
Practical Verification of Infinite Structures in agda2hs

Remco Schrijver
Supervisors: Jesper Cockx, Lucas Escot

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Practical Verification of Infinite Structures in agda2hs
Author: Remco Schrijver
Delft University of Technology

Netherlands

Supervisor: Jesper Cockx
Delft University of Technology

Netherlands

Supervisor: Lucas Escot
Delft University of Technology

Netherlands

ABSTRACT
Agda allows for writing code that can be mathematically proven
and verified to be correct, this type of languages is generally known
as a proof assistant. The agda2hs library makes an effort to trans-
late Agda to readable Haskell, in a way the Haskell is still consistent.
In previous work it is shown that with the current agda2hs im-
plementation, rudimentary structures can be translated to Haskell
from Agda with agda2hs. In this paper the translation and verifi-
cation of infinite structures to readable Haskell code is researched.
This allows for future work to be done on verification of more
complex libraries because the concept of infinite structures is used
often in Haskell. The results of the research were that translation of
rudimentary infinite structures is possible, but functions creating
infinite structures cannot be translated at this point in time.

KEYWORDS
functional programming, Agda, Haskell, agda2hs, infinity, coin-
duction, copatterns

1 INTRODUCTION
Using unit and/or integration tests is important to improve stability
and verify correct behaviour of software. However, in safety critical
systems there is a more formal method of verification and testing of
systems compared to normal unit/integration testing. This takes the
shape of verification and validations (V&V) plans laid out during
testing, and contingency/safety planning for after deployment of
the system[Joung et al. 2009].
These guidelines for V&V ensure the logic of the system is sound,
making it possible to translate that logic to concrete test cases in
unit testing. However, there are limitations to unit/integration test-
ing, it is impossible to exhaust the set of inputs and outputs for
most systems under test. This and other limitations can be negated
in the form of static analysis, code coverage, and mutation testing.
But on top of that engineers can use languages with proof assistants
to aid them in verifying systems.

One of these languages with a proof assistant is Agda. A proof
assistant, in contrast to unit testing, allows you to be certain that
the system is correct for the whole space of possible inputs and
outputs. The V&V guidelines can be translated to a mathematical
proof and if those are correct, the system is also correct. Resulting
in safer systems and allows developers to be more confident in their
work.
However, the small number of libraries and frameworks imple-
mented in Agda holds it back in adoption of real-world systems.
One way this weak spot could be relieved is translating the code
to readable Haskell. This allows engineers to take advantage of the
broad ecosystem of frameworks and libraries provided to Haskell
programmers. But with the added benefit of the guaranteed correct-
ness provided by proofs written in Agda. This is where agda2hs

comes in, it aims to find a subset between Agda and Haskell, which
translates Agda code to readable Haskell.
agda2hs is not a complete subset yet, one of many areas that is
not researched yet is infinite structures. Common usage of these
in Haskell are in list generators, list comprehension, GUIs, and
Streams. If agda2hs allows for the use infinite structures, it would
be possible to verify more complex libraries. The goal in this paper
is to find the limitations of agda2hs regarding translation of infi-
nite structures. And if it is possible to translate these structures and
their operations from Agda to Haskell, that the properties remain
unaffected by the translation.

Infinite structures are used often in Haskell, without this support
agda2hs would be less intuitive to use by Haskell programmers.
With this in mind I have researched the possibility of implementing
infinite structures in agda2hs and came up with the following
research question: Is it possible for agda2hs to translate infinite and
cyclic structures that rely on co-induction in Agda to the concept of
infinite structures used in Haskell, and if not can agda2hs be extended
to be able to allow for this translation?

And produced the following sub questions:

• Is it possible to translate the type of infinite lists with
agda2hs from Agda to Haskell?

• Is it possible to translate operations on the type of infinite
lists with agda2hs from Agda to Haskell?

• Is there a difference in implementation between the type of
cyclic and infinite structures in the translation with agda2hs
from Agda to Haskell?

• Does the verification of properties on the type of infinite
lists stemming from co-induction remain consistent after
the translation with agda2hs from Agda to Haskell?

• Does the verification of properties on operations on the
type of infinite lists stemming from co-induction remain
consistent after the translation with agda2hs from Agda to
Haskell?

