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Abstract

This work presents a decentralized optimization conflict resolution method based on a novel
Alternating Directions Method of Multipliers (ADMM) variant and model predictive control
(MPC). The variant, titled Online Adaptive Alternating Direction Method of Multipliers (OA-
ADMM) aims to unify the application of ADMM to online systems, i.e. systems where fast
and adaptive real-time optimization is crucial, into one framework. OA-ADMM introduces
two user-designed functions: the similarity function (a forgetting factor between two time
steps of the online system) and the adaptation function (adjusting the penalty parameters
between updates). The similarity function is what allows OA-ADMM to be applied to online
systems where conventional optimization is too slow; the adaptation function allows the user
to adjust the online feasibility of the system. We prove convergence in the static case and
give requirements for online convergence.

Combining OA-ADMM and MPC allows for robust decentralized motion planning and con-
trol that seamlessly integrates decentralized conflict resolution, instead of using separate
subsystems or hierarchical optimization. The additional robustness is achieved by using the
adaptation function of OA-ADMM as an additional safety measure, allowing the prioritization
of certain constraints for (nearly) unsafe states, whilst the similarity function allows optimiza-
tion at the desired control frequency. This method is compared with convention ADMM in
Matlab, resulting in significant improvements in robustness and conflict resolution speed.

Finally, we compare our OA-ADMM and MPC based decentralized conflict resolution method
against conventional decentralized conflict resolution methods in the CARLA vehicle simulator.
The results show that the OA-ADMM based method has improved performance, safety,
robustness, and generality compared with traditional methods. The method also has fewer
requirements in terms of prior knowledge (e.g., the geometry of the intersection), making it
usable in almost any situation.
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Chapter 1

Introduction

1-1 Motivation

Traffic congestion has a significant economic and ecological cost attributed to it. Driving
delays have been estimated to cost $160 billion a year in the US alone [1]; on top of the
economic cost there is also a negative effect on public health [2], and traffic congestion also
has a large impact on carbon dioxide emissions, which could be reduced significantly [3]. Most
estimates place fully autonomous vehicles somewhere within the next decade (2020-2030) [4].
It is important that autonomous vehicles do not worsen congestion but reduce it instead;
since intersections are a major contributor to traffic delays and accidents, it is crucial that
autonomous vehicles are equipped to deal with them efficiently [5].

Studies have shown that there is a big gap between the readiness of connected and autonomous
vehicles, and the urban infrastructure [6]. It is therefore not realistic to expect every intersec-
tion or other conflict zones to be equipped with the infrastructure required to centrally resolve
the conflicts. Because of this, it is necessary that autonomous vehicles are able to resolve these
conflicts without any external infrastructure. This is especially true for unmanaged intersec-
tions outside urban environments where there are often no traffic lights or signs. Autonomous
vehicles, however, face additional difficulties when navigating unmanaged intersections using
decentralized policies due to the potential for deadlocks or accidents. These difficulties can
be resolved by using communication and conflict resolution protocols among autonomous
vehicles.

The goal of this thesis is conduct thorough investigation of the problem and the state of the
art, mainly focusing on its limitations, in combination with the proposal of a novel approach
aimed to improve performance and reduce the limitations. Specifically, the improvements are
made through using optimization to resolve conflicts, whilst simultaneously generalizing the
problem to any structured or unstructured environment.
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2 Introduction

1-2 History and Related work

Initial research into connected vehicle environments started to take off with the proposal of
Dedicated Short-Range Communication (DSRC) standards around 2005 [7]. Early research
was focused on driver assistant systems, such as adaptive cruise control [8] and collision
mitigation brake systems [9]. The desire for higher levels of autonomy led to autonomous
lane changes and merge maneuvers [10]. At around the same time, the research began on
intersection management, with one of the earliest centralized works being a First Come First
Serve (FCFS) reservation-based intersection control in [11] and [12]. Gradual improvements
were made on a similar framework like the Look-ahead Intersection Control Policy (LICP),
which took potential delays into account [13]. Other improvements were made to the central-
ized approaches such as in [14], which transformed the problem into a convex space domain
problem. The convex formulation was then used by [15] for a centralized MPC approach.

Centralized conflict resolution has the major limitation that, when the central manager fails,
the entire environment comes to a halt. Furthermore, the requirement of central conflict
resolution hardware at all locations where conflicts can occur has two major issues. First,
there is no simple way to identify all physical locations where conflicts can occur. Second,
the amount of hardware needed comes at a very high cost, including maintenance. These
limitations of centralized approaches resulted in the desire for decentralized approaches for
intersection conflict resolution as well. One of the first was the priority-based approach in
[16], which utilized the token ring1 principle from computer networks. Another example is the
decentralized-navigation-functions approach for point mass vehicles [17]. It is also possible to
use sequential local optimization based on the time until reaching the intersection [18].

More traditional approaches are the decentralized intersection protocols that use various
priority policies [19, 20, 21]. An improvement of this framework allows real-time adjustments
of the priorities and the utilization of constrained optimal control, allowing for better overall
performance [22].

Whilst not incorporating the entire conflict resolution problem, recent development in the field
of online multi-agent motion planning is closely related to our work on optimization based
decentralized conflict resolution. Online distributed motion planning for multi-agent systems
has been proposed in [23], utilizing a single iteration receding horizon approach, with the
goal of formation control; [24] expands the method by also considering inter-vehicle collision
avoidance through the use of separating hyperplanes. The ADMM variant introduced in [25],
intended for autonomous vessels, utilizes a central coordinator and claims to improve the
convergence rate through iteratively adding approximated collision avoidance constraint. The
authors of [26] introduce a method similar to that of [23, 24], utilizing a linearized collision
avoidance constraint and incorporating deadlock-protection. A distributed MPC approach
is proposed in [27], incorporating the residual balancing method from [28]. The authors
of [29] utilize distributed trajectory optimization based on a decomposition technique that
distinguishes itself from ADMM based methods by avoiding communication between agents
until convergence. A nonlinear MPC-based approach is proposed in [30], reducing the need
for linearized constraints.

1Token ring is a principle in which a token is passed around in a ring, where holding the token grants the
right to transmit information.
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1-3 Scope 3

Unlike our proposed approach, the methods in [23, 24, 25, 26, 27, 30] do not utilize an
adaptive penalty function or a similarity based online update, making the methods more
prone to disturbances in online systems and slower to converge. Whilst [27] utilizes a simple
residual balancing adaptation scheme, it does not utilize the penalty parameter for increased
robustness. As opposed to our iterative linearization based approach, the method in [30]
allows the use of nonlinear constraints at the cost of having to use a non-convex solver.
Adaptive penalty parameters have been explored before in [28], where a residual balancing
scheme is proposed along with conditions for convergence. A proximal gradient based method,
proposed in [31, 32], claims faster convergence without the requirement for manual tuning.
Unlike the methods in [28, 31, 32], our proposed Online Adaptive Alternating Direction
Method of Multipliers (OA-ADMM) framework does not explicitly define an adaptation
scheme. We choose to leave the exact adaptation method open to encourage novel uses of
the adaptation function, e.g., improving online robustness for motion planning problems or
incorporating a priority based conflict resolution method.

1-3 Scope

The main scope of this work includes a short summary on the decentralized conflict resolution
problem, along with a thorough analysis of ADMM and some of its variants. This leads to the
introduction of our novel Online Adaptive ADMM (OA-ADMM) framework, for which the
convergence results are analyzed and proven where possible. The OA-ADMM method is then
applied to the decentralized conflict resolution problem to achieve decentralized-optimization-
based conflict resolution integrated with motion planning and control.

1-4 Structure

This thesis can be divided into three main parts, each centered around a different topic. Part I
has two main purposes: 1. introducing the required background information for the rest of
the report in Chapter 2 and Chapter 3, and 2. providing the problem statement in Chapter 4.
Chapter 2 includes information on the notation used in the thesis, kinematic models for the
vehicles, and a summary of expected prior knowledge. Chapter 3 provides a brief overview of
the conflict resolution problem, its complications, and some proposed methods to solve them.
Chapter 4 establishes definitions for the environment, and derives the subproblems from the
main conflict resolution problem.
Part II contains an in depth overview of Alternating Direction Method of Multipliers (ADMM)
and its variations. The variations covered include conventional ADMM in Chapter 5, adaptive
ADMM in Chapter 6, online ADMM in Chapter 7, and finally our proposed Online Adaptive
ADMM in Chapter 8. Chapter 5 introduces the Alternating Direction Method of Multipliers,
covers its convergence results and provides proof for the convergence. Chapter 6 covers the
role of the penalty parameter in ADMM, and variants which utilize an adaptive penalty
parameter. Chapter 7 then briefly summarizes various methods which utilize ADMM for
online systems. Finally, our novel ADMM variant is proposed in Chapter 8, where it is
covered in depth, similarly to how ADMM is covered in Chapter 5, providing convergence
results and requirements.
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4 Introduction

The last part, Part III, covers the application of OA-ADMM to decentralized conflict resolution
in combination with model predictive control (MPC) in Chapter 9. The method is then
compared with other methods in Chapter 10, after which the results are discussed in Chapter 11.
Chapter 9 begins with deriving a decentralized formulation of the main problem given in
Chapter 4, followed by the design of a similarity function and an adaptation function, along
with some initial numerical results. Chapter 10 then compares the method against other
decentralized conflict resolution methods such as AMP-IP and TDCR. Chapter 11 concludes
this thesis with a discussion of the proposed method, summarizing its advantages and potential
pitfalls, along with an in-depth analysis of simulation results.

Delft Center for Systems and Control

Fundamentals of Conflict Resolution (Part I)

Distributed optimization methods (Part II)

Decentralized Conflict Resolution (Part III)

Preliminaries (Chapter 2)

Conflict Resolution (Chapter 3)
Problem Statement (Chapter 4)

ADMM (Chapter 5)

Adaptive ADMM (Chapter 6)

Online ADMM (Chapter 7)
Online Adaptive ADMM (Chapter 8)

Decentralized Conflict Resolution using OA-ADMM (Chapter 9)

Simulations (Chapter 10)

Discussion (Chapter 11)Conclusion (Chapter 12)

Figure 1-1: Diagram showing the structure of the thesis, novel work is highlighted with blue
borders.
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Part I

Fundamentals of Conflict Resolution

This part has two main purposes: 1. introducing the required background information for the
rest of the report in Chapter 2 and Chapter 3, and 2. providing the problem statement in
Chapter 4.

Chapter 2 includes information on the notation used in the thesis, kinematic models for
the vehicles, and a summary of expected prior knowledge. Chapter 3 provides a brief overview
of the conflict resolution problem, its complications, and some proposed methods to solve
them. Chapter 4 establishes definitions for the environment, and derives the subproblems
from the main conflict resolution problem.
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Chapter 2

Preliminaries

This chapter serves as a short summary on preliminaries required for the rest of the thesis.
The concepts explained in this chapter are not in the order of their usage.

2-1 Mathematical Notation

Generally the notation used in the paper are as follow:

• Sets are denoted by a calligraphic symbols, e.g., S
• Complexity related symbols are denoted by Euler script calligraphic symbols, e.g., P,O
• Matrices are denoted by bold italicized capital letters, e.g., A
• Vectors are denoted by bold italicized lower case letters, e.g., a
• Scalars are denoted by a regular lower case or capital letter, e.g., a,A. Generally no

distinction is made between continuous and discrete scalars.
• Subscripts generally denote the agent or set where the symbol belongs to, e.g., (·)i, (·)I
• Superscripts are generally used to specify types, scenarios, or iteration, e.g., (·)A or (·)k

2-2 State-space Formulation

The state-space formulation is a commonly used framework to represent a dynamical system
in terms of its inputs (u), outputs (y), and states (x). The system state x conventionally
represents the state of a system at a certain time, the inputs represent how you can affect
(or control) the system, and finally the output is what you can measure (or observe), and if
desired, can also be an arbitrary performance index.
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8 Preliminaries

2-2-1 General State-space Formulation

The general formulation for a state-space model is

ẋ(t) = f(t,x(t),u(t))
y(t) = h(t,x(t),u(t)),

(2-1)

where f and h describe the state dynamics and output dynamics, respectively, as a function
of time, states, and inputs. This general formulation is used for nonlinear system dynamics,
as linear system dynamics can be represented in a matrix form.

2-2-2 Linear State-space Formulation

Linear state-space formulation is the most common usage of state-spaces due to the wide avail-
ability of analysis techniques, including the analysis of stability, controllability, observability,
etc. However, as most physical systems are nonlinear, linearization has to be applied first.

Linearization involves representing a nonlinear system as a linear system that approximates
the nonlinear dynamics around a linearization point. This is generally done through a first
order Taylor expansion around the equilibrium, however other points can be chosen as well if
desired2. It should also be noted that the analysis of a linearized system only applies to the
linearization itself, which is only valid locally in a neighborhood around the linearization point.
The conclusions on the linearized system do not necessarily apply globally for the nonlinear
system.

The linear state-space representation has four matrices (A,B,C,D) and three vectors
(x, y,u), and in the continuous time it is:

ẋ(t) = Ax(t) +Bu(t)
ẏ(t) = Cx(t) +Du(t),

(2-2)

where x, ẋ are the state vector and its derivative; u is the input vector; y is the output vector;
A is the system state matrix, B is the input matrix; C is the output matrix; and D is the
direct feedforward matrix.

2-2-3 Discrete State-space Formulation

As computers cannot directly evaluate continuous state spaces, a discrete state-space formu-
lation is desired. In this case, system states at the next time step are defined as a function of
the current states. In order to find the discrete state-space formulation from the continuous
one, discretization has to be performed.

Discretization can be achieved in various ways, either exact or through approximation. Exact
discretization involves an analytical derivation using the matrix exponential (eAT ), where A
is the system matrix and T is the step size, and integral operations. Because of the heavy
computational requirements involved with matrix exponentials and integral operations, an

2One use case of multiple linearizations is for Linear Parameter Varying (LPV) systems, where the system
switches or interpolates between linearizations depending on the value of a parameter.
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approximate solution is generally used. The most commonly used approximations attempt to
approximate the matrix exponential eAT , for example Euler’s method utilizes the approxima-
tion

eAT ≈ I +AT

for small time steps. Another example is the Tustin transform, which is also known as the
bilinear transform, which utilizes

eAT ≈
(
I + 1

2AT
)(
I − 1

2AT
)−1

as its approximation. The Tustin method is a popular method as the stability properties are
preserved with the discretization.

The discrete linear state-space representation is then written as

x[k + 1] = Adx[k] +Bdu[k]
y[k] = Cdx[k] +Ddu[k],

(2-3)

with k being the time step. It should be noted that the matrices Ad,Bd,Cd,Dd for a certain
system are not the same for the continuous time case and the discrete time case.

2-3 Kinematic Models

Kinematic models allow the derivations of constraints on the vehicle states purely based on
the geometry of the vehicle. A consequence of using kinematic models is the inability to model
concepts like inertia. The geometric approach also results in the no-slip condition, which
implies that the surface of the tires has no relative velocity with respect to the ground. The
no-slip condition therefore implies that the wheels are assumed to only have velocity in their
longitudinal direction, as no lateral velocity component can be derived from its geometry.

2-3-1 Unicycle Model

The unicycle model, shown in Figure 2-1, is one of the simplest non-linear and non-holonomic
vehicle models. The model assumes that the vehicle can be modeled as a single wheel, with
its inputs being the forward acceleration and its angle. Additionally a point mass assumption
is used with the center of mass (CoM) coinciding with the geometric center of the vehicle.
The kinematic constraints for the unicycle model in the general state space formulation are

ẋi = vi cos θi (2-4a)
ẏi = vi sin θi (2-4b)
v̇i = ai (2-4c)
θ̇i = ωi, (2-4d)

where the state vector is x = [x y v θ]>, with x and y being the coordinates of the vehicle, v
being the forward velocity, and θ being the orientation of the vehicle measured at its geometric
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O x
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θi

ωi

vi

Figure 2-1: The kinematics for a unicycle model. The global coordinates for the geometric center
of the unicycle model are xi and yi with θi being the angle of the wheel relative to its center of
rotation. The control inputs for the model are vi and ωi for the forward velocity and the angle
respectively.

center; the input vector is u = [a ω]>, with a being the forward acceleration and ω being
the angular velocity. The main advantage of the unicycle model is its simplicity whilst still
incorporating non-holonomic constraints. Whilst it is more accurate than representing the
vehicle as a holonomic vehicle, there is a problem with the assumptions made for a conventional
car. Since most conventional cars have some form of front axle Ackermann steering3, their
center of rotation will be varying along the axis of the rear axle [33]. As the unicycle assumes
the center of rotation being at the center of the vehicle, it cannot be directly applied to a
conventional vehicle.

2-3-2 Bicycle Model

The bicycle model, shown in Figure 2-2, is a much closer approximation of the kinematics of
a conventional car which takes into account the inability to directly control the heading of
the vehicle. The model makes use of the property that Ackermann steering results in both
wheels on the front axis pointing towards the center of rotation (CoR), this allows the front
axle to be replaced with a single wheel without changing the kinematics. The rear axle is also
replaced by a single wheel to reduce the model from 4 wheels to 2 wheels. The kinematic

3Type of steering linkage geometry that aligns the center of rotation of the inside and outside wheels when
turning.
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O x

y

xi

yi
θi

φi

ψi

vi

lri

lfi

CoR

CoM

Figure 2-2: The kinematics for a bicycle model. xi, yi and θi describe the position and orientation
of the bicycles center of mass (CoM) in the global coordinate frame, with the distance from the
CoM to the axles being lri and lfi for the rear and front. The steering angle of the front wheel is
described by φi, which is used to calculate the center of rotation (CoR). Using geometric relations
the heading angle ψi and velocity vi at the CoM can be derived.

equations for the bicycle model in the general state space formulation are

ẋi = vi cos(θi + ψi) (2-5a)
ẏi = vi sin(θi + ψi) (2-5b)
v̇i = ai (2-5c)

θ̇i = vi
lri

sinψi (2-5d)

ψi = tan−1

tanφi
lri

lri + lfi

 , (2-5e)

where the state vector is x = [x y v θ ψ]>, with x and y being the coordinates of the vehicle, v
being the forward velocity at its CoM, ψ being the heading angle of the vehicle at the CoM, θ
being the vehicle orientation at its CoM; the input vector is u = [a φ], where a is the forward
acceleration at the CoM and φ is the front wheel steering angle. The main advantage of the
bicycle model is the separation of the heading and angle at the CoM, from the orientation of
the vehicle and the steering angle, in comparison with the unicycle model in which the three
angles are assumed to be identical, allowing for configurations which are not possible for a
conventional vehicle. Despite the bicycle model being a kinematic model, at lower speeds it
is often as accurate as a linear dynamic model [34]. Since this thesis is predominantly about
conflict resolution we shall not delve into dynamic models.
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2-3-3 Constraints

In order for the model to be representative of a real vehicle, some constraints should be defined.
These can be separated into physical constraints, which are defined by the physical limitations
of a vehicle, and safety constraints, which ensure the safety in the environment.

2-3-3-1 Physical Constraints

The physical constraints are based on the physical limitations of the vehicles. These can vary
per vehicle type, make, model, year, etc. Load, usage, and slight manufacturing differences
can also affect these constraints. The constraint parameters we shall account for are:

• amax (m/s2): maximum acceleration derived from the maximum engine torque.
• amin (m/s2): minimum acceleration, or maximum deceleration, derived the maximum

braking torque.
• vmax (m/s): maximum velocity based on the maximum torque and friction or electronic

limiter.
• φ̇max (rad/s): maximum angular velocity for steering.
• φmax (rad): maximum steering angle, defined for the absolute value of the steering angle

relative to its natural position in.

2-3-3-2 Safety Constraints

Certain constraints will have to be set for each vehicle to verify the safety of the algorithms.
These safety constraints depend on the model, sampling frequency and other uncertainties.
In general the safety constraints should guarantee that the vehicle will not collide with any
obstacle; some stronger constraints can also be considered to avoid psychological harm to
other agents. For example by constraining the maximum speed and accelerations around
pedestrians to avoid scaring them. For simplicity the safety constraints shall be defined by a
minimum distance (Dmin) between the edge of the ego vehicle4 and an obstacle.

2-4 Primal and Dual Decomposition

Primal and dual decomposition involves splitting a problem into separate segments that can
be computed separately in order to find the solution for the original problem. Using this
approach, the main problem can be distributed among agents to reduce the computational
requirements so that it can be performed faster with less computational power. However, there
is usually a trade-off between convergence speed, feasibility, and solution accuracy depending
on the problem and methods.

2-4-1 Primal Decomposition

Primal decomposition methods decompose the original primal problem into separate sub-
problems, which can be solved independently. This requires that the original problem has a

4Ego vehicle refers to the vehicle performing the measurements, planning, and control.
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complicating variable such that the subproblems become decoupled if that variable is fixed.
For example, take the main problem

min
x,c

∑
i

fi(xi)

subject to xi ∈ X fi ∀i,
Aixi ≤ c ∀i,
c ∈ Cf ,

(2-6)

where c is a the complicating variable. Decomposing Equation (2-6) using primal decomposi-
tion would then result into a lower level decentralized subproblem, and a higher level master
problem. The low level problem is

min
xi

fi(xi)

subject to xi ∈ X fi ,
Aixi ≤ c,

(2-7)

which can be computed separately for each agent i. The high level master problem would
then be

min
c

∑
i

f∗i (c)

subject to c ∈ Cf ,
(2-8)

where f∗i is the solution to Equation (2-7). As the subproblems are simply a reformulation
of the original problem, the solution satisfies the primal constraints, furthermore the solution
to the master problem remains the same as the original problem, making this decomposition
truly primal.

2-4-2 Dual Decomposition

In addition to primal decomposition, there is also dual decomposition in which a dual of the
original problem is decomposed. The dual decomposition method is a special case of the
dual ascent method, requiring that the minimization step in dual ascent5 can be performed
independently and in parallel. For example, given the main problem

min
x

∑
i

fi(xi)

subject to xi ∈ X fi ∀i,∑
i

gi(xi) ≤ c,
(2-9)

where gi can be any function of xi, it would be impossible to decompose the problem into
a lower level problem by fixing c as done in Equation (2-7). In fact, the satisfaction of
the constraint is directly dependent on the solution of the other agents. A simple solution
would involve distributing c among agents guaranteeing the satisfaction of the constraints, for

5Dual ascent consist of two steps, a minimization step and a dual variable update step.
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example gi(xi) ≤ c
N , where N is the total amount of agents. This however does not guarantee

that the primal solution can be found, as it is likely that the actual optimum does not have
equal distribution. Another possibility involves the use of Lagrange multipliers, with the
Lagrangian L(x, λ) = ∑

i

(
fi(xi) + λ>gi(xi)

)
. The low level subproblem can then be written

as
min
x

fi(xi) + λ>gi(xi)

subject to xi ∈ X fi ,
(2-10)

where λ is the Lagrange multiplier. The accompanying master problem then involves updating
λ as follows

max
λ

∑
i

di(λ)− λ>c

subject to λ ≥ 0,
(2-11)

where d(λ) is the Lagrange dual function. The solution of the master problem in Equation (2-
11) would then result in the solutions of the accompanying subproblems of Equation (2-10)
having no duality gap. It should be noted that decomposition through this method only
works if the dual function has strong duality. Furthermore, convergence is only guaranteed
at the limit, with run-time solutions having no guarantees of feasibility for original problem.
Strong duality can be guaranteed for convex problems using Slater’s condition, which requires
a problem to be strictly feasible and convex. The mathematical form of this for a convex
function fi(x) would be

∃x ∈ relint(D)
subject to fi(x) < 0,

(2-12)

where relint is the relative interior and D is the domain. The relative interior is the interior
of a set within its affine hull, i.e. relint(X ) :=

{
x ∈ X : ∃ε > 0, Bε(x) ∩ aff(X ) ⊆ X}, where

Bε(x) is an ε-ball centered on x and aff is the affine hull6.
When dual decomposition methods are applied in actual systems, the run-time solution is
usually projected on the primal feasible set. Actual implementations also frequently use
update rules for the Lagrange multiplier instead of optimization to reduce computational
costs: for example, instead of Equation (2-11), one could use λk+1 = λk + αk

∑
i gi(xi), where

α is the step size.
These are only a few examples of decomposition, whilst in reality the method varies depending
on the structure of the original problem. The take-home message however is that primal
decomposition is effective, but has hard limitations on the original problem, whereas dual
decomposition is more general, but has downsides like infeasible run-time solutions.

2-5 Centralized and Decentralized Definitions

Centralized and decentralized can be used to refer to different concepts depending on the
context, field, or author. In general centralized systems refer to systems where there is a
single central node which holds authority over all its connected nodes. For example in the

6The affine hull of S is the smallest affine set that fully encloses S, e.g., for three points in R3, not on one
line, the convex hull is a triangle connecting the three points, whereas the affine hull will be the entire plane
containing all three points.
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case of a team, the team leader has higher authority and therefore, has knowledge of all the
team members and decides the actions for the entire team. A decentralized system on the
other hand is characterized by the lack of one central node which holds the highest authority.
For the same example, a decentralized system would have no team leader, instead the team
members would each make their own decisions. Decentralized does not however mean that
there is no communication between nodes, or in the case of the example, the team members.
In some literature a distinction is made between decentralized and distributed systems. The
exact distinction, however, is not consistent within literature even within the same field. We
shall generally use decentralized in the context of authority distribution and distributed
in the context of computational distribution, where authority refers to aspects such as com-
manding other agents, whereas computational distribution is related to what part of the
computation is performed by which agent. We shall also make a distinction between levels of
centralization in an attempt to reduce confusion when referring to other literature. Figure 2-3
showcases the difference between a centralized system and a decentralized system together
with an example in which both occur. The nodes can represent individual agents, however
the nodes do not have to be homogeneous. For example node 1 in Figure 2-3(a) can be
a central traffic manager with nodes 2-4 being vehicles. Considering a traffic management
environment, a graph as depicted in Figure 2-3(c) can also occur. For example subgroups A
and B can represent intersection managers where locally all the decisions are made centrally,
the overall traffic management could then be decentralized where each intersection manager
only communicates with its neighbors. In terms of graph theory the following definitions can
be given based on our examples:
Definition 2-5.1 (Fully Centralized graph). A directed or undirected graph is considered to
be fully centralized when there is a single node that completely disconnects all other nodes,
in the event that the node and its edges are not present.
Definition 2-5.2 (Fully Decentralized graph). A directed or undirected graph is considered
to be fully decentralized when there is no single node that completely disconnects all other
nodes, in the event that the node and its edges are not present.
Definition 2-5.3 (Hybrid graph). A directed or undirected graph is considered to be hybrid
when it can be represented as a combination of fully centralized and fully decentralized
subgraphs.

2-6 Vehicle Identification ID

In order to resolve ties when determining a priority order, some algorithms rely on a unique
vehicle identification number to resolve conflicts when all other methods fail to identify a
higher priority. All vehicles must be equipped with such a number and the number must be
unique to each vehicle. The uniqueness of the IDs is also crucial for proper communication
and decentralization, so that there is no confusion with regards to what information belongs to
which vehicle. Such IDs already exist in the form of the Vehicle Identification Number (VIN),
which are assigned to all road vehicles with the exception of some military vehicles and other
special cases. The VIN implementation might differ per region, however they are all based
on either ISO 3779 or ISO 3780 and are compatible [35, 36]. Because of this whenever an
algorithm requires the use of a unique vehicle ID, the VIN shall be used.
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Delft Center for Systems and Control

1

2 3 4

(a) Fully Centralized graph

Delft Center for Systems and Control

1

2 3
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(b) Fully Decentralized graph

Delft Center for Systems and Control

1 2

3 4 5 6 7 8

A B

(c) Hybrid graph

Figure 2-3: Example showcasing the various levels of centralization in a graph form; arrows
indicate authority whereas bidirectional arrows indicate equal authority. It can be seen that
Figure 2-3(a) is fully centralized as node 1 holds authority over all nodes. The nodes in Figure 2-
3(b) on the other hand, all have equal authority with their neighbors, there is no single central
node. It is more complicated to classify the graph in Figure 2-3(c). When isolating the nodes and
edges for subgraphs A and B, they will both appear to be fully centralized systems; however if
you represent each subgraphs as singular node the entire system appears to be fully decentralized.

2-7 Communication

Communication is of crucial importance for both centralized and decentralized systems and
its properties have an effect on which methods are feasible and which are not. In this
section some important types of communications are introduced together with contemporary
standards that define how the communication should occur. We will also introduce a simplified
communication protocol for the sake of simplicity and consistency.

