both at the same time. These potentially ”interesting” data (points) are defined in such a way to have
low U values, therefore, the next best training data to be added in DOE expansion is the data that has
the lowest U value. The learning function U is formulated as Equation 2.1.

U(x) =
|Ĝ(x)|
σĜ(x)

(2.1)

In a more recent development, van den Eijnden et al. [2021] took the concept of learning function U
further to accommodate the noisy and incomplete performance function with an adaptive Importance
Sampling reliability analysis method, where the samples have unequal weights (contrary to MCS sam-
ples that have equal weights). This learning function is called the learning function UNIS. In that case,
a set of input data is defined as incomplete when it fails to deliver a complete final output (e.g. the
geotechnical model fails when it is still in the construction stage).

Moreover, Zhaoyan et al. [2015] introduced the H learning function which is built based on informa-
tion entropy theory. The information entropy of a metamodel Ĝ(x) describes the degree of disorder
of Ĝ(x), and it can be used to quantitatively judge the uncertainty of Ĝ(x). The prediction is more
certain when the information entropy is lower. Furthermore, some learning functions not only con-
sider misclassification but also the influences of neighbor candidates (Sun et al. [2017]). However, these
elaborate learning functions are less straightforward compared to the learning function U.

In this MSc thesis research, the FEM-based model is defined as a complete model, which means the
evaluation is based on the model’s final stage (no failure is assumed during the construction stages).
Furthermore, since the chosen metamodel is AK-MCS (where every sample has an equal weight), the
straightforward and more natural learning function U will be applied to this research. Other more
elaborate learning functions have not shown any significant superior performances compared to the
learning function U Bourinet [2018].

2.3 optimization method
Reliability-based design optimization is a relatively rich and well-established field of research. In this
section, we are reviewing some of the more recent and popular methods. There are a few approaches to
formulating an RBDO process, one of the well-known formulations in engineering practice is (Dubourg
et al. [2011]):

d* = arg min
d∈D

c(d)

{
f j(d) ≤ 0 f or j = 1, ..., n f

P(gk(X(d), Z) ≤ 0) ≤ P̄f ,k f or k = 1, ..., ng
(2.2)

Where c(d) is the cost function to be minimized based on the design variable d = (d1, ... , dnd) ∈
D, where nd is the total number of design variables and D is the admissible domain for the design
variables. Moreover, n f is the number of constraints f j (soft constraint) that bound the admissible
design space in D, and ng is the total number of limit-state function gk. Furthermore, P(gk(X(d), Z) ≤
0) ≤ p̄ f ,k is the probability of failure constraint (hard constraint) of gk with input vector X(d) and Z (for
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design and environmental variables respectively) to be lower than the target probability of failure P̄f ,k.
Parameter X(d) is the input vector based on design variables d, and Z is the environment variables
(independent variables other than the design variables).

In order to solve the RBDO problem defined in Equation 2.2, numerous methods have been developed
(including classical and advanced techniques).

2.4 classical rbdo methods
Based on the main solving strategy, the classical RBDO methods are commonly categorized into the
followings (Aoues and Chateauneuf [2010]; Bourinet [2018]; Moustapha and Sudret [2019]):

1. Double loop-approach.
Also known as the Two-level RBDO approach. In this method, the problem is solved in two nested
optimization problems. The outer loop explores the design space (deals with cost optimization)
while the inner loop solves the reliability assessment problem. Two of the well-known formu-
lations in this category are Reliability Index Approach (RIA) (Enevoldsen and Sørensen [1994])
and the Performance Measure Approach (PMA) (Tu and Choi [1999]) approaches. However, this
method requires enormous computational cost due to the performance functions to be evaluated
and approximation errors due to limit state non-linearity (Aoues and Chateauneuf [2010]).

2. Single loop-approach.
Also known as the Mono-level RBDO approach. This method alleviates the computational burden
of the nested approach as in the Double loop-approach. It aims to solve the RBDO problem in
a single loop. In order to do so, the probabilistic constraints are replaced by the optimality
conditions or by reformulating the RBDO problem. One of the optimality conditions is Karush-
Kuhn-Tucker (KKT) Kuschel and Rackwitz [1997]. Some of the well-known methods are the Single
Loop Single Vector and Single Loop Approach (SLA) (Chen et al. [1997]; Liang et al. [2007]).
However, based on a numerical benchmark carried by Aoues and Chateauneuf [2010], these
methods (such as SLA and KKT) often fail to converge when the starting point of the optimization
problem is far from the optimal solution. The lack of robustness in the single loop-approach
(judged from the existing methods developed for this approach) is also observed when the target
reliability indexes are large or when the design variables are the mean of the random parameters
Moustapha and Sudret [2019].

3. Decoupled approach.
The Decoupled approach performs optimization and reliability analysis sequentially, therefore,
the reliability method is independent of the optimization algorithm. In fact, an approximate
deterministic optimization problem is solved using information from a previous reliability anal-
ysis (Moustapha and Sudret [2019]). Some of the most popular methods in this category are
reformulating the RBDO problem into a deterministic semi-infinite optimization problem (Roy-
set et al. [2001]) and Sequential Optimization and Reliability Assessment (SORA) (Du and Chen
[2004]), which transforms the RBDO problem into a sequence of deterministic optimization and
reliability cycles that heavily relies on the inverse of FORM (as in PMA). Recently, Zhang et al.
[2021] introduced a decoupled RBDO called Reliability Index Function Approximation by Adap-
tive Double-loop Kriging (RIFA-ADK) that use adaptive Gradient-enhanced Kriging (GEK) to take
reliability sensitivity into account in addition to reliability index. The setbacks of the method are
it is unsuitable for problems with a very small variation coefficient of the random design variable.
However, decoupled approaches suffer similar drawbacks as the single loop-approaches. Ap-
proximation errors in early cycles may mislead the searching algorithm in the wrong direction,
especially when the initial design is far from the optimal solution.

Since most of the classical methods heavily rely on approximation methods (e.g. FORM), they have
low accuracy against problems that are highly non-linear or have multiple failure regions (despite there
have been many contributions to improve their accuracy). However, since the recent developments
of metamodeling techniques, the approximation methods in classical optimization methods can be
replaced by metamodel-assisted simulation methods and further be improved.



2.5 advance metamodel-based simulation rbdo methods 7

2.5 advance metamodel-based simulation rbdo methods
In order to overcome the well-known setbacks (especially inaccuracy) caused by the approximation
methods, simulation methods can be applied. Numerous advanced simulation methods have been
developed in the last decade, e.g. Stochastic Subset Optimization (SSO) (Taflanidis and Beck [2008])
that iteratively identifies subsets of the original design space with a high likelihood of containing the
optimal design, and kernel density estimation to directly approximate the objective function instead
of working with subset Jia and Taflanidis [2013]. These methods have generally brought a substantial
gain in model evaluation savings, i.e., going from 108 − 109 for a direct double loop-approach with
crude MCS to 104 − 105 calls to the performance function (Moustapha and Sudret [2019]). However,
the number of function calls by these methods is still considered as expensive and time-consuming
when one deals with a complex model (e.g. an FEM-based model). Therefore, further development
in metamodel-based RBDO is needed to overcome such problems. An example of a metamodel-based
RBDO application can be seen in Figure 2.3.

Figure 2.3: An illustration of a metamodel-based RBDO application (Zhang et al. [2021]). FRB = Feasible Region
Boundary.

There are numerous approaches to combining a metamodel with an RBDO process depending on the
various types of metamodel and optimization method. One of the approaches is to directly approx-
imate the relationship between given design variables and the corresponding reliability index β (or
probability of failure Pf ). Some of the contributions to this approach can be seen in Foschi et al. [2002]
and Lehký et al. [2018].

A less computational effort approach would be to directly create an approximation of the perfor-
mance function and use it for reliability analysis. One of the obvious approaches is to build a distinct
metamodel locally used for each reliability analysis in the inner loop of the two-level approach (to
calculate the reliability index). Some of the contributions to this scheme are the double-loop approach
with a second-order response surface model built around the MPP Agarwal and Renaud [2004] and the
use of the neural network to compute an MCS in a double-loop approach Papadrakakis et al. [2005].

Another explored approach is building a single surrogate model that can be used to assess the
failure probabilities considering multiple design choices, thus the main challenge is to build an accurate
surrogate model over a large area. Some of the methods that use this approach are described in Chen
et al. [2015] with a Kriging model for the whole design space combined with SORA, and Li et al. [2016]
with Kriging combined with importance sampling for the whole design space. However, an optimal
design is normally located in a smaller region (sub-region). Therefore, there is no need for a metamodel
to be highly accurate globally. The most efficient approach would be to build a metamodel in a sub-
region (often referred to as the trust region) of the space instead of the global one. Therefore, the
metamodel could be specifically enhanced around this sub-region (instead of scattering the DOE in a
wider but less important region). One of the important contributions to the trust region-based method
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is the use of dynamic Kriging models on local windows associated with MCS for the RBDO problem’s
solution (Lee [1997]).

The augmented reliability space was introduced by Au [2005] to allow one to rigorously solve prob-
lems where all combinations of deterministic/random and design/environmental variables can be
considered (Moustapha and Sudret [2019]). Therefore, the design and reliability space can be explored
simultaneously by the metamodel. Some of the considerably important contributions are Dubourg
et al. [2011] (that combines augmented space, adaptive Kriging, and subset simulation) and Moustapha
et al. [2016] that formulates a quantile-based RBDO combined with (1+1) Covariance Matrix Adaptation-
Evolution Strategy (CMA-ES) (Arnold and Hansen [2012]) and AK-MCS (focusing on the deviation number
method developed by Echard et al. [2011]) that allows the design optimization into the direction of the
space that decreases the cost function significantly (while still fulfilling the performance criteria).

The method developed by Moustapha et al. [2016] uses a two-stage DOE enrichment to reduce the
Kriging epistemic uncertainty around the limit-state surface and improve the accuracy of the quantile
estimates along the optimization iteration. It was successfully applied in the case of an automotive side-
member subsystem under a frontal impact (in the field of a car body design). However, its application
for high-dimensional cases (with more than 20 variables) still requires further work. Moreover, this
method can not guarantee the solution to precisely converge in the correct optimal sub-region (despite
managing to converge to a certain degree of precision depending on the number of iterations).

Furthermore, there is a tremendous amount of methods developed to solve RBDO problems. To ac-
commodate these methods, Moustapha and Sudret [2019] have recently proposed a global and unified
framework to solve a wide range of RBDO problems. This framework separates adaptive surrogate
modeling, reliability analysis, and optimization into different non-intrusive blocks (the analyst could
freely choose the method for each block independently with the other blocks).

The work of Moustapha et al. [2016], Arnold and Hansen [2012], and Echard et al. [2011] would
be some of the main inspirations in developing a novel method to solve the problems faced in this
research. The novel RBDO method introduced in this thesis aims to overcome the setbacks caused by
the quantile-based method introduced in Moustapha et al. [2016].

2.6 differences between the current research and existing
works

Some of the main differences between the research to be performed (the novel RBDO method) in this
MSc thesis compared to the previous existing works are (more details in Chapter 3):

• AK-MCS performed in Echard et al. [2011] used a conservative stopping condition threshold for
learning function U value, in this research those thresholds will be slightly relieved along the
process to give the optimization process some ”freedom” in searching for the optimal point.

• AK-MCS performed in Echard et al. [2011] evaluated analytical problems as the performance func-
tion, while this research uses a geotechnical engineering FEM model.

• AK-MCS performed in Echard et al. [2011] randomly generate the initial DOE population. This
research uses a more evenly-spread initial DOE which is generated by using Latin Hypercube
Sampling (LHS) or uniform distribution, and a user-defined preferred starting point.

• Quantile-based RBDO method applied in Moustapha et al. [2016] uses 2 enrichment stages, while
this research uses a novel RBDO method with 4 stages to ensure the accuracy of the result (precise
convergence). The optimization process in this research relies on different convergence criteria
and approaches compared to the one in Moustapha et al. [2016]. Especially in the coupling of the
reliability and optimization analysis.

• References on (1+1)-CMA-ES of Arnold and Hansen [2012] optimizes polynomial objective func-
tions, while in this research, the application will be upon a geotechnical engineering FEM problem
(where the (1+1)-CMA-ES application in the field is still relatively difficult to find).

• Some modifications of (1+1)-CMA-ES based on Arnold and Hansen [2012] are made to improve
the coupled process of the reliability analysis-optimization scheme.



3 M E T H O D D E F I N I T I O N

As mentioned in Chapter 2, the proposed RBDO method in this research will be developed by using the
works of Echard et al. [2011], Moustapha et al. [2016], and Arnold and Hansen [2012] as the starting
point. This chapter will discuss how the proposed RBDO method is being defined by combining Kriging
metamodeling, Quantile-based MCS, and (1+1)-CMA-ES.

3.1 reliability analysis
Reliability analysis is an analysis in calculating how much the probability of an unwanted event occur-
ring. An unwanted event in this research is the failure of a geotechnical structure. Failure is evaluated
through a limit state function (also known as a performance function), normally written as g(X), where
X is the random variables vector that has its own distributions. The limit state function is defined in
such a way that a failure occurs when g(X) < ḡ, where ḡ is a certain threshold (normally taken as zero
or one in geotechnical engineering practice). The probability of failure (Pf ) is determined by calculat-
ing the cumulative distribution function of g(X) < ḡ. Mathematically, the probability of failure can be
written as equation (3.1) where fX(X) is the joint probability density function of g(X).

Pf =
∫

g(X)<ḡ
fX(X) dX (3.1)

MCS (normally referred to as ”crude MCS”) is considered as the most robust method for calculating
Pf , however, it requires an enormous number of function calls. The basic formulation of MCS in solving
Equation 3.1 is described in Equation 3.2.

Pf =
N f ailure

Nmc
(3.2)

Where N f ailure is the total number of failures and Nmc is the size of the sampling population (or
”MCS population”). Since Pf is normally a really small number, it is a very common way to express
the reliability by a reliability index (β). The reliability index is defined as the inverse of the cumulative
standard normal distribution function of Pf , as can be written in equation (3.3).

β = −Φ−1(Pf ) (3.3)

Moreover, the size of Nmc has to be large enough depending on the (expected) value of Pf to ensure
that the result is deemed as accurate (or consistent) enough. The correlation between Nmc and Pf can
be expressed in terms of the coefficient of variation δPf (Equation 3.4). In this research, Nmc is deemed
as large enough when δPf ≤ 0.1.

