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Trajectory Prediction Sensitivity Analysis
Using Monte Carlo Simulations
Based on Inputs’ Distributions

Julia Rudnyk∗, Joost Ellerbroek†, and Jacco M. Hoekstra‡

Control and Simulation, Faculty of Aerospace Engineering,
Delft University of Technology, Delft, the Netherlands

To facilitate the increasing amount of air traffic, current and future decision support

tools for air traffic management require an efficient and accurate trajectory prediction. With

uncertainty inherent to almost all inputs of a trajectory predictor, the accurate prediction is not

a simple task. In this study, Monte Carlo simulations of a ground-based trajectory predictor

are performed to estimate the prediction uncertainty up to 20 minutes look-ahead time and

to assess the correlation between inputs and prediction errors. Selected inputs are aircraft

bank angle, constant calibrated airspeed and Mach number speed settings, vertical speed,

temporary level-offs, air temperature, lapse rate, wind, and air traffic control intent. These

inputs are provided in the form of their distribution functions obtained from observed data

such as surveillance data, weather forecasts, and air traffic controllers’ inputs. Simulations

are performed for heavy and medium wake turbulence category aircraft. Results indicate

that with a 20 minute look-ahead time, when outliers are not considered, along-track errors

can reach up to 18 nautical miles, whereas altitude errors can reach up to around 13,000 feet.

Cross-track errors in cruise highly depend on the lateral deviations due to ATC instructions,

and, in this study, are within 10 nautical miles. Wind conditions, vertical speed, calibrated

airspeed, Mach number speed setting, and temporary level-offs are determined to be the most

influential inputs.

I. Introduction

It is a prevalent forecast that air traffic will grow in the coming years [1, 2]. To be able to facilitate this growth,

numerous decision support tools are being developed with the purpose of assisting Air Traffic Control (ATC) units in

such tasks as flight planning, air traffic flow and capacity management, arrival and departure management, conflict

detection and resolution, metering, sequencing, and merging.
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All of these tasks require the ability to predict the future positions of aircraft. To facilitate this, a (ground-based)

Trajectory Predictor (TP) provides aircraft positions in three dimensions for a number of time instances into the future.

Trajectory prediction is a complex process which requires information related to aircraft performance, meteorological

conditions, and flight intent, and is performed through the integration of aircraft equations of motion. All information

that is required for the prediction process and can vary per flight (e.g. aircraft type, wind conditions, vertical and/or

horizontal constraints) can be referred to as input parameters or inputs. Information that does not vary per flight (e.g.

equations of motion, gravitational acceleration, Earth radius, coordinate system) is referred to as model and model

parameters. Assuming that the model and the model parameters are realistic and correct, the accuracy of the prediction

depends on the accuracy of the inputs. It occurs often that the availability of particular input values is (temporarily)

limited or absent, and that assumptions have to be made to initiate the prediction process. This study focuses on

predictions up to 20 minutes look-ahead time. For this time interval, accurate knowledge of the weather conditions,

ATC instructions and the aircraft modes of operation is crucial. These are often not known and either assumed to have

standard values or are disregarded. Differences between reality and assumptions result in prediction errors, which in

turn diminish the added value of decision support tools (e.g. Medium Term Conflict Detection).

An often proposed solution to this problem would be to ensure that inputs are known with high certainty (e.g. by

down-linking some data or computed trajectory from aircraft [3–8]). However, not all inputs can be precisely known in

advance (e.g. weather, ATC instructions).

Much research has been conducted exploring the problem of trajectory prediction uncertainty [9–20]. Henderson et

al. (2013) measured the trajectory prediction accuracy and quantified the sources of errors by conducting field trials,

where aircraft were descending at one of three predefined speed profiles [17]. Some studies [10, 13, 14] performed a

sensitivity analysis, where one input was varied at a time, while others were kept constant at their reference values. This

is known as a local sensitivity analysis, where usually, inputs are varied from their reference value either by some fixed

percentage, the standard deviation, or some absolute value. Although this approach is fast, simple, and provides an

estimation of the contribution of each input to the output uncertainty, it cannot be used to study the combined influence

of all inputs, and results strongly depend on the chosen reference values.

Another way to study uncertainty is to perform a global sensitivity analysis, where all inputs are varied at the same

time from their probability distribution functions. In this way a conclusion can be made about individual and combined

contributions of inputs to prediction uncertainty. In their work, Mondoloni et al. (2005) performed simulations where

input errors were sampled from distributions [13]. These distributions, however, except one, were not estimated from

the observed data. To estimate the sensitivity of predictions to errors in inputs to a TP, Mueller et al. (2004) conducted

Monte Carlo simulations where it was assumed that errors are normally distributed [12]. Although the mean values and

standard deviations used to define the distributions were based on the measurements, the assumption of normality might

be incorrect. Casado (2016) developed a framework to estimate prediction uncertainty using arbitrary Polynomial Chaos



Expansion, where the majority of input distributions were assumed to be normal [20], whereas in related work [21, 22]

some inputs were described with uniform and triangular distributions. Torres (2015) performed a global sensitivity

analysis where the errors of inputs to the TP were modeled using uniform and normal distributions [19]. Whereas this

approach provides reasonable bounds on prediction errors, by taking into account the results from prior research on

input variability, the assumed distributions might not reflect the probability distribution of the errors in real operations.

Furthermore, to assess the contribution of each input to prediction errors, a local sensitivity analysis was performed. As

previously mentioned, this approach does not allow to investigate the impact an input has in combination with other

inputs (e.g. effect of one input may be diminished or compensated by the effect of another input).

The objective of this paper is therefore to address this issue by performing Monte Carlo simulations with distributions

of the inputs that are obtained from observed data. Additionally, these input distributions are compared to commonly

made assumptions (e.g. single settings of an input or a range of feasible values). The selection of TP inputs was based

on the conclusions of previous research [10, 11, 13–16, 18, 20] about significant input parameters and includes aircraft

bank angle, constant Calibrated airspeed (CAS)/Mach number speed settings, vertical speed, temporary level-offs in the

climb and descent phases, air temperature and lapse rate, wind, and ATC intent. To take into account the differences

between aircraft in terms of mass, Monte Carlo simulations were conducted for aircraft of heavy and medium Wake

Turbulence Category (WTC), since these two categories are most common in civil aviation. Prediction uncertainty is

estimated as a function of a look-ahead time up to 20 minutes and the contribution of each input to the prediction errors

is assessed based on the computed correlation coefficients.

II. Sensitivity Analysis
A sensitivity analysis can be performed to determine the influence of uncertainties for different TP inputs on

the quality of the trajectory prediction. In the field of sensitivity analysis, there is a distinction between sensitivity

and uncertainty analysis [23]. A sensitivity analysis attributes uncertainty in the model output(s) to uncertainty in

model inputs. Most often, a sensitivity analysis is performed by measuring sensitivity indices or other measures. An

uncertainty analysis is meant to quantify uncertainty in the model output(s) due to uncertainty in model inputs and as a

result identify sensitive inputs. Uncertainty analysis methods are used to sample inputs and propagate their uncertainty

through the model, which allows to estimate sensitivity. In this paper, both uncertainty and sensitivity analyses are

performed and the generalized term of Sensitivity Analysis (SA) will be further used to refer to them. Two types of SA

can be distinguished: local and global. A short introduction to the approaches of a local (commonly used) and global

(this study) SA is given below.



A. Local Sensitivity Analysis

A local SA uses a one-at-a-time (OAT) sampling approach, where only one input parameter is varied at a time, while

the rest is kept at their reference or nominal values [23]. By changing one parameter at a time, a conclusion can be

made about what inputs contribute to changes in output and to what extent. The biggest limitation of OAT is that it

strongly depends on the reference (nominal) value of each input. Additionally, the assumption of inputs at their nominal

values might hide interesting results of a combined impact of several inputs and is an oversimplification of reality. For

a local SA, one could take derivatives or change inputs with a certain step (e.g. ±5%) around a nominal value. A

derivative-based SA is based on computing partial derivatives of output Y with respect to its inputs X = Xi, X j, ..., Xn.

Although it is a straightforward way of expressing sensitivity, the obtained measure is representative only at the point

where it is computed. This implies that if one wants to perform a derivative-based SA of a non-linear system and obtain

an average sensitivity measure, derivatives must be computed at a set of different points.

B. Global Sensitivity Analysis

Usually, a global SA uses an all-at-a-time sampling approach where all inputs are varied at the same time from their

distribution functions, or the entire feasible space [23]. A simultaneous variation of all inputs allows to investigate the

sensitivity of the output to each input and a combined impact due to interactions. A common approach to conduct a

global SA is to run Monte Carlo simulations. The Monte Carlo method applies sampling, which is a process of randomly

drawing variables from their distribution functions. Usually, Monte Carlo simulations include the following steps:

1) sample inputs from the distribution functions; 2) compose input vectors containing sampled inputs; 3) run a model for

all input vectors. Using chosen metrics for a model output evaluation, an uncertainty analysis can be performed by

computing output distribution and statistics. Then, scatter plots can be used to inspect the sensitivity of output to each

input and a sensitivity measure can be obtained by computing a correlation coefficient.