2-7-1 Technical Requirements

In general, the requirement for communication in a connected environment is the ability to
transmit relevant information to nearby agents within a short time frame. The maximum time
delay affects the safety constraints, which in turn affect the speed at which the vehicles can
travel. Additionally, time delays can introduce instabilities when not accounted for. Another
important aspect is the range of the communication: in general more complete information
allows for better solutions. The possible information transmitted is also of high importance,
for a decentralized problem communicating vehicle states allows better solutions as there is less
safety margin required to compensate for inaccurate estimations from sensor measurements.
The desired trajectory and target of other vehicles are also of importance in order to predict
future behavior of other vehicles, for example to predict at what time and what area a vehicle
will cross an intersection. The communication should also contain some metadata to identify
the message and its sender.
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2-7-2 Vehicle to Infrastructure communication

Vehicle to Infrastructure (V2I) communication contains all information transfer between
vehicles and infrastructure, this is mainly used to send vehicle states and future trajectory to
a traffic manager; it can also be used to inform vehicles on things like future signal timings
or traffic congestion. An example of how V2I communication can be used is the UR:BAN
research project (2012-2016) in Düsseldorf, which aimed to improve safety and efficiency, both
in terms of throughput and environment [37]. As part of the project, a central traffic manager
has been designed for trucks in urban environments. This manager receives the states and
destination of the trucks using V2I. With the data and a traffic model, optimization can be
performed on potential signal timing adjustments to reduce the number of trucks stopping.
V2I is also used for a decentralized adaptive traffic signal controller in [38]. It should be noted
that decentralized is used here in the context of a central traffic manager: each intersection
is managed by a central intersection manager, with there being no central traffic manager
managing the intersection managers, similarly to the hybrid graph in Figure 2-3(c). The
availability of V2I communication allows the intersection manager to have accurate vehicle
data, which can be used to reduce the overall queue length. A similar use of V2I is to optimize
the signal timings for a cost function directly based on fuel consumption [39].

2-7-3 Vehicle to Vehicle communication

Vehicle to Vehicle (V2V) communication includes all direct messages between vehicles without
going through a middleman, e.g. a traffic manager. Because of the lack of a well defined central
agent, when utilizing purely V2V communication, there is a requirement for decentralized
solutions. It is possible to use V2V with a leader vehicle that acts as a centralized traffic
manager, however that brings many complications, such as what happens at an intersection
when either multiple or no leader vehicles are approaching at once; or deciding on the leader
vehicle; or the vulnerability of a centralized controller.
The proposed uses for V2V are quite varied. An early simple use case is the use of V2V to
send a emergency warning message in order to avoid rear-end collisions [40]. Another proposal
is to use V2V communication to transfer video data in order to make visual obstructions
partially transparent7 [41]. A more relevant use case is using V2V communication in order to
manage intersections, an early example is [19] where vehicle positions and intentions are used
to resolve a passing order.

2-7-4 Vehicle to everything communication

Next to V2I and V2V there are also other specific communication types such as: Vehicle
to Pedestrian (V2P), Vehicle to Device (V2D), Vehicle to Grid (V2G), etc. All of these
belong to the Vehicle to Everything (V2X) umbrella term which includes all communication
between a vehicle and any entity. In general all subtypes of V2X are assumed to use the same
communication protocols. Two main protocols are Dedicated Short-Range Communication
(DSRC), which is based on WLAN, and Cellular Vehicle to Everything (C-V2X), which is
based on cellular networks.

7In a provided example the front camera video feed from a truck is projected onto the windshield of the
vehicle following the truck, making the truck appear as a hollow rectangle tube.
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2-7-5 Dedicated Short-Range Communication

DSRC is a type of communication protocol designed to facilitate V2X communication for
short ranges. It was originally initialized by the FCC in 1999 when they allocated the 5.850-
5.925 GHz band for use of the U.S. Department of Transportation’s Intelligent Transportation
Systems program [42]. Other countries and regions have also allocated bandwidths for DSRC,
for example the European Union has reserved 5.875-5.905 GHz for DSRC use.

Because these standards are defined separately per region, there is no unified standard for
DSRC communication. The two main standards are DSRC as used in the US and Intelligent
Transport Systems-G5 (ITS-G5) in the EU. Both standards are based on the IEEE 802.11p
standard, which is an amendment on the IEEE 802.11 standard, known for its use in Wi-Fi, in
order to add Wireless Access in Vehicular Environments (WAVE), which is defined in IEEE
P1609.12.

The key change made in IEEE 802.11p is the reduction in overhead found in the traditional
Basic Service Set, which is in essence the set of connected agents. This reduction is achieved
by allowing an agent to joining a set without the association or authentication process. Next
to changes in protocol, the standard also sets performance requirements for receivers to reduce
cross-channel interference. More information can be found in [43] and [44]. In order to avoid
confusion from the various terms used, protocols based on IEEE 802.11p will be referred to
as DSRC protocols.

The performance of the IEEE 802.11p standard has been studied in [45]. The study concluded,
using simulations, that the standard allows for up to 2500m transfer range in open air;
additionally, the traffic offered should remain below 1000 packets per seconds in order to keep
the delay below 100ms, which is commonly used as a maximum delay for V2X communication.

2-7-6 Cellular Vehicle to Intersection

C-V2X is an upcoming type of communication protocol developed as part of the 3rd Generation
Partnership Project as a competing standard for IEEE 802.11p using cellular technology.
The main benefit of C-V2X systems is the ability to use traditional cellular infrastructure
for Vehicle to Network (V2N) and V2I communication, whereas DSRC would require new
infrastructure to be installed. Another difference is that C-V2X is synchronous whereas DSRC
is not. C-V2X can also achieve more reliable performance at similar ranges due to having a
retransmission mechanism and different resource multiplexing [46].

In a study on the two protocols in highway platooning scenarios, the authors concluded from
simulations that the improved reliability of C-V2X allows for shorter inter-truck distances
compared with DSRC [47]. It should be noted that C-V2X and DSRC are not necessarily
exclusive and could be used simultaneously for redundancy or specific communication types.

2-7-7 Vehicle Messages Standards

Similarly to the various protocols there are various standards for the messages being sent
over the protocols. As of now the two main message standards are the US Basic Safety
Message (BSM) and the EU Cooperative Awareness Message (CAM), these two message types
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are based on the SAE J2735 [48] and the ETSI - EN 302 637 - 2 [49] standards respectively.
The two standards are not compatible at the moment of writing, however they do achieve
the transmission of the same concepts. Since accounting for multiple standards is difficult
and brings additional points of failures, it is desired to integrate the two standards into a
single international standard. One example of such integration is the proposal to integrate
emergency messages for V2X communication [50].

2-7-8 Regional and Industry Decisions

In April 2019 the European Commission has recommended that DSRC would be the standard
in the EU for V2X communication [51]. Despite the recommendation by the EC the EU has
rejected the proposal in June 2019 in favor of allowing both DSRC and C-V2X [52]. The US
has not made a decision yet, however as of now the 5.9 GHz band is reserved for DSRC with
C-V2X having no reserved bands. The vehicle industry has also been divided on the topic
with Volkswagen, General Motors, and Toyota initially supporting DSRC, and Ford, Daimler
and BMW supporting C-V2X [53]. It appears that despite the lack of consensus for a single
standard there is still a common desire for a communication standard for V2X.

2-7-9 Hypothetical Generic Communication Standard

Due to the lack of consensus for a single standard, and because this thesis does not intend to
analyze the communication problem and only uses it as a tool, we shall not specifically adhere
to one of the introduced standards. Instead we assume a Hypothetical Generic Communication
Standard (HGCS) which is based on the goals of the actual standards, however it imposes no
requirements on conflict resolution solutions based on the specific communication standards’
definitions. HGCS includes both a communication protocol and a message standard and has
the following features:

1. Vehicles can automatically connect to nearby vehicles based on a defined distance,
without any additional delay, and transmit information.

2. All connected vehicles send and receive information synchronously.
3. The protocol has safety features, which prevent malicious attacks.
4. The protocol is reliable, meaning that data will arrive without noise and packet loss will

not lead to significant time delays.
5. The maximum range is rmax = 250 m.
6. Communication occurs at the frequency f = 10 Hz.

The maximum range and frequency are based on simulations performed in [54]. In the rest of
the thesis, it is assumed that all conflict resolution protocols use this communication standard
regardless of the communication protocols it was originally defined with. This allows for a
fairer comparison between sub-solutions and is closer to reality; actual implementation will
have to use the (inter)nationally defined communication standards instead of a proprietary
one.
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Chapter 3

Conflict Resolution

The conflict resolution problem can be formulated as a weighted optimization problem where
the goal is to minimize the total cost function (J), which has a total delay component (JD)
and a total comfort component (JC) and a weight (w) for each vehicle. The optimization is
subject to safety and feasibility constraints where the vehicle states (xi) should be in their
respective safe sets (X si ) and feasible sets (X fi ). Also, Ui is the concatenated control input
for vehicle i for all t, N is the total amount of vehicles, Di is the destination of vehicle i, X
is the trajectory of vehicle i. The resulting optimization problem is:

min
Ui,...,UN

N∑
i=1

wi
(
JDi (Ui, Di) + JCi (Ui, ...,UN )

)
s.t. Xi ∈ X si ,Xi ∈ X fi , ∀i ∈ {1, ..., N}

(3-1)

This chapter is separated into five sections, each focusing on a different aspect of conflict
resolution, with the intention to provide a comprehensive, yet brief, understanding of the
conflict resolution problem. First, Section 3-1 covers centralized conflict resolution approaches;
second, the decentralized approaches are covered in Section 3-2; third, the concept of deadlocks
and how to detect them is explained in Section 3-3; finally, the methods to resolve deadlocks
are covered in Section 3-4.

3-1 Centralized Conflict Resolution

In this section, some centralized conflict resolution methods are shortly summarized. As
centralized approaches do not face the issue of deadlocks, the conflict resolution might not fit
well into the given subproblems. The methods can be separated into heuristic methods, game
theory methods, and optimization based methods.
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3-1-1 Heuristic Methods

Heuristic methods are commonly used in intersection management due to their good real-time
performance and easy analysis, usually with a trade-off between optimality and generality.
As even very simple heuristic methods are better than no conflict resolution methods, the
performance gap between heuristic methods and optimization based methods is often accept-
able. The most common form of centralized heuristic methods are resource reservation based
methods. The main structure of a reservation based approach involves a central intersection
manager which allocates resources to approaching vehicles. The resources can range from time
slots to enter the intersection to specific trajectories to follow. The principle is that there is no
conflict when there is no overlap in allocated resources. Other types of centralized heuristic
methods do exist, such as a priority function based method, however these are mainly applied
to decentralized conflict resolution. For that reason they will not be mentioned here, but are
instead investigated in Section 3-2-1.

3-1-2 Game Theory Based Methods

Game theory based approaches have been proposed for centralized conflict resolution in [55]
and [56]. In general, game theory has two categories of strategies, cooperative and competitive.
The methods used for intersection conflict resolution generally use cooperative strategies as
this leads to better results, e.g shorter delays and/or lower fuel consumption. Game theory
based methods generally fall somewhere in between heuristic and optimization based methods.
Generally the original problem is simplified to fit in a game theory framework, the simplified
problem is then solved using game theory methods to achieve an optimal result.

The framework used in [55] models two distinct types of agents, one for the vehicles around the
intersection and one for the central controller, each with their own goal. Information is assumed
to be symmetric and communicated through some form of Vehicle to Everything (V2X)
protocol. The vehicles are limited to three discrete actions: accelerating, decelerating or
maintaining current velocity. The action for the central intersection manager is determining
which vehicle agent to optimize at each time step.

The game begins with the central manager selecting a vehicle to be optimized, hereafter
referred to as vehicle A. The potential actions vehicle A can take are then fed to all the other
vehicles near the intersection. When a vehicle receives such a message it responds with the
utility value corresponding to the action it will take. The action is assumed to be optimal for
the receiving vehicle. By repeating this process the result of the game is a payoff matrix in
which all potential action combinations are explored. The central manager then proceeds to
inform the vehicles of which action they should take to minimize the overall utility function.

This method is not too dissimilar from the one used in [56], which models intersection
management as a chicken game [57]. In a chicken game, players have the option to either yield
or not yield, when only one player yields it loses, if both yield there is a tie, and if neither
yield both lose. For an intersection, the loss for both vehicles not yielding is significantly
larger than if either would yield; a tie however will lead to deadlocks, which should also be
avoided. Based on the possible outcomes, a pay-off matrix is created for all possible action
combinations of the players. In the paper an intersection is defined to have two players, one
for the north-south lane and one for the east-west lane: each player decides all the actions for
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the vehicles within their lanes. This representation however does not include the possibility
for turning; to generalize it, the player should represent a group of vehicles that do not have
conflicts with each other. This however might lead to issues as some vehicles could be part of
multiple groups; the exact generalization for the players should be further investigated.

The central conflict resolution method requires a payoff matrix for all possible scenarios,
similar to that of [55]. The matrix is then used to determine the Nash equilibrium8, which
is comparable with saddle points in the centralized optimization problem. By running a
simulation for each scenario for the nearby vehicles, in combination with a reference payoff
matrix, the payoff values for the entire matrix are determined. The reference payoff matrix
contains the payoff for certain outcomes, with a large negative payoff if a collision is predicted.
The Nash equilibrium is found when, for all vehicles, their payoff cannot be improved by
unilaterally changing their actions. Deadlocks are avoided in this framework: suppose that
the Nash equilibrium results in a deadlock with all vehicles yielding, any player could then
increase its pay-off by not yielding, which in turn makes the deadlock not a Nash equilibrium
by definition. It is however not clear how the algorithm acts in the case of a tie: it is likely
that a tie breaking algorithm is necessary to arbitrarily choose the solution.

3-1-3 Optimization Based Methods

Optimization based methods attempt to solve the original problem or a dual version of it.
These generally achieve the best results, however often have significant requirements in terms
of computational power. Depending on the requirements, some optimization methods cannot
be applied directly, this is due to the non-convexity of the main problem as described in
Section 4-2-1.

3-2 Decentralized Conflict Resolution

In this section decentralized conflict resolution methods are investigated. Decentralized Con-
flict Resolution is applied when a conflict is detected, the obtained solution found should then
be deadlock free. There are two ways to achieve this, by design or by resolving when they
occur. Similar to centralized conflict resolution, the decentralized methods can be classified as
heuristic methods, game theory based methods, and optimization based methods. In general
the vast majority of approaches utilize a heuristic approach, due to the complexity of the
game theory and optimization based approaches, which are hard to decentralize. Further-
more, heuristic methods have better real-time performance and are easier to analyze, with
the drawback being the lack of optimality. As the primary concern is collision avoidance, this
drawback is usually accepted.

3-2-1 Heuristic Methods

Heuristic methods attempt to achieve a good enough solution to the main problem through
simplifications and assumptions. In a decentralized framework this generally means using a

8The Nash equilibrium is a term used in game theory to describe a solution at which no player can
(individually) improve their position by unilaterally changing their strategy.
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certain rule or simple priority function to determine when a vehicle can safely cross, or in what
order to cross. The two types we shall consider are Resource Reservation based techniques
and Priority Order based techniques. Resource reservation-based techniques resolve conflicts
by requiring agents to reserve a certain resource, limiting the access to the resource to a single
agent. The method to distribute the access is dependent on the implementation, in general,
a first come first served method is used to claim access. Methods which apply a resource
reservation-based technique include [16], which requires vehicles to reserve a resource called
“tokens” in order to pass certain areas on the intersection, and [19, 20, 21], which propose
message based methods to communicate which resource the vehicles want to reserve, with the
additional use of a priority order to distribute the reservations.

Priority Order based techniques involve the invocation of a passing order through a priority
based system. A lower priority agent must allow a higher priority agent to pass before the
lower priority agent. The goal is to give each agent a unique priority such that each conflict
has a solution based on the priority. One example of such a priority based approach is [58],
where sequential optimization is used in the order of the priorities, setting the previously
planned trajectories as hard constraints for the next agent.

Besides these two, there are also many separate rule based methods. One example is [59],
where a rule set is found for an uncontrolled four-way intersection based on conventional traffic
laws. Rule based methods are generally easy to analyze as the amount of configurations are
limited; despite that, we shall not explicitly consider them; the reason being that they are
generally specifically designed for a certain environment, and therefore not general enough.
Furthermore, simple resource reservation or priority order methods can easily outperform rule
based methods.

3-2-2 Game Theory Based Methods

Fully Decentralized Game Theory based methods are uncommon in the literature. This could
be due to the difficulty to find an equilibrium in a decentralized system, or due to the field
being relatively recent. There are however multiple methods that utilize game theory in some
minor form; for example, [5] uses game theory to model interactions between vehicles, and
[60] to design a vehicle controller based on the predicted behavior of other vehicles. It should
be noted that [60] can be considered a decentralized game theory based conflict resolution
method, however we shall not investigate it, as it does not provide any guarantees of conflict
resolution. The experimental results have shown around 90 % success rate, which is not
sufficient to consider it as proper conflict resolution.

The game theory based methods described in Section 3-1-2 do not seem to have decentralized
variants yet, as these require a central manager to compute the Nash equilibrium. Potentially,
the payoff matrix could be formed through communication, the payoffs could be found by
each vehicle analyzing a portion of the matrix. If this can be done, it is then possible for
the vehicles to communicate the lowest found overall costs/ highest overall payoff to resolve
the conflict. When the payoff matrix cannot be formed an approach that requires a stable
Nash Equilibrium can be used instead. If the Nash Equilibrium is stable, players will naturally
converge to that equilibrium as the game progresses; however, playing the game is potentially
dangerous, as unstable equilibrium or slow convergence can result in collisions. This approach
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will require thorough research on the dynamics of the game in order to apply it to conflict
resolution.

Another approach for decentralized game theory based conflict resolution involves a toll based
system proposed in [61] and [62]. The method is considered from the perspective of drivers as
players in the game, with the goal to determine a reasonable passing order based on the desire
of the players. An auction is held in which players near the intersection can bid on passing
priority, with the bidding performed by automatic wallets configured by the users. There are
however multiple issues with this method: the main one is that there is no guarantee that
any solution will be close to the solution of the original optimization problem in Equation (3-
1). Furthermore, for this method to be considered a decentralized method it would have to
perform the auctions through communication. This would rely heavily on secure payment
verification to avoid malicious agents from sending fake bids. Additionally, this method is
inherently advantageous for wealthy users, whilst it has minimal improvements in terms of
total delay time or energy usage.

3-2-3 Optimization Based Methods

Optimization based methods have seen extensive interest through centralized intersection
managers, which is explored in Section 3-1-3, however decentralized methods are still lacking.
There are however a few methods that do perform some form of decentralized or distributed
optimization, for example [58] can be considered to be a hybrid between heuristic and opti-
mization, or [17, 63] in which navigation functions are used for optimal control. We however
do not consider these methods to be fully decentralized optimization based conflict resolution,
as they do not find the solution to the primal problem of Equation (3-1); instead, these
methods use optimization for motion planning and control.

As the focus lies on finding a solution to the primal problem in a decentralized fashion, the
use of distributed optimization using decomposition methods is a logical choice. This section
will therefore be centered around possible distributed/decentralized optimization techniques
which could be used to achieve decentralized conflict resolution.

3-3 Deadlock Detection

Deadlocks can occur in any distributed system and lead towards significant costs in terms of
performance and safety. A deadlock occurs when two or more agents cannot proceed with
their task due the required resource being held by other agents in the deadlock. This results in
each agent being unable to continue until their resource becomes available. Without deadlock
resolution strategies, this would continue indefinitely. It is therefore necessary for deadlocks
to either be prevented or resolved, which in turn requires the ability to detect deadlocks.

This section begins with Section 3-3-1 that shortly describes the way deadlocks occur in
conflict resolution and other systems. Two approaches for detecting deadlocks in a system
are investigated, with a graph theory based approach being investigated in Section 3-3-2.
Section 3-3-3 then discussed methods to detect deadlocks through cycle detection in a graph,
and finally methods to model the system are discussed in Section 3-3-4.
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Note that livelocks9 are not explicitly defined or considered in this thesis as livelocks do not
seem to occur in the physical environments investigated. Livelocks can however occur in
the communication systems, however as we assume that communication is perfect we do not
consider these livelocks.

3-3-1 Deadlock Occurrences

Deadlocks are a common issue when dealing with decentralized systems, regardless of the
application. In computer science, deadlocks occur in computer networks or processes due to
limited communication or computation resources, with initial research going back as far as
1971 [64, 65, 66, 67]. Other research on deadlocks includes surveys on distributed deadlock
detection algorithms [68], and also traffic management [69, 70, 71, 21, 22, 72].
When considering deadlocks specifically for conflict resolution for autonomous vehicles, these
usually occur due to unpredictable changes in the system. In this situation, deadlocks can
occur at two levels, either high level due to the conflict resolution policy, or low level due to
some lower level safety or physical constraints. The two cases are not exclusive, as a low level
deadlock can cause or be caused by a high level deadlock in the conflict resolution policy. A
common scenario at which this can occur is when four autonomous vehicles attempt to cross
a four way intersection at once. If they do not have any conflict resolution, they will likely
end up in two possible deadlocks. The first one is a high level deadlock where all vehicles are
yielding for each other and no vehicle ends up crossing the intersection. The other deadlock
occurs when all vehicles cross at once, ending up in a formation in which no vehicle can
continue along its path without violating its safety constraint, resulting in a standstill. Both
of these deadlocks lead to the same result, however lower level deadlocks are in general harder
to detect. This is due to the blocking being harder to model when compared with yielding.
It is therefore important that the modeling method is carefully considered. A proper method
would be able to model both high level yielding and low level yielding, and include both of
these when analyzing the entire system for deadlocks.

3-3-2 Wait-for/Yield graph

Delft Center for Systems and Control

1

2

3

4

5

6

Figure 3-1: Example of a yield graph Y with two separate deadlocks. Arrows indicate yielding,
e.g. node 1 is yielding for node 2. The two deadlocks involve the nodes {2,3,4} and {5,6}
respectively

It is possible to model the distributed system in a graph in order to identify deadlocks, an
example is shown in Figure 3-1. In the field of computer science such a graph is known as a

9A livelock can be seen as a higher order deadlock, with agents changing their states continuously without
making any progress.
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wait-for graph [73], in this report this type of graph will be referred to as a yield graph (Y).
The graph Y has a set of nodes N , which represent the individual agents in the system, and
a set of edges E , which represent the relations between the agents; an agent i yielding for an
agent j is represented by a directed edge from i to j. Nodes and edges can be written as ni
and ei,j = (ni, nj) respectively. A cycle in the graph Y represents a deadlock, a graph without
any deadlocks is therefore by definition acyclic.

Theorem 3-3.1. A graph is deadlock free if it is acyclic.

To prove this, the definition for a cycle and a deadlock has to be compared, in the context of
a yield graph.

Definition 3-3.1 (Cycle). A non-empty directed trail10 where the first and final node are
the same node and also the only repeated node.

Definition 3-3.2 (Deadlock). A state of a multi agent system, where the agents in a deadlock
cannot proceed with their task due to resources being held by other agents in the deadlock.

The definition for a deadlock can then be written in the context of a yield graph. In the yield
graph (Y), an agent is a node (Ni), and a directed edge represents an agent yielding. For an
agent i, being unable to proceed due to other agents in the deadlock implies that i is yielding
for another agent in the deadlock. As it cannot be yielding for itself, each node in the yield
graph with a deadlock has directed edges pointing to another node in the same deadlock.
Furthermore as an agent cannot be in a state of deadlock if its resource is held by an agent
outside of the deadlock, there can be no directed edge to a node outside of the deadlock.
For a system to have no outwards edges, and for all nodes to have at least one edge pointing
to another node in the same system, at least one node must have both an incoming edge and
an outgoing edge. If this were not the case, there would have to be at least one node which
does not have a directed edge to another node in the graph, making it not a deadlock by
definition.
We have established that there is at least one node, e.g. Nk, in the deadlock which has both
an edge going into it, originating from another node, e.g. Nj , in the deadlock, and an outgoing
edge, going to another node, e.g. Nl, in the deadlock. Following the outgoing edge of this
node (Nk), the following node (Nl) must also have a directed edge going into another node
in the graph, e.g. Nj or Nm. As this logic is always true, and the deadlock is assumed to be
of finite size, the chain of directed edges must end up at the initial node (Nk). After all, it
cannot point towards a node outside of the deadlock, and the initial node is known to have
an edge going into it. Therefore any system with a deadlock represented in the yield graph
has a cycle by definition. An acyclic yield graph therefore cannot contain a deadlock, it is
thereby deadlock-free.
From the equivalence of a cycle in the yield graph, and a deadlock in a system, two methods
can be used to deal with deadlocks. The first is prevention by designing conflict resolution
algorithms to never cause cycles, the second method is by using algorithms to resolve deadlocks
when they come up. Regardless of the method, both require some form of cycle detection in
a graph.

10A directed trail is a sequence of nodes and edges with all edges being unique.
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3-3-3 Cycle Detection

Due to the equivalence of deadlocks in a system and cycles in a yield graph, as proven in
Section 3-3-2, it is necessary to detect these cycles. Despite the clear definition of a cycle it
can still be difficult to find these efficiently. This is because a cycle is in essence a permutation
of nodes, analyzing each potential cycle therefore has the time complexity O(n!). For actual
intersections, this is likely less of an issue, due to the amount of vehicles being relatively small,
and the graph being sparse, i.e. most vehicles will only yield to a few of the vehicles at the
intersection.

3-3-3-1 Centralized Cycle Detection

One method for detecting cycles is simply by analyzing each trail in the system. When
performed in a centralized fashion, the algorithm can first eliminate all nodes that do not
have both an incoming edge and an outgoing edge, as these nodes do not actually contribute
to the state of deadlock. Afterwards the algorithm can pick a random edge and follow its
trail, branching into multiple trails if a node has multiple outgoing edges. Once a trail arrives
at a node that is included in its trail, a cycle is found. Once all the trails and all edges have
been fully explored, all the cycles of the system should be detected, provided that the graph
is the entire graph of the system. Depending on the implementation, this can be done using
a Depth-First Search (DFS) algorithm or a Breadth-First Search (BFS) algorithm,11 with
preference going to a DFS algorithm due it it being able to detect cycles earlier [74]. In reality,
the exact search method used is likely going to have little impact on the overall performance
due to the graph being sparse and small for a single intersection

3-3-3-2 Decentralized Cycle Detection

In a decentralized system, it is not possible to assume that each individual agent has access to
global information without communication. Because of the lack of information, the method
in Section 3-3-3-1 cannot be applied directly. When cycle detection has to be performed
in a decentralized fashion, there are two options. The first is that all agents communicate
their edges propagating the graph information to all its connected agents, so all agents will
end up with the full graph, each being able to analyze if they are part of a cycle, similar
to the centralized method. The difference is that they will only analyze trails involving
themselves, provided that the communication graph is connected. Whilst this distributes
the computational burden among the agents, it is not very efficient, as each agent in a cycle
will detect the same cycle. This means that the total amount of computations will likely be
significantly higher than in the centralized method. Furthermore, depending on the graph
size and the communication rate, it can take a long time to form the graph.

Another method involves each agent sending a unique code along its outgoing edges, with the
request that any recipients do the same. The message will then propagate along the trails,

11Depth-First Search and Breadth-First Search are two algorithms that can be used to explore graphs or
trees. As the name suggests Depth-First Search aims to fully explore each branch before moving onto the next
one. Breadth-First Search is the opposite where all branches of the same depth are explored before moving
onto the next depth level.
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and either end up in a dead end or back to the original sender. If the sender receives its
own unique code, it can conclude that a cycle exists and the agent is part of it. Furthermore
alongside the unique code each agent can attach their identifier such that the trail of the cycle
is known. Unique code propagation does however have the same problem as the previous
methods, due to the requirement of an additional communication step for each additional
node in the trail.

One example of a message based cycle detection algorithm can be found in [75]. The algorithm
is based on a node sending out a message along its edges; the recipient then decides upon the
action based on previous messages and its state. Nodes can either forward the message or
respond to the sender or initial sender, where responses inform other nodes about their status.
When the initial node has received all its expected messages, it can evaluate the deadlock. As
this algorithm detects deadlocks for a certain initial node, a requirement is needed to decide
when the algorithm is executed, e.g. whenever resources are blocked for a certain amount
of time. Each execution of the algorithm has a worst case time complexity of O(2d) and a
message complexity12 of O(2e), where d is the diameter13 of the graph, and e is the amount of
edges in the graph. Other variations of this approach include [76, 77, 78], with the variations
being mostly in terms of improved scalability or reductions in message redundancy.

In terms of working with local information, the effects of having incomplete information on
the detection of relevant deadlocks is not well known. More research is needed on the use of
local yield graphs, and whether the incomplete information causes any fundamental issues.