δPf =

√
1− Pf

NmcPf
≤ 0.1 (3.4)

3.2 kriging metamodeling
As discussed in Section 2.1, the approximation of a real performance function G(x) by a metamodel
Ĝ(x) can be expressed by Equation 3.5.

9
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Ĝ(x) ≈ G(x) (3.5)

Such metamodel Ĝ(x) is defined as a Gaussian Process (GP) model if ”for any L ≥ 1 and any choice
of x1, ..., xL, [...] the vector (Ĝ(x1), ..., Ĝ(xL)) has a multivariate normal distribution” (Santner et al.
[2003]). Accordingly, Ĝ(x) is here written as a GP, defined by its mean function m(x) (Equation 3.6)
and its covariance function or kernel k(x, x′|θ) (Equation 3.7).

m(x) = E[Ĝ(x)] (3.6)

k(x, x′|θ) = E[(Ĝ(x)−m(x))(Ĝ(x′)−m(x′))] (3.7)

such that the GP at a finite number of locations x is given by Equation 3.8.

Ĝ(x) = m(x) + K1/2ξ (3.8)

with kernel matrix K = k(x, x′|θ) and standard normal multivariate ξ ∼ N (0, I). Hyperparameters θ
are the internal parameters that define the shape of the kernel (van den Eijnden et al. [2021]). For simple
Kriging, such that m(u) = 0 (where u is standard-normally distributed parameters), the performance
function metamodel can be formulated as a GP with Gaussian prior shown in Equation 3.9.

Ĝ = Ĝ(u) ∼ N (0, k(u, u|θ)) (3.9)

When a certain number of data on Ĝ(u) are known, the metamodel response vector can be split into
known data ĝt (subscript ”t” means training, which is the DOE) and unknown data ĝp (Subscript ”p”
means prediction) as can be formulated in Equation 3.10 (van den Eijnden et al. [2021]).

[
ĝp
ĝt

]
∼ N

(
0,

[
Kpp KT

tp
Ktp KT

tt

])
(3.10)

Rewriting leads to ĝp ∼ N (µĜ, σ2
hatg), with the best estimate µĜ (Kriging mean) and variance σ2

Ĝ
(Kriging variance) defined as Equations 3.11 and 3.12 (van den Eijnden et al. [2021]). Therefore, as the
number of DOE increases, the size of matrix K will also increase in the order of 2. Consequently, the
prediction takes longer to compute as the number of DOE increases.

µĜ = KT
tpK−1

tt ĝt (3.11)

σ2
ĝ = Kpp − KT

tpK−1
tt Ktp (3.12)

The selection of kernel k(u, u|θ) can be based on the expected behavior of the approximated function
and is generally expressed in terms of an a-priori variance and the Matèrn correlation function ρM(u−
u′|θ, µ), with θ representing the internal parameters (hyperparameters) and µ is a shape function
controlling the GP smoothness. More explanations regarding Kriging metamodel can be found in
Rasmussen and Williams [2006], Forrester et al. [2008], Pedregosa et al. [2011], van den Eijnden et al.
[2021], Echard et al. [2011] and the references mentioned therein.

3.3 noisy fem and metamodel response
It is a known fact that FEM computation generates noisy responses due to numerical errors, limited
allowed numbers of solver iterations, and the precision of complex numerical computation (among
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others). Despite the scale of this error being small compared to the computed result, it can have a
strong impact on the use of the model response (van den Eijnden et al. [2021]). In this research, noisy
FEM responses may cause a serious problem in obtaining convergences. Noise in the response prevents
convergence (of the Kriging optimization) and ”confuses” the training algorithm. Therefore a problem
such as overfitting in Kriging prediction could happen. To make matters worse, adding more DOE

to a noisy FEM response leads to an increase in uncertainty due to overfitting. Such a situation does
not occur in an analytical model, where adding more DOE actually reduces the uncertainty (Kriging
variances).

To overcome the noisy response problem, a noise component will be added to the kernel. A noise
component leads to a better representation of the underlying performance function and metamodel
prediction that includes the uncertainty in the DOE (van den Eijnden et al. [2021]). The kernels (Matern
and noise component) considered in this research are based on Rasmussen and Williams [2006]. An
example of the use of a noise component in the kernel can be observed in Figures 3.1 and 3.2.

Figure 3.1: Metamodel prediction without a noise component of a noisy model response. There are some over-
fitting occurrences in the metamodel prediction because the metamodel is ”forced” to make an exact
prediction at the training data.

Figure 3.2: Metamodel prediction with a noise component of a noisy model response. Note that due to the noise
component, the Kriging prediction is smoother because the prediction is allowed to have some ”error
tolerance” at the training data locations.

It can be seen from Figure 3.2 that the metamodel with a noise component could ”smoothen” the
prediction and ignores the ”sudden jump” in the noisy training data (or performance function re-
sponse). Meanwhile, overfitting occurred in 3.1 where all of the metamodel predictions are ”forced”
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to go through the noisy performance function response, and no ”error tolerance” at the training data
locations. Moreover, the noise term (kwn) addition is defined as Equation 3.13 (van den Eijnden et al.
[2021]. Unfortunately, in some cases, adding a noise component into the kernel may also heighten the
Kriging variance (as can be observed in Figure 3.2. Therefore, the convergence criteria may be relaxed
during the RBDO process to anticipate this ”new minimum” Kriging variance.

kwn(u, u′) = σ2
wnδuu′ + k(u, u′|σ2, θ) (3.13)

The noise variance σ2
wn is now added to the hyperparameter optimization scheme. The noise term is

added to the kernel when it is applied to the training data (i.e. in matrix Ktt in Equation 3.12. More
details regarding noisy metamodel response and the noise component application to a kernel can be
found in Forrester et al. [2008] (for noisy metamodel response) and van den Eijnden et al. [2021] &
Rasmussen and Williams [2006] (for noise component application in a kernel).

3.4 (1+1)-covariance matrix adaptation-evolution scheme
The optimization method implemented in this research is based on the (1+1)-CMA-ES for constrained
optimization by Arnold and Hansen [2012]. The main idea of the process is to approximate the direc-
tions of the local normal vectors of the constraint boundaries by accumulating steps that violate the
respective constraints, and to then reduce variances of the mutation distribution in those directions
(Arnold and Hansen [2012]). The target is to optimize (in this case, to minimize) the cost function
(also known as the objective function) by accommodating the constraints defined in Equation 2.2. As
explained in Section 2.3, these constraints consist of soft and hard constraints. Soft constraints nor-
mally define the domain of design variables (e.g. upper and lower limits) while the hard constraints
are related to the reliability target. The cost function is a function that consists of design variables that
are being optimized, thus its output is expected to be as optimum as possible (or in this case, to be as
low as possible).

With each optimization iteration, an offspring (one set of design variables) is generated, thus it
is called ”(1+1)”. The optimization continues through iterations until an offspring that fulfills the
convergence criterion and satisfies the constraints defined in Equation 2.2 is found. The offspring y
from each (1+1)-CMA-ES iteration is generated through Equation 3.14 below.

y = x + σAz (3.14)

Where x is the parental candidate solution (offspring of the previous iteration), σ is the global step
size of the optimization strategy, z ∈ Rn is a set of standard normally-distributed random numbers,
n is the total number of design variables, and A is an n × n Cholesky decomposition matrix of a
covariance matrix C such that C = AAT . Since matrix C has to be positive definite, an identity matrix
with a size of n× n can be used as an initial matrix C, therefore, the initial matrix A would also be an
n× n identity matrix. Based on Equation 3.14, it can be seen that the generation of a new offspring y
is carried by updating σ and matrix A.

Moreover, the optimization process of (1+1)-CMA-ES can be observed by a simplified flowchart as
displayed in Figure 3.3, and a more elaborate explanation can be found in Algorithm 1 (Appendix A).

This optimization process has to start from a feasible set of initial design variables. However, through-
out the iteration process, some offspring y may fall into unfeasible regions in some iterations. When
such things happen, the (1+1)-CMA-ES will perform some sort of a ”course correction” through con-
straint evaluation in steps 3 and 4 in Figure 3.3. Each step of Figure 3.3 is further explained in Sections
3.4.1 to 3.4.10.

3.4.1 Step 1

Generation of an offspring y as explained in Equation 3.14.
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Figure 3.3: The flowchart of (1+1)-CMA-ES optimization process.
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3.4.2 Step 2

Check if the current offspring y is feasible by evaluating the constraint functions gj(y) (where m is the
total number of constraints (both soft and hard constraints). By the default setting, y is unfeasible if at
least one of the constraint functions is larger than zero (gj(y) > 0).

3.4.3 Step 3

If offspring y is unfeasible, constraints vector vj will be updated by using Equation 3.15. Note that the
update is only needed for vj element that corresponds to its particular constraint function g j.

vj ← (1− cc)vj + cc Az (3.15)

3.4.4 Step 4

Moreover, matrix A will be updated by using Equation 3.16.

A← A− β

∑m
j=1 1gj(y)>0

m

∑
j=1

1gj(y)>0
vjwT

j

wT
j wj

(3.16)

with

wj = A−1vj (3.17)

Where 1gj(y)>0 equals one if gj(y) > 0 and zero otherwise. Since offspring y is unfeasible here,
the iteration will be stopped after step 4 and a new iteration will be started from step 1. In the new
iteration, an offspring will be generated by using the same x from the previous (unfeasible) iteration
with an updated matrix A.

3.4.5 Step 5

If the y evaluated in step 2 is feasible, the success probability estimate Psucc and the global step size σ
will be updated by Equations 3.18 and 3.19 respectively.

Psucc ← (1− cP)Psucc + cP1 f (y)≤ f (x) (3.18)

σ← σ exp(
1
d

Psucc − Ptarget

1− Ptarget
) (3.19)

Where 1 f (y)≤ f (x) equals one if f (y) ≤ f (x) and zero otherwise.

3.4.6 Step 6

Check if f (y) ≤ f (x). Since the target of this research is to find the lowest cost function, therefore it is
considered a ”success” (or y is ”superior” over x) if the offspring y gives a lower cost function value
than its parent x (a ”success” when f (y) < f (x)).

3.4.7 Step 7

If f (y) ≤ f (x), offspring y will be used as a ”parent” x for the next iteration. Moreover, the search
path s and matrix A will be updated by using Equations 3.20 and 3.21 respectively. The iteration stops
here.
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s← (1− c)s +
√

c(2− c)Az (3.20)

A←
√

1− c+cov A +

√
1− c+cov

||w||2

(√
1 +

c+cov||w||2
1− c+cov

− 1
)

swT (3.21)

3.4.8 Step 8 & 9

If f (y) > f (x), x will be re-used as the parent variable in the next iteration. moreover, check if f (y)
is ”inferior” to its fifth ancestor. In this case, if the fifth ancestor has a lower cost function than f (y),
the current x will be re-used as x of the next iteration (the current offspring y will be ignored as it is
deemed as ”unsuccessful” compared to its fifth ancestor). The fifth ancestor or the fifth ”grandparent”
is the fifth most recent offspring. Similarly, if y is an offspring, then x is the first ancestor (or simply a
”parent”). If f (y) is ”superior” to its fifth ancestor, then the iteration will be stopped here.

3.4.9 Step 10

If f (y) is indeed ”inferior” to its fifth ancestor, then matrix A will be updated by using Equation 3.22.

A←
√

1 + c−cov A +

√
1 + c−cov

||z||2

(√
1− c−cov||z||2

1− c−cov
− 1
)

AzzT (3.22)

3.4.10 Step 11

After a certain number of iterations, the (1+1)-CMA-ES will come to a sub-region where the optimal
design point is located (optimal sub-region). When the iteration is at (or around) this optimal sub-
region, the difference between the parent parameter x and offspring parameter y is very small (also
the case with some other parameters, e.g. global step size σ). Therefore, in this sub-region, the cost
function differences between iterations are insignificant. At this point, the user could decide on when
to stop the optimization process based on this cost function difference.

The optimization process will be stopped when the cost function difference f∆ is lower than threshold
fstop (Equations 3.23 and 3.24). Based on the author’s practice, the value for fstop can be taken in a range
of 10−5 to 10−10 (see Section 3.4.13).

f∆ =
| f (y)− f (x)|

f (x)
(3.23)

Optimization process is converged when:

f∆ ≤ fstop (3.24)

3.4.11 Supporting parameter settings

Moreover, the supporting parameters mentioned in Sections 3.4.1 to 3.4.10 are defined as the following
Equations 3.25 to 3.32.

d = 1 +
n
2

(3.25)

c =
2

n + 2
(3.26)
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cP =
1
12

(3.27)

Ptarget =
2

11
(3.28)

c+cov =
2

n2 + 6
(3.29)

c−cov = min
(

0.4
n1.6 + 1

;
1

2||z||2 − 1

)
(3.30)

cc =
1

n + 2
(3.31)

β =
0.1

n + 2
(3.32)

However, Equation 3.30 would become a problem if the (standard-normal randomly) generated value
of z is small enough such that Equation 3.30 would return a negative value. Especially if the resulting
c−cov is lower than (−1), because it will make a few terms on the right-hand side of Equation 3.22 to be
irrational. Therefore, compared to the original (1+1)-CMA-ES proposed by Arnold and Hansen [2012], a
new z will be re-sampled in this research whenever Equation 3.30 returns a negative c−cov value.

3.4.12 Iteration parameters

Since the optimization will be coupled with a reliability analysis method, the reliability analysis and
metamodel accuracy assessment will be performed for every one iteration of the (1+1)-CMA-ES process.
Therefore there are some parameters from the previous iteration that are needed for the next iteration.
These parameters are the covariance matrix A, global step-size σ, cost function value c(d), constraint
vector v, the success probability estimate Psucc, search path vector s, the last fifth ancestor f (di−5),
offspring parameter y, and parent parameter x. Note that the ”currently-evaluated” set of design
variables d is the latest offspring y. Moreover, in the original (1+1)-CMA-ES by Arnold and Hansen
[2012], all of the iteration parameters are updated until the iteration ends. However, during the RBDO

process, most of these parameters will be reset to their initial values whenever a DOE enrichment is
performed. Furthermore, the last fifth ancestor f (di−5) will be used as a ”guidance” during the RBDO

process (even though it was obtained from the optimization process with the ”outdated” metamodel).
A more elaborate explanation can be found in Section 3.5.4.

