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Deep-Learning-Aided Alternating Least Squares for
Tensor CP Decomposition and Its Application to
Massive MIMO Channel Estimation

Xiao Gong ', Wei Chen™, Senior Member, IEEE, Bo Ai~, Fellow, IEEE, and Geert Leus™, Fellow, IEEE

Abstract— CANDECOMP/PARAFAC (CP) decomposition is
the mostly used model to formulate the received tensor signal
in a massive MIMO system, as the receiver generally sums the
components from different paths or users. To achieve accurate
and low-latency channel estimation, good and fast CP decom-
position (CPD) algorithms are desired. The CP alternating least
squares (CPALS) is the workhorse algorithm for calculating the
CPD. However, its performance depends on the initializations,
and good starting values can lead to more efficient solutions.
Existing initialization strategies are decoupled from the CPALS
and are not necessarily favorable for solving the CPD. This paper
proposes a deep-learning-aided CPALS (DL-CPALS) method
that uses a deep neural network (DNN) to generate favorable
initializations. The proposed DL-CPALS integrates the DNN
and CPALS to a model-based deep learning paradigm, where
it trains the DNN to generate an initialization that facilitates
fast and accurate CPD. Moreover, benefiting from the CP low-
rankness, the proposed method is trained using noisy data and
does not require paired clean data. The proposed DL-CPALS is
applied to millimeter wave MIMO-OFDM channel estimation.
Experimental results demonstrate the significant improvements
of the proposed method in terms of both speed and accuracy for
CPD and channel estimation.

Index Terms— Massive MIMO, deep learning, channel estima-
tion, tensor decomposition.

I. INTRODUCTION

O REDUCE the degrading effects in harmful propagation

environments, modern wireless communication systems
tend to add more degrees of freedom by transmitting signals
covering multiple domains, e.g., space, frequency, polarization
and/or code, which extends the traditional vector or matrix
signals to multidimensional arrays, i.e., tensors. The multi-
dimensional signal structures can be naturally characterized
using tensor decomposition models. In the past decades,
tensor models have found a wide range of applications
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for wireless communication systems [1]. For example, the
CANDECOMP/PARAFAC (CP) decomposition, also called
canonical polyadic decomposition [2], [3], which factorizes
a tensor into a sum of rank-one tensors, is widely applied to
the received signal model [4], as the receiver generally sums
the signal components of different paths or users.

As a remarkable 5G technology, massive multiple-input
multiple-output (MIMO) antenna systems have been applied
in practice for increasing the data rate and reliability [5]. The
large-scale antenna arrays lead to high-dimensional channels,
especially when combined with other transmitting domains,
such as the frequency domain in orthogonal frequency divi-
sion multiplexing (OFDM) systems. Channel estimation is
crucial to embrace the potential gains of massive MIMO
systems [6]. However, the acquisition of channel state infor-
mation (CSI) becomes challenging and expensive in terms
of accuracy, training overhead and computational complexity.
Fortunately, when adopting the millimeter-wave (mmWave)
band or antennas at a high altitude, the sparse scattering
property enables an approximation of the channel using a low-
rank model [7]. By exploiting this low-rankness of the channel
tensor, one can decompose the high-dimensional channels into
low-dimensional factors to reduce the storage and enhance the
estimation of the channel or its latent parameters, e.g., angles
of arrival and departure (AoAs/AoDs), delays, Doppler shifts
and path gains [8], [9].

In addition to the pursuit of accurate channel estimation,
computational efficient channel estimation methods for mas-
sive MIMO systems are also desired to reduce the latency
and cope with potential channel variations. Some representa-
tive model-driven CP-based estimation methods for a MIMO
channel or its latent parameters are listed in Table I. Following
array signal processing, the spatial MIMO channel can be
constructed by collecting the steering vectors of the different
paths/users, thereby leading to a Vandermonde matrix [10].
Hence, for tensor MIMO channels, the CP factors could also
be restricted by such a Vandermonde structure, which results
in Vandermonde-constrained CP (VCP) decomposition [11].
Furthermore, by exploiting the Vandermonde structure of the
factors, subspace-type algorithms based on the singular value
decomposition (SVD) and estimation of signal parameters
via rotational invariance techniques (ESPRIT) are developed
in [12]. Various subspace-type estimation methods to calcu-
late Vandermonde-constrained CP decomposition in different
MIMO systems are proposed in [13], [14], [15], [16], and [17].
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TABLE I

A LIST OF MODEL-DRIVEN CP-BASED ESTIMATION METHODS FOR A
MIMO CHANNEL OR ITS LATENT PARAMETERS ¥

MIMO Systems Algorithms
MIMO radar [20] ALS
MU MIMO [22] ALS
DP MIMO [21] ALS
CF MIMO [13] subspace-type
TV MIMO [23], [24] ALS
TV MU MIMO [14] subspace-type
MIMO-OFDM [8] ALS
DWB MIMO-OFDM [15] subspace-type
TV MIMO-OFDM [9], [26] ALS

IRS MIMO [16], [25], [31]
ISAC MIMO [17], [27], [32]
MA-enabled MIMO [33]

subspace-type/ALS
subspace-type/ALS
ALS

¥ MU: multi-user. DP: dual-polarized. CF: cell-free. TV: time-varying. DWB:
dual-wide-band. IRS: intelligent-reflecting-surface-assisted. ISAC: integrated
sensing and communication.

There are different methods for calculating the CP decompo-
sition, such as gradient descent, quasi-Newton and nonlinear
least squares [18], [19]. Nevertheless, the alternating least
squares (ALS) is described as the “workhorse” for calculating
the CP decomposition [3], and is widely used in massive
MIMO channel estimation [8], [9], [20], [21], [22], [23], [24],
[25], [26], [27]. The ALS is conceptually very simple, and only
updates one factor at the time using least squares minimization.
Thus, it can always reduce the objective function value mono-
tonically. Many early works point out that the convergence
speed and converged stationary points of the ALS depend on
the initialization of the algorithm, and good starting points
can help to speed up the ALS and find the minima [28], [29],
[30]. While some competing methods may produce superior
performance, the ALS can chase them once given better
initializations [19]. However, the existing CPALS methods for
channel estimation mostly use random initialization and SVD
based initialization [3], resulting in thousands of iterations
to achieve an expected estimation accuracy, which reduces
their practicality. The reason for this problem is that existing
initialization strategies are decoupled from the ALS iterations,
and are not designed for converging quickly and well, which
inspires us to formulate the initialization and iteration into an
end-to-end framework.

