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Foreword

Although most people actually don’t know anything about advanced mathe-
matics at all, some mathematical topics are considered as magic by the laity.
Everyone has heard about the number π, but most people can’t explain what
the number actually means. Another mysterious mathematical subject are the
prime numbers. Many people have heard about prime numbers, and probably
quite many people will be able to explain what a prime number is. However,
pupils don’t learn much about prime numbers at high school. That’s a shame,
since some important properties of prime numbers are very lucrative.
In this report a proof of an important non-trivial mathematical theorem about
the distribution of the prime numbers among the naturals, called the prime
number theorem, will be discussed. Although the prime numbers form a sub-
set of the natural numbers N, most work we will do in the complex plane C.
This sounds quite strange, but the wonderful properties of holomorphic func-
tions make the proof of the theorem very elegant. As the French mathematician
Jacques Hadamard (not surprisingly one of the most important mathematicians
for the prime number theorem) had said: ”The shortest path between two truths
in the real domain passes through the complex domain.”
The Riemann-zeta function will play a significant role during our investigation,
since we will prove that the prime number theorem only holds if the zeta func-
tion has no zeros on the line <(s) = 1. The function has raised a conjecture by
Riemann, known as the Riemann-hypothesis. This conjecture has been studied
for about 150 years, but neither a proof nor a counter-example has been found
yet. The curious distribution of the zeros of the zeta function are therefore
worth investigating. At the end of the project we will introduce the study of
random matrices to describe this distribution.

I would like to express my appreciation to Dr. Erik Koelink for his interest,
enthusiasm and great support that made this project possible.

Sander Hooijmaijers
2007



Preface

In the first part of the project, we will give a general proof of the prime number
theorem. The Riemann-zeta function which is very important during the proof,
will be extensively discussed, though the function still raises many questions we
can’t answer.

The Riemann-hypothesis, which gives a statement about the zeros of the
zeta function, seems to hold according to accurate observations. However, a
proof has not been found yet. Many theorems in number theory hold only if
the hypothesis is true, so finding a complete proof will be very important.

In the second part of the project, we will try to find the relationship between
the zeros of the zeta function and random matrices. Random matrix theory is
a brand new subject in mathematics. The many applications of the theory (for
example the zeros of the zeta function, and the description of energy levels of
heavy nuclei) make the topic very popular at the moment, and indicate that
there may be much more to discover! We will explain (but won’t prove) that
the distribution of eigenvalues of specific random matrices corresponds to the
distribution of the critical zeros of the zeta function, assuming the Riemann-
hypothesis.

The topics we discuss in this report are just a small tip of the iceberg, which
seems to be enormous!
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Chapter 1

Prime numbers: a little bit
of fundamental theory

1.1 An introduction

During the investigation, the following definition of a prime number will be
used.

Definition 1.1.1 A prime number is a natural number which has exactly two
different integer divisors.

Automatically, Definition 1.1.1 states that a prime number is only divisible
by 1 and itself. Note that 1 is not a prime number according to this definition.
Sometimes mathematicians argue about this. Later on it will be clear that it’s
convenient to define 1 as not prime.

The first prime numbers are {2,3,5,7,11,13,17,19,23,29,31,37, . . . }.

We could go on and on by writing the primes down, but we won’t find a nice
pattern in this collection, since its distribution is very erratic.

The following theorem is one of the most important theorems in arithmetics.
We will use the notation a|b if a is a divisor of b.

Lemma 1.1.2 Every positive integer n > 1 has a prime factorization.

Proof. We argue by contradiction. Let S be the set of natural numbers
> 1 which do not have a prime number factorization. Let n be the smallest
element of S. Because n ∈ S, n is not prime, so there exist integers a > 1 and
b > 1 such that n = ab. Of course, a < n and b < n. Therefore, a /∈ S and
b /∈ S, because n is the smallest element of S. This means that a and b have
prime number factorizations. Then their producht ab = n must have a prime
number factorization, which means n /∈ S. We have found a contradiction! S
does not have a smallest element, which means that S is empty, as desired. �

Lemma 1.1.3 There is no positive integer n > 1 that can be factorized by
primes in two different ways.
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Proof. Again we argue by contradiction. Let n > 1 be an integer which
has two prime factorizations

n = p1p2 . . . pr
= q1q2 . . . qs.

p1 is a divisor of n and therefore a divisor of q1q2 . . . qs. Because p1 is prime,
we must have that p1|qi for some i (We omit the proof of this fact here. A
simple proof can be found in several books about elementary number theory,
for example [1]. Because qi is certainly prime, p1 = qi. If we proceed this way,
we will find that the two factorizations are equal up to permutation. The prime
factorization is therefore unique. �

Theorem 1.1.4 Every positive integer n > 1 has a unique prime factorization
up to permutation.

Proof. Combine Lemma 1.1.2 and Lemma 1.1.3. �

Theorem 1.1.4 is the theorem that makes the prime numbers that special
and important. In fact, we can regard the collection of prime numbers, which
we will denote by P, as the building blocks of the natural numbers N.

In general, the prime factorization of a large number is very hard to find.
Take two large prime numbers p1, p2. Finding the factorization of n = p1p2 will
take a lot of time, unless you are very lucky. This fact makes prime numbers
that important; they are frequently used for encryption.
Unfortunately, a simple formula which gives the nth prime doesn’t exist. The
distribution of the primes among the natural numbers is very erratic. The
only thing we could say on forehand is that the density of the prime numbers
among N will slowly decrease if we investigate larger numbers. This is a simple
consequence of the fact that there are more candidates of factors for larger
numbers.
However, we do want to find some results about the probability of finding a prime
in a certain interval [a, b], especially when a and b are large. If we want to encrypt
documents by prime factorization, it would be congenial to know something
about the chance of finding primes. The famous prime number theorem gives
a solution to this problem. Before stating this theorem it’s convenient to be
familiar with a little bit of elementary prime number theory.

At first, let’s wonder whether P has a finite number of elements or not. A
first proof of the following theorem was found in Euclid’s Elements, which was
written in the 3rd century B.C.

Theorem 1.1.5 There are infinitely many prime numbers.

Proof. We argue by contradiction. Suppose that there are only finitely
many primes. Let p1, . . . , pn denote all the primes. If we define

N = p1p2 . . . pn + 1,

we will certainly have that N 6∈ P, because N is larger than all the primes. The-
orem 1.1.4 ensures us that we can write N as a product of primes. However, by
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its definition it’s obvious that N isn’t divisible by any of the primes p1, . . . , pn.
This means that there must be other primes as well. We could repeat this argu-
ment over and over, getting the same contradiction every time. Therefore, we
cannot have finitely many primes, completing the proof. �

Now we are ready to investigate the prime number theorem. Its proof re-
quires a lot of analysis. We will explain the theorem step by step, eventually
leading to a complete proof.
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Chapter 2

The link between number
theory and complex analysis

At the end of the 18th century, Gauss conjectured that

π(x) ∼ x

log x
as x→∞, (2.1)

where the number of primes less than or equal to x is denoted by π(x). The
former equation is known as the prime number theorem. It says that

lim
x→∞

π(x)
x/ log x

= 1. (2.2)

Chebyshev proved that for sufficiently large x

A
x

log x
≤ π(x) ≤ B x

log x
, (2.3)

where A and B are positive constants (with of course A < B).
Eventually, in 1896, Hadamard and de la Vallée Poussin independently gave

a proof of (2.1), in which they had used complex analysis. About 50 years later,
more elementary proofs of (2.1) have been found.

2.1 The Riemann-zeta function and Euler’s Iden-
tity

It’s quite amazing to see how we can use complex analysis to prove a pure
number theoretical theorem. It was Euler who made this connection by finding
an identity for the zeta function.

The zeta function is initially defined for s > 1 by the infinite series

ζ(s) =
∞∑
n=1

1
ns

(2.4)

By comparison with the integral
∫∞
1
x−s dx, we see that this series converges

for s > 1.
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Theorem 2.1.1 We can extend (2.4) to the half-plane <(s) > 1 in C. The
function ζ is holomorphic in this half-plane.

Proof. Suppose s = σ + it, with σ, t ∈ R. We have

|n−s| = |e−s logn| = e−σ logn = n−σ, (2.5)

which follows from the fact that the modulus of a complex exponential equals
the exponential of the real part of the complex number. Because <(s) > 1, we
can choose δ > 0 such that σ > 1+ δ > 1. We now certainly have the inequality

∞∑
n=1

1
nσ
≤

∞∑
n=1

1
n1+δ

. (2.6)

The right-hand side converges because δ > 0. Therefore, the left-hand side
converges uniformly on <(s) > 1 + δ > 1. Besides, for every n ≥ 1, s 7→ 1/ns is
a holomorphic function on the half-plane <(s) > 1. Therefore, the function ζ is
holomorphic on the half-plane <(s) > 1. �

One of the key steps during the investigation will be the determination of
the zeros of the zeta function. For this we use Euler’s famous identity:

Theorem 2.1.2 For <(s) > 1 the zeta function can be expressed as an infinite
product

ζ(s) =
∏
p∈P

1
1− p−s

.

Proof. At first we denote that we can write

1
1− p−s

as a convergent geometric power series

∞∑
n=0

1
pns

.

If we take the product of these series over all primes, we will obtain for every
n a term 1

ns , in which n is written as its unique prime factorization (Theorem
1.1.4 is therefore essential in this proof). A more precise argument goes as fol-
lows.

Take two arbitrary positive integers M and N with the only restriction that
M > N . From Theorem 1.1.4 we know that we can write any positive integer
n ≤ N uniquely as a product of primes. Each prime in this product must be
less than or equal to N , because otherwise we will have n > N . Furthermore,
each prime that occurs in the product must be repeated less than M times,
otherwise we will get the same contradiction.

The statements above yield the following inequality:
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N∑
n=1

1
ns

≤
∏
p≤N

(
1 +

1
ps

+
1
p2s

+ . . .+
1
pMs

)

≤
∏
p≤N

(
1

1− p−s

)

≤
∏
p∈P

(
1

1− p−s

)
.