3.4.13 Convergence criterion

Based on the convergence criterion defined in Step 10 (Section 3.4.10, the accuracy of the optimization
process can be determined. If fstop is smaller, the optimization process will be more accurate. However,
smaller fstop will require more iteration and enrichment points (enrichment stages will be discussed
from Section 3.5.3 onward. Thus smaller fstop requires more time to conclude, especially when the
number of DOE is getting higher (more DOE requires more time to optimize the metamodel’s hyperpa-
rameter function). Moreover, a higher fstop value may lead the (1+1)-CMA-ES optimization to converge
faster. Early optimization convergence (due to a high value of fstop) often leads to a false sub-region as
it is still possible for the optimization to progress further.

It is found that the selection of fstop value depends on the cost function formulation. For a cost
function that gives a wider range of results, a slight change in the design variables may give a really
small f∆. Therefore, a smaller fstop is advised. However, for a cost function that gives a narrower range
of results, it is advised to use a higher fstop. For example, there are two different cost functions. The
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cost function definitions are defined in Equation 3.33 (c1 and c2 for the first and second cost function
example respectively). Note that c1 has a narrower range of results compared to c2.

{
c1 = 0.5x1x2 f or x1 = 2 ≤ x1 ≤ 7 ; 0 ≤ x2 ≤ 2
c2 = x1x2 f or x1 = 150 ≤ x1 ≤ 300 ; 150 ≤ x2 ≤ 300

(3.33)

Examples of c1 and c2 cost function differences between iterations are shown in Tables 3.1 and 3.2.

Table 3.1: Cost function 1 (c1) differences between iterations.
x1 x2 c1 f∆ (%)

5.02 1.22 3.06 -
5.03 1.23 3.09 1.0205

Table 3.2: Cost function 2 (c2) differences between iterations.
x1 x2 c2 f∆ (%)

244.16 243.56 59467.61 -
244.17 243.57 59472.49 0.0082

It can be seen from Tables 3.1 and 3.2 that for small changes in x1 and x2 (with a magnitude of 0.01),
c1 gives more than 100 times higher f∆ than c2. Therefore, it is advised to use a higher fstop for a
similar problem as c1 (e.g. fstop = 10−5) and a lower fstop for a similar problem as c2 (e.g. fstop = 10−8

or lower).

3.5 a four-stage-enrichment rbdo method
This chapter will discuss how the proposed RBDO method is defined, including the coupling of AK-MCS

and (1+1)-CMA-ES.

3.5.1 Quantile-based formulation

The hard constraint from Equation 2.2 can be re-formulated as Equation 3.34 (Moustapha et al. [2016]).

P(g(X(d), Z) ≤ 0) ≤ P̄f ⇔ P(G(X(d), Z ≥ ḡ ≤ P̄f ,

⇔ P(G(X(d), Z) ≤ ḡ) ≥ 1− P̄f
(3.34)

Where ḡ is the upper threshold of the real model performance function G (thus failure when G > ḡ).
Meanwhile in geotechnical engineering practices, ḡ is normally assigned as a lower threshold, valued as
zero or one (e.g. lower threshold for the factor of safety), thus failure when G < ḡ. The last expression
of Equation 3.34 can be further expressed as a quantile Qα, as defined in Equation 3.35.

Qα(d; G(X(d), Z)) = inf{q ∈ R : P(G(X(d), Z) ≤ q) ≥ α} (3.35)

where α = 1− P̄f ,k. The quantile Qα can be used as a measure of reliability given a target failure
probability P̄f ,k. Therefore, considering Equations 3.34 and 3.35, the hard constraint of Equation 2.2
can be re-expressed as Equation 3.36.

P(gk(X(d), Z) ≤ 0) ≤ P̄f ,k ⇔ Qα(d; G(X(d), Z)) ≤ ḡ (3.36)

Based on Equation 3.36 above, Equation 2.2 can be re-defined as Equation 3.37 (where ḡk acts as a
lower threshold).
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d∗ = arg min
d∈D

c(d)

{
f j(d) ≤ 0 f or j = 1, · · · , ns

Qαk(d; Gk(X(d, Z)) ≤ ḡk f or k = 1, · · · , nh
(3.37)

where αk = 1− P̄f k and ns & nh are the total number of soft and hard constraints respectively. More-
over, the upper and lower boundary of the quantiles will be used as a measure of the metamodel’s
accuracy. The quantiles for each set of design variables x(i) mentioned in Equation 3.37 can be calcu-
lated in the following steps.

1. Sample the Monte Carlo population for the initial design variable candidates:

Cq(d(i)) =

{
(x(j), z(j)), j = 1, · · · , Nmc

}
(3.38)

Where x is the set of design variables to be analyzed (at i-th iteration), and z is distributed based
on the corresponding environmental variables, z ∼ fz. Moreover, Nmc is the size of the Monte
Carlo population. Note that each Cq(d(i)) has one combination of x and Nmc combinations of z.

2. Compute the MCS output prediction of the performance function (Gk) for Cq(d(i)):

Gk =

{
G(j)

k = Gk(x(i), z(j)), j = 1, · · · , Nmc

}
(3.39)

3. Sort the MCS output prediction in ascending order such that G(1)k ≤ G(2)k ≤ · · · ≤ G(Nmc)
k

4. The quantile Qαk of Cq(d(i)) corresponding to the k-th constraint is defined as:

Qαk(d
(i); Gk(x(d(i)), z)) ≡ qαk(d

(i)) = Gk⌊nα⌋ (3.40)

Where ⌊nα⌋ denotes theG response that yields the largest integer smaller than α. For example, if
Nmc = 100 and Pf target is 5% (thus αk = 95%), then Nmc × αk = 95, therefore the quantile is the
95th smallest (or the 6th largest) MCS response within Nmc. The Monte Carlo population Nmc has
to be large enough to ensure the calculated quantile Qαk is accurate (Equation 3.4).

Note that each set of design variables x(i) has its own Monte Carlo population Cq(d(i)) from the
environmental variable z(i) and a unique quantile Qαk (including the lower and upper boundary of
the quantile). Moreover, the use of metamodel will significantly reduce the computation burden in
calculating the quantiles, therefore the performance function response G from Equation 3.39 will be
replaced by metamodel response Ĝ (note that the metamodel responses consist of Kriging mean µĜ
and Kriging variance σĜ). These quantiles will be further used to select optimal training data for the
DOE and to estimate the accuracy of the metamodel upon certain sets of design variables.

3.5.2 Metamodel improvement throughout the optimization process

The metamodel will be improved by enriching the DOE. Therefore, it is important to select the best and
most strategic training points for the DOE enrichment in order to get a reliable metamodel. Moreover,
improving a metamodel throughout the entire performance function’s domain space requires a large
amount of DOE (thus many function calls are needed). Consequently, the RBDO process becomes expen-
sive. Improving the metamodel throughout the whole performance function’s domain (whole region)
is also not really necessary since the optimal point (for the design variables) that gives the lowest cost
function is located in a certain sub-region. Therefore, it is more important and efficient to improve the
metamodel in this optimal sub-region rather than adding more DOE and function calls than necessary
throughout the entire region. In order to do so, the metamodel will be enriched in four different stages,
namely:

1. Global enrichment stage
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2. First local enrichment stage

3. Second local enrichment stage

4. Starting point enrichment stage

The connection between each enrichment stage can be observed in Figure 3.5. A more elaborate
explanation can be found in Algorithm 2 (Appendix B). Based on the figure, the global enrichment,
first local enrichment, second local enrichment, and starting point enrichment stages are performed in
steps 4, 7, 16, and 11 respectively.

Moreover, the whole enrichment stages are performed in an augmented space. In this space, every
set of design variables’ coordinate has its own environmental parameters’ Monte Carlo population and
its own unique quantile value. A brief depiction of an augmented space for a problem with two design
variables (d1 & d2) and one environmental parameter (z) is shown in Figure 3.4.

Figure 3.4: An illustration of augmented space (Moustapha and Sudret [2019]).

3.5.3 Global enrichment stage

After the initialization of the metamodel by using only several initial DOE, the metamodel is relatively
inaccurate for the whole region of augmented space (or the whole performance function input region).
The global enrichment aims to enrich the metamodel throughout the entire performance function input
region (domain) with a less strict convergence criterion. Once it is globally converged to an acceptable
less-strict criterion, the local enrichment and optimization process will be performed. Note that after
the global enrichment, there is an expected residual uncertainty to the metamodel. This residual
uncertainty will be reduced in the optimal sub-region by performing local enrichment. The global
enrichment stage will be ended once the local enrichment stage began. The global enrichment is
performed in the following steps:

1. Generate nc random candidates for design variables (within the design variable domains):

C =

{
d(1), d(2), . . . , d(m)

}
(3.41)

2. For each design d(i), i = {1, . . . , m}:

(a) Generate the Monte Carlo population set required to compute the quantile:

C
(i)
q =

{
(xj, zj), j = 1, . . . , Nmc

}
(3.42)

(b) Compute the associated quantile q̂α

(
d(i) )

(c) Identify the input point of the quantile:

(
x(i)α , z(i)α

)
=

{
(x, z) ∈ C

(i)
q : q̂α

(
d(i)) = µĜ(x, z)

}
(3.43)
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Figure 3.5: The general flowchart of the RBDO process. Enrichment stages are displayed in colored steps.
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(d) Compute the modified deviation number based on U-learning function as mentioned in
Equation 2.1:

U
(

d(i)
)
≡ U

(
x(i)α , z(i)α

)

=

∣∣∣∣ḡ− µĜ

(
x(i)α , z(i)α

)∣∣∣∣
σĜ

(
x(i)α , z(i)α

) (3.44)

3. The best point candidate to be added to the DOE is therefore defined as:

(xnext, znext) = arg min
(x(i)α ,z(i)α )

U (d) (3.45)

Where Cα =

{(
x(i)α , z(i)α

)
, i = 1, ..., m

}
.

In the original U-learning function application by Echard et al. [2011], DOE enrichment stops when
mind∈CU ≥ 2. This convergence criterion is quite conservative since there is only a 5% chance of
mistaking a safe design for a failed one (and vice-versa) with respect to all the points in C (Moustapha
et al. [2016]). However, since the main idea of global enrichment is only to get the metamodel just
accurate enough for the optimization process to be applicable, but not too accurate therefore an efficient
total number of function calls can be maintained. Moreover, the remaining ”room for improvement”
of the metamodel accuracy will be explored by focusing on the actual optimal sub-region where the
optimal set of design variables resides. Therefore, the convergence criterion of min U ≥ 2 may be
relaxed to a certain degree by defining it as Equation 3.46.

η = Card(C2)/Card(C) ≤ η̄glo (3.46)

Where Card(C2) is the total number of U (d) ≤ 2 and Card(C) means the total number of design
set candidates d in the global enrichment stages. Moreover, η̄glo is the global convergence threshold
which can be taken between 0.15 to 0.30 (note that the original criterion corresponds to η̄glo = 0). Note
that each set of the design variables d has its own unique U value. The lower the global enrichment
threshold η̄glo is, the more function calls are needed to achieve the global enrichment convergence.
Consequently, when Equation 3.46 is not fulfilled, (xnext, znext) from Equation 3.45 will be added as
DOE.

3.5.4 First Local enrichment stage

After the global convergence is achieved, the metamodel is now deemed as globally-accurate enough
while also having some residual uncertainties in some sub-region. These residual uncertainties can
be dealt with altogether with the optimization process by updating the DOE only when (and where)
necessary. The local enrichment will be performed in the following steps.

1. Select a starting point for the optimization process (i = 0). It is advised to choose a starting
point (x0, z0) from a relatively high cost function to ensure the feasibility of the starting point
(especially from the probability constraint point of view) since the (1+1)-CMA-ES has to start from
a feasible point. Note that x0 is equal to d(i=0), which is the set of design variables at the start of
the optimization process. However, during the optimization process (i > 1), it is not a problem
to have an iteration in the unfeasible points region.

2. Generate a Monte Carlo population for d(i) based on the environmental parameters by following
Equation 3.42.

3. Compute the metamodel MCS prediction Ĝk by using Equation 3.39.

4. Compute the probability of failure P̂f based on Ĝk by using Equation 3.2.
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5. Compute the associated quantiles and input points of the corresponding quantiles (Equations
3.40 and 3.43).

6. Compute the lower and upper boundary of the quantiles (q̂−α & q̂+α ) by utilizing the Kriging
variance:

q̂−α = µĜ − 1.96σĜ

q̂+α = µĜ + 1.96σĜ
(3.47)

where the following relation holds:

q̂−α (d) ≤ q̂α(d) ≤ q̂+α (d) f or any d ∈ D (3.48)

7. The spread of q̂−α & q̂+α interval can be used as a measure of the local Kriging accuracy for quantile
estimation. Therefore, the local enrichment convergence criteria for ḡ ̸= 0 can be defined as:

ηq(d) =
q̂+α − q̂−α

ḡ
≤ η̄q (3.49)

Moreover, for ḡ = 0, the convergence criteria can be proposed as:

ηq(d) =
q̂+α − q̂−α

6× STD[Gk]
≤ η̄q (3.50)

where STD[Gk] is the Kriging standard deviation over the Monte Carlo population of d(i). The
denominator in Equation 3.50 is different than the original local enrichment criteria proposed by
Moustapha et al. [2016]. In the original criteria, the denominator is defined as

√
Var[GMCS]. The

denominator in the original criteria is not a fair comparison to the denominator for ḡ ̸= 0 since
the denominator in Equation 3.49 is spanning to a wider length compared to the denominator of
Equation 3.50, thus achieving a local convergence by using Equation 3.50 is stricter and requires
much more function calls.

Moreover, other convergence criteria can also be considered (where it is applicable regardless of
what the ḡ value is). For instance, one could also measure the lower and upper boundary of the
reliability index predicted by the metamodel (β̂− & β̂−) which are calculated in the same manner
as Equation 3.47, and compare it to a certain threshold as defined by Equation 3.51. Similarly, the
same method could also be applied to the probability of failure P̂f (Equation 3.52).

ηq(d) =
|β̂+ − β̂−|

β̂
≤ η̄βq (3.51)

ηq(d) =
|P̂+

f − P̂−f |
P̂f

≤ η̄Pf q (3.52)

where η̄βq and η̄Pf q is the local enrichment convergence threshold for β̂ and P̂f respectively. For
reference, η̄Pf q is taken as 0.05 in van den Eijnden et al. [2021]. However, η̄Pf q = 0.05 is a con-
servative threshold during an optimization process, which means a large number of DOE may be
needed before the optimization process converges.