Recently, deep neural networks (DNNs) show a power-
ful capability to capture the wireless channel characteristics
from tons of data, and they have been widely applied for
MIMO channel estimation [34], [35], [36]. By treating the
channel estimation as a denoising task, the spatial-frequency
convolutional neural network (SFCNN) has been proposed for
multidimensional channel estimation, which uses a convolu-
tional neural network (CNN) to exploit the multi-dimensional
spatial and frequency structure of a MIMO-OFDM chan-
nel [37]. Unfortunately, DNNs are commonly utilized as a
black box and data-driven deep learning does not yet offer the
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interpretability and reliability of model-based methods [38].
As an alternate that benefits from the advantages of both
model-driven and data-driven paradigms, model-based deep
learning methods [39] have attracted the attention of the
MIMO communication research, which generally incorporate
an internal or external DNN into an iterative algorithm.
Compared with traditional algorithms implemented for an
individual sample, they benefit from learning the domain
knowledge and have shown a performance improvement while
keeping relative interpretability [40], [41], [42]. However,
these methods are designed for matrix signals and are barely
applied to exploit the multidimensional tensor signal structure.
Focusing on the tensor network decomposition, a core tensor
network (CTN) is proposed in [43] that integrates the gradient-
descent-based tensor decomposition and transfer learning to
learn a mapping of correlated tensors, which improves the
initial condition for gradient-descent.

In this paper, we propose a deep-learning-aided CPALS
(DL-CPALS) for CP decomposition and massive MIMO tensor
channel estimation, which integrates the unrolled model-driven
low-rank approximation algorithm with the deep-learning pro-
cess to enhance the speed and accuracy. The contributions and
advantages of this work are summarised as follows:

¢ A novel DL-aided tensor low-rank decomposition frame-
work is introduced, which could be easily applied to
other tensor decomposition models. As long as the
algorithm is differentiable to ensure a gradient-based
back-propagation, the CPALS of the framework can be
replaced by alternative tensor decomposition algorithms.

o An easy-to-implement DNN is developed for the chan-
nel estimation application. Specifically, the DL-CPALS
augments the workhorse algorithm CPALS by using a
simple fully connected neural network to encode an input
tensor into the initializations for the unrolled ALS using a
small number of iterations. By integrating the DNN-based
initialization and the CPALS algorithm into an end-
to-end formulation, the DNN is trained to learn good
initializations that are favorable for achieving a small
low-rank approximation loss efficiently with CPALS.

« Different from existing DNNs for channel denoising, as a
DL-aided model-driven method, the performance of the
proposed method is guaranteed as it represents iterations
of the CPALS. Moreover, benefiting from the denoising
effect of a low-rank approximation of the CPALS itself,
the proposed method is trained by noisy data and does
not require the corresponding real clean data.

Compared with existing initialization strategies, experimental
results demonstrate that the proposed method leads to a more
accurate CP decomposition and channel estimate by using
fewer iterative steps.

II. NOTATIONS

Tensors, matrices, vectors and scalars are represented by
boldface calligraphic uppercase letters X', boldface capital
letters X, boldface lower case letters x and lowercase letters
x, respectively. The symbol j is used to represent /—1.
Superscripts ()T, (-)*,(-)® and (-)T denote the transpose,
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complex conjugate, Hermitian transpose and pseudoinverse,
respectively. Symbols o, ®, ¢ and ® denote the outer prod-
uct, Hadamard product, Khatri-Rao product and Kronecker
product, respectively. The operators rank(-) and krank(-)
denote the matrix rank and Kruskal rank, respectively. The
operator diag(-) converts a vector into a diagonal matrix.
U(a,b) denotes the uniform distribution in the interval (a,b),
and CN(m,0?) denotes the complex circularly-symmetric
Gaussian distribution with mean value m and variance o2.
1,, € R™ denotes the all-one vector. Mode-n matricization
of a tensor X € CH*-xInx-XIN jg denoted as X, €

cl» XM 1 ™ where index n enumerates the rows and the rest
enumerates the columns. The mode-n product of the tensor
X and a matrix A, € RE*I» is a tensor X x, A, €
R X I XK XIni1--XIN ywhose elements are computed by
(X X Aplin,.in 1 kvimg1rin = i =1 Tinyeomyinreing Vi -
Denote OfgénAl =Ajo...A, 1 0A, 10...AN as the
Khatri-Rao product of all but one matrix. Similarly, denote
Oi\;n A =A0...A, 10A,10... Ay as the Hadamard
product of all but one matrix. A matrix A € C'** is said to
be (exponential) Vandermonde if its elements are [A];, =
e~2m(=1wr Denote A = Van(z) as the generation of a
Vandermonde matrix A using z = 27[wy,...,wg]’, where
z is called the generating vector.

III. PRELIMINARIES

Here we introduce the CP decomposition and the ALS
algorithm applied on tensor channel estimation. For a tensor
X € Ch>xxIn jts CP decomposition is formulated as

R
X:Zaral’ro...oaMr:ﬂa;Al,...,ANﬂ, (])
r=1

where «, is the weight of the rth rank-one component,
[[] denotes the simplified CP representation and o =
[1,...,ar]T. A, = [an1,...,a, r] denotes the factor
along the nth mode. The CP rank is defined as the smallest
value of R satisfying equation (1). X is said to be CP low-rank
if R is relatively small. Then the high-dimensional X can
be modeled in a low-dimensional parameter space [44], i.e.,
RN 1, <« I, I,. The mode-n matricization of a
CP tensor is expressed as X(,) = AnA(QgénAl)T, where
A = diag(a). The scaling and permutation ambiguities always
exist in the CP model. Specifically, if there are some scaling
diagonal matrices {A, }"_, and a permutation matrix Y that
map the factors {A, }_; of (1) as

A, =A,A,Y, forn=1,... N,
N
I[ A = diag(Ya), (2)

n=1

then we have

SAN]. B

Note that the uniqueness of the CP decomposition does not
consider such ambiguity. The following theorem [45] gives a
sufficient condition for uniqueness.

