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Despite the growing calls to integrate realistic human behavior in sustainability science
models, the representative rational agent prevails. This is especially problematic for
climate change adaptation that relies on actions at various scales: from governments to
individuals. Empirical evidence on individual adaptation to climate-induced hazards
reveals diverse behavioral and social factors affecting economic considerations. Yet,
implications of replacing the rational optimizer by realistic human behavior in nature–
society systems models are poorly understood. Using an innovative evolutionary
economic agent-based model we explore different framings regarding household
adaptation behavior to floods, leveraging on behavioral data from a household
survey in Miami, USA. We find that a representative rational agent significantly
overestimates household adaptation diffusion and underestimates damages compared
to boundedly rational behavior revealed from our survey. This “adaptation deficit”
exhibited by a population of empirically informed agents is explained primarily
by diverse “soft” adaptation constraints—awareness, social influences—rather than
heterogeneity in financial constraints. Besides initial inequality disproportionally
impacting low/medium adaptive capacity households post-flood, our findings suggest
that even under a nearly complete adaptation diffusion, adaptation benefits are
uneven, with late or less-efficient actions locking households to a path of higher
damages, further exacerbating inequalities. Our exploratory modeling reveals that
behavioral assumptions shape the uncertainty of physical factors, like exposure and
objective effectiveness of flood-proofing measures, traditionally considered crucial
in risk assessments. This unique combination of methods facilitates the assessment
of cumulative and distributional effects of boundedly rational behavior essential
for designing tailored climate adaptation policies, and for equitable sustainability
transitions in general.

agent-based model | exploratory modeling | survey | climate change adaptation |
distributional impacts

Contending with the impacts of climate change demands engagement from all levels of
society (1). Central to dealing with these impacts is the apprehension of how effectively
and timely various actors adapt. To this end, simulation models are critical to quantify
effects of adaptation strategies. Large-scale government-led measures to curtail climate
change adversities typically rely on aggregated data and are regularly incorporated into
models as rational decisions, either based on cost-benefit analysis (2) or as adaptive policy
pathways accounting for uncertainty (3). Due to the simplicity of assumptions and
the relative data availability, climate change adaptation (CCA) modeling predominantly
focuses on government-led decisions (4).

Accounting for private actions is a key priority for CCA (5). Household adaptation
complements government-led actions, has the potential to dynamically respond to the
accelerating climate-induced adversities, and is essential in multiscale CCA (6). Yet, the
lack of microdata on individual behavior and the uncertainty which its inclusion begets
in simulation models has engendered that households’ actions are widely omitted from
CCA models. Modeling human behavior is also a fundamental challenge in climate risk
assessments (7–9) and the broader sustainability science, where balancing socio-economic
priorities alongside interactions with the environment in dynamic nature–society systems
is essential (10, 11).

Among the sustainability models that do consider human behavior, many assume
rational representative households with perfect information who make optimal choices
driven by financial constrains (12). However, across various nature–society systems,
empirical work consistently demonstrates that human behavior deviates from a perfectly
rational optimizer (13). For instance, in CCA, households rely on heuristics such as affect
(worry), social pressure, and perceived coping capacity (14, 15). Diversity in education,
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incomes, experiences, and institutions endow individuals and
societies with diverse adaptive capacities (16). Real CCA uptake
is below what would be economically efficient (5, 17), suggesting
that households do not act as homo-economicus when adapting
to environmental shocks and that diverse adaptation constraints
shape soft limits to adaptation (18). The gap between CCA as
estimated by a perfectly rational decision maker and reality pro-
duces an unaccounted “adaptation deficit”—insufficient (public
or private) adaptation compared to what is economically optimal.
The fundamental challenge for sustainability science, and for
CCA in particular, remains: means to represent empirically rich
human behavior in formal models and to quantify aggregated
and distributional impacts of private actions are in paucity.

Agent-based models (ABMs) are designed to simulate bound-
edly rational behavior of many heterogeneous actors who interact
with each other and their environment and continuously learn
(19, 20). ABMs rely on social science theories and data to define
rules of action, interactions, and learning that drive behavioral
change and evolution of institutions (21, 22). With respect
to climate-induced hazards, ABMs increasingly examine the
cumulative consequences of household adaptation, including
ramifications in damages and recovery from climate-induced
hazards. However, current models still face several limitations,
including the lack of microdata on human behavior, derivation
of distributional impacts, and lack of modeling households’
interactions with firms that offer jobs and endogenously define
incomes crucial for adaptive capacity and individual as well
as regional socio-economic resilience (8, 9). Here, we employ
behavioral survey data in an evolutionary economic ABM (23),
endowed with firms and households that interact through
socio-economic institutions (markets and social networks) to
quantitatively explore the spectrum of household adaptation
behavior to the most costly climate-induced hazard: floods. With
urbanization exasperating the growing risk brought on by floods
and sea level rise, we focus our model on emulating an urbanized
coastal region and populate it using behavioral data from surveys
conducted in Miami-Dade county, USA, in 2020 (14). Using
empirical data on flood probabilities and capital/labor ratios
of the regional economy, we contrast how various behavior
representations (homogeneous vs. heterogeneous; rational vs.
empirically informed boundedly rational) impact the CCA
diffusion, and the distribution of damages. In the behaviorally-
rich framing, the diverse boundedly rational agents in our model
are embedded into a social network, where they learn from
peers and are influenced by evolving social norms. Households
are also endowed with education, individual awareness about
hazards (perceived damages, worry about floods), past experience
with floods and undergone adaptations—significantly extending
the typical financial constraints to adaptation that a rational
optimizer faces. Finally, our introduction of a full macroe-
conomic framework—where households interact with firms—
enables tracing endogenous changes in households’ incomes and
indirect flood consequences, like firms’ bankruptcy leading to
unemployment, which undermines households’ recovery and
widens inequalities. These alternative representations of house-
hold adaptation, embedded in a large socio-economic system and
exposed to environmental shocks, reflect the inherent epistemic
challenges in representing human behavior in sustainability
science models in general.

Recognizing these deep uncertainties, we employ exploratory
modeling (24) to study alternative modeling assumptions, includ-
ing rival framing of behavioral representation and uncertainties
in key physical factors shaping risks. Exploratory modeling
is uniquely appropriate for contending with the diversity of

human behavior in complex nature–society systems (24, 25).
By combining the economic ABM with survey data on CCA
behavior and exploratory modeling, we examine how uncertainty
in the representation of human behavior interacts with physical
uncertainties to affect the diffusion of private adaptation, to
shape overall regional damages, their distribution, and the
corresponding recovery pathways of different households. In
systematically analyzing behavioral uncertainty stemming from
the various formulations of household adaptation decisions, we
tackle three research questions: 1) How does heterogeneity in
financial constraints and socio-behavioral factors affect regional
patterns of adaptation diffusion? 2) What are the distributional
and indirect economic impacts of hazards and of behavioral
change among households with different adaptive capacities? 3)
Does physical uncertainty, like exposure and objective effective-
ness of measures—factors conventionally crucial for CCA policy
design—remain predictable across alternative behavior framings?