Letting N tend to infinity gives us

∞∑
n=1

1
ns
≤
∏
p∈P

(
1

1− p−s

)
. (2.7)

Now we will find the reverse inequality. Again we use Theorem 1.1.4, which
yields ∏

p≤N

(
1 +

1
ps

+
1
p2s

+ . . .+
1
pMs

)
≤

∞∑
n=1

1
ns
.

We can let M go to infinity to obtain∏
p≤N

(
1

1− p−s

)
≤

∞∑
n=1

1
ns
.

Letting N tend to infinity finally gives us∏
p∈P

(
1

1− p−s

)
≤

∞∑
n=1

1
ns
. (2.8)

Together the inequalities (2.7) and (2.8) give the desired result. �

With a little bit more effort, we can show that Theorem 2.1.2 is true for every
s with <(s) > 1. We now have made the desired translation between number
theory and complex analysis. Instead of looking at the very erratic behaviour
of the distribution of the primes, we now can investigate an analytic function!
Therefore, let’s have a look at the zeta function in more detail.

2.2 Properties of the zeta function

The Riemann-zeta function is initially defined on the complex right half-plane
<(s) > 1. The following theorem states that there exists a function ζ∗(t) which
is meromorphic and equals the original zeta function on <(s) > 1.

Theorem 2.2.1 The zeta function has a meromorphic continuation into C,
which only has a singularity (a single pole) at s = 1.

For convenient reasons, from now on the notation ζ will be used for the
meromorphic continuation of the original zeta function.
In order to prove the theorem above, we require a lot of analytic knowledge.
Details can be found in the appendix, which is recommended for the interested
reader.
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2.2.1 Zeros and poles

In the complex plane <(s) > 1, ζ has no zeros. This follows from the product
formula for ζ and from the following lemma.

Lemma 2.2.2 If
∑∞
n=1 |an| < ∞, then the product

∏∞
n=1(1 + an) converges,

and it converges to 0 if and only if one of the factors is 0.

A proof of this lemma can be found for example in [2], Proposition 5.3.1. In
our case, we have an =

∑∞
m=1 p

−ms, where m denotes the mth prime number.∑∞
n=1 |an| converges, so our product formula converges for <(s) > 1. Further-

more, it doesn’t converge to 0 since none of the factors is 0. This means that ζ
has no zeros on the half-plane <(s) > 1. Besides, ζ is analytic in this half-plane,
so the function has no poles here as well.

In the appendix we found the following result, which we state here as a
lemma:

Lemma 2.2.3
ξ(s) = π−s/2Γ(s/2)ζ(s). (2.9)

The function ξ is holomorphic for <(s) > 1 and has an analytic continuation to
C as a meromorphic function, with simple poles at s = 0 and s = 1. Further-
more, we have

ξ(s) = ξ(1− s) for all s ∈ C. (2.10)

Solving for ζ, we find

ζ(s) = πs/2
ξ(s)

Γ(s/2)
. (2.11)

The (analytic continuation of the) Gamma function has simple poles at
0,−1,−2, . . ., and has no zeros. As a consequence, 1/Γ(s/2) is entire, with
simple zeros at 0,−2,−4, . . ., so the pole of ξ(s) at s = 0 is cancelled by a zero
of the denominator. Therefore, the only singularity of ζ is a simple pole at
s = 1.

In order to investigate the zeros of ζ, we use the functional equation for ξ.
Solving for ζ gives the following functional equation for ζ:

ζ(s) = πs−1/2 Γ((1− s)/2)
Γ(s/2)

ζ(1− s). (2.12)

We can use (2.12) to investigate the zeros of ζ. For <(s) > 1 we’ve already
found the desired results. We can use these results to investigate the zeros of ζ
for <(s) < 0. We have the following for <(s) < 0:

1. ζ(1− s) has no zeros because <(1− s) > 1.

2. Γ((1− s)/2) has no zeros.

3. 1/Γ(s/2) has zeros at the negative even integers.
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The results above imply that the zeros of ζ on the left half-plane <(s) < 0
are exactly at the negative even integers.

We summarize the results of the zeta function in Table 1.

Zeros Poles

−2,−4,−6, . . .
s = 1

Possibilities at 0 ≤ <(s) ≤ 1

Table 1.

The region 0 ≤ <(s) ≤ 1 is often called the critical strip. From some
mathematical theorems, it’s known that its interior contains infinitely many ze-
ros of the zeta function. Riemann conjectured that all these zeros lie on the
line <(s) = 1/2. This statement is known as the Riemann hypothesis. This
conjecture has neither been proved nor been disproved. Odlyzko studied in [3]
and [4] the distribution of a set of many zeros of the zeta function, which led to
the discovery of a curious pattern of the distribution of the zeros. In Chapter 4
we will come back to this topic.

It can be shown that proving the prime number theorem is equivalent to
proving the fact that ζ has no zeros on the line <(s) = 1. We won’t prove this
equivalence here, since we won’t need this to prove the prime number theorem.
However, we will prove the fact that ζ has no zeros on <(s) = 1. At first we
need some lemmas to be able to prove this.

Lemma 2.2.4 For <(s) > 1 we have

log ζ(s) =
∞∑
n=1

cnn
−s (2.13)

for some cn ≥ 0.

Proof. Suppose that s > 1 (note that we choose s ∈ R!). We use the
power series expansion for the logarithm (use Taylor series to see this easily)

log
1

1− x
=

∞∑
n=1

xn

n
, (2.14)

where x is real. This series converges for 0 ≤ x < 1. We now use the fact that
the logarithm of a product equals the sum of the logarithms. Writing the zeta
function as the product formula, we find
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log ζ(s) = log
∏
p∈P

1
1− p−s

=
∑
p∈P

log
1

1− p−s
=
∑
p∈P

∑
m∈N

p−ms

m
. (2.15)

The last equality holds because of (2.14) and since 0 ≤ p−s < 1. Because all
terms are positive, the order of summation doesn’t matter, so we can write

log ζ(s) =
∑
p,m

p−ms

m
(2.16)

for s > 1. But then this formula must hold for all s ∈ C with <(s) > 1 because
of analytic continuation! The logarithm is well defined, since we’ve seen that ζ
is holomorphic and doesn’t vanish in the half-plane <(s) > 1, which is simply
connected (for details of this argument, see for example [2], Theorem 3.6.2). If
we choose cn = 1/m if n = pm and cn = 0 otherwise, we’ve proved the lemma.
�

To prove the fact that ζ has no zeros on <(s) = 1, we use the following
lemma:

Lemma 2.2.5 For σ > 1 and t real, we have

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 0. (2.17)

Proof.

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)|
= 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|
= 3<(log ζ(σ)) + 4<(log ζ(σ + it)) + <(log ζ(σ + 2it)).

(2.18)

We now can use (2.13) and the fact that

<(n−s) = <(e−(σ+it) logn)
= e−σ logn<(eit logn)
= e−σ logn cos(t log n) = n−σ cos(t log n)

to see that we can write (2.18) as

∞∑
n=1

cnn
−σ(3 + 4 cos(t log n) + cos(2t log n)). (2.19)

We’ve already seen that cn ≥ 0. Moreover, 3+4 cos(t log n)+cos(2t log n) ≥
0, because of the equality

3 + 4 cos(x) + cos(2x) = 2(1 + cos(x))2,

which completes the proof. �
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Theorem 2.2.6 ζ has no zeros on the line <(s) = 1.

Proof. We recall that ζ has a simple pole at s = 1. We now argue by
contradiction. Suppose that ζ(1 + it0) = 0 for some t0 6= 0. We know from
Theorem 2.2.1 that ζ is holomorphic at 1 + it0. Therefore, there must exist a
constant C > 0 such that

|ζ(σ + it0)|4 ≤ C(σ − 1)4 as σ → 1.

Because s = 1 is a simple pole, we also have

|ζ(σ)|3 ≤ D(σ − 1)−3 as σ → 1,

for some constant D > 0. At the points σ + 2it0, ζ is holomorphic (recall that
t0 6= 0). this means that |ζ(σ + 2it0)| < M for some constant M > 0 as σ → 1.

We now have the following result:

|ζ3(σ)ζ4(σ + it0)ζ(σ + 2it0)| < MCD(σ − 1) as σ → 1. (2.20)

This tends to 0. Since the value of a logarithm between 0 and 1 is negative, our
assumption contradicts (2.17), which means that ζ has no zeros on <(s) = 1.
�

2.2.2 Estimates for ζ and ζ ′

Later on, we will require some knowledge about the growth of ζ and ζ ′, because
the logarithmic derivative d

ds log(ζ(s)) = ζ ′(s)/ζ(s) will be important. At first
we need to prove two other theorems.

Proposition 2.2.7 There is a sequence of holomorphic functions {δn}∞n=1, that
satisfy |δn(s)| ≤ |s|/nσ+1, where s = σ + it, and such that

∑
1≤n<N

1
ns
−
∫ N

1

dx

xs
=

∑
1≤n<N

δn(s), (2.21)

where N is an integer > 1.

Proof. We set

δn(s) =
∫ n+1

n

[
1
ns
− 1
xs

]
dx. (2.22)

We apply the mean-value theorem to f(x) = x−s and we obtain∣∣∣∣ 1
ns
− 1
xs

∣∣∣∣ ≤ |s|
nσ+1

,

whenever n ≤ x ≤ n+ 1. Therefore |δn(s)| ≤ |s|/nσ+1. Since∫ N

1

dx

xs
=

∑
1≤n<N

∫ n+1

n

dx

xs
,

the proposition holds. �
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Proposition 2.2.8 For <(s) > 0 we have

ζ(s)− 1
s− 1

= H(s)

where H(s) =
∑∞
n=1 δn(s) is holomorphic in the half-plane <(s) > 0.