X = [[a;Al,...,AN]]: HlR;Al,...

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 6, JUNE 2025

Theorem 1 (Uniqueness Condition [45]): Let an Nth-
order tensor X satisfy (1). Then, the CP decomposition is
unique if

N
> krank(A,) > 2R+ N — 1. (4)
n=1

When the CP model is applied to the received ten-
sor signals of MIMO communication systems equipped
with uniform linear arrays (ULAs) or uniform rectangular
arrays (URAs), part of the factors may become Vander-
monde matrices, which leads to a VCP model [11], ie.,
X = Jo; Ay, .., AN, AN 41, - -, AN], Where the factors
{A N,+1 are Vandermonde matrices whose elements can
be formulated as [A,];, , = e 2™ (n=Dwn.r and where the
factors {A, }"' are generalized matrices with no Vander-
monde structure. The generating vectors of the Vandermonde
factors can carry information about the AoAs, AoDs, delays
and so on, which depends on the specific system as summa-
rized in Table L.

Without accounting for the Vandermonde structure, the ALS
algorithm can be used for calculating the VCP decomposition
by solving the optimization problem as

R R 2
min Hy—[[1R;A1,...7AN]}H . )
(AN, F

The ALS updates factor A, alternatingly by fixing the other
factors. Thus, the optimization problem (5) in the mode-n
matricization form becomes

T2
. _ N N A
min | Y ) = An (<>z¢nAz) L ©)
and its LS solution is given as
N N 1 DOt
A, =Y (<>1¢nAl)
~ N ~ ~ T
=Y (08.A7) [OATA) . @

l#n

We summarize the CPALS in Algorithm 1. Note that the
tolerance on the difference of the factors or reconstructed
tensor between two adjacent iterations can also be used as
the terminating condition. Nevertheless, we use the number of
iterations K as the terminating condition to ease description.
To simplify notations, we denote ® as the operator to calculate
CPALS in Algorithm 1, which is formulated as

{(AKYN | = ®p (P, {AO}Y ), (8)

where Y is the input tensor that needs to be decomposed and
A?L is the initial factor for n = 2,..., N. The approximated
CP rank R and the number of iterations K are treated as the
predefined hyper-parameters of ®.

After the ALS terminates, we can extract the rth elements
of the generating vectors {Z,}_y, ,; of the Vandermonde
factors by solving the maximum correlation problem

|é7I;I_’TVan(ényr)’

[anrll,

; €))

max

En,r
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Algorithm 1 CPALS & « (Y, {A%}Y_,)
N_, CP rank R and the

n=2°

Input: tensor Y, initializations {A?L
number of iterations K
Output: updated factors {AKIN_|
I: Update A9 — Yy (OQZQA%*> ((Di\[:2 AO’TAO’*>T.
2. for k=1: K do
33 forn=1:N do
4: Update A’; by calculating (7).
5:  end for
6: end for

where a,, , is the rth column of An. The above problem can
be solved by a simple one-dimensional search method.

IV. DEEP-LEARNING-AIDED CP DECOMPOSITION

In this section, we integrate the CP decomposition into
the data-driven learning process and propose the deep-
learning-aided CPALS, where we use a DNN to generate the
initializations that are favorable for CP decomposition. Hence,
the proposed method enhances the algorithm’s accuracy and
efficiency.

A. Motivations

Researchers have long found in experiments that unfa-
vorable starting points can bring CPALS into swamps [28],
[46], where CPALS has not converged to a minimum and
using more iterations would not further reduce the objective
value. Favorable initializations not only speed up CPALS in
finding a mimimum, but also can ensure the global or local
convergence theoretically [47], [48]. As the initialization plays
an important role for CPALS, two questions naturally arise.
What are favorable initializations for CPALS? And how to
generate favorable initializations? Next, we address these two
questions as a way to motivate our proposed approach.

What are favorable initializations for CPALS? To answer
this question, we first illustrate the iterative behaviour of
CPALS using different initializations. Consider a synthetic
VCP tensor YV € C****% with R = 2, whose factors
are all Vandermonde matrices. Elements of the generating
vectors are drawn from (-7, 7) randomly, which are z; =
[0.36,0.18]%, zo = [1.10,—0.70]" and z3 = [—-0.58,0.89]7.
Note that this tensor satisfies the uniqueness condition of The-
orem 1. Here we only consider to decompose Y with CPALS
without calculating (9) for extracting parameters. We need to
provide initializations of 29 and 29 to construct the initial-
ization factors {A%}3_, as shown in Algorithm 1. We use
the randomly generated initialization 29 = [—0.46, —0.85]7,
and evaluate the performance of CPALS with different starting
points of 23 = [23 1, 232]7. In Figure 1 (a) and 1 (b), we show
|2
R R iz -
where Y = [1g; AKX AKX AK] is the reconstructed tensor
by using CPALS. As shown in Figure 1 (a), four regions,
which are surrounded by dashed circles, give favorable initial-
izations that allow CPALS to quickly reduce the estimation

the normalized square error (NSE) calculated by
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— Starting point 1
— Starting point 2
038 — Starting point 3

Starting point 2 I s 0.6
joa

generating point

Tteration

%32
(a) (b)

Fig. 1. Iterative behaviour of ALS using different starting points of
22 = (23,1, 23,2}T for computing a random tensor Y. (a) The reconstruction
< 2
NSE of % in dB with K = 50 using different starting points, where
F

ji is the reconstructed tensor. (b) The reconstruction NSE as a function of
iteration number.