In the end in turns out that infinite structures are part of the sub-
set of Agda and Haskell. Where infinite structures with functions
that do not produce or alter infinite structures can be translated
by the current agda2hs version. But complex functions that create
or mutate infinite structures cannot be translated due to copattern
translation being incorrect.

The structure of the paper is as follow, in section 2 a quick in-
troduction to Agda and agda2hs is made in the preliminaries. Then
in section 3 the related works to this paper are discussed, this mainly
centres around hs-to-coq and LiquidHaskell. After that I get into the
method of how this research is done, described in section 4. Section
5, the problem analysis goes into the coinduction, copatterns, and

Practical Verification of Infinite Structures in agda2hs

sized types. Then in section 6 the results from my research are dis-
cussed. Section 7 goes into the responsible research, and section 8 is
the discussion where I reflect on the process. Then lastly there still
are section 9 which makes recommendations for future research
and section 10 is the conclusion of this paper.

2 PRELIMINARIES
For those that are not acquainted with Agda or agda2hs a small
summary of their functioning and their use will follow in this
section.

2.1 Agda
Proof assistants allow developers to write proofs for the code they
write, one of these is called Agda. Using these proof assistants,
you can ensure at compile time that for example a program will
terminate or if it is productive. This has the benefit that more errors
get caught at compile time instead of at run time, which makes
debugging easier and programs more stable. How Agda does this is
by using dependent types, it is developed mostly by academics and
also sees most of its use in academics.

2.2 agda2hs
Agda on its own has a small user base and it being mostly academic,
the developer community and library support does not come close
to languages like Java, C#, or Haskell. This makes it hard for de-
velopers wanting to use the proof assistant capabilities of Agda
while making functional products without reinventing the wheel.
This is where agda2hs comes in, it tries to find the subset of Agda
and Haskell and translates this to readable Haskell. This allows
for verified code checked by Agda to be used in Haskell projects.
But a drawback is that some parts of Agda might not be able to be
translated as it is not part of this subset between Agda and Haskell.

3 RELATEDWORKS
The proposition of using coinduction for infinite and circular struc-
tures (also called non-well-founded sets in set theory) was intro-
duced with the anti-foundation axiom[Aczel 1988]. Or more aptly
described in [Sangiorgi and Rutten 2011, p . 17] as ”axioms of anti-
foundation lead to the largest possible universe, i.e. a ’coinductive
universe’”. This use of coinduction has further ended up in lan-
guages like Agda to denote infinite structures and perform verifica-
tion on these structures[Agda 2021].
I also researched comparable libraries to agda2hs that try to ex-
tend Haskell such that it completely or partially can be proven
mathematically correct, while still generating readable code. I have
found two of these that have significant adaptation and support.
Namely hs-to-coq[hs-to coq 2021] that translates Haskell to the
proof assistant language Coq[Coq 2022]. And LiquidHaskell[Liq-
uidHaskell 2022b] which uses logical predicates that allow you to
ensure properties at compile time[LiquidHaskell 2022a].

Both hs-to-coq and LiquidHaskell have their own way of dealing
with infinite (or non-terminating) structures, first hs-to-coq will be
explained and then LiquidHaskell.

The way hs-to-coq handles infinite structures is by not allowing

them[Spector-Zabusky et al. 2018]. The part of Haskell that was
problematic for their translation to coq was ”As a consequence of
Haskell’s lazy evaluation, Haskell data types are inherently coin-
ductive.”[Spector-Zabusky et al. 2018, p. 10]
This is the crux of the problem, Haskell has a less stringent structure
in the form of always being coinductive, as opposed to Coq with a
more stringent handling of coinduction that requires an annotation
for coinductive structures. The developers argue that the most used
Haskell code either works with finite structures or can be rewritten
in a way it is finite. This can be debated, because it might be less
intuitive to write Haskell code without infinite structures like list
generators or list comprehension. But in the light of the alternative,
that all translated types can no longer use functions like length. It
was the reasonable decision to make for the project.
However, this is not a problem for agda2hs because instead of
going from a less stringent way of handling coinduction to a more
stringent one, the opposite happens. So, this trade-off between ei-
ther infinite structures or loosing out on some functions is not on
the table.