Proof. First we assume that <(s) > 1. We let N tend to infinity in our
equation (2.21). The left-hand side tends to

∑∞
n=1

1
ns − 1

s−1 . Since |δn(s)| ≤
|s|/nσ+1, we have uniform convergence of the series

∑
δn(s) in the half-plane

<(s) > 1. The fact that the series
∑
n−s converges to ζ(s), the assertion is true

for <(s) > 1. The uniform convergence also shows that
∑
δn(s) is holomorphic

when <(s) > 0, which shows us that we can extend ζ(s) to this half-plane, and
the identity continues to hold there. �

Theorem 2.2.9 For each |t| ≥ 1, 0 < ε < σ0 ≤ 1, there exists a constant cε > 0
such that

1. |ζ(s)| ≤ cε|t|1−σ0+ε if σ0 ≤ σ

2. |ζ ′(s)| ≤ cε|t|ε, if 1 ≤ σ,

where s = σ + it.

Proof. We use Proposition 2.2.8 and choose a |t| = 1/2. We’ve found
the estimate |δn(s)| ≤ |s|/nσ+1. We can find another estimate by using (2.22).
The fact that |n−s| = n−σ, and |x−s| ≤ n−σ if x ≥ n, gives us the estimate
|δn(s)| ≤ 2/nσ. We combine these two estimates to find one new estimate:

|δn(s)| = |δn(s)|δ|δn(s)|1−δ ≤
(
|s|

nσ0+1

)δ ( 2
nσ0

)1−δ

≤ 2|s|δ

nσ0+δ
.

for 0 ≤ δ ≤ 1. We choose δ = 1− σ0 + ε, which is justified for ε < σ0. Applying
the identity of Proposition 2.2.8 together with σ = <(s) ≥ σ0 gives us

|ζ(s)| ≤
∣∣∣∣ 1
s− 1

∣∣∣∣+ 2|s|1−σ0+ε
∞∑
n=1

1
n1+ε

.

The first term on the left-hand side is bounded since |t| ≥ 1. The sum converges
for every ε > 0. We’ve proved the first estimate. We can prove the second
estimate by using the Cauchy integral formula:

ζ ′(s) =
1

2πr

∫ 2π

0

ζ(s+ reiθ)e−iθdθ.

We choose r = ε < 1/2, so that we integrate over a circle that lies in the
half-plane <(s) ≥ 1− ε. We now use the established estimate for ζ. This yields

|ζ ′(s)| ≤ 1
2πε

∫ 2π

0

∣∣ζ(s+ εeiθ)
∣∣ dθ.

≤ 1
2πε

∫ 2π

0

cε |t+ ε sin θ|1−σ0+ε dθ.

We replace 2ε by ε which gives the desired estimate. �
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Theorem 2.2.10 For every ε > 0 we can find a cε > 0 such that 1/|ζ(s)| ≤
cε|t|ε for s = σ + it with σ ≥ 1 and |t| ≥ 1.

Proof. From (2.17), it follows easily that for σ > 1 we have

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 1.

Besides, for σ = 1 the above holds as well, since |ζ3(σ)ζ4(σ+it)ζ(σ+2it)| →
∞ as σ → 1.

Therefore, we have

|ζ4(σ + it)| ≥ |ζ−3(σ)ζ−1(σ + 2it)|.

Using Theorem 2.2.9 we know that |ζ(σ + 2it)| ≤ cε|2t|1−σ0+ε, hence

|ζ4(σ + it)| ≥ c|ζ−3(σ)||t|−ε ≥ c′(σ − 1)3|t|−ε

for all σ ≥ 1 and |t| ≥ 1. The last inequality follows from the fact that ζ(σ)
is bounded on [σ1,∞) for every σ1 > 1 fixed. Besides, we’ve seen in Theorem
2.2.6 that ζ(σ) ≤ D(σ − 1)−1 as σ → 1.
It follows that

|ζ(σ + it)| ≥ c′(σ − 1)3/4|t|−ε/4 (2.23)

If σ − 1 ≥ A|t|−5ε for some constant A, we find

|ζ(σ + it)| ≥ A′|t|−4ε.

If we replace 4ε by ε we find the desired result.

If σ−1 < A|t|−5ε, the computations are a little bit more difficult. We choose
σ′ > σ such that σ′ − 1 = A|t|−5ε. From the triangle inequality it follows that

|ζ(σ + it)| ≥ |ζ(σ′ + it)| − |ζ(σ′ + it)− ζ(σ + it)|. (2.24)

We use the mean value theorem for the real and imaginary part of ζ, and
applying the estimate for the derivative of ζ in Theorem 2.2.9 yields

|ζ(σ′ + it)− ζ(σ + it)| ≤ c′′|σ′ − σ||t|ε ≤ c′′|σ′ − 1||t|ε

We substitute the last inequality and inequality (2.23) into the triangle in-
equality (2.24), which yields

|ζ(σ + it)| ≥ c′(σ′ − 1)3/4|t|−ε/4 − c′′(σ′ − 1)|t|ε.

We choose A = (c′/(2c′′))4. We now have

c′(σ′ − 1)3/4|t|−ε/4 = 2c′′(σ′ − 1)|t|ε,

because we’ve chosen σ′ − 1 = A|t|−5ε. Eventually we find

|ζ(σ + it)| ≥ c′′(σ′ − 1)|t|ε = c′′A|t|−4ε.

Replacing 4ε by ε completes the proof. �
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Chapter 3

A proof of the prime
number theorem

3.1 Auxiliary functions

We’ve already mentioned that the prime number theorem holds if and only if ζ
has no zeros on <(s) = 1. We proved the last statement in the previous section!
Now we have to make the right translation backwards from analysis to number
theory.

Chebyshev wasn’t able to prove the prime number theorem. However, he
found some results which were a prelude to a complete proof. He used an
auxiliary function ψ, which resembles the function π to a large extent. The
function ψ is defined by

ψ(x) =
∑
pm≤x

log p. (3.1)

p is a prime number and m is an arbitrary positive integer. We now use a
slightly different notation. If we define

Λ(n) =
{

log p if n = pm for some prime p and some m ≥ 1,
0 otherwise, (3.2)

we can write

ψ(x) =
∑
n≤x

Λ(n) (3.3)

Finally, we can use the fact that if pm ≤ x, then m ≤ log x/ log p. Therefore,
we can write (3.1) as

ψ(x) =
∑
p≤x

⌊
log x
log p

⌋
log p, (3.4)

where buc denotes the greatest integer ≤ u. The following theorem is a great
result since we can use the function ψ instead of the function π to prove the
prime number theorem. The first function is much easier to manipulate.
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Theorem 3.1.1 If ψ(x) ∼ x as x → ∞, then π(x) ∼ x/ log x as x →
∞.

Proof. We assume that ψ(x) ∼ x as x→∞. This means that

lim
x→∞

ψ(x)/x = 1.

We note that

ψ(x) =
∑
p≤x

⌊
log x
log p

⌋
log p ≤

∑
p≤x

log x
log p

log p = π(x) log x.

Dividing both sides by x yields

ψ(x)
x
≤ π(x) log x

x
.

Our assumption now gives the inequality

1 ≤ lim inf
x→∞

π(x)
log x
x

. (3.5)

We now have to find the other inequality. We use (3.1), choose 0 < α < 1
fixed and observe that

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x

log p ≥ log(xα)
∑

xα<p≤x

1

= (π(x)− π(xα)) log xα

This yields the following result:

ψ(x)
x

+ απ(xα)
log x
x
≥ απ(x)

log x
x

We use the fact that π(xα) ≤ xα, α < 1, and our assumption that ψ(x) ∼ x.
The second term on the left-hand side will therefore vanish as x → ∞. We
obtain

1 ≥ α lim sup
x→∞

π(x)
log x
x

(3.6)

Because we could choose α < 1 arbitrary, we’ve found the other inequality.
Together, (3.5) and (3.6) give the desired result. �

The previous theorem states that the prime number theorem holds if ψ(x) ∼
x. This means that we don’t have to worry about the function π anymore, work-
ing with the auxiliary function ψ is more convenient.

However, it is even more convenient to work with another auxiliary function.
We define the function ψ1 as the antiderivative of ψ:

ψ1(x) =
∫ x

1

ψ(u) du.

The following theorem says how we can use this auxiliary function.
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Theorem 3.1.2 If ψ1(x) ∼ x2/2 as x→∞, then ψ(x) ∼ x as x→∞.

Proof. At first we notice that ψ(x) is an increasing function, since log p > 0
for every prime p. If we choose an arbitrary 0 < α < 1,

1
(1− α)x

∫ x

αx

ψ(u) du

gives the mean value of ψ on the interval [αx, x]. Since ψ is increasing, we find
the inequality

1
(1− α)x

∫ x

αx

ψ(u) du ≤ ψ(x)

Using the definition of our auxiliary function ψ1 yields

1
(1− α)x

(ψ1(x)− ψ1(αx)) ≤ ψ(x)

We divide both sides by x since we would like to find an expression for
ψ(x)/x:

1
1− α

[
ψ1(x)
x2

− ψ1(αx)
(αx)2

α2

]
≤ ψ(x)

x

Now we use our assumption that ψ1(x) ∼ x2/2 as x→∞. This yields

lim inf
x→∞

ψ(x)
x
≥ 1

1− α

[
1
2
− 1

2
α2

]
=

1
2
(1 + α)

Because this must hold for every α < 1, we have proved that
lim infx→∞ ψ(x)/x ≥ 1.

We can prove that lim supx→∞ ψ(x)/x ≤ 1 in exactly the same way by using
a β > 1 and using the opposite inequalities. We leave this as an exercise for
the reader. Finding the other inequality completes the proof of the fact that
limx→∞

ψ(x)
x = 1. �

3.1.1 The link between ζ and Chebyshev’s auxiliary func-
tions

From Theorem 3.1.1 and 3.1.2, it follows that we can prove the prime number
theorem by proving the asymptotic relation for ψ1(x).