error to 0. The first two regions, i.e., region a and region
b, are near the true generating point zz = [0.89, —0.58]7
and its permuted point [—0.58,0.89]7 due to the permutation
ambiguity. Interestingly, there are two more such regions, i.e.,
region ¢ near the starting point 1 and the permuted region
d. In Figure 1 (b), we plot the NSE as a function of the
iteration number for CPALS by using the selected starting
points. We can observe that the objective value using starting
point 3 reduces slowly like in a swamp, but it reduces quickly
using starting point 1. Hence, we could describe that favorable
initializations would make the ALS reduce to a low objective
value or decomposed error using just a few iterations. Note that
when Y is disturbed by the noise N, a low objective Vzalue of
the approximation problem in (5), i.e., H)AJ -YV-N H , may
not ensure a low NSE. Nevertheless, using a small olﬁective
value as the guidance is feasible if the uniqueness condition
is satisfied and the noise is small.

How to generate favorable initializations? We denote ¥ ()
as a functional generator that produces initializations for
CPALS to decompose Y. In addition to the random initializa-
tion, the most commonly used strategy is based on the SVD,
ie.,

U(Y) : A% = R leading left singular vectors of Y ),
forn=2,...,N. (10)

However, this initialization strategy fails to consider the updat-
ing steps of CPALS in the sequel and does not ensure to
generate favorable initializations. Although one can also use
other non-iterative decomposition methods like the generalized
eigenvalue decomposition (GEVD) to pre-estimate a starting
point close to the ground truth as initialization [49], they have
higher computational complexity than using the SVD. We need
a ¥ providing a guidance that prompts an accurate and fast CP
decomposition by producing favorable initializations for the
input tensor. Thus, W needs outer domain knowledge learned
from a large number of tensor decomposition processes, which
inspires us to employ a DNN.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 02,2025 at 11:10:25 UTC from IEEE Xplore. Restrictions apply.
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B. The Proposed Deep-Learning-Aided CPALS (DL-CPALS)

We consider to develop a DNN based generator Ug with
parameters 6, which learns to produce favorable initial param-
eters to decompose new tensors fast and well. Note that the
CPALS for a tensor is naturally treated as a model-driven
learning task, which updates its model parameters, i.e., the
CP factors, starting from the initializations. In this way, our
goal is to pursue favorable initializations using a learned
initialization generator Wg. Given a batch of CPALS tasks
for decomposing tensors Y1, ..., Y, we can integrate them
into the data-driven learning process of Wg. If the unrolled
CPALS is differentiable for updating the CP factors, gradients
can be backpropagated to train Uy for generating favorable
initializations. Specifically, the loss function of the learning
process is formulated as

1 Lll’
mein L—tr ;
s.t. {A?,n}’r]y:2 = \Ile(yl)a VZ7

{All,(n 2[:1 = CDR,K(yla {A?,n}ﬁlZQ)a vi.

N N 2
‘yl - [[1RaAlI(17 .. .7AlI’(NﬂHF’

(1)

Note that the loss matches the objective function of the
CP low-rank approximation problem in (5). When we set
a small K, the proposed method aims to optimize a DNN
for generating the initializations such that a small number
of ALS iterations on a CP decomposition task will produce
a maximally effective behavior to reduce the approximation
error. Thus, the learned DNN would be a good initialization
generator that can let the ALS converge to a low objective
error quickly for decomposing an input tensor. Moreover, as a
model-based optimization algorithm, CPALS is able to find
a clean low-rank tensor from a noisy high-rank tensor by
solving the low-rank approximation problem, which leads to
a denoising effect. Hence, optimizing the loss function (11)
and training the DNN Wy does not need the paired clean data.
The training data Y1, ..., Y, can be noisy, which improves
the practicability of the proposed method, as clean data are
not available in many cases, e.g., wireless channel responses.

We provide the training steps of DL-CPALS in Algorithm 2,
where we use a batch-wise training strategy. A prerequisite
to optimize the loss function (11) is that the CPALS ®pr g
is differentiable in the updated factors for all tensors, which
ensures the gradient back-propagation in line 6 of Algorithm 2.
As shown in (7), the iterative updating steps of ®r x employ
a multiplication, Khatri-Rao product, Hadamard product and
pseudoinverse of matrices, which are all differentiable [50].
The open source deep learning framework PyTorch [51] is able
to compute gradients of these matrix operations automatically.'
If @f\;n AT A} has full rank, its pseudoinverse is equal to the
inverse. Using the inverse operation can simplify the gradient
calculation and make the gradient numerically stable. As we
find that @l]:én A;FAT is usually full rank in experiments,
we suggest using the inverse operation. Because the derivatives
of ®p g are complicated, here we only formulate the updating

Ihttps://pytorch.org/docs/stable/generated/torch.linalg.pinv.html

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 6, JUNE 2025

Algorithm 2 Training of DL-CPALS

Input: the tensor dataset {yl}f:"l obeying p(Y), the CP rank
R, the number of iterations K, the number of epochs
Nepoch and the tensor mini-batch size L

Output: DNN Uy

1: for : =1 : Nepoen do

2. for j=1:L;/L do

3 Draw L tensors from dataset without replacement.

4: for[=1:L do

5: Input Y, into ¥y and obtain the initialization
factors {A?m N o, =Te()).