Integrating various decision-making processes ranging from a
representative Rational Agent (RA) to a heterogeneous population
of Boundedly rational Agents (BA), our model traces the col-
lective consequences of household behavior and maps emerging
equity implications across agents with various adaptive capacities.
RA decides to implement a CCA measure when it becomes
economically efficient considering only financial adaptation con-
straints (Fig. 1B). Instead, adaptation decisions of BA are shaped
by diverse adaptation constraints (18): perceptions of worry about
floods, of own ability to implement a measure (self-efficacy), past
experiences, and social influences, all elicited from the household
survey (14). By going beyond the rational representative agent, we
trace how heterogeneity and socio-behavioral factors, embedded
in evolving social and market institutions, lead to the emergence
of adaptation deficits, hence quantifying soft adaptation limits
which are otherwise challenging to estimate (5, 17). Using state-
of-the-art exploratory modeling, we analyze the behavioral and
physical uncertainty jointly, estimating how alternative repre-
sentations of human behavior in computational models interact
with changing physical factors, like hazard exposure. This original
combination of methods showcases how simulations and social
sciences can be bridged to integrate human behavior in formal
models and to quantify socio-economic and equity implications
in the next generation of sustainability science models.

Computing Socio-economic Dynamics in
Adaptation to Environmental Shocks

Complex Evolving Economy. We embed computational model-
ing of human behavior into an evolutionary Climate-economy
Regional Agent-Based (CRAB) model (23). The model features
a complex evolving economy populated by heterogeneous house-
holds and firms of three different economic sectors (Fig. 1A).
Firms invest in R&D to discover newer and more productive
technologies that trigger endogenous economic growth, follow-
ing the Keynes & Schumpeter (“K +S”) evolutionary economics
tradition (26, 27). Firms compete in capital, labor, goods,
and service markets, which are imperfect and characterized by
limited information; hence, firms form expectations and update
them as they learn. These four market institutions and the
technological advancement of firms drive the core economic
dynamics—including changes in productivity, GDP, unemploy-
ment, households’ incomes, and savings—that endogenously
define the economic attractiveness of the region and in/out-
migration of population and firms (Materials and Methods and SI
Appendix, Methods). Households buy goods and services, work in
these sectors, and may switch jobs depending on dynamic wages
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A B

Fig. 1. Evolutionary agent-based model of a regional economy (A) with heterogeneous adaptive agents prone to social interactions and behavioral factors (B).

or create new firms themselves. The addition of firms interacting
with households via market institutions (Fig. 1A) is important
for quantifying whether unemployment and macroeconomic re-
structuring in the aftermath of a flood undermines households’ re-
covery, decreases incomes and potentially results in out-migration
ultimately affecting the development of the regional economy.

Households and firms can be located in safe or hazard-prone
areas. Agents in the hazard-prone area can be impacted by
floods, which damage the firms’ assets and inventories as well
as household assets and productivity. Here, we use a single-
region version of the CRAB model (23) to evaluate the role
of different behavioral assumptions on household adaptation
diffusion and damages in the region. Besides expanding the
original model with the service sector and contextualizing it with
the aggregated economic and flood data from the greater Miami
region (FL, USA), we substantially advance household behavior
modeling (Fig. 1B). For the latter, we rely on our survey data from
Florida (14) eliciting behavioral and social factors of household
CCA. To adapt to adversities, households consider three types of
structural measures: Wet-proofing, Dry-proofing, and Elevation
(28). Elevation is costly but provides complete flood protection.
Conversely, the other two measures entail lower costs but with
lower objective effectiveness for damage reduction (Materials
and Methods). Notably, households in our ABM are embedded
in a social network where they exchange information about
adaptation with their peers, leading to evolving descriptive norms.
We initialize our ABM with a synthetic population of n = 3,000
households (∼5:1000 of Miami-Dade County) and 250 firms
(split among the capital-good, service, and consumption-good
sectors as 50:100:100), with 40% of these agents randomly
allocated to flood-prone areas (Materials and Methods).

Household CCA. To model household adaptation, we implement
diverse behavioral strategies. As the most widespread represen-
tation of human behavior, we first study the dynamics of our
regional economy assuming all households are rational agents
prone only to financial adaptation constraints. Specifically, RA
goes through a pure economic assessment of risks by weighing
probabilities and damages against the costs of the three adaptation
measures (Wet-proofing, Dry-proofing, and Elevation), and
adopt them when it is economically efficient (Fig. 1B). As the next
common step to enrich human behavior in sustainability models,

we replace a homogeneous rational agent (RAHom) by a popula-
tion of individuals heterogeneous in incomes and damages, yet
still rational in their decision-making (RAHet ), including their
objective perception of probability. We parameterize incomes,
probabilities, and damages of RAHom households with the survey
means (SI Appendix, Model Calibration), and RAHet with the
distributions of the reported survey values.

Yet, ample empirical evidence demonstrates that probabilities
and damages used to calculate economic efficiency, alone have
little effect on people’s intentions to adapt to floods (29).
Instead, we ground BA agents in the most prominent social
science theory explaining CCA behavior: Protection Motivation
Theory (PMT) (30, 31). Extended PMT assumes that besides
perceived damages and probability, psychological factors—affect
heuristics (worry), perceived effectiveness of a measure and of
own ability to implement it (response- and self-efficacy), social
expectations and past experiences with floods and CCA—drive
private adaptation. These socio-behavioral factors either hinder
or amplify the household adaptation intentions, and serve as
diverse adaptation constraints making individual judgements
boundedly rational. The behavior of BA agents explicitly captures
mechanisms specified by PMT (Fig. 1B), and contextualizes
them by relying on the survey data (14) (2020 Florida sub-
sample,N = 965). To differentiate between three common CCA
measures (28)—Wet-proofing, Dry-proofing, and Elevation—
we run three theory-grounded logistic regressions (SI Appendix,
Model Calibration). Notably, PMT specifies mechanisms, via
which socio-behavioural factors cause behavioral intention and
eventually CCA action, and which proved valid worldwide
(15). Hence, the behaviorally-rich adaptation in CRAB and
the derived insights are generalizable. Similarly to RA, we
model the population of boundedly rational households as either
homogeneous (BAHom) or heterogeneous (BAHet ).

Additionally, in the BA scenarios, households are embedded
in a random social network (32), calibrated with our survey
data (SI Appendix, Model Calibration). When considering a
specific CCA, households interact with other agents in their
“Social network” and observe which peers have implemented
the measure as the simulation unfolds. As BA households observe
changes in the descriptive norms in their networks, they also
update individual CCA intentions. BA households learn over
time based on the opinions of others (e.g., perceived social
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expectations regarding own action on adaptation) and own
experiences (e.g., perceived damages after a flood). Importantly,
while the simulated mechanisms of behavioral change grounded
in PMT persist, the initial data-driven effects of socio-behavioral
factors evolve individually for each agent (denoted with triangles,
Fig. 1B) based on the actions of others and their own.

Exploring Behavioral Uncertainty. Besides the baseline scenario
without private adaptation, we quantify differences in macro-
outcomes along a gradient of rival framing of human behavior:
RAHom, RAHet , BAHom, and BAHet . Hence, we gradually increase
the richness of behavior—moving systematically from a represen-
tative rational agent to diverse empirically informed agents with
boundedly rational behavior affected by social interactions. We
compare these rival assumptions about behavior along macro-
metrics (adaptation deficit and damages, SI Appendix), each
estimated across 100 Monte Carlo runs. By default, CRAB also
traces regional GDP, unemployment, net savings, and population
of households and firms (23). With respect to shocks, we
trace the overall performance of the regional economy and the
distributional impacts assuming a scenario with no floods vs. two
consecutive floods (occurring at time steps 100 and 140 of the
simulation).