III. Estimation of Input Distributions

A. Probability Distribution Function

Each studied input to a TP is considered as a random variable and the goal is to describe it using a probability

function or a set of such functions. The latter is applicable to parameters that require two or more characteristics to be

defined (e.g. temporary level-offs are characterized by the flight level at which they occur and their duration).

Although the majority of studied parameters can be represented as continuous random variables, some parameters

(e.g. the flight level of a temporary level-off) should be characterized as discrete random variables. A continuous

random variable is described by a probability density function (PDF) f , while a discrete random variable is described

by a probability mass function (PMF) p. The probability P that a continuous random variable X takes on a particular

value x is 0 and, instead, the probability that X falls within a range from a to b is found P(a ≤ X ≤ b) =
∫ b

a
f (x)dx.



The PDF f is the derivative of the cumulative distribution function F(x). The probability P that a discrete random

variable X takes on a particular value x is P(X = x) = p(x).

B. Maximum Likelihood Estimate

The estimation of the distributions of the studied parameters is a two-step process, which consists of the estimation

of the distribution parameters (this subsection) and evaluation of the goodness of fit (next subsection).

Unknown parameters of a distribution can be estimated from observations by means of a maximum likelihood

estimation (MLE) [24]. MLE finds such values of parameters, which make the observed data most probable, i.e., most

likely. A sample X = x1, . . . , xn of n observations comes from a distribution f defined by a vector of parameters θ,

f (X | θ). Assuming these observations are independent and identically distributed, their joint distribution can be

expressed as:

f (X | θ) = f (x1, . . . , xn | θ) =
n∏
i=1

f (xi | θ) (1)

The likelihood L is a probability of obtaining observed values given certain values of parameters:

L(θ | X) =
n∏
i=1

f (xi | θ) (2)

This can be simplified to

logL(θ | X) = log
n∏
i=1

f (xi | θ) =
n∑
i=1

log f (xi | θ) (3)

Then, the maximum likelihood estimate of θ (θMLE ) is that value of θ that maximizes L:

θMLE = arg max
θ

logL(θ | X) = arg max
θ

n∑
i=1

log f (xi | θ) (4)

C. Kolmogorov-Smirnov Test

After a data sample is fit to a distribution, i.e., its parameters are estimated using MLE, a Kolmogorov-Smirnov

(K-S) test is performed to test the goodness of fit. The K-S test determines if a data sample comes from a population

with a certain distribution [25]. The test is based on the maximum distance D (Eq. (5)), i.e., K-S statistic, between a

hypothetical cumulative distribution function F(x) and an empirical distribution function FN (x) obtained from the data

sample. If the data sample comes from this hypothetical distribution, D should be small.

D = max
��F(x) − FN (x)

�� (5)



In this study, the K-S test was applied to PDFs obtained using MLE and the distribution that resulted in the smallest

K-S statistic D was chosen as the best fit.

IV. Data Used in This Study

A. Data Source

The surveillance data used in this study, including Mode-S information, was provided in ASTERIX Category 062

format [26] by Maastricht Upper Area Control (MUAC). Figure 1 shows the MUAC airspace geographic boundaries in

blue and MUAC primary and secondary surveillance radar coverage is indicated by the red area. The selected data

covered a period from the first until the seventh of July 2016 with an update interval of four to five seconds. The weather

conditions and air traffic management regulations issued in this period were inspected, but are not considered to have a

significant impact on the statistics obtained for the studied input parameters.

Fig. 1 MUAC airspace boundaries (blue), MUAC radar coverage (red area), weather forecast points (purple).

Weather forecasts were provided by the Royal Netherlands Meteorological Institute and were obtained from MUAC

for 2016. These forecasts contain wind direction, wind speed and air temperature for 20 predefined geographic locations

at 10 flight levels ranging from flight level (FL) 50 to FL530. These locations are shown in Fig. 1 as purple dots.

Recorded ATC instructions were provided by MUAC. As part of regular operations, ATC instructions are stored in

MUAC’s Flight Data Processing System. These include, among others, ’direct’, heading, speed, and climb/descend

instructions.

B. Data Pre-processing

On average, data from approximately 18,000 flights is received by MUAC radar per day, and of those flights,

approximately 5,900 flight plans (FPLs) were sent to MUAC. Since it is not obligatory to provide information about



aircraft type, wake turbulence category and flight type in Mode-S, this data is extracted from the MUAC FPL database.

Therefore, only those flights for which FPLs were received by MUAC were considered in this study. Furthermore,

scheduled and non-scheduled flights were analyzed. Table 1 shows the resulting number and percentage of flights per

WTC for 7 days.

Table 1 Number and percentage of flights per WTC for 7 days

WTC Flights %
Heavy 7,143 17.6
Medium 33,109 81.4
Light 427 1.0
Total 40,679 100

All light WTC aircraft (a total of 27 different aircraft types) performed non-scheduled flights and amount to only

1% of all observed flights. Based on such a small percentage (i.e., civil aviation mostly comprises medium and heavy

aircraft) and a small data set size (fewer than 500 flights) the light WTC aircraft were not included in this study, since

the distributions estimated from such data can not be considered as representative. Furthermore, the data used in this

study is not geographically and/or vertically limited to the MUAC airspace, all messages within radar coverage were

considered. Data records that did not contain a date/time stamp, call sign, position information or altitude were filtered

out and discarded. Scattered messages were ordered and organized in flights.

C. Flight Phase Identification

In the analysis of the surveillance data, three flight phases were distinguished: climb, cruise and descent. For each

flight, the phases were determined based on the altitude values (down-linked by aircraft) and an indication of the aircraft

movement (leveled, climbing or descending) provided by the radar tracker. The top of climb was determined as the

first point where an aircraft flew level for more than five consecutive minutes and its altitude either corresponds to the

maximum flight level, FLmax , for this flight, or it is within the range [FLmax − 6, 000 feet, FLmax]. This logic allows

to include stepped cruise, where aircraft start their cruise at a lower altitude and periodically climb to maintain an

optimal altitude. A stepped descent in cruise was detected in the same manner. The top of descent was determined as

the first point where an aircraft has started descending continuously. On average, the climb, cruise and descent phases

contained 215, 390 and 317 track points, which is about 17, 31 and 25 minutes. Not all flights contained all three phases.

This did not present difficulties for this study, since for data analysis, all phases were considered separately from each other.



V. Study Setup
This section outlines the inputs to Monte Carlo simulations, describes the TP implementation used in this study and

illustrates the computation of actual (ground truth) trajectories and predictions. Furthermore, a technique to compute

prediction errors is presented and an approach to estimate the required number of simulation runs is demonstrated.

A. Input Data

In this study, the following TP inputs are considered: bank angle, constant CAS and Mach number speed settings,

vertical speed, temporary level-offs in the climb and descent phases, air temperature and lapse rate, wind speed and wind

direction represented by the wind components, and ATC intent. The distributions of the aircraft-related parameters,

such as bank angle, speed settings and vertical speed, were obtained per aircraft type. The ten most frequent aircraft

types (Table 2) were selected to represent their wake turbulence category, amounting to 88% and 85% of all flights for

medium and heavy WTC. In total, the surveillance data contained 78 and 26 different aircraft types for medium and

heavy WTC respectively.

Table 2 Ten most frequent aircraft types per WTC

WTC ICAO aircraft type designator % of flights
Medium B738, A320, A319, A321, E190, B737, CRJ9, E170, B752, B733 88%
Heavy B77W, A332, B763, B744, B772, A388, A333, B788, B77L, B748 85%

The remainder of this subsection presents the results on the estimated distributions in a graphical form. For sake of

clarity, the results for the aircraft-related parameters are illustrated for a single aircraft, the Boeing 737-800 (B738).

This model was chosen since it is one of the most common aircraft in civil aviation. The statistics on temporary

level-offs are summarized for all medium WTC aircraft. The results for the air temperature, lapse rate and wind

components are provided for one season, whereas the results for ATC instructions are summarized for the whole year.

All estimated distribution functions (in both graphical and tabular form) as well as their equations can be accessed as a

data collection [27]. Furthermore, the average values of CAS and Mach number distributions estimated in this study

are comparable to those found in the research on constructing an open-source aircraft performance model utilizing

ADS-B data [28]. The average values of the speed distributions were also compared with the BADA [29] values and

were found to be within 20 knots for CAS and within 0.02 for Mach number. Within these results, the Embraer E170

and the Boeing 747-800 showed the largest differences.

1. Bank Angle

Considering that the bank angle is not transmitted in Mode-S and it is reasonable to assume that the roll angle value

(which is transmitted in Mode-S) is close to that of the bank angle, the distributions were obtained for the roll angle.

Figure 2 depicts the roll angle distribution in the climb, cruise, and descent phases of B738. The distributions were



obtained above FL100 to exclude the high frequency of large roll angles occurring when in holding and when flying

standard instrument departure and standard arrival routes. The distributions in the climb and descent phases are similar

and have several peaks. These peaks occur at around 10 and 25 degrees and could be a result of the manual selection of

(preferred) bank angles or flight management system logic. In the cruise phase, smaller roll angles prevail with a peak

at around 10 degrees. This can be explained by small course change angles in the cruise phase. When using aircraft

performance models (e.g. BADA [29]), the bank angle is often assumed to be a constant value (e.g. 35 degrees).

Fig. 2 Roll angle distribution above FL100 in the climb, cruise and descent phase of B738.