6: Carry out CPALS and obtain updated factors
{Al](n TILVZI = (I)R7K(ylv {A?n}TILVZZ)
7 Calculate the loss of low-rank CP approximation,

R R 2
ie. L = Hyl - [[1R;A{fl,...,A{fN}]HF
8: end for
9: Calculate the mini-batch-wise loss %Zle L;, and
update @ using optimizer.
10:  end for
11: end for

of A? with NV = 3 for instance, which is processed as

AY = ®po(Y,{A3, A3}
“ N N “ N “ —1
=Y, (Ag70AS") (AGTAL 0 ATAYY)
(12)

Due to {A9, A} = Wp(Y), both AY € C2*F and A €
C3*E are related to the DNN parameters 0. For ease of
formulation, we only consider Ag as a variable matrix and
fix AJ as a constant. Let

. . S| .
g(vec(A9)) = vec ((Ag’TAg’* ® Ag’TAg’*) ) ec?
(13)

represent a matrix function of A9, where vec(-) is the vector-
ization operator that stacks the column vectors of the argument
matrix into a long column vector. The matrix function g maps
an I, R-dimensional variable to the R?-dimensional space.
We define the derivative as D A9)8 € CR**xI2R | Firgt,
we have

vec (AgTAg*> = (AgH ® IR> vec (A(Q)T> :

vec(

(14)
Thus, we can obtain
Dvec(Ag)veC (ASTA(;*) = (AS’H ® IR) KIQ,Rv (15)

where Kj; € RFXF s called the commutation matrix
satisfying K ;vec(Z) = vec(Z™) for the matrix Z € CF*!,
According to [48], two important expressions are

Dyeexyvee (X71) = -XTo X1,

Dyeexyvee (X ©Y) = diag(vec(Y)). (16)
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Fig. 2. An illustration of the model forward propagation on a single tensor.

By using (13), (15) and (16), we can obtain
DveC(Ag)g
— (8" © ) ding(vec(ATAS) (RS 0 15) Koy
(7

Then, we can derive

Dt = (1ne Yo (A37043) s
(18)

In this way, the differentiable iterative updating steps of
CPALS eventually leads to the learnable Wy.

Moreover, we illustrate the forward propagation of a 3rd
order tensor in Figure 2, which corresponds to line 5 and
line 6 of Algorithm 2. It can be seen that CPALS is unrolled by
multiple factor updating steps using (7). As long as the factor
updating steps are differentiable, the DNN parameters 6 can be
optimized for learning by gradient back-propagation according
to the updating loss in line 9 of Algorithm 2. After the
learning terminates, one can obtain the favorable initializations
by feeding the test tensor into Wg. Then, performing CPALS
can produce an accurate decomposition solution with high
efficiency.

C. DNN Designs

In this subsection, we describe the details about the network
design of the generator Wy. Due to the CP low-rankness
assumption that R is small in (11), the initializations
{AY AN, live in a low-dimensional parameter space in
comparison with the reconstructed tensor. The CPALS & x
uses a low-dimensional initialization to produce a low-rank
approximation of the high-dimensional target tensor, which
is like an explicit decoder. Thus, it is natural to design the
generator Wy as an encoder. In addition, ¥y should have
a low computational complexity to compete with the SVD-
based initialization. We use a simple fully connected network
as generator, which outputs initial factors {A?,n}ﬁy:? Note
that the generator Wy directly outputs the factor matrices
rather than generating vectors by utilizing the Vandermonde
structure, which makes the proposed method suitable for a
generalized CP decomposition.

Given an input tensor ; € C/1>+*I~ e reshape it into
a vector, and concatenate its real part and imaginary part
into a single vector, which has dimension 2 Hivzl I,,. Assume
that each hidden layer has ) neurons. Then, the real weight

matrices employed on the input layer and the hidden layer
are of sizes 2 Hf:;l I, x @ and @ x @, respectively. For the
output layer, the weight matrix has size of Q) x 2R ZnNZQ I,.
In specific for the MIMO channel estimation application of
Section V, the input dimensions 21; I; M and output dimension
2R(I; + M) are determined by the numbers of BS antennas
I>, MS antennas [, frequency subcarriers M and paths R of
MIMO systems and channels. We use a Relu activation for
the hidden layers. As for the activation of the output layer,
we suggest to use the hyperbolic tangent function (Tanh),
which constrains the output values in the interval —1 to +1 so
that the energies of the initial factors are not very large and
result in imbalance.

If the Wy is stacked by D hidden layers, considering also
the biases, its total number of parameters is 2(¢) Hiv=1 I, +
(D —1)Q> + 2QRYN , I, + DQ + 2R, I,,. If the
input is a real tensor, the total number of parameters is
QUi In+(D=1)Q*+QRY)_, I+ DQ+R Y, In.
In addition, in order to deal with the latent overfitting problem
under limited training samples, a dropout layer is added after
the activation function of each hidden layer to improve the
generalization ability of the DNN model.

V. APPLICATION TO MASSIVE MIMO-OFDM TENSOR
CHANNEL ESTIMATION

Although the CPALS can be applied on a variety of massive
MIMO systems that are not limited to those listed in Table I,
we consider a representative application to MIMO-OFDM
tensor channel estimation.

We first consider a downlink MIMO-OFDM system where
both the mobile station (MS) and the base station (BS) are
equipped with ULAs, which are of size I and I5, respectively.
Suppose also that there are in total M, subcarriers with the
sampling rate of f;. As described in [8], [52], and [37],
consider the mmWave channel is formulated based on the
geometry-based channel model that has R resolvable paths
without clustering. Denote ¥,- and 6,. as the AoA and AoD of
the rth path, respectively. To simplify notations, we define
©1, = 2ndsind,/\ and O3, = 2ndsinf,/)\ as the
spatial AoA and AoD. The MIMO-OFDM channel in the
spatial-frequency domain can then be written in CP form as

R
_jopTrts 27TTrfs
Hy = B,e 7*™ Tio Van(O1 ) o Van(©Os,.) o Van
0 ; (©1,) (©2,r) ( A )
= [[ﬂ;AlaA27A3]] S (CIlXIZXMO? (19)
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where [, and 7. are the equivalent
and delay of the rth path, respectively. We
8 = [ﬁlefj%%{;, ..,53673‘2”%]? We further
have A; = [Van(©y;),...,Vani(©1 )] € CH*E
Ay, = [V;ing ()06271)7 . ,Va2n2((?273)] € CI2XR, and
A3 = [Van(2Ztl) 0 Van(ZETRL)) ¢ CMox B which are
stacked[by tile]\gtoeeging vector(s cj\g;res)g)onding to the receiving
ULA, transmitting ULA and subcarriers, respectively.