8. If the convergence criteria is not fulfilled, the first local enrichment will be performed by adding a
training data Ucomp into the DOE as defined in Equations 3.53 and 3.54 (as proposed in Moustapha
et al. [2016]).
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U l(xk, zk) =
|µĜl

(xk, zk)− q̂αl |
σĜl

(xk, zk)
f or l = 1, . . . , nh; k = 1, . . . , Nmc (3.53)

Ucomp(xk, zk) = min
l∈1,...,nh

U l(xk, zk) (3.54)

Since this research only has one hard constraint, nh = 1, therefore the subscript l in Equation
3.53 can be ignored. Alternatively, to reduce computation load, Equation 3.53 can be replaced by
Equation 3.55. Because it does not matter what the U value is since it is more important to find
which U value is the lowest, and what is the corresponding design and environmental variables
(x and z) that gives the lowest U value.

U l(xk, zk) =
|µĜl

(xk, zk)− ḡ|
σĜl

(xk, zk)
f or l = 1, . . . , nh; k = 1, . . . , Nmc (3.55)

Moreover, Equation 3.55 is identical to Equation 3.44 and is a more natural resemblance to the
U-learning function formula proposed in Echard et al. [2011]. It is advised to use Equation 3.55

in finding the local training data because it puts into account the difference between Kriging
prediction µĜ and ḡ, therefore, enrichment tends to be made around the limit state border where
the probability of having µĜ < ḡ is relatively high. This research uses Equation 3.55.

Generally, it is found that the convergence criteria that use quantile value as defined in Equations
3.49 and 3.50 to be less strict than the convergence criteria defined in Equations 3.51 and 3.52. It is
advised to use the convergence criteria by using quantile values as defined in Equations 3.49 and 3.50

because they are less strict and allow the (1+1)-CMA-ES to have more ”freedom” in searching the optimal
region. Note that a strict convergence criterion will ”force” the (1+1)-CMA-ES to add more DOE along
the search path, thus more optimization re-start (and time) are needed. This also tends to limit the
sub-regions explored by the metamodel when searching for the local optimal region. Therefore, in this
research, a combination of η̄q values is used. For instance, η̄q = 1 when i = 0 until i = 250, η̄q =0.5
when i = 251 until i = 500, and etc. Note that i is the iteration number, as briefly explained in Figure
3.5.

When the local enrichment convergence criterion is achieved, the iteration process of (1+1)-CMA-ES is
started (or continued) as can also be seen in Figure 3.5. Note that the training data selection in the local
enrichment is using the same concept as the U-learning function as previously defined in Equations
3.44 and 3.45. Therefore, the input point of Ucomp will be added to the DOE as a new training point for
the first local enrichment. Note that the U-learning function mentioned in Equations 3.53 and 3.54 is
applicable for a problem with more than one probability constraint (when nh > 1).

Moreover, when a local enrichment is performed, the (1+1)-CMA-ES optimization process needs to
be ”re-started” by re-setting the iteration parameters mentioned in Section 3.4.12 to their initial values
except for the parent parameter (x) and the last fifth ancestor ( f (d(i−5))). Therefore, the iteration
process will be re-started from the last (x) and the previous ( f (d(i−5))) will be used to help the decision-
making of the new iteration (the last fifth ancestor’s role can be seen in step 8 of Figure 3.3). The
re-start of the optimization process after a local enrichment is needed to keep the constraint function
consistent during the process. Due to a local enrichment process, the metamodel is improved, therefore
some design points that are feasible in the earlier or ”outdated” metamodel may be unfeasible in
the improved or ”updated” metamodel (and vice-versa), thus there will be an inconsistency in the
constraint function (especially the probability constraint). The inconsistency in the constraint function
will ”confuse” the (1+1)-CMA-ES iteration process since it heavily relies on the ”history” that is recorded
through the iteration parameters.

Furthermore, in order to satisfy the local convergence criteria defined in Equations 3.49 & 3.50, it
was found that some sub-regions require a considerable amount of local enrichment points for the
same set of design variable x (especially when a noise component is added to the metamodel, which
could increase the Kriging variance). This could ”waste” a considerable amount of function calls at
sub-regions that are less important or (later discovered to be) far from the optimal sub-region. To
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overcome this issue and maintain function call efficiency, the maximum allowed number of first local
enrichments at every x will be set to 5. This means for each x that still fails to satisfy Equations 3.49

& 3.50 even after being enriched by 5 DOE, the iteration will be stopped and re-started from the latest
preferred starting point (will be discussed in Section 3.5.6).

3.5.5 Second local enrichment stage

The first local enrichment stage helps the (1+1)-CMA-ES process to converge at a certain point that
the metamodel deems as the optimal point. Note that this convergence happens when the following
criteria are fulfilled:

1. At least one of the equations between Equations 3.49 to 3.52 is satisfied (the first local enrichment
stage is converged).

2. Equation 3.24 is satisfied (the (1+1)-CMA-ES optimization process is converged).

However, this point is converged based on the metamodel’s performance with a certain number
of DOE (based on a certain number of enrichments performed so far). For example, if the targeted
probability of failure (Pf target) is 5%, the (1+1)-CMA-ES optimization process will converge to a point
where the metamodel returns P̂f = 5% during the first stage of local enrichment. After the first stage
of local enrichment, there is no guarantee yet if the converged point is located in the correct sub-
region. Note that the correct sub-region is where the crude MCS simulation returns Pf = Pf target (Not
P̂f = Pf target!). Therefore, a convergence achieved from the first stage of local enrichment may mislead
the optimal design parameters output or give a ”false sense of security”.

In order to overcome the problem, an additional enrichment stage is introduced, namely the second
local enrichment stage. The main purpose of this stage is to confirm if the first local enrichment stage
converged in the correct sub-region. If it is not, a DOE with the same design variable as the convergence
point will be added. This DOE will also help the CMA-ES to avoid the same ”mistake” (incorrect sub-
region) in future iterations. Moreover, this stage could identify an incorrect sub-region by checking the
Kriging variance (or standard deviation σĜ) of the sub-region. Ideally, a correct sub-region would be
where the metamodel returns Pf = Pf target and has zero (or very low) Kriging variance at the same
time. The application of the second local enrichment stage can be explained in the following steps.

1. After the (1+1)-CMA-ES converged in the first local enrichment stage, compute P+
f and P−f as

described in Equation 3.56.

P̂+
f = P(ĝk + 1.96σĜ) < ḡ f or k = 1, . . . , Nmc

P̂−f = P(ĝk − 1.96σĜ) < ḡ f or k = 1, . . . , Nmc
(3.56)

2. Check the discrepancy δPf of P̂f compared to P̄f ,k by using Equation 3.57. To avoid excessive
deployment of function calls, only a converged point that has δPf ≤ 5% is considered a second
local enrichment DOE.

δPf =
|P̂f − P̄f ,k|

P̄f ,k
≤ 5% (3.57)

3. Check ηPf as described in Equation 3.58.

ηPf =
|P̂+

f − P̂−f |
P̂f

≤ η̄Pf (3.58)

The ηPf value describes the accuracy of the metamodel prediction P̂f in the converged sub-region
(the lower ηPf , the less Kriging variance in the sub-region is and thus the more accurate the P̂f
is). Note that Equation 3.58 is identical to Equation 3.52. As mentioned in Section 3.5.4, the value
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of η̄Pf can be taken in a range of 0.05 to 0.10. Consequently, the lower the η̄Pf value (stricter), the
more DOE are needed. The RBDO process will be stopped when Equation 3.58 is satisfied and thus
the corresponding set of design variables X(d) that satisfies the Equation will be regarded as the
optimal design variables.

4. If Equations 3.58 and 3.57 are not satisfied, a new DOE that has the lowest U value will be added
from the MCS population (Ci) of the currently converged design variables (xi). This U value can
be calculated by using the exact formula as in Equations 3.53 and 3.54.

Eventually, when the convergence criterion of the first local enrichment stage is fulfilled, the con-
verged design variables to be analyzed in the second local enrichment stage are the same as the design
variables in the first local enrichment stage. Therefore Equations 3.53 (or 3.55 and 3.54 can be re-used
to add a DOE from the current design variables’ MCS population.

3.5.6 Starting point enrichment stage

As mentioned in Section 3.4, the (1+1)-CMA-ES process has to start from a feasible starting point that
satisfies all of the constraints defined in Equation 2.2. As also mentioned in step 1 of Section 3.5.4,
the RBDO process starts from a user-defined preferred starting point (x0, z0). This starting point should
satisfy the probability constraint of the problem. After the initialization of the metamodel (initial
metamodel construction from the initial DOE), the metamodel naturally returns a feasible Pf at the
preferred starting point design variables. However, after a certain number of enrichments, there is a
possibility for over-fitting to occur in the Kriging prediction. This over-fitting may cause the metamodel
to return an unfeasible Pf at the preferred starting point (which is unrealistic). When such a problem
arises, enrichment at the starting point will be performed. This enrichment will add a DOE (or more)
at the preferred starting point in the following manner:

1. Evaluate the U values from the MCS population of (x0, zk ; for k = 1, · · · , Nmc) by using Equation
3.55.

2. Select the point (x0, zk) that gives the lowest U value as the new DOE.

Since x0 will always be a constant (user-defined), the corresponding set of environmental variables
zk that returns the lowest U value is the most important data here. Note that this enrichment method
is almost identical to the methods described in the previous enrichment stages, the only difference lies
in the design parameters (d = x0), which is a user-defined value.

Furthermore, as mentioned in Section 3.2, Kriging prediction takes longer to conclude as the DOE

size increases (e.g. DOE > 150). When the MCS population size Nmc is also relatively high (e.g. Nmc ≥
80,000), each optimization iteration process requires a considerable amount of time to conclude. There-
fore, repeating the iteration from the initial starting point will be deemed time-inefficient despite the
number of function calls remaining the same. To overcome such a problem, the preferred starting point
will be updated every time an enrichment is made. For convenience, the preferred starting point will
be updated to be the same as the newest enrichment point (from the first or second local enrichment).
Therefore, there will be more than one candidate for the preferred starting point. However, if the up-
dated starting point is becoming unfeasible at the start of (1+1)-CMA-ES iteration, the preferred starting
point will be switched back to the previous feasible enrichment point, or to the initial preferred start-
ing point if there is no feasible enrichment point left (starting point with Pf > P̄f will be eliminated).
To avoid further inefficiency, each set of design variable x is only allowed to be assigned once as an
updated preferred starting point. This strategy could avoid a considerable amount of iteration from
the initial preferred starting point.

Updating the preferred starting point is also advantageous because the optimization process could
spend ”more time” in exploring the ”suspected” optimal sub-region, thus leading to more first local or
second local enrichment around this suspected optimal sub-region, which ultimately leads to a higher
chance of obtaining optimization convergence. To avoid having excessive and misleading preferred
starting point candidates, only a point that has a relatively low ηPf (e.g. ηPf < 20) will be considered
here. Re-starting optimization iteration from a point that has a high value of ηPf will increase the
possibility of having a high value of ηq at the start of the iteration, thus increasing the chance of
”wasting” function calls at the starting point (to satisfy Equation 3.49 or 3.50).
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Another strategy to save time and avoid having too many starting point enrichment is by assigning a
less strict value of η̄q at the starting point, e.g. η̄q = 2.0 when i ≤ 20 and x = x0. It is generally expected
for the optimal design point to be located not too close to the starting point, therefore ”wasting” func-
tion calls around the starting point sub-region is not really ideal. A high number of DOE enrichments
is ideally performed around the (predicted or expected) optimal sub-region.

3.5.7 Maximum number of iterations and function calls.

In order to avoid an endless loops and keep the RBDO process time-efficient, the number of iterations
i (as in Figure 3.5) and function calls N will be limited. When the number of maximum allowed
iterations imax is reached(in this research imax is kept to 4000), a local enrichment will be made (first
local enrichment stage) regardless of the reached ηq or f∆ values. Therefore, the metamodel will be
improved and the iteration should be able to converge faster with the newly updated metamodel.
However, based on the author’s experience, f∆ is normally reached before approximately 1000-1500

iterations for fstop value between 10
−5 to 10

−8.
Moreover, when the maximum number of function calls Nmax is reached, the RBDO process will

conclude and select the best shortlisted design variable candidate as the final output. This selection is
performed in the following steps:

1. Every time Equation 3.24 is fulfilled (or when the second local enrichment stage is about to be
evaluated), the design variable xj and its corresponding P̂f ,j will be recorded.

2. The discrepancy δPf of P̂f ,j from xj and xinit against the targeted P̄f ,k will be calculated by Equation
3.57.

3. If δPf < 5%, xj will be included in the shortlist.

4. After a few enrichments, there will be a few candidates of optimal design variable x in the
shortlist.

5. When Nmax is reached, η̄q will be set to ∞. Therefore, the optimization process will find a
converged point xlast based on the existing metamodel (based on Nmax number of DOE). The P̂f
based on xlast will also be recorded to the same list altogether with xj from the previous steps.
A strategy could be devised to increase the possibility of finding the optimal point by setting
η̄q = ∞ earlier, e.g. when N = Nmax−2, therefore the last 2 enrichment will be categorized as the
second local enrichment (independent of η̄q).

6. The P̂f and δPf of all xj and xinit in the shortlist will be evaluated with the updated metamodel
(with Nmax number of DOE).

7. The pair of design variable xj that has the lowest δPf will be selected as the final best design
variables output.

8. In case there is more than one candidate of xj that have the same δPf , the final best design
variables will be selected from xj that has the lowest cost function.



4 M E T H O D I M P L E M E N TAT I O N

To give a better understanding of the proposed RBDO method (as defined in Chapter 3), its application
will be discussed in this chapter. The RBDO method is performed through computer scripting using
Python programming language. The Kriging metamodel is constructed using a modified version of
Scikit-learn’s Gaussian Process Regressor module (Pedregosa et al. [2011]), while the (1+1)-CMA-ES

optimization and RBDO implementations are as Algorithms 1 and 2. The accuracy and efficiency of the
RBDO method will be demonstrated on three well-known analytical (non-FEM) problems, therefore, its
performance can be compared to other existing RBDO methods. Each example has different performance
functions, cost functions, and constraint functions. Thus the generality of the proposed RBDO method
can be investigated.

4.1 example 1: a simple column under compression
The problem is a simple rectangular column under a compression load Fser with a rectangular cross-
section b × h (as illustrated in Figure 4.1). This example is also used as one of the RBDO benchmark
problems in Dubourg et al. [2011] and Moustapha et al. [2016]. The performance function of the column
capacity is defined in Equation 4.1.