3-3-4 System Modeling

Whilst the detection of deadlocks through detecting cycles in yield graphs is effective, that
method is not always directly applicable. For the case of conflict resolution for autonomous
vehicles, the high-level deadlocks, as described in Section 3-3-1, can be detected effectively, as
the yield graph can be constructed with ease. This is however not the case for the low-level
deadlocks, where the edges represent another agent blocking their path. Finding the exact
graph is difficult, especially if vehicles are allowed to stray from their path. For this reason it
is not uncommon for conflict resolution algorithms to disallow vehicles to change their priority
order after entering the intersection, as yielding could result in forming a low-level deadlock.
It is therefore important to carefully consider how the system is modeled in the yield graph.
Examples of the different system modeling methods are depicted in Figure 3-2.

3-3-4-1 Agent based modeling

Agent based modeling is the standard modeling method used for yield graphs. Each agent is
modeled as an individual node and their relations are modeled as the edges. This modeling
method is commonly used for computer networks and operating system process management.
The simple agent based modeling method is often sufficient for these as deadlocks are often
simple in nature, where deadlocks can be resolved by killing a process or forcing a process

12The message complexity is similar to time complexity but measures the number messages instead of time.
13The diameter of a graph or network is the longest path between any two vertices, when only considering

the shortest paths.
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Figure 3-2: Examples of different system modeling methods for the scenario depicted in Figure 3-
2(a), where the directed edges in the graph indicate a node yielding. Figure 3-2(b) shows the agent
based modeling method, where the nodes model the vehicles; Figure 3-2(c) shows the resource
based modeling method, where the nodes model the intersection regions; Figure 3-2(d) shows
the hybrid based modeling method, where the nodes model the vehicles with their corresponding
intersection regions; see Section 3-3-4-1, Section 3-3-4-2, and Section 3-3-4-3 respectively.

to release some resource. An example of an agent based modeling approach is shown in
Figure 3-2(b).

For intersection management a node would represent a vehicle, with the edge representing a
vehicle yielding to another vehicle. This can be sufficient if the edges are modeled conservatively
enough. An edge should be constructed if a vehicle has to yield for another vehicle, furthermore
the yielding vehicle should not be able to enter any conflict zone if it is currently yielding. The
modeling of the edges therefore depends on the conflict detection method used in the protocol.
When using a spatial conflict detection method, there should be no issues with deadlocks, as
that will detect the conflict for any conflict zones the vehicle crosses in its path.

The issue arises when the conflict detection is not conservative enough, for example by using
a spatio-temporal conflict detection method. The conflict detection method would not detect
a conflict with vehicles crossing the same area before or after the ego vehicle. Because of that
the yield graph would not contain any edges between these, resulting in a potentially missed
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cycle and improper deadlock detection.

3-3-4-2 Resource based modeling

Resource based modeling models each resource as its own node, with edges modeling relations
between the resources. This modeling method is suitable for detecting systematic deadlocks
due to resource usage order. For example, if a certain process P requires a resource RA, which
(indirectly) requires the same resource RA, to continue, a cycle would form in the graph. Such
a graph does not take into account the agents directly in its nodes, however their processes
can be modeled as a chain of edges in the yield graph. Figure 3-2(c) shows an example of a
yield graph modeled using a resource based modeling method.
In the context of intersection management this method can be used to model a conflict region,
for example by overlaying a grid on top of the intersection region. The advantage of using
resource based modeling is that the method can detect deadlocks that are missed by the
agent based method. When the trajectories of the vehicles are known, each trajectory can
be represented as a series of nodes yielding for each other. These nodes represent a certain
resource, for example when using a grid to divide the regions, a node can represent a certain
cell. The edges are then generated based on the trajectory of the vehicles, with each node
yielding to the next node in the graph. When using this method, a resource is best considered
in the spatio-temporal domain, as a purely spatial domain can lead to over detection of
deadlocks. For example when two vehicles in opposite lanes both desire to turn left, if they
go around each other their paths will form a cycle in the graph, whilst this is not an issue in
reality the vehicles likely cannot occupy the nodes at once.

3-3-4-3 Hybrid based modeling

Hybrid modeling combines the agent based and the resource based modeling, considering both
the agent and the resource they require. As this method is a hybrid of the agent based and
resource based method it is capable of detecting both deadlocks in the vehicle policies and
deadlocks in the system dynamics. It is also possible to achieve the same result by utilizing
agent based and resource based graphs independently. One possible implementation of a
hybrid based modeling method is shown in Figure 3-2(d).
The method proposed by Y.-T. Lin et al. in [72] constructs the nodes based on the agent
and the regions it passes through, allowing for the yield graph to account for the physical
deadlocks. The hybrid graph is referred to as a resource conflict graph in [72], however we
shall refer to it as a hybrid graph to distinguish it from the purely resource based graph. The
nodes in the hybrid graph are formed based on the agent, and the regions it traverses. In
[72] the hybrid graph is constructed from a timing conflict graph, which contains nodes of the
form ni,a, where i represents the agent and a the resource. Furthermore, the timing conflict
graph defines the following three types of edges:

• Type 1 edges represent dependency based on the vehicle trajectory, an edge (ni,a, ni,b)
therefore indicates that ni,a has to be traversed before ni,b.

• Type 2 edges represent dependency based on identical source lanes, an edge (ni,a, ni,b)
therefore indicates that ni,a has to be traversed before ni,b.
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• Type 3 edges are formed bidirectionally to represent conflicts in paths, edges (ni,a, nj,a)
and (nj,a, ni,a) therefore indicate that vehicle i and j have a common resource a in their
paths.

Type 1 and 2 edges can be seen as rigid edges, where the dependency they represent cannot
be changed by the system without physical changes. Type 3 edges on the other hand are
flexible and should be resolved to achieve conflict resolution.

In the hybrid graph a node ni,a,b is formed for each edge (ni,a, ni,b) of type 1; additionally
edges (ni,a, ni,b) and (ni,b, ni,c) are combined into one edge (ni,a,b, ni,b,c). Furthermore, any
other edges between nodes are inherited by the combined nodes in the hybrid graph, with
specific rules being explained in Section 3.1 in [72]. The main reason for constructing the
hybrid graph from the timing conflict graph is that the hybrid graph is both more compact
and fully representative. Fully representative implying that cycles in the graph are 1:1 to
deadlocks in the physical system.

Whilst the hybrid graph in [72] was constructed from a timing conflict graph, it should also
be possible to construct such a graph directly. Each node in the hybrid graph in essence
represents a trajectory segment for a given agent, with edges representing some dependency,
either due to their spatio-temporal dependence in a trajectory, or due to conflict resolution
policy. Furthermore, Y.-T. Lin et al. construct edges based on the order at which regions
are crossed, which is a discrete approximation of the physical system. More research should
be conducted on more direct construction methods and the possibility for exact modeling of
spatio-temporal trajectory dependency. It is also worth investigating the effects of kinematic
and dynamic constraints on the representativeness of the hybrid graph.

3-4 Deadlock Resolution

3-4-1 Centralized Deadlock Resolution

Deadlock resolution is often not considered in centralized methods, as deadlocks can usually
be easily prevented. This is often accomplished by limiting the amount of concurrent vehicles
at a conflict region to one, avoiding any low level deadlocks. These restrictions come at the
cost of performance, and should ideally be avoided. As many centralized methods approach
the problem as some form of scheduling problem, there is potential for deadlocks when the
schedule is not consistent. For example when a policy is switched whilst a vehicle is crossing,
with the new policy having a different order of passing, some vehicles can end up blocking
vehicles preceding them in the new schedule. This could be simply avoided if the passing order
in the schedule was forced to be consistent, however that will also reduce optimality. The
other solution would be taking possible deadlocks into account, which would allow a change
in schedule provided the change does not cause deadlocks.

There can be two approaches towards dealing with deadlocks, either by prevention, or by
resolution. They are generally similar in that they both require deadlock detection, however
prevention rejects solutions if they cause deadlocks, whereas resolution resolves14 deadlocks
for any solution. Deadlock prevention in general can be done by designing a policy that

14Resolving a deadlock requires that the new solution no longer has any deadlocks.
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cannot cause any deadlocks, such as forcing consistent schedules, or by preemptively applying
the detection methods explained in Section 3-3. It should be noted that deadlock prevention
methods inherently implies that avoiding deadlocks is more important than the optimality of
the solution: it is possible that the global optimum cannot be obtained due to the deadlock
prevention mechanism.

Deadlock resolution generally involves analyzing which part of a system is involved in the
deadlock. The deadlock can then be resolved by changing the system so that the deadlock
is no longer in the system, for example by removing an edge in a yield graph. One example
of a resolution method can be found in [70], where deadlocks for a unified transport system
are investigated. The used resolution method is a heuristic method where the deadlock is
resolved by changing the structure of the yield graph. The method identifies which vehicles are
causing the deadlock, and investigates whether any of these vehicles can change their routes.
New routes are then computed for these vehicles, removing the deadlock from the system. A
method similar to this could also be applied to conflict resolution for autonomous vehicles,
where vehicles can be rerouted or forced to yield in order to resolve deadlocks. Another similar
method can be found in [79] where the direction of the edges between nodes is swapped in
order to resolve deadlocks, and the graph is shrank by eliminating the nodes that cannot be
in a cycle. As these methods generally do not consider the effects of the changes made, they
are not optimal. One way to improve this would be to determine the impact of the changes
on the overall system; however, this would come at the cost of increased computation time.

Optimal deadlock resolution has been explored in [80] for multidatabase systems15. The
proposed method can be summarized as finding which subsets of nodes in a yield graph need
to be terminated in order for the graph to be acyclical, after which the cost of terminating is
evaluated for each subset, and finally the lowest cost subset is eliminated. As it is not possible
to simply terminate a vehicle, this method cannot directly be applied to our problem. Another
potential method has been mentioned by Lin et al. in [72], stating that the problem of finding
a minimum spanning tree can be applied to deadlock resolution. They suggest the use of
Kruskal’s algorithm to select edges based on the lowest cost whilst avoiding cycles with the
already formed edges [81]. The algorithm involves trimming down the graph to the relevant
vehicles, e.g. removing vehicles that are strictly followers of the leader vehicle16; afterwards,
the edge costs for the remaining nodes is computed based on the delay caused if the edges
are not removed. The algorithm then iterates through the edges in descending cost order and
determines whether the removal or reversal thereof will resolve the deadlock. This is repeated
until the system is deadlock free and optimally resolved, provided that the delay is computed
exactly.

3-4-2 Decentralized Deadlock Resolution

Deadlock resolution for decentralized conflict resolution is similar to a centralized deadlock
resolution, covered in Section 3-4-1, with the major difference being that decentralized methods
lack a central resolution policy. In general there are three possible approaches to achieving

15A network of database systems that integrates multiple autonomous local databases into a single accessible
database

16The leader vehicle would be the vehicle closest to the intersection in a lane, with the vehicles behind it
being the followers.
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decentralized deadlock resolution: the first involves the construction of the global yield graph
through communication, the second involves a constructing a local yield graph, and the last
involves a message propagation based method.

As deadlocks have been generalized in Section 3-3, the way deadlocks are relevant in decentral-
ized conflict resolution is similar to centralized conflict resolution, provided that decentralized
conflict resolution is solving the problem in Equation (3-1). When this is not the case, for
example when utilizing purely local MPC or conflict resolution for a shorter horizon, dead-
locks can appear in unobserved areas. When considering distributed optimization deadlocks
can furthermore be caused by the infeasible run-time solutions, in addition to the deadlocks
occurring in centralized optimization. It is therefore important that the system model used for
deadlock detection is able to capture all these elements. Potentially, it would also be possible
to integrate deadlock conditions into the optimization constraints; however, that has not been
explored yet.

A method involving a full yield graph will work similarly to a centralized method, as each
agent will have the full graph available, which is sufficient for centralized methods. This
method therefore utilizes centralized deadlock detection, which can be performed separately
at each agent. When the full graph is available, agents can also opt for using a centralized
deadlock resolution method as described in Section 3-4-1, where each agent would perform
the same calculations, with the potential to distribute the local calculations among agents to
reduce total computational costs. The full graph could also be used in a heuristic method,
where each agent consults the graph to decide whether their new actions will cause deadlocks
or not, which would be local deadlock prevention.

The case where each agent only has the graph involving its direct neighbors or another possible
partial graph is not very effective. This is due to the possibility of deadlocks occurring in
cycles not mapped in any partial graph. A local/partial graph would have to be proven to
contain sufficient information about all cycles in the full graph in order to be used for deadlock
detection/resolution. One way to achieve this goal would be to trim down a full graph, which
would still require the construction of a full graph, or the construction of the partial graph
based on message propagation. However, there could be an advantage over a full graph if a
search algorithm is used frequently on the partial graph, having a reduction computational
costs due to lesser nodes. An approach similar to this can be found in [79] where nodes with
zero in-degree or out-degree are removed from the graph.

Deadlock resolution using messages could involve prevention by detecting the cycles and
rejecting a change in strategy, or they could be used to identify which agent should change
in order to resolve a deadlock. The method to determine which agent should change their
strategy can be similar to methods described in Section 3-3. One example of a heuristic
message propagation based method is [75], where the victim is determined based on the
amount of predecessors. A victim in this context is the node that has to deviate from its
strategy in order to resolve the deadlock. Another example can be found in [82] where the
focus is put on taking action as fast as possible; however, as this method is intended for
computer processes, there is no regard for the optimality, in terms of conflict resolution, of
the solution provided by the deadlock resolution mechanism.

J. An Master of Science Thesis



Chapter 4

Problem Statement

In this chapter the decentralized conflict resolution for autonomous vehicles problem is in-
troduced. First, the environment of the problem is defined and its relation to the possible
solutions is analyzed in Section 4-1. Afterwards, the objective for the problem is defined in
Section 4-2.

4-1 Environment

The environment in which the problem is to be solved has a significant effect on its possible
solutions. Current environment definitions in the literature vary from paper to paper ranging
from very specific to very vague. For example [83] and [84] define a semi-structured environ-
ment, where "there is natural topological graph structure (which may or may not be known
to the robot a priori), but maneuvers off the graph are valid and, in fact, quite frequent" [83].
As examples, they mention parking lots, garages, construction zones, and the areas around
shopping centers. Semi-structured environments are in contrast to highly structured environ-
ments, which require a topological graph imposed on the environment with limited deviations
allowed, and unstructured environments where any path is possible. These definitions for the
different types of environments are not ideal, as they rely on some subjective parameters.

Another example is the environment used in [85] for cooperative decentralized conflict resolu-
tion. In this case, the environment can be chosen freely; however, the existence of deadlocks
cannot be avoided depending on the obstacles in the environment. A completely unrestricted
environment would therefore not be suitable for conflict resolution. Most environments used
for decentralized conflict resolution, for example in [86, 22, 19, 17], limit their environments
to specific conventional intersections.

The goal is to be able to provide general definitions, which are structured like in Figure 4-
1, such that each environment type is coupled with its subproblems. This goal requires a
definition that can accurately describe the environment based on the problem that has to be
solved.
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Unstructured intersection

Semi-structured intersection

Structured
intersection

Figure 4-1: Varying levels of structure in environments, semi-structured environments have looser
requirements than structured environments

We shall use the concept of homotopy in order to describe the vehicle trajectories in a general
environment. Homotopy serves as a general mathematical foundation for the definitions we
want to achieve. The use of homotopy for paths is not new and has been used before in for
example in path planning [87, 88, 89, 90, 91, 92]. These references mostly focus on using or
finding homotopy classes for motion planning, while we instead intend to use the definition of
a homotopy class to describe an intersection environment.

4-1-1 Definitions

In order to provide a mathematical definition, first we shall introduce the concept of homotopy
as follows:

Definition 4-1.1 (Homotopic). A continuous function f is homotopic with a continuous
function g when f can be continuously deformed into g.

Definition 4-1.2 (Homotopy Class). A homotopy class H contains all trajectories that are
homotopic with each other.

Figure 4-2 showcases how adding an obstacle causes the homotopy class to split in two.
Homotopy classes are defined based on their endpoints and their path around the obstacles,
for example Hi(A,B) indicates the ith homotopy class with endpoints A and B. Because a
homotopy class is not directional, Hi(A,B) is equivalent to Hi(B,A). Following this we attempt
to provide a mathematical definition of a (semi-)structured intersection as follows:

Definition 4-1.3 (Semi-structured intersection environment). If an environment has clearly
defined inputs and outputs, and there is at least one homotopy class for each input-output
pair, which intersects with another homotopy class from another input, then the environment
is a semi-structured intersection environment.17

Definition 4-1.4 (Structured intersection environment). If an environment has clearly defined
inputs and outputs, with each input-output pair having at most one homotopy class,
and there is at least one homotopy class for each input-output pair, which intersects with
another homotopy class from another input, then the environment is a structured intersection
environment.18

17See Figure 4-4 for examples of semi-structured intersection environments.
18See Figure 4-3 for examples of structured intersection environments.
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1

2
A

B

(a) One homotopy class

1

2
A

B

(b) Two homotopy classes

Figure 4-2: Figure 4-2(a) shows how path 1 can be continuously deformed into path 2, hence
there is only one homotopy class. By adding an obstacle in Figure 4-2(b), path 1 can no longer
be continuously deformed into path 2: the dashed lines are now in conflict with the obstacle. The
result is that there are now two homotopy classes, one above and one under the obstacle.

These two definitions can have similar physical environments, however a purely semi-structured
intersection has the added difficulty of additional options in terms of which homotopy class is
used. Finding an optimal trajectory would generally require the trajectory information from
other vehicles, in a decentralized system this could induce some form of oscillating decision
behavior. This issue could also occur in a structured intersection if a homotopy class is
wide enough and overtaking is allowed. The potential for the oscillating behavior to occur is
intrinsic to certain decentralized systems in which agent decisions are coupled, with the issue
often worsened by delays. An example of this type of behavior can also be seen in humans,
for example, when two people alternate between moving to the left and right in the attempt
to avoid bumping into each other.

4-1-2 Assumptions

To improve the use of the category of a (semi-)structured intersection some assumptions have
to be made. The goal of these assumptions is to allow the homotopy classes to somewhat
represent a conventional lane. It is also important that the environment bounds to be evaluated
are selected sensibly, as that can impact the category of the environment. With that in mind,
the following assumptions are made:

1. Homotopy classes are inflated to account for the physical size of the allowed vehicles, if
the inflated class violates any constraints the class is no longer considered to be valid.

2. Traffic rules are modeled as hard constraints for the homotopy classes.
3. Homotopy classes from the same input do not intersect each other after diverging.
4. Vehicles sharing a common path do not overtake each other.

The first assumption is needed to ensure no intersections are identified due to an intersecting
homotopy class that cannot be physically traversed. This assumption also ensures that an
intersection between vehicles is identified even when their paths do not intersect, whilst the
vehicles would collide when actually traversed. The second assumption is to avoid classifying
an environment as a (semi-)structured intersection when the path intersection requires an
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illegal maneuver; for example performing a u turn on a one-way road. As the definitions
do not consider intersections with homotopy classes originating from the same input, it is
important that those classes do not intersect with each other after their paths diverge. This
in combination with the no-overtaking assumption, ensures that there are no unaccounted
intersections.

4-1-3 Examples

For clarity some examples of common traffic scenarios are given and categorized based on the
definitions and assumptions made in Sections 4-1-1 and 4-1-2 respectively. It should be noted
that this literature review does not cover a method for identifying all homotopy classes and
their intersections.

1

2

Ain

Bin

C in

Din

Aout

Bout

Cout

Dout

(a) Intersection

1

2

Ain

Bin

C in

Aout

Bout

Dout

(b) Parking lot

Figure 4-3: Two examples of structured intersections. The inputs of the environment are indicated
by capital letters, obstacles are indicated by a hatch pattern. The classical unmanaged intersection
in Figure 4-3(a) is an example of a structured intersection: each input-output pair has only one
homotopy class and there exists at least one intersection between each homotopy classes, for
example the shown paths (Ain to Dout) and (Din to Bout). However, this does rely on the
assumption that the homotopy classes are constrained by the lane directions. The parking lot in
Figure 4-3(b) is also a structured intersection; this relies on the assumption that overtaking is
only allowed from one side, preventing the homotopy class from splitting into two.

Figure 4-3 shows two real life traffic environments, which can be categorized as structured
intersections. For the intersection depicted in Figure 4-3(a), it follows from the properties of
a conventional unmanaged intersection that the environment is a structured intersection: the
inputs and outputs are clearly defined by the in- and outgoing lanes, each input-output pair has
at most one homotopy class due to the physical environment, and there is at least one homotopy
class intersection for each input-output pair. The parking lot example, depicted in Figure 4-
3(b), requires a few additional steps before it can be classified as a structured intersection
environment. In this case the parked vehicles are modeled as obstacles which includes some
empty spaces; this is not always necessary, however, in some cases the environment can become
semi-structured due to a new possible pathway through empty parking lots. Additionally,
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when a car intends to leave or park, an input or output should be added, achieving clearly
defined input and outputs.

1

2

Ain

Bin

C in

Din

Aout

Bout

Cout

Dout

(a) Special Intersection

1

2

3

4

Ain

Bin

C in

Din

Aout

Bout

Cout

Dout

(b) Highway

Figure 4-4: Purely semi-structured intersections are generally more complicated than structured
ones. This is mainly due to the fact that some input-output pairs have multiple paths to choose
from, which can result in different intersections. An example of such an environment is an
intersection with an obstacle in the middle of the intersection, like in Figure 4-4(a). Another
special case is when dealing with parallel roads, in Figure 4-4(b) it can be seen that path 1 and 2
are not classified as an intersection as expected. When lane changes are allowed the entire stretch
of road is now suddenly classified as a (semi)-structured intersection depending on the passing
rules.

Figure 4-4 shows two special environments, the first is an intersection with an obstacle in the
center. The added obstacles turn the structured intersection into a semi-structured intersection.
Because of that, the problem becomes more complicated as vehicles now have the choice
between avoiding the obstacle clockwise or counterclockwise. The highway example showcases
that allowing lane changes in parallel roads is also classified as a structured intersection,
while, when overtaking is allowed on both sides of a vehicle, a semi-structured intersection
is obtained. Solutions for semi-structured intersections can therefore also be applied to lane
changes, however this might be less effective than solutions designed purely for lane changes.

4-2 Problem Objective

With the environment of the problem clearly defined in Section 4-1, the objective of conflict
resolution should also be defined accordingly. The goal is to design a protocol, which will result
in improved traffic throughput, without compromising safety and comfort. This problem can
be solved using either centralized or decentralized approaches. Centralized solutions, however,
rely on infrastructure that is often not available in rural roads, suburbs, parking lots or other
traffic environments. Furthermore, relying on a central manager means that an intersection
has a single point of failure, where failure results in the entire intersection becoming impassable.
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Decentralized solutions are however difficult to optimize due to the possibility of deadlocks
and the difficulty of distributing optimization.

1

2

3

4

1′

2′
3′

4′

1

2

3

4

1′

2′

3′

4′

Figure 4-5: The blocks represent vehicles, the lighter blocks of the same number are their initial
positions. On the left is an example of a deadlock occurring for an unmanaged intersection with
four decentralized agents adopting the same strategy. The deadlock occurs as each vehicle will
slowly move forward or stop to wait for the others to pass, in the case that all vehicles are waiting,
a standstill will occur. On the right is a possible solution that avoids a deadlock by having vehicles
1 and 3 slow down to yield and thereby improves the traffic flow.

Deadlocks can occur under decentralized conditions if all controllers have the same strategy
and the vehicles have the same relative scenarios. For example, in Figure 4-5 four vehicles
are approaching an intersection at the same time, when all vehicles adopt the same strategy
without any deadlock resolution, they might slowly approach the intersection until they reach a
deadlock. Such behavior can be caused by strategies that err on the side of caution: preferring
to avoid collisions by yielding instead of accelerating. With a centralized controller, or a
deadlock free decentralized controller, for the same scenario the second solution, depicted on
the right side of Figure 4-5, might come ahead where vehicles 1 and 3 yield for vehicles 2 and
4, preventing a deadlock, and thereby improving the solution.

4-2-1 System Objective

The conflict resolution problem has been introduced in Equation (3-1). Solving this opti-
mization is difficult for multiple reasons. The constraints depend on the states of the other
vehicles, and the overall problem is nonlinear and nonconvex, preventing the use of (for ex-
ample) CVX19 or other fast solvers. The optimization should also be solved very quickly
(<100ms), making a central optimization based approach unpractical as the problem does not
scale well.

19CVX is a widely used Matlab-based modeling system for solving convex problems
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Due to the coupling in the constraints and objective function, primal decomposition cannot
be applied to Equation (3-1). The problem is also shown to be NP-hard in [93].

If we assume that two intersecting homotopy classes only allow one vehicle to cross at once,
then the problem can be seen as a combination of a higher level scheduling problem and a lower
level trajectory optimization. This is similar to the approach used by [94], which decomposes
the problem into an upper time-slot allocation problem and a lower level control policy problem.
Another solution is the use of heuristic approaches: a few examples are the First Come First
Serve (FCFS) approach [12], the Look-ahead Intersection Control Policy (LICP) approach,
which takes into account potential delays [13], and the game-theory-based approach in [56].

However, decomposing the problem into a scheduling and lower level trajectory optimization
essentially reduces the maximum efficiency of the problem. After all, both the decomposition
method and the heuristic methods do not allow vehicles to change their paths, i.e. trajectory
optimization is reduced to speed profile optimization. It is easy to imagine cases where this
leads to reduced performance, e.g., if a vehicle cannot adjust its path, it is unable to overtake
a slower traveling vehicle, despite having a higher reference velocity, leading to longer overall
travel times.

The goal of this thesis is therefore to achieve decentralized conflict resolution, without com-
promising on the optimal motion planning aspect.
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Part II

ADMM, variations, and OA-ADMM

This part contains an in depth overview of Alternating Direction Method of Multipliers
(ADMM) and its variations. The variations covered include conventional ADMM in Chap-
ter 5, adaptive ADMM in Chapter 6, online ADMM in Chapter 7, our finally our proposed
Online Adaptive ADMM in Chapter 8.

Chapter 5 introduces the Alternating Direction Method of Multipliers, covers its conver-
gence results and provides proof for the convergence. Chapter 6 covers the role of the penalty
parameter in ADMM, and variants which utilize an adaptive penalty parameter. Chapter 7
then briefly summarizes various methods which utilize ADMM for online systems. Finally,
our novel ADMM variant is proposed in Chapter 8, where it is covered in depth, similarly to
how ADMM is covered in Chapter 5, providing convergence results and requirements.
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Chapter 5

Alternating Direction Method of
Multipliers (ADMM)

Alternating Direction Method of Multipliers (ADMM) is a distributed optimization method
that utilizes an augmented Lagrangian in order to achieve better converge properties similar to
the non-separable method of multipliers method. ADMM requires relatively mild assumptions
in order to achieve convergence, and good results can be achieved with few iterations. The
method was reviewed in the context of distributed optimization by Boyd et al. in [95].

5-1 Problem Formulation

For a problem of the form
min
x

f(x)

subject to Ax = b,
(5-1)

For a problem of the form given in Equation (5-1), a regular Lagrangian relaxation takes the
following form:

Lρ(x,λ) = f(x) + λ>(Ax− b), (5-2)

where λ is the Lagrange multiplier. For the same problem, using the method of multipliers
requires an augmented Lagrangian Lρ with

Lρ(x,λ) = f(x) + λ>(Ax− b) + ρ

2‖Ax− b‖
2
2, (5-3)

where λ is the Lagrange multiplier and ρ is the penalty parameter. The purpose of the
augmented Lagrangian is to improve the robustness of the dual ascent method, which involves
solving a dual problem using gradient ascent and is also used by dual decomposition explained
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in Section 2-4-2. The augmented Lagrangian Lρ can also be interpreted as a regular Lagrangian
L on the modified problem

min
x

f(x) + ρ

2‖Ax− b‖
2
2

subject to Ax = b,
(5-4)

which has the same solution as its original problem, where f(x) is minimized, as Ax− b is 0
due to the constraints. Using dual ascent on the modified problem would result in the update
steps being

xk+1 = arg min
x
Lρ(x,λk)

λk+1 = λk + ρ(Axk+1 − b),
(5-5)

where Lρ and ρ are the augmented Lagrangian and the penalty term instead of the regular
Lagrangian L and the step size α. However, the method of multipliers no longer decomposes
the problem, due to the augmented Lagrangian Lρ being coupled.