To facilitate the comparison of our method with others
in experiments, we follow the pilot transmission protocol
described in [37]. As the frequency correlation is helpful
to improve the channel estimation accuracy, suppose that a
training block has M sequential subcarriers in the frequency
domain to transmit Ny training pilots in the time domain,
which is illustrated in Figure 3. Two training blocks are
separated by P subcarriers dedicated to data transmission.
We only consider the estimation of the tensor channel of a
training block that corresponds to the pilot positions. The
channel is assumed to be block-fading, and it is constant
during training. Based on the pilot channels, interpolation can
be used to get the data channels. The training tensor channel
of the tth block is given by

Hie = [Hotl. o memetm—1 = [By; Arg, Aot, As ],

where mg denotes the starting index and Az, consists of
a group of M rows of Ajz;. Note that the parameters
{Bratiir A1 {1 1Ly and {O2,¢}/L, determine
B: A1, A and Ag, respectively. For the tensor channel,
the BS only activates one RF chain to transmit a pilot symbol
T, using a beamforming vector f5,, € C/2*!. During the
transmission of the pilot z,,, at the BS, the MS employs N;
combining vectors £y 1,...,f1 N, € CH*1 to process it. Note
that the RF chains of the MS need to be reused when its
total number is less than /V;. After transmitting N pilots, the
received baseband signal tensor can be written as

path gain
define

(20)

yt:Ht XlF{{ X9 dlag(x)Fg—f—Nt XlF{I € CNIXNzXM,
(2D

where x = [21,...,2n,]T, Ny € CHxN2xXM g the
noise tensor. F; = [fi1,...,fin,] € CI*M and Fy =
[f2.1,...,f2n,] € C2XN2 are the known combiner and

beamformer, respectively. Suppose that x = 1, and the rows
of F; and F5 are orthogonal with N; = I; and Ny = I5. Then,
according to (20) and (21), we can obtain a coarse estimation
of H, which is processed as

Hi =Y x1F1 %2 F;
:Ht X1 F]_F{I X9 F;Fg—‘y—Nt X1 FlF{—I X9 F;
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:Ht+Nt XQF;

= [By; Avt, Aoy, Ag ] + Ny xo F3. (22)

In this way, one can collect plentiful samples {H;} at the
receiver. As the least-squares-based coarse estimation can not
remove the noise, the obtained a dataset of the noisy chan-
nels that characterizes a distribution p(7). Fortunately, the
proposed DL-CPALS can be trained by only using the noisy
tensor H according to Algorithm 2. Once the model is trained,
in the inference phase, the pre-estimated channel is used as
input to the model Wy in order to obtain favorable initialization
factors. Then, the ALS with a small number of iterations
is calculated to compute the estimated (denoised) channel.
In addition, one can also estimate the channel parameters for
each sample 7, such as the spatial AoAs, spatial AoDs and
delays from the decomposed factors A;;, Ay, and A3z, by
solving the optimization problem (9).

VI. SIMULATIONS

In this section, we evaluate the tensor CP decomposition and
channel estimation performance of the proposed DL-CPALS
in the considered mmWave MIMO-OFDM systems.

A. Results on Synthetic Data

We first compare the low-rank CP approximation perfor-
mance of the proposed DL-CPALS with CPALS with random
initializations (Random-CPALS), CPALS with SVD-based ini-
tializations (SVD-CPALS) and CPALS with GEVD-based ini-
tializations (GEVD-CPALS) [49].2 Consider a noisy low-rank
CP tensor distribution p(Xpn) with Xy = Xy + Ny €
R6%6%6  where the CP rank of X is set as R = 3 and
N, is Gaussian noise. Based on the CP model of X, in (1),
the elements of the factors {A,; € R6*3}3_, and the
weight vector oy € R3*! are all drawn from the uniform
distribution /(0, 1). The factors {A,, ; € R6*3}3_, have full
column rank almost surely due to the randomness. According
to Theorem 1, the constructed tensor is unique if R < 3.5.
Hence R = 3 satisfies the sufficient condition of uniqueness.
Then, by setting the signal-to-noise-ratio (SNR) to 15dB,
we generate 100000 noisy tensors randomly of { X, + 112909,
where Ly = 90000 samples are used for training and L, =
10000 samples are used for testing. For the DNN model as
described in Subsection IV-C, we set the number of hidden
layers to D = 4, the number of neurons to () = 512 and
the dropout rate to 0.3. Thus, the total number of model
parameters is 917540. For the model training as given in
Algorithm 2, the DL-CPALS uses the Adam optimizer [53]
with a learning rate 0.00002 and mini-batch size L = 512.
The number of learning steps is decided by the number of
epochs, which is set to Nepocn = 1000. As for the setting of
the iteration number K, we set K = 2 for training because
using a larger K does not lead to significant gains in the
experiments but bring more complexity for calculating the
gradients. Unless otherwise specified, K is set to 50 for testing.
The performance of the competing CPALS method is evaluated

Zhttps://www.tensorlab.net/
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Fig. 4. The training loss of DL-CPALS.

from two aspects: the iterative behavior of the objective value,
i.e.,

2
> s - s AL AS AR L @3)