2. Speed Profile

Whereas for trajectory prediction purposes a speed profile is usually defined as a ’constant CAS - constant Mach

number’, CAS is not transmitted in Mode-S, so indicated airspeed (IAS) was used instead. Since CAS and IAS are

almost identical only in aircraft clean configuration, the difference between the two is assumed to be insignificant in this

study. Figure 3 shows the distributions of IAS and Mach number values in the climb and descent phases and Mach

number in the cruise phase for B738. According to the BADA aircraft performance model [29], a B738 climbs at 300

knots CAS / 0.78 Mach, performs cruise at 0.78 Mach, and descends at 0.78 Mach / 290 knots CAS. These values are

very close to the average values of the estimated distributions.

In practice, climb, cruise and descent speeds are calculated by the flight management computer based on the given

cost index, which is the ratio of the time- and fuel-related costs. The cost index varies among airlines, aircraft models

and flights and is not shared with the ground-based TPs. As a measure of the relationship between the IAS and Mach

number in the climb and descent phase, the correlation between these two speeds was calculated. Figure 4 depicts an

example of moderate (A320) and weak (CRJ9) correlation between the speeds. The red line illustrates the regression

line, and the correlation value is given on top of each plot. For the majority of the studied aircraft types, the correlation

is stronger in the climb phase, compared to the descent phase. This can be explained by the fact that aircraft mostly

perform a fast climb to reach the cruise altitude as soon as possible, usually without speed restrictions from ATC. In the

descent phase, however, the top of descent can be determined by ATC and multiple crossing restrictions can be given for

sequencing purposes. All this would impact the choice of the descent speed, causing it to be sub-optimal. Although it is

evident that the Mach number increases with the IAS, the relationship is not linear or quadratic.



Fig. 3 IAS and Mach number distribution in the climb, cruise and descent phase of B738.

Fig. 4 IAS-Mach number correlation of A320 (left) and CRJ9 (right) in climb and descent phase.

3. Vertical Speed

In the climb phase, the amount of energy available for the climb determines the vertical speed, which decreases with

altitude due to the effect of atmospheric conditions on engine performance. In the descent phase, idle thrust is preferred,

which together with wind conditions and crossing restrictions determines the vertical speed.

Figure 5 illustrates the relationship between the barometric vertical rate (BVR) (down-linked by aircraft in Mode-S)

and the flight level (FL) for the B738. The correlation value is indicated on top of each plot. In the climb phase, there is

a strong linear relationship (indicated by the red regression line) between the BVR and altitude, except for altitudes

around 3,000 feet and 10,000 feet (FL100). In the observed airspace, noise abatement procedures are in place below

3,000 feet. Above this altitude the noise abatement procedure ends and aircraft can increase power to climb at a higher

speed. Above FL100 aircraft are not restricted to 250 knots CAS anymore and can fly at an optimum speed. When

accelerating to a higher speed, energy is used on acceleration, which results in less energy being available for climb. In

the descent phase, the correlation is weak, however the relationship between the BVR and the altitude can be described

with a quadratic equation (as indicated by the red curve in Fig. 5), which mostly corresponds to the average BVR at each



FL. Above FL100, aircraft tend to descend at a fixed vertical speed setting, whereas around and below FL100 aircraft

reduce the descent rate for approach.

Fig. 5 Relationship between the Barometric Vertical Rate (BVR) and Flight level in the climb and descent
phase of B738.

To characterize the vertical speed variation with altitude, the distributions were obtained for two altitude ranges:

from 0 to 10,000 feet (FL100) and from 10,000 feet (FL100) to the maximum altitude. Figure 6 presents the results for

the climb and descent phases of B738.

Fig. 6 Vertical speed distribution in the climb and descent phase of B738 for altitude ranges FL0 to FL100 and
FL100 to the cruising altitude.

For medium WTC aircraft, the average rate of climb is about 2,500 feet/minute below FL100 and 1,700 feet/minute

above FL100, and the average rate of descent is about 1,000 feet/minute below FL100 and 1,600 above FL100.

4. Temporary Level-off

Temporary level-offs have two characteristics: the flight level at which they occur and their duration. The former is a

discrete variable, which can be represented by a PMF, and no distribution estimation was performed for it. Figure 7

shows the distributions of the flight levels where temporary level-offs occur and their duration above FL100 in the climb



and descent phases.

Fig. 7 Distribution of the flight levels and duration of the temporary level-offs above FL100 in the climb and
descent phase of medium WTC aircraft.

The obtained distributions are very dependent on the airspace (configuration), implemented procedures and ATC.

For instance, in the climb and descent phases, there are peaks at FL240 and FL260 respectively, which are due to aircraft

transfer to and from MUAC airspace. Similarly, other temporary level-offs occur as a result of internal procedures to

transfer aircraft from a sector to a sector, aircraft waiting for ATC clearances, and ATC conflict resolutions.

5. Air Temperature

To describe the variation of the air temperature, the distributions of two parameters were obtained: the air temperature

near the ground and the lapse rate. Figure 8 shows the distributions of the air temperature near the ground (FL50) and

the lapse rate below the tropopause in summer.

(a) Air temperature at FL50 in summer (b) Lapse rate in summer

Fig. 8 Air temperature distribution near the ground (FL50) and lapse rate below the tropopause in summer.
Red semicircle indicates the standard value (i.e. according to ICAO ISA).

In this figure, red semicircles indicate the air temperature at FL50 and the lapse rate according to ICAO International

Standard Atmosphere (ISA) [30]. It can be seen that although the standard (ISA) lapse rate is a good approximation, the

ISA air temperature at FL50 deviates substantially from the mean value of the obtained distribution. By taking the

difference between the air temperature distribution and ISA temperature, the distribution of the temperature offset from

ISA can be obtained.



6. Wind Conditions

When estimating the wind distributions, it is convenient to first split wind into its North-South, v, and West-East, u,

components. This allows to avoid analyzing the wind direction as angular data (e.g. 0 and 360 degrees is the same) and

to incorporate both wind speed and direction in one variable. Furthermore, to parametrize the distribution of the wind

components with altitude, a wind component vertical profile was introduced as a function of a FL.

The estimation of this vertical profile is a three-step process as illustrated in Fig. 9. First, the mean and standard

deviation of the wind components were estimated from data for available FLs (Fig. 9a). Next, the lower (i.e., left) and

upper (i.e., right) bounds of the vertical profiles were estimated as a mean ±3 standard deviations (Fig. 9b). These

margins were subsequently fitted to a function f (x) = ax2 + bx + c, where x is a FL, which allowed to estimate the

minimum and maximum of a, b and c coefficients (i.e., for lower and upper bounds).

(a) Scatter (b) Bounds (c) Sampling

Fig. 9 The process of wind components’ vertical profile estimation and sampling.

Then, assuming that a, b, and c coefficients are uniformly distributed∗, they were randomly sampled allowing to

estimate the distribution of the wind components’ vertical profiles (Fig. 9c).

7. ATC Instructions

The distributions of four ATC instruction types, namely ’direct’, heading, speed and vertical speed, were estimated.

In 2016, on average, 78.6% of the flights in MUAC airspace received 1 or more of these instructions. A ’direct’

instruction was given to 76.4% of the flights, a heading instruction to 19.1%, a speed instruction to 6.5%, and a vertical

speed instruction to 2.2% of the flights. Note, that these frequencies indicate the average number of flights that received

each instruction and are not meant to add up to 100%, since the same flight can potentially receive all four types of

instructions.

Two types of ’direct’ instructions can be given: direct-to and direct-via. In MUAC airspace, direct-to is given 80%

of the time. There are four types of heading instructions: present heading, heading (value), turn left and turn right. 86%

of the flights receive a ’maintain present heading’ instruction, whereas a specific heading value is given to about 12% of
∗The uniform distribution resulted in the best coincidence between the wind speed and direction distributions obtained from the input data (i.e.,

weather forecasts) and the resultant distributions obtained from the wind components’ vertical profile approximation.



the flights. An instruction to turn left or right is given in about 2% of the cases. In MUAC airspace, the direct-to and

maintain present heading instructions are commonly used for conflict resolution purposes.

There are four types of speed instructions: assigned, maximum, minimum and present speed. An instruction to fly

at the assigned speed is given to almost 50% of flights, whereas an instruction to keep the present speed is almost never

given. A maximum and minimum speed to fly at is given in about 26% and 24% of the time. A speed instruction can be

given as a Mach number or IAS. Mach number instructions are given nearly 70% of the time. The high percentage

of speed instructions given as a Mach number makes sense for MUAC airspace, as the upper airspace encompasses

the en-route part of the flights, where aircraft fly at a constant Mach number. The PMF of the Mach number and IAS

instructions are presented in Fig. 10 and Fig. 11 respectively.

Fig. 10 PMF of Mach number speed instruction. Fig. 11 PMF of IAS instruction.

A vertical speed (VS) instruction is an instruction to climb or to descend at a specific rate to a cleared flight level.

An instruction to descend at a given rate is given in slightly over 80% of the cases. Together with the VS value, an

instruction can include an indication of the speed limit: minimum or maximum. If such a limit is given, almost always,

it is a minimum value. The PMF of the rate of climb and the rate of descent given as the VS instruction is presented in

Fig. 12 and Fig. 13, respectively. The most frequent rate of climb is 1,000 feet/minute, whereas the most frequent rate of

descent is 1,500 feet/minute.