We can only use this auxiliary function if we find its relation with the zeta
function. In Lemma 2.2.4 we’ve seen that we can write for <(s) > 1

log ζ(s) =
∑
p,m

p−ms

m
.

If we differentiate this expression (we may do this because of uniform con-
vergence) and change the minus signs, we get

−ζ
′(s)
ζ(s)

=
∑
m,p

p−ms log p =
∞∑
n=1

Λ(n)
ns

. (3.7)

We will need (3.7) in the following proposition.
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Proposition 3.1.3 For all c > 1

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds. (3.8)

This expression relates ψ1 with ζ.

Before we can prove this proposition, we will need the following lemma.

Lemma 3.1.4 If c > 0, then

1
2πi

∫ c+i∞

c−i∞

as

s(s+ 1)
ds =

{
0 if 0 < a ≤ 1,
1− 1/a if 1 ≤ a. (3.9)

This is an example of an inverse Mellin transform, which is closely related to
the well-known Laplace transform.

Proof. At first we note that the integral converges, since |as| = ac, with c
fixed. We suppose that 1 ≤ a. We now can write a = eβ for some β ≥ 0. We
define

f(s) =
as

s(s+ 1)
=

esβ

s(s+ 1)
.

It’s easy to see that we will find poles at s = −1 and at s = 0. Since both poles
are simple, we can calculate the residues quite easily. We find

res{f(s);−1} =
a−1

−1
= −1/a

res{f(s); 0} =
a0

1
= 1.

For a more detailed explanation of calculation of residues we refer to [5]. We
now choose a positive oriented path Γ(T ) which is a semi-circle. It consists of
the vertical segment S(T ) from c − iT to c + iT , and of the half-circle C(T ),
lying to the left of the vertical segment, with radius T and centered at c.

We have to choose T > c + 1 to make sure that 0 and −1 are contained in
the interior of our contour Γ(T ). By Cauchy’s residue formula we then have

1
2πi

∫
Γ(T )

f(s) ds = 1− 1/a. (3.10)

We are interested in the integral∫
S(T )

f(s) ds

as T tends to infinity. Therefore, we investigate the value of the integral∫
C(T )

f(s) ds

as T tends to infinity. If s = σ + it ∈ C(T ), then for T large we have

|s(s+ 1)| ≥ (1/2)T 2.
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Moreover, we have the estimate |eβs| = eβσ ≤ eβc, since σ ≤ c and β ≥ 0. The
results above yield∣∣∣∣∣

∫
C(T )

f(s) ds

∣∣∣∣∣ ≤ C

T 2
2πT → 0 as T →∞.

Therefore, we have∫
S(T )

f(s) ds =
∫

Γ(T )

f(s) ds = 1− 1/a

for a ≥ 1 as T tends to infinity.
We leave the case 0 < a ≤ 1 as an exercise for the reader. Use the same

arguments as above and use the half-circle lying to the right of the line <(s) = c.
Note that there aren’t any poles in the interior of this contour! �

Proof of Proposition 3.1.3. At first we notice that we can write (3.3) also
as

ψ(u) =
∞∑
n=1

Λ(n)fn(u),

with

fn(u) =
{

1 if n ≤ u;
0 otherwise.

Because
∫ 1

0
ψ(u) du = 0, we can write

ψ1(x) =
∫ x

0

ψ(u) du

Because of uniform convergence we can now change the order of summation and
integration, which yields

ψ1(x) =
∞∑
n=1

∫ x

0

Λ(n)fn(u) du

=
∞∑
n=1

Λ(n)
∫ x

0

fn(u) du

=
x∑
n=1

Λ(n)
∫ x

n

du,

so we have
ψ1(x) =

∑
n≤x

Λ(n)(x− n) (3.11)

as a final result.

We now use equation (3.7) and lemma 3.1.4 to see that
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1
2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds = x

∞∑
n=1

Λ(n)
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds (3.12)

= x
x∑
n=1

Λ(n)
(
1− n

x

)
(3.13)

= ψ1(x), (3.14)

where the last step follows from (3.11). �

Now we have all the ingredients to prove the prime number theorem. Ac-
cording to the theorems 3.1.1 and 3.1.2, we have to prove the following theorem:

Theorem 3.1.5
ψ1(x) ∼ x2/2 as x→∞ (3.15)

In order to prove this theorem, we need our formula from Proposition 3.1.3:

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds (3.16)

for c > 1. We would like to change the line of integration to <(s) = 1 in
the integral above, since we then would have the factor x2 in our integrand.
However, we have a pole for ζ(s) at s = 1, so we must be careful.

At first we deform the path of integration from c− i∞ to c+ i∞ to the path
γ(T ) as shown in Figure 1. The vertical segments of γ(T ) consist of T ≤ t <∞
and −∞ < t ≤ −T . Let F (s) denote the integrand:

F (s) =
xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
.

We may use Cauchy’s theorem to see that

Theorem 3.1.6

1
2πi

∫ c+i∞

c−i∞
F (s) ds =

1
2πi

∫
γ(T )

F (s) ds. (3.17)

Proof. From the theorems 2.2.9 and 2.2.10, we know that |ζ ′(s)/ζ(s)| ≤
A|t|η for any fixed η > 0, whenever s = σ + it, σ ≥ 1, and |t| ≥ 1. Hence it
follows that |F (s)| ≤ A′|t|−2+η for some constant A′ > 0, in the two infinite
rectangles bounded by the line (c− i∞, c+ i∞) and γ(T ). F is holomorphic in
that region, and its decrease is rapid enough to establish the assertion. �

We now pass from the contour γ(T ) to the contour γ(T, δ). For fixed T we
choose δ > 0 small enough so that ζ has no zeros in the box

{s = σ + it, 1− δ ≤ σ ≤ 1, |t| ≤ T}.

We always can choose such a δ, since we know that ζ does not vanish on the
line σ = 1. By Proposition 2.2.8, we know that ζ(s) = 1/(s− 1) +H(s), where
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H is holomorphic near s = 1. Hence −ζ ′(s)/ζ(s) = 1/(s− 1) + h(s), where h is
holomorphic near s = 1. This means that F (s) has a simple pole at s = 1 and
the residue of F at s = 1 equals x2/2. We obtain

1
2πi

∫
γ(T )

F (s) ds =
x2

2
+

1
2πi

∫
γ(T,δ)

F (s) ds. (3.18)

We decompose the contour γ(T, δ) as γ1 +γ2 +γ3 +γ4 +γ5. We will estimate
each integral

∫
γj
F (s) ds for j = 1, 2, 3, 4, 5 (see Figure 1).

r
s = 1 s = 1 s = 1

c+ i∞

c− i∞

1 + i∞

1− i∞

1 + i∞

1− i∞

6
r

6
r

6

6

6

�

-

γ1

γ2

γ3

γ4

γ5

<(s) = c γ(T ) γ(T, δ)

Figure 1. The paths of integration for the three different stages.

Theorem 3.1.7 There exists T so large such that∣∣∣∣∫
γ1

F (s) ds
∣∣∣∣ ≤ ε

2
x2 and

∣∣∣∣∫
γ5

F (s) ds
∣∣∣∣ ≤ ε

2
x2.

Proof. For s ∈ γ1, γ5 we have

|x1+s| = x1+σ = x2.

We estimate |ζ ′(s)/ζ(s)| ≤ A|t|1/2 by the established estimates from section
2.2.2, so we have ∣∣∣∣∫

γ1

F (s) ds
∣∣∣∣ ≤ Cx2

∫ ∞

T

|t|1/2

t2
dt.

23



.
We know that the integral converges, so we can choose a T sufficiently large

such that the right hand side ≤ εx2/2. The argument for the integral over γ5 is
the same. �

We now look at the segment γ3.

Theorem 3.1.8 For fixed T we can choose δ sufficiently small, such that∣∣∣∣∫
γ3

F (s) ds
∣∣∣∣ ≤ CTx2−δ.

Proof. On γ3 we have

|x1+s| = x1+1−δ = x2−δ,

so we can make the estimate∣∣∣∣∫
γ3

F (s) ds
∣∣∣∣ ≤ x2−δ

∫
γ3

1
s(s+ 1)

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ds,
which implies that there exists a constant CT such that the inequality holds.
�

We now look at the horizontal segments γ2 and γ4. We can estimate the
integrals by ∣∣∣∣∫

γ2

F (s) ds
∣∣∣∣ ≤ C ′T ∫ 1

1−δ
x1+σ dσ ≤ C ′T

x2

log x
.

We have the same estimation for γ4.
We now use (3.18) and the estimations above to see that∣∣∣∣ψ1(x)−

x2

2

∣∣∣∣ ≤ εx2 +DTx
2−δ +D′T

x2

log x
,

where D and D′ are new constants.
Dividing by x2/2 yields∣∣∣∣2ψ1(x)

x2
− 1
∣∣∣∣ ≤ 2ε+ 2DTx

−δ + 2D′T
1

log x
.

Therefore, for sufficiently large x we have∣∣∣∣2ψ1(x)
x2

− 1
∣∣∣∣ ≤ 4ε.

This concludes the proof that

ψ1(x) ∼ x2/2 as x→∞. �

With the last theorem, we’ve completed the proof of the prime number
theorem!
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Chapter 4

Distribution of the zeros of
the Riemann-zeta function

As we already said briefly, the critical zeros of the Riemann-zeta function are
the zeros which lie in the infinite strip 0 ≤ <(s) ≤ 1. One of the most famous
mathematical conjectures involve these zeros. Riemann conjectured that all
the critical zeros lie on the line <(s) = 1/2. This is the so-called Riemann-
hypothesis. Because there are infinitely many critical zeros, we can’t check
them one by one to see whether Riemann was right or not. However, accurate
calculations show that the Riemann-hypothesis seems to be true, though a proof
would be an important result. Proving the Riemann hypothesis is one of the
seven challenges the Clay Mathematics Institute in Massachussetts has put up a
reward of $1.000.000. Its importance is caused by the fact that many theorems in
number theory only hold if the Riemann-hypothesis is true. A counterexample
of the conjecture (which one does not expect) would therefore have immense
consequences.