ADMM can be seen as a hybrid between dual decomposition and the augmented Lagrangian
from the method of multipliers. The intended main problems to be solved using ADMM take
the form of

min
x,z

f(x) + g(z)

subject to Ax+Bz = c,
(5-6)

where x ∈ Rn and z ∈ Rm can be independent state vectors, and A ∈ Rp×n, B ∈ Rp×m,
c ∈ Rp contain the (coupled) constraints for f and g. The augmented Lagrangian therefore
takes the form

Lρ(x, z,λ) = f(x) + g(z) + λ>(Ax+Bz − c) + ρ

2‖Ax+Bz − c‖22, (5-7)

The overall ADMM algorithm has a similar structure to that of dual ascent/decomposition
with a parallel minimization step and a multiplier update, having the form

xk+1 = arg min
x
Lρ(x, zk,λk)

zk+1 = arg min
z
Lρ(xk+1, z,λk)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c),
(5-8)

where xk+1 and zk+1 are in this case sequential updates of the states, with λk+1 being the
new Lagrange multiplier with Lagrange parameter ρ > 0. The alternating direction part of
ADMM is derived from the way x and z are updated, alternating between the two. Boyd et
al. also refer to this as a single Gauss-Seidel pass [96] over x and z, as opposed to the joint
minimization in the regular method of multipliers. Furthermore, Boyd et al. elaborate that
the alternation is what allows ADMM to be decomposed if f(x) and g(z) are separable. It
should also be noted that the order in which x and z are updated is arbitrary, and can be
reversed either in the update or in the problem formulation. There is however a drawback
to this version of ADMM as xk+1 and zk+1 cannot be computed in parallel, reducing the
potential gain in computational speed achieved by traditional dual decomposition. The actual
impact of the sequential constraint can be minimized if the total state update frequency is
faster than the required update rate. Note that Boyd et al. do not consider xk to be a
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separate state in the ADMM algorithm, as it is defined to be fully dependent on the zk−1 and
λk−1.

Boyd et al. also utilize a scaled formulation of ADMM instead of the form in Equation (5-8)

xk+1 = arg min
x

f(x) + ρ

2‖Ax+Bzk − c+ uk‖22
zk+1 = arg min

z
g(z) + ρ

2‖Axk+1 +Bz − c+ uk‖22
uk+1 = uk +Axk+1 +Bzk+1 − c,

(5-9)

where the Lagrange multiplier λ is encoded in u := 1
ρλ [95]. The scaled form is mainly used

to simplify the notation of ADMM, as factor containing λ is not contained inside the norm.

5-1-1 Stopping Criteria

In order to define the stopping criteria for ADMM the primal and dual residuals are introduced,
with the primal residual at step k being

rk+1 = Axk+1 +Bzk+1 − c, (5-10)

and the dual residual being
sk+1 = ρA>B(zk+1 − zk). (5-11)

These residuals are derived from the primal and dual feasibility conditions; primal feasibility
requires the ADMM solution to satisfy the original constraint, i.e.

Ax? +Bz? − c = 0; (5-12)

the dual feasibility condition requires that both the x-optimization step and z-optimization
step have reached a local minimum, i.e.

0 ∈ ∂f(x?) +A>λ? (5-13)

0 ∈ ∂g(x?) +B>λ?, (5-14)

where the subdifferential optimality condition, i.e. 0 ∈ f(x) is used. The subdifferential
operator ∂ is the set of all derivatives, which for a differentiable function is its gradient.

Depending on the order of the ADMM steps, and at which step the feasibility is evaluated,
either Equation (5-13) or Equation (5-14) is satisfied by definition. For the standard ADMM
update order we assume that dual feasibility for Equation (5-14) is always satisfied, which
means that we only need to check for Equation (5-12) and Equation (5-13). The assumption
made is valid as the z-update defines zk+1 as the minimizer for Lρ(xk+1, z,λk), i.e.

0 ∈ ∂Lρ(xk+1, z,λk)
= ∂g(zk+1) +B>λk + ρB>(Axk+1 +Bzk+1 − c)
= ∂g(zk+1) +B>λk + ρB>rk+1

= ∂g(zk+1) +B>λk+1,
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x-update:
min
x

Lρ(x, zk,λk)
z-update:

min
z

Lρ(xk+1, z,λk)
λ-update:

λk+1 = λk + ρrk+1
xk+1 zk+1

λk+1

Figure 5-1: Diagram of ADMM steps

where rk+1 is the primal residual as defined in Equation (5-10), and the λ-update is used to
simplify the last step.

The primal residual given in Equation (5-10) is easily derived from Equation (5-12) by taking
the difference between the actual value and zero. The dual residual Equation (5-11) results
from the fact that xk+1 is a minimizer for Lρ(x, zk,λk), i.e.

0 ∈ ∂Lρ(x, zk,λk)
= ∂f(xk+1) +A>λk + ρA>(Axk+1 +Bzk − c)
= ∂f(xk+1) +A>(λk + ρrk+1) + ρA>B(zk − zk+1)
= ∂f(xk+1) +A>λk+1 + ρA>B(zk − zk+1),

which can also be formulated as

ρA>B(zk+1 − zk) ∈ ∂f(xk+1) +A>λk+1, (5-15)

which satisfies the optimality condition Equation (5-13) when ρA>B(zk+1 − zk) = 0, which
is how the dual residual of Equation (5-11) is formed.

Given that the optimality conditions of Equations (5-13) and (5-14) are only guaranteed to be
reached as k →∞ for ADMM, actual implementation utilizes different termination conditions.
These conditions are based on the residuals acting as an upper bound on the suboptimality,
terminating the algorithm when the residuals are sufficiently small, i.e.

‖rk‖2 ≤ εp and ‖sk‖2 ≤ εd, (5-16)

where εp is the primal residual tolerance, and εs is the dual residual tolerance. Both tolerances
should be defined by the user, considering the scaling of the problem and the required accuracy
for the application.

5-2 Convergence Results

For completeness some definitions required for the convergence proof are summarized first.
The convergence proof requires a saddle point in the Lagrangian (L); a saddle point is a point
on a function, in this case L, where the derivatives are all zero in the orthogonal directions, but
simultaneously is not a (local) minimum or maximum. The proof further requires a function
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to be closed, i.e. the sublevel set {x ∈ domf |f(x) ≤ c} is a closed set for all c ∈ R, and proper
convex, i.e. its effective domain20 is nonempty and f(x) > −∞, ∀x
The convergence properties of ADMM, as claimed in [95], is summarized as the following
theorem for clarity:

Theorem 5-2.1. When applying the ADMM algorithm of Equation (5-8), given closed, proper,
and convex functions f and g and a saddle point p? in the Lagrangian L, it holds that the
primal and dual residuals converge to zero, i.e. rk → 0 and sk → 0, and that the objective
converges to the saddle point, i.e. pk → p?.

The proof for Theorem 5-2.1 is given in Section 5-2-1 in the form of three lemmas with their
corresponding proofs. Furthermore, [97] provides a framework which can be used to prove
convergence rates for ADMM and its variants.
The convergence results for ADMM claimed in Theorem 5-2.1 include two requirements. These
two assumptions can be restated as:

1. The extended-real-valued separable functions f : Rn → R ∪ {+∞} and g : Rm →
R ∪ {+∞} are closed, proper, and convex.

2. The original Lagrangian L has a saddle point.

The first assumption which requires the function to be closed, proper, and convex implies that
the functions f and g are solvable, which is necessary for the x and z update steps in ADMM.
A function being solvable means that there exists a value which minimizes the function, in
the case of f (or g) this means that there exists a x (or z) which minimizes the augmented
Lagrangian. Boyd et al. [95] also stress that the first assumption allows both f and g to be
nondifferentiable and to be able to assume a value of +∞. An example provided is that f
can be an indicator function for a nonempty convex set S, where f(x) = 0 for x ∈ S, and
f(x) = +∞ everywhere else. The first assumption is also summarized using epigraphs, with
the epigraph of f being

epif := {(x, t) ∈ Rn × R|f(x) ≤ t}. (5-17)

The function f is then satisfying the first assumption when epif is a closed nonempty convex
set.
The second assumption is mathematically defined as

∃(x?, z?,λ?), where L(x?, z?,λ) ≤ L(x?, z?,λ?) ≤ L(x, z,λ?), ∀(x, z,λ). (5-18)

The value of L(x?, z?,λ?) is guaranteed to be finite for its saddle points as the first assumption
requires f and g to be proper convex functions. The result of this is that (x?, z?) is a solution
to Equation (5-6), with the equality constraint satisfied and the functions f and g being finite.
Another result is that λ is dual optimal, with strong duality between the primal and dual
problems.
The authors further note that ADMM has no further requirements forA,B, or c, emphasizing
that A and B do not have to be full rank.

20The effective domain of a function f is a subset of the domain of f , with the additional condition that
f(x) < +∞, ∀x ∈ domf .
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5-2-1 Convergence Proof

The convergence proof provided in [95] by Boyd et al. will be summarized here, note however
that Boyd et al. refer to [98] and [99] for more sophisticated results on the convergence,
including more general penalties and inexact minimization.
The convergence proof follows from the assumptions made in Section 5-2, specifically that f
and g are closed, proper, and convex, and that the original Lagrangian L has a saddle point.
Let the assumed saddle point of L be at (x?, z?,λ?), with

V k = 1
ρ
‖λk − λ?‖22 + ρ‖B(zk − z?)‖22 (5-19)

being a Lyapunov-candidate-function, which implies that V ≥ 0 with V = 0 only being true
at the saddle point. Boyd et al. [95] utilize three inequalities, that, when valid, prove the
convergence results claimed in Theorem 5-2.1. We therefore first prove Theorem 5-2.1 using
three lemmas which are assumed to be true, afterwards the individual lemmas are proven.
The first inequality is related to the Lyapunov-candidate-function, requiring it to decrease
with each iteration. This decrease can be compared with the V̇ (x) ≤ 0 condition used in the
Lyapunov stability criterion, the first lemma is therefore

Lemma 5-2.1 (Lyapunov decrease). The Lyapunov-function V from Equation (5-19) de-
creases with each iteration, proportionally to the norm of the residual rk+1 and the change
between zk and zk+1, i.e.:

V k+1 ≤ V k − ρ‖rk+1‖22 − ρ‖B(zk+1 − zk)‖22. (5-20)

The result from Lemma 5-2.1 is that λk and Bzk are bounded given that V k ≤ V 0. Rewriting
Equation (5-20) gives

ρ
(
‖rk+1‖22 + ‖B(zk+1 − zk)‖22

)
≤ V k − V k+1,

which when iterated from k = 0 to k =∞ results in

ρ
∞∑
k=0

(
‖rk+1‖22 + ‖B(zk+1 − zk)‖22

)
≤
∞∑
k=0

(V k − V k+1),

which can finally be written as
∞∑
k=0

(
‖rk+1‖22 + ‖B(zk+1 − zk)‖22

)
≤ V 0.

Given that the left hand side is summed from k = 0 to k =∞ while being bounded by V 0, it
can be concluded that as k →∞, rk → 0 and B(zk+1 − zk)→ 0; this implies that the both
the primal and dual residuals converge to zero which proves the first part of the convergence
results claimed in Theorem 5-2.1.
The second lemma required is

Lemma 5-2.2 (Objective suboptimality upper bound).

pk+1 − p? ≤ −λk+1>rk+1 − ρ
(
B(zk+1 − zk)

)> (
−rk+1 +B(zk+1 − z?)

)
.
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Given that rk+1 → 0, and B(zk+1 − zk)→ 0, Lemma 5-2.2 can be written as

pk+1 − p? ≤ −(λk+1)>0− ρ(0)>
(
0 +B(zk+1 − z?)

)
,

as k → ∞, where the entire right hand side converges to zero given that B(zk+1 − z?) is
bounded. Similarly, the third lemma

Lemma 5-2.3 (Objective suboptimality lower bound). p? − pk+1 ≤ λ?>rk+1.

has its right hand side converge to zero as rk+1 → 0 for k → ∞. Lemmas 5-2.2 and 5-2.3
therefore imply that limk→∞ pk = p?, meaning that the objective function converges, this
proves the second part of the convergence results claimed in Theorem 5-2.1.

Proof for Lemma 5-2.3

Recall that the saddle point of L, which is defined at (x?,λ?,λ?), implies that L(x?, z?,λ?) ≤
L(xk+1, zk+1,λ?), which is given in Equation (5-18). As the constraint is satisfied in the
saddle point, i.e. Ax? +Bz? = c, L(x?, z?,λ?) = p?. The objective function in its iterative
from is written as pk+1 = f(xk+1) + g(zk+1), which when combined with p? and the saddle
point properties results in

p? ≤ pk+1 + λ?>rk+1

which is the inequality given in Lemma 5-2.3.

Proof for Lemma 5-2.2

The first step in ADMM minimizes the augmented Lagrangian Lρ using x, with the minimizer
being defined as xk+1. As per the first assumption made in Section 5-2 f is closed, proper,
and convex, this means that f and Lρ are subdifferentiable. The optimality condition for the
xk+1 optimization step is

0 ∈ ∂Lρ(xk+1, zk,λk) = ∂f(xk+1) +A>λk + ρA>(Axk+1 +Bzk − c), (5-21)

which is both a necessary and sufficient condition. Note that Boyd et al. elaborate that the
equation in Equation (5-21) is the result of ‘the basic fact that the subdifferentiable of the
sum of a subdifferentiable function and a differentiable function with domain Rn is the sum
of the subdifferentiable and the gradient;’. The ADMM λ-update step λk+1 = λk + ρ(rk+1),
can be written as λk = λk+1 − ρ(rk+1) and combined with Equation (5-21) resulting in

0 ∈ ∂f(xk+1) +A>
(
λk+1 − ρB(zk+1 − zk))

)
,

(recall that rk = Axk+1 +Bzk+1 − c). This equation implies that the x-minimization step
of xk+1 is minimizing

f(x) +
(
λk+1 − ρB(zk+1 − zk)

)>
Ax,

with a similar approach applicable to the z-minimization step where zk+1 is minimizing

g(z) + (λk+1)>Bz.
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Using these it can be shown that

f(xk+1) +
(
λk+1 − ρB(zk+1 − zk)

)>
Axk+1 ≤ f(x?) +

(
λk+1 − ρB(zk+1 − zk)

)>
Ax?,

(5-22)
with a similar result for z:

g(zk+1) + (λk+1)>Bzk+1 ≤ g(z?) + (λk+1)>Bz?. (5-23)

When combining Equation (5-22) and Equation (5-23), we get

f(xk+1) +
(
λk+1 − ρB(zk+1 − zk)

)>
Axk+1 + g(zk+1) + (λk+1)>Bzk+1

≤ f(x?) +
(
λk+1 − ρB(zk+1 − zk)

)>
Ax? + g(z?) + (λk+1)>Bz?,

which can then be rewritten as

pk+1 − p? ≤ (λk+1)>(Ax? +Bz? −Axk+1 −Bzk+1)− ρ
(
B(zk+1 − zk)

)>
(Ax? −Axk+1),

given that pk = f(xk) + g(zk). It is then further simplified using Ax? + Bz? = c and
rk+1 = Axk+1 +Bxk+1 − c into

pk+1 − p? ≤ −(λk+1)>rk+1 − ρ
(
B(zk+1 − zk)

)> (
−rk+1 +B(zk+1 − z?)

)
,

which is equal to the inequality given in Lemma 5-2.2.

Proof for Lemma 5-2.1

The proof for Equation (5-20) uses the inequalities of given in Lemmas 5-2.2 and 5-2.3 by
combining them into

0 ≤ −(λk+1 − λ?)>rk+1 − ρ
(
B(zk+1 − zk)

)> (
−rk+1 +B(zk+1 − z?)

)
,

which is then rewritten and multiplied by 2 in order to form the basis for the proof of
Equation (5-20), resulting in

2(λk+1 − λ?)>rk+1 − 2ρ
(
B(zk+1 − zk)

)>
rk+1

+ 2ρ
(
B(zk+1 − zk)

)>
B(zk+1 − z?) ≤ 0.

(5-24)

First, using the Lagrangian update, i.e. λk+1 = λk + ρrk+1, the first term of Equation (5-24),
2(λk+1 − λ?)>rk+1, is rewritten as

2(λk − λ?)>rk+1 + ρ‖rk+1‖22 + ρ‖rk+1‖22,

where rk+1 = 1
ρ(λk+1 − λk) can be substituted into the first two terms giving

2
ρ

(λk − λ?)>(λk+1 − λk) + 1
ρ
‖(λk+1 − λk)‖22 + ρ‖rk+1‖22,

J. An Master of Science Thesis



5-2 Convergence Results 53

which can be reduced using the fact that λk+1 − λk = (λk+1 − λ?)− (λk − λ?)

2
ρ

(λk − λ?)>(λk+1 − λ?)− 2
ρ
‖λk − λ?‖22 + 1

ρ
‖(λk+1 − λ?)− (λk − λ?)‖22 + ρ‖rk+1‖22,

where we can use ‖u− v‖22 = ‖u‖22 + ‖v‖22 − 2v>u to get

1
ρ

(
‖λk+1 − λ?‖22 − ‖λk − λ?‖22

)
+ ρ‖rk+1‖22. (5-25)

Given that Equation (5-25) is the first term of Equation (5-24) rewritten, the current rewritten
version of Equation (5-24) is then

1
ρ

(
‖λk+1 − λ?‖22 − ‖λk − λ?‖22

)
+ ρ‖rk+1‖22 − 2ρ

(
B(zk+1 − zk)

)>
rk+1

+ 2ρ
(
B(zk+1 − zk)

)>
B(zk+1 − z?) ≤ 0,

where we will simplify the last term using a similar method as before, with the fact that
zk+1 − z? = (zk+1 − zk) + (zk − z?), resulting in

...+ ρ

(
‖rk+1‖22 − 2

(
B(zk+1 − zk)

)>
rk+1 + 2‖B(zk+1 − zk)‖22

)
+ 2ρ

(
B(zk+1 − zk)

)>
B(zk − z?) ≤ 0,

where we can combine the norms, simplifying it into

...+ ρ‖rk+1 −B(zk+1 − zk)‖22 + ρ‖B(zk+1 − zk)‖22
+ 2ρ

(
B(zk+1 − zk)

)>
B((zk − z?)) ≤ 0,

where we can again apply a simple substitution, with zk+1 − zk = (zk+1 − z?) − (zk − z?),
resulting in the last two terms being

...+ ρ‖B(zk+1 − z?)−B(zk − z?)‖22 − 2ρ‖B(zk − z?)‖22 + 2ρ
(
B(zk+1 − z?)

)>
B((zk − z?)) ≤ 0,

which can finally be simplified by combining the norms into

...+ ρ
(
‖B(zk+1 − z?)‖22 − ‖B(zk − z?)‖22

)
≤ 0.

The fully rewritten version of Equation (5-24) is now

1
ρ

(
‖λk+1 − λ?‖22 − ‖λk − λ?‖22

)
+ ρ‖rk+1 −B(zk+1 − zk)‖22

+ ρ
(
‖B(zk+1 − z?)‖22 − ‖B(zk − z?)‖22

)
≤ 0.

(5-26)

Now recall that V k = 1
ρ‖λk − λ?‖22 + ρ‖B(zk − z?)‖22 which allows Equation (5-26) to be

written as
V k+1 ≤ V k − ρ‖rk+1 −B(zk+1 − zk)‖22,
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which when expanded results in

V k+1 ≤ V k − ρ‖rk+1‖22 − ρ‖B(zk+1 − zk)‖22 + 2ρ(rk+1)>B(zk+1 − zk), (5-27)

which satisfies Equation (5-20) if and only if 2ρ(rk+1)>B(zk+1−zk) ≤ 0. The proof is based on
the fact that zk+1 is the minimizer of the ADMM z-update step, minimizing g(z)+(λk+1)>Bz,
it is therefore a given that

g(zk+1) + (λk+1)>Bzk+1 ≤ g(zk) + (λk+1)>Bzk,

which is essentially stating that the cost function at zk+1 is never going to be higher than at
zk for λk+1. Similarly one can accurately claim that

g(zk) + (λk)>Bzk ≤ g(zk+1) + (λk)>Bzk+1,

as zk is the minimizer for λk. When combining these two inequalities the result is

(λk+1 − λk)>B(zk+1 − zk) ≤ 0,

where λk+1 − λk is the difference between the Lagrange multiplier for the current and next
step, which is equal to ρ times the residual rk+1, giving

ρ(rk+1)>B(zk+1 − zk) ≤ 0,

which allows Equation (5-27) to always satisfy Equation (5-20), proving Lemma 5-2.1.
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Chapter 6

Adaptive ADMM (A-ADMM)

The Adaptive Alternating Direction Method of Multipliers is a variant on conventional ADMM
where the penalty parameter ρ is no longer a static variable, and can be dynamic instead.
Given that in conventional ADMM the requirement for ρ is that it is a constant larger than
zero, a lot of room is left for the choice of this parameter. This chapter is divided in three
sections: Section 6-1 examines the role of the penalty parameter in ADMM; Section 6-2
describes one of the earliest adaptive penalty parameter methods; finally, Section 6-3 covers a
more advanced adaptive method based on the spectral gradient descent method.

6-1 Role of the penalty parameter ρ

In conventional ADMM, the penalty parameter ρ is introduced through the use of the aug-
mented Lagrangian which is part of the method of multipliers. The penalty parameter has
two important points of relevance, the first being in the augmented Lagrangian where ρ acts
as a weight factor on the squared L2-norm of the complicating equality constraint, see Equa-
tion (5-3). The second point of relevance is the λ update step where ρ acts similarly to a step
size for the Lagrange multiplier.

The equations for the original problem and its augmented Lagrangian used by ADMM are
repeated here for convenience:

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,
(6-1)

where f(x) and g(z) are proper convex functions, the augmented Lagrangian version of this
problem is

minimize
x,z

Lρ,

where Lρ = f(x) + g(z) + λ>(Ax+Bz − c) + ρ

2‖Ax+Bz − c‖22.
(6-2)
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The incorporation of the equality constraint into the augmented Lagrangian is also known
as the method of multipliers and is explained in Section 5-1. The augmented Lagrangian
is ‘augmented’ through the inclusion a squared L-2 norm term proportional to the penalty
parameter ρ. This terms also appears in the Lagrange multiplier update, i.e.

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c). (6-3)

In [100], it is claimed that the use of λ>(Ax +Bz − c) in Equation (6-2) allows the exact
solution of the original problem, Equation (6-1), to be determined without making ρ tend
to infinity, as opposed to ordinary penalization methods where this can cause problems to
become ill-conditioned. It is also claimed that the squared norm term improves the convergence
properties of the algorithm.

It is trivial to see that the value of ρ affects the weight of the primal residual, i.e. rk =
Axk +Bzk − c, either through Equation (6-3), where the Lagrange multiplier is increased
proportionally to the primal residual, or directly in Equation (6-2), where it scales the squared
norm of the residual. Given the fact that ρ > 0 is required for ADMM to converge [101, 95], it
follows that the magnitude of the penalty parameter ρ is inversely proportional to the primal
residual obtained in Equation (6-2).

Suppose that the minimum of the unconstrained convex problem minx,z f(x) + g(z), denoted
as xminU , is not equal to the minimum of constrained convex problem in Equation (6-1),
denoted as xminC , which is always the case when xminU /∈ X f , where X f is the feasible set of
the constrained convex problem. For these problems, it holds that if f(x), g(z) are proper
convex functions, then the magnitude of ρ is positively correlated to the Euclidean distance
between the unconstrained and the constrained minimum. This is the result of the fact that
the minimum of the sum of two convex functions is a global minimum, which implies that any
variation leads to an increase in cost. One can therefore conclude that xminC ≥ xminU when the
overall problem is convex, and xminC > xminU when xminU /∈ X f , where X f is the feasible set of
the constrained problem. We have previously shown that the penalty parameter ρ is inversely
proportional to the primal residual rk, this implies that the minimum for the augmented
Lagrangian, denoted as xminA , moves from xminU towards xminC as ρ is increased. This is also
visualized in Figure 6-1.
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Figure 6-1: Example of the potential effects of the penalty parameter on the optimum. Where
f(x) is the unconstrained problem, h(x) is the constraint, xmin

U refers to the unconstrained
problem, xmin

C refers to the constrained problem, and xmin
A refers to the problem solved using an

augmented Lagrangian.
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Briefly summarizing the effects of the penalty parameter:

• Increasing ρ results in an equal or smaller residual r when using the augmented La-
grangian Lρ.

• Increasing ρ results in an equal or larger cost for the augmented Lagrangian minimum
xminA compared with the unconstrained minimum xminU .

Because of the duality of the value of ρ we cannot simply recommend the choice of very large
ρ in the hopes that a good result is obtained. The potential increase in cost is especially
an issue as it can cause the problem to become ill-conditioned or result in slow convergence.
For certain problems it is also not always desirable to strictly adhere to the (certain) given
constraint, e.g. when a minor violation of the constraint results in significantly lower costs
whilst maintaining safe operation.

When dealing with offline optimization these type of problems are not very common, due to
the fact that there is no strict time/iteration limit for convergence to occur: there would be
no need for the constraint to be more conservative than necessary, as there is sufficient time
for convergence to occur. The role of ρ becomes more relevant for online optimization, where
computation time/power is limited, resulting in the need to use run-time solutions instead of
fully converged solutions. Given that run-time solutions of ADMM are not strictly feasible, it
is often necessary to utilize more conservative constraints in order to achieve feasible run-time
solutions, the topic of online ADMM is further explored in Chapter 7.

Having control over run-time feasibility, optimality and computation time is also highly relevant
when the optimization problem is adjusted in real-time. For example, when a problem is
solved using a strategy like Convex Feasible Set (CFS) [102, 103], where a problem with a
nonconvex feasible set is convexified and solved iteratively. The CFS strategy is also explained
in Section 7-3-2. Given the convexification of the nonconvex feasible set XN , the convex
feasible set XC will always be a proper subset of the nonconvex feasible set, i.e. XC ⊂ XN
as per [103]. Allowing the user to design the trade-off between infeasible results and faster
computation time, can in certain cases enable CFS, or other similar methods, to be applied
online.

The intuition behind this is that infeasible results, which are easier to compute, allows faster
computation times, resulting in higher frequency approximations (e.g. convexification or
linearization). With higher frequency approximations, the time dependent inaccuracies are
reduced as less time passes between approximations. Additionally, it is possible that infeasible
results are actually feasible, assuming that the approximated constraints are always proper
subsets, leading to faster convergence. However, whether this fact can be effectively exploited
using an adaptive penalty parameter requires further research.

6-2 Residual Balancing

The use of a varying penalty parameter ρ for ADMM was first proposed in [28], where an
update rule is introduced in order to improve convergence. The residual balancing strategy
has an additional penalty parameter update after the λ-update step, with an example of a
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ρ-update being

ρk+1 =


τ incrρk if ‖rk‖2 > µ‖sk‖2
ρk/τdecr if ‖sk‖2 > µ‖rk‖2
ρk otherwise,

(6-4)

where rk (resp. sk) is the primal (resp. dual) residual, and τ incr > 1, τdecr > 1, and µ > 1
[28, 95]. Boyd et al. also state that typical choices might be µ = 10 and τ incr = τdecr = 2.
The reasoning behind the residual balancing scheme given in Equation (6-4) is to adjust the
value of ρ depending on the magnitude of the primal and dual residuals, attempting to achieve
a balance between the two. Whilst this method still requires the user to seemingly arbitrarily
adjust parameters, the introduction of µ, τ incr, and τdecr allows more robust convergence with
easier to interpret parameters. In Equation (6-4), µ limits the factor at which one residual is
allowed to exceed the other, τ incr (resp. τdecr) then defines the factor by which the penalty
parameter ρ is increased (resp. decreased). When there is no specific reason for τ incr to be
different from τdecr, it is advised to use τ incr = τdecr.

If ADMM is viewed as a dynamic system, the τ used in residual balancing scheme can be
interpreted as the derivative of ρ, i.e. τ = ρ̇. For that reason the use of residual balancing
can be seen as a move from defining a static ρ towards defining a function ρ(·) (this function
is later referred to as φ in Chapter 8). The residual balancing scheme therefore changes the
burden of choosing the value of ρ into choosing the initial value ρ0 and its higher order terms,
e.g. τ . One thing to note is that the scheme of Equation (6-4) is a simple discontinuous
function, where large values of τ can lead to undesired flip-flopping of ρ.

Given that the method is based on the primal and dual residual norms, it is possible for
poorly scaled problems that attempting to balance these results in worse results compared
with conventional methods. Another caveat is the fact that the initial ρ0 is still very important
for fast convergence depending on the value of τ and µ, if the initial ρ0 is chosen poorly no
significant improvement is made by the adaptation.

6-2-1 Convergence of self-adaptive penalty parameters

An important contribution by He et al. [28] is the convergence results for an adaptive penalty
parameter. The basis of the convergence analysis in [28] is that observing

lim
k→∞

(
‖Axk+1 +Bzk+1 − c‖22 + ‖B(zk − zk+1)‖22

)
= 0 (6-5)

is sufficient to claim convergence: Equation (6-5) implies that Axk+1 + Bzk+1 = c and
zk = zk+1, which for ADMM can only be the case when the solution has converged.