Fig. 12 PMF of climb rate as VS instruction. Fig. 13 PMF of descent rate as VS instruction.

B. Input Sampling

All aircraft-related parameters (bank angle, speed profile and vertical speed) are sampled based on the aircraft

type, whereas the rest of input parameters are assumed to be independent, meaning that each input is sampled from

its distribution function independently from the values of other inputs. When sampling the IAS/Mach number speed



profile, both speed values are sampled independently, since the correlation between them was found not to be strong

(see Fig. 4). An independent speed sampling may, however, result in unrealistic speed profiles. For the triple seven

aircraft (i.e., B77W, B772, B77L) the down-linked (in Mode-S) data did not contain the roll angle information and, thus,

the distributions obtained for B788 were used as a substitute.

Although the input distribution functions were obtained from observed data, when sampling from the estimated

distribution functions, values larger/smaller than the maximum/minimum observed values can be sampled. Therefore,

constraints were imposed as indicated in Table 3 on some inputs to ensure sensible values.

Table 3 Input parameters’ limits

Parameter Minimum Maximum Units
Bank angle 5 35 degrees
Mach number Minimum speed Maximum operating Mach number -
CAS Minimum speed Maximum operating speed knots
Rate of climb 1,000 4,000 feet/minute
Rate of descent 1,000 3,000 feet/minute
Temporary level-off 20 500 seconds

To facilitate the analysis of the Monte Carlo simulations, each input was sampled only once per flight phase as

indicated by the + symbol in Table 4. An exception is the vertical speed, which was sampled twice: for the altitude range

from 0 to 10,000 feet and from 10,000 feet to the cruise altitude. In this study, three flight phases are distinguished:

climb, cruise and descent. Whereas for some inputs a single value might be a reasonable assumption (e.g. a lapse rate

or a constant CAS/Mach number speed profile), the majority of the parameters can vary throughout a phase. The air

temperature was modeled using a temperature offset from the standard temperature (i.e. temperature according to ICAO

ISA). Values of the air temperature offset and the lapse rate were the same in all flight phases.

Table 4 Inputs’ sampling per flight phase

Parameter Climb Cruise Descent
Air temperature offset + + +
Lapse rate + + +
Wind speed error + + +
Bank angle + + +
Mach number + + +
CAS + - +
Vertical speed + - +
Temporary level-off + - +
ATC instruction - + -

The wind conditions were modeled as follows. First, a wind forecast grid was constructed as 20 predefined locations



with a cell size of 2.5 by 2.5 degrees (which is the weather grid used at MUAC (see Fig.1)). For each location, u and

v wind component vertical profiles were sampled from the estimated distributions. Then, for each FL, u and v wind

components were linearly interpolated between the centers of the grid cells. Finally, the wind speed and direction were

computed from the wind components. All flights were simulated using the same wind forecast. Although, in reality, u

and v wind components are correlated, in this study, their correlation was not taken into account. Figure 14 illustrates

the relationship between the wind u and v component in summer and in July. The correlation is stronger when a single

month is considered instead of a season. Though it is observable that, for instance, when the u component increases, the

v component somewhat decreases, the relationship between them is clearly not linear or quadratic. An independent

sampling of the wind components, however, might result in the wind conditions that are unrealistic for the studied

geographical area. Nevertheless, for this analysis, we are interested in generalizable findings, for which uncorrelated u

and v components are more suitable. To ensure sensible values, the distributions estimated for July were used when

sampling wind components.

Fig. 14 Relationship between wind u and v components in summer (left) and July (right).

Furthermore, a wind speed error was sampled for each flight (i.e., the error between the predicted wind speed, and

the actual wind speed). According to the research conducted for flights above Europe [31], the wind speed error can be

considered as normally distributed with a mean of 1.5 knots and standard deviation of 9.2 knots. Although the wind

speed error is strongly correlated with the wind speed magnitude, season and wind forecast look-ahead time, these were

not considered in this study, and a single wind speed error was sampled from the normal distribution N(1.5, 9.2) for

each flight.

Based on the obtained statistics on the ATC instructions, the proportion of flights that received an instruction was as

follows: 59.5% received a direct-to instruction; 14.2% had a heading instruction; 4.3% received a speed instruction;

0.9% received a vertical speed instruction. 21.1% of flights did not receive any ATC instruction. Furthermore, the

duration of such ATC instructions as heading and speed were sampled from a uniform distribution with a minimum of

30 seconds and maximum of 180 seconds. For each WTC, aircraft types were sampled proportionally to the frequency

observed in the surveillance data. Finally, a single route from Paris to Hamburg was modelled for all flights.



C. Trajectory Simulator/Predictor

Since both speed settings and vertical speed are sampled from the distribution functions, a trajectory simula-

tor/predictor was developed employing a kinematic approach (similar to many operational TPs). The equations of motion

used for the flight profile computation are given in Eq. (6) to Eq. (9). The earth was assumed to be flat, non-rotating and

used as an inertial reference frame. A Cartesian East, North, Up coordinate system was used where the origin of the

system coincides with the first point of a trajectory.

Ûx = VGS sinψg (6)

Ûy = VGS cosψg (7)

Ûh = VS (8)

Ûψg =
VGS

r
(9)

Here, x and y are the horizontal positions in Eastern and Northern direction respectively, VGS is the ground speed,

ψg is the track angle, h is the altitude, VS is the vertical speed, ψg is the track angle, and r is the turn radius.

The ground speed was obtained as follows:

VGS =

√
V2
T AS
+ V2

w − 2 · VT ASVw cos(w − ψa) (10)

Where VT AS is the true airspeed, Vw is the wind speed, w is the wind direction, and ψa is the aircraft heading.

The turn radius was computed as:

r =
V2
GS

g · tan φ
(11)

Where g is the gravitational acceleration, g = 9.81ms−2, and φ is the bank angle.

The true airspeed of an aircraft was converted from the CAS, VCAS , (Eq. (12)) or the Mach number, M , (Eq. (13)).

VT AS =

√√
2γ
γ − 1

p
ρ

[(
1 +

p0
p

[(
1 +

γ − 1
2γ

ρ0
p0

V2
CAS

) γ
γ−1

− 1
] ) γ−1

γ

− 1
]

(12)

Here, γ is the adiabatic index of air, γ = 1.4, p is the air pressure, ρ is the air density, p0 and ρ0 are the air pressure

and density, respectively, at sea level.



VT AS = M
√
γ · R · T (13)

Here R is the specific gas constant, R = 287.05287m2K−1s−2, and T is the air temperature.

The wind speed and wind direction were computed from the u and v wind components:

Vw =
√

u2 + v2 (14)

w = atan2(−u,−v) (15)

Here u and v are obtained as a function of a flight level, FL:

u = auFL2 + buFL + cu (16)

v = avFL2 + bvFL + cv (17)

Where au, bu, cu and av, bv, cv are the coefficients for the estimation of the u and v wind components, respectively.

The air temperature offset, ∆T , as well as the lapse rate, λ, were used for the temperature, T , and pressure, p,

calculations below the tropopause as follows:

T = TISA + ∆T + λh (18)

p = p0

(
T − ∆T

TISA

) −g
λR

(19)

Here TISA is the ISA air temperature at altitude h.

The only difference between the trajectory simulator and the predictor is the vertical speed estimation. For simulation

purposes, the vertical speed was sampled from the estimated distributions, whereas for predictions it was defined as a

function of the altitude. Based on the identified relationship between the vertical speed and the flight level, FL, (see

Fig.5), the rate of climb, RoC, can be calculated using a linear equation (Eq. (20)), whereas the rate of descent, RoD,

can be obtained using a quadratic equation (Eq. (21)). For each aircraft type the coefficients a, b, c were obtained using

the least squares polynomial fit. By describing the vertical speed as a function of the altitude, a continuous average

vertical speed profile is created.



RoC = aFL + b (20)

RoD = aFL2 + bFL + c (21)

Since temporary level-offs and ATC instructions are procedural parameters, their execution was triggered by certain

events. Provided that the vertical flight profile includes a temporary level-off in the climb and/or descent phase, an

aircraft leveled upon reaching the given FL for a time interval sampled from the temporary level-off duration distribution.

ATC instructions were only given in the cruise phase (one instruction per flight) as follows. A ’direct’ instruction to a

certain waypoint was given at a specific location of a route (i.e., all flights received the same direct-to instruction). A

heading instruction (turn left/right 10, 15 or 20 degrees) was issued to an aircraft after the top of climb was reached for a

time interval as sampled from its duration distribution. After the heading instruction was completed, an aircraft returned

to its intended route. A speed instruction was given as a Mach number for a time interval as sampled from its duration

distribution. An instruction to climb or to descend 2,000 feet (because of the hemispherical rule) was issued at around

the middle of the cruise phase, which resembles an instruction for conflict resolution in the vertical plane.

D. Actual Trajectories and Predictions

After inputs were sampled from their distribution functions, N actual (i.e., ground truth) trajectories were simulated.

These trajectories resemble the possible real flights. Then, for each actual trajectory, predictions were made up to 20

minutes look-ahead time utilizing a time interval moving window. For every minute of the trajectory flight time, the

prediction was updated with the correct position and altitude, and trajectory prediction was reinitialized. A one minute

update rate mimics the update of surveillance data. Although, surveillance data are usually updated at a rate of 4 to

12 seconds, a one minute update rate was considered to be sufficient for the purposes of this study. For both actual

trajectories and predictions, the same trajectory simulator/predictor was used.