4.1 Random Matrices

There have been many investigations to see how the critical zeros are distributed
in the course of a search for the Riemann Hypothesis. This has led to some amaz-
ing results. By investigating the distribution of the zeros of ζ on <(s) = 1/2,
some amazing patterns have been discovered (which only hold if the Riemann
hypothesis is true!). Montgomery published a paper in 1973 in which he conjec-
tured a specific distribution of the (rescaled) critical zeros of ζ (see [8]). Odlyzko
confirmed this conjecture with extraordinary accuracy by computing the spac-
ing distribution of the zeros of ζ. Eventually in 1995, Rudnick and Sarnak ([9])
gave a proof of Montgomery’s conjecture up to some technical restrictions. The
reason why this hard-earned result is that special, is caused by the fact that this
kind of distribution also corresponds to the energy levels of heavy nuclei, a re-
sult that Wigner obtained in the 1950s! Random matrix theory was introduced
by theoretical physicists that time to study this subject. Now it won’t be a
surprise that there is a link between random matrix theory and the distribution
of our critical zeros as well.
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4.1.1 Montgomery’s conjecture

The mathematician Montgomery had been working for some years on the prob-
lem of the critical zeros of ζ at the Institute for Advanced Study in Princeton,
in the early 1970s. He assumed the Riemann hypothesis to be true, and rescaled
the imaginary parts 0 < γ1 < γ2 < . . . of the critical zeros 1/2 + iγ of ζ(s)

γj → γ̃j =
γj log γj

2π
,

such that the mean spacing between adjacent zeros is 1:

#j ≥ 1 : γ̃j < T

T
→ 1 as T →∞.

This follows by a classical result of Von Mangoldt, assuming the Riemann
Hypothesis. For convenience, we will only look at the zeros with positive imag-
inary parts, i.e. γj > 0. However, for negative γj , we can almost proceed in the
same way.

Let’s define the pair correlation of the zeros to be

R(a, b) ≡ lim
N→∞

1
N

#{pairs(j1, j2) : 1 ≤ j1, j2 ≤ N, γ̃j1 − γ̃j2 ∈ (a, b)}

for any interval (a, b), with a, b > 0. Montgomery found the result

R(a, b) =
∫ b

a

(
1−

(
sin 2πu

2πu

)2
)
du. (4.1)

He wasn’t able to prove this pair correlation function. It goes beyond the
scope of this report to explain how Montgomery had found his result, but the
result itself is quite astonishing.

At first, Montgomery wasn’t aware of that. This changed when he met
the physicist and mathematician Freeman Dyson. He couldn’t attend a lecture
Montgomery had given about his work, but he was interested and astounded
him by asking whether he found his final result (4.1)! It seemed that Dyson
had already expected that the zeros of ζ behave like the eigenvalues of a specific
random matrix! Dyson was one of the pioneers on random matrix theory, and
the pair correlation function (4.1) was already known to be the pair correlation
function of eigenvalues of a random matrix chosen from the so-called Gaussian
Unitary Ensemble. From that moment on, random matrix theory became even
more important.

4.1.2 Random Matrix Theory

Since many natural phenomena involve randomness, Wigner tried to model the
energy levels of heavy nuclei by using N×N matrices where the entries were in-
dependently chosen from a probability distribution p. For specific matrices (for
example real symmetric or complex Hermitian) and specific probability distri-
butions, astonishing things happen. If N →∞, the behavior of the eigenvalues
of such a matrix is often well approximated by the behavior we will find if we
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average over all matrices. Besides, this behavior corresponds to the energy lev-
els of heavy nuclei.

Let’s consider the collection of N × N real symmetric matrices, with the
entries independently chosen from a fixed probability distribution p on R. For
such a matrix A, we have A = AT , so aij = aji for 1 ≤ i, j ≤ N . The probability
density of observing A is therefore

Prob(A)dA =
∏

1≤i≤j≤N

p(aij)daij .

Because p is a probability density, it integrates to 1. This yields∫
Prob(A)dA =

∏
1≤i≤j≤N

∫ ∞

aij=−∞
p(aij)daij = 1.

Also, we want to put some restrictions on the probability density function
p. It may not be too spread out. We will rescale the eigenvalues and we only
can say something about them if they are not too spread out as well. Therefore
we study p satisfying

∀x : p (x) ≥ 0 (since we must have a probability density)∫ ∞

−∞
p (x) dx = 1 (since we must have a probability density)∫ ∞

−∞
|x|kp (x) dx < ∞ (for every non-negative integer k).

If we want to say something about the spacings between eigenvalues, the
eigenvalues must be necessarily real. The following theorem guarantees this.

Definition 4.1.1 A Hermitian matrix is a square matrix which is equal to its
own conjugate transpose.

Note that the diagonal entries of a Hermitian matrix are always real. Besides,
a symmetric matrix is a Hermitian matrix!

Theorem 4.1.2 Every Hermitian matrix has only real eigenvalues.

Proof. According to the spectral theorem, we can diagonalize a Hermitian
matrix by a unitary matrix. The resulting diagonal matrix has only real entries.
Since the eigenvalues of the Hermitian matrix equal the diagonal entries of this
matrix, its eigenvalues are real. �

The theorem above is very important for us. If we investigate the collection of
Hermitian matrices, we will certainly find real eigenvalues! Another important
theorem is the Eigenvalue Trace Formula. This theorem relates the eigenvalues
of a matrix to the entries of that matrix:

Theorem 4.1.3 For any non-negative integer k, if A is an N ×N matrix with
eigenvalues λi(A), then

Trace(Ak) =
N∑
i=1

λi(A)k (4.2)
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Proof. We use the Jordan decomposition for A, writing A = PJP−1, with
J an upper triangular matrix with the eigenvalues of A on the diagonal. Since
tr(AB) =tr(BA), the result follows for k = 1. Now using Ak = PJkP−1, the
result follows for every non-negative integer k. �

We’ve said earlier that we should scale the eigenvalues of our N × N ma-
trices, because we don’t want the eigenvalues to be large if we increase N . It’s
convenient to choose the entries aij of our matrix A randomly and indepen-
dently from a fixed probability distribution p with mean 0 and variance 1. For
real symmetric A, we have

Trace(A2) =
N∑
i=1

N∑
j=1

aijaji =
N∑
i=1

N∑
j=1

a2
ij .

We expect each a2
ij to be of size 1, by assumption on p. Therefore, we expect

Trace(A2) =
N∑
i=1

N∑
j=1

a2
ij ∼ N2 · 1.

Using the Eigenvalue Trace Formula yields
N∑
i=1

λi(A)2 ∼ N2,

and using the average of λi(A)2 gives us eventually

|Ave(λi(A))| ∼
√
N. (4.3)

Equation (4.3) tells us that we should scale the eigenvalues of an N ×N real
symmetric matrix by c

√
N , with c a constant. Choosing c = 2 is convenient, but

we omit the details. This means that we will work with normalized eigenvalues
λ̃i(A) = λi(A)

2
√
N

.
For every N ×N matrix A, we want to attach a probability measure which

is the eigenvalue probability distribution. We want to have a probability distri-
bution µA,N (x) for which

∫ b

a

dµA,N (x) =
#{i : λi(A)

2
√
N
∈ [a, b]}

N
, (4.4)

i.e.
∫ b
a
dµA,N (x) is the percentage of normalized eigenvalues in [a, b]. If we define

µA,N =
1
N

N∑
i=1

δ

(
x− λi(A)

2
√
N

)
, (4.5)

we have the right probability distribution.
Later on, we require that the moments of µA,N are finite. The following

theorem guarantees that.

Theorem 4.1.4 Let MN,k(A) denote the kth moment of µA,N . Then the fol-
lowing identity holds:

MN,k(A) =
Trace(Ak)

2kN
k
2 +1

. (4.6)
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Proof. We use the Eigenvalue Trace Formula from Theorem 4.1.3 to see
that

Mn,k(A) =
∫
xkdµA,N (x)

=
1
N

N∑
i=1

∫ ∞

−∞
xkδ

(
x− λi(A)

2
√
N

)
dx

=
1
N

N∑
i=1

λi(A)k

(2
√
N)k

=
Trace(Ak)

2kN
k
2 +1

. �

We know that the percentage of the normalized eigenvalues of an N × N
symmetric matrix lying in an interval [a, b] is given by∫ b

a

dµA,N (x).

We choose the entries of our matrix A at random, so we would like to know
how this percentage behaves as we vary A.

Theorem 4.1.5 (Semi-Circle Law). Consider the ensemble of N × N real
symmetric matrices with entries independently chosen from a fixed probability
density p(x) with mean 0 and variance 1. If p has finite moments, µA,N con-
verges to the semi-circle density 2

π

√
1− x2, for almost all A, as N →∞.

We can prove this theorem by calculating the kth-moments of each µA,N (x).
If we let Mn,k be the average of the moments MN,k(A) over all A, we can show
that Mn,k converges to the kth moment of the semi-circle as N →∞.

We’ve already mentioned that the distribution of the critical zeros of ζ cor-
responds in a way to spacings between adjacent normalized eigenvalues of some
random matrix. We therefore investigate this spacing.

We will consider the space of 2× 2 real symmetric matrices:{(
a11 a12

a12 a22

)
: a11, a12, a22 ∈ R

}
.

We focus on 2 × 2 matrices, since for general N , the computations will be
too complicated. We choose our entries from some probability density p. We
desire the following properties:

1. The entries of our matrix A should be independent:
P (A) = P11(a11)P12(a12)P22(a22).

2. The probability of a transformation A should not depend on the chosen
basis: For any orthogonal transformation Q, we must have P (QAQT ) =
P (A).
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The last two restrictions force our probability distributions to be Gaussians.
We therefore call the above model the GOE, the Gaussian Orthogonal Ensemble.