We partially borrow the notation used in [31] for the two conditions used by He et al. in [28],
with the conditions being the following:

Condition 6-2.1 (Bounded increasing). inf{ρk}∞1 > 0 and ∑∞k=1(ηk)2 < +∞, where

ηk =
√

max(ρ
k+1

ρk
, 1)− 1. (6-6)
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Condition 6-2.2 (Bounded decreasing). ∑∞k=1(θk)2 < +∞, where

θk =
√

max( ρk

ρk+1 , 1)− 1. (6-7)

Given that ηk (resp. θk) essentially measures the increase (resp. decrease) of ρ, the two
conditions can be summarized as requiring the ρ to be either bounded increasing, or bounded
decreasing for all k. These conditions are combined in Theorem 4.1 from [28], which can be
summarized as:

Theorem 6-2.1. If the adaptive penalty parameter ρ satisfies either Condition 6-2.1 or
Condition 6-2.1 and is applied to an otherwise convergent conventional ADMM problem, then
the adaptive variant also converges.

The full proof of this theorem can be found in [28], with the essential part being the fact
that both Condition 6-2.1 and Condition 6-2.1 lead towards Equation (6-5), which guarantees
convergence.

6-3 Spectral Penalty Parameter Selection

The Adaptive ADMM method using Spectral Penalty Parameters owes part of its name to the
spectral gradient methods pioneered by Barzilai and Borwein [104]. The key of these methods
is the adaptive selection of a penalty parameter for fast convergence.

The spectral gradient method was proposed in [104], under the name of Two-Point Step Size
Gradient Methods, as a solution to the poor performance of the traditional steepest-descent
method both in terms of convergence rate and the ability to handle ill-conditioned problems.

For a smooth function f : Rn → R, the classical gradient descent step has to form of

xk+1 = xk − ρ∇f(xk),

where ρ is the step-size. The standard spectral gradient method proposed by [104] sets
ρk = αkI, where αkI is imitating the Hessian of the function f over the previous step, making
the method a Quasi-Newton method. The step-size ρk is defined using a least squares equation,
with the definition for αk being:

αk = arg min
α∈R
‖∇f(xk)−∇f(xk−1)− α(xk − xk−1)‖22. (6-8)

The least squares equation given in Equation (6-8) is in fact a two point approximation of
the Hessian used by the secant equation in quasi-Newton methods. As a reminder, the secant
equation of quasi-Newton methods is

∇f(xk + ∆x) = ∇f(xk) +B∆x,

where B is the Hessian approximation.
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Accordingly, the value of αk is then given by

αk =

(
xk − xk−1

)
·
(
∇f(xk)−∇f(xk−1)

)
(
∇f(xk)−∇f(xk−1)

)
·
(
∇f(xk)−∇f(xk−1)

) . (6-9)

This method forms the basis of the spectral penalty parameter Adaptive ADMM method
proposed in [31].

6-3-1 Douglas-Rachford Splitting

As the spectral penalty parameter method is based on the duality between Alternating
Direction Method of Multipliers (ADMM) and Douglas-Rachford splitting (DRS) [98], the
Douglas-Rachdord splitting (DRS) method is briefly summarized. Douglas-Rachford Splitting
is an optimization strategy which splits a main problem of the form

min
s
q(s) + p(s), (6-10)

using the strategy
sk+1 = proxγ,q(tk)
tk+1 = tk + proxγ,p(2sk+1 − tk)− sk+1,

(6-11)

where proxγ,q is the proximal point method with step size γ for function q, i.e.

proxγ,q(s) = arg min
z

(
q(z) + 1

2γ ‖z − s‖
2
2

)
.

The strategy can also be rewritten as

rk+1 = proxγ,q(sk + lk)
sk+1 = proxγ,p(rk+1 − lk)
lk+1 = lk + sk+1 − rk+1,

(6-12)

with lk = sk − tk.
When applying DRS to the problem of Equation (5-6), which is the main type of problem
solved by ADMM and is repeated here for convenience:

min
x,z

f(x) + g(z)

subject to Ax+Bz = c,

with its dual reformulation usable by DRS being

max
s
−c>s− f∗(−A>s)− g∗(−B>s), (6-13)

where the ∗ superscript denotes the Fenchel conjugate, e.g. f∗(y) = supx〈x,y〉−f(x), written
in the form of Equation (6-10) gives:

min
s
c>s+ f∗(−A>s)︸ ︷︷ ︸

q(s)

+ g∗(−B>s)︸ ︷︷ ︸
p(s)

. (6-14)
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Applying the DRS method from Equation (6-12) to the dual form results in

rk+1 = arg min
u

(
q(u) + 1

2γ ‖u− (sk + lk)‖22
)

sk+1 = arg min
u

(
p(u) + 1

2γ ‖u− (rk+1 − lk)‖22
)

lk+1 = lk + sk+1 − rk+1,

which is proven to have primal equivalence to the ADMM method in [105]. Furthermore Xu
et al. [31] state that DRS solves Equation (6-14) by splitting s into sk and ŝk according to

0 ∈ ŝ
k+1 − sk
ρk

+ ∂q(ŝk+1) + ∂p(sk)

0 ∈ s
k+1 − sk
ρk

+ ∂q(ŝk+1) + ∂p(sk+1).
(6-15)

6-3-2 Methodology

Given that conventional ADMM is a higher level optimization strategy, and therefore does
not explicitly define anything closely related to gradient descent, the spectral step size is first
applied to the Douglas-Rachford splitting method.

Applying the spectral step size to DRS involves a linear approximation of the partial derivatives
of the functions q and p from Equation (6-10), i.e.

∂q(ŝ) ≈ αkŝ+ Ψk

∂p(s) ≈ βks+ Φk,
(6-16)

where αk (resp. βk) is a local estimates of the curvature of q (resp. p), and Ψk,Φk have the
same dimension as s. Xu et al. [31] then propose the following (rewritten):

Theorem 6-3.1. Let DRS be applied to Equation (6-14), with

∂q(ŝ) = αkŝ+ Ψk, and ∂p(s) = βks+ Φk

Then, ρk = (αβ)− 1
2 results in the minimal residual of q(sk+1) and p(sk+1).

For the full proof please see [31].

The A-ADMM method proposed in [31] utilizes an adaptive penalty parameter ρ to replicate
spectral gradient descent. This is achieved by using a least squares formulation to estimate
the curvature parameters of A-ADMM. Given that the curvature parameters α, β are not
know exactly, they are estimated locally using the current iteration k and a previous iteration
k0. The estimation is based on a linear model, i.e.

∆qk ≈ α∆ŝk + a,
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where ∆ŝk := ŝk − ŝk0 , and ∆qk := ∂q(ŝk)− ∂q(ŝk0) Xu et al. note that in BB (Brazilai and
Borwein) type spectral gradient methods it is common to estimate α using one of two least
squares problems:

min
α
‖∆qk − α∆ŝk‖22,

or through
min
α
‖α−1∆qk −∆ŝk‖22.

The solutions for the two problems can be written as

α̂kSD = ‖∆ŝk‖22
〈∆qk,∆ŝk〉 , (6-17)

and
α̂kMG = 〈∆q

k,∆ŝk〉
‖∆qk‖22

, (6-18)

where the subscript SD (resp. MG) means steepest descent (resp. minimal gradient21), which
follows the notation used in [31, 106]. Similarly the steps for β are

β̂kSD = ‖∆sk‖22
〈∆pk,∆sk〉 , (6-19)

and
β̂kMG = 〈∆p

k,∆sk〉
‖∆pk‖22

, (6-20)

where ∆pk := B(zk − zk0) and ∆sk = sk − sk0 . The purpose of having the two estimate
options is to utilize both methods through a hybrid scheme proposed by [106] where

α̂k =

α̂
k
MG if 2α̂kMG > α̂kSD
α̂kSD − 1

2α̂k
MG

otherwise, (6-21)

which can similarly be applied to the spectral step-size β:

β̂k =


β̂kMG if 2β̂kMG > β̂kSD
β̂kSD − 1

2β̂k
MG

otherwise. (6-22)

Given that a spectral step-size estimate is based on a linear model, the accuracy of the
approximation is widely dependent on the type of functions it is applied to. In the classical
BB method the unreliable estimates are dealt with using a line search, Xu et al. however
note that this is not possible in ADMM, given the lack of distinction between “stable” or
“unstable” step-sizes. Xu et al. therefore propose to quantify the quality of the curvature
estimate through the correlation between the change in dual (sub)gradient and dual variables.
If the correlation is high enough the spectral step-size estimate is used. The correlation of
αk+1 is denoted as

αk+1
cor = 〈∆q̂k,∆λ̂k〉

‖∆q̂k‖ ‖∆λ̂k‖
, (6-23)

21Minimal gradient is a line search method which minimizes the gradient norm. [106]
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and the correlation of βk+1 is denoted as

βk+1
cor = 〈∆p̂k,∆λ̂k〉

‖∆p̂k‖ ‖∆λ̂k‖
. (6-24)

The purpose of using the correlations as a measurement of quality is the linear model assump-
tion, which assumes that the dual (sub)gradient is linear w.r.t to the change in dual variables.
If the correlation between the values is high, it is assumed that the linear estimate is accurate.
Using these assumptions the update rule for the penalty parameter can be formed:

ρk+1 =



√
α̂k+1β̂k+1 if αkcor > εk+1

cor and βk+1
cor > εk+1

cor

α̂k+1 if αkcor > εk+1
cor and βkcor ≤ εk+1

cor

β̂k+1 if αkcor ≤ εk+1
cor and βkcor > εk+1

cor

ρk otherwise,

(6-25)

where εcor is a user defined cutoff point that defines what amount of correlation is necessary
to be considered a valid estimate.
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Chapter 7

Online ADMM (O-ADMM)

Online Alternating Direction Method of Multipliers (O-ADMM) is the application of ADMM
to online problems. In online problems it is often necessary to have results at a high frequency,
with little time for conventional implementations of ADMM to converge. In practice O-ADMM
is not a specific method or variant of ADMM, instead being a group of methods which can
reduce computation time, speed up convergence, and guarantee feasible run-time solutions,
all of which are necessary for adequate online problems.

The chapter is separated into four main sections: first the application of ADMM to online
problems in general is summarized in Section 7-1, second a method utilizing ADMM for online
distributed motion planning is covered in Section 7-2, this is followed by Section 7-3 which
includes methods to convexify difficult problems such that they can be solved in real-time,
and finally Section 7-4 introduces methods to guarantee feasible run-time results.

7-1 Online ADMM in general

Unlike adaptive ADMM, which is covered in Chapter 6, there is no exact definition for what
online ADMM is. In general, O-ADMM refers to the use of Alternating Direction Method of
Multipliers (ADMM) in an online environment, with online environments usually referring to
applications where the time-dependent nature of the system makes pre-computation infeasible.
For autonomous driving this is the case, as it is not possible to precompute all potential
trajectories for all possible scenarios that autonomous vehicles can encounter. That is not to
say that no precomputation can be utilized by online problems. Precomputation, however,
is often limited to a small subset of the entire problem, e.g. the use of motion primitives to
simplify motion planning optimization problem.

Batch ADMM can be seen as the most simple online implementation of ADMM, it is essentially
conventional ADMM being applied to a time-varying system, performing ADMM in batches
until convergence. The applicability of batch ADMM is limited to slow systems, as the
frequency is limited due to the requirement of convergence. In literature, O-ADMM generally
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refer to ADMM variants which do not perform the same steps until convergence, making them
more suitable for online optimization.

An early work mentioning the term online ADMM is [107], where online ADMM is proposed in
the context of machine learning as a large scale optimization technique. The difference between
the O-ADMM from [107] and conventional ADMM is in the x-update, where the function f(x)
is replaced by a time varying function ft(x), and an additional Bregman divergence22 term is
added. The method actively updates the cost function ft in real time, instead of requiring the
ADMM to be performed until convergence as is the case with batch ADMM. The O-ADMM
method from [107] is claimed to have a O(1/T ) convergence rate, which is supported with
empirical results. This method is however focused on improving the overall convergence rate,
and does not take into account additional issues which can arise with online optimization.

Another early work on O-ADMM is [108], which utilizes stochastic optimization methods to
facility online implementation of ADMM. This work proposed two variants of O-ADMM: the
regularized dual averaging variant, and the online proximal gradient descent variant. The
regularized dual averaging variant replaces the function f(x) with a linear function ḡ>t x,
which can be interpreted as a linear approximation of the cost function. This requires the
algorithm to first compute a sub-gradient gt ∈ ∇f(x), which is then averaged resulting in ḡt.
The x-update is modified to cancel out the squared L2-norm term, allowing the xk+1 to be
written in the form of a projection of x onto a convex set X . This rewriting of the x-update, is
what distinguishes the regularized dual averaging variant from [108] with the online ADMM
variant proposed in [107]. The online proximal gradient descent variant, as the name suggests,
uses proximal gradient descent to simplify the minimization steps. This variant also modifies
the x-update, but instead of using the averaged sub-gradient ḡt, it utilizes gt directly. The
proximal gradient descent method also utilizes a proximal term which penalizes the deviance
of xt+1 from xt, where xt is the solution x at time t. Both of these methods are claimed to
have a convergence rate of O(1/

√
T ), with a convergence rate of O(log(T )/T ) for the proximal

gradient descent variant when the cost function is strongly convex.

Other works which follow a similar approach to O-ADMM as [107] and [108] are [109] and
[110]. These are not analyzed further as they do not sufficiently account for potential issues
which can arise with constraint violations.

A more relevant branch of online ADMM is the application of ADMM to online motion
planning. Some of the more relevant works are [23], which proposed an online ADMM scheme
to achieve online distributed motion planning, [111], which presents a linear MPC scheme
using ADMM for online optimization, and [112], which utilizes ADMM and MPC to solve
the energy management problem of hybrid electric vehicles. The latter two works will not
be explored further as they are intended for single vehicle cases. The online ADMM method
from [23] is covered in Section 7-2. Another work worth mentioning is [113], which uses a
dual decomposition approach instead of ADMM for distributed online motion planning.

22The Bregman divergence is a generalized term used to measure the distance between two points using
strictly convex functions, a simple Bregman divergence is the squared Euclidean distance.
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7-2 Online distributed motion planning for multi-vehicle system

In [23] a method is proposed for multi-vehicle online distributed motion planning, utilizing
ADMM for the distributed part of the problem, and a receding horizon method for the online
portion. The motion planning is achieved through trajectory optimization.

7-2-1 Problem Formulation

The main optimization problem is written in the form of

min
xi(t)

N∑
i=1
Ji(xi(t))

s.t. xi(t) ∈ Xi,
gi,j(xi(t),xj(t)) = 0,∀j ∈ Ni,
∀i ∈ {1, ..., N}, ∀t ∈ [0, T ],

(7-1)

where xi(·) represents the trajectory of vehicle i, including its position, velocity, etc.; Xi is
the feasible set of xi, i.e. the set of trajectories which do not violate the system dynamics, the
initial and final states, and the environmental collision avoidance constraints. The function
gi,j(xi(t),xj(t)) is the complicating constraint between vehicles i and j, in this case this
functions as a formation constraint and is implemented as

gi,j(xi(t),xj(t)) = xi(t)− xj(t)−∆xij

in [23]. The objective function used by Van Parys and Pipeleers is the integral of the L1-norm
between the trajectory xi(t) and the desired final states xTi , i.e.

Ji(xi(t)) =
∫ T

0
‖xi(t)− xTi ‖1dt.

The approach used for motion planning in [23] involves the use of spline parameterization,
which is achieved through the use of B-splines. One of the properties of B-splines is that
it is implied that the B-spline is always in the interior of the convex hull of its coefficients.
This does however requires that trajectories are approximated using polynomials, which is
possible for non-holonomic vehicle models like the bicycle car model. The overall optimization
problem now optimizes the spline coefficients β instead of the exact trajectory, with the
resulting equation being

min
βi

N∑
i=1
Ji(βi)

s.t. βi ∈ Bi,
gi,j(βi,βj) = 0,∀j ∈ Ni,
∀i ∈ {1, ..., N}.

(7-2)
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7-2-2 Methodology

In order for the problem to be solved in a distributed fashion, the complicating constraint of
gi,j needs to be decoupled. This is achieved through ADMM, which requires the rewriting
of Equation (7-2) into a form containing a slack vector z, which is essentially a copy of
the planned B-spline coefficients β. The introduction of these slack variables results in the
problem being reformulated as:

min
βi,zii,zij

N∑
i=1
Ji(βi)

s.t. βi ∈ Bi,
gi,j(zii, zij) = 0,∀j ∈ Ni,
βi = zii,βj = zij ,∀j ∈ Ni,
∀i ∈ {1, ..., N}.

(7-3)

The addition of the slack vector z allows the problem of Equation (7-3) to be solved through
ADMM, as the overall problem now takes the form of Equation (5-6), where the gi,j(zi, zj) = 0
constraint is now independent of β, the βi ∈ Bi constraint is independent of z and the
complicating constraint is βi = zi andβj = zij , which is of a similar form as the Ax+Bz = c
constraint in Equation (5-6). The ADMM Augmented Lagrangian for the overall problem of
Equation (7-3) can now be formulated as

Lρ =
N∑
i=1

Ji(βi) + λ>i (βi − zii) + ρ

2‖βi − zii‖
2
2 +

∑
j∈Ni

(
λ>ij(βj − zij) + ρ

2‖βj − zij‖
2
2

) ,
(7-4)

where λ is the Lagrange multiplier in vector form, ρ can be interpreted as the weight of the
feasibility of the original problem, and z contains the copies of the trajectories β. There
are separate Lagrange multiplier vectors (λ) for the different vehicles, with λi containing the
Lagrange multipliers for the trajectory of vehicle i itself, and λij containing the Lagrange
multipliers for the vehicle i’s trajectory copy of vehicle j.
The Lagrangian of the whole problem given in Equation (7-4) is then used for the ADMM
steps from [23]. Given that the method proposed is online and distributed the Lagrangian from
Equation (7-4) will not be used in its entirety for each agent, instead each agent individually
performs a trajectory optimization step as follows:

βk+1
i := arg min

βi

Lρ,β,i

s.t. βi ∈ Bi,
(7-5)

where each vehicles optimizes their own trajectory subject to the feasibility constraints, while
ignoring the complicating constraint g(·), however taking into account the copies other vehicles
have of i. The trajectory optimization step in Equation (7-5) can be performed in parallel
on each agent, allowing it to scale well with many agents. With the Lagrangian Lρ,β,i from
Equation (7-5) being

Lρ,β,i = Ji(βi) +λki
>(βi−zkii) + ρ

2‖βi−z
k
ii‖22 +

∑
j∈Ni

(
λkji
>(βi − zkji) + ρ

2‖βi − z
k
ji‖22

)
. (7-6)
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The newly found trajectory βk+1
i is then communicated to the nearby agents and used for the

copy optimization step:

zk+1
IJ := arg min

zIJ

Lρ,z,i

s.t. gi,j(βk+1
i ,βk+1

j ) = 0, ∀j ∈ Ni,
(7-7)

where zk+1
IJ for the sake of writing convenience includes both zii, which is a copy of the

ego vehicles trajectory, and zij , ∀j ∈ Ni which is a copy of all trajectories from neighboring
vehicles. This step is also performed in parallel, with each vehicle optimizing zIJ in order to
satisfy the gi,j(·) = 0 constraint. The Lagrangian Lρ,z,i in Equation (7-7) when fully written
out is

Lρ,z,i = Ji(βk+1
i )+λki

>(βk+1
i −zii)+

ρ

2‖β
k+1
i −zii‖22+

∑
j∈Ni

(
λkij
>(βk+1

j − zij) + ρ

2‖β
k+1
j − zij‖22

)
,

(7-8)
note that Ji(βk+1

i ) can be left out as it is a constant which does not affect the result of zk+1
IJ .

The λ vectors can then be updated as follows:

λk+1
i := λki + ρ(βk+1

i − zk+1
ii ),

λk+1
ij := λkij + ρ(βk+1

j − zk+1
ij ), ∀j ∈ Ni,

(7-9)

where λk+1
i penalizes the deviation between the planned trajectory of the ego vehicle, βk+1

i ,
and its copy, zk+1

i , where βk+1
i satisfies the ego vehicle feasibility constraints, and zk+1

ii

satisfies the complicating constraint g(·). By updating the Lagrange multiplier λ, the optimal
βk+1
i from Equation (7-5) is adjusted in the direction of the copy zkii. The rate at which this

adjustment occurs depends on the value of ρ, with higher values increasing the rate. Higher
values of ρ can thereby be seen as attributing more value towards the complicating constraint
g(·), whereas lower values of ρ can be interpreted as attributing more value towards minimum
cost for individual vehicles when ignoring the complicating constraint. A diagram of the
online ADMM method proposed in [23] that summarizes the online ADMM steps is given in
Figure 7-1.
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β-update:
min
βi

Lρ,β,i(·),∀i
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trajectory:
βk+1
i ,∀i

communicate:
βk+1
i ,∀j ∈ Ni

z-update:
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zIJ
Lρ,z,i(·),∀i
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λk+1
i = λki + ρrk+1

i

λk+1
ij = λkij + ρrk+1

i

communicate:
zk+1
ij ,λk+1

ij ,∀j ∈ Ni

βk+1
i ,∀i

βk+1
i βk+1

i

βk+1
j , ∀j ∈ Ni

zk+1
IJ

λk+1
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i
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ji , ∀j ∈ Ni

Figure 7-1: Diagram of Online ADMM steps, see Section 7-2-2 for more details.
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7-2-3 Convergence

As the method in [23] has a different form than that of conventional ADMM, the convergence
proof of ADMM, which is also given in Section 5-2-1, does not guarantee convergence. Van
Parys and Pipeleers [23] note that despite the application of ADMM on non-convex problems,
convergence is still observed through simulations. The use of ADMM for non-convex problems
is not uncommon, for example see [114].
When considering the online distributed motion planning problem convergence is important,
especially since the complicating constraint (gi,j(·)) is traditionally only guaranteed to be
feasible when ADMM has fully converged. In the case of [23], the complicating constraint
is responsible for formation control. If the formation is not properly maintained, collision
between vehicles can occur which must be avoided.
As the original authors only provide empirical results for the convergence of the algorithm, it is
not safe to say that this method will converge in general. The main cause of concern is the fact
that the algorithm performs only one ADMM step per iteration, whilst actively following the
trajectories from Equation (7-5). If the system is considered to be static, i.e. infinite ADMM
iterations can be performed during each iteration, we can ignore the difficulty of proving
online ADMM and first prove the convergence of the distributed algorithm. This could use a
similar approach to the Lyapunov’s direct method approach shown in Section 5-2-1.

7-3 Linearization and Convexification

Linearization and convexification is often necessary for Online-ADMM, or online optimization
in general, due to the difficulty of solving non-convex and nonlinear optimization problems;
the main computational burden of ADMM lays in the x and z optimizations steps. Solving a
quadratic programming problem is much easier and faster than solving a non-convex nonlinear
problem, this does however have the downside that often multiple iterations have to be
performed, as the linearized and convexification will almost never directly result in the same
optimum.
A simple overview on linearization is given in Section 7-3-1, followed by a summary on Convex
Feasible Set in Section 7-3-2, which is an approach for convexifying non-convex constraints.

7-3-1 Linearization

The simplest method to ensure convexity of a function is to linearize it, this is often used
for nonlinear inequality constraints, which are too difficult to solve in real-time. Generally,
linearization is performed by finding a linear function which approximates the nonlinear
function the closest. The most common method to achieve this is the first order Taylor
expansion.
For a nonlinear function f(x), the first order Taylor expansion is

f̂(x) = f(a) + f ′(a)(x− a), (7-10)

where f̂(x) is the linear approximation, f ′ is the first derivative of f , and a is the linearization
point. This ensures that the f̂(a) = f(a) and f̂ ′(a) = f ′(a), i.e. the value and derivative of
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the linear approximation f̂ is identical to that of the original function f in the linearization
point.
Given that the accuracy of the linearization is highly dependent on the distance from the
linearization point, it is often necessary for the linearization to take place every time step. This
ensures that the linearization remains as accurate as possible, whilst avoiding the additional
computational costs of nonlinear constraints.
To give an example we will show the linearization of a distance function d(pi,pj), which is the
squared Euclidean distance between two points pi and pj . The squared Euclidean distance is
used as this simplifies the linearization, this does not affect its use as a minimum/maximum
distance constraint, as the minimum/maximum distance is a constant which can squared. The
to be linearized distance function is

d(pi,pj) = ‖pi − pj‖22 =
[
p>i p>j

] [ I −I
−I I

] [
pi
pj

]
, (7-11)

which we will linearize around p̄i, p̄j using the first order Taylor expansion given in Equation (7-
10), resulting in

d̄(pi,pj) = d(p̄i, p̄j) + d′(p̄i, p̄j)
([
pi
pj

]
−
[
p̄i
p̄j

])

=
[
p̄>i p̄>j

] [ I −I
−I I

] [
p̄i
p̄j

]
+ 2

[
p̄>i p̄>j

] [ I −I
−I I

]([
pi
pj

]
−
[
p̄i
p̄j

])
,

(7-12)

where d̄(pi,pj) is the linearized function. This distance function is non-convex when used for
a minimum distance constraint, i.e.

d(pi,pj) ≥ D2
min,

where Dmin is a specified minimum distance between the points pi and pj . The function is
non-convex given that d(pi,pj) < 0, which is the opposite of the minimum distance constraint,
is convex. This can also be easily seen in Figure 7-2.

7-3-2 Convex Feasible Set Algorithm

Convex Feasible Set (CFS) is an algorithm proposed by Liu et al. in [103] and [102] as
an algorithm for real-time optimization in motion planning. The algorithm is intended for
non-convex optimization problems, where the cost function is convex, with the constraints
non-convex. The algorithm is based on the idea that solving an easier convexified problem
iteratively, is faster than solving the difficult non-convex problem once. In terms of solving a
difficult problem using convex subproblems, this is similar to Sequential Quadratic Program-
ming (SQP), the main difference being that CFS takes the geometric structure of the original
problem into account.
As an example we take a problem of the form

min
x

J(x),

s.t. x ∈ X f ,
(7-13)
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d(pi, pj) < D2
min

d(pi, pj) ≥ D2
min

d̄(pi, pj) ≥ D2
min

pi

pj

Figure 7-2: Figure showing the feasible regions for the maximum distance function d(pi,pj) <
D2

min (white region), the minimum distance function d(pi,pj) ≥ D2
min (gray region), and the

linearized minimum distance function d̄(pi,pj) ≥ D2
min (hatched region).

where J(x) is the convex cost function, and X f is the non-convex feasible set. Two assumptions
have to be made regarding this problem: first that cost function has to be radially unbounded,
i.e. J(x)→∞ when ‖x‖2; second, the non-convex feasible set is required to be one connected
and closed set, with a boundary that is piecewise smooth and non-self-intersecting. There
is an additional requirement that there exists a polytope P for every point x ∈ X f . These
assumptions are to ensure the feasibility of CFS to iteratively find the optimum, for the exact
mathematical description of the assumptions please refer to [103].

The CFS approach first requires a convex feasible subset (X fC) of X f , i.e. X
f
C ⊂ X f . A simple

approach to finding a convex subset X fC is to linearize the non-convex constraints as is done
in Section 7-3-1. This approach is also used by CFS when the infeasible set is convex. When
the infeasible set is concave, the feasible set is per definition convex, which gives X fC = X f . If
the infeasible set is neither concave nor convex, the feasible subset is found using

X fC := {x : φ(x̄) + ∇̂φ(x̄)(x− x̄) ≥ 1
2(x− x̄)>H∗(x− x̄)}, (7-14)

where x̄ is the reference point or linearization point and φ is the boundary function of the
infeasible set, with φ = 0 on the boundary, and φ > 0 in the feasible region. The set definition
given in Equation (7-14) can be seen as a more conservative linearization, where the linearized
constraint is shifted by (x− x̄)>H∗(x− x̄) to ensure the feasibility of the convexified subset.

Once an appropriate convex feasible subset is found, the convexified optimization problem
can be solved, with the solution used as the reference for the next iteration. This is repeated
until the goal is reached with small enough residuals. The CFS algorithm is also given in
summarized form in Algorithm 7.1. For proofs or more information on the method please see
[103], or see [102] for an example of CFS applied to trajectory smoothing.
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Algorithm 7.1: Convex Feasible Set (CFS) Algorithm.
1 initialize x0

2 while goal() 6= TRUE do
3 Find X fC ⊂ X f given xk
4 xk+1 = arg minx∈XC

J(x)
5 k = k + 1
6 end

7-4 Online Feasibility

During online optimization, it is important that feasibility is maintained, as this can otherwise
lead to infeasible solutions or unforeseen behavior. How this can be achieved is however
very dependent on the application and the constraints of the problem. If there are no time-
dependent constraints, this is achieved by ADMM if it is performed until convergence, which
is essentially batch ADMM.