Lle
Lte e
and the iterative behavior of the average NSE (ANSE),’ i.e

" N “ 2
‘Xt - [[1R§ Afm Aé(,ta A:?tﬂ H
- 5 £ (24)
Le [ Xl

In Figure 4, we first show the training loss of the proposed
DL-CPALS. It can be seen that the loss value generally
decreases and tends to converge as the number of epochs
increases, which demonstrates that the proposed DL-CPALS
is learnable. In Figure 5, we plot the performance versus
number of iterations of all test samples using different ini-
tializations. Note that the elements of the initial factors for
the Random-CPALS obey the uniform distribution 2/(0, 1),
which actually means non-negative priors are used. Figure 5(a)
shows that the convergence of the proposed DL-CPALS is
the steepest, because the trained model produces favorable
initializations that reduce the objective value quickly. Although
the GEVD makes a good initial guess, it fails to consider
the updating steps of CPALS in the sequel. Moreover, the
objective value with K = 2, i.e., the test loss after training is
complete, is 0.36 in Figure 5(a), which is close to the final
training loss in Figure 4. In Figure 5(b), it can be seen that
the proposed method achieves the lowest reconstruction error
by only using a small number of iterations (about K = 5),
while the competing Random-CPALS, GEVD-CPALS and
SVD-CPALS fail to reach the same accuracy as DL-CPALS
even with K = 50. In order to observe the ANSE distribution
of the competing methods on all testing samples, we plot the
CDF curves in Figure 5(c). It can be seen that DL-CPALS has
the highest probability of reaching a specific low error. Based
on these results, the proposed DL-CPALS leads to an accurate
and fast low-rank CP decomposition.

B. Results of MIMO-OFDM Channel Estimation

Consider the ULAs of the BS and the MS are of size I, =
32 and I; = 8, respectively. The inter-element spacing d of

3Note that each true sample X': has a single estimation trial
[1r; 1t,A§t, 3t]] so we call it ANSE for rigorousness.
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Fig. 5. The performance comparison of CPALS using different initializations
on synthetic data. (a) Iterative behavior of the objective value. (b) Iterative
behavior of the ANSE. (c) Curves of the cumulative distribution function
(CDF) of the ANSE with K = 50.

the ULAs is set to half the carrier wavelength A. The sampling
rate is set to fi, = 0.32GHz. The total number of subcarriers
is set to My = 128, out of which a pilot block is selected
randomly with M = 4 subcarriers and mg € {1,...,125}.
Suppose that the elements of the noise tensor N; are i.i.d.
CN(0,0?), where o is determined by the SNR. The AoAs
¥+, AoDs 0,.;, delays 7,.; in nanoseconds and gains 3, :
are ii.d. with distribution U(—7%, %), U(—5,5), U(0,100)
and CN(0,1) for » = 1,..., R, respectively. We generate
100.000 samples, where 10.000 samples are selected randomly
for testing and the rest 90.000 samples are used for training.
The number of channel paths is set to R = 4. As the generators
are distinct, the Vandermonde factors have full Kruskal rank
according to [54]. Based on Theorem 1, R = 4 satisfies
the sufficient condition of uniqueness in this subsection, i.e.,
R < 5. Note that R is known for the proposed method
as a priority. One can also determine it as an unknown
value by using the information theoretic criteria of minimum
description length (MDL) [55]. The fully connected neural
network structure has the setting described in Subsection VI-A
with 4 hidden layers and 512 neurons per layer, where the
input layer dimension is 21511 M = 2048, and the output layer
dimension is 2R(I; + M) = 96. Therefore, the total number
of parameters is 1886304. In order to improve the practicality
of the model in actual scenarios, note that the DNN is trained
by using the channel samples with mixed SNRs which are
selected randomly from {5,10,15,20,25}dB and tested for
each SNR.

For the proposed DL-CPALS method, a two-stage training
scheme is adopted. In the first stage, we set the number of
iterations K = 0 (see Algorithm 1) and train the DNN for
1000 epochs with learning rate 0.0001, which sets the param-
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Fig. 6. The performance comparison of CPALS using different initializations
on channel data. (a) Iterative behavior of the objective value. (b) Iterative
behavior of the ANSE.

eters to a reasonable value range so that the reconstructed CP
tensor is close to the input. Then, in the second stage, we set
K = 2 and the learning rate to 0.00002 for training another
1000 epochs.

As for the competing methods, in addition to
Random-CPALS and SVD-CPALS, the supervised deep-
learning-based MIMO-OFDM channel estimation method
SFCNN [37] is also considered as a baseline, which uses
noisy channel samples and noise-free samples to train a
convolutional neural network for denoising. The SFCNN
is trained for 2000 epochs with learning rate 0.001. Other
settings are the same as in the open-source codes of the
paper.* As listed in Table I, subspace-type methods estimate
the signal subspace and channel parameters by exploiting
the Vandermonde structure of the factors, which can also
reconstruct an estimated channel using the estimated channel
parameters. When applied to the channel estimation of
MIMO-OFDM systems, a subspace-type method SCPD
(Structured CP decomposition) [15] can be obtained, which is
also considered as a benchmark. In addition, we also compare
the competing methods with the minimum mean-squared error
(MMSE) estimator. According to (21), the signal model can be
written as y; = Xh; +n;, where X = I, ®@diag(x)F @ FH,
and y;, h; and n; are the vectorization forms of Y;, H;
and N x4 F{I , respectively. Then, an MMSE estimation is
written as flt = Wyt, where W is given as

W :argn‘lgan{Hht - Wyt\lﬁ}

=E{h/h/} (E{h;h/} + E{nn/'}) " X7 (25)

Note that the covariance matrix of the channel is estimated
from all training samples and the covariance matrix of the
noise is set as true according to the SNR.

We first demonstrate the performance gain of the proposed
DL-CPALS for CP decomposition on efficiency and accuracy
in Figure 6, where SNR = 15dB. Figure 6(a) shows that
the proposed DL-CPALS can generate favorable initializations
for the CP decomposition that make the objective function
decrease rapidly. Note that a better channel estimation per-

“https://github.com/phdong21/CNN4CE
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formance always corresponds to a lower ANSE but may not
to the lower objective value. Although as K increases, SVD-
CPALS can achieve an objective function value similar to that
of DL-CPALS, the channel estimation results of the proposed
DL-CPALS are more accurate as shown in Figure 6(b).