To investigate a potential added benefit from estimating input distributions from observed data, two experiments

were conducted involving different predictor settings. In the first experiment, all aircraft-related parameters were set

using the BADA aircraft performance model [29] and atmospheric parameters according to ISA. These settings resemble

those commonly used in operational TPs. In the second experiment, the input parameters were set to the mean values of

the distributions obtained from the observed data. These settings would resemble a TP where inputs are set according to

the observations (e.g. in a particular ATC center). The same wind model was used for both experiments. Additionally, a

third experiment was performed, where the down-linked (in Mode-S) aircraft speed settings were used in predictions.

The vertical speed was not set to the down-linked value since this parameter is less stable compared to the speed settings

(e.g. due to turbulence). Table 5 summarizes the settings for these three experiments. As often assumed, no temporary



level-offs and ATC instructions were taken into account in the experiments.

The objective of the different experiments is to explore whether the observation-based inputs to a TP (i.e., experiment

II) would result in a (significant) reduction of prediction errors compared to the inputs according to BADA and ISA

(i.e., experiment I). For experiment III, the goal is to investigate by how much prediction errors can be reduced, when

down-linked aircraft data is (partially) used by a TP.

Table 5 Predictor settings in experiments

Parameter / Experiment I II III Units
Air temperature offset ISA Observed average Observed average kelvin
Lapse rate ISA Observed average Observed average kelvin/km
Wind Forecast Forecast Forecast -
Bank angle BADA Observed average Observed average degrees
Mach number BADA Observed average Down-linked -
CAS BADA Observed average Down-linked knots
Vertical speed BADA Observed average Observed average feet/minute
Temporary level-off - - - -
ATC instruction - - - -

A simple algorithm was used to reinitialize the predictions at an update. The starting position and altitude were set

to those of the actual trajectory and the prediction was started. In case the starting position was off-route (e.g. due to a

direct-to instruction), the prediction would be performed by rejoining the initial route at the next waypoint downstream.

E. Prediction Errors

For each prediction, three errors were computed for 5, 10, 15 and 20 minutes look-ahead time: along-track error

(ATE), cross-track error (CTE) and altitude error (AE). The ATE and CTE were calculated as follows:

ATE = (xp − xt ) sinψgp + (yp − yt ) cosψgp (22)

CTE = (xp − xt ) cosψgp − (yp − yt ) sinψgp (23)

Here xp and xt are the predicted and the true horizontal positions in Eastern direction, yp and yt are the predicted

and the true horizontal positions in Northern direction, and ψgp is the predicted track angle.

The AE was computed as the difference between the predicted altitude, hp , and the true altitude, ht :

AE = hp − ht (24)

Positive ATE and CTE indicate that the predicted position is ahead and on the right from the actual one, and a



positive AE indicates that the predicted altitude is above the actual one. These errors were subsequently used to assess

the prediction uncertainty for a given look-ahead time and to determine the influence of individual inputs. The errors

were analyzed for each flight phase separately, meaning, for instance, that an error at 20 minutes look-ahead time in the

cruise phase was computed for a prediction initiated also in the cruise phase. This implies that the number of available

data points reduces with look-ahead time and is determined by the duration of a respective flight phase.

F. Number of Runs

To determine how many trajectories should be simulated, the number of samples, N , that is required to ensure a

small relative error of Monte Carlo sampling, was calculated. When samples are randomly drawn from a distribution

function, this approximates the evaluation of an integral [32, 33]. The relative error, eappr , of this approximation can be

estimated as:

eappr =
1
√

N
(25)

In this study, the relative error of 0.01 was assumed. Rearranging Eq. (25) to find N results in N = 10, 000 samples

or simulation runs per each WTC aircraft.

VI. Results
Two types of results were obtained in this study, as a function of a flight phase, for 5, 10, 15 and 20 minutes

look-ahead time: the prediction uncertainty (error distribution) and the correlation between inputs and prediction errors.

A. Prediction Uncertainty

To assess prediction uncertainty, error distributions are presented using box plots. For analysis purposes, the box

plots were studied without outliers, which comprised, on average, 1.85% of data. Figure 15 presents the results for

heavy and medium aircraft. These box plots give along-track error (ATE), cross-track error (CTE), and altitude error

(AE) as a function of flight phase and look-ahead time. For each look-ahead time, a group of three box plots is presented,

indicating different predictor experiment settings (I to III from left to right) as explained in Subsection V.D. The ATE

and CTE are in nautical miles (nmi) and the AE is in feet (ft).

In general, the magnitudes and the trends of prediction errors are comparable for heavy and medium aircraft. As

expected, the ATE and CTE increase with look-ahead time. In the climb phase, the majority of the ATEs is positive,

which indicates that the predicted positions are often ahead of the actual ones. This can be partly explained by the

high(er) speed settings of the predictor, but is largely due to the effect of the temporary level-offs and vertical speed

settings (e.g. due to altitude errors). In experiment III, for instance, the predictor climb CAS and Mach number are set

to the down-linked values and are not the error source. When aircraft temporarily level-off their true airspeed does not



(a) Heavy aircraft. Climb (b) Medium aircraft. Climb

(c) Heavy aircraft. Cruise (d) Medium aircraft. Cruise

(e) Heavy aircraft. Descent (f) Medium aircraft. Descent

Fig. 15 Prediction uncertainty with look-ahead time for heavy and mediumWTC aircraft in climb, cruise and
descent.

increase, in contrast to a predicted continuous climb, where the true airspeed increases with altitude. This is consistent

with the observed AEs, which are mostly positive, meaning the predicted altitude is above the actual one. The difference



in the true airspeed results in predictions being ahead of the actual flights. Furthermore, in experiment I, when BADA

values and ISA conditions are used, the median of the ATE is shifted further away from 0 (compared to experiments II

and III). This indicates that the errors in the atmospheric temperature and average speeds additionally contribute to the

ATE.

In the descent phase, the majority of the ATEs is negative (i.e., predicted positions are behind the actual ones),

which is mostly the effect of AEs. When a TP has no information on temporary level-offs, it will predict a continuous

descent, which would result in predicted altitude below the actual one (i.e., negative AEs). Additionally, the errors in

average speeds and atmospheric temperature, as in experiment I, further increase the frequency of large ATEs.

The CTEs are negligible in the climb and descent phases; however, in the cruise phase errors can reach up to 10

nmi. This difference is logical since the deviations from the planned route occur only in the cruise phase. The CTE is

predominantly negative, which is due to the direct-to instruction that stretches on the right-hand side from the planned

route and results in a maximum lateral deviation of 10 nmi.

In the climb and descent phase, the AE increases with look-ahead time and has the largest spread at 15 minutes.

The error is mainly positive (i.e., predicted altitude is above the actual one) in the climb and mainly negative (i.e.,

predicted altitude is below the actual one) in the descent phase, which can be explained by the temporary level-offs.

Assuming an average vertical speed of 2,000 feet per minute, a 5 minute level-off would result in 10,000 feet altitude

difference. Additionally, a non-representative average vertical speed used for predictions (i.e., experiment I in the climb

phase of heavy aircraft and in the descent phase of both heavy and medium aircraft) shifts the median further from

0 (compared to the results of experiments II and III). In the cruise phase, the effect of ATC instructions to climb or

descend is negligible (due to a low frequency) and results in virtually no AEs.

Table 6 summarizes the results on the maximum (absolute) prediction errors at 20 minutes look-ahead time in

experiment II. The large ATEs of 18 nmi are infrequent and are induced by the AEs, which largely result from the

temporary level-offs. As an example, consider an aircraft in climb which has levelled at FL100 for 5 minutes, whereas

a TP predicts a continuous climb. Furthermore, the aircraft is following 290 knots CAS / 0.78 Mach speed profile,

whereas the predictor is using 305 knots CAS / 0.8 Mach. Both have an average vertical speed of 1,500 feet per minute.

In 5 minutes (i.e., at the end of the temporary level-off), the ATE is about 3.1 nmi and grows to 15.2 nmi in 20 minutes.

Assuming an average wind speed error of 10 knots over a 20 minutes period, the ATE can additionally grow by 3.3 nmi,

amounting to 18.5 nmi ATE at the end of 20 minutes look-ahead time prediction. Without the temporary level-off, the

error at 20 minutes would be 8.8 nmi.

For illustration purposes, Tables 7 and 8 indicate the Root Mean Square Error (RMSE), the mean and the standard

deviation (Std) of the errors at 5 and 20 minutes look-ahead time per flight phase for each predictor experiment setup

(i.e., I to III). The ATE and CTE are in nautical miles (nmi) and the AE is in feet (ft). The RMSE, mean and standard

deviation of the ATE mostly decrease when the average values estimated from the observations are used for predictions



Table 6 Maximum absolute prediction errors at 20 minutes look-ahead time (when outliers are not considered)
for heavy and medium WTC aircraft in experiment II

Flight phase WTC ATE, nmi CTE, nmi AE, ft

Climb
Heavy 18.0 0.4 9,545.4
Medium 18.0 0.3 11,760.3

Cruise
Heavy 13.1 10.0 0.0
Medium 12.5 10.0 0.0

Descent
Heavy 18.0 0.6 12,853.2
Medium 17.9 0.6 12,435.8

(i.e., experiment II), compared to when BADA values and ISA are used (i.e., experiment I). When the down-linked CAS

and Mach number are used by a TP in experiment III, the errors decrease even further. For instance, in the climb phase

of heavy aircraft at 5 minutes look-ahead time, the RMSE, mean and standard deviation of the ATE are 1.70, 0.68 and

1.56 nmi in experiment I, 1.38, 0.28 and 1.35 nmi in experiment II and 0.88, 0.25 and 0.84 nmi in experiment III.