We broaden the scope of traditional ABM sensitivity analysis
by applying exploratory modeling (24) to diagnose how key
conventional drivers of risk interact with alternative behavioral
heuristics. Exploratory modeling constructs large ensembles
of computational experiments to systematically explore the
implications of alternative assumptions. The goal is to elicit
interaction mechanisms and to identify uncertainties critical
in achieving/avoiding system states of interest (33). Given the
complexity of CRAB combined with the effects of structural
behavioral uncertainty (agent homogeneity vs. heterogeneity
and behavioral heuristics), we focus our parametric diagnostic
assessment on the core physical factors affecting households’
adaptation behavior: the fraction of population exposed to floods
and the objective effectiveness of the three adaptation measures.
Uncertainty in these factors stems from several sources. Past
data on flood exposure are increasingly uncertain, with climate
change exacerbating extreme events, and urbanization affecting
hydrological processes. The objective effectiveness of adaptation
measures is also highly uncertain due to the scarcity of fragmented
empirical data on the actual damage reduction of various
adaptations (28). Our exploratory methodology systematically
examines how uncertainties in these four factors shape adaptation
outcomes under alternative behavioral framing, by applying
global sensitivity analysis (SA) to 460,800 computational runs
of the CRAB model, as described below.

SA is a widespread class of model diagnostics methods (34, 35).
Longitudinal SA, which assesses the importance of uncertain
factors over time, is especially pertinent in complex systems (36–
38), as it enables the exploration of the path dependence of
critical outcomes, or regime-changing conditions, i.e., tipping
points. Our model, as other complex systems models simulating
many diverse actors and consequential outcomes, has a large
number of varying parameters (fraction of exposed households,
measures’ effectiveness) and delivers multidimensional outputs
(fraction of adapted households, household damages, regional or
differentiated per level of adaptive capacity). Since they can be
variably consequential for different stakeholders, we perform the
global SA across all potentially relevant outputs.

Model Verification and Validation. Following the standard prac-
tice in ABM development, we perform both micro- and macro-
validation (39). Whenever possible, we define the agents’ micro

rules to match the behavioral patterns in the survey data. Where
empirical data are unavailable, we indirectly validate CRAB
against relevant micro and macro stylized facts (SI Appendix,
Model Calibration), as common in the literature (39). The
CRAB model successfully reproduces 15 empirical stylized facts
characterising regional economic development (23), such as
that the floods decrease the entry of firms, their output, and
employment opportunities (SI Appendix, Model Validation).

Results

Behavioral Biases Rather than Differences in Incomes Im-
pede Adaptation and Increase Regional Residual Damages.
A representative rational agent pursues adaptation when it
becomes economically efficient. This engenders that thousands
of identical optimizing households immediately adopt Wet- and
Dry-proofing adaptations (RAHom in Fig. 2 A and B) as they
are affordable from the start given the reported incomes and
savings in our survey. Elevation is adopted gradually (Fig. 2C ),
as RAHom households need to accumulate sufficient savings to
afford it. Hence, the top solid curves in Fig. 2 A–C signal
the optimal level of private adaptation in this regional coastal
economy. Introducing heterogeneity in factors shaping financial
adaptation constraints—incomes, education, and damages—
reduces private adaptation diffusion across all three measures
(dotted curves for RAHet adaptation diffusion, Fig. 2 A–C ).
This adaptation deficit is just 3–4% for Dry- and Wet-proofing
at the end of the simulation (pink area, Fig. 2 A and B),
signaling that diversity among household financial adaptation
constraints barely matters for these decisions. This insight is
essential since introducing income heterogeneity is the focus
of contemporary CCA modeling (7, 8, 40) as an advancement
over RA in representing human decisions. The ability of CRAB
to differentiate between types of CCA in a population with
diverse incomes permits to disentangle for which CCA measures
heterogeneity in financial adaptation constraints is irrelevant,
and for which it matters. For example, the diversity in incomes
and perceived damages imposes a significant adaptation deficit of
22% lower diffusion of Elevation (dotted curve and pink area in
Fig. 2C ). Elevation is costly, confirming that for more expensive
measures financial adaptation constraints matter for households
with low incomes or/and low perceived damages.

Furthermore, our unique approach allows to quantitatively
compare the inclusion of heterogeneity in financial adaptation
constraints (RAHet ), with the integration of diverse adaptation
constraints that bound rationality by explicitly accounting for
socio-behavioral biases (BAHom/Het ). Importantly, our results
reveal that the diffusion of all three adaptation types is highly
sensitive to the switch from RA to BA behavioral heuristics,
which appears more influential for adaptation diffusion than
income heterogeneity. Specifically, when comparing RAHom with
BAHom (solid curves vs. dashed curves, Fig. 2 A–C ), the diffusion
of adaptations drops by 14%, 16%, and 40% for Wet-, Dry-
proofing, and Elevation, respectively (the pink and green areas
combined, Fig. 2). The inclusion of variability in socio-behavioral
factors further widens the adaptation deficit by another 11% and
12% in Wet- and Dry-proofing compared toBAHom (dash-dotted
curves for BAHet and the blue areas, Fig. 2 A–C ). The overall
adaptation deficit between the optimal level of private adaptation
and its uptake by a population of empirically-calibrated bound-
edly rational households with diverse incomes, perceptions, and
social norms from the survey constitutes 25%, 28%, and 40%
for Wet-, Dry-proofing, and Elevation correspondingly (solid
vs. dash-dotted curves for RAHom and BAHet , Fig. 2 A–C ). Our
results imply that even for individual investment decisions, such
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A B C D

Fig. 2. (A–C) Adaptation deficit across four behavioral strategies: representative rational agent (RAHom), rational households heterogeneous in incomes,
education and damages (RAHet ), representative (BAHom) and diverse (BAHet ) boundedly rational agents. The reported values are averages across the 100 Monte
Carlo runs for each of the four behavioral framings, with the shaded areas denoting the SDs. (D) Regional damages households experience in case of a hazard,
in hundreds of millions $. The reported values are averages across the 100 Monte Carlo runs for each of the four behavioral framings.

as the three CCA measures, other soft adaptation constrains like
affect heuristics, perceived self-efficacy, or social norms are the
core source of behavioral uncertainty in the speed and scope of
adaptation diffusion, instead of the conventionally scrutinized
factors: heterogeneity of incomes and other financial constraints.

A unique feature of CRAB compared to other ABMs (8, 9) is
that household adaptive behavior is embedded in the evolutionary
macroeconomy. The endogenous technological change in CRAB
induces firm productivity and wage growth. Both increase
the attractiveness of this coastal region and trigger an inflow
of households and firms, leading to growing property values.
Consequently, regional damages to households in the event of a
flood increase over time, reaching $749–778 million at the end
of the simulation (Fig. 2D). Notably, households which behave
as rational optimizers prevent nearly all damages via adaptation
(RAHom and RAHet , Fig. 2D). Taking a step further by converting
emerging adaptation deficits into damages, our analysis illustrates
that replacing a representative rational agent by a population
with varied incomes and perceived damages makes a difference
of 1% in the total prevented damages to households in the
region. Conversely, as with adaptation deficits (Fig. 2 A–C ),
switching to a different behavioral heuristic and assuming that
households follow empirical patterns of decision-making about
adaptation, escalates residual damages (BAHom and BAHet , Fig.
2D). Leveraging the survey data, our ABM uniquely estimates
the economic costs of soft adaptation constraints as differences in
regional residual damages to households emerging from rationally
optimal vs. empirically informed adaptation behavior (3–4% vs.
19–22%, Fig. 2D). Our new findings quantify that the costs of
soft adaptation limits imposed by traditional financial adaptation
constraints are 5–6 times smaller than of diverse adaptation
constraints (i.e., awareness, social norms, education, financial).