On the other hand, there is LiquidHaskell, this system uses re-
finement types[Vazou et al. 2014]. Which is different from the
dependent types used by Agda, meaning they are hard to compare.
And the implementation LiquidHaskell used for infinite structures
is not applicable for a solution for agda2hs.
As mentioned LiquidHaskell uses refinement types, which in simple
terms can explained as pre-conditions and post-conditions that are
required to hold for the functions annotated. This has as an upside
that it is easier to write these, but you will lose out on versatility in
general when using refinement types. But it is interesting to note
that infinity is still usable under refinement types. Although this
has no real consequence for agda2hs and cannot be used as a lead
for further implementation.

4 METHOD
Using agda2hs to try to create infinite structures in Haskell from
Agda through translation with agda2hs is subdivided into multiple
research questions, the method for answering them is as follows:

(1) Implement the most basic coinductive structure in Agda,
most likely an infinite list, and verify it translates correctly
to Haskell.

(2) On this most basic structure implement some basic func-
tions like take and drop and verify correct translations.

(3) Now on this most basic structure we will implement more
involved functions that require copatterns to implement
like map. As well as creating constructors for infinite lists
like repeat, or the Fibonacci sequence.

(4) Implement amore involved coinductive structure with sized
types like the delay monad[Abel and Chapman 2014], and
verify the translation.

For the implementation we were provided by Lucas Escot with a
basic code base where we could start development off from1. I went
on to analyse the main facets of the translation of infinite structures

1Verification template provided by Lucas Escot: https://github.com/flupe/verification-
template

https://github.com/flupe/verification-template
https://github.com/flupe/verification-template

Remco Schrijver

done by agda2hs. More on that in the next Section 5, the problem
analysis.

5 PROBLEM ANALYSIS
During my research I identified three interesting sub-fields that
are critical for translation by agda2hs for infinite structures. First
off, coinduction which is necessary for the infinite data types in
Agda. Secondly, copatterns these are for advanced functions that
return infinite structures themselves in Agda. And lastly sized types,
this is an alternative to creating structures and handling advanced
functions in Agda and aids the productivity checker. In the coming
subsections these are explained more in depth.

5.1 Coinduction
To write infinite structures in Agda2 the developers picked coinduc-
tion[Sangiorgi and Rutten 2011]. Coinduction is centred around the
idea of a co-space of induction, hence the name. Where in induction
we have the base case and the inductive case, coinduction only has a
coinductive step. This creates a recursive infinite structure that uses
the previous step to define the following and repeats this to infin-
ity. Coinductive structures are defined by their destructors[Kozen
2017], a classic example is the Stream type. In Agda it is notated
with the record syntax, and Stream would look something like seen
in listing 1. The field of hd allows you to access the element at the
current index of the stream, the tl field allows you to iterate over
the structure.

Listing 1: Example of the Stream record type defined in Agda.
r e c o r d Stream (a : S e t) : S e t where

c o i n d u c t i v e
f i e l d

hd : a
t l : Stream a

5.2 Copatterns
However, coinduction in Agda comes with the downside that defin-
ing functions that create or modify infinite structures, i.e., repeat or
map, requires a different approach due to the productivity checker.
Copatterns[Andreas et al. 2013] allow for pattern matching on
structures defined coinductively within Agda and creating these
advanced functions. This works because using copatterns in Agda
make it no longer check on productivity but just on termination[Abel
and Chapman 2014].
A simple case of copatterns in Agda would be the repeat function, as
seen in listing 2, where an input ’a’ is given which is then repeated
infinitely many times in the structure of Stream. As you can see,
we defined for repeat what we should do when we observe the hd,
we return x in this case. And when we observe tl we just call repeat
x again, in this way continuing the Stream.

Listing 2: Example of the repeat function on the Stream
record type in Agda.
repeat : { a : S e t } (x : a) → Stream a

2Documentation page of Agda for coinduction: https://agda.readthedocs.io/en/latest/
language/coinduction.html

hd (repeat x) = x
t l (repeat x) = repeat x

5.3 Sized Types
Sized types are special data types in Agda that helps in guaranteeing
productivity for coinductive structures in Agda[Veltri and van der
Weide 2019]. This is done by annotating the types with a sized field,
this shows the maximum amount of unfolds that are possible. This
notation makes defining functions on coinductive structures less
complex and more intuitive.