Table 7 RMSE, mean and standard deviation (std) of prediction errors in experiments I, II and III at 5 and 20
minutes look-ahead time for heavy aircraft. ATE and CTE are in nautical miles and AE is in feet

Heavy WTC Climb phase
5 minutes look-ahead time 20 minutes look-ahead time

Experiment I Experiment II Experiment III Experiment I Experiment II Experiment III
Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
RMSE 1.70 0.01 3342.12 1.38 0.01 1847.69 0.88 0.01 1847.69 9.68 0.14 4956.87 7.06 0.11 3264.61 6.20 0.10 3306.92
Mean 0.68 0.00 2281.08 0.28 0.00 655.04 0.25 0.00 655.08 8.11 0.12 4169.14 4.07 0.06 1929.25 4.07 0.06 1972.83
Std 1.56 0.01 2442.63 1.35 0.01 1727.68 0.84 0.01 1727.67 5.28 0.08 2681.20 5.77 0.09 2633.57 4.68 0.07 2653.99

Heavy WTC Cruise phase
5 minutes look-ahead time 20 minutes look-ahead time

Experiment I Experiment II Experiment III Experiment I Experiment II Experiment III
Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
RMSE 1.16 3.13 0.00 1.13 3.94 0.00 0.91 3.92 0.00 4.43 2.81 0.00 4.35 5.47 0.00 3.21 5.25 0.00
Mean 0.07 -1.63 0.00 0.34 -2.17 0.00 0.30 -2.16 0.00 -1.13 -1.38 0.00 0.94 -3.48 0.00 0.37 -3.27 0.00
Std 1.16 2.67 0.00 1.08 3.29 0.00 0.86 3.28 0.00 4.29 2.44 0.00 4.25 4.22 0.00 3.19 4.10 0.00

Heavy WTC Descent phase
5 minutes look-ahead time 20 minutes look-ahead time

Experiment I Experiment II Experiment III Experiment I Experiment II Experiment III
Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
RMSE 2.07 0.04 2945.20 1.99 0.04 2228.78 1.11 0.03 2229.06 9.94 0.22 5634.37 9.20 0.21 4345.50 9.64 0.22 4252.37
Mean 0.02 0.00 -1626.37 -0.01 0.00 -313.62 -0.03 0.00 -313.90 -7.89 -0.18 -4402.60 -6.60 -0.15 -2780.45 -7.83 -0.18 -2696.65
Std 2.07 0.04 2455.44 1.99 0.04 2206.61 1.11 0.03 2206.85 6.05 0.14 3516.14 6.42 0.14 3339.53 5.63 0.13 3287.96

Experiment I, however, resulted in smaller RMSE, mean and standard deviation of the CTE in the cruise phase,

compared to experiments II and III. When the average vertical speed profile estimated from the observations is used

for predictions (i.e., experiments II and III), the RMSE, mean and standard deviation of the AE decrease compared to

experiment I when BADA is used. This is likely due to large differences between the estimated average vertical speed

profile and the average vertical speed profile defined in BADA.



Table 8 RMSE, mean and standard deviation (std) of prediction errors in experiments I, II and III at 5 and 20
minutes look-ahead time for medium aircraft. ATE and CTE are in nautical miles and AE is in feet

Medium WTC Climb phase
5 minutes look-ahead time 20 minutes look-ahead time

Experiment I Experiment II Experiment III Experiment I Experiment II Experiment III
Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
RMSE 1.92 0.02 3067.86 1.50 0.01 2584.43 0.98 0.01 2584.45 10.55 0.15 4912.65 8.15 0.12 4579.14 7.36 0.11 4672.34
Mean 1.15 0.01 1323.47 0.46 0.00 894.48 0.37 0.00 894.69 9.23 0.13 4090.83 5.93 0.09 3616.20 5.68 0.08 3698.16
Std 1.53 0.01 2767.71 1.43 0.01 2424.70 0.91 0.01 2424.65 5.10 0.07 2720.16 5.59 0.08 2809.21 4.68 0.07 2855.59

Medium WTC Cruise phase
5 minutes look-ahead time 20 minutes look-ahead time

Experiment I Experiment II Experiment III Experiment I Experiment II Experiment III
Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
RMSE 1.25 1.30 0.00 1.12 1.68 0.00 0.83 1.71 0.00 4.66 4.29 0.00 4.24 5.58 0.00 3.02 5.50 0.00
Mean -0.11 -0.50 0.00 0.33 -0.67 0.00 0.26 -0.69 0.00 -1.12 -2.45 0.00 1.25 -3.69 0.00 0.77 -3.61 0.00
Std 1.24 1.20 0.00 1.07 1.54 0.00 0.79 1.57 0.00 4.53 3.52 0.00 4.05 4.18 0.00 2.92 4.15 0.00

Medium WTC Descent phase
5 minutes look-ahead time 20 minutes look-ahead time

Experiment I Experiment II Experiment III Experiment I Experiment II Experiment III
Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
RMSE 2.17 0.05 3821.64 1.61 0.04 1943.04 1.04 0.02 1943.60 13.65 0.31 6212.70 9.18 0.21 4408.78 9.30 0.21 4502.19
Mean -0.98 -0.02 -2782.82 -0.13 0.00 -287.02 0.02 0.00 -288.02 -13.34 -0.30 -5633.69 -6.83 -0.15 -3088.23 -7.31 -0.16 -3230.84
Std 1.94 0.04 2619.33 1.61 0.03 1921.72 1.04 0.02 1922.14 2.88 0.07 2619.00 6.13 0.14 3146.45 5.74 0.13 3135.50

B. Correlation Between Inputs and Prediction Errors

To determine the relationship between the inputs and prediction errors, Pearson correlation coefficients were

computed for each input-error combination (e.g. vertical speed versus AE) as a function of the look-ahead time and

flight phase. For this, the average error was estimated per flight phase for each trajectory. Tables 9 and 10 present the

results obtained for errors computed in experiment II for heavy and medium WTC aircraft. LVL stands for temporary

level-off. Since the average error can be positive or negative, the sign of the correlation (i.e., positive or negative) is

somewhat ambiguous. For instance, there is a strong negative correlation between the speed settings (CAS and Mach

number) and ATE. This means that when speed increases, the ATE becomes (more) negative (i.e., the predicted position

is behind the actual one). Therefore, the sign of the correlation should be treated with caution.

In this study, the correlation coefficients whose absolute value is equal to or greater than 0.23 (marked in bold) were

considered as those that show a linear relationship between the input and the error. The value of 0.23 was chosen based

on the minimum value of the error variance considered to be of interest in this study, which is 5%. The error variance, i.e.,

coefficient of determination, can be computed as a squared Pearson correlation coefficient, i.e., 0.232 = 0.0529 ≈ 0.05.

Therefore, only inputs that contribute to at least 5% of the variance of the prediction errors are of interest.

The ATE is correlated with the wind (error), CAS and Mach number speed settings, vertical speed, and the duration

of temporary level-offs. The relationship between the ATE and the speed settings and the ATE and the wind speed error

is logical. With increase in the speed settings, the true airspeed increases, resulting in prediction being behind the actual

position (i.e., a negative correlation). The wind (speed error) affects the ground speed, which increases with a tail-wind

and decreases with a head-wind. However, when the wind is not strictly tail- or head-wind, but its direction is varying,

the impact of the wind speed error is less pronounced. In the climb and descent phases, the ATE is correlated with the



Table 9 Input-error correlation for heavy WTC aircraft

Heavy WTC 5 minutes look-ahead time 10 minutes look-ahead time
Climb phase Cruise phase Descent phase Climb phase Cruise phase Descent phase

Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature -0.19 -0.03 -0.01 -0.18 0.01 -0.02 -0.13 -0.03 0.02 -0.16 -0.11 -0.01 -0.18 0.01 -0.02 -0.10 -0.08 0.02
Lapse rate -0.09 -0.01 -0.01 -0.14 0.00 0.00 -0.06 -0.03 0.00 -0.07 -0.05 -0.01 -0.14 0.02 0.00 -0.05 -0.04 0.00
Wind error 0.40 0.01 0.00 0.54 0.00 0.01 0.43 0.15 -0.01 0.35 0.19 0.00 0.57 -0.01 0.02 0.37 0.32 -0.02
Bank angle 0.00 0.00 0.00 0.01 0.03 0.01 0.01 0.01 0.00 -0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.00

ATC -0.02 0.02 0.00 0.04 0.08 -0.05 0.00 0.02 0.00 -0.02 -0.01 0.00 0.04 0.08 -0.07 0.00 0.00 0.00
Mach number -0.01 -0.04 0.03 -0.50 -0.05 -0.01 0.00 0.01 0.10 0.01 0.00 0.02 -0.51 -0.04 -0.01 0.03 0.02 0.10