Uneven Distribution of Damages, Adaptation Diffusion and
Benefits of Adaptation in a Population. To explore equity
implications of hazards and adaptation, we complement the
aggregated damage with the analysis of how damages and benefits
of adaptation are distributed among different households. The
ability of people and societies to adapt is associated with
adaptive capacity, which is contingent on economic wealth,
education, experience, social institutions, and governance (16).
Since the latter three are universal in the CRAB model, we
assume that the feasibility of adaptation actions for households

depends on their education level and income.* Based on this, we
distinguish households with Low, Medium, and High adaptive
capacities (AC), and analyze whether and how—depending on
their initial assets and adaptations taken—their damage and
recovery trajectories vary after two severe floods shock the regional
economy at steps 100 and 140 (Fig. 3). To compare damages
across households, we divide damages (after eventual adaptation)
by the households’ monthly incomes.

Without private adaptation, damages for an average rational
household at the end of the simulation are more than 20 times
higher than with adaptation (solid vs. dashed green curves,
Fig. 3 A vs. B). After both floods, there are spikes of damage
that fade back to pre-flood levels as households recover (shaded
areas under the solid curves, Fig. 3A)—the “resilience triangles”
(41). Even without adaptation, High AC households recover
immediately after both floods (solid red curve, Fig. 3A). Low AC
households are unable to fully recover following the first flood
and maintain higher damages than pre-flood. This is exacerbated
after the second flood, making the recovery even longer (blue
shaded areas, Fig. 3A). Here, CRAB reproduces another stylized
fact documented in the empirical literature (12): despite Low
AC, households owning the least costly assets and experiencing
the lowest direct damages, their recovery is the longest. Thanks
to the distinct methodological strength of CRAB that combines
both macroeconomy (i.e., endogenous GDP and unemployment
dynamics) and individual CCA actions, we identify the
mechanisms that lead to the long recovery of Low AC. Our
analysis reveals that the resilience triangles for Low AC are
the largest not only because these households lack resources to
recover quickly (i.e., hardly accumulate savings) but also because
they are likely to lose income in the aftermath of a flood due
to the bankruptcy of firm agents and increased unemployment.
Another original insight with respect to the distributional
impacts is the emergent vulnerability of the Medium AC
households, which develop the highest relative damages in the
population (yellow curve, Fig. 3A). While Medium AC agents
quickly recuperate the immediate losses after floods, following
the second flood, they perpetually shift to a trajectory of higher
damages (8% above initial).

*Notably, incomes change endogenously in our agent-based model as households change
jobs and as the economy develops through technological innovations, but other things
being equal, higher educated agents get jobs with higher wages. Since household
education grants priority in the CRAB labor market and is highly correlated with income,
we anchor adaptive capacity to the education level.
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A

B

Fig. 3. Residual damages without (A) and with households’ adaptation (B)
under rival assumptions about behavior: rational or boundedly rational;
assuming all households are the same (homogeneous) or based on empirical
distribution of households’ characteristics (heterogeneous). The latter is
differentiated by adaptive capacity of households. To make residual damages
comparable across households with various income, we divide damages by
monthly income. All reported values are averages across the 100 Monte Carlo
runs.

Assuming that households adapt as rational optimizers, the
residual damages for all AC levels decrease over time (bottom
dashed RA curves, Fig. 3B). Previous ABMs (8, 9) also report
decreasing aggregated damages due to private action, but our
analysis goes beyond to provide insights into the distributional
effects of adaptation. Notably, rational High and Medium AC
households are more likely to afford the costliest adaptation
(Elevation), which drops residual damages nearly to zero (dashed
red and yellow curves, Fig. 3B). Due to financial constraints,

rational Low AC households adapt slow or less effectively.
Hence, while adaptation reduces regional damages, its benefits
disproportionally benefit High and Medium AC households,
with Low AC agents bearing the highest residual damages (dashed
blue curves, Fig. 3B).

Affected by empirically-revealed behavioral biases and social
influences, BA households adapt less than rational, and this
adaptation deficit raises residual damages 2–10 times depending
on AC (dotted vs. dashed curves, Fig. 3B). After a flood, BA
households across all AC levels experience losses but recover
almost immediately, confirming the resilience dividend of timely
adaptation (12). The ability of the model to test rival behav-
ioral framing provides original insights regarding the uneven
distribution of adaptation benefits in the population, revealing
that shifting assumptions about human behavior from RA to
BA has implications for inequality. Specifically, residual damages
after adaptation of rational optimizers reveal the expected: High
AC benefit most from adaptation, followed by Medium and
Low AC households (dashed RA curves, Fig. 3). This is not the
case for boundedly rational households parameterized with the
survey data. When soft adaptation constraints, like subjective
perceptions and social expectations, curb private adaptation,
Medium AC households suffer the highest residual damages
(dotted yellow BA curve, Fig. 3), as they have already substantial
assets to lose but have not yet sufficiently invested in CCA. These
findings suggest that even under a nearly complete adaptation
uptake in the population, CCA is uneven, and could further
exacerbate inequalities since late or less-efficient actions lock-in
households to a path of higher damages (Low AC for rational
population or Medium AC for the boundedly rational).

Finally, over the past 30 y, scholars have scrutinized the
concept of a representative agent (42). Our results show that
assuming homogeneity not only fails to identify winners and
losers, as commonly discussed in the literature (40), but also mis-
represents the behavior of Medium AC households. It is expected
to find that the representative agent underestimates the recovery
of Low AC households (green vs. blue resilience triangles, Fig.
3A). Yet, it is surprising to observe that the representative agent in
CRAB undervalues the gravity of losses experienced by Medium
AC households by almost 1/3, for both RA (yellow vs. green
solid curves, Fig. 3A) and BA (yellow vs. green dotted curves,
Fig. 3B) populations. It implies that approximating a population
of heterogeneous households with a homogenous agent conceals
significant losses and misleads policy design.

Behavioral Heuristic Choices Affect the Importance of Uncer-
tain Physical Factors. So far, we have discussed the implications
of simulating behavior in the formal model, holding constant the
key physical factors that affect damage estimates and adaptation
uptake: the fraction of households exposed to flooding and the
objective effectiveness of Wet-, Dry-proofing, and Elevation
measures. As the baseline values for these factors, we use a
conservative fraction of current population in Florida exposed
to severe flooding (43), and average values of adaptation
effectiveness found in fragmented literature (28). Yet, historic
exposure changes with climate change, and the reported data
on measure effectiveness (28) vary by 20–80%. Given the
uncertainty in these four physical factors, we use SA to quantify
their effects on the fraction of households that choose to adopt
each adaptation measure (Fig. 4) and on the regional damages
to households (Fig. 5). To distinguish their interaction with the
households’ heterogeneity and behavioral heuristic choices, we
perform this analysis thrice, for three rival framings of household
CCA behavior: RAHom, RAHet , and BAHet .
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A B C

D E F

G H I

Fig. 4. Time-varying sensitivity indices of the uncertain factors—exposure
and objective effectiveness of measures—affecting households’ adaptation
diffusion. The three rows show the variance in the proportion of households
that adopt (A–C) Wet-, (D–F ) Dry-proofing, and (G–I) Elevation measures;
the three columns show how sensitivity varies per behavioral heuristics:
homogeneous and heterogeneous Rational Agents, RAHom (A, D, and G) and
RAHet (B, E, and H); heterogeneous Boundedly rational Agents, BAHet (C, F, and
I). The reported values are from the 460,800 Monte Carlo runs.