Using fundamental linear algebra and Taylor series, we can write an orthog-
onal matrix Q as

Q =
(

cos ε − sin ε
sin ε cos ε

)
=
(

1 +O(ε2) −ε+O(ε3)
ε+O(ε3) 1 +O(ε2)

)
. (4.7)

For a symmetric matrix A we must have P (QAQT ) = P (A). Using (4.7),
we find

QAQT =
(

a11 − 2εa12 +O(ε2) a12 − ε(a22 − a11) +O(ε2)
a12 − ε(a22 − a11) +O(ε2) a22 + 2εa12 +O(ε2)

)
.

We now use Taylor expansion (where we assume that P11, P12, P22 are smooth
enough) to find

P11(a11 − 2εa12 +O(ε2)) = P11(a11)− 2εa12
dP11

da11
+O(ε2)

P12(a12 − ε(a22 − a11) +O(ε2)) = P12(a12)− ε(a22 − a11)
dP12

da12
+O(ε2)

P22(a22 + 2εa12 +O(ε2)) = P22(a22) + 2εa12
dP22

da22
+O(ε2).

Since the probability of a matrix is the product of the probabilities of its
entries, we have

P (QAQT ) = P11(a11)P12(a12)P22(a22)

−
[
2a12P12(a12)P22(a22)

dP11

da11
+ (a22 − a11)P11(a11)P22(a22)

dP12

da12

− 2a12P11(a11)P12(a12)
dP22

da22

]
ε+O(ε2).

We know that P (A) = P11(a11)P12(a12)P22(a22), and this yields

P (A)− P (QAQT )
P11(a11)P12(a12)P22(a22)

=
[

2a12

P11(a11)
dP11

da11
+
a22 − a11

P12(a12)
dP12

da12
− 2a12

P22(a22)
dP22

da22

]
ε

+O

(
ε2

P11(a11)P12(a12)P22(a22)

)
.

Since P (A) = P (QAQT ), the coefficient of ε must vanish! Therefore

2a12

P11(a11)
dP11

da11
+
a22 − a11

P12(a12)
dP12

da12
− 2a12

P22(a22)
dP22

da22
= 0.

We can rewrite this as
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1
a12P12(a12)

dP12

da12
= − 2

a22 − a11

(
1

P11(a11)
dP11

da11
− 1
P22(a22)

dP22

da22

)
. (4.8)

The left hand side of equation (4.8) is a function of a12, while the right hand
side is a function of only a11 and a22. This forces each side to equal a constant
−C. We now have

dP12

da12
= −Ca12P12(a12), (4.9)

which has as solution

P12(a12) =

√
C

2π
e−

Ca2
12

2 . (4.10)

We have chosen the constant such that P12 is a probability density function
for C > 0. We can proceed in the same way to obtain probability density
functions for the entries a11 and a22. From (4.8), it follows that

− 2
a22 − a11

(
1

P11(a11)
dP11

da11
− 1
P22(a22)

dP22

da22

)
= −C. (4.11)

Separating variables yields

2
P11(a11)

dP11

da11
+ Ca11 =

2
P22(a22)

dP22

da22
+ Ca22. (4.12)

Arguing as before, both sides must equal a constant CD, since both sides
depend on another variable. We obtain

2
dP11

da11
= −C(a11 −D)P11(a11). (4.13)

The solution of this ordinary differential equation is

P11(a11) =

√
C

4π
e−

C(a11−D)2

4 , (4.14)

and similarly we find

P22(a22) =

√
C

4π
e−

C(a22−D)2

4 . (4.15)

We may set D = 0, since we want our probability densities to have mean 0,
which is convenient. We now have obtained the following result:

P11(a11) =

√
C

4π
e−

Ca2
11

4

P12(a12) =

√
C

2π
e−

Ca2
12

2

P22(a22) =

√
C

4π
e−

Ca2
22

4 (4.16)
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This means that we’ve found the probability density function for our matrix
A:

P (A) = P11(a11)P12(a12)P22(a22)

=
C
√
C

4π
√

2π
e−

C
4 (a2

11+2a2
12+a

2
22)

=
C
√
C

4π
√

2π
e−

C
4 Trace(A2). (4.17)

We now have shown

Theorem 4.1.6 For 2×2 real symmetric matrices satisfying the GOE assump-
tions, the entries are chosen independently from Gaussians, where the probability
of a matrix is proportional to e

C
4 Trace(A2).

We will now investigate the distribution of eigenvalues of 2×2 real symmetric
matrices.

4.1.3 Distribution of the eigenvalues (2× 2 GOE)

If we choose a 2× 2 real symmetric matrix from the GOE ensemble, how likely
is it to have two eigenvalues close? We denote our matrix by

A =
(
x y
y z

)
.

By the Spectral Theorem, we know that there is an orthogonal matrix Q
such that QAQT = Λ is diagonal:

QT
(
x y
y z

)
Q =

(
λ1 0
0 λ2

)
= Λ,

with λ1 and λ2 the eigenvalues of A. We may assume λ1 ≥ λ2. To find the
eigenvalues, we solve the characteristic equation det(A− λI) = 0:

λ2 − λ(z + x) + xz − y2 = 0,

which yields the solutions

λ1 =
x+ z

2
+

√(
x− z

2

)2

+ y2

λ2 =
x+ z

2
−

√(
x− z

2

)2

+ y2. (4.18)

The eigenvectors of A are

−→v1 =
(

cos θ
sin θ

)
, −→v2 =

(
− sin θ
cos θ

)
for some θ ∈ [0, 2π], because the eigenvectors of a real symmetric matrix are
perpendicular, and we can always normalize eigenvectors. This means that our
matrix Q is of the form
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Q = Q(θ) =
(

cos θ − sin θ
sin θ cos θ

)
,

an arbitrary 2× 2 rotation.
To understand the distribution of the spacing between the eigenvalues, we

first need to change variables. According to (4.17), the probability density
function for observing a matrix A is

p(x, y, z) =
C
√
C

4π
√

2π
e−CTrace(A2) =

2C ′
√
C ′

π
√

2π
e−C

′Trace(A2)

If we diagonalize A, we obtain

A = QTΛQ

for a diagonal Λ and an orthogonal Q, as before. In this new coordinate system,
our parameters are λ1, λ2 and θ, instead of x, y and z. We will determine the
probability density function p̃(λ1, λ2, θ) in this coordinate system.

Since we are not interested in the coordinate system itself, θ depends on
the orientation of the coordinate axes, which is not important to us. Therefore,
we integrate out the θ dependence, which yields the joint probability density
function for λ1 and λ2.

A = QTΛQ

=
(

cos θ sin θ
− sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2(θ)λ1 + sin2(θ)λ2 − cos(θ) sin(θ) · (λ1 − λ2)
− cos(θ) sin(θ) · (λ1 − λ2) sin2(θ)λ1 + cos2(θ)λ2

)
=

(
x y
y z

)
. (4.19)

We see that the change of variable transformation is linear in the eigenvalues.
We use the Jacobian J for the transformation from (x, y, z) to (λ1, λ2, θ):

p(x, y, z) = |det(J)|p̃(λ1, λ2, θ).

We use the eigenvalue trace formula (4.1.3) to see that Trace(A2) = λ2
1 +λ2

2,
so the probability density of observing a matrix with eigenvalues λ1 and λ2 is

p̃(λ1, λ2, θ) =
2C ′
√
C ′

π
√

2π
e−C

′(λ2
1+λ

2
2).

We see that our probability density is indeed independent of the angle θ!
We may rescale such that C ′ = 1 in the formula above. This yields

p(x, y, z)dxdydz = |det(J)| 2
π
√

2π
e−(λ2

1+λ
2
2)dλ1dλ2dθ, (4.20)

where J is the Jacobian
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J =

 ∂x
∂λ1

∂y
∂λ1

∂z
∂λ1

∂x
∂λ2

∂y
∂λ2

∂z
∂λ2

∂x
∂θ

∂y
∂θ

∂z
∂θ

 . (4.21)

We can determine J by differentiating (4.19). We can pull the factor (λ1−λ2)
out of the matrix, since this factor appears in each entry of the bottom row.
This yields a 3 × 3 matrix which only depends on θ (you may try this). We
obtain

det(J) = g(θ) · (λ1 − λ2), (4.22)

with g(θ) the absolute value of the determinant of the matrix obtained above.
The probability of finding λ1 − λ2 = 0 is zero. Since we’ve chosen λ1 ≥ λ2, we
don’t need to worry about the absolute value.

We can substitute (4.22) into (4.20) and find

p(x, y, z)dxdydz =
2g(θ)
π
√

2π
(λ1 − λ2)e−(λ2

1+λ
2
2)dλ1dλ2dθ. (4.23)

As we briefly discussed earlier, we want to obtain the joint probability dis-
tribution of λ1 and λ2, so we integrate out θ:

p̃(λ1, λ2) =
2

π
√

2π

∫
(λ1 − λ2)e−(λ2

1+λ
2
2)g(θ)dθ

= C(λ1 − λ2)e−(λ2
1+λ

2
2), (4.24)

where C is a new (computable) constant depending on g(θ) (since p̃(λ1, λ2) is
a probability distribution, C is uniquely determined).