6 RESULTS
Based on my research on previous works, described in Section 3. I
discovered the fact that Haskell is implicitly coinductive[Spector-
Zabusky et al. 2018]. And Haskell has support for record types, the
way Agda defines coinductive structures. Both of these facts gave
me reason to expect the translation of these coinductive record
types to be possible. Before getting into the written code, for those
that want complete access to files that the examples are taken from,
these can be found here3.

I wrote a rather basic infinite structure called InfiniteList that can be
seen in listing 3. This translates properly to Haskell and can be used
to instantiate infinite structures in Haskell. Some examples would
be all list of primes or the Fibonacci sequence. But without some
basic functions we cannot do anything with these structures. Also
note that right now I cannot proof anything about the instantiated
structures because they are not instantiated in Agda.

Listing 3: The definition of InfiniteList in Agda.
r e c o r d I n f i n i t e L i s t (a : S e t) : S e t where

c o i n d u c t i v e
f i e l d

hd : a
t l : I n f i n i t e L i s t a

{ − # COMPILE AGDA2HS I n f i n i t e L i s t # −}

The actual result of conversion done by agda2hs can be seen in
listing 4. And is a rather natural translation that I expected and can
be used properly as an infinite structure.

Listing 4: The definition of InfiniteList in Haskell after trans-
lation by agda2hs.
data I n f i n i t e L i s t a = I n f i n i t e L i s t {

hd : : a ,
t l : : I n f i n i t e L i s t a

}

This InfiniteList by itself is not very useful, for it to become useful
we need functions for it. Basic functions are straightforward to
implement. Like takeInf which takes the n first values of a list. The
function dropInf which drops the first n values of a list, or ‼! which
takes index n of an infinite list. The results of implementing these
can be seen in listing 5.

3Code base for the discussed examples: https://github.com/RemcoSchrijver/
verification-of-infinite-structures/tree/paper_reference

https://agda.readthedocs.io/en/latest/language/coinduction.html
https://agda.readthedocs.io/en/latest/language/coinduction.html
https://github.com/RemcoSchrijver/verification-of-infinite-structures/tree/paper_reference
https://github.com/RemcoSchrijver/verification-of-infinite-structures/tree/paper_reference

Practical Verification of Infinite Structures in agda2hs

Listing 5: Definition of basic functions, takeInf, dropInf, and
‼! in Agda.
t a k e I n f : { a : S e t } −> I n f i n i t e L i s t a →

Nat → L i s t a
t a k e I n f l i s t Zero = []
t a k e I n f l i s t (Suc n) = (hd In f l i s t) : :

(t a k e I n f (t l I n f l i s t) n)
{ − # COMPILE AGDA2HS t a k e I n f # −}

d r op I n f : { a : S e t } → I n f i n i t e L i s t a →
Nat → I n f i n i t e L i s t a

d r op I n f l i s t Zero = l i s t
d r op I n f l i s t (Suc n) =

d r op I n f (t l I n f l i s t) n
{ − # COMPILE AGDA2HS d r o p I n f # −}

_ ! ! ! _ : { a : S e t } → I n f i n i t e L i s t a →
Nat → a

l i s t ! ! ! Zero = hd In f l i s t
l i s t ! ! ! Suc n = (t l I n f l i s t) ! ! ! n
{ − # COMPILE AGDA2HS _ ! ! ! _ # −}

The translation also works nicely and conform to what I expected,
this can be seen in listing 6. The use of Nat as opposed to Integer is
a bit unfortunate but this was the easiest way for now to implement
this in Agda. During translation this Nat type is translated with it as
well. This means you lose out on the efficiency of the int datatype
in Haskell so using Integer would be necessary in the future to
optimise the translation.

Listing 6: Conversion of basic functions, takeInf, dropInf, and
‼! in Haskell after translation by agda2hs.
t a k e I n f : : I n f i n i t e L i s t a −>

Nat −> [a]
t a k e I n f l i s t Zero = []
t a k e I n f l i s t (Suc n) =

hd In f l i s t : t a k e I n f (t l I n f l i s t) n

d r op I n f : : I n f i n i t e L i s t a −>
Nat −> I n f i n i t e L i s t a

d r op I n f l i s t Zero = l i s t
d r op I n f l i s t (Suc n) =

d r op I n f (t l I n f l i s t) n

(! ! !) : : I n f i n i t e L i s t a −> Nat −> a
l i s t ! ! ! Zero = hd In f l i s t
l i s t ! ! ! Suc n = t l I n f l i s t ! ! ! n

Verifying these basic functions can be seen in listing 7, and shows
the proofs that are necessary for proving bisimilarity. This means
that using different operations of functions results in the same
outcome. Because these proofs do not mean anything in Haskell
these are not translated.