Our results show that the variability of adaptation diffusion
trends (measured through SDs, Fig. 4), and the factors driving it,
differ substantially across adaptation measures (comparing along
a column), and across behavioral heuristics (comparing along a
row). To measure the effect of each factor, we use sensitivity
indices estimating total-order effects on the variance of each
output (details in Materials and Methods and SI Appendix). For
instance, in Fig. 4A, the sensitivity indices measure how exposure
and the objective effectiveness of the three measures contribute to
the variability of Wet-proofing adoption as a result of their direct
and interactive effects. For rational agents, Elevation effectiveness
appears to be the major controlling factor in the fraction of
households that choose to elevate (orange, Fig. 4 G and H ),
but has less of an effect on the fractions of households that
choose to apply Wet- or Dry-proofing (orange, Fig. 4 A, B, D,
and E). Since Elevation is a costly measure, the importance of
its damage reduction effectiveness for its uptake is intuitive. Our
distinct approach captures individual trade-offs between different
CCA measures in the presence of various adaptation constraints,
providing unique estimation of the possible interaction effects.
Specifically, if boundedly rational households make adaptation
decisions as they report in the survey, we see a reversed effect: Ele-
vation effectiveness hardly matters for the uptake of Elevation but
is the predominant factor affecting the households that choose to
Wet- or Dry-proof (in orange Fig. 4 C and F ). Similar contrasts
are seen when comparing the relative importance of Wet- and
Dry-proofing effectiveness (Fig. 4, light and dark pink colors,
respectively) across adaptation measures and behavioral heuris-
tics. Hence, a small change in the objective effectiveness of CCA
measures is amplified by socio-behavioral factors, like perceived

A

B C D

E F G

Fig. 5. Time-varying sensitivity indices of the uncertain physical factors—
exposure and objective effectiveness—affecting households’ residual dam-
ages. The three rows plot the proportion of variance in damages of
rational (RAHom and RAHet ; panels A and B–D, respectively) vs. boundedly
rational (BAHet ; panels E–G) households explained by exposure and measure
effectiveness. The three columns for the heterogeneous heuristics show how
sensitivity varies across the three adaptation capacity groups (Low, Medium,
and High; panels B and E, C and F, and D and G, respectively). The top left
figure reveals the effects of physical factors for damages experienced by
a representative rational agent. The reported values are from the 460,800
Monte Carlo runs.

effectiveness or perceived damages, and leads to non-linear effects
of physical factors under alternative behavioral framings.

Our results uniquely reveal that socio-behavioral factors medi-
ate the importance of physical factors traditionally thought to be
decisive for CCA uptake. Without considering these interactions
between physical and behavioral uncertainty, the design of poli-
cies could be misguided: resources could be misdirected on factors
that are inconsequential, by either investing in collecting data on
their effectiveness or in running information policy campaigns.
For instance, the uncertainty surrounding the effectiveness of
Wet-proofing measures appears to not affect adaptation choices of
empirically grounded agents, but matters significantly for rational
optimizers (BAHet vs. both RA models, Fig. 4 A–C ). We also note
that, again, a shift from a representative to a diverse population of
rational households, i.e., accounting for heterogeneity of financial
adaptation constraints, hardly changes the relative importance of
the four physical factors on adaptation diffusion (left vs. middle
column, Fig. 4). Yet, a switch to a boundedly rational heuristic
transforms the importance of objective factors for CCA uptake
(right column). The longitudinal SA also reveals that the relative
importance of the four physical factors changes over time. For
example, when households mimic empirically reported behavior,
the uncertainty in Dry-proofing uptake depends mostly on
exposure in the beginning, with the non-linear interaction with
effectiveness of an alternative measure (here Elevation) eventually
becoming the dominant factor explaining uncertainty of the
Dry-proofing diffusion (Fig. 4F ), highlighting the importance
of accounting for trade-offs between different CCA measures
households face.

We also quantify the effects of the four uncertain physical
factors on potential damages (Fig. 5), across three rival behavioral
models (RAHom, RAHom, and BAHet ) and three levels of indi-
vidual AC (Low, Medium, and High). Results reveal that the
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introduction of heterogeneity in the RA model changes the
relative impact of uncertainty in the fraction of households
exposed (comparing panels in Fig. 5 A–D). This means that
in comparison to a representative agent (RAHom), for rational
heterogeneous households (RAHet ), the effects of uncertainty in
their exposure on the variance of potential damages drops nearly
to zero, while the importance of uncertainty in the effectiveness
of the three measures becomes more apparent. Accounting for
bounded rationality in agent behavior (Fig. 5 E–G), the relative
importance of physical factors shifts again, with damage variance
now dominated by uncertainty in the effectiveness of Dry-
proofing. Notably for empirically based households (BAHet ), if
policymakers were concerned only with the diffusion of adapta-
tion measures in the region, our analysis would suggest focusing
on communicating and improving Elevation effectiveness (right
column, Fig. 4). If they want to minimize regional damages, then
policies should focus on Dry-proofing effectiveness (bottom row,
Fig. 5). Therefore, complementing longitudinal SA of damage
estimates (Fig. 5) with monitoring the diffusion of various
adaptations (Fig. 4) is essential to assess what policy instruments
improve what type of CCA for what households, and to make
informed trade-offs when deciding on CCA policy design.

Discussion

Methodologically, sustainability science has been long concerned
with unsatisfactory representations of human behavior in formal
models of human-natural systems (25). By combining agent-
based simulations, household surveys, and exploratory modeling
we demonstrate that the traditional use of a representative
rational optimizer overestimates adaptation diffusion and over-
looks inequalities in the distributional impacts of hazards and
of adaptation. For CCA specifically, an understanding of how
macro-outcomes change as the richness of microbehavior in
models addresses a number of key research priorities (5).

This article advances methods for sustainability science in
several ways. First, responding to the calls for methodological
advances in ABM (7, 9), we provide a solid example of using
surveys to populate agents in formal models with data on socio-
behavioral factors that environmental psychology considers foun-
dational for representing behavioral changes. Complemented
with exploratory modeling, this approach offers a solid systematic
SA of rival behavior framing with nearly 500 thousand simu-
lations exploring interactions between behavioral and physical
uncertainties. Second, unprecedentedly this ABM embeds fine-
scale modeling of households adaptation behavior in a complex
evolving macroeconomy prone to hazards, introducing firms as
key agents defining regional economic development, endogenous
changes in households incomes and in unemployment. This
permits combining standard to agent-based modeling of informal
social influences with the evolution of formal market institutions,
which jointly either boost or hinder the speed of adaptation
diffusion and the uneven distribution of its benefits. Third,
departing from the common practice of reporting aggregated
population-level results of household adaptation (7, 9, 44), we
explicitly trace trade-offs among various adaptation measures and
visualising results per individual adaptive capacity to enable sub-
stantiated discussions about equity and tailored policy designs.
These methodological advances offer insights for the science and
practice of CCA, and for sustainability modeling efforts that aim
to capture human behavior in nature–society systems.

Quantifying Soft Limits and Speed of Individual Climate Adap-
tation. Assessing the speed of adaptation uptake and its soft
limits is among the key challenges for CCA science and

policy (5). Our unique approach goes beyond heterogeneity in
financial adaptation constraints, which has been the main step in
advancing over the representative rational agent model of human
decisions in contemporary CCA literature. The switch from the
RA to BA framing of human decisions fundamentally impacts
all model outcomes—adaptation deficits, regional damages and
even the effects of uncertain physical factors like hazard exposure
and objective adaptation effectiveness. Leveraging theory and
survey data, our results reveal that even for investment decisions,
soft adaptation constraints like affect heuristics, self-efficacy, and
social norms (i.e., bounded rationality) are the core source of
behavioral uncertainty in the speed and scope of individual
adaptation diffusion. Conversely, the effects of heterogeneity in
incomes and other financial constraints are not as essential (at least
for households in advanced economies) as commonly assumed
in the literature. Following the patterns in the survey data, the
behavioral (e.g., risk perception, perceived response-efficacy) and
social (e.g., descriptive norms) factors either facilitate or curb
individual intentions of BA agents to adapt. Moreover, in our
model, some of these adaptation constraints change over time
for BA agents who learn, for instance from their experience
with CCA measures or floods (in contrast, RA agents do not
learn). Accounting for both diverse adaptation constraints and
learning explains the difference in macro-outcomes of BA vs. RA
simulations.