We can use (4.24) to study the spacings between the eigenvalues. We want to
calculate the probability that λ1−λ2 ∈ [λ, λ+∆λ]. We obtain, by substituting
λ1 = λ2 + λ+O(∆λ):

Prob (λ1 − λ2 ∈ [λ, λ+ ∆λ])

=
∫ ∞

λ2=−∞

∫ λ2+λ+∆λ

λ1=λ2+λ

p̃(λ1, λ2)dλ1dλ2

=
∫ ∞

λ2=−∞

∫ λ2+λ+∆λ

λ1=λ2+λ

C(λ1 − λ2)e−(λ2
1+λ

2
2)dλ1dλ2

= C

∫ ∞

λ2=−∞

∫ λ2+λ+∆λ

λ1=λ2+λ

(λ+O(∆λ))e−((λ2+λ+O(∆λ))2+λ2
2)dλ1dλ2.(4.25)

The λ1-integral is over a region of size ∆λ, so we obtain

Prob (λ1 − λ2 ∈ [λ, λ+ ∆λ])
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= C

∫ ∞

λ2=−∞
λe−(λ2+2λ2

2+2λλ2)∆λdλ2 +O((∆λ)2)

= Cλe−λ
2
∆λ
∫ ∞

λ2=−∞
e−2(λ2

2+λλ2)dλ2 +O((∆λ)2)

= Cλe−λ
2
∆λ
∫ ∞

λ2=−∞
e−2(λ2

2+λλ2+
λ2
4 )e

λ2
2 dλ2 +O((∆λ)2)

= Cλe−
λ2
2 ∆λ

∫ ∞

λ2=−∞
e−2(λ2+

λ
2 )2dλ2 +O((∆λ)2)

= Cλe−
λ2
2 ∆λ

∫ ∞

λ2=−∞
e−2λ2

2dλ2 +O((∆λ)2)

= C ′λe−
λ2
2 ∆λ+O((∆λ)2). (4.26)

C ′ is a new constant obtained by multiplying C by the λ2-integration. We
don’t need to calculate this integration, since we can compute C ′ directly, be-
cause we must have a probability distribution! Letting ∆λ → 0 yields the
following theorem.

Theorem 4.1.7 If we denote the difference in eigenvalues with λ, we obtain
the probability density pGOE,2(λ) = C ′λe−

λ2
2 .

4.1.4 Generalization to N ×N GOE

In the 2 × 2 case, a real symmetric matrix has 3 degrees of freedom, written
either as (a11, a12, a22) or (λ1, λ2, θ). For a general N × N real symmetric
matrix, it’s easy to see that there are N(N+1)

2 independent parameters. For
such a matrix A, we may write A = QTΛQ, where Λ is the diagonal matrix
with entries λ1 ≥ λ2 ≥ . . . ≥ λN , and Q orthogonal. This follows from the
Spectral Theorem.

The standard basis to work with are the upper diagonal entries of our matrix
A. However, as we did in the 2×2 case, we want to switch to another coordinate
system, since we are interested in the eigenvalues of A.

Theorem 4.1.8 Another coordinate system for N×N real symmetric matrices
is given by (λ1, . . . λN , θ1, . . . , θn). We have n = N(N−1)

2 .

Proof. We write A = QTΛQ. Λ is an N ×N diagonal matrix with entries
λ1, . . . , λN . The columns of our orthogonal matrix Q are mutually perpendic-
ular, and each column has length 1. This means that we may choose N − 1
entries of the first column. The last entry is forced since the length must be 1.
The second column also must have length 1, and it must be perpendicular to the
first column. Therefore we have N − 2 free entries for the second column. We
continue this way, and we notice that column i has N−i free entries. Therefore,
the number of free entries in an orthogonal matrix is

N∑
i=1

(N − i) = N2 − N(N + 1)
2

=
N(N − 1)

2
.

The N×N case is much more difficult than the 2×2 case, since we find char-
acteristic polynomials of degree N . We cannot proceed in the same way, since
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we’re not able to solve general polynomials of degree 5 and higher. However,
we can prove

Theorem 4.1.9 As with 2 × 2 real symmetric matrices, for N × N real sym-
metric matrices the GOE conditions force the probabilities of the entries to be
Gaussians:

Pii(aii) =

√
C

4π
e−

Ca2
ii

4

Pij(aij) =

√
C

2π
e−

Ca2
ij

2 (4.27)

The probability of a matrix A is the product of the probabilities of its N diagonal
entries and its N(N−1)

2 upper diagonal entries, so we have

p(A) = 2−
N
2

(
C

2π

)N(N+1)
4

e−
C
4 Trace(A2). (4.28)

As in the 2× 2 case, we want to integrate out the θ variable, since we want
to find the joint distribution of the eigenvalues. Therefore, we write A = QTΛQ
with Λ is diagonal with entries λ1 ≥ . . . ≥ λN and Q is an orthogonal matrix
with entries specified by the parameters θ1, . . . , θn.

Again, we change variables

(a11, . . . , a1N , a22, . . . , aNN )←→ (λ1, . . . , λN , θ1, . . . , θn).

We choose a(1) = a11, a(2) = a12, . . . , a(N) = a1N , a(N + 1) = a22, . . . ,

a(N(N+1)
2 ) = aNN . As in the 2× case, we define the Jacobian J , with entries

Jij =

{
∂a(j)
∂λi

if j ≤ N
∂a(j)
∂θi−N

if N < j ≤ N(N+1)
2 .

Because we’re changing variables, we have to compute detJ . We obtain this
by following the same procedure as with the 2×2 case, where we’ve used (4.22).
In the N ×N case, we will find the same result:

|det J | = g(θ1, . . . , θn)
∏

1≤i<j≤N

(λi − λj). (4.29)

Notice that we use the Vandermonde determinant:

det

 1 . . . 1
...

. . .
...

λN−1
1 . . . λN−1

N

 =
∏

1≤i<j≤N

(λi − λj).

A similar argument as in the 2× 2 case now yields

Theorem 4.1.10

p(λ1, . . . , λN ) = C ′
∏

1≤i<j≤N

(λi − λj)e−(λ2
1+...+λ

2
N ). (4.30)

By using the probability distribution for the eigenvalues above, we can an-
alyze the distribution of the spacings between adjacent eigenvalues like we did
in the 2× 2 case. The answer is very close to the answer we’ve found from the
2 × 2 case in Theorem 4.1.7, but finding the answer goes beyond the scope of
this research project. For details see [6].
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4.1.5 The Gaussian Unitary Ensemble

In the previous section, we’ve found the joint probability distribution for the
eigenvalues of N × N real symmetric matrices! Although it’s too difficult to
treat the subject here, we can use this distribution function to determine the
spacing distribution between the eigenvalues, as we did in the 2× 2 case.

We’ve investigated the Gaussian Orthogonal Ensemble to gain knowledge of
random matrix theory. We could ask the same questions about the Gaussian
Unitary Ensemble, where we investigate complex Hermitian matrices. For such
a matrix A, we again want to have the following:

1. The entries of the matrix should be independent (note that we have more
free (real) entries since now we should choose our entries from C instead
of R).

2. For any unitary transformation U , P (UAU∗) = P (A).

U∗ denotes the complex conjugate of U . Note that the restrictions above
are the same restrictions as our restrictions for real symmetric matrices, but
now we work in C. Again we can compute the probability distributions for our
entries of the matrix. However, we have to work in a different way, since we have
more free parameters for our random matrices. Besides, our unitary matrix U
has three degrees of freedom in the 2 × 2 case, whereas in the GOE-case, our
orthogonal matrix Q has only one. Unfortunately, the required computations
for the unitary case are too difficult. For the interested reader we refer to [6] and
[7]. From these computations, we can conclude that the probability distributions
must again be Gaussians.

It’s also possible to find the eigenvalue distribution and the distribution of
the spacings of the eigenvalues, as we’ve seen in the GOE-case. For the N ×N
GUE case, computations seem to indicate that

lim
N→∞

#{δj = γ̃j+1 − γ̃j , 1 ≤ j ≤ N : δj ∈ (a, b)} →
∫ b

a

p(x) dx, (4.31)

where p is the distribution function of normalized spacings of eigenvalues of
large random matrices from GUE! γ̃j denotes the jth rescaled zero. Up to some
technical restrictions, these results have been verified by Rudnick and Sarnak
(see [9]). With (4.31), the link between random matrix theory and the zeros of
the Riemann-zeta function has been made.
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Appendix A

The Gamma function

In order to justify the analytic continuation of ζ to the complex plane, we need
the gamma function Γ.
The gamma function is initially defined for s > 0 by

Γ(s) =
∫ ∞

0

e−tts−1 dt. (A-1)

For each positive s, the integral is well defined, since near t = 0, the function
ts−1 is integrable. For t large, the integral converges because of the exponential
decay of the integrand.

The following proposition states that we can also use this definition in a
complex half-plane, without any problems.

Theorem A.1 We can extend the gamma function to an analytic function in
the half-plane <(s) > 0. The function is still given there by (A-1).

Proof. We need to show that the integral defines a holomorphic function
in every strip

Sδ,M = {δ < <(s) < M},

with 0 < δ < M < ∞. If we denote <(s) by σ, then |e−tts−1| = e−ttσ−1.
Therefore, we know that the integral

Γ(s) =
∫ ∞

0

e−tts−1 dt

converges for each s ∈ Sδ,M . Note that we use∫ ∞

0

e−tts−1 dt = lim
ε→0

∫ 1/ε

ε

e−tts−1 dt.

We define

Fε(s) =
∫ 1/ε

ε

e−tts−1 dt.

The integrand is holomorphic in s for each t, and it’s a continuous function.
Therefore, Fε(s) is holomorphic in the strip Sδ,M (for details of this argument,
see [2], Theorem 2.5.4).

38



We now observe that

|Γ(s)− Fε(s)| ≤
∫ ε

0

e−ttσ−1 dt+
∫ ∞

1/ε

e−ttσ−1 dt.

Both integrals above converge uniformly to 0 as ε→ 0. This means that Fε
converges uniformly to Γ on the strip Sδ,M . This means that Γ is holomorphic
in every strip Sδ,M . �

Our function Γ is now defined on the right half-plane <(s) > 0. However, we
can go further by proving that there exists a meromorphic function definined
on C that equals Γ on the half-plane <(s) > 0. To prove this assertion, we use
the following lemma, which is a fundamental property of Γ.

Lemma A.2 For <(s) > 0,

Γ(s+ 1) = sΓ(s). (A-2)

Therefore, Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

Proof. We use integrating by parts in the finite integral Fε from the
previous proposition:∫ 1/ε

ε

d

dt
(e−tts) dt = −

∫ 1/ε

ε

e−tts dt+ s

∫ 1/ε

ε

e−tts−1 dt.