Figure 4.1: A simple illustration of Example 1 (b & h in mm).

g(x, z) = k
π2Ebh3

12L2 (4.1)

Where b & h is the dimension of the column, E is Young’s elasticity modulus, L is the column’s
length, k is a factor that accounts for model uncertainty in the Euler force (to represent the effect of
imperfections in the column geometry). Therefore, failure occurs when Fser is bigger than the column
capacity g(x, z), or in other words, failure when g(x, z) < Fser (which means ḡ = Fser). The design
variables are x = {b, h}T and the environmental variables are z = {k, E, L}T . The aim here is to find
x∗ = {b∗, h∗}T , which are the optimal value of b & h (in mm) that give the lowest possible cross-section
area of the column that still returns a target probability of failure of 5% (P̄f ,k = 5%). The distributions
of the environmental parameters are listed in Table 4.1.

Table 4.1: Probabilistic parameter details of Example 1: a simple column under compression. Coefficient of
variation, COV = standard deviation/mean.

Parameter Distribution Mean(µ) COV (%)
k (-) Lognormal 0.6 10

E (MPa) Lognormal 10,000 15

L (mm) Lognormal 3,000 1

Fser (N) Deterministic 1.4622 × 10
6 -

27
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The problem is consisted of 2 design variables (n = 2) and 3 environmental variables (z = 3). Moreover,
to quote Equation 2.2, the cost function c and constraint functions of the problem are defined in
Equations 4.2 and 4.3 respectively.

c(b, h) = b× h (4.2)

subjects to:

x* = arg min
x∈D

c(x)


h− b ≤ 0
150 mm ≤ b ≤ 350 mm
150 mm ≤ h ≤ 350 mm
P(gk(x, z) ≤ 1) ≤ 5%

(4.3)

Based on Equation 4.3, there are 4 constraint functions (m = 4). The initial preferred starting point
is chosen to be (x0, z0) = {b, h, k, E, L}T = {325.1, 325.0, 0.6, 10000.0, 3000.0}T , which is expected
to fulfill all of the constraints defined in Equation 4.3. This preferred starting point may be updated
during the RBDO process. Moreover, the MCS size is set to Nmc = 10,000 (in accordance to Equation 3.4).
As for the initialization of (1+1)-CMA-ES, σ0 = 0.5 is chosen. For the metamodel’s kernel, Matérn 3/2

without noise component is considered here since the performance function is an analytical problem.
The process will be started by selecting 10 initial DOE randomly (one of the points is located at the
starting point) for initial metamodel construction. The inputs are summarized in Table 4.2. The results
are presented in Table 4.3 and Figures 4.2 to 4.4.

Table 4.2: RBDO input summary of Example 1.
Parameter Input

n 2

m 4

z 3

Metamodel kernel Matérn 3/2 without noise component
(x0, z0) {325.1, 325.0, 0.6, 10000.0, 3000.0 }T

Metamodel Nmc 10,000 (Expected δPf = 0.044)
P̄f ,k 5.00% (β = 1.645)

η̄glo & η̄Pf 0.20 & 0.10

η̄q {1, 0.5, 0.25, 0.1} for every 250 iteration
fstop 10

−8

σ0 0.5
ḡ 1.0

imax 4000

Nmax 100

Table 4.3: RBDO output summary of Example 1.
Parameter Output

x∗ (mm) {238.454, 238.454}T

Total N 23

Metamodel P̂f (Nmc = 10
5) 5.00%

MCS Pf (Nmc = 10
6) 5.02%

MCS Pf error to P̄f ,k 0.40%
Total iteration 3,450

Total function evaluation (metamodel) 3.45 × 10
7

Figure 4.2 shows the result of the RBDO process in the cost function contour. Each point in the contour
represents a combination of b & h (note that each of these points has its own MCS population Ci). The
figure also shows the position of the 10 initial DOE, where one of the points is selected to be located
in the starting point. There are three global enrichment points (where the third one has the same
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Figure 4.2: RBDO output of Example 1 with iteration history in cost function contours. The obtained x∗ = {238.454

mm, 238.454 mm} with the total number of function calls N = 23. Note that the last half of offspring
were blocked by the enrichment markers because they started from an updated starting point.

design variables but different environmental variables, thus only 2 are visible in Figure 4.2 or 4.3), nine
first local enrichment points, one second local enrichment point, and no starting point enrichment was
made (which means the metamodel at the starting point was already feasible by only using the one
point from the initial enrichment stage). Therefore, there are 23 enrichment points in total (23 function
calls or N = 23). Note that a one-shot approach with a DOE of size 23 does not systematically converge
to the optimal sub-region.

It can also be observed from Figure 4.2 that the first local enrichment was made along the ”itera-
tion track” of (1+1)-CMA-ES process and the iteration was continued from the last enrichment point.
When it is not feasible to continue from the last enrichment point, the iteration will be restarted from
the preferred starting point (x0, z0). However, in this case, thanks to the updated preferred starting
point scheme as discussed in Section 3.5.6, the first local enrichment DOE was used as the updated
preferred starting point close to the optimal sub-region. Therefore, no iteration points (offsprings)
were visible from Figure 4.2 except for the first third of them, because they started from the last few
local enrichments (the visibility was blocked by the local enrichment markers). As a consequence, the
iterations were ”forced” to spend more time around this ”suspected” optimal sub-region, thus enhanc-
ing a higher probability of a faster convergence (with fewer function calls) at the optimal sub-region.
Note that when an updated preferred starting point is no longer feasible, it will have one chance of
performing a starting point enrichment. If it is still unfeasible after a starting point enrichment, it will
be removed from the ”preferred starting point list”, except when there is only the initial predefined
starting point that is left in the list.

The iteration points shown in Figure 4.2 (labeled as offspring) are grouped into 3 categories to show
the timeline of the iteration, therefore the iteration track can be clearly seen (including the ”retry”,
which is unfortunately not so clearly displayed in this case). For convenience, only the iteration tracks
based on the last 2000 iterations are included (out of 3450 iterations). It can also be observed that the
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Figure 4.3: RBDO output of Example 1: enrichment points in crude MCS contour.

optimization process converged to an (turned out to be) incorrect optimal point (marked as the blue
square in Figure 4.2 or 4.3) before it actually converged to the optimal sub-region (as marked by the
red cross). Without the second local enrichment stage, the RBDO process may converge at the second
local enrichment point (shown in Figure 4.3), which is an incorrect optimal sub-region (Fortunately
in this example, the initial false prediction and the actual correct prediction of the optimal sub-region
were located very close to each other). Therefore, the second local enrichment stage is very important
in avoiding a ”false sense of security” that could have been obtained by the RBDO process.

Figure 4.3 shows the enrichment points in the crude MCS’s probability of failure P̂f contours. Each b
& h combination will return a P̂f value. The red dashed line shows the contour where the metamodel
returns P̂f = 5%, and the red line is the contour where the crude MCS returns the actual Pf = 5%. The
most ideal situation would be where the metamodel output is identical to the crude MCS output, or
where the red dashed line lies at the exact same spot as the red line. Moreover, it can also be seen that
the red dashed line deviates further from the red line at sub-regions farther from the converged point
(red cross). This deviation happens due to the fact that the RBDO is only focusing on (enriching) the
optimal sub-region, therefore no enrichment is made at the ”less important” sub-regions. Note that
the optimal sub-region is where the orange and red lines cross each other in Figure 4.3.

The RBDO process returns an optimal design x∗ = {238.454 mm, 238.454 mm}T . The analytical
solution derived from Dubourg et al. [2011] gives b∗ = h∗ = 238.45 mm (Moustapha et al. [2016]).
Moreover, the analytical solution is shown in Figures 4.2 and 4.3 as an orange dashed line, all b &
h combinations along this orange dashed line will give an equal function value. Furthermore, at the
converged final design point, the metamodel returns P̂f = 5.00%. Meanwhile, at the converged design
point, the crude MCS returns P f = 5.02%. Note that there is a 0.40% discrepancy between P̂f and Pf .
This discrepancy can be further reduced by the following (among others):

• Lowering the η̄Pf value (e.g. from 0.10 to 0.05).

• Increasing the maximum number of allowed iterations per set of DOE.

• Increasing the maximum number of allowed function calls (for a more complex problem).
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• Increasing the MCS population Nmc.

However, lowering the η̄Pf value will require more enrichment points, thus more function calls and
iterations are also needed. In this example, a η̄Pf value of 0.1 already gives a relatively accurate result
compared to the analytical solution with an error of 0.40%. The evolution of η̄q, η̄Pf , and η̄β (by using
Equation 3.51) values are displayed in Figure 4.4.

Figure 4.4: RBDO output of Example 1: evolution of η̄q, η̄β and η̄Pf values (y-axis in log. scale).

The η values recorded in Figure 4.4 are the η values of the last iteration before a new enrichment
is made. Therefore, the record starts after the initial and global enrichment stage (metamodel initial-
ization) since the iterations have not started yet during the initial and global enrichment stage. Based
on Figure 4.4, all of the η values decrease with the increase in the number of function calls. However,
there are a few sudden ”jumps” in the η values along the iteration process. These jumps are caused
when the P̂f value of the last iteration is zero or really close to zero, therefore β ≈ ∞. Or because the
enrichment was made at a point that is far from the optimal sub-region. Figure 4.4 also shows that for
the same number of N, the convergence parameters ηq, ηPf and ηβ have varying values between each
other (e.g. when ηq ≈ 0.5, ηPf ≈ 3). This shows that using ηPf or ηβ values in evaluating the conver-
gence criteria would be more conservative (thus requires more N) compared to using ηq. Furthermore,
the comparison of the result with other RBDO methods is displayed in Table 4.4.

Table 4.4: Example 1: result comparison with other RBDO methods.
Methods b∗(mm) h∗(mm) c(x)(mm2) N c(x) error(%)

Analytical solution 238.450 238.450 56,858.40 - -
Dubourg et al. [2011] 231.000 231.000 53,361.00 20 6.151

Moustapha et al. [2016] 239.120 239.120 57,178.37 18 0.563

This research 238.454 238.454 56,860.31 23 0.003

Since there is some randomness in the proposed RBDO method (e.g. the choice of MCS sample pop-
ulation or the generated (1+1)-CMA-ES’ z value in Equation 3.14), the number of required N is varying
between each run. Based on the author’s experience, it takes approximately 17 to 30 numbers of N to
get the converged (optimal) design output in this problem with the same settings, with the converged
value of b∗ & h∗ ranging between 238.30 mm to 238.60 mm (cost function discrepancy ranging between
0.003% to 0.126%) for a chosen η̄q = 0.1. Table 4.4 shows that the proposed RBDO method gives a more
accurate prediction of the optimal sub-region (less cost function discrepancy) compared to the method
proposed in Moustapha et al. [2016] due to the second local enrichment stage (among other improve-
ments). Furthermore, it is also worth noticing from Figure 4.2 that it takes 3,450 iterations to get the
optimal sub-region. Therefore, since Nmc = 10,000, it takes 10,000 × 3,450 = 34,500,000 performance
function evaluations to conclude. This would definitely take an enormous of time if a metamodel had
not been used. Thanks to the metamodel, only 23 function calls are needed instead of 34,500,000!

To sum up, Figures 4.2 & 4.3 show that the main challenge in developing the RBDO method is to find
the intersection between the orange dashed line and the red line by performing metamodel enrichment
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efficiently in the best locations, therefore the correct optimal sub-region can be found with the fewest
possible number of function calls.

4.2 example 2: a short column under oblique bending
This example deals with a short column structure with a rectangular cross-section b× h like in Example
1, only this time the column has a yield stress σy and is subject to an axial load F and biaxial bending
moments M1 & M2 (Figure 4.5). The aim is to optimize b and h (or x∗ = {b∗, h∗}T) to obtain the
reliability target β = 3 (or P̄f ,k = 0.135%). The performance function of the model is defined in Equation
4.4. Note that the last term in Equation 4.4 (”+1”) is added to accommodate ḡ = 1. Therefore failure
occurs when g(x, z) < 1.

Figure 4.5: A simple illustration of Example 2 (b & h in mm).

g(x, z) = 1− 4M1

bh2σy
− 4M2

b2hσy
−
(

F
bhσy

)2
+ 1 (4.4)

Therefore, the design variables are x = {b, h}T and the environmental variables are z = {F, M1,
M2, σy}T (thus n = 2 and z = 4). All of the design variable dimensions are in mm. The distributions of
the environmental variables are displayed in Table 4.5.

Table 4.5: Probabilistic parameter details of Example 2: short column under oblique bending.
Parameter Distribution Mean(µ) COV (%)

F (N) Lognormal 2.5 × 10
6

0.20

M1 (Nmm) Lognormal 250 × 10
6

0.30

M2 (Nmm) Lognormal 125 × 10
6

0.30

σy (MPa) Lognormal 40 0.10

The cost function and constraint functions are defined in Equations 4.5 and 4.6 respectively.

c(b, h) = b× h (4.5)

subjects to:

x* = arg min
x∈D

c(x)


100 mm ≤ b ≤ 1000 mm
100 mm ≤ h ≤ 1000 mm
P(gk(x, z) ≤ 1) ≤ 0.135%

(4.6)

Forty points of DOE will be generated to construct the initial metamodel. Since P̄f ,k = 0.135%, Nmc
= 80,000 will be chosen to satisfy Equation 3.4 (δPf ≤0.1). The value of η̄glo = 0.20 will be chosen to
minimize global enrichment. The selected starting point is chosen at (x0, y0) = { 700, 700, 2.5× 10

6, 250

× 10
6, 125 × 10

6, 40}. The rest of the settings are displayed in Table 4.6. The results are presented in
Table 4.7 and Figures 4.6 to 4.8. The obtained optimal design variables are x∗ = {328.630 mm, 595.150

mm}.
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Table 4.6: RBDO input summary of Example 2.
Parameter Input

n 2

m 3

z 4

Metamodel kernel Matérn 3/2 without noise component
(x0, z0) {700, 700, 2.5× 10

6, 250 × 10
6, 125 × 10

6, 40}
Metamodel Nmc 80,000 (Expected δPf = 0.096)

P̄f ,k 0.135% (β = 3.00)
η̄glo & η̄Pf 0.20 & 0.10

η̄q {1, 0.5, 0.25, 0.1} for every 250 iteration
fstop 10

−6

σ0 0.5
ḡ 1.0

imax 4000

Nmax 250

Table 4.7: RBDO output summary of Example 2.
Parameter Output

x∗ (mm) {328.630, 595.150}T

Total N 119

Metamodel P̂f (Nmc = 8 × 10
4

0.134%
MCS Pf (Nmc = 10

6) 0.135%
MCS Pf error to P̄f ,k 0.07%

Total iteration 19,609

Total function evaluation (metamodel) 1.568 × 10
9

Figures 4.6 and 4.7 show that the optimal design variable contour line lies almost in parallel with the
P̄f ,k target line. To overcome the challenge, as discussed in Section 3.5.6, the preferred starting point
is updated to a few points (before it was removed if it is found to be unfeasible later on) closer to
the ”suspected” optimal sub-region. Figure 4.6 or 4.7 further shows that the second local enrichment
points are ”more crowded” around the optimal point compared to other sub-regions that have the
same P̂f , thanks to the preferred starting point update. The optimization process concluded after 119

function calls. Moreover, Figure 4.7 also shows that the metamodel (shown as the red dashed line) was
accurately constructed within the optimal sub-region, and is less accurate in sub-regions farther from
the optimal point.