Role of Institutions in Shaping Equity and Socio-economic
Resilience. The individual behavioral changes described above
are also affected by institutions on meso (social norms) and macro
(economy) levels. Tracing the evolution of these institutions in
our framework enables going beyond conventional findings that
High AC households adapt quicker and suffer less damage than
their Medium and Low AC peers. Instead, we explicitly model
the mechanisms that amplify or reduce existing inequalities.

Besides individual learning, BA households in CRAB also
observe the evolution of descriptive norms. As the number of
peers pursuing a specific CCA grows in an agent’s social network,
the prevailing local social norm shifts from “non-adaptive” to
promoting CCA behavior. Hence, BA households with larger
social networks full of early CCA adopters adapt quicker and
better than those with smaller networks dominated by laggers,
causing agents to benefit differentially from adaptation. Besides
speed, which CCA measure households adopt also matters. While
ABM literature typically models one type of household CCA,
our results reveal non-linear trade-offs between the three CCA
measures. The social amplification† influences the speed and type
of CCA adopted, both of which matter for damage reduction in
our results, and hence for the (un)even distribution of CCA
benefits.

The macroeconomic mechanisms also have differential impact
on disparities. In CRAB, households interact with firms that
provide jobs. Household incomes change endogenously depend-
ing on the firms’ economic performance, implying that labor
market institutions expedite the recovery of some households,
but lock others into a path of increasing inequality. Specifically,
firms hit by floods decrease their production due to destroyed
assets and face higher costs due to productivity losses. Those who
go bankrupt, leave their workers unemployed. These indirect
damages are milder for individuals with High AC who find
another job easier due to their higher education; low-educated
Low AC stay unemployed longer, which slows their recovery and
hampers opportunities to adapt on time due to lacking savings.
This unique feature of CRAB—integration of households in the

†Only for BA households; RA do not learn and are not prone to social influences.
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macroeconomy—permits tracing another macroeconomic mech-
anism: indirect benefits of CCA. Besides protecting households
from direct damages, private CCA diminishes their post-flood
repairs, reducing shocks to goods’ markets. It helps firms avoid
bankruptcies, reducing labor market shocks and unemployment
in the aftermath of a flood. This result reinforces previous
statements on the importance of bottom-up CCA actions to
build climate-resilient societies (6), including the prevention
of business interruptions essential for socio-economic resilience
(45). The indirect macroeconomic effects of CCA—faster post-
flood recovery, fewer damages after repetitive hazards, and
reduced unemployment—also known as resilience dividends,
could lift people and regional economies instead of locking
population into long-term structural vulnerabilities. As such,
our results demonstrate macroeconomic co-benefits of private
CCA, with implications for policy design that should embrace
a systems’ perspective, going beyond direct damages to account
for cascading indirect effects for various stakeholders.

Tailored Policies for Closing the Adaptation Deficit. While many
ABMs model heterogeneous agents, most report only population-
level outcomes (44). Leveraging on this natural strength of ABMs,
we present results differentiating per household AC. Our analysis
supports previous findings that shocks disproportionally impact
Low AC who have the longest recovery despite suffering the
lowest damages. Surprising was to find that Medium AC, who
have assets to lose and sometimes enough finances, postpone
adaptation due to the awareness or self-efficacy constraints. These
soft constraints are the main reasons the damages pathways for
Medium AC (and the overall adaptation deficit) vary so much
for BA vs. RA agents.

Compared to the optimal, the insufficient level of adaptation
pursued by BA households with empirically grounded behavior
is so significant that it calls for tailored CCA policies that
explicitly motivate private adaptation. Our analysis reveals
different channels via which CCA policies could reach various
vulnerable households by removing their adaptation constraints.
For example, Low AC households will benefit from tailor-
made subsidies (e.g., anchored to property values/incomes) for
most effective (instead of just any) CCA measures and from
uplifted education. Conversely, Medium AC households will
benefit from information policies with personalized narratives
appealing to perceptions and social identity. Such strategies
can complement the communication of climate-driven risks to
avert households from locating in climate-sensitive regions or
investing too late in private CCA. Designing tailored policies to
overcome such soft adaptation constraints could result in nearly a
fivefold drop of residual damages per household according to our
analysis.

Importance of Behavioral Uncertainty for Policy Design . Un-
certainty is an inherent component of decision-support for CCA
policy, which has so far heavily focused on exploring implications
of various government-led adaptation choices (3) or physical
factors (2), omitting behavioral uncertainty of private adaptation.
The analysis here considers both uncertainties in physical factors
and epistemic behavioral uncertainty—the rival framing from
rational to empirically grounded and from homogeneous to
heterogeneous populations.

Our analysis demonstrates that fundamental differences be-
tween RA vs. BA behavior framings are critical for CCA, and
for nature–society systems in general, given similar observations
for other sustainability applications (10, 11). Additionally, our
longitudinal SA shows that behavior framing alters the more

predictable variance imposed by physical factors that are conven-
tionally considered crucial in CCA policy (exposure and objective
adaptation effectiveness). While introducing heterogeneity in
financial constraints (RAHet vs. RAHom) matters, it is the switch to
a realistic representation of behavior shaped by diverse adaptation
constraints (RAHom vs. BAHet ) that fundamentally changes how
consequential the uncertainties in physical factors become.
Notably, the physical uncertainties interacting with behavioral
uncertainty manifest differently for households of different
adaptive capacities (more damage variability for Medium and
High AC) and different CCA measures. For example, for BAHet
households, elevation efficacy (and lack thereof) is the most
critical factor in how many households choose to apply Wet-
and Dry-proofing. This is not the case under the assumption of
agent rationality.

When it comes to model-based policy design to address CCA,
this implies that assumptions about how we represent human
decision-making processes influence our expected adaptation
outcomes. This is a finding already highlighted in literature
widely, but we stress two additional nuances illuminated by
this unique combination of methods in this study. Behavioral
assumptions also shift what we consider to be our “X factors”—
the key variables that might undermine adaptation progress
and that we need to monitor and prepare for. An unrealistic
representation of human behavior might mislead modelers and
policy makers to direct efforts on factors that are in fact
inconsequential. For example, if we design CCA policy under
a simplified premise of human homogeneity and rationality
(in our case, the RAHom model), we might be misled in either
investing in the wrong data collection campaigns or in running
information policy campaigns focused on the effectiveness of
measures that make no difference. A particular finding we
highlight here is that the degree of household exposure might
not be as critical in reducing residual damages as other soft socio-
economic limitations. Instead, non-linear interactions between
alternative CCA measures become apparent, for instance, when
households start to substitute CCA measures as uncertainty about
their effectiveness changes.