Given that the intended application is autonomous vehicles it is assumed that the online
optimization in question is Model Predictive Control (MPC); online feasibility is also referred
to as recursive feasibility or persistent feasibility in the field of MPC. Commonly, online
feasibility of MPC is addressed by properly choosing terminal constraints; closed-loop stability
is addressed by properly choosing terminal costs. This method does however not provide a
mathematical guarantee of online feasibility, and is instead a more practical approach which
is analyzed in [115]. When the uncertainties of the system is bounded, online feasibility can
be proven using invariance set theory [116].

An elaborate discussion on achieving online feasibility of MPC or online optimization in
general is beyond the scope of this thesis, we do however stress that there is a large amount of
literature available on this topic, from which we will briefly summarize a few relevant works.
When a theoretical proof for online feasibility is not available, analysis can be done to find
the problematic states where recursive feasibility is lost [117]. [118] provides a stability proof
for nonlinear MPC by applying a monotonically increasing stage cost penalty, instead of a
singular terminal cost as is commonly used. MPC with time-varying and uncertain state
constraints is analyzed in [119], where online feasibility and asymptotic stability can be found
when the change of the constraints is bounded or a model is available for the change of the
constraints.
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Chapter 8

Online Adaptive-ADMM (OA-ADMM)

In this chapter we propose a novel ADMM-based method/strategy, which gives the user
more control over the online convergence of certain states and constraints compared with
other existing methods. This property is mainly achieved through the introduction of the
adaptation function φ and the vectorization of ρ. Note that this chapter focuses on the
general form of Online Adaptive Alternating Direction Method of Multipliers (OA-ADMM),
and does not contain examples or design tips for the adaptation function φ, for those please
refer to Chapter 9. The chapter starts with Section 8-1, describing the problems OA-ADMM
is designed to handle. It is then followed by Section 8-2, which contains the methodology of
OA-ADMM. Finally, the convergence results and proofs are given in Section 8-3.

8-1 Problem Formulation

Online Adaptive ADMM is designed for problems with the following properties:

• The problem cannot be solved fast enough using conventional optimization methods in
order to achieve a desired control frequency.

• It is necessary that the relative importance of the constraints for run-time solutions can
be designed to meet the demands of the user.

Given the first assumption, a method suitable for online optimization needs to be used: this is
achieved by OA-ADMM by applying an ADMM-based strategy which can achieve permissible
online results. The second assumption is satisfied by designing an adaptive penalty parameter
ρ which allows a form of prioritization of the constraint violations in online results. One of
these type of problems are multi-agent vehicle trajectory optimization problems, where the
collision avoidance between vehicles prevents the use of conventional optimization methods.
The strategy used by OA-ADMM can however be applied to any problem where online (multi-
agent) optimization is required.
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The main optimization problems tackled by the proposed method can be formulated as

min
x,z

f(x) + g(z)

subject to Ax+Bz = c,
(8-1)

where f(x) and g(z) are convex functions, and the variables have the following dimensions:
x ∈ Rn, z ∈ Rm,A ∈ Rp×n,B ∈ Rp×m, and c ∈ Rp. This is the most basic and general form
of problems that OA-ADMM can handle. For an example that better showcases the strengths
of OA-ADMM, see Chapter 9 where the problem of decentralized conflict resolution problem
for autonomous vehicles is solved using OA-ADMM.

8-2 Methodology

Given that OA-ADMM is a variant of Alternating Direction Method of Multipliers (ADMM)
it also has a similar structure and requirements as conventional ADMM. The main difference
between OA-ADMM and conventional ADMM in terms of execution is the use of a dynamic
penalty vector and function, i.e. ρ = φ(·), instead of the conventional static penalty parameter
ρ, combined with the application to real-time systems.

Like in all ADMM methods the coupled constraints are integrated into an augmented La-
grangian in order to separate the problem, the augmented Lagrangian for OA-ADMM is

Lρ(x, z,λ) = f(x) + g(z) + λ>(Ax+Bz − c) + 1
2‖R(Ax+Bz − c)‖22. (8-2)

where R ∈ Rp×p is a diagonal matrix with diag(R) = ρ◦
1
2 . The operator denoted by (·)◦

is the Hadamard power (or element-wise power). The use of the matrix R is to simplify
notation of a vectorized ρ, which can no longer be a scalar outside of the L2-norm. When the
vector ρ is set to be ρ = ρs1, where ρs is the conventional penalty parameter with the vector
1 ∈ Rp = 1, ..., 1, the augmented Lagrangian given in Equation (8-2) becomes the exact same
as the augmented Lagrangian for conventional ADMM given in Equation (5-7). The use of a
penalty vector ρ therefore does not fundamentally differ in function from the regular penalty
parameter ρ. Rather, the penalty vector has the added benefit of applying the penalty to
each element of the primal residual r separately.

The structure used by OA-ADMM is similar to other adaptive ADMM methods, with two
optimization steps, a Lagrangian multiplier update, and a ρ update. The overall structure
therefore is:

xk+1 := arg min
x
Lρ(x, zk,λk,ρk), (8-3a)

zk+1 := arg min
z
Lρ(xk+1, z,λk,ρk), (8-3b)

λk+1 := λk + ρk ◦ rk+1, (8-3c)

ρk+1 := φ(·), (8-3d)

where φ is a user defined adaptation function, and rk+1 is the primal residual. For the online
case we assume that the problem at the next time step has not changed significantly from
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the previous time step. This allows the next time step to reuse the Lagrangian multiplier λ
(and perhaps the penalty parameter ρ) to some extent. This is performed using a function
µ(·), which represents the similarity between the previous time step and the current time step,
e.g. if the system in the previous time step is identical to the system in the current time
step µ(·) = 1, if the system is very dissimilar, µ(·) ≈ 0. The function should always return a
value between zero and one and can be designed to fit the needs of the user. It is possible
for OA-ADMM to perform one to multiple steps of Equation (8-3) each controller time step
depending on the desired control frequency and the difficulty of the problem; the amount of
iterations per control step is defined by Nk. With the first OA-ADMM iteration sometimes
being referred to as k0, conversely the last iteration is then kN . Regardless, it is necessary
that the following step is performed once per every control time step:

λk+1 := µ(·)λk + ρk ◦ rk+1, (8-4)

where ◦ is the Hadamard product (or element-wise product) operator, note that µ(·) returns
a scalar here, however it is also possible to use a vectorized µ when certain constraints are
desired to be scaled differently.

The overall pseudocode for OA-ADMM is given in Algorithm 8.1. If the algorithm is applied
to a system with additional time dependent constraints, it is necessary to update these after
each control loop. The main loop of the algorithm stops when either the predefined final time
Tfinal has been reached, or the desired goal has been reached. The control applied in Line
10 is where the online control is performed, for example if the problem is a Model Predictive
Control problem, the control will apply the input given in xk. After the control is applied,
the problem is updated for the current time-step and the solutions of the previous time-step
are used to initialize OA-ADMM.

Algorithm 8.1: OA-ADMM Pseudocode.
1 initialize x0, z0,λ0,ρ0

2 while t ≤ Tfinal and goal() 6= TRUE do
3 while k ≤ Nk and ‖rk‖2 > εp and ‖sk‖2 > εs do
4 xk+1 = arg minx f(x) + λk>(Ax+Bzk − c) + 1

2‖Rk(Ax+Bzk − c)‖22
5 zk+1 = arg minz g(z) + λk>(Axk+1 +Bz − c) + 1

2‖Rk(Axk+1 +Bz − c)‖22
6 λk+1 := λk + ρk ◦ rk+1,
7 ρk+1 = φ(·)
8 k = k + 1
9 end

10 Apply control(xk)
11 t = t+ δt
12 Update problem
13 set x0 = xk, z0 = zk,λ0 = µ(·)λk,ρ0 = ρk

14 k = 0
15 end
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8-2-1 Stopping Criteria

The stopping criteria for OA-ADMM are mostly similar to that of regular ADMM and will
therefore be briefly summarized. The primal residual and dual residuals are

rk+1 = Axk+1 +Bzk+1 − c, (8-5)

and the dual residual being

sk+1 = A>ρk ◦B(zk+1 − zk). (8-6)

Given that the dual residual involves the vectorized ρ, we will repeat the derivation of the
dual residual for OA-ADMM. The dual residual Equation (8-6) results from the fact that
xk+1 is a minimizer for Lρ(x, zk,λk,ρk), i.e.

0 ∈ ∂Lρ(x, zk,λk)
= ∂f(xk+1) +A>λk +A>ρk ◦ (Axk+1 +Bzk − c)
= ∂f(xk+1) +A>(λk + ρk ◦ rk+1) +A>ρk ◦B(zk − zk+1)
= ∂f(xk+1) +A>λk+1 +A>ρk ◦B(zk − zk+1),

which when reformulated as

A>ρk ◦B(zk+1 − zk) ∈ ∂f(xk+1) +A>λk+1, (8-7)

results in the optimality condition of A>ρk ◦B(zk+1 − zk) = 0, which gives Equation (8-6).

Similarly to ADMM, the actual termination conditions are based on acceptable tolerances for
both residuals, i.e.

‖rk‖2 ≤ εp and ‖sk‖2 ≤ εd, (8-8)

where εp and εs are the primal and dual residual tolerances respectively.

Delft Center for Systems and Control

x-update:
min
x
Lρ(x, zk,λk,ρk)

z-update:
min
z
Lρ(xk+1, z,λk,ρk)

λ-update:
λk+1 = µ(·)λk + ρ ◦ rk+1

ρ-update:
ρk+1 = φ(·)

xk+1 zk+1

λk+1 ρk+1

λk+1

λk+1,ρk+1

Figure 8-1: Diagram of OA-ADMM steps, dashed arrows resemble potential, but not necessary,
inputs.
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8-3 Convergence Results

The convergence results for OA-ADMM are split into two subsections, the first (Section 8-3-1)
contains the converge results and proofs for a static case, the second (Section 8-3-2) describes
the requirements for proving online convergence and suggests approaches for achieving online
convergence.

8-3-1 Static Case

In a static case we assume that there are no real-time requirements for the problem, allowing
(almost) infinite time/iterations for OA-ADMM. We acknowledge that it is indeed counter
intuitive for OA-ADMM to be applied to static problems, however this step is necessary for
further online convergence arguments. First we intend to prove that OA-ADMM converges as
k →∞, this corresponds to Nk =∞ for Algorithm 8.1. Nk =∞ corresponds to a static case.

The convergence proof for ADMM, which is given in Section 5-2-1, is used as the foundation
for proving the convergence of OA-ADMM. The major changes between OA-ADMM and
ADMM for a static problem are the use of an adaptive penalty parameter ρ, which is defined
by the function φ, and the vectorization of ρ.

In order to prove convergence, a candidate Lyapunov function, i.e. a function V where V ≥ 0
with V = 0 only at saddle point, is proposed:

V k = ‖R◦−1(λk − λ?)‖22 + ‖RB(zk − z?)‖22, (8-9)

alongside with the assumption that the original Lagrangian has a saddle point at (x?, z?,λ?).

Lemma 8-3.1 (Converging penalty parameter). If ρk → ρ? as k →∞, then the convergence
results for a static ρ hold for the dynamic ρ as well.

Lemma 8-3.2 (Objective suboptimality lower bound). The suboptimality of the objective p
is lower bounded by:

p? − pk+1 ≤ λ?>rk+1.

Lemma 8-3.3 (Objective suboptimality upper bound). The suboptimality of the objective p
is upper bounded by:

pk+1 − p? ≤ −λk+1>rk+1 −
(
ρk ◦B(zk+1 − zk)

)> (
−rk+1 +B(zk+1 − z?)

)
Lemma 8-3.4 (Lyapunov decrease). The Lyapunov-function V from Equation (8-9) decreases
with each iteration, proportionally to the norm of the residual rk+1 and the change between
zk and zk+1, i.e.:

V k+1 ≤ V k − ‖Rkrk+1‖22 − ‖RkB(zk+1 − zk)‖22, (8-10)

Where in Equation (8-10), R is a diagonal matrix with ρ◦ 1
2 on its diagonal, with ◦ being the

Hadamard power (or element-wise power) operator.

The convergence results for the static case can be summarized in the following theorem:
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Theorem 8-3.1. When applying the OA-ADMM algorithm of Equation (8-3), given closed,
proper, and convex functions f and g, a saddle point p? in the Lagrangian L, and a converging
ρk, it holds that the primal and dual residuals converge to zero, i.e. rk → 0 and sk → 0, and
that the objective converges to the saddle point, i.e. pk → p?.

Proof. Iterating Lemma 8-3.4 from k = 0 to k =∞ gives
∞∑
k=0

(
‖Rkrk+1‖22 + ‖RkB(zk+1 − zk)‖22

)
≤ V 0,

which simply states that for k = {0, ...,∞} the sum of the Lyapunov function is bounded,
implying that V k → 0 as k →∞. Given that the Lyapunov function V is a sum of two squared
L2-norms, it has to hold that both Rkrk+1 → 0 and RkB(zk+1 − zk)→ 0. Because R is a
symmetric positive definite matrix, it also holds that rk+1 → 0 and B(zk+1 − zk) → 0, i.e.
the primal and dual residuals converge to zero. Lemma 8-3.3 and Lemma 8-3.2 further provide
an upper and lower bound for the objective suboptimality, i.e. (pk+1 − p?). Both right-hand
sides of Lemma 8-3.3 and Lemma 8-3.2 converge to zero as the residuals converge to zero, for
that reason the objective suboptimality is shown to converge to zero as k →∞. Lemma 8-3.1
allows the use of static ρ convergence results as long as the dynamic ρ converges.

Proof for Lemma 8-3.1

The convergence results of Lemma 8-3.1 are derived from the conditions given in Section 6-
2-1. The two conditions put on the adaptive penalty parameter are Condition 6-2.1 and
Condition 6-2.2, repeated here for convenience:

Condition 8-3.1 (Bounded increasing). inf{ρk}∞1 > 0 and ∑∞k=1(ηk)2 < +∞, where

ηk =
√

max(ρ
k+1

ρk
, 1)− 1.

Condition 8-3.2 (Bounded decreasing). ∑∞k=1(θk)2 < +∞, where

θk =
√

max( ρk

ρk+1 , 1)− 1.

When these two conditions hold it is proven in [28] that ADMM achieves convergence for a
dynamic ρ. If ρ converges to a certain ρ?, it will eventually hold that ρk+1 = ρk = ρ?. When
ρk has converged, ηk = 0 and θk = 0 are true, which also results in ∑∞k=1(ηk)2 < +∞ and∑∞
k=1(θk)2 < +∞ being true. Given that inf{ρk}∞1 > 0 already is required for a static ρ, we

have shown that Lemma 8-3.1 holds.

Proof for Lemma 8-3.2

The proof given for Lemma 8-3.2 is essentially identical to the proof given for Lemma 5-2.3,
given that the vectorization of ρ does not affect the proof. For convenience we will briefly repeat
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the proof: The saddle point of the original Lagrangian L is defined to be at (x?, z?,λ?), given
the definition of the saddle point it holds that L(x?, z?,λ?) ≤ L(xk+1, zk+1,λ?). Furthermore,
since r? = 0 in the saddle point and L(xk, zk,λk,ρk) = f(xk) + g(zk) +λk>rk = pk +λk>rk,
we get

p? ≤ pk+1 + λ?>rk+1,

which proves Lemma 8-3.2

Proof for Lemma 8-3.3

The proof given in Section 5-2-1 utilizes the optimality condition for the xk+1 optimization
step, which minimizes the augmented Lagrangian. With the augmented Lagrangian for OA-
ADMM in general being

Lρ(x, z,λ,ρ) = f(x) + g(z) + λ>(Ax+Bz − c) + 1
2‖R(Ax+Bz − c)‖22. (8-11)

The subgradient optimality condition results in the fact that the minimizer xk+1 results in
zero being a subgradient of the augmented Lagrangian, i.e.

0 ∈ ∂Lρ(xk+1, zk,λk,ρk) = ∂f(xk+1) +A>λk +A>Rk>Rk(Axk+1 +Bzk − c), (8-12)

where the subdifferential is found through the sum of the subdifferential for the subdiffer-
entiable function and the gradient for the differentiable function. The optimality condition
of Equation (8-12) can be rearranged using the λ-update, i.e. λk+1 = λk + ρk ◦ (Axk+1 +
Bzk+1 − c), into

0 ∈ ∂f(xk+1) +A>
(
λk+1 − ρk ◦B(zk+1 − zk)

)
, (8-13)

where we make use of diag(R) = ρ◦
1
2 , which allows R>R · (...) to be written as ρ ◦ (...). The

result of this is that xk+1 is a minimizer for

f(x) +
(
λk+1 − ρk ◦B(zk+1 − zk)

)>
Ax. (8-14)

The fact that xk+1 minimizes Equation (8-14) also implies that

f(xk+1)+
(
λk+1 − ρk ◦B(zk+1 − zk)

)>
Axk+1 ≤ f(x?)+

(
λk+1 − ρk ◦B(zk+1 − zk)

)>
Ax?,

(8-15)
where x? is x in the saddle point. Equation (8-15) simply states that Equation (8-14) with
x = xk+1 is always lesser or equal to Equation (8-14) with x = x?, which has to be true given
that xk+1 minimizes Equation (8-15).

The subgradient optimality condition can be applied in a similar way for zk+1, resulting in

0 ∈ ∂Lρ(xk+1, zk+1,λk,ρk) = ∂g(zk+1) +B>λk +B>Rk>Rk(Axk+1 +Bzk+1− c), (8-16)

which can be simplified in a similar method utilizing the λ-update, giving

0 ∈ ∂g(zk+1) +B>λk+1, (8-17)
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which results in the conclusion that zk+1 minimizes

g(z) + λk+1>Bz, (8-18)

with the resulting inequality

g(zk+1) + λk+1>Bzk+1 ≤ g(z?) + λk+1>Bz?. (8-19)

Since the inequalities given in Equation (8-15) and Equation (8-19) simply state that xk+1

and zk+1 are minimizing their respective functions, it is possible to combine the two into

f(xk+1) + g(zk+1) +
(
λk+1 − ρk ◦B(zk+1 − zk)

)>
Axk+1 + λk+1>Bzk+1

≤ f(x?) + g(z?) +
(
λk+1 − ρk ◦B(zk+1 − zk)

)>
Ax? + λk+1>Bz?,

which can be rewritten and abbreviated, using pk = f(xk) + g(zk), into

pk+1 − p? ≤ λk+1>
(
Ax? +Bz? − (Axk+1 +Bzk+1)

)
−
(
ρk ◦B(zk+1 − zk)

)>
(Ax? −Axk+1),

(8-20)
which can be further rewritten when using rk+1 = Axk+1 +Bzk+1 − c and Ax? +Bz? = c
into

pk+1 − p? ≤ −λk+1>rk+1 −
(
ρk ◦B(zk+1 − zk)

)> (
−rk+1 +B(zk+1 − z?)

)
, (8-21)

which proves the inequality given in Lemma 8-3.3.

Proof for Lemma 8-3.4

In order to prove Lemma 8-3.4 we combine the inequalities from Lemma 8-3.3 and Lemma 8-3.2,
i.e.

0 ≤ −(λk+1 − λ?)>rk+1 −
(
ρk ◦B(zk+1 − zk)

)> (
−rk+1 +B(zk+1 − z?)

)
,

rearranging and multiplying by two then gives

2(λk+1 − λ?)>rk+1 − 2
(
ρk ◦B(zk+1 − zk)

)>
rk+1

+2
(
ρk ◦B(zk+1 − zk)

)>
B(zk+1 − z?) ≤ 0.

(8-22)

Given the size of Equation (8-22) we will separate the equation into three terms which will be
first be rewritten separately and later combined back together. The first term of Equation (8-
22) is 2(λk+1−λ?)>rk+1, which using the λ-update, i.e. λk+1 = λk+ρk ◦rk+1 can be written
as

2(λk − λ?)>rk+1 + ‖Rkrk+1‖22 + ‖Rkrk+1‖22. (8-23)

The reason for previously multiplying the equation with two is to separate the residual norm
into two terms; the latter norm is used later in the proof. Substituting rk+1 = (λk+1−λk)�ρ,
where � is the Hadamard division (or element-wise division) operator, results in

2(λk − λ?)>(λk+1 − λk)� ρk + ‖Rk◦−1(λk+1 − λk)‖22 + ‖Rkrk+1‖22,
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which can be rewritten using the simple algebra trick, i.e. λk+1−λk = (λk+1−λ?)−(λk−λ?):

2(λk − λ?)>(λk+1 − λ?)� ρk − 2‖Rk◦−1(λk − λ?)‖22
+
∥∥∥Rk◦−1 ((λk+1 − λ?)− (λk − λ?)

) ∥∥∥2

2
+ ‖Rkrk+1‖22.

Using ‖u− v‖22 = ‖u‖22 + ‖v‖22 − 2v>u, the above equation can be simplified into

‖Rk◦−1(λk+1 − λ?)‖22 − ‖Rk◦−1(λk − λ?)‖22 + ‖Rkrk+1‖22. (8-24)

With the first term of Equation (8-22) simplified, the full inequality can be written as

‖Rk◦−1(λk+1 − λ?)‖22 − ‖Rk◦−1(λk − λ?)‖22 + ‖Rrk+1‖22 − 2
(
ρk ◦B(zk+1 − zk)

)>
rk+1

+ 2
(
ρk ◦B(zk+1 − zk)

)>
B(zk+1 − z?) ≤ 0.

(8-25)
Proceeding the separated rewriting, the remaining terms of Equation (8-25), including the
leftover ‖Rkrk+1‖22 from Equation (8-24), are rewritten. First we reuse the simple algebra
trick, i.e. zk+1 − z? = (zk+1 − zk) + (zk − z?), resulting in the remaining terms being

‖Rkrk+1‖22 − 2
(
ρk ◦B(zk+1 − zk)

)>
rk+1 + 2‖RkB(zk+1 − zk)‖22

+ 2
(
ρk ◦B(zk+1 − zk)

)>
B(zk − z?) ≤ 0,

where the first three terms can be simplified by combining the norms, again using ‖u‖22 +
‖v‖22 − 2v>u = ‖u− v‖22, into

‖Rk
(
rk+1 −B(zk+1 − zk)

)
‖22 + ‖RkB(zk+1 − zk)‖22

+ 2
(
ρk ◦B(zk+1 − zk)

)>
B(zk − z?) ≤ 0.

Satisfied with the terms within the first norm, we now focus on simplifying the remaining terms,
i.e. ‖RkB(zk+1−zk)‖22 +2

(
ρk ◦B(zk+1 − zk)

)>
B(zk−z?). Once again we substitute using

zk+1 − zk = (zk+1 − z?)− (zk − z?) resulting in

‖...‖22 + ‖RkB
(
(zk+1 − z?)− (zk − z?)

)
‖22 + 2

(
ρk ◦B(zk+1 − z?)

)>
B(zk − z?)

− 2‖RkB(zk − z?)‖22 ≤ 0,

which can be reduced into

‖...‖22 + ‖RkB(zk+1 − z?)‖22 − ‖RkB(zk − z?)‖22 ≤ 0.

Recombining all the terms back together results in

‖Rk◦−1(λk+1 − λ?)‖22 − ‖Rk◦−1(λk − λ?)‖22 + ‖Rk
(
rk+1 −B(zk+1 − zk)

)
‖22

+ ‖RkB(zk+1 − z?)‖22 − ‖RkB(zk − z?)‖22 ≤ 0.
(8-26)
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Recall the Lyapunov candidate function, i.e. V k = ‖Rk◦−1(λk − λ?)‖22 + ‖RkB(zk − z?)‖22,
which allows Equation (8-26) to be written as

V k − V k+1 ≥ ‖Rk
(
rk+1 −B(zk+1 − zk)

)
‖22, (8-27)

which can also be expanded into

V k+1 ≤ V k − ‖Rkrk+1‖22 − ‖RkB(zk+1 − zk)‖22 + 2(ρk ◦ rk+1)>
(
B(zk+1 − zk)

)
. (8-28)

Equation (8-28) proves Lemma 8-3.4 if 2(ρk ◦ rk+1)>
(
B(zk+1 − zk)

)
≤ 0. This can be

proven by investigating the definition of zk+1, i.e. a minimizer for g(z) + λk+1>Bz. Using
this definition, it can be stated that

g(zk+1) + λk+1>Bzk+1 ≤ g(zk) + λk+1>Bzk,

and vice versa
g(zk) + λk>Bzk ≤ g(zk+1) + λk>Bzk+1.

Combining the two results in

(λk+1 − λk)>(B(zk+1 − zk)) ≤ 0,

which can also be rewritten, using λk+1 = λk + ρk ◦ rk+1, into

(ρk ◦ rk+1)>(B(zk+1 − zk)) ≤ 0. (8-29)

Equation (8-29) proves that Equation (8-28) can be used to conclude Lemma 8-3.4.

8-3-2 Online Convergence

A general discussion on the online application of ADMM is given in Chapter 7, this subsection
builds upon that. In order to prove online convergence we need analyze the change of
the system compared with the convergence of OA-ADMM. We distinguish between the
OA-ADMM iteration parameter k and the real time time step t, e.g. x?(t) is the x at the
saddle point for time t, whereas xk(t) is x at iteration k at time step t.

Whilst the static convergence given in Theorem 8-3.1 proves residual convergence and objective
convergence as k → ∞, this result does not directly extend to the online case. The reason
being that for online systems, x?(t) = x?(t + δt) cannot be assumed unless δ → 0, i.e. the
control time step is very small/ the control frequency is very high. It is therefore possible
that the algorithm is proven to converge towards x?(t) from k to k + 1, whilst not being able
to comment on the convergence towards x?(t+ δt). However, each iteration of OA-ADMM is
proven to converge towards the optimum for that time step, for that reason it could be argued
that OA-ADMM has online convergence. This however does not account for the possibility
that the change in optimum is larger than the rate of convergence of OA-ADMM, which can
result in each iteration converging towards an optimum, whilst never reaching the optimum
for its own time step. We therefore define online convergence to be that OA-ADMM can
always converge towards the online optimum as k, t→∞.
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This convergence requirement can be written as

x?(t) = xk+1(t),
z?(t) = zk+1(t), for k, t→∞.

(8-30)

There are several ways to guarantee the requirements given in Equation (8-30); a trivial method
which can guarantee this is applying OA-ADMM to problems which are time independent, i.e.
x?(t0) = x?(t),∀t. Given that proving Equation (8-30) depends on the rate of change of the
optimum over time, it is required that the convergence rate of OA-ADMM always dominates
the change of optimum as k, t→∞, i.e.

‖xkN (t)− x?(t)‖2 − ‖xk0(t)− x?(t)‖2 > ‖x?(t+ δt)− x?(t)‖2,
‖zkN (t)− z?(t)‖2 − ‖zk0(t)− z?(t)‖2 > ‖z?(t+ δt)− z?(t)‖2, ∀t,

(8-31)

where k0 (resp. kN ) is the first (resp. last) iteration per time step. There are however
no known methods which can guarantee this generally for ADMM based methods; online
convergence analysis should be performed on a system specific basis.

In general, if online convergence is not observed, it is advised to either increase the amount
of OA-ADMM iterations per control step, or the decrease the time step size δ. This approach
is the only approach which is proven to work in general; as mentioned earlier, increasing the
amount of iterations, i.e. k → ∞, or decreasing the time step size, i.e. δ → 0, allows the
system to be viewed as a static system.

If more knowledge about the online convergence for a specific system is desired, it is possible
to analyze the system and the OA-ADMM algorithm together as a dynamical system. Online
convergence can then be compared with stability for the dynamical system, for example using
the Lyapunov Direct method. Proving online convergence for OA-ADMM is not too dissimilar
from MPC stability proofs, e.g. [120].
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Part III

Decentralized Conflict Resolution

This part covers the application of OA-ADMM to decentralized conflict resolution in combi-
nation with model predictive control (MPC) in Chapter 9, the method is then compared with
other methods in Chapter 10, after which the results are discussed in Chapter 11.

Chapter 9 begins with deriving a decentralized formulation of the main problem given in
Chapter 4, followed by the design of a similarity function and an adaptation function, along
with some initial numerical results. Chapter 10 then compares the method against other
decentralized conflict resolution methods such as AMP-IP and TDCR. Chapter 11 concludes
this thesis with a discussion of the proposed method, summarizing its advantages and potential
pitfalls, along with an in-depth analysis of simulation results.
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Chapter 9

Decentralized Conflict Resolution
using OA-ADMM and MPC

Decentralized-optimization-based conflict resolution can be achieved by decomposing the
central optimization problem using Online Adaptive Alternating Direction Method of Mul-
tipliers (OA-ADMM), with the adaptation function φ allowing safe conflict resolution. An
example of the type of problem is given in Figure 9-1, where 4 vehicles are depicted at an
intersection, along with their respective MPC trajectories.