Listing 7: Proving of bisimilarity of basic functions

drop−head− b i s s imu l a r − t a i l −head : ∀ { a }
(l i s t : I n f i n i t e L i s t a) →
hd In f (d r op I n f (Suc Zero) l i s t) ≡

hd In f (t l I n f l i s t)
drop−head− b i s s imu l a r − t a i l −head _ = r e f l

t a i l −head− b i s s imu l a r − index : ∀
{ a } (l i s t : I n f i n i t e L i s t a) →

hd In f (t l I n f (t l I n f (t l I n f (t l I n f l i s t)))) ≡
l i s t ! ! ! Suc (Suc (Suc (Suc Zero)))

t a i l −head− b i s s imu l a r − index _ = r e f l

As I already explained in the problem analysis, for more advanced
functions on this InfiniteList copatterns are necessary. You can think
of instantiating the structures or the map method that is used a lot
in functional programming. Two examples I wrote are the fibonacci
and evenInf functions, these can be seen in listing 8.

Listing 8: Definition of the advanced functions, fibonacci and
evenInf in Agda.
f i b o n a c c i : Nat → Nat → I n f i n i t e L i s t Nat
hd (f i b o n a c c i n1 n2) = n1
t l (f i b o n a c c i n1 n2)

= (f i b o n a c c i (n2) (n1 +++ n2))
{ − # COMPILE AGDA2HS f i b o n a c c i # −}

ev en In f : { a : S e t } → I n f i n i t e L i s t a →
I n f i n i t e L i s t a

hd (e v en In f xs) = hd xs
t l (e v en In f xs) = ev en In f (t l (t l xs))
{ − # COMPILE AGDA2HS e v e n I n f # −}

These do not translate as expected, as can be seen in listing 9. The
functions fibonacci and evenInf translates to invalid Haskell, this is
being looked at right now within the agda2hs library4. For now, it
is impossible to use these types of functions that require copatterns.

Listing 9: Conversion of the advanced functions, fibonacci
and evenInf in Haskell done by agda2hs
f i b o n a c c i : : Nat −> Nat −> I n f i n i t e L i s t Nat
f i b o n a c c i n1 n2

Data . I n f i n i t e L i s t . I n f i n i t e L i s t . hd
= n1

f i b o n a c c i n1 n2
Data . I n f i n i t e L i s t . I n f i n i t e L i s t . t l

= f i b o n a c c i n2 (n1 +++ n2)

e v en In f : : I n f i n i t e L i s t a −> I n f i n i t e L i s t a
e v en In f xs Data . I n f i n i t e L i s t . I n f i n i t e L i s t . hd =

hd xs
ev en In f xs Data . I n f i n i t e L i s t . I n f i n i t e L i s t . t l =

ev en In f (t l (t l xs))

4GitHub Issue for agda2hs on copatterns: https://github.com/agda/agda2hs/issues/98

https://github.com/agda/agda2hs/issues/98

Remco Schrijver

Using copatterns and the more higher order functions, bisimilarity
can be proven on mergeInf and splitInf functions5. These either
merge two lists into a singular infinite list by taking first one ele-
ment from the first and then from the second list. And split does
the opposite creating two infinite lists from one by first taking one
element of the parent list and then taking the other splitting it in
two. So, to prove that using merge on split results in an identical list
the following code can be used as seen in listing 10. Please note that
helper structures are defined for ≈ and for this proof translation to
Haskell is not necessary.

Listing 10: Bisimilarity proof in Agda on mergeInf and split-
Inf
merge− sp l i t − id : ∀ { a } (l i s t : I n f i n i t e L i s t a)→

merge In f (s p l i t l i s t) ≈ l i s t
hd≡− (merge − sp l i t − id _) = r e f l
t l ≈− (merge − sp l i t − id l i s t)

= merge − sp l i t − id (t l l i s t)

Because copatterns do not translate properly with agda2hs, I
looked to sized types. Sized types are a different way to write coin-
ductive types and help the productivity checker of Agda. Because
of this it allows us to write advanced functions differently from nor-
mal coinductive types. The definition of a comparable InfiniteList
with use size types called CoList can be seen in listing 11 and the
supporting Thunk structure can be seen as well.