CAS -0.60 -0.08 0.00 0.00 0.00 0.00 -0.78 -0.25 0.00 -0.53 -0.44 0.00 0.00 0.00 0.00 -0.71 -0.60 0.02
Vertical speed -0.31 -0.03 -0.76 0.00 0.00 0.00 0.28 0.24 0.83 -0.43 -0.01 -0.77 0.00 0.00 0.00 0.32 0.31 0.82

LVL FL 0.04 0.02 0.15 0.00 0.00 0.00 -0.07 -0.12 -0.22 0.04 0.03 0.14 0.00 0.00 0.00 -0.13 -0.12 -0.20
LVL duration 0.08 0.01 0.24 0.00 0.00 0.00 -0.18 -0.23 -0.40 0.09 0.07 0.24 0.00 0.00 0.00 -0.26 -0.26 -0.42
Heavy WTC 15 minutes look-ahead time 20 minutes look-ahead time

Climb phase Cruise phase Descent phase Climb phase Cruise phase Descent phase
Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature -0.15 -0.15 -0.01 -0.19 0.02 -0.01 -0.10 -0.08 0.02 -0.17 -0.15 -0.03 -0.22 0.01 -0.02 -0.07 -0.08 0.05
Lapse rate -0.06 -0.06 -0.02 -0.14 0.05 0.00 -0.04 -0.03 0.01 -0.07 -0.07 0.00 -0.16 0.09 0.00 -0.06 -0.05 -0.01
Wind error 0.32 0.31 -0.01 0.58 -0.02 0.02 0.33 0.30 -0.05 0.29 0.28 0.01 0.56 -0.03 0.01 0.30 0.28 -0.07
Bank angle -0.02 -0.05 -0.01 0.00 0.00 -0.01 0.01 0.00 0.01 -0.04 -0.04 -0.07 -0.02 0.00 0.02 0.01 0.01 0.01

ATC -0.01 -0.02 0.01 0.03 0.08 -0.07 0.01 0.01 0.01 -0.02 -0.02 0.01 0.04 0.07 -0.09 0.02 0.02 0.01
Mach number 0.00 -0.01 0.01 -0.51 -0.03 -0.01 0.06 0.04 0.12 0.05 -0.01 0.15 -0.53 0.01 -0.01 0.04 0.05 0.17

CAS -0.46 -0.50 0.04 0.00 0.00 0.00 -0.63 -0.59 0.08 -0.49 -0.50 0.06 0.00 0.00 0.00 -0.60 -0.58 0.10
Vertical speed -0.48 -0.49 -0.63 0.00 0.00 0.00 0.49 0.25 0.76 -0.52 -0.53 -0.50 0.00 0.00 0.00 0.44 0.07 0.66

LVL FL 0.01 0.01 0.13 0.00 0.00 0.00 -0.14 -0.13 -0.17 0.00 0.00 0.15 0.00 0.00 0.00 -0.10 -0.09 -0.07
LVL duration 0.08 0.08 0.25 0.00 0.00 0.00 -0.24 -0.23 -0.39 0.08 0.08 0.30 0.00 0.00 0.00 -0.15 -0.11 -0.29

Table 10 Input-error correlation for medium WTC aircraft

Medium WTC 5 minutes look-ahead time 10 minutes look-ahead time
Climb phase Cruise phase Descent phase Climb phase Cruise phase Descent phase

Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature -0.13 -0.01 0.02 -0.15 0.01 0.00 -0.14 -0.04 0.00 -0.11 -0.04 0.01 -0.16 0.01 -0.01 -0.11 -0.09 0.00
Lapse rate -0.08 -0.01 0.00 -0.13 0.00 0.00 -0.07 0.00 0.00 -0.07 -0.05 0.00 -0.13 0.00 0.00 -0.06 -0.05 0.00
Wind error 0.42 0.04 0.00 0.55 0.00 0.01 0.52 0.13 0.01 0.37 0.18 -0.01 0.57 0.01 0.01 0.43 0.32 0.00
Bank angle 0.04 -0.01 0.01 0.03 0.02 -0.01 0.02 0.02 0.00 0.04 0.03 0.01 0.04 0.03 -0.02 0.02 0.02 0.00

ATC -0.01 0.00 0.01 0.03 0.05 -0.04 0.00 0.02 -0.02 -0.01 0.00 0.01 0.02 0.05 -0.06 -0.01 0.00 -0.02
Mach number -0.02 -0.02 0.04 -0.60 0.00 0.00 -0.06 0.00 -0.02 0.00 0.03 0.04 -0.63 0.01 -0.01 -0.05 -0.04 -0.02

CAS -0.72 -0.11 -0.03 0.00 0.00 0.00 -0.73 -0.21 -0.02 -0.64 -0.44 -0.03 0.00 0.00 0.00 -0.66 -0.52 -0.02
Vertical speed -0.33 -0.13 -0.81 0.00 0.00 0.00 0.30 0.28 0.84 -0.47 -0.13 -0.81 0.00 0.00 0.00 0.47 0.41 0.85

LVL FL 0.03 0.03 0.16 0.00 0.00 0.00 -0.07 -0.12 -0.22 0.03 0.05 0.16 0.00 0.00 0.00 -0.13 -0.12 -0.21
LVL duration 0.07 0.02 0.25 0.00 0.00 0.00 -0.17 -0.22 -0.44 0.09 0.12 0.26 0.00 0.00 0.00 -0.26 -0.27 -0.44
Medium WTC 15 minutes look-ahead time 20 minutes look-ahead time

Climb phase Cruise phase Descent phase Climb phase Cruise phase Descent phase
Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature -0.10 -0.10 0.01 -0.16 0.01 0.00 -0.09 -0.08 0.01 -0.11 -0.10 0.03 -0.16 0.02 0.00 -0.08 -0.08 0.01
Lapse rate -0.06 -0.05 0.00 -0.13 -0.01 0.00 -0.05 -0.05 0.01 -0.07 -0.07 -0.02 -0.14 0.04 0.01 -0.04 -0.05 0.01
Wind error 0.35 0.31 -0.01 0.58 0.00 0.01 0.36 0.32 -0.02 0.28 0.27 -0.02 0.58 -0.01 0.01 0.32 0.30 -0.07
Bank angle 0.03 0.00 0.03 0.04 0.02 -0.03 0.01 0.00 0.00 0.00 -0.02 0.00 0.03 0.01 -0.02 0.03 0.02 0.02

ATC 0.00 0.00 0.01 0.02 0.04 -0.07 0.00 0.00 -0.01 -0.05 -0.06 0.00 0.01 0.04 -0.07 -0.01 0.00 -0.01
Mach number 0.00 -0.01 0.04 -0.63 0.01 -0.01 -0.06 -0.06 -0.02 -0.06 -0.04 -0.04 -0.63 0.03 -0.01 -0.04 -0.06 -0.01

CAS -0.62 -0.53 -0.09 0.00 0.00 0.00 -0.57 -0.53 0.01 -0.63 -0.55 -0.11 0.00 0.00 0.00 -0.52 -0.48 0.07
Vertical speed -0.48 -0.47 -0.67 0.00 0.00 0.00 0.52 0.29 0.83 -0.55 -0.52 -0.55 0.00 0.00 0.00 0.42 0.22 0.76

LVL FL -0.07 -0.06 0.07 0.00 0.00 0.00 -0.17 -0.17 -0.20 -0.07 -0.05 0.06 0.00 0.00 0.00 -0.10 -0.09 -0.07
LVL duration 0.00 0.01 0.23 0.00 0.00 0.00 -0.30 -0.29 -0.43 -0.04 -0.04 0.24 0.00 0.00 0.00 -0.18 -0.15 -0.29

vertical speed. This correlation, however, is induced by the AE. A fast climbing aircraft reaches a higher altitude and a

higher true airspeed sooner than a slow climbing aircraft, resulting in the former being ahead of the latter (i.e., a negative



correlation). In the descent phase, a fast descending aircraft reaches a lower altitude and a lower true airspeed faster

than a slow descending aircraft, and travels a shorter distance (i.e., a positive correlation). The correlation between the

ATE and the temporary level-offs (duration) has been detected only in the descent phase for larger look-ahead times.

This relationship is indirect and results from the AEs. As an example, consider an aircraft leveling off while a TP is

predicting a continuous descent. The true airspeed of the leveled flight stays constant, and the true airspeed of the

predicted flight decreases with altitude. Thus, a shorter distance is travelled in prediction resulting in predicted position

being behind the actual one (i.e., a negative correlation).

In the climb and descent phases, the CTE shows a correlation with the wind, speed settings, vertical speed, and

the duration of temporary level-offs. These inputs do not directly contribute to the CTE. When there is a cross-wind,

aircraft usually correct for the wind to stay on course and this has also been implemented in the predictor used in this

study. The speed settings, vertical speed, and temporary level-offs influence the distance travelled along the predefined

route (i.e., longitudinal direction), and the resultant ATE causes small CTEs as can be seen in Fig. 15.