Delft Center for Systems and Control

1

2

3

4

Figure 9-1: Example of conflict resolution to be solved using OA-ADMM and MPC. The colored
dots represent the MPC trajectories of each vehicle.
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9-1 Methodology

First, the main problem given in Equation (3-1) is rewritten into an MPC based formulation;
using an MPC based formulation allows the conflict resolution to act in real-time. The MPC
version results in a main equation of the form:

min
x

N∑
i=1
Ji(x)

s.t. xi ∈ X fi ,
di,j(xi,xj) ≥ 0,∀j ∈ Ni,
∀i ∈ {1, ..., N},

(9-1)

where xi is the concatenated state vector for vehicle i, e.g. in the case of a holonomic vehicle
xi = [x, ẋ, y, ẏ, ux, uy]>, where x,y are coordinates and ux, uy are the acceleration inputs; X fi
is the feasible set for xi that includes all trajectories that adhere to the system dynamics,
input constraint, and environmental collision avoidance constraints; di,j(xi,xj) ≥ 0 is the
distance (or collision avoidance) constraint between the agents, defined as

di,j(xi,xj) =
[
x>i x>j

] [ I −I
−I I

] [
xi
xj

]
−D2

min, (9-2)

where Dmin is the minimum distance between vehicles. Note: Dmin is used as a global
constant for all vehicles for convenience, it is also possible to have a separate Dmin between
any two agents using this method. Furthermore, it is important to note that the complicating
constraint does not have to be a nonconvex function like di,j(xi, xj), e.g. an equality constraint
like g(·) in Section 7-2-2 would work equally well, in which case it would be formation control
instead of collision avoidance.
In order to decompose the problem given in Equation (9-1), the problem has to be rewritten
into a form that is compatible with the general OA-ADMM form given in Equation (8-1).
Similarly to [23], this is done by introducing a slack variable z and an equality constraint
x = z, i.e.

min
x,zij

N∑
i=1
Ji(x)

s.t. xi ∈ X fi ,
di,j(zi, zj) ≥ 0, ∀j ∈ Ni,
xi = zii,xj = zij , ∀j ∈ Ni
∀i ∈ {1, ..., N}.

(9-3)

The OA-ADMM augmented Lagrangian Lρ for this form is then

Lρ =
N∑
i=1

(
Ji(xi) + λ>ii (xi − zi) + ‖Rii(xi − zii)‖22 +

∑
j∈Ni

(
λ>ij(xj − zij) + ‖Rij(xj − zij)‖22

))
,

(9-4)
where λii (resp. λij) is the Lagrange multiplier in vector form for agent i (resp. agent i
to agent j), and Rii (resp. Rij) is the diagonal matrix form of the penalty parameter ρii
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(resp. ρij) with the diagonal of R being ρ◦ 1
2 , where ◦ is the Hadamard power (or element-wise

power).
Similarly to the online ADMM strategy from [23], described in Section 7-2 we separate the
overall optimization problem into smaller steps to enable the distribution of computational
load. The first step then being the trajectory optimizations step (or x-update):

xk+1
i := arg min

xi
Lρ,x,i(xi, zkJI ,λkJI ,ρkJI)

s.t. xi ∈ X fi ,
(9-5)

where for writing convenience we combine the variables into zJI ,λJI ,ρJI ; zJI includes zii
and zji,∀j ∈ Ni , λJI is the combination of λii and λji,∀j ∈ Ni, and ρJI consists out of
ρii and ρji,∀j ∈ Ni. Given that the x-update only adjusts xi, a lighter version of the full
augmented Lagrangian of Equation (9-4) is used, i.e.

Lρ,x,i = Ji(xi) + λkii
>(xi − zkii) + ‖Rk

ii(xi − zkii)‖22 +
∑
j∈Ni

(
λkji
>(xi − zkji) + ‖Rk

ji(xi − zkji)‖22
)
,

(9-6)
where λkji (resp. Rk

ji) is the Lagrange multiplier (resp. penalty matrix) for agent j w.r.t
agent i. The trajectory optimization step is fully parallelizable given that all the values in the
Augmented Lagrangian of Equation (9-6) are either known or independent of other agents. In
order to proceed, the resulting xk+1

i has to be communicated with all nearby agents. After
sending xk+1

i to, and receiving xk+1
j from, all j ∈ Ni, the copy optimization step (or z-update)

can be performed. The z-update can be seen as the collision avoidance update given that this
update includes the di,j(·) ≥ 0 constraint, with its definition being

zk+1
IJ := arg min

zIJ
Lρ,z,i(xk+1

I , zkIJ ,λ
k
IJ ,ρ

k
IJ)

s.t. di,j(zk+1
i , zk+1

j ) ≥ 0, ∀j ∈ Ni,
(9-7)

where zIJ (resp. xI) contains both zii and zij ,∀j ∈ Ni (resp. xi and xj , ∀j ∈ Ni). The
reduced augmented Lagrangian for the z-update (Lρ,z,i) is defined as

Lρ,z,i = λkii
>(xk+1

i − zi) + ‖Rk
ii(xk+1

i − zii)‖22 +
∑
j∈Ni

(
λkij
>(xk+1

j − zij) + ‖Rk
ij(xk+1

j − zij)‖22
)
.

(9-8)
Following the x and z updates, the λ-update is performed.

λk+1
ii := µi · λkii + ρkii ◦ (xk+1

i − zk+1
ii ),

λk+1
ij := µij · λkij + ρkij ◦ (xk+1

j − zk+1
ij ), ∀j ∈ Ni

(9-9)

where ρk+1
ii ,ρk+1

ij , zk+1
ii , and zk+1

ij are all available locally, and µ is a forgetting factor which
represents the similarity between the system of the current time step and the previous time
step. When multiple iterations of OA-ADMM are performed per real-time time step, the
value of µ can be assumed to be 1 for all iterations in the same real-time time step.
The final step of a single OA-ADMM iteration involves updating the penalty vector ρ, i.e.

ρk+1
ij := φij(xk+1

i ,xk+1
j ), ∀j ∈ Ni

ρk+1
ii := φii(xk+1

i ),
(9-10)
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where φ(·) is a function dependent on the states, with the requirement that the resulting R
is always a positive definite diagonal matrix. The exact formulation of φ(·) can be varied
dependent on the desired behavior. The updated values of zk+1, ρk+1, and λk+1 are then
communicated to complete one OA-ADMM iteration.

The primal residual for this method for an agent i is simply the difference between its planned
trajectory and the desired copies, i.e.

rk+1
i = xk+1

i − zk+1
i i+

∑
j∈Ni

(xk+1
i − zk+1

ji ), (9-11)

with the dual residual being
sk+1
i = ρkJI ◦ (zkJI − zk+1

JI ), (9-12)

where ρJI contains ρji,∀j ∈ Ni.
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x-update:
min
x
Lρ,x,i(·)

z-update:
min
z
Lρ,z,i(·)

λ-update:
λ+

ii =µiλk
ii +ρk

ii◦(x+
i −z+

ii ),
λ+

ij =µijλk
ij +ρk

ij ◦(x+
j −z+

ij),∀j ∈ Ni

ρ-update:
ρk+1

ii =φii(x+
i ),

ρk+1
ij =φij(x+

i ,x
+
j ), ∀j ∈ Ni

send:
x+

i

receive:
x+

j , ∀j ∈ Ni

receive:
z+

JI ,λ
+
JI

send:
z+

IJ ,λ
+
IJ

MPC(xk)

k = k + 1

x+
i

x+
i

x+
j ,∀j ∈ Ni

z+
IJ

z+
IJ λ+ ρ+

IJ

zk
JI ,λ

k
JI

Figure 9-2: Diagram of the OA-ADMM and MPC based conflict resolution algorithm for an
agent i. The superscript + is used as a short version of k + 1, i.e. x+ := xk+1; dotted arrow
indicates code execution order; necessary variables are automatically perpetuated along the arrows,
e.g. the λ-update receives x+

j via the z-update block.

9-1-1 Designing the similarity function µ(·)

Despite the importance of the functions µ(·) and φ, they have not yet been thoroughly
investigated yet. First we begin with µ, which is supposed to represent the similarity between
two real-time steps. When µ(·) = 1, it is implied that the change from t to t+ δt has no effect
on the previous OA-ADMM iterations, i.e. λk+1 = λk + ρk ◦ rk+1. Conversely a µ(·) = 0
implies that there is no useful relation between the previous time step t and the current time
step t + δt, i.e. λk+1 = ρk ◦ rk+1. The difficulty is however designing a function µ that,
using the information available, results in effective online performance. If the system is fully
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known, it might be possible to analytically find the optimal µ?, this is however a time intensive
procedure and very system dependent. Instead we attempt an intuitive approach to find a µ
which approximates the behavior of µ?.

We know that if µ(·)? = 1 the following should hold:

x?(t) = x?(t+ δt),
z?(t) = z?(t+ δt),
λ?(t) = λ?(t+ δt),
ρ?(t) = ρ?(t+ δt),

(9-13)

simply said, the optimum should not change from t to t + δt if µ = 1. This cannot be
used directly however, as the optimum is what OA-ADMM is attempting to find, and is
not available. We do however know that, if OA-ADMM has reached the optimum, then the
following holds

xk(t) = xk+1(t),
zk(t) = zk+1(t),
λk(t) = λk+1(t),
ρk(t) = ρk+1(t).

(9-14)

If, on top of that, we add the requirements from Equation (9-13) we get that, if OA-ADMM
has converged and µ? = 1, then

xk(t) = xk+1(t+ δt),
zk(t) = zk+1(t+ δt),
λk(t) = λk+1(t+ δt),
ρk(t) = ρk+1(t+ δt).

(9-15)

Given that the values in Equation (9-15) are actually known in run-time, we can utilize this
to construct a µ which approximates µ? in the optimum. For example, the following formula
satisfies Equation (9-15):

µ(·) = wx

(
1− ‖x

k+1(t+ δt)− xk(t)‖2
‖xk(t)‖2

)
+ wz

(
1− ‖z

k+1(t+ δt)− zk(t)‖2
‖zk(t)‖2

)

+ wλ

(
1− ‖λ

k+1(t+ δt)− λk(t)‖2
‖λk(t)‖2

)
+ wρ

(
1− ‖ρ

k+1(t+ δt)− ρk(t)‖2
‖ρk(t)‖2

)
,

(9-16)

where wx + wz + wλ + wρ = 1. When OA-ADMM is not performed until convergence, the
requirement from Equation (9-14) is no longer guaranteed. The similarity function from
Equation (9-16) underestimates the ideal µ?. To address this, a comparison should be made
between a previous change and the current change. First we define the following short-hand
notations:

∆kx = ‖xk+1(t)− xk(t)‖2,where k > 0
∆tx = ‖xk0+1(t+ δt)− xkN +1(t)‖2,where xkN (t) = xk0(t+ δt),
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Figure 9-3: Potential behavior of ∆t and ∆k

where k0 is the initial iteration used when initiating the OA-ADMM loop, and kN is the last
iteration of the OA-ADMM loop with k = Nk. Similarly, this notation applies to z,λ, and
ρ. Given that ∆kx = 0 when OA-ADMM has converged it can be used as a measure of
convergence, similarly ∆tx = 0 when µ? = 1. We also know that ∆kx is decreasing as k →∞
given the static convergence properties given in Section 8-3-1. This behavior is also depicted
in Figure 9-3. By comparing the change between two OA-ADMM iterations at one time step,
and two OA-ADMM iterations at different time steps we can approximate µ, i.e.

µ(·) = wx

∣∣∣∆kx−∆tx
∣∣∣∣∣∆kx

∣∣ + wz

∣∣∣∆kz −∆tz
∣∣∣∣∣∆kz

∣∣ + wλ

∣∣∣∆kλ−∆tλ
∣∣∣∣∣∆kλ

∣∣ + wρ

∣∣∣∆kρ−∆tρ
∣∣∣∣∣∆kρ

∣∣ . (9-17)

This however has the requirement that at least two OA-ADMM iterations are performed per
time step, and additionally requires the recalculation of xk each time step.
In the case that only one OA-ADMM iteration can be performed per control step, i.e. Nk = 1,
it is not possible to get ∆kx as we do not get both xk(t) and xk+1(t) with k > 0. Additionally,
if we can only perform one OA-ADMM iteration per time step, we also cannot obtain ∆tx as
it requires an additional iteration. Instead we can only directly obtain xk+1(t) for a certain
iteration/control step t. Comparing the change between two control steps now results in
a combination of ∆tx and ∆kx, as the change in variables will be dependent on both the
convergence and time. We will denote this new change as

∆t,kx = ‖xk+1(t+ δt)− xk+1(t)‖,where xk(t+ δt) = xk+1(t).

In the case that µ?(·) = 1, and the system has fully converged, ∆t,kx = 0 should hold.
When we combine that with the knowledge that ∆kx should be decreasing when the system
is converging, along with an assumption that ∆tx is constant, we can approximate µ(·) by
analyzing the value of ∆t,kx over the time steps. If ∆tx is constant, then the change in ∆t,kx
should be ∆kx, i.e.

∆̂kx = ∆t+δt,kx−∆t,kx.

If we also assume that ∆t,k is a linear combination of ∆t and ∆k, we can also approximate
∆t as

∆̂tx = ∆t,kx− ∆̂kx,

resulting in the approximated version of Equation (9-17) being

µ(·) = wx
∆t,kx∣∣∆t+δt,kx−∆t,kx

∣∣ + wz
∆t,kz∣∣∆t+δt,kz −∆t,kz

∣∣ + wλ
∆t,kλ∣∣∆t+δt,kλ−∆t,kλ

∣∣ + wρ
∆t,kρ∣∣∆t+δt,kρ−∆t,kρ

∣∣ .
(9-18)
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The formula for µ given in Equation (9-18) is only a simple and somewhat crude approximation
of µ?. It is likely that in an actual case the ∆t,k is not simply a linear combination of ∆t
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Figure 9-4: Potential behavior of ∆t,k for the same system as Figure 9-3

and ∆k, and has a behavior similar to that of Figure 9-4 instead, assuming that it is the
same system as depicted in Figure 9-3. In this case this approach to designing µ given in
Equation (9-18) cannot be used, and instead it is recommended that the user attempts to
identify ∆t and ∆k separately from ∆t,k. For example, one can perform the OA-ADMM
algorithm until convergence for the system with many initial values and compare it with
the online case to obtain more information on ∆t and ∆k. If the behavior of ∆k and/or ∆t

appears to be consistent among all results, it is for example possible to use a Kalman filter to
observe the values of ∆t and/or ∆k and apply them in Equation (9-17).

Another possible approach to constructing a µ(·) is to consider the cases where µ < 1 is
beneficial for the online performance. Given that µ < 1 affects how much of λk is utilized
in the λ-update, lowering µ is only beneficial when λ? < λk, i.e. the optimal λ? for this
time step is lower than the previous updated λ. This is however somewhat dealt with in the
original update, given that

λk+1 = λk + ρk ◦ rk+1,

resulting in the λk+1 converging to λ? due to the residual rk+1. This is however insufficient
in adaptive-ADMM, given that the value of ρk is no longer static. If the penalty parameter
decreases significantly from k to k+1, it is likely that an overshoot in λk will not be corrected
sufficiently with the conventional λ-update. The ideal µ would account for this, i.e.

µ(·) = (λk>)−1(λ? − ρkrk+1), (9-19)

resulting in λk+1 = λ?. Given that µ has relatively little hard requirements many approaches
can be used. It is however important that µ is not consistently underestimating µ? as this
can make online convergence hard or impossible.

9-1-2 Designing the adaptation function φ(·)

Two examples of adaptive penalty parameters have already been given in Sections 6-2 and 6-3
with their corresponding design process. Whilst both the residual balancing, and the spectral
penalty parameter method are designed to accelerate convergence in general for all types of
ADMM problems, it can be desired to design an adaption method which can be designed to fit
certain needs. Furthermore, instead of designing rule based adaptation schemes as in [28, 31],
we aim to design an adaptation function φ instead.
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The requirements for φ(·) for convergence is given in Section 8-3-1, where it is stated that if
ρ converges to a certain ρ?, then OA-ADMM converges for the static case. This can also be
written as

φ̇(·, t) = 0, for t→∞. (9-20)

In addition of the basic requirement on φ, we also have to take into account the purpose of
φ in the online case. Given that it is difficult for online convergence to be proven for the
decentralized conflict resolution/motion planning problem, we will utilize the ability of φ to
adjust the weights of each constraint individually.

Since we are applying OA-ADMM and MPC to a motion planning problem involving au-
tonomous vehicles, it is desired that φ is used to improve the online collision avoidance
behavior. As stated in Section 6-1, the value of the penalty parameter ρ has a large influence
on the rate of convergence of ADMM and thereby also OA-ADMM; additionally, ρ affects the
importance of the primal and dual residuals during optimization, with large a ρ prioritizing
the primal residual rk, and a smaller ρ prioritizing the dual residual sk.

Given that the primal residual for Equation (9-3) is x− z, increasing ρ effectively increases
the penalty for the actual trajectory deviating from the copies. However since Equation (9-3)
is a multi-agent problem, there are also agent specific values of ρ. In essence, each agent i
has three relevant types of ρ, namely ρii, ρij and ρji. The first type, ρii, directly affects
λk+1
ii by scaling part of the primal residual (xk+1

ii − zk+1
ii ), it is also present in the augmented

Lagrangian, acting as a weight on the residual inside the squared L2 norm. The value of ρii
can therefore be summarized as the weight for the cost of the deviation between xk+1

ii (resp.
zk+1
ii ) and zkii (resp. xk+1

ii ). The second type of ρ is ρij , which is present in the calculation
of λk+1

ij as a weight for the residual xk+1
k − zk+1

ij and in the augmented Lagrangian Lρ,z,i in
which it scales the same residual inside the norm. As a result, the value of ρij directly affects
the z-update for agent i, with larger values allowing less deviation of zk+1

ij from xk+1
j . The

final ρ is ρji, which is in essence the reverse of ρij , i.e. ρ1,2 = ρ2,1. From the perspective of
agent i, ρji acts purely in the x-update, penalizing deviation of xk+1

i from zk+1
ji .

To summarize, for agent i, ρi acts on the residual xi−zi, ρij acts on the residual xk+1
j −zk+1

ij ;
and ρji acts on the residual xk+1

i − zk+1
ji . The difference between the types of penalty vectors

is what allows OA-ADMM to achieve conflict resolution through designing φ. For example, a
priority based solution can be implemented through φ as it is possible to adjust the amount
each agent values a certain residual.

A simple example of an adaptation function that can enhance online robustness adapts the
penalty parameter based on the physical states, i.e.,

φ(·, k)ij = wi

 Dmin

dist(xki ,xkj )

a , (9-21)

where wi is a weight that can modify the importance of agent i, dist(xi,xj) returns the
distance between agents i and j, and a is a variable that determines the shape of φ. The φ
given in Equation (9-21) therefore adjusts the value of ρij when the online MPC is planning
unsafe trajectories, increasing the primal feasibility whilst sacrificing individual optimality.
The advantage of this method is that this distance based approach is very simple to design,
yet achieves results similar to methods using more advanced techniques. Due to the role of ρ,
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the function given in Equation (9-21) can in a way interpreted as a control barrier function.
A recent example for the conventional control barrier function applied to MPC can be found
in [121].
Given that Equation (9-21) only changes the penalty vector for an agent w.r.t. another agent,
we also need to define the penalty vector for its own copies. This can be simply done by
taking the average of its penalty vectors w.r.t. its neighboring agents.

φ(·, k)ii = wi
1
Ni

∑
j∈Ni

 Dmin

dist(xki ,xkj )

a , (9-22)

where Ni is the amount of vehicles in Ni.

9-2 Numerical Results

In this section we compare our proposed OA-ADMM based method and a conventional ADMM
based method for a simple conflict resolution environment. Since the intention of OA-ADMM
is to provide a framework with increased robustness, ease of use, and safety compared with
conventional ADMM, we will attempt to provide an accurate representation of these metrics
through simulating a simple conflict resolution problem in MATLAB.

9-2-1 Simulation Setup

The simulations are carried out in MATLAB 2019b, with OA-ADMM implemented as proposed
in this section, compared with an Online ADMM approach which does not adapt itself during
the simulation. The O-ADMM version simply utilizes a static penalty parameter ρ and a
static forgetting factor µ. The pseudocode for OA-ADMM MPC is given in Algorithm 9.1,
the algorithm for the O-ADMM implementation can be achieved by removing Line 9 and
setting a static µ. The simulation is performed at a frequency of 10 Hz, with the MPC having
a finite horizon of 10 steps, each of which 0.175 s apart23; only one (OA-)ADMM step is
performed per iteration, i.e. Nk = 1, and communication is assumed to be perfect and instant.
The model is simulated in MATLAB, using CVX in combination with MOSEK to solve the
optimization steps.

9-2-1-1 Environment

In order to compare the effectiveness of OA-ADMM we simulate a simple conflict resolution
problem with 4 agents, as depicted in Figure 9-5. Each agent is identical in terms of model,
constraints, and algorithm, with the only difference that agents driving on the horizontal road
have a lower priority than agents in the vertical road. A priority order is implemented by
adjusting the weights to allow a simple and consistent conflict resolution method applicable to
both conventional ADMM and OA-ADMM. The weights are implemented in the adaptation
functions given in Equations (9-21) and (9-22), whilst conventional ADMM uses this as the
regular ρ. The difference in priority is achieved by multiplying the weights for the vehicles
traversing the horizontal road.

23This time step was found to perform well in simulations, however more conventional time steps of 0.1 s or
0.2 s also work well.
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Algorithm 9.1: OA-ADMM MPC Pseudocode for a single agent i
1 initialize xk0 , zk0 ,λk0 ,ρk0

2 while t ≤ Tfinal and goal() 6= TRUE do
3 while mod(k,Nk) 6= 0 and ‖rk‖2 > εp and ‖sk‖2 > εs do
4 xk+1

i = arg minx Lρ,x,i(x, zJI), i.e. Equation (9-5)
5 Broadcast: xk+1

i , Receive: xk+1
j ∀j ∈ Ni

6 zk+1
IJ = arg minz Lρ,z,i(z,xI), i.e. Equation (9-7)

7 λk+1
IJ = ..., see Equation (9-9)

8 Send: zk+1
ij ,λk+1

ij To: ∀j ∈ Ni , Receive: zk+1
ji ,λk+1

ji , From: ∀j ∈ Ni
9 ρk+1

IJ = φ(·), i.e. Equation (9-10)
10 k = k + 1
11 end
12 Apply control(xk)
13 t = t+ δt
14 Get current system state Update OA-ADMM MPC problem set

x0 = xk, z0 = zk,λ0 = µ(·)λk,ρ0 = ρk

15 k = 0
16 end

9-2-1-2 Parameters

Given that the effectiveness of the algorithm is dependent on the values of several parameters,
a fair comparison between OA-ADMM and O-ADMM requires us to test for multiple values.
The most important parameter is the base value of ρ, which is used as a weight, w, for
OA-ADMM, and as the actual static penalty parameter ρ in conventional ADMM. The range
of ρ that we test for is as follows: ρbase = {0.25, 0.5, ..., 5} Additionally, in order to improve
conflict resolution, and to avoid simple deadlocks, the Dmin from Equation (9-2) can be
inflated compared with the actual minimum distance, this is implemented through a multiplier
Dmult. We have simulated both OA-ADMM and O-ADMM using the following multipliers:
{1, 1.1, 1.2, ..., 2}. The actual minimum distance used to measure constraint violation is Dmin

with a value of 2.75 m center to center.

The MPC controller is implemented with a finite horizon of 8 steps, with a step size of 0.2
seconds. Additionally the MPC controller attempts to maintain a reference velocity of 6 m/s.

The priority multiplier mentioned in Section 9-2-1-1 is implemented by multiplying the ρbase
by 624 for vehicles in the horizontal lane; the value of this multiplier is found through trial
and error. However, since the multiplier is mainly relevant to the priority order we will not
go deeper into this value in this section.

For the adaptation function of OA-ADMM, the method given in Equations (9-21) and (9-
22) is used, with a = 6 and Dφ

min = 1.05D?
min, where Dφ

min refers to the Dmin used in
Equations (9-21) and (9-22).

24This value was found by roughly increasing ρbase until the vehicles properly yield.
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Figure 9-5: Simple conflict resolution simulation environment for comparison between OA-ADMM
and ADMM. Agents are circle shapes and considered to be holonomic, Si represent the initial
state for agent i, and Gi represents the goal for agent i.

9-2-1-3 System Constraints

As the intention of the simulation is to investigate the ability of OA-ADMM to be applied for
the conflict resolution of autonomous vehicles, it is necessary that it can handle constraints.
The constraints can be separated into two parts, the first being constraints on the vehicle
dynamics, and the second being the collision avoidance constraints.

The vehicle dynamics constraints include: the maximum input umax = 20 m/s2, the maximum
velocity vmax = 6.25 m/s, the minimum velocity vmin = −1 m/s, and the system dynamics.
The collision avoidance constraints include the minimum distance between vehicles, along
with the minimum distance to the edges of the road.

9-2-2 Results

The results of OA-ADMM for a single case with a ρbase = 1 and Dmult = 1.75 is given in
Figure 9-6. This shows four vehicles approaching the intersection with identical starting
distances and initial velocities, the only difference between the agents is their wi used in the
adaptation function φ. Vehicles are shown to maintain a safe distance and avoid a deadlock
as Agent1 and Agent3 yield for Agent2 and Agent4. This shows that OA-ADMM MPC is
able to achieve collision avoidance, motion planning, control, and conflict resolution with one
integrated system.

In Figure 9-6(a), it can be seen that all agents are following their desired reference velocity.
Once the vehicle trajectories start to lead towards unsafe states, the vehicles with a lower
weight wi will adjust their trajectories to be closer to that of the collision free z-update copies
from the higher weighted vehicles, as depicted in Figures 9-6(b) and 9-6(c). Since the vehicle
control is performed using the x-update, the vehicles will not follow trajectories which are
infeasible, preventing infeasible solutions from the z-update leading towards deadlocks or
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Figure 9-6: Snapshots of decentralized conflict resolution for four vehicles using OA-ADMM and
MPC. The finite horizon trajectories of the vehicles is marked by the crosses in their respective
colors.

collisions. As the value of Dmult is 1.75, the opposing vehicles 2 and 4, or 1 and 3, will slow
down when their trajectories are close, as the inflated minimum distance causes the vehicles to
repel each other’s trajectories. This effect can be reduces by decreasing Dmult, or by changing
the shape of φ.

9-2-2-1 OA-ADMM MPC with eight agents

In order to show the robustness of OA-ADMM an additional four vehicles are added as can
be seen in Figure 9-7, the exact same configuration as Figure 9-6 is used, with ρbase = 1 and
Dmult = 1.75, with the agents in the horizontal lane still having a higher priority than those
in the vertical lane.

Similarly to the four agents case, agents 1 and 3 adjust their trajectories to avoid colliding
with agents 2 and 4, as depicted in Figure 9-7(a). At this point, the follower agents, i.e. agents
5-8, have not adjusted their trajectories yet. As agents 2 and 4 slow down when passing by
each other, their follower agents adjust their trajectories as well to avoid colliding with the
agent in front of them. Figures 9-7(b) and 9-7(c) shows agents 1 and 3 slowing down to a
halt to allow vehicles 2 and 4 to pass, whilst agents 5 and 7 slow down to avoid colliding with
agents 1 and 3. Given the close proximity of agents 6 and 8, and their equal weight to agents
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Figure 9-7: Snapshots of decentralized conflict resolution for eight vehicles using OA-ADMM and
MPC. The finite horizon trajectories of the vehicles is marked by the crosses in their respective
colors.

2 and 4, they simply cross the intersection together with agents 2 and 4. In the meantime,
agents 1,3,5, and 7, cannot cross until the intersection is clear. Figures 9-7(e) and 9-7(f) shows
the remaining agents crossing the intersection, avoiding any collisions.

9-2-2-2 Comparison OA-ADMM and O-ADMM

To compare the robustness, safety, and ease of use for OA-ADMM and O-ADMM, both
methods are simulated for a wide range of parameters of ρbase and Dmult. The metrics
measures are the conflict resolution time and the mean squared violation (MSV). The conflict
resolution time is measured by taking the average of the exit times for all vehicles; the exit
time is measured from the beginning of the simulation until the agent has passed the center of
the intersection by 7.5 meters. The MSV can be summarized as the mean squared error (MSE)
for the constraint violation, where the error is then defined as εviol = dist(xi,xj)−Dmin.

Given the possibilities for deadlocks, a maximum time of 30 seconds is set; this is to prevent
spending too much time simulation a case which will never resolve, if the 30 seconds have
passed the simulation is cut off, resulting in a timeout. The results for the conflict resolution
time using O-ADMM is shown in Figure 9-8, with the time for OA-ADMM shown in Figure 9-
10. The mean squared violation is given in Figure 9-9, with the MSV for OA-ADMM shown
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Figure 9-8: Conflict Resolution Time for O-ADMM for various ρbase and Dmult. Red bars
indicate a time out, e.g. the conflict did not resolve within the maximum time of 30 seconds.

in Figure 9-11.