Listing 11: CoList and Thunk in Agda
data CoL i s t (a : S e t) (@0 i : S i z e) : S e t where

Ni l : CoL i s t a i
_ : : : _ : a → Thunk (CoL i s t a) i → CoL i s t a i

{ − # COMPILE AGDA2HS C oL i s t # −}

r e c o r d Thunk (a : @0 S i z e → Se t)
(@0 i : S i z e) : S e t where

c o i n d u c t i v e
f i e l d

f o r c e : {@0 j : S i z e < i } → a j
open Thunk pu b l i c
{ − # COMPILE AGDA2HS Thunk # −}

Two important parts that are not implemented in translation, but
are being worked on at the moment6. Are first, the size field can
be removed in all cases. This means that you do not need to use
erasure annotations for it anymore and removal is done automati-
cally. Secondly theThunk record defined is not necessary in Haskell,
thunks are handled implicitly by Haskell by being a lazy language7.
The translation that takes place right now can be seen in listing 12

Listing 12: CoList and Thunk in Haskell translated by
agda2hs
data CoL i s t a = N i l

| (: : :) a (Thunk (CoL i s t a))
5Proof of bisimilarity on merge and split: https://agda.readthedocs.io/en/v2.6.2.1/
language/coinduction.html
6GitHub issue for agda2hs on intuitive translation of sized types: https://github.com/
agda/agda2hs/issues/99
7Haskell documentation on Thunks: https://wiki.haskell.org/Thunk

data Thunk a = Thunk { f o r c e : : a }

Using sized types the expectations were that defining more complex
functions like repeatCoList would translate properly as opposed to
copatterns. How repeat would be defined can be seen in listing 13.

Listing 13: repeatCoList in Agda
r e p e a tCoL i s t : { a : S e t } {@0 i : S i z e } →

a → CoL i s t a i
r e p e a tCoL i s t x = x : : : λ (where . f o r c e →

rep e a tCoL i s t x)
{ − # COMPILE AGDA2HS r e p e a t C o L i s t # −}

However as can be seen in listing 14 the expectations are proven
wrong. A somewhat similar problems as seen in listing 9 around
copatterns show up. This might have something to do with the fact
that when the force functions are used on the left-hand side it is still
a copattern[Abel and Chapman 2014]. Although this notation is
not used in this example it might well be the reason why the same
outcome as with normal coinductive types takes place. Trying to
construct the record type inside of the repeatCoList function also
was fruitless because then the productivity checker gave problems.
So also sized types do not make it possible to define more advanced
functions on infinite structures.

Listing 14: repeatCoList in Haskell translated by agda2hs
r e p e a tCoL i s t : : a −> CoL i s t a
r e p e a tCoL i s t x

= x : : :
\ case

Data . Thunk . Thunk . f o r c e −>
r e p e a tCoL i s t x

7 RESPONSIBLE RESEARCH
In this paper it is possible for others to follow the same process
I followed writing the code to answer my research questions. Be-
sides that, all the code written is hosted on GitHub8 and can be
freely accessed by anyone. Besides that, anyone is free to clone and
install it following the steps in the README file provided in the
repository to run the examples themselves. The usage of a make
file ensures that if the correct dependencies are installed, the code
can be run cross-platform. The dependencies and their versions
are fully described in the README file, but the important ones are
Agda, Cabal, and GHC. These can be installed via their respective
installers.

During the research no ethical issues arose, no data of humans
was used, and it was fully focused on the theoretical aspects pro-
gramming languages and mathematics. As far as was possible I tried
to write correct code and think soundly when making conclusions
following from my research. Therefor this research is free from
malicious intent and all faults can be attributed to mistakes made
during this research.