The only input (in this study) that directly contributes to the CTE is ATC intent. Instructions such as direct-to and

heading deviate aircraft from their route resulting in CTEs, which lead to ATEs. Unfortunately, in this study, the ATC

instructions were modeled in a way that does not allow to determine their linear relationship with errors. As an example,

Fig. 16 visualizes the relationship between the inputs and the average CTE in the cruise phase for 20 minutes look-ahead

time. The data are plotted as a two-dimensional histogram, where the black color represents the highest frequency of

data points. The red line shows the correlation between the input and the error, and the correlation coefficient value

is indicated at the top of each plot. The ATC instruction 0 stands for no ATC instructions, D for the direct-to, H for

heading instructions, S for speed and VS for vertical speed instructions. In each plot, the data points are separated into

two clouds and its clear that direct-to instructions cause large CTEs.

Thus, due to the discrete nature of ATC instructions modeled in this study, the correlation coefficient cannot be

determined for this input. An alternative approach would be to determine the correlation between the CTE and the

magnitudes of each instruction separately (e.g. speed values of the speed instruction or degrees of a heading instruction).

The AE is correlated with the vertical speed and temporary level-offs. The correlation between the vertical speed

and the AE is negative in the climb phase and positive in the descent phase. When the predicted climb rate is smaller

than the actual one, the predicted altitude is below the actual altitude, whereas when the predicted descent rate is smaller

than the actual one, the predicted altitude is above the actual altitude. When an aircraft temporary levels off in climb,

opposed to a predicted continuous climb, the predicted altitude is above the actual one, and the AE gets bigger for

longer level-offs (i.e., a positive correlation). In the descent phase, when an aircraft levels off, whereas a TP predicts

a continuous descent, the predicted altitude is below the actual one, and the error increases with the duration of the

level-off (i.e., a negative correlation).



Fig. 16 Cross-track error (CTE) in the cruise phase for 20 minutes look-ahead time.

VII. Discussion
This section discusses the insights gained from the surveillance data analysis and the estimated distributions, and to

what extent the obtained results can be generalized. Furthermore, the difficulty of determining the correlation between

ATC intent and the prediction errors is addressed. Finally, the relation to results of previous research is summarized.

A. Insights from the Surveillance Data and Input Distributions

A variability of the TP inputs was demonstrated in this study with estimated distributions, which indicates that

medium term predictions assuming a constant value setting for these inputs are oversimplifying. For example, the

analysis of the surveillance data has shown that about 40% and 37% of flights in the climb and descent phase, respectively,

did not follow a ’constant CAS - constant Mach’ speed profile. Additionally, on average 20% and 27% of flights in the

climb and descent phase, respectively, were not restricted to 250 knots IAS below FL100. On average, 32% of the flights

temporarily level off during climb, and 64% temporarily level off in the descent phase. These insights, however, are

representative for the operations within the studied area (as indicated in Fig.1). Furthermore, the distribution of vertical

speed changes with altitude, which can be explained by the effect of the atmospheric conditions on engine performance,

procedures, and practices. Lastly, the results obtained on the frequency of ATC instructions indicate the importance of

including this information in the prediction process.



B. Generalization of the Results

The trajectory simulator/predictor used in this study is comparable with a typical TP except for how the vertical

speed is obtained. Many operational TPs derive the vertical speed from the equations of a point-mass model as a

function of the reference aircraft mass and thrust settings. This study employed an alternative approach (known as

a parametric approach), which does not require the knowledge of the aircraft mass and thrust, where the vertical

speed is estimated from the surveillance data (similar to ERAM’s parametric trajectory predictor which is based on

empirical data [34]). Furthermore, the choices of predictor settings are similar to those that are commonly made in both

research and operational environments. For medium and heavy aircraft, the input distributions were obtained from a

sufficient amount of surveillance data (i.e., 33,109 and 7,143 flights respectively). Generally, meteorological conditions

(significantly) vary based on a geographical location (e.g. predominant wind direction). To generalize results, the u and

v wind components were modelled as uncorrelated. In practice, the temporary level-offs are highly dependent on the

procedures within each center, ATC, the airspace, and letters of agreement between the neighbouring centers. Although

this information was not taken into account when sampling temporary level-offs, the obtained results are considered to

be representative for the studied operational area, since the modelled route lies within the studied area. However, the

magnitudes and frequency of the large prediction errors (due to temporary level-offs) might be different for the airspace

that has a different distribution of the temporary level-offs. The results on the identified influential inputs of a TP are

deemed to be generic regardless of a geographical location. The strength of the error-input correlation, however, may be

affected by the predictor settings.

C. ATC Intent

In this study, when evaluating the impact of ATC on the prediction errors, ATC intent was taken as a discrete

variable, which does not allow to obtain a meaningful correlation measure. An alternative approach would be to consider

each ATC instruction separately and estimate the correlation between, for instance, the duration of a speed instruction or

the heading magnitude of a vectoring instruction and prediction errors. This approach, however, is not applicable to

direct-to instructions (i.e., instructions to fly to a certain waypoint of the route), which are commonplace in MUAC

airspace. Nonetheless, it is logical to conclude that when vectoring (direct-to and heading) instructions are issued by

ATC, these would (often) result in large CTEs, which in turn would contribute to ATEs. ATC speed instructions would,

most likely, have a much smaller effect on ATEs compared to the wind.

D. Relation to Results of Previous Research

The results obtained in this study on the importance of TP inputs are similar to the conclusions made in previous

research. In their study, Mueller et al. (2004) identified the speed settings and the wind speed as inputs that have the

most significant impact on the trajectory prediction of the En Route Descent Advisor system [12]. The top of descent



location, speed settings, wind speed, temporary level-offs and vectoring instructions were shown to have a large impact

on the prediction errors in the descent phase in the study performed by Mondoloni et al. (2005) [13]. Torres (2010) has

identified that the velocity effects (most likely wind and speed settings) in the cruise phase and vertical modelling effects

in the climb and descent phases are the largest sources of prediction errors [16]. In this study, barring the effect of ATC

intent, the wind conditions, the CAS and Mach number speed settings, the vertical speed settings (usually as a function

of the aircraft mass and thrust settings), and the temporary level-offs were determined to be the most influential inputs.

The rest of the studied inputs did not show significantly strong correlation with the prediction errors. However, the

global sensitivity analysis has shown that there are complex relationships between different prediction errors and inputs.

Whereas much research has been conducted studying the sensitivity of trajectory prediction to errors in inputs to a

TP [12, 13, 19, 20], this study has demonstrated, using observed data, that the inputs are rarely normally or uniformly

distributed. Furthermore, ATC instructions, which are recognized as large contributors to lateral deviations [15], and

temporary level-offs, both estimated from operational data, were also modelled in this study. Finally, to assess the

relationship (i.e., correlation) between the inputs to a TP and prediction errors, simulations were performed varying all

inputs at the same time. Although this approach complicates the interpretation of each input individual contribution to

resultant uncertainty, it allows to study the combined effect of all inputs while preserving the significance of influential

inputs.

VIII. Conclusion
This paper estimated the prediction uncertainty up to 20 minutes look-ahead time and the correlation between

trajectory predictor (TP) inputs and prediction errors for heavy and medium weight aircraft. For each category, 10,000

Monte Carlo simulation runs were performed employing a TP based on a kinematic approach where inputs were sampled

from their distribution functions obtained from the observed data. Studied inputs included bank angle settings, speed

settings (CAS and Mach number), vertical speed settings, temporary level-offs in the climb and descent phases, air

temperature, lapse rate, wind and ATC intent. Three prediction errors, namely along-track error (ATE), cross-track

error (CTE), and altitude error (AE), were computed for 5, 10, 15 and 20 minutes look-ahead time.

All three errors tend to increase with increasing look-ahead time. When outliers are not considered, at 20 minutes

look-ahead time, the ATE can reach up to around 18 nautical miles in the climb and descent phase and around 13

nautical miles in cruise. CTEs are negligible in the climb and descent phase, however, could reach up to 10 nautical

miles in the cruise phase. Furthermore, the AE can become as large as 12,000 and 13,000 feet in the climb and descent

phase. These large prediction errors are likely to impact the performance of the decision support tools that operate in

the time interval up to 20 minutes look-ahead time, such as conflict detection tools. A similar conclusion has been made

by Mueller et at. (2004) [12] and Paglione et al. (2009) [15].

Out of all studied input parameters, wind conditions, speed settings, vertical speed and temporary level-offs showed



a correlation with the prediction errors. In most cases, using the average inputs estimated from the operational data,

resulted in the reduction of prediction errors, compared to when BADA performance model was used. The ATEs were

further reduced when the down-linked speeds from the aircraft (in Mode-S) were included in the predictions.

Although the ATC instructions significantly contribute to the CTE and ATE, their correlation could not be determined

under this study setup. A different approach to the modeling of ATC intent is required for a successful correlation

estimation. Whereas for an individual trajectory prediction the accuracy of all inputs is important, when studying the

prediction accuracy in a generalized form, the effect of many inputs is diminished by the parameters that are more

influential. Therefore, the improvement of the less influential inputs is likely to be insufficient to improve the overall

prediction accuracy.

Further research could be conducted where the prediction algorithm takes into account the barometric vertical

rate down-linked by aircraft in Mode-S (in addition to down-linked speed settings). Additionally, such aircraft intent

information as target (cruise) altitude and location of top of climb and top of descent could be also shared with a

ground-based TP. All this is expected to decrease AEs and ATEs. Furthermore, the non-linear relationships between the

inputs and the errors could be investigated as well.
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