Generalizability of Findings. Being applied to CCA, our model-
ing framework advances the literature in addressing one of the
most sought for challenges in sustainability sciences: representa-
tion of human behavior in formal models. Grounded in social
science theories, our ABM encompasses generic mechanisms
shaping both macro- and micro-dynamics (27). We validated
macro-dynamics against stylized facts (SI Appendix, Model
Validation), which are generalizable for market-based economies
characterized by economic growth and increasing population.
For micro behavior, we employ the prominent psychological
theory (PMT), which assumes human behavior in the risk context
is shaped by perceived awareness (of threat), self-efficacy, and
social norms among other socio-behavioral factors. PMT has
been shown to explain generic mechanisms behind CCA behavior
better than alternative theories‡ and has been validated against
empirical data worldwide (13–15). While we used surveys to
partially parameterize factors of household CCA behavior for
a specific population, the underlying mechanisms of behavioral
change under risk are generic. Hence, the derived insights—
that socio-behavioral factors rather than income heterogeneity
alone matter for macro-outcomes, that these factors contribute
to shaping inequality, and that they interact with uncertainty of
‡Alternative theories of behavioral change could be better suited in other contexts where
risky outcomes are absent and different cultural norms or habitual behavior is prevalent. In
those cases, behavioral change mechanisms and the corresponding simulation outcomes
could vary.
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physical factors—are likely relevant beyond this case-study and
this particular hazard. Consequently, the presented framework
could be applied to similar situations, where the behavioral
change of interest has not yet happened, since the mechanisms
behind the factors driving potential behavioral changes (at least
in the risk context) are encoded and could be activated as the sim-
ulation unfolds. Naturally, the specificity of those interactions in
other contexts should be ascertained with behavioral microdata.

The detailed behavioral data also enables us to identify
which of the socio-behavioral factors and constraints matter the
most for shaping soft limits to adaptation. While it is crucial
for achieving context-specific results, we believe that empirical
survey limitations are not always a hindrance to the application
of such methods for other cases or sustainability challenges.
Currently, behavioral data is becoming increasingly available via
literature publishing case-based surveys on pro-environmental
behavior, meta-analyses or cross-cultural surveys (15, 31, 46),
and open-access databases (e.g., World Risk Poll§) making such
advanced, behaviorally-rich models more feasible. This said, as
with ecological, hydrological or climate models, theory-driven
mechanisms and secondary data only help elicit rough system
dynamics and draw conclusions in broad lines. Nonetheless,
high-quality analyses of human behavior in sustainability sci-
ence models necessitate high-quality data on the behavior in
question.

Limitations and Future Work. Our modeling work can be
expanded in several ways. First, the analysis would benefit
from a more comprehensive spatial representation of climate
shocks aligned with hazard maps corresponding to downscaled
Representative Concentration Pathways scenarios (1). Future
work could also explore hydrological modeling of floods under
various climate scenarios (47) and perform a comparative analysis
for other coastal regions, which may require extending to other
economic sectors and empirical calibration of sector-specific
impacts of hazards. Additionally, the model would benefit from
including firms’ CCA decisions.

Second, while our exploratory modeling accounts for the
effects of epistemic uncertainty and stochasticity, it does not
consider parametric uncertainties in the socio-economic system.
Performing global SA on empirically defined weights for different
behavioral factors might interfere with the theoretical grounds of
the behavioral model. Additionally, methodological innovations
in sampling and processing large uncertainty ensemble runs
would enable better comprehension of the effects of such
uncertainties. Furthermore, although we capture changes in agent
behavior based on their updated flood experiences, taken CCA
actions and evolving social norms, future work could also account
for fundamental changes in preferences (i.e., here, weights are
estimated using only a snapshot of past data). Future research
could delve into how individual perceptions and preferences
evolve over time, perhaps employing panel survey datasets from
different contexts (14, 48). Given the complexities of real-world
behavior, other “dynamic” methods of data collection, such as
laboratory experiments, randomized control trials, and serious
gaming—all of which have seen integration with ABMs (49)—
might offer deeper insights when applied to CCA contexts.

Last, such combinations of methods could be used to quantify
soft adaptation limits or tipping points at which individual
objectives or societal needs cannot be secured from intolerable
risks through adaptation (5, 17). Identifying such social tipping
points in CCA could also help design policies for transformational
§https://wrp.lrfoundation.org.uk/.

adaptations, such as planned and equitable relocation when
certain locations reach their adaptation limits (50). ABMs
are already accustomed to combining public government-led
adaptation with private actions (8, 9) to explore both synergies
and unintended effects between public and private adaptations.

Materials and Methods

To analyze the role of behavioral assumptions on household CCA and regional
damages, we combine an evolutionary economic agent-based CRAB model
with household survey data and with exploratory modeling. CRAB simulates
socio-economic dynamics of regional agglomeration economies exposed to
climate-induced risks (for more information about the theoretical foundations
of the model see ref. 23). It features a regional economy exposed to floods
and populated by heterogeneous households and firms that interact, learn, and
endogenously decide what to do (e.g., how much goods to produce, whether
to adapt or relocate). We employ survey data from Florida, US (n = 965)
to parameterize household behavior (14). Considering the high uncertainty
surrounding hazard, exposure, and vulnerability of the regional economy, we
also perform an extensive SA on the fraction of population exposed, and on the
effectiveness of private flood-proofing measures.

Socio-economic Structure. The CRAB model builds upon the evolutionary
economic tradition (26, 51). Here, the model features a three-sector regional
economy with four classes of heterogeneous agents: households, and capital-
good,consumption-good,andconsumption-servicefirms.Firmsandhouseholds
dynamically interact in decentralized labor and good/service markets. The
number of agents changes in the course of the simulation depending on the
migration of households and entry/exit of firms. The region is divided between
hazard-prone and safe areas to mimic the greater Miami case, with 40% of
agents exposed to floods. Floods hit agents in the hazard-prone area, destroying
households’ properties, firm inventories, and machines. Households living in
the hazard prone-area can take multiple CCA actions to protect themselves.
Firms. The capital-good sector invests in R&D to discover more productive
technologies. The latter generates a “Schumpeterian” creative (innovative)
destruction process, which is the engine of economic growth. Capital-good
firms then advertise their machines via “brochures” to possible customers:
consumption-good/service sectors. Once orders are computed, capital-good
firms produce machinery using labor. The consumption-good/service sector
combines labor and capital to produce a homogeneous good/service. These
two sectors follow the same decision-making process using adaptive heuristic
demand expectations and fixed capital-output ratios to achieve desired
production and capital stock level. Importantly, if capital stock is insufficient
to satisfy the desired production, new machines are ordered comparing the
“brochures” firms are aware of. In addition, following a pay-back rule, current
machinery can also be replaced by more productive ones. The consumption-good
sector differs from the service sector in their capital-output ratios. We loosely
parameterize this regional economy based on the data for Florida, implying that
the consumption-service sector is more capital-intensive than the consumption-
good sector (52).
Households. Households have multiple socio-economic and behavioral char-
acteristics derived from survey data: property values, education, and initial
savings, as well as the influence of social norms. Households spend a fraction
of their income if employed, while unemployed households spend their entire
unemployment benefits. Savings accumulated over time are spent on protective
CCA actions and to repair flood damages. The latter depends on the household
property value and the damage coefficient. The value of the household property
is indexed to the region’s average wage, thus increasing over time. The damage
coefficient is calculated overlying flood depth and depth-damage curves for
residential buildings, using US data (53).

Rival Framing of Human Behavior. The model allows for comparing CCA
protective actions of rational, fully informed (RA) and of boundedly rational
(BA) households. In the RA framing, households compute Expected Utility by
weighting the costs and benefits of undertaking a CCA action against no-action
and choosing the highest-utility option. In the BA framing, we assume that
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households behave as suggested by PMT. Using Florida survey data, we run
a Logit regression to estimate effects of relevant socio-behavioral attributes
(SI Appendix, Model Calibration). We also differentiate between homogeneous
and heterogeneous populations of both RA and BA households, using either the
survey averages or drawing values from empirical distributions of corresponding
survey attributes. For example, for BAHet households, we use effects from the
Logit model to specify the relative weights for each socio-behavioral attribute.
Each BAHet household multiplies these weights by their own heterogeneous
attributes to estimate a probability to adopt each of the three CCA measures.
Since not all households who intend to adapt actually take action, we assume
that households in CRAB adapt only if this probability is higher than a threshold
randomly drawn between 0 and 1 (SI Appendix, Households). Households living
in flood-prone areas perform this calculation each time step for all the affordable
CCA measures that they have not yet implemented. It is important to note
that household’s probability of adaptation can change over the course of the
simulation due to evolving values of the socio-behavioral factors. One factor
affecting such probability is the implementation of a measure. Specifically,
past undergone measures decrease the probability of future adoption of other
measures directly and also indirectly by decreasing expected damages. The
diffusion of a particular measure can also affect other households’ decision-
making by updating the descriptive social norm in own network as new peers
undertake the measure. Additionally, the experience of flooding also affects
households’ probability of CCA. While these changes in attributes are limited in
scope, they aim to capture the possible behavioral trajectories arising from our
models.