8GitHub Repository for this paper: https://github.com/RemcoSchrijver/verification-of-
infinite-structures/tree/paper_reference_1

https://agda.readthedocs.io/en/v2.6.2.1/language/coinduction.html
https://agda.readthedocs.io/en/v2.6.2.1/language/coinduction.html
https://github.com/agda/agda2hs/issues/99
https://github.com/agda/agda2hs/issues/99
https://wiki.haskell.org/Thunk
https://github.com/RemcoSchrijver/verification-of-infinite-structures/tree/paper_reference_1
https://github.com/RemcoSchrijver/verification-of-infinite-structures/tree/paper_reference_1

Practical Verification of Infinite Structures in agda2hs

8 DISCUSSION
Although the first part of my research went rather flawlessly, I stum-
bled upon a solid wall in the form of non-supported functionality
in agda2hs. This is the translation of copatterns, this is required to
create functions that can create or modify coinductive record types
in Agda.
But during my research I felt that my progress was slow. This might
be caused by the fact that the topics of coinduction, copatterns,
sized types, and infinity are rather intricate, and it took me a long
time to grasp them.
But when I finally understood coinduction and its application in
Agda, I encountered copatterns and sized types which threw me
off again. So, I think I progressed slowly but, in the end, achieved
some useful results. I was able to clear up what is and is not pos-
sible with agda2hs regarding infinite structures. This allowed for
clear targets on what to implement for agda2hs to actual allow for
programming with these structures.

Another struggle I encountered was the fact that most knowledge
is distributed within papers, examples on GitHub, and the develop-
ers of agda2hs, but not defined in documentation. This made my
progress rather slow, it required me to ask a lot of question about
basic functions. A user manual as defined for Agda would be a
great improvement. On the other hand agda2hs, when comfortable
with using Agda is intuitive to use. But it does expose a weakness
in agda2hs, the fact that using it is not well documented or sup-
ported for now. But if not for the missing translation in agda2hs
the project feels mature.

The verification template provided by Lucas Escot was unreliable
when used onWindows, but future users should have less problems
due to the fixes introduced by me and Lucas9. In the end it did not
take a lot of time to make improvements and have the template
working reliably. However, if I were a developer, I would expect
that downloading agda2hs would also come with an environment
in which I could create my projects. Similar to the role that the
verification template plays in this case.

So, in summary agda2hs is a project that still has work to do,
but the features that are in there are stable and very usable.

9 FUTURE RESEARCH
There are still quite some topics that can be researched in this part
of the agda2hs library on the topic of infinite structures, and these
are the following:

• One sub question I asked was, if there would be any dif-
ference between infinite and circular structures Because
although circular structures are not strictly infinite, it is
possible to infinitely traverse the structure.The termination
checker of Agda might complain about this, but the trans-
lation of the structure to Haskell should be rather natural.
Although functions could be more involved as seen with
the problems with copatterns.

9Fixed windows issues with template in PR: https://github.com/flupe/verification-
template/pull/1

• Right now the infinite structures I defined uses the record
type with a coinduction step in Agda. However, in Haskell
list comprehension and list generation is an important part
of Haskell that uses infinite structures. And it would not
be intuitive for Haskell developers to use coinductive struc-
tures for these features.
Now using the map, filter, and bind functions list compre-
hension could be constructed. However, the research also
should go into if filter can actually be used because it is
not productive. For list generation the iterate function will
need to be defined, this to me on the surface seems easier to
implement. Now using the fact that Agda allows for almost
all characters to be function names, both list generation
and comprehension could even be defined the same way as
in Haskell.

10 CONCLUSION
The results I have found frommy research is that, due to the implicit
nature of coinduction in Haskell and the support of record syntax. It
is possible to translate coinductive records in Agda to Haskell with
agda2hs as seen in listing 4. But support of functions that can create
or mutate infinite structures is not available with agda2hs yet. This
is because copatterns are not translated properly and creates invalid
Haskell code as seen in listing 9. Support for this has to be added in
agda2hs to createmeaningful infinite structures in Agda. And using
sized types to try and achieve the same behaviour as these functions
with copatterns failed, as seen in listing 14. This translation of these
functions with sized types generates similar faults in the translation
as with copatterns.This alludes to the possibility that it fails because
it actually does use a similar structure as copatterns do.

ACKNOWLEDGMENTS
I would like to thank my supervisors Jesper Cockx and Lucas Escot
for all the support during this research project. Especially helping
out when I was lost trying to use Agda and offering solutions to
problems I encountered during writing and coding. Also, I want
to extend my thanks to my fellow students Alex Haršáni, Luka
Janjić, Marnix Massar, and Michelle Schifferstein which during this
project provided peer feedback, reading my works, and delivered
valuable insights into what I could improve. And lastly a big thanks
to Andreas Abel for allowing and helping me to add to the Agda doc-
umentation, and I hope it will help others researching comparable
topics.