It can also be seen from Figure 4.7 that no global enrichment points were made. This is partly due
to the locations and numbers of the initial DOE, which is chosen to be relatively high (40). In this case,
where the Pf contours are parallel with the cost function contours, it was found that using less initial
DOE may lead to many global and first local enrichment in less important sub-regions. Therefore, using
more initial DOE may give the metamodel a ”quicker judgment” at spotting a ”suspected” optimal
sub-region before ”wasting” training data by investigating the (turned out to be) less important sub-
regions. Further observation can be made from Figure 4.7 that all of the second local enrichment
points lie along the P̄f ,k contour line, which means the RBDO method always converges at the targeted
P̂f contour line, which borders the feasible and unfeasible design domain. Some strategies that can be
applied to obtain a faster convergence when the optimal cost function line lies almost in parallel with
the probability constraint line are described below.

• As applied here, update the preferred starting point at a point closer to the ”suspected” optimal
point, but not too close to avoid starting at a (turned out to be) infeasible domain, as can be
observed in Figure 4.7 (one of the yellow circle marks just outside the red line).

• Increase the η̄q value to allow the optimization process to explore more possible optimal sub-
region before it converges.

• Decrease fstop value to delay the optimization convergence that allows the second local enrich-
ment point to occur.
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Figure 4.6: RBDO output of Example 2 with iteration history in cost function contours. The obtained x∗ = {328.630

mm, 595.150 mm} with total number of function calls N = 119.

• When it is possible/predictable, scatter the initial DOE around the expected optimal sub-region.
Therefore, the required global and first local enrichment can be reduced.

Moreover, the convergence history of the problem is displayed in Figure 4.8. It can be seen from the
figure that all of the η values are generally decreasing with the increase of N.

Figure 4.8: RBDO output of Example 2: evolution of η̄q, η̄β and η̄Pf values (y-axis in log. scale).

The comparison between the obtained result with the other RBDO methods is presented in Table 4.8.
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Figure 4.7: RBDO output of Example 2: enrichment points in crude MCS contour.

Table 4.8: Example 2: result comparison with other RBDO methods. Confirmed β values are obtained from a
re-run by crude MCS with Nmc = 10

6, while β is the claimed reliability index value (from the sources).
a = Lee and Jung [2008], b = Dubourg et al. [2011], and c = Moustapha and Sudret [2019].

Methods b∗(mm) h∗(mm) c(b∗, h∗)(mm2) N β Confirm. β

Nested FORMa
399 513 204,687 9,472 3.380 3.205

Meta-RBDOb
358 580 207,640 70 3.320 3.394

SVR+MCS+SQPc
332 596 197,872 84 3.000 3.084

Krig.+Subsim+CMAESc
336 592 198,912 86 3.000 3.135

Krig.+QMCS+CMAESc
331 592 195,952 57 3.000 3.018

This research 328.630 595.150 195,584 119 3.000 3.000

It can be seen from Table 4.8 that the proposed method gives the most accurate result with the
lowest cost function despite requiring more number of function calls compared to other more popular
Kriging-based RBDO methods.

4.3 example 3: a cantilever soil retaining wall under slid-
ing mode of failure

The following example is taken from Honjo et al. [2009] and is also included in Example 5 of GEOSNet
Le and Honjo [2008]. The problem consists of a gravity cantilever soil retaining wall against the sliding
mode of failure as displayed in Figure 4.9. The original dimension xinit={w, B}={0.4 m, 2.0 m} returns
Pf =0.347% (β = 2.70). In this research, a ”cheaper” design of the retaining wall x∗ = {w∗, B∗} that
still gives the same Pf will be investigated by applying the proposed RBDO method. The height of the
wall and the slope of the fill are assumed to be the same, therefore only the thickness and the width of
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the wall (w & B) are being optimized. The aim here is to show how the RBDO method can also be used
to optimize an existing geotechnical engineering design.

Figure 4.9: Example 3: The original problem definition with {w, B}={0.4, 2.0 m} (Le and Honjo [2008]).

The performance function (Factor of Safety (FS)) of the problem is defined in Equations 4.7 to 4.9.

g(x, z) =
R
S

(4.7)

Where:

R =
1
2

l2 γ′s tan2
(

45◦ +
ϕ′s
2

)
+

{
(h + B) w γc +

[
(B− w) h +

1
2
(B− w)2tan α

]
γ′f+

q
(B− w)

cos α

}
tan ϕ′bs

(4.8)

S =
1
2
[(B− w)tan α + h + w]2γ′f tan2

(
45◦ −

ϕ′f
2

)
cos α (4.9)

Equation 4.7 basically defines the ratio between resistance R and solicitation (load) S of the soil
retaining wall against the sliding mode of failure. Therefore, failure is defined when FS < 1 (thus ḡ =
1). The environmental parameters are defined in Table 4.9.

Table 4.9: Environmental parameter details of Example 3: a cantilever soil retaining wall.
Parameter Description Distribution Mean(µ) COV (%)
γ′f (kN/m3) Fill unit weight above the wall Lognormal 20 5

γ′s (kN/m3) Sand unit weight beneath the wall Lognormal 19 5

γc (kN/m3) Unit weight of the wall Lognormal 25 5

tan ϕ′f (-) Tangent of int. frict. angle of the fill Lognormal 0.781 14

tan ϕ′s (-) Tangent of int. frict. angle of the sand Lognormal 0.675 13

tan ϕ′bs (-) Tan. of int. frict. angle of wall-sand Lognormal 0.577 12

q (kN/m2) Surcharge load Lognormal 15 30

The cost function to be optimized is the cross-section area of the soil retaining wall. The optimal
design corresponds to the lowest cross section area that still gives the same Pf . Therefore, the cost
function is defined in Equation 4.10 (all units are in m). For the dimension constraint, a lower boundary
of 0.15 m is chosen for w. The constraint functions are defined in Equation 4.11.
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c(w, B) = 6.75× w + (B− w)× w (4.10)

subjects to:

x* = arg min
x∈D

c(x)


0.15 m ≤ w
0.00 m < B
P(gk(x, z) ≤ 1) ≤ 0.347%

(4.11)

Moreover, the inputs and initial values for the analysis are presented in Table 4.10. The results are
presented in Table 4.11 and Figures 4.10 to 4.12.

Table 4.10: RBDO input summary of Example 3. The initial starting point (x0, z0) corresponds to
{γ′f , γ′s, γc, tan ϕ′f , tan ϕ′s, tan ϕ′bs, q}).

Parameter Input
n 2

m 3

z 7

Metamodel kernel Matérn 3/2 without noise component
(x0, z0) {1.0, 3.0, 20.0, 19.0, 25.0, 0.781, 0.675, 0.577, 15.0 }T

xinitd Metamodel Nmc 80,000 (Expected δPf = 0.059)
P̄f ,k 0.347% (β = 2.7)

η̄glo & η̄Pf 0.20 & 0.10

η̄q {1, 0.5, 0.25, 0.1} for every 250 iteration
fstop 10

−6

σ0 0.1
ḡ 1.0

imax 4000

Nmax 150

Table 4.11: RBDO output summary of Example 3.
Parameter Output

x∗ {0.150, 2.089}T

Total N 61

Metamodel P̂f (Nmc = 8 × 10
4

0.3445%
MCS Pf (Nmc = 10

6) 0.3466%
MCS Pf error to P̄f ,k 0.028%

Total iteration 9,511

Total function evaluation (metamodel) 7.6088 × 10
8

The offsprings shown in Figure 4.10 are taken from the last 5,000 iterations, and only the last 1/3 of
them can be seen. It means that the first 2/3 of the offsprings are located around the enrichment points
because the optimization process re-used the parent variables most of the time (Step 8 of Figure 3.3).

It can be seen from Figures 4.10 and 4.11 that the cost function based on the RBDO output (1.30 m2)
is lower than the cost function based on the original design (3.34 m2, marked as an orange diamond
marker on an orange dotted line). It means that the RBDO gives an alternative design that gives the
same Pf with 60.98 % less cross-section area! Therefore, the proposed RBDO method can be used in
optimizing an existing design by locating the optimal design point that still gives the same reliability
index β. Since there is more than one combination of design parameter to achieve a certain reliability
target (Figure 4.11), the proposed RBDO is superior in accurately locating the optimal point compared
to the traditional ”trial-and-error” method.
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Figure 4.10: RBDO output of Example 3 with iteration history in cost function contours. The obtained x∗ = {0.150

m, 2.089 m} with total number of function calls N = 61.

Figure 4.11: RBDO output of Example 3: enrichment points in crude MCS contour.
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Figure 4.12: RBDO output of Example 3: evolution of η̄q, η̄β and η̄Pf values (y-axis in log. scale). Convergence
found at N = 61.

4.4 conclusion
Based on the aforementioned examples, some conclusions can be made. Each example obtained the
design variable output with high accuracy. This is due to the ability of the method to successfully detect
the correct optimal point, which is the point where both the reliability analysis using a metamodel and
crude MCS return the targeted probability of failure P̄f . The accuracy is further proven by the very
low Pf discrepancy to P̄f ,k (or very low ”Pf error”) when confirmed by crude MCS. The highest Pf
error was only 0.40%, which was obtained from Example 1 (Table 4.3). The obtained accuracy is
mainly credited to the second local enrichment stage that ensures the optimal point to converge in the
correct sub-region and adaptive strategies (discussed in Section 3.5.6) that ”force” the method to spend
”more time” in exploring the ”suspected” optimal sub-region. Moreover, the starting point enrichment
helps in ensuring the starting point of each iteration is in a feasible sub-region, while the first local
enrichment stage helps the method to ”stay” in the correct iteration path. The global enrichment stage
is only used in Example 1. Its use in the other examples was skipped because the number of initial
enrichment is sufficient enough to fulfill the global enrichment convergence criterion.

Furthermore, efficiency is achieved thanks to the learning functions (discussed in Sections 3.5.3 &
3.5.4) and the adaptive strategies discussed in Section 3.5.6. This efficiency can be best observed in
Example 1 (Figure 4.2) where the optimal design point was successfully located by only using ”one
iteration path” from the initial starting point. Apart from the number of function calls (N), the number
of total iterations could also require a considerable amount of computational effort (thus more time is
needed) depending on the number of dimensions and Nmc. This is especially true after a certain size of
DOE is reached, which is one of the disadvantages of using Kriging as a metamodel. For comparison, the
five-dimensional Example 1 with Nmc = 10

4, N = 23, and total iteration = 3,450 requires approximately 5

minutes to conclude (using a computer with 16 GB of installed RAM memory and a 2.8 GHz processor).
On the other hand, the six-dimensional Example 2 with Nmc = 8 × 10

4, N = 119, and total iteration
= 19,609 requires approximately 12 hours to conclude. Therefore, despite Example 2 only requiring
approximately 5 times more function calls than Example 1, it also requires approximately 144 times
longer to conclude! This comparison shows that apart from the number of function calls N, it is also
important to reduce the required number of total iterations. Therefore, efficiency is not only obtained
in terms of the low number of function calls, but also from the low number of total iterations (or
”function evaluations”) which then correlates to computation time.

To sum up, the proposed RBDO method’s effectiveness is demonstrated by solving the various ana-
lytical problems accurately and efficiently despite each problem has a different type of performance
function.



5 C A S E S T U DY

This chapter will discuss the application of the proposed RBDO method to the case study of Starnmeer
Polder Dyke reinforcement briefly introduced in Chapter 1. The dyke is located in the province of
North Holland. It was originally drained in 1643, covers an area of 580 hectares, and is contained
within a 13 km long ring dyke. Recently, water board Hoogheemraadschap Hollands Noorderkwartier
(HHNK) who manages the dyke initiated a stability assessment of the dyke. It was found that around
half the length of the dyke does not comply with the current safety requirement, therefore, a rein-
forcement of the dyke is needed. The optimal design dimensions of the dyke reinforcement that gives
a reliability target β = 3.00 (P̄f ,k = 0.135%) will be investigated here by applying the proposed RBDO

method.

5.1 model definition
In this research, the geometry of the model will be slightly modified in order to avoid numerical
instability due to the mesh generation of a very thin geometry component. The modified geometry can
be seen in Figure 5.1 below (including the soil types in each soil layer/geometry).

Figure 5.1: The FEM model that will be analyzed by the proposed RBDO method. The number in the legend
indicates the number of the soil layers. Dimensions in m.

The main difference between Figures 5.1 and 1.1 is that the very thin reinforcement sand layer (”Sand
8”) in between ”Clay 7” and ”Peat 3” layers is removed (where such a thin layer can be seen closely
in Figure 1.1). There are 8 different types of soil layers in the original design (Hicks et al. [2019]).
However, based on Varkey et al. [2020] who analyzed the same problem to calculate the characteristic
values of soil shear strength properties, it was found that soil layers other than layers 1, 2, and 3 have
negligible influences on the dyke’s FS. Therefore, only the strength of layers 1, 2, 3, and 7 are modeled
with stochastic properties in this research. The soil stochastic distributions are presented in Table 5.1,
and the deterministic properties are presented in Table 5.2. Moreover, all of the soil will be modeled as
the Mohr-Coulomb model.

The performance function here would be a FEM model in PLAXIS 2D. The important output here
is the FS of the dyke from a combination of W (m), H (m), and soil properties described in Ta-
ble 5.1. Failure is defined in such a way that FS < 1. Therefore, ḡ = 1 is chosen as the failure
threshold. Moreover, the design variables are x = {W, H}T , and the environmental variables are
z = {c′1, c′2, c′3, c′7, ϕ′1, ϕ′2, ϕ′3, ϕ′4}T (thus n = 2 and z = 8). The aim here is to find x∗ = {W∗, H∗}T

that returns a reliability target β = 3 (or P̄f ,k = 0.135%). Therefore, Nmc = 80,000 is chosen to satisfy
Equation 3.4 (δPf ≤ 0.1) and fstop = 10

−5 is chosen. Since the performance function here is a FEM model,
a noise term in the kernel will be added to put the noisy FEM responses into account. The rest of the
RBDO settings are displayed in Table 5.3.