If we let ε tend to 0, the left-hand side vanishes, since e−tts → 0 as t tends
to 0 or ∞. Thus we have found the functional equation Γ(s+ 1) = sΓ(s).

Furthermore,

Γ(1) =
∫ ∞

0

e−t dt = [e−t]∞0 = 1.

We can apply (A-2) successively to find that Γ(n+ 1) = n!. �
We now have the necessary ingredients to prove the following theorem.

Theorem A.3 The function Γ has an analytic continuation to a meromorphic
function on C, whose singularities are simple poles at the negative integers s =
0,−1, . . .. The residue of Γ at s = −n is (−1)n/n!.

Proof. We extend Γ to each half-plane <(s) > −m, where m ≥ 1 is an
integer. For <(s) > −1, we define

F1(s) =
Γ(s+ 1)

s
.

Γ(s+ 1) is holomorphic in <(s) > −1, so F1 is meromorphic in that half-plane.
Since Γ(1) = 1, F1 has a simple pole at s = 0, with residue 1. Furthermore, by
the previous lemma we have

F1(s) =
Γ(s+ 1)

s
= Γ(s)

if <(s) > 0. This means that F1 extends Γ to a meromorphic function on the
half-plane <(s) > −1.
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We can repeat the argument above over and over, by defining a meromorphic
function Fm for <(s) > −m, which equals Γ on <(s) > 0. To be more precise,
for <(s) > −m, with m an integer ≥ 1, we define

Fm(s) =
Γ(s+m)

(s+m− 1)(s+m− 2) . . . s
.

On the half plane <(s) > −m, the function Fm is meromorphic, and has
simple poles at s = 0,−1, . . . ,−m+ 1 with residues

ress=−nFm(s) =
Γ(−n+m)

(m− 1− n)!(−1)(−2) . . . (−n)

=
(m− n− 1)!

(m− 1− n)!(−1)(−2) . . . (−n)

=
(−1)n

n!
.

Fm coincides with Γ on <(s) > 0, so we have found the analytic continua-
tion. �

We now have all the information we need about the poles of Γ. We now will
look at its zeros.

Lemma A.4 For 0 < a < 1,∫ ∞

0

va−1

1 + v
dv =

π

sinπa

We won’t give a full proof of this lemma here. The identity can be found by
making the change of variables v = ex and by using contour integration. We
use this lemma to prove the following.

Theorem A.5 (Reflection formula). For all s ∈ C, we have

Γ(s)Γ(1− s) =
π

sinπs
(A-3)

Proof. We first observe that Γ(1 − s) has simple poles at the positive
integers, while Γ(s) has simple poles at s = 0,−1, . . .. This means that
Γ(s)Γ(1−s) is a meromorphic function on C with simple poles at all the integers.
This property is shared by π/ sinπs. We will now prove the identity for
0 < s < 1, since it then holds on all of C by analytic continuation. For 0 < s < 1
we may write

Γ(1− s) =
∫ ∞

0

e−uu−s du = t

∫ ∞

0

e−vt(vt)−s dv,

where we made the change of variables vt = u for t > 0. We now use the
following steps:

Γ(s)Γ(1− s) =
∫ ∞

0

e−tts−1Γ(1− s) dt

=
∫ ∞

0

e−tts−1

(
t

∫ ∞

0

e−vt(vt)−s dv
)
dt
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=
∫ ∞

0

∫ ∞

0

e−t[1+v]v−s dvdt

=
∫ ∞

0

v−s

1 + v
dv

=
π

sinπ(1− s)

=
π

sinπs
,

so we’ve proved the theorem. �

We now write (A-3) as

1
Γ(s)

= Γ(1− s) sinπs
π

.

The simple poles of Γ(1−s) are canceled by the simple zeros of sinπs. Therefore
1/Γ is an entire function with simple zeros at s = 0,−1,−2, . . ..

41



Appendix B

The functional equation for
ζ and analytic continuation
on the complex plane

During our investigation to prove the prime number theorem, we’ve used the
analytic continuation of ζ to a meromorphic function in C. Here we will justify
this analytic continuation.

The proof of the analytic continuation is based on a relation between ζ,Γ
and the theta function, which is defined for real t > 0 by

θ(t) =
∞∑

n=−∞
e−πn

2t = 1 + 2
∞∑
n=1

e−πn
2t.

We recall that a function f defined on R is of moderate decrease if f is
continuous and there exists a constant A > 0 such that

|f(x)| ≤ A

1 + x2
for all x ∈ R.

The function f(t) = e−πn
2t is of moderate decrease for every n ∈ Z, so

we may use the Poisson summation formula, which we recall in the following
proposition which we won’t prove.

Proposition B.1 (Poisson summation formula). Suppose that f is a
function with the properties

1. The function f is holomorphic in a horizontal strip

Sa = {z ∈ C : |=(z)| < a}

for some a.

2. There exists a constant A > 0 such that

|f(x+ iy)| ≤ A

1 + x2

for all x ∈ R and |y| < a for some a.
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Then ∑
n∈Z

f(n) =
∑
n∈Z

f̂(n),

where f̂(ξ) =
∫∞
−∞ f(x)e−2πixξ dx, the Fourier transform of f .

We use the Poisson summation formula to find a functional equation for θ.
At first, we recall that the function e−πx

2
equals its own Fourier transform:∫ ∞

−∞
e−πx

2
e−2πixξ dx = e−πξ

2
.

We fix t > 0 and a ∈ R, and apply the change of variables x 7→ t1/2(x + a) in
the integral above, to show that the Fourier transform of the function

f(x) = e−πt(x+a)
2

is
f̂(ξ) = t−1/2e−πξ

2/te2πiaξ.

We may apply the Poisson equation formula to the pair f and f̂ above, and
we obtain the relation

∞∑
n=−∞

e−πt(n+a)2 =
∞∑

n=−∞
t−1/2e−πn

2/te2πina.

If we choose a = 0, we find the modular inversion formula

θ(t) = t−1/2θ(1/t) for t > 0, (B-1)

a functional equation for θ which we will need to find the analytic continuation
for ζ.

Since
lim
t→0+

t−1/2θ(1/t) ≤ Ct−1/2,

we obtain the estimation

θ(t) ≤ Ct−1/2 as t→ 0 (B-2)

for some C > 0. Furthermore, since

∞∑
n=1

e−πn
2t ≤

∞∑
n=1

e−πnt =
e−πt

1− e−πt

for all t > 0, we find

|θ(t)− 1| ≤ Ce−πt (B-3)

for some C > 0 and all t ≥ 1.
We are now ready to prove the following theorem, which we will use to justify

the analytic continuation.
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Theorem B.2 If <(s) > 1, then

π−s/2Γ(s/2)ζ(s) =
1
2

∫ ∞

0

u(s/2)−1[θ(u)− 1] du.

Proof. We use the observation that∫ ∞

0

e−πn
2uu(s/2)−1 du = π−s/2Γ(s/2)n−s, if n ≥ 1. (B-4)

We’ve found this result by making the change of variables u = t/πn2 in the
integral above. We recall that

θ(u)− 1
2

=
∞∑
n=1

e−πn
2u.

We substitute this result in the integral and the estimates (B-2) and (B-3) justify
an interchange of summation and integration:

1
2

∫ ∞

0

u(s/2)−1[θ(u)− 1] du =
∞∑
n=1

∫ ∞

0

u(s/2)−1e−πn
2u du

= π−s/2Γ(s/2)
∞∑
n=1

n−s

= π−s/2Γ(s/2)ζ(s). �

For convenient reasons, we define the xi function for <(s) > 1 by

ξ(s) = π−s/2Γ(s/2)ζ(s). (B-5)

Theorem B.3 The function ξ is holomorphic for <(s) > 1 and has an analytic
continuation to all of C as a meromorphic function with simple poles at s = 0
and s = 1. Moreover,

ξ(s) = ξ(1− s) for all s ∈ C.

Proof. We use the functional equation for θ:

∞∑
n=−∞

e−πn
2u = u−1/2

∞∑
n=−∞

e−πn
2/u, u > 0.

Let χ(u) = [θ(u)− 1]/2. Using the functional equation gives us

χ(u) = u−1/2χ(1/u) +
1

2u1/2
− 1

2
.

We now use theorem B.2 for <(s) > 1, which yields the following result:

π−s/2Γ(s/2)ζ(s) =
∫ ∞

0

u(s/2)−1χ(u) du
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=
∫ 1

0

u(s/2)−1χ(u) du+
∫ ∞

1

u(s/2)−1χ(u) du

=
∫ 1

0

u(s/2)−1

[
u−1/2χ(1/u) +

1
2u1/2

− 1
2

]
du+

+
∫ ∞

1

u(s/2)−1χ(u) du

=
1

s− 1
− 1
s

+
∫ ∞

1

(u(−s/2)−1/2 + u(s/2)−1)χ(u) du

for <(s) > 1. Thus

ξ(s) =
1

s− 1
− 1
s

+
∫ ∞

1

(u(−s/2)−1/2 + u(s/2)−1)χ(u) du.

The function χ has exponential decay at infinity by (B-3), so the integral
above defines an entire function in s. Therefore ξ has an analytic continuation
to C with simple poles at s = 0 and s = 1. Besides, if we replace s by 1−s in the
equation above, we find the same equation. We conclude that ξ(s) = ξ(1 − s)
as was to be shown. �

Finally, we can justify the analytic continuation for the zeta function:

Theorem B.4 The zeta function has a meromorphic continuation into the en-
tire complex plane, whose only singularity is a simple pole at s = 1.

Proof. We look at (B-5) which provides the meromorphic continuation of
ζ:

ζ(s) = πs/2
ξ(s)

Γ(s/2)
.

1/Γ(s/2) is entire with simple zeros at 0,−2,−4, . . ., so the simple pole of ξ(s)
at the origin is cancelled by the corresponding zero of 1/Γ(s/2). Therefore, the
only singularity of ζ is a simple pole at s = 1. �
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