Model Calibration. We calibrate our regional economy to resemble a coastal
agglomerated area in the southeast US, such as Miami-Dade county. In
addition to the survey data, we employ publicly available statistics. We include
3,000 households created from the survey data, i.e., about 0.5% of the total
owner-occupied properties in the county. We calibrate firms according to
the current business-to-population ratio. To calibrate the capital intensity of
firms from the three sectors in CRAB, we apply constant US capital-output
ratios from a macroeconomic model (52). To parameterize heterogeneous
household behavior, we generate a synthetic population by conditionally
sampling household attributes from the survey data using first moment
and cross-correlation among variables as the fitness criteria (SI Appendix,
Model Calibration). When the population is assumed to be homogeneous,
the attributes’ mean value is used for all households, which will then have
the same socio-economic and behavioral initial characteristics. We also employ
national statistics to divide household expenditure between goods and services.
Last, we model the number of agents living in flood-prone areas according to
the percentage of properties likely to be affected by a major flood in the next
30 y in Miami-Dade county. We consider two extreme floods of 3-m high hitting
this regional economy at fixed time steps (100 and 140), equivalent to a storm
surge generated by a category five hurricane hitting the low-lying flood-prone
areas.

Institutions. Households and firms interact via formal economic institutions
(capital, labor, and goods/services markets) and informal (social networks)
institutions. In the capital market, capital-good firms send brochures containing
the price and productivity of their machines to existing customers and new,
randomly selected, potential customers. Consumption-good and -service firms
seeking to buy new machines compare the brochure they received and select
the supplier with the best price-quality ratio. In the labor market, firms
assess their labor demand and post available vacancies or fire the surplus
of workers. Unemployed households, sorted by education level, select a sub-
sample of available vacancies and choose the one with the highest wage.
Hence, households with higher education will get better-paid job opportunities.
Wages are then partially spent on goods and services. The aggregate household
expenditure in good and service markets defines the local demand in the coastal
region. Local demand is summed to export demand and assigned to firms
according to their market share. The latter depends on their competitiveness,
which, in turn, is calculated according to their prices and unfilled demand.
Firms’ market share evolves via quasi-replicator dynamics (SI Appendix, Firms).
Furthermore, BA households are influenced by social norms, i.e., unwritten
rules characterizing how appropriate a certain behavior is within a social group.

Our survey elicits the influence of both descriptive and injunctive social norms,
which we parameterize in the CRAB model using the estimated logit effects
(SI Appendix, Model Calibration). These effects serve as weights impacting
individual intention for CCA. For each household in CRAB, these weights are
multiplied by the number of contacts in the individual’s social network that have
undertaken the specific CCA actions (SI Appendix, Household). To instantiate a
social network, each household in CRAB links to a number of other agents, and
this number we draw from the empirical distribution reported by our survey
respondents in Florida. This social network serves as a medium for households
to learn about protective actions undertaken by their peers the uptake of which
evolves as the simulation unfolds.

Entry and Exit of Economic Agents. The agglomeration process in the
regional economy in CRAB is endogenous, with households’ and firms’ entry (in-
migration for households and establishment of firms) and exit (out-migration
for households and bankruptcy for firms) processes dependent on how the
regional economy performs. Specifically, a migration process linked to regional
economic indicators regulates the number of incoming/outgoing households.
Aligned with empirical evidence, we use the difference in income per capita,
and the unemployment rate (54) as indicators of the regional attractiveness
for household agents. In a nutshell, an economy with a growing income per
capita and a low unemployment rate attracts new households sampled from the
synthetic population pool and added to the incumbents. Conversely, a stagnant
economy will push households to migrate elsewhere. Households also affect the
creation of new firms from the bottom-up. In particular, an employed household
decides to create its own firm if the profits of its current employer exceed a certain
threshold for a number of consecutive periods. Firms with quasi-zero market
share and lack of resources are assumed to go bankrupt and are removed.

Exploratory Modeling and Sensitivity Analysis. We create a large set of
alternative model assumptions, representing plausible uncertainty in the
estimates of the model’s physical factors: flood exposure and the effectiveness of
the three adaptation measures (Wet-proofing, Dry-proofing, and Elevation). We
usethissetperformglobalSAtoidentify factorsexplainingthevariabilityofcritical
model outputs. To causally apportion output uncertainty to uncertain physical
(input) factors we use Sobol’ variance decomposition (55). Assuming parametric
independence and uniform distributions, we generate a set of 1,536 parameter
combinations across the parameter ranges as detailed in the SI Appendix. These
ranges are informed by literature estimates (see ref. 28 and references therein for
effectiveness). We note that even though the term “sensitivity analysis” might
be common in the literature, it is often a misnomer or it refers to so-called
“one-at-a-time” analyses that miss the interactions uncertain factors might have,
or they are “local” in that they only test deviations from nominal values. Even
though these applications are common due to their computational ease, the
analysis performed here examines the full parametric space as well as parameter
interactions. The analysis is also exploratory in nature (referring to exploratory
modeling as articulated above), as it moves well beyond literature estimates to
assess the effects of uncertainty. To do so, we intentionally expand the parametric
range we explore to capture consequential interactions that might exist in more
extreme regions of the parametric space, such as the entire population being
exposed. Each exploratory ensemble is applied to three alternative behavioral
heuristics (RAHom, RAHet , and BAHet ) to assess how the importance of each factor
changes under rival behavioral framings. For each parameter combination we
also perform 100 Monte Carlo runs to preserve the effects of stochasticity,
creating a total of 460,800 model simulations for the exploratory analysis alone.
We calculate total-order Sobol’ indices measuring the total contribution of each
factor both individually and through its interactions with other factors. To do so,
we average the 100 Monte Carlo runs across every time step for every parameter
sample and for every uncertain outcome (i.e., the fraction of households that
choose each adaptation measure and the potential damages of households with
different levels of adaptive capacity). We then calculate the indices using the
Sobol’ method implementation in the SALib Python package (56). Each (total-
order) index is estimated for every time-step in the simulation, resulting in an
estimate of “time-varying” longitudinal significance. This allows us to detect
changes in relative importance across all the years, indicative of changes in
regimes or other fundamental system shifts. Time-varying sensitivity analyses
have been more commonly applied in other modeling domains (38), but are not
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prevalent in the ABM literature, especially in experiments at the computational
expense of the one presented here.

Data, Materials, and Software Availability. The agent-based model code
and the global sensitivity analysis scripts have been deposited at GitHub: https://
github.com/SC3-TUD/PNAS-Uncertainty-in-Boundedly-Rational-Climate-Adap-
tation/tree/main (57). The questionnaire and the minibatch of the household
survey data have been deposited at the DANS (Data Archiving and Networked
Services) Archive: https://doi.org/10.17026/dans-x9h-nj3w (58). The statistics
related to the survey data required to reproduce the results are provided in the
Supplementary Information to this article.
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