REFERENCES
Andreas Abel and James Chapman. 2014. Normalization by Evaluation in the Delay

Monad: A Case Study for Coinduction via Copatterns and Sized Types. Electronic
Proceedings in Theoretical Computer Science 153 (jun 2014), 51–67. https://doi.org/
10.4204/eptcs.153.4

Peter Aczel. 1988. Non-Well-Founded Sets. Palo Alto, CA, USA: Csli Lecture Notes.
Developers Agda. 2021. Coinduction in the Agda documentation V2.6.2.1. https://agda.

readthedocs.io/en/v2.6.2.1/language/coinduction.html [Accessed: 09-05-2022].
Abel Andreas, Pientka Brigitte, Thibodeau David, and Setzer Anton. 2013. Copatterns

Programming Infinite Structures by Observations. Conference Record of the Annual
ACM Symposium on Principles of Programming Languages 48, 27–38. https://doi.
org/10.1145/2480359.2429075

Developers Coq. 2022. Coq language website. https://coq.inria.fr/ [Accessed: 09-05-
2022].

Developers hs-to coq. 2021. hs-to-coq Github page. https://github.com/plclub/hs-to-coq
[Accessed: 09-05-2022].

https://github.com/flupe/verification-template/pull/1
https://github.com/flupe/verification-template/pull/1
https://doi.org/10.4204/eptcs.153.4
https://doi.org/10.4204/eptcs.153.4
https://agda.readthedocs.io/en/v2.6.2.1/language/coinduction.html
https://agda.readthedocs.io/en/v2.6.2.1/language/coinduction.html
https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1145/2480359.2429075
https://coq.inria.fr/
https://github.com/plclub/hs-to-coq

Remco Schrijver

E. J. Joung, C. M. Lee, H. M. Lee, and G. D. Kim. 2009. Software safety criteria and
application procedure for the safety critical railway system. In 2009 Transmission
Distribution Conference Exposition: Asia and Pacific. 1–4. https://doi.org/10.1109/TD-
ASIA.2009.5356897

Silva-Alexandra Kozen, Dexter. 2017. Practical coinduction. Mathematical Struc-
tures in Computer Science 27, 7 (2017), 1132–1152. https://doi.org/10.1017/
S0960129515000493

Developers LiquidHaskell. 2022a. LiquidHaskell documentation website. https://ucsd-
progsys.github.io/liquidhaskell/ [Accessed: 09-05-2022].

Developers LiquidHaskell. 2022b. LiquidHaskell Github page. https://github.com/ucsd-
progsys/liquidhaskell [Accessed: 09-05-2022].

Davide Sangiorgi and Jan Rutten (Eds.). 2011. Advanced Topics in Bisimulation and Coin-
duction. Cambridge University Press. https://doi.org/10.1017/CBO9780511792588

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie Weirich.
2018. Total Haskell is Reasonable Coq. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs (Los Angeles, CA, USA)
(CPP 2018). Association for Computing Machinery, New York, NY, USA, 14–27.
https://doi.org/10.1145/3167092

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
2014. Refinement Types for Haskell (ICFP ’14). Association for Computing Machin-
ery, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

Niccolò Veltri and Niels van der Weide. 2019. Guarded Recursion in Agda via Sized
Types. In 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 131), HermanGeuvers (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 32:1–32:19. https://doi.org/10.4230/LIPIcs.FSCD.2019.32

https://doi.org/10.1109/TD-ASIA.2009.5356897
https://doi.org/10.1109/TD-ASIA.2009.5356897
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
https://ucsd-progsys.github.io/liquidhaskell/
https://ucsd-progsys.github.io/liquidhaskell/
https://github.com/ucsd-progsys/liquidhaskell
https://github.com/ucsd-progsys/liquidhaskell
https://doi.org/10.1017/CBO9780511792588
https://doi.org/10.1145/3167092
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.4230/LIPIcs.FSCD.2019.32

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Agda
	2.2 agda2hs

	3 Related Works
	4 Method
	5 Problem Analysis
	5.1 Coinduction
	5.2 Copatterns
	5.3 Sized Types

	6 Results
	7 Responsible Research
	8 Discussion
	9 Future Research
	10 Conclusion
	Acknowledgments
	References