40
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Table 5.1: Case study: stochastic soil strength parameter distribution (all c’ in kPa). The mean and COV are
based on the random variable (not the log of the random variable).

Layer Parameter Distribution Mean(µ) COV (%)
Clay 1 c′1 Lognormal 4.4 0.773

Peat 2 c′2 Lognormal 3.2 0.656

Peat 3 c′3 Lognormal 2.0 0.775

Clay 7 c′7 Lognormal 6.2 0.773

Clay 1 tan ϕ′1 Lognormal 0.580 0.081

Peat 2 tan ϕ′2 Lognormal 0.398 0.058

Peat 3 tan ϕ′3 Lognormal 0.358 0.145

Clay 7 tan ϕ′7 Lognormal 0.531 0.081

Table 5.2: Case study: deterministic soil parameters. γ and γ′ are saturated and unsaturated unit weight. E is
modulus of elasticity. ν is Poisson’s ratio. c′ and tan ϕ′ of layers 1, 2, 3, and 7 are presented in Table 5.1

.

Layer γ (kN/m3) γ′ (kN/m3) E (kPa) ν (-) c′ (kPa) tan ϕ′ (-)
Clay 1 13.9 6.9 5000 0.33 - -
Peat 2 11.0 1.6 2500 0.33 - -
Peat 3 11.0 1.4 2500 0.33 - -
Clay 4 15.0 15.0 5000 0.33 4.5 0.559

Clay 5 15.0 15.0 5000 0.33 5.4 0.601

Sand 6 20.0 18.0 45000 0.30 0.0 0.637

Clay 7 17.0 17.0 5000 0.33 - -
Sand 8 20.0 18.0 45000 0.30 0.0 0.637

Table 5.3: RBDO input summary of the case study.
Parameter Input

n 2

m 3

z 8

Metamodel kernel Matérn 3/2 with a white noise component
(x0) {5.04, 0.94}T

(z0) The mean values displayed in Table 5.1
Metamodel Nmc 80,000 (Expected δPf = 0.096)

P̄f ,k 0.135% (β = 3.00)
η̄glo & η̄Pf 0.20 & 0.10

η̄q {1.00, 0.75, 0.50, 0.10} for every 300 iteration
η̄q {1.20, 0.75, 0.50, 0.10} (after ”new minimum” Kriging variance)

fstop 10
−5

σ0 0.5
ḡ 1.0

imax 4000

Nmax 350

The cost function and constraints of the problem are formulated in Equations 5.1 and 5.2. There
are a few possibilities for defining the cost function of the problem. One could define it as the area
(or volume) of the whole Clay 7, or an area of a representative part. In this case, the latter is chosen
whereas the cost function is the triangular area of the slope at the toe of the dyke (the red triangle in
Figure 5.2). Moreover, the chosen cost function is more straightforward and utilizes the original design
variables W & H that are also used in Hicks et al. [2019] and represent the cross-section area of the
whole Clay 7 layer. If the cost function were defined as the whole cross-section area of the Clay 7 layer,
one must define design parameters (could be more than 2) that will be used in the formulation of the
cross-section area. Furthermore, lower values of W & H lead to a lower red triangle area (and Clay 7

volume in general), thus less clay is needed for the reinforcement design. A lower W value also leads
to a narrower reinforcement design, which may be advantageous if the dyke is located in a limited
space (e.g. near a housing border). Therefore, an optimal design would be a combination of W & H
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that returns the lowest possible cross-section area of the red triangle, yet still fulfilling Pf = P̂f . The
lower limit of H is set to 0.05 m to avoid numerical instability in the model geometry (which is kept to
be as close as possible to the original reinforcement design).

c(W, H) =
(W − 1.97)

2
× H (5.1)

subjects to:

x* = arg min
x∈D

c(x)


1.97 m < W < 5.10 m
0.05 m ≤ H ≤ 1.00 m
P(gk(x, z) ≤ 1) ≤ 0.135%

(5.2)

Figure 5.2: The cost function to be minimized: the area of the red triangle.

The initial preferred starting point x0 = {5.04 m, 0.94 m}T is chosen as this is the original design
dimensions in Hicks et al. [2019]. The soil properties are the mean value taken from Table 5.1 (only here
the soil friction angle is defined as ϕ′ instead of tan ϕ′). The initial DOE for metamodel initialization
will be spread in such a way that most of the points are slightly less than x0 = since these sub-regions
are the most likely to be passed by the iteration path of the optimization process because they return
lower cost function values. Therefore, there is no point in spreading the initial DOE at the sub-regions
where x is bigger than {5.04 m, 0.94 m} since it will not be explored by the optimization iteration path.
Moreover, the sub-regions where the initial DOE was sampled will be used in determining the value of
ηglo, Therefore, the global enrichment stage could be minimized (more efficient).

5.2 result
The results of the RBDO process are presented in Table 5.4 and Figures 5.3 to 5.6. The obtained optimal
values for the design parameter are x∗ = {2.586 m, 0.050 m}T .

Table 5.4: RBDO output summary of the case study.
Parameter Output

x∗ (m) {2.586, 0.050}T

Total N 350

Metamodel P̂f (Nmc = 8 × 10
5) 0.1350% (β =3.003)

AK-MCS Pf (Nmc = 5 × 10
5) 0.1336%

AK-MCS Pf error to P̄f ,k 1.048%
Total iteration 44,566

Total function evaluation (metamodel) 3.56 × 10
9

The iteration points shown in Figure 5.3 are limited to the last 2000 data (to save computation
memory and make the result easier to read). Therefore, it can be seen that the last 2000 iteration
brought the design parameters closer to the converged area faster (because the metamodel was already
good enough to identify possible optimal sub-regions after a certain number of DOE). The last 2000

data roughly depicts the iteration paths of the last 4-5 enrichment processes (where in this case, after
each addition of 1 DOE, 400-500 iterations are usually needed).
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Figure 5.3: Case study’s RBDO output: iteration history in cost function contour.

The number of Nmax is reached here, therefore the RBDO process is concluded by the steps defined
in Section 3.5.7 with 44,566 total iterations (which means 44,566 × 80,000 ≈ 3.56 × 10

9 function calls
are needed had a metamodel not been used!). The optimal point is finally chosen from the shortlisted
design variable candidates (from the best points in the second local enrichment population) and the last
optimization process where η̄q = ∞. The RBDO process could be continued by increasing the allowed
number of Nmax to get a more accurate output, however, each iteration would take significantly longer
time due to the increase in the DOE (note that the more DOE the metamodel has, the bigger the size of
matrix K in Equation 3.8, therefore the increase is exponential).

Figures 5.3 and 5.4 show that there are four second local enrichment points. It means that the RBDO

converged to those points, but the RBDO did not conclude because some of them were ”false positive”.
Note that the number of the second local enrichment points shown in both figures could be reduced
if a lower value of fstop was chosen (e.g. 10−8 or lower). The number of second local enrichments
is relatively low compared to the first local enrichment stage, this is due to the convergence criteria
defined in Section 3.5.5 (especially Equation 3.57) which further limits the ”validity” of the converged
point. Moreover, Figure 5.3 or 5.4 shows that the first local enrichments were made along the iteration
path from the initial starting point to the optimal sub-region.

Figure 5.4 shows the P̂f contour based on the optimized metamodel (from the RBDO). The optimal
design point obtained from the RBDO lies in the intersection of the P̂f and minimum cost function
contour line, where many first and second local enrichment points are also located. This is because the
preferred starting points were updated in close proximity to this sub-region at a certain time during
the RBDO process (shown by a few starting point enrichment points that were visible by yellow circles
that are closed to the optimal sub-region).

Figure 5.3 (or 5.4) also shows that almost all of the first and second local enrichments were made
along the lower boundary limit of H. It means that at the earlier phase of the RBDO process, the
metamodel P̂f contour line lies further than the feasible design domain. This can be explained in
Figure 5.5 which shows the location of the P̂f = P̄f ,k contour line when N =200 (roughly at the middle
of the RBDO process). Compared to Figure 5.4, the P̂f = P̄f ,k contour line lies closer to the feasible
design domain boundary. It means that the P̂f = P̄f ,k contour line was moved as the metamodel got
”smarter” due to the enrichments performed.
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Figure 5.4: Case study’s RBDO output: enrichment points in the metamodel output’s contour.

Note that the chosen η̄glo and η̄q values are slightly more relaxed compared to the chosen value in the
examples presented in Sections 4.1 & 4.2. The relaxed criteria are chosen to reduce the required number
of function calls during the global and first local enrichment stage. Due to the noise component, the
Kriging variance will increase when there are some outliers in the model responses. Therefore, to avoid
further increase in the Kriging variance, after a certain N, training data with FS < 0.7 will be ignored
(not added to the DOE) and the iteration will be restarted from the latest preferred starting point. When
N was still low (approximately when N < 150), outliers (FS < 0.7) were still allowed to detect ”unsafe”
sub-regions. An overly strict limit in identifying outliers may prevent the metamodel to detect unsafe
sub-regions, therefore leading to a higher chance of not having the P̂f = P̄f ,k contour line even when
the number of DOE already reached Nmax (or still having P̂f = P̄f ,k similar to what is shown in Figure
5.5 even when N = Nmax). Moreover, a strict η̄q during the early stage of iteration could also create
”endless loops” of the local enrichment stage. Endless loops of local enrichment happens when the
following situation occurs:

1. At the early stage of iteration, it is found that ηq > η̄q.

2. One first local enrichment stage is made by adding point (xe, ze) as a new DOE (where it has the
lowest U value).

3. When the iteration continues (from the last enrichment point), the ηq value is still lower than η̄q
(because the η̄q value is strict enough to allow so).

4. One first local enrichment will be performed again (despite the iteration having just started at
i = 0).

5. The same point as before will be selected as the new DOE.

6. There are now two exact points in the DOE.

7. When the iteration continues, step 3 is repeated.

The endless loop specified above could be solved by increasing the η̄q threshold during the early
stage of the optimization iteration. To further reduce unnecessary enrichment at the starting point,
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Figure 5.5: The location of the P̂f = P̄f ,k contour line at the middle of the RBDO process (when N =200).

η̄q = 1.2 will be assigned when i ≤ 20 and x0 = {5.04, 0.94}. The η̄q = 1.2 will also be assigned
when the Kriging variance reached a ”new minimum” due to the increasing number of DOE. This ”new
minimum” stage can be detected when the addition of more DOE at the starting point x0 = {5.04, 0.94}
does not reduce the corresponding ηq, therefore continuing enriching at the same point would just
”waste” function calls. The chosen initial η̄q values will also ”force” the metamodel to conclude to the
optimal sub-region candidates faster at the expense of a less accurate metamodel along the iteration
path. Sacrificing an accurate metamodel during the iteration path will be compensated by the second
local enrichment stage, where it will play a big role in ensuring the convergence falls in the correct
sub-region later on. Forcing the metamodel to conclude faster will also help to conclude the RBDO

faster since fewer global and first local enrichments are expected, this strategy is particularly useful
for Nmc > 10,000 and when N > 100 (these values are relative, depending on the performance of the
computer used).

Figure 5.6: Case study RBDO output: convergence history (y-axis in log. scale).
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The convergence history (η) is shown in Figure 5.6. It was found that the ηPf was still far from η̄Pf =
0.1 despite the general trend of ηPf slightly decreasing (almost negligible). This is due to the noise
variance component in the metamodel’s kernel that allows for noise or ”tolerance” on the prediction
trend at the expense of high Kriging variance (”new minimum”), as shown in Figure 3.2. Figure 5.6
also shows the ηq trend to slightly increased throughout the RBDO process. This is due to the new
threshold of η̄q = 1.20 at the early stages of iteration after the Kriging ”new minimum” variance was
detected. The final design of the dyke reinforcement, with x∗ = {W∗, H∗} = {2.586 m, 0.050 m}T , is
displayed in Figure 5.7. Furthermore, the typical mode of failure of the dyke is shown in Figure 5.8.

Figure 5.7: The final design of the dyke with {W, H} = {2.586 m, 0.050 m}. Dimensions in m.

Figure 5.8: The mode of failure of the dyke with {W, H} = {2.586 m, 0.050 m}. Dimensions in m.

Finally, due to the limited resource and time in confirming the obtained result by using crude MCS,
AK-MCS was used to confirm the obtained P̂f . For confirmation, an AK-MCS analysis (limited to 100

function calls) with x∗ = {2.586 m, 0.050 m}T returns Pf = 0.1336%. Therefore, there is a 1.048% in
error from the RBDO output. The optimal design x∗ also reduces the use of clay in the clay 7 layer up
to approximately 30%!

5.3 conclusion
The proposed RBDO method can predict the optimal design variables of a complex and expensive FEM

geotechnical engineering model within Nmax = 350 function calls. The optimal design obtained from
the method, {W, H} = {2.586 m, 0.050 m}, reduces the need for clay in the reinforcement design. Also,
it decreases the required reinforcement width from W = 5.040 m to only W = 2.586 m, which is very
beneficial when space availability is limited.

Moreover, due to the high Kriging variance caused by using a noise component in the metamodel’s
kernel, the convergence criteria η̄Pf is not achieved. Therefore, Nmax is reached and x∗ is obtained
through the steps defined in Section 3.5.7. The obtained result was confirmed through AK-MCS with a
1.048% error in the Pf compared to the targeted P̄f ,k.
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6.1 conclusion
The main objective of this research is to accurately and efficiently optimize a FEM-based dyke reinforce-
ment design that fulfills the reliability target by using an RBDO method consisting of an active-learning
metamodel combined with an optimization scheme. Therefore, the discussions and findings presented
in Chapters 3 to 5 will be concluded to answer the research questions formulated in Chapter 1.

How to efficiently and accurately perform a design optimization of a dyke reinforcement problem
with an expensive FEM-based performance function while also fulfilling the reliability target?

To answer the main research question, a novel RBDO method is proposed in this research. The
method is developed by coupling active-learning Kriging metamodeling reliability analysis (AK-MCS)
with (1+1)-CMA-ES optimization process, and further combining them with certain adaptive strategies
to obtain the optimal design point accurately and efficiently. The proposed method returns an optimal
set of design variable x∗ within a certain number of function calls Nmax (limited to 350 in this research)
instead of performing function calls in the order of 10

9.

How to combine a metamodel and an optimization process into an RBDO method?