Figure 7 shows the comparison of the channel estimation
ANSE between the supervised SFCNN, the subspace-type
SCPD and the CPALS algorithm with different initializations
under different SNRs with K = 50. It can be seen that the
performance of SFCNN at SNR = 5dB is better than that of
the SCPD and the CPALS algorithm, because the DL-CPALS
is trained only using noisy data and a low SNR may hurt
CPALS for solving a CP low-rank approximation, whereas
the SFCNN is trained specially for channel denoising by using
the paired clean samples and noisy samples. Nevertheless, the
performance of the proposed DL-CPALS becomes optimal as
the SNR increases. In addition to the denoising effect, the
proposed method can also decompose the high-dimensional
channel tensor into low-dimensional factors, which can save
the channel storage and further reduce the precoding complex-
ity by using the decomposed factors [56]. Although MMSE
describes a nearly optimal linear estimation performance,
it cannot achieve the accuracy of the DL-CPALS that exploits
the channel low-rankness. Moreover, we provide the channel
parameter estimation results of SVD-CPALS and DL-CPALS
in Figure 8, where the true parameters and estimated ones
are all sorted in descending order due to the ambiguity. Note
that the SFCNN cannot perform parameter estimation and
the results of random-CPALS are poor, which is therefore
not provided in the figure. It can be seen that the parameter
estimation error of the proposed DL-CPALS is better than
SVD-CPALS in all cases.
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TABLE I

THE NUMBER OF ITERATIONS OF DIFFERENT CPALSS FOR ACHIEVING
THE SAME ANSE OF CHANNEL ESTIMATION

ANSE Random-CPALS SVD-CPALS DL-CPALS

0.01 36 5 2
0.004 259 15 5
0.002 Fail 158 36

TABLE IIT

COMPLEXITY COMPARISON OF DIFFERENT INITIALIZATION
METHODS OF CPALS

. . Kilo Cflops

Method Time Complexity O

Init.  Per Iter.
KLI;MR
Random VK (LT + LM + I, M)R? 40
LI, M(I1 + M)+ KL ILMR
SV kb +nM+nMre 6 40
2

DL DLIoM + QD* + KL, MR 314 40

+K (I I, + LM + I, M)R?

C. Complexity Analysis

In this subsection, we discuss the computational complex-
ity of the proposed DL-CPALS in the testing phase. The
experiments are all implemented through Python and PyTorch
programming on a single computer, which is equipped with
an Intel(R) Core(TM) i7-9700K 3.60GHz CPU and 32G
memory. During the testing phase, all methods are evaluated
on the CPU. We consider SNR = 20dB and focus on the
channel estimation experiments of Subsection VI-B. We set
the maximum number of iterations to K = 500.

We report the number of iterations required for CPALS to
achieve a certain channel estimation accuracy using different
initialization approaches in Table II, where we can see that
DL-CPALS greatly saves iterations to guarantee a certain
accuracy. For example for the ANSE = 0.002, the proposed
DL-CPALS only takes 36 iterations, while SVD-CPALS takes
158 iterations and Random-CPALS fails to achieve the pre-
scribed accuracy even after 500 iterations.

Compared with Random-CPALS, both SVD-CPALS and
DL-CPALS require some complexity for the initializations.
In Table IIlI, we first show the computational complexity
of these methods. The initializations of SVD-CPALS and
DL-CPALS lead to a complexity of Iy [oM(I; + M) and
DI, LM + QD?, respectively, where I, Is, M, @Q and D
are the numbers of receiving antennas, transmitting antennas,
training subcarriers, nodes of each hidden layer and hidden
layers, respectively. Although a simple fully connected net-
work is employed to demonstrate the effectiveness of our
method, the DNN structure could be more dedicated such as
a convolutional network so that its complexity is comparable
with the SVD. Moreover, the number of floating point opera-
tions (flops) is also provided in Table III. A flop serves as a
basic unit of real number computation, which could denote
one addition, subtraction, multiplication or division of real
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floating point numbers. Denote that a complex flop (cflop)
serves as a basic unit of complex number computation. Due
to that a complex multiplication requires 6 real flops, a cflop
is more expensive than a flop. Suppose that A € C™*",
B € C*", C € C™*! and positive definite R € C"*".
According to [54], one can obtain that the numbers of cflops
of A"A, AC, AoB, A®B and R~" are mn2+mn— 2% — 2,
2mnl — ml, mkn, mn and, n® + n? + n, respectively,
where the matrix inverse is calculated based on the Cholesky
decomposition. As for the SVD, the popular bidiagonalization
algorithm produces ~ §n3 cflops [57], where ~ means that
only the leading term is considered. Thus, we can obtain
that each iteration of CPALS takes 40 kilo cflops. The SVD
initialization takes 16 kilo cflops at least, which is roughly
equivalent to one iteration. According to the flops counter
THOP? of the DNN model for PyTorch, the DNN model of the
proposed DL-CPALS requires 1884160 flops, which is about
314 kilo cflops. The storage of the DNN is 7.2 megabytes.
Although the DL initialization consumes about 8 iterations of
cflops, it saves more than 100 iterations of cflops at ANSE of
0.002 in Table II. In addition, the average initialization time
of a single sample is about 0.6 milliseconds. Compared with
the running time it took for the ALS iterations, e.g., about
22 milliseconds with K = 50, the time required for computing
the initializations is negligible.

VII. CONCLUSION

This paper proposes a deep-learning-aided CP alternat-
ing least squares (DL-CPALS) method for efficient tensor
CANDECOMP/PARAFAC (CP) decomposition. Specifically,
by integrating the model-driven CP decomposition into the
data-driven learning process, a neural network model is
trained to generate favorable initializations for a fast and
accurate CP decomposition. Due to the CP low-rankness con-
straint exploited in the model, the proposed DL-CPALS only
requires noisy samples and does not require paired noise-free
samples. The method is applied to the CP low-rank approx-
imation using synthetic data and tensor channel estimation
for millimeter wave multiple-input multiple-output orthogonal
frequency division multiplexing (mmWave MIMO-OFDM)
systems. Experimental results show that the proposed method
achieves a fast and accurate CP decomposition compared with
the baseline methods.
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