As defined in Chapter 3, the proposed RBDO method builds the Kriging metamodel through four en-
richment stages to obtain the optimal design point. These stages are the global, first local, second local,
and starting point enrichments. The global enrichment aims to reduce the uncertainty in the whole
domain of the augmented space to give a ”decent enough” metamodel to start the RBDO process. The
first local enrichment helps the optimization process to detect the correct iteration path when searching
for the optimal design point. The second local enrichment is responsible for ensuring the optimization
process converges to the correct optimal design point. Moreover, the starting point enrichment ensures
the optimization process starts from a feasible starting point, which is crucial for the (1+1)-CMA-ES

optimization process.

How to achieve the accuracy of the RBDO method?

The accuracy of the RBDO method is mainly credited to the second local enrichment stage where it
confirms the accuracy of a converged design point and avoids the incorrect optimal point (or ”false
positive”). This is further supported by the adaptive strategies defined in Sections 3.5.4, 3.5.5, and 3.5.6
that ”force” the optimization iterations to ”spend more time” around a suspected optimal sub-region,
thus leading to a higher chance of locating the optimal design point. These strategies also lower
the probability of getting an ”outlier” in the DOE which could decrease the metamodel’s accuracy.
Moreover, when Nmax is reached, strategies described in Section 3.5.7 ensure that the optimal point is
chosen based on the most updated metamodel, thus the most probable optimal design point can be
chosen.

The role of the second local enrichment and the aforementioned strategies are successfully demon-
strated in the discussed analytical and FEM problems. In Example 1, the obtained optimal design point
only gives a 0.003% cost function value error compared to the analytical solution, which is more ac-
curate compared to other existing well-known RBDO methods (Table 4.4). Moreover, Example 2 shows
that the proposed RBDO method obtained an optimal design point that returns a reliability index β
closest to the target compared to other existing RBDO methods (Table 4.8). Example 3 shows that the
method could predict a better alternative design point that only has a 0.028% error to the targeted Pf .
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How to achieve the efficiency of the RBDO method?

The efficiency of the RBDO is achieved by performing metamodel enrichments at the most strategic
sub-regions (where the optimal design point is ”suspected” to lie in one of these sub-regions), therefore
avoiding unnecessary enrichments at less important sub-regions. Apart from the learning functions
defined in Sections 3.5.3 and 3.5.4 that choose the best enrichment point candidate from a Monte
Carlo population, efficiency is further enhanced by strategies described in Sections 3.5.4, 3.5.5, and
3.5.6. These strategies avoid wasting enrichments (both the first local enrichment or the starting point
enrichment) at ”less important” design variables, and also avoid unnecessary iterations at sub-regions
that are deemed ”obviously not important”. When dealing with a noisy FEM model, these strategies
also adapt the first local enrichment’s convergence criterion when the metamodel’s Kriging variance
reaches a ”new minimum” due to the noisy response. This further avoids unnecessary enrichment
at the starting point (both the original and the updated one). The efficiency can be best observed in
Example 1, where the optimal design point can be located by only using one ”iteration path” and 23

function calls. Moreover, Examples 2 and 3 obtain the optimal design point within 119 and 61 function
calls respectively, which are less than the corresponding Nmax values.

What is the optimal design for the dyke reinforcement based on the proposed RBDO method?

The proposed RBDO method obtains an optimal design point of x∗ = {2.586 m, 0.05 m} for the dyke
reinforcement. The optimal design is obtained after Nmax = 350 function calls are reached. After a
confirmation with AK-MCS reliability analysis (limited to 100 function calls), the error in the Pf is only
1.048%.

Furthermore, the accuracy and efficiency are also achieved to a certain extent depending on the
balance of the RBDO setting, e.g.: convergence criteria, locations of the initial DOE, size of the MCS pop-
ulation, and the metamodel setting. Despite the ability in predicting an optimal design, the proposed
method becomes inefficient after a certain number of function calls due to the increase in the correla-
tion matrix size of the training data. Therefore, the robustness of the method is highly dependent on
the ability of the user’s computer.

6.2 recommendation
Despite the promises that the proposed RBDO method has, some things could be considered to further
improve the method. The effectiveness of the method for problems with more than ten dimensions has
not been verified yet. To achieve further efficiency during the optimization iterations, the use of a more
efficient reliability analysis method (e.g. subset simulation, importance sampling, directional sampling,
etc.) could have been investigated. Furthermore, the correlation between the convergence criteria
and the type of performance function could have been further investigated to achieve an optimal or
”acceptable” result without having excessive function calls.
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A ( 1 + 1 ) - C M A - E S A LG O R I T H M

The following is the algorithm of the (1+1)-CMA-ES procedure (Algorithm 1) implemented in the re-
search. This algorithm is a more detailed description of the optimization process depicted in Figure
3.3. Note that since the aim is to minimize the cost function in this research, therefore f (y) is deemed
as inferior to f (d(i−5)) if f (y) > f (d(i−5)) (Line 43 of Algorithm 1).

Algorithm 1 : (1+1)-CMA-ES optimization procedure

1: procedure (1+1)-CMA-ES (n, m, z, i, x, σ, A, v, Psucc, s, f (di−5))
2: Check the initial or existing iteration parameters.
3: if i = 0 then ▷ If it is the start of iteration, use initial parameters.
4: x = x0 ▷ Parental var., shape = (n, 1)
5: σ = σ0 ▷ e.g.: 0.5
6: A = I ▷ (n, n)
7: v = 0 ▷ (n, m)
8: Psucc = 0
9: s = 0 ▷ (n, 1)

10: f (d(i−5)) = 0 ▷ Last fifth ancestor.
11: gj : Constraint funct. ▷ gj is here defined as unfeasible when gj > 0.
12: end if
13:

14: Check gj(x) for j= 1 to m.
15: if gj(x) > 0 then ▷ If the starting point is not feasible.
16: Perform starting point enrichment.
17: y = x0
18: else
19: Calculate d, c, cp, Ptarget, c+cov, cc, β, Eq. 3.25 to 3.32.
20: Generate random standard normal values z. ▷ (n, 1)
21: Calculate c−cov by using Equation 3.30.
22: if c−cov < 0 then
23: Re-generate z.
24: else
25: Generate one offspring y, Eq. 3.14.
26: end if
27: Calculate the cost function difference f∆, Eq. 3.23.
28: Calculate g j(y) for j = 1 to m. ▷ (m, 1)
29: w = 0 ▷ (n, m)
30: for j = 1 to m do
31: if g j > 0 then
32: Update vj that gives gj(y) > 0, Eq. 3.15. ▷ (n, 1)
33: Compute wj, Eq. 3.17. ▷ (n, 1)
34: end if
35: end for
36: v← v. (v is updated). ▷ (n, m)
37: w← w. ▷ (n, m)
38: if Any g j(y) > 0 then
39: y is unfeasible.
40: Update transformation matrix A, Eq. 3.16. ▷ (n, n)
41: The iteration is stopped here, x will be re-used as the parent.
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42: else
43: y is feasible.
44: Evaluate f (y).
45: Update Psucc, Eq. 3.18.
46: Update σ, Eq. 3.19.
47: if f (y) ≤ f (x) then ▷ This research aims to minim. the cost funct.
48: x← y.
49: Update s, Eq. 3.20. ▷ (n, 1)
50: Update A, Eq. 3.21 ▷ (n, n)
51: The iteration is stopped.
52: else
53: y← x. ▷ x will be re-used in next iteration.
54: if f (y) is inferior to f (d(i−5)) then
55: Update A, Eq. 3.22. ▷ (n, n)
56: end if
57: Iteration is stopped.
58: end if
59: end if
60: end if
61: return y ▷ y will be used as x in the next iteration.
62: end procedure



B R B D O M E T H O D A LG O R I T H M

The following is the algorithm of the proposed RBDO procedure (Algorithm 2). This algorithm is a more
detailed description of the RBDO process displayed in Figure 3.5. For further questions, please send an
email to rayyan8818@gmail.com or muhammad.rayyan@ptpp.co.id.

Algorithm 2 : An RBDO Procedure with Four Stages of Enrichment

1: procedure RBDO (n, z, f , P̄f ,k, x0, z0)
2: Initialization:
3: n = No. design variable.
4: z = No. environmental variable.
5: ndim = n + z.
6: f = Objective function (cost function).
7: P̄f ,k = Pf target.
8: (x0, z0) = The preferred starting point. ▷ Shape = (1, ndim)
9: Generate ninit number of initial DOE. ▷ (ninit, ndim)

10: N = ninit. ▷ No. of function calls.
11: Construct metamodel Ĝk based on ninit DOE.
12: Generate Nmc MCS samples of z. ▷ (Nmc, z)
13: Commencing global enrichment stage:
14: Global convergence = False
15: while Global convergence = False do
16: Generate nc candidates of design variables d. ▷ (nc, n)
17: Combine d with z into Cq, Eq. 3.41 to 3.42. ▷ (Nmc, ndim)
18: For every d in Cq, compute Gk(d, z), Eq. 3.39. ▷ (Nmc, 1)
19: Compute the quantile qαk of each Cq, Eq. 3.40. ▷ (nc, 1)
20: Identify the input (xα, zα) of qαk, Eq. 3.43. ▷ (1, ndim)
21: Compute U from each (xα, zα) in Cq, Eq. 3.44. ▷ (nc, 1)
22: Evaluate ηglo, Eq. 3.46.
23: if ηglo < η̄glo then
24: Global convergence = True.
25: else
26: Global convergence = False.
27: Add the input point (xα, zα) that gives the lowest U to the DOE.
28: Improve the metamodel based on the new DOE.
29: N = N + 1.
30: end if
31: end while
32: Commencing local enrichment stage:
33: i = 0
34: urep = 0 ▷ No. of repeat in the first local enr.
35: di=0 = x0
36: Local convergence = False
37: Reliability convergence = False
38: Optimization convergence = False
39: while Local convergence = False and Reliability convergence = False and

Optimization convergence = False do
40: Combine d with z into Cq, Eq. 3.41 to 3.42. ▷ (Nmc, ndim)
41: Compute metamodel prediction Ĝk(d, z), Eq. 3.39. ▷ (Nmc, 1)
42: Compute U for each (d, z) in Cq, Eq. 3.54 & 3.55. ▷ (Nmc, 1)
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43: Identify the input (xk, zk) that gives the lowest U .
44: Compute metamodel prediction of P̂f from Ĝk(d, z), Eq. 3.2.
45: Compute P+

f & P−f from Ĝk(d, z), Eq. 3.56.

46: if i = 0 and d = x0 and P̂f > P̄f ,k then
47: Switch to a new or default pref. starting point.
48: end if
49: Compute ηPf , Eq. 3.58.
50: Compute the quantile qαk of Cq, Eq. 3.40.
51: Compute q̂−α & q̂+α , Eq. 3.47.
52: Compute ηq, Eq. 3.49 or 3.50.
53: if ηq > η̄q then
54: Local convergence = False.
55: if di = di−1 then
56: urep += 1 ▷ Count the repetition of enrichment at one point.
57: end if
58: if urep ≤ 5 and Ĝk(xk, zk) > 0.5 then ▷ If 0.5 is the threshold in detecting an outlier.
59: Add the point (xk, zk) to the DOE.
60: Improve the metamodel based on the new DOE.
61: N = N + 1
62: else
63: di+1 = x0 ▷ Re-start iteration from x0 to avoid wasting function calls.
64: end if
65: Reset (1+1)-CMA-ES iteration parameters.
66: Re-start the optimization process from the last iteration path.
67: i = 0
68: if ηPf ≤ 20 then ▷ If 20 is chosen as the threshold in adding a new pref. start. point.
69: Add the point (xk, zk) as a new pref. starting point candidate.
70: end if
71: else
72: Local convergence = True.
73: urep = 0
74: Perform (1+1)-CMA-ES optimization procedure. ▷ Alg. 1.
75: i = i + 1
76: d = y = Alg. 1 output.
77: if (1+1)-CMA-ES returns d = x0 (Line 16 of Alg. 1) then
78: Commencing starting point enrichment stage:
79: Compute metamodel prediction Ĝ0(x0, z), Eq. 3.39. ▷ (Nmc, 1)
80: Compute U from Ĝ0, Eq. 3.54 & 3.55. ▷ (Nmc, 1)
81: Identify the input (x0, z) that gives the lowest U .
82: Add the point (x0, z) that gives the lowest U value to the DOE.
83: Improve the metamodel based on the new DOE.
84: N = N + 1
85: Reset (1+1)-CMA-ES iteration parameters.
86: Re-start the optimization process from the preferred starting point.
87: i = 0
88: else
89: Evaluate f∆(di, di−1), Eq. 3.23.
90: if f∆ < fstop and δPf < 5% then
91: Optimization convergence = True
92: if ηPf < η̄Pf then
93: if Pf ≤ P̄f ,k then
94: Reliability convergence = True
95: else
96: Reliability convergence = False
97: end if
98: else
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99: Commencing second local enrichment stage:
100: Compute metamodel predict. Ĝ2(d, z), Eq. 3.39. ▷ (Nmc, 1)
101: Compute U from Ĝ2(d, z), Eq. 3.54 & 3.55. ▷ (Nmc, 1)
102: Identify the input (d2nd, z2nd) that gives the lowest U .
103: Add (d2nd, z2nd) to the DOE.
104: Improve the metamodel based on the new DOE.
105: N = N + 1
106: Reset (1+1)-CMA-ES iteration parameters.
107: Re-start the optimization process from the last DOE point.
108: i = 0
109: Add (d2nd, z2nd) as a new pref. starting point candidate.
110: Compute δPf , Eq. 3.57.
111: if δPf ≤ 5% then
112: Put d into dshortlist. ▷ Best candidates of d.
113: end if
114: end if
115: else
116: Optimization convergence = False
117: end if
118: end if
119: end if
120: if N = Nmax then
121: Local convergence = True
122: Reliability convergence = True
123: Optimization convergence = True
124: ηq = ∞
125: Re-start the iteration until a converged point d∞ is found.
126: Include d∞ to the shortlist.
127: nshortlist = Total number of best d candidates in dshortlist.
128: Evaluate P̂f of each d in dshortlist with the latest Ĝk. ▷ (nshortlist, 1)
129: Evaluate δPf of each d in dshortlist with the latest Ĝk. ▷ (nshortlist, 1)
130: The optimal design d∗ = d that gives the lowest δPf .
131: nbest = Total number of d that give the lowest δPf .
132: if nbest > 1 then
133: Compute f (d) for each d that gives the lowest δPf .
134: d∗ = d that gives the lowest f (d).
135: end if
136: end if
137: end while
138: return d∗ ▷ The optimal design.
139: end procedure
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