Algorithm TO V R Mean
time (s)

Min
time (s)

Mean
resolved
time (s)

Min
resolved
time (s)

Mean
MSV
(m2)

O-ADMM 86 133 1 11.720 4.65 10.000 10.00 2.330·10−2

OA-ADMM 49 83 88 7.473 4.10 7.027 4.70 8.828·10−3

Table 9-1: Summary of O-ADMM vs OA-ADMM results for 220 cases. TO stands for timeouts,
implying that the vehicles did not cross the intersection within 30 seconds; V stands for cases
with constraint violations; R stands for resolved cases, implying that no constraint violation has
occurred and the vehicles have crossed the intersection within30 seconds.

A summary of the statistics for the simulations is given in Section 9-2-2-2. Resolved cases
include all cases where no violation of the constraint occurs and the mean MSV statistic is
the average of all cases, except for cases that timed out.

9-3 Discussion

The results obtained in Section 9-2-2 show that OA-ADMM is able to resolve conflicts between
multiple vehicles, integrating optimal trajectory planning, control, conflict detection, and
conflict resolution, into one multi-agent algorithm. For example, Figure 9-6 shows the vehicles
with initially identical trajectories, adjusting their trajectories to avoid collisions, whilst
preventing any deadlocks. This is achieved by simply adjusting the weight w in the adaptation
functions of Equations (9-21) and (9-22). Compared with traditional conflict resolution
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Figure 9-9: Mean squared violation for O-ADMM for various ρbase and Dmult. Red bars indicate
a time out, e.g. the conflict did not resolve within the maximum time of 30 seconds.

methods, such as that of [22], we have no requirements on the intersection environment, as
it is implemented purely as a constraint in the x-update. Whereas the method used in [22]
requires the segmentation of the intersection into separate conflict zones, and then separates
the conflict resolution and motion planning in a hierarchical scheme.

The results of Figure 9-7 show the ability of OA-ADMM MPC to effectively balance conflict
resolution and optimal motion planning using a simple φ by simulating the same problem with
four additional vehicles. Without any changes, the additional four vehicles automatically adapt
safe following trajectories whilst also taking the future trajectories of neighboring vehicles
into account.

9-3-1 O-ADMM MPC Results

To compare the effectiveness of the adapting φ and µ we investigate the results from Section 9-
2-2-2, we first discuss the performance of O-ADMM. The 3D bar plot given in Figure 9-8
represent the time it takes to resolve a conflict for various Dmult and ρbase, with the red
squares with a time of 0 s representing the simulation timing out.

Increasing the Dmult appears to decrease the conflict resolution time, with a few exceptions
where an increase in Dmult results in an increase in time. The increase in time as Dmult

increases appears to only occur for ρbase < 2.5. It is likely that this behavior is linked with a
special case described in Section 9-3-4, where a small change in the value of ρbase and Dmult

can lead to the system behaving different than expected. Increasing Dmult leading to a lower
time is likely related with the finite horizon approach, when the value of Dmult is larger,
possible collisions will be detected earlier and adjusted for. Detecting a collision too late could
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Figure 9-10: Conflict Resolution Time for OA-ADMM for various ρbase and Dmult. Red bars
indicate a time out, e.g. the conflict did not resolve within the maximum time of 30 seconds.

result in the collision avoidance being unable to adjust the trajectories appropriately, either
resulting in collisions or in inefficient behavior such as having to reverse.

Simply increasing Dmult can however easily lead the multi-agent system into a deadlock, as the
minimum distance can prevent a vehicle from actually crossing the intersection. An example
of such a deadlock is given in Figure 9-12, where none of the agents can cross the intersection
if the minimum distance is followed. In this example a combination of a high ρbase, which
reduces the violation of the collision avoidance constraint, and a restrictive Dmult causes the
system to be deadlocked. This is also what causes a large amount of timeouts for O-ADMM
in Figure 9-8.

When investigating the MSV of O-ADMM, it is apparent that it is difficult to tune the
algorithm such that no violation occurs at all, as there is only one case where there is no
violation and no timeout for the 220 tested cases. Considering this, it is likely that the
algorithm will be prone to environmental changes, the amount of vehicles, or other external
factors. It appears that as ρbase increases, the MSV decreases, which is expected as the penalty
parameter penalizes the collision avoidance constraint violation. What is however unexpected
is that this decrease in violation slows down significantly for ρbase > 2, at this point it is
possible that the remaining violation cannot be remedied by increasing ρbase for O-ADMM,
with changes requires in Dmult, the finite horizon, or the sampling time.

Increasing Dmult appears to give varying results depending on the value of ρ and the value
of Dmult. When Dmult is small, increasing it generally leads to lower values of the MSV.
Increasing the Dmult beyond around 1.35, however, seems to result in an increased MSV.
Since the MSV is measured using the regular Dmin, whilst the algorithm attempts to maintain
an inflated distance of Dmult ·Dmin, an intuitive result will have the MSV decreasing as the
value of Dmult increases.
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Figure 9-11: Mean squared violation for OA-ADMM for various ρbase and Dmult. Red bars
indicate a time out, e.g. the conflict did not resolve within the maximum time of 30 seconds.

Investigating the simulations further reveals that the O-ADMM algorithm solves the conflict
by crossing the intersection all at once, after which vehicles slowly nudge forward until they
can pass by each other for Dmult < 1.6. Higher values of Dmult leads to a different approach
where the higher priority vehicles cross first, however this transition leads to an increase in
MSV as neither approaches are performed effectively.

9-3-2 OA-ADMM MPC Results

The conflict resolution time for OA-ADMM MPC depicted in Figure 9-10 appears to increase
with ρbase, whilst it appears to generally decrease as Dmult is increased. The reason that
the conflict resolution time increases with ρbase is due to the increased penalty for violating
the desired minimum distance. This effect is however reduced, as the φ used by OA-ADMM
shapes ρ online based on the actual distance and the desired minimum distance used for the
adaptation function, i.e. Dφ

min.

Increasing Dmult seems to initially increase the conflict resolution time up until Dmult ≈ 1.25,
whilst decreasing the time afterwards. There are several possible reasons for this, one of
which is explored in Section 9-3-4. Given that the cases where the time increases as Dmult

increases all have a MSV> 0, it is likely that the increase in Dmult has the system transitioning
from mostly ignoring the collision avoidance constraints towards actually avoiding collisions.
Naturally, it takes vehicles longer to cross the intersection if they are not allowed to drive
through each other.

In terms of the mean squared violation (MSV) for OA-ADMM MPC, as depicted in Figure 9-
11, it is noticeable that there is a wide range of parameters where there is no violation at
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Figure 9-12: Example of a deadlock caused by a combination of Dmult and ρbase being too high.

all, outnumbering the amount of combinations where the algorithm times out. The MSV
also decreases as Dmult is increased regardless of the value of ρbase, this is expected as the
algorithm aims to keep a larger distance between vehicles. The reason this does not easily
lead towards timeouts is that the adaptation function reduces the effect of Dmult as ρ is
scaled based on another parameter Dφ

min, which is set to 1.05Dmin in this case. When vehicle
trajectories are further away than Dφ

min the value of ρ decreases exponentially, reducing the
possibility for Dmult to cause timeouts.

9-3-3 O-ADMM vs OA-ADMM

When comparing the conflict resolution times for O-ADMM and OA-ADMM, depicted in
Figure 9-8 and Figure 9-10 respectively, it is easy to see that O-ADMM has a lot more timeouts
than OA-ADMM. For the cases which do not time out, OA-ADMM seems to be generally
affected by changes in parameters compared with O-ADMM, there are however a few outliers
for OA-ADMM which do not appear for O-ADMM. These outliers are likely due to some
special cases, which are analyzed in Section 9-3-4.
Comparing the mean squared violation (MSV) for both algorithms, depicted in Figure 9-9 and
Figure 9-11, the OA-ADMM algorithm appears to decrease the MSV when increasing ρbase
and Dmult almost everywhere. However, the O-ADMM version appears to have inconsistent
results when increasing Dmult and ρbase, where increasing Dmult results in the MSV first
decreasing, followed by the MSV increasing.
Both OA-ADMM and O-ADMM appear to have MSV decrease when ρbase is increased, however
this effect seems to plateau significantly earlier for O-ADMM compared with OA-ADMM.
This is likely due to adaptation function φ decreasing the effective value of ρbase as the penalty
vector is decreased when the trajectories are not close to colliding.
When comparing O-ADMM and OA-ADMM in terms of conflict resolution time it is clear that
OA-ADMM outperforms O-ADMM when considering cases without any constraint violations,
to make this clearer the conflict resolution time is shown only for the safe cases in Figure 9-
13 and Figure 9-14. As stated in Section 9-2-2-2, the average conflict resolution time for
the safe cases of O-ADMM MPC depicted in Figure 9-13 is 10.00 s; for the safe cases of
OA-ADMM MPC there average conflict resolution time is 7.027s. Not only does OA-ADMM
perform significantly better than O-ADMM in terms of conflict resolution time, it also has a
much larger range of safe parameter combinations. For the tested range of ρbase and Dmult,
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Figure 9-13: Conflict Resolution Time for O-ADMM for all combinations of ρbase and Dmult

without any constraint violations.

with a total count of 220 cases, OA-ADMM is able to resolve 88 cases within 30 seconds
without any constraint violation; whereas O-ADMM is only able to resolve 1 cases within 30
seconds without any constraint violation. The O-ADMM algorithm therefore takes on average
around 43% longer to resolve the conflict whilst OA-ADMM has 87 more feasible parameter
combinations for the tested cases.

When only considering the shortest times, OA-ADMM appears even further ahead, with a
minimum safe time of 4.70 seconds, more than twice as fast as the fastest time for O-ADMM.
The mean MSV values also has OA-ADMM a factor lower than O-ADMM, with a MSV of
8.828× 10−3 m2 as opposed to the O-ADMM MSV of 2.330× 10−2 m2.

From these results it appears that OA-ADMM is a lot more predictable and robust when
it comes to adjusting the parameters ρbase and Dmult. Whereas O-ADMM requires careful
tuning to achieve a safe result, OA-ADMM has a wide range of parameters available where
safe and fast conflict resolution can be performed. The bar plots showing the safe conflict
resolution times for OA-ADMM in Figure 9-14 seems to indicate that small disturbances in
either Dmult and/or ρbase will not lead to unsafe behavior or significant inefficiencies.

9-3-4 Special Cases

There are a few special cases in which small changes in the variables can result in undesired
changes in the system. One of such cases is when the value Dmult is too low, resulting in an
ineffective z-update, i.e. the collision avoidance step. An example is shown in Figure 9-15,
where the value of Dmult affects the direction at which the collision avoidance step adjusts the
trajectory of the other vehicle. In the case of the small Dmult, the z-update of vehicle B plans
does not adjust the trajectory of vehicle A up until t = 0.2 s; the next time step, the z-update
adjusts the trajectory of vehicle A such that it is no longer in collision with the trajectory
of vehicle B, this however forces vehicle A to accelerate, despite B having a higher weight.
When examining the case with a larger Dmult, this issue is avoided: the larger Dmult allows
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Figure 9-14: Conflict Resolution Time for OA-ADMM for all combinations of ρbase and Dmult

without any constraint violations.

the z-update to kick in sooner, adjusting the trajectory of vehicle A to require deceleration,
allowing B to pass without issues.
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Figure 9-15: Example of how Dmult affects the system behavior with in this example vehicle B
having a higher weight than vehicle A. The × marks indicate the planned trajectories of the agent
with the corresponding color, the ◦ marks indicate the trajectory planned by Agent B for Agent A
in the OA-ADMM MPC z-update.

J. An Master of Science Thesis



Chapter 10

Simulations

This chapter includes a section on the available simulators and the specifics of the chosen
simulator (CARLA) in Section 10-1. Afterwards, the specific implementations of the protocols
in CARLA is discussed in Section 10-4, including necessary changes and potential shortcomings
of the protocols described in Chapter 3.

10-1 Simulator Choice

The choice of simulator mainly affects the accuracy of vehicle dynamics, where ease of use,
availability, and customizability should also be taken into consideration. In addition the
simulator should be capable of facilitating vehicle to vehicle communication. Aside from
established simulators, there also is the option of writing a simulator for the purpose of this
analysis.

10-1-1 Groovenet

Groovenet is a hybrid vehicular network simulator that allows communication between real
and simulated vehicles using real street map-based topography [122, 123]. It has been used by
various studies for simulations such as [19] and [124]. An extension made by [19] to GrooveNet
is the inclusion of lane information for roads, this was necessary as Groove Net uses the
Tiger / Line data which does not include these [125].

10-1-2 AutoSim

AutoSim is a hybrid emulator and simulator similar to Groovenet and has been referred
to as "the next generation of Groovenet" in [126]. The simulator makes use of a modular
approach where the vehicle functions have their separate models, such as for localization,
motion planning, control, or communication. The simulator also includes built in traffic
generation and run time diagnostics tools, which makes it suitable for testing the effectiveness
of traffic protocols.
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10-1-3 CARLA

CARLA is a recent open-source simulator designed for autonomous driving research, suitable
for a wide range of simulations, including low level vehicle control research and higher level
traffic and cooperation research [127]. CARLA utilizes Unreal Engine 4 for its foundation,
which allows for high fidelity graphical simulations for sensor simulations like LIDAR or
cameras. As this is computationally intensive, CARLA also offers a no-rendering mode that
is more suitable for traffic simulation. Furthermore, CARLA also includes additional features
such as pedestrian modeling, built-in sensor suite, OpenDrive standard based maps, ROS
integration, etc.

10-1-4 Discussion

The readily available simulators Groovenet, Autosim, and CARLA all boast similar capabilities
in terms of multi vehicle simulations, with CARLA being significantly more common within
the field of autonomous driving. CARLA is also widely in use for machine learning, computer
vision, and general autonomous driving research. The wide use is beneficial when considering
potential future research involving integration of more advanced local behavior, for example
the use of observed states when communication is not available. The use of an already existing
simulator does however come with the sacrifice of customizability. However, the advantages
gained due to its available resources outweighs the need for total control for the simulations
in our case. For the aforementioned reasons, the simulator of choice for this work is CARLA.

10-2 Decentralized Protocols

This section analyzes in detail a few decentralized protocols that will be compared against
OA-ADMM MPC for benchmarking purposes. The protocols are selected to provide a good
representation of currently proposed decentralized protocols. The selected protocols are
Advanced Maximum Progression Intersection Protocol (AMP-IP) from [21], and an unnamed
protocol from [22], hereafter referred to as Timeslot-based Distributed Conflict Resolution
(TDCR). As the original works proposing these protocols do not adhere to the same notation
and definitions as in this literature review, some amendments will have to be made. The
amendments, however, do not affect the core functionality of the algorithms.

10-2-1 Advanced Maximum Progression - Intersection Protocol (AMP-IP)

AMP-IP is proposed in [21], as a heuristic decentralized conflict resolution protocol where
collisions are detected based on the entry and exit times for a given cell in the intersection.
The cells are created by overlaying a grid on top of the intersection, dividing the intersection
into equally sized cells of a user defined size. If the entry and exit times overlap for a given
cell a priority policy is used to determine to passing order. For increased robustness, a safety
time margin can be used, whose value is based on the vehicle specifications. The time margin
proposed in the paper is 2 seconds.
The protocol relies on communicating the expected entry and exit times for specific cells using
messages, where three types of messages are defined. The “ENTER” message indicates that
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Yes

No
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Figure 10-1: A flowchart summarizing how the fixed AMP-IP messages are handled.

the sender vehicle is approaching the intersection, the “CROSS” message indicates that the
sender is currently crossing the intersection, the “EXIT” message indicates that the sender has
left the intersection. Depending on which message is received, vehicles will check if there is a
conflict between itself and the sender. If a conflict is detecting a passing order is determined
using a priority protocol, the passing order then determines whether a vehicle is allowed to
enter the conflicting cell or not.
The deadlock free proof for AMP-IP relies on the AMP-IP rule: a vehicle A cannot enter the
trajectory of vehicle B if the exit time of A at the conflicting cell is later than the arrival time
of vehicle B. In the perspective of a vehicle wanting to pass, it can be worded as follows.

Definition 10-2.1 (AMP-IP Rule). Vehicle A is allowed to cross the intersection when it
has to yield to vehicle B in cell k if vehicle A can leave cell k before B enters it.

To assess the existence of deadlock there should be the following chain in the yield graph
{A → B,B → C,C → A}, where B can be any chain of vehicles. Given the priority order
P = {C,B,A}, the AMP-IP rule ensures that A can only enter the path of C if it can exit
it before C enters. Consequently, A→ C and C → A cannot both be true at the same time.
The reason being that C → A is only true for the given priority order if A is occupying the
conflicting cell when C is meant to enter it, which goes against the rule that A can only enter
the cell if it can also leave it before C enters. By that reasoning, it is claimed that AMP-IP
is also deadlock free.
Whilst this is indeed correct, it should be noted that the AMP-IP rule used in the code is not
equivalent to the pseudocode and explanation they provide in [21]. The error in judgment lies
in the assumption that the exit time of the conflicting cell solely depends on the arrival time
at the cell and the ego vehicle dynamics. The equation given for the exit time is

TA(A) + εmax < TA(B), (10-1)

where TA is the arrival time at the cell and εmax is the maximum time it can take for the
vehicle to clear the entire cell. This maximum exit time estimate however does not take into
account the fact that the ego vehicle might be prevented from exiting the cell at all due to its
next cell being another conflict cell.
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Figure 10-2: Potential deadlock scenario caused by incorrect exit time estimation. The arrows
indicate intended paths, and the green and red triangles indicate whether AMP-IP allows the
vehicle to enter the next cell or not. On the left is the initial situation that leads to a deadlock,
on the right is the situation when a deadlock, or collision, occurs.

Suppose we have four vehicles with priority order P = {1, 2, 3, 4} in the scenario given in
Figure 10-2. Vehicle 1 and 2 have priority over 3 and 4 which makes them ignore any messages
from 3 and 4. Vehicle 3 receives the CROSS message from 2 and decides to ignore it as
TA(3) + εmax < TA(2) at cell (3,3) (row,column). Vehicle 3 also receives the CROSS message
from vehicle 1 and decides to yield before entering cell (4,3). The same happens for vehicle
4 with respect 1 and 2. On the right of the figure it can be seen what would happen when
the version of AMP-IP proposed in [21] is used: vehicles 3 and 4 are waiting for 1 and 2
respectively to cross the conflicting cells. Meanwhile, vehicles 1 and 2 cannot enter their next
cell, as doing so would cause a collision with 4 and 3 respectively.
In order for AMP-IP to be deadlock free, a better exit time estimate has to be found, which
can take into account the entire system, or the condition for crossing should be stricter. For
example, adding the additional requirement that the lower priority vehicle cannot have another
conflict zone along its path would prevent the deadlock in Figure 10-2 from occurring. This
could potentially be relaxed by taking into account the decisions made for the other conflicts,
however which might not be trivial. As finding the best performing AMP-IP rule is beyond
the scope of this literature review, we will not develop this concept further in this report.
Further evaluation of AMP-IP shall assume the implementation of an added requirement of
having no other conflicts in its path, in order to cross the intersection out of priority order.
The flowchart in Figure 10-1 summarizes the AMP-IP protocol with the added deadlock
detection in order to prevent the situation in Figure 10-2 from occurring.

10-2-2 Timeslot-based Distributed Conflict Resolution (TDCR)

This distributed conflict resolution protocol has been proposed by Liu et al. in [22] utilizing a
heuristic priority function, deadlock detection, and optimization based speed profile planning.
This is also comparable to [58] that utilizes a distributed model predictive control approach for
its control. These methods can also be interpreted as a decentralized variant of the centralized
optimization approaches where the passing order is predetermined, such as in described in
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Figure 10-3: A flowchart summarizing the decision making for TDCR, where checkSptConflict
is a spatial conflict detection algorithm, checkTmpAdv checks the temporal advantages of the
vehicles, checkTie is a checks for a tie, and checkPriority checks for which vehicle has the
highest priority.

Section 3-1-3. The protocol differentiates itself from the previous ones by utilizing deadlock
detection in order to allow a more flexible priority order. Furthermore, it utilizes timeslots,
similar to reservation based systems, which are utilized for its motion planning and control.

The algorithm utilizes two distinct timeslots, a predicted timeslot
(
t̂Ai (·), t̂Ei (·)

)
and a reserved

timeslot
(
tAi (·), tEi (·)

)
. These timeslots are the entry and exit time for a given conflict region,

denoted by Rc ∈ Rc. The conflict regions are used for spatial conflict detection and can
be chosen as needed. The predicted (or estimated) timeslot is obtained from the motion
planning and control part of the algorithm, and is used for the temporal conflict detection
in the algorithm. The conflict resolution algorithm provides a deadlock free priority order
that is used to determine the reserved timeslot from the predicted timeslots. If a vehicle does
not have to yield, it will set its reserved timeslot for all conflict zones to be its predicted
timeslots, with the note that the exit times are undetermined in the implementation in [22].
The reserved timeslot is then used for the local optimal control problem, which in this case is
finding the optimal speed profile for a given vehicle along its path. The protocol will however
also function with other control methods, as long as the timeslot constraint is always satisfied.
The resulting optimal speed profile is then used for the predicted timeslot in the next iteration.
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The protocol utilizes discrete vehicles states (S), these are:

• FIL, first vehicle in any incoming lane.
• IL, other vehicles in an incoming lane.
• I, any vehicle currently crossing the intersection.
• OL, vehicles in an outgoing lane.

The discrete vehicle states are used in three parts of the protocol, the first part being conflict
detection: spatial conflicts are only detected for vehicles with a discrete state of FIL or I.
The discrete state also affects whether a vehicle is said to have a temporal advantage over
another vehicle, and finally it affects whether a vehicle is said to have a tie with another
vehicle. There are 3 possible scenarios in which vehicle i holds a temporal advantage over j:

1. Si = I, Sj = FIL, and ∃Rc ∈ Rc : t̂Ai (Rc) < t̂Ej (Rc). In other words, vehicle i is crossing
the intersection, vehicle j is the first vehicle in the incoming lane, and i enters any
conflict zone before j leaves it.

2. Si = FIL & Sj = I and ∀Rc ∈ Rc : t̂Ei (Rc) < t̂Aj (Rc). In other words, vehicle i is the
first vehicle in the incoming lane, vehicle j is crossing the intersection, and i leaves all
conflict zone before j enters them.

3. Si = Sj = FIL or I, and ∃Rc ∈ Rc : t̂Ai (Rc) < t̂Aj (Rc). In other words, vehicle i has
the same discrete state (S) as j, being either FIL or I, and vehicle i enters any conflict
zone before j does.

Note that, due to the third condition, i holding a temporal advantage over j does not necessarily
exclude j holding a temporal advantage over i. Furthermore the set of vehicles holding a
temporal advantage over vehicle i is denoted as Vi, with j ∈ Vi implying that vehicle j holds
a temporal advantage over i.

A tie in [22] for vehicle i and j, denoted as Tie(i, j) holds when:

1. j ∈ Vi, Si = Sj , and there exists a sequence of vehicles {k1, ..., kN} with k1 = i, kN = j
and Skn = Si, ∀n s.t. kn ∈ Vkn+1 ∀n < N .

2. j ∈ Vi, Si = I, Sj = FIL, and there exists a sequence of vehicles {k1, ..., kN} with
k1 = i, kN = j s.t. kn ∈ Vkn+1 ∀n < N .

An intuitive description for a tie is that Tie(i, j) holds when j holds temporal advantage over
i, but i also holds temporal advantage over j (in)directly. The use of a tie is comparable with
detecting a cycle in a yield graph, which is explored in Section 3-3-3. As the conditions are
not symmetric, Tie(i, j) has no direct effect on Tie(j, i).

It is further assumed that each vehicle has a unique priority score. In the case of a Tie(i, j)
i holds priority over j if P (i) < P (k) ∀k 6= i (Lower score is higher priority) in the Tie(i, j)
sequence. Liu et al. state that this priority score should be such that:

• vehicles in the intersection always have priority over vehicles in the incoming lanes.
• the order determined by priority score should not change over time for vehicles in the

same discrete state.

The conflict resolution utilizing these definitions can be summarized in a flow chart in Figure 10-
3. The flowchart assumes that vehicles communicate through messages directly with each
other without any packet loss or data corruption. Furthermore, the flowchart does not include
the yielding mechanism or the motion planning and control part. Yielding occurs by changing
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the reserved timeslot as follows for i yielding to j:

tAi (Rc) = max
(
tAi (Rc), tEj (Rc) + ε

)
, ∀Rc ∈ Rci,j (10-2)

where ε is an error margin included to account for any inaccurate prediction, and Rc is the set
of all overlapping conflict zones between i and j. The motion planning and control utilized is
a speed profile optimization with the reserved entry time constraints (tAi ) and no exit time
constraints (tAi =∞).

10-3 Benchmarking Tool

In order to compare protocols against each other in CARLA, a common benchmark has to
be used. As no such benchmark is available at the moment of writing, a benchmark has to
be developed25.

The ability of OA-ADMM MPC to resolve conflicts using a priority order is shown in Section 9-
2, to supplement that result, the purpose of the simulations in CARLA is to show the
effectiveness of OA-ADMM MPC compared with other methods in terms of conflict resolution
efficiency. Another purpose of the simulations is to show the application of OA-ADMM MPC
on a more realistic autonomous vehicle, which is significantly more difficult than the simplified
holonomic vehicles given in Section 9-2.

The protocols mentioned in Section 10-2 are mainly aimed at reducing total travel delay,
hence the main comparison metric will be the delay. The benchmark has the following main
requirements and wishes in no particular order:

• Repeatable and consistent results
• Measure protocol performance as per chosen metric
• Modular sub solutions
• Realistic vehicle behavior

These are needed to ensure fair comparisons can be made between the protocols using the
benchmark. The benchmark proposed will be referred to as the Modular Conflict Resolution
(MCR) benchmark.

10-3-1 Environment

The environment of choice for the MCR benchmark is a 4 way intersection, with an incoming
and outgoing lane on each road. This is chosen as it is the most common environment at
which conflicts occur. The intersection used for the benchmark is depicted in Figure 10-4, in
which an unmanaged intersection in a rural environment is shown. As per the definition set in
Section 4-1-1, this intersection is considered a structured environment, because each vehicle
has only one possible path to take.

25The benchmark can be found here: https://github.com/jerryangit/AddedDelayCRBenchmark
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Figure 10-4: The 4 way intersection used for the benchmark in CARLA, with the map being the
included Town07. The intersection depicted is a typical rural unmanaged intersection.

10-3-2 Estimated Delay

In order for the MCR benchmark to provide context for the results, a theoretical estimated
delay is desired. The theoretical estimated delay for a certain case however is difficult to
directly calculate mainly due to the nonlinear nature of the vehicle dynamics, the large
combinatorial passing order problem, and calculating how often and to what degree a conflict
will occur. Because of that, some assumptions have to be made in order to be able to calculate
a usable metric. For that reason, we will investigate the delay when there are two vehicles
arriving at the intersection at once. This allows a direct comparison between the travel time
for certain conflict resolution protocols in an easy to interpret manner. The main metrics will
therefore be travel time and delay, where the delay is measures compared with the no conflict
scenario. The no conflict scenario is simply the case where only one vehicle is traversing the
intersection at once, serving as the minimum time for a certain trajectory.

In order to calculate the delay for a certain conflict, as depicted in Figure 10-5, some further
assumptions are necessary. If we assume that vehicles have a reference velocity, significantly
below their maximum velocity we can assume that vehicles have unbounded velocities near
the reference velocity. In the case that all vehicles have identical reference velocities, a vehicle
following another vehicle taking an identical path will add zero delay to the system. For
that reason, we will not investigate the vehicle follower case; the analysis of this case has no
added value for the comparison of the chosen conflict resolution protocols. Following the zero
delay assumption, the only segment of a trajectory contributing to the delay is the segment
where there is an orthogonal component to the trajectory with respect to the trajectory of the
yielding vehicle. This component is depicted in Figure 10-6, where the orthogonal component
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Figure 10-5: All possible conflicts for a small 4 way intersection with two vehicles. Solid lines
indicate the desired path for the light blue vehicle, whereas the dashed lines indicate possible
paths for the magenta vehicle: conflicting paths are drawn in red.

is called the conflicting component, as this is the portion of the trajectory that contributes
to the conflict delay. The delay caused by this conflicting component can be calculated by
taking the displacement function along this axis and dividing it by the velocity function along
this axis. The estimated added delay ∆t̂ for a single vehicle i which is yielding to j is then

∆t̂yieldi =
syieldi,j

vconj
, (10-3)

where syieldi,j is the conflicting distance, and vconj is the velocity in the direction of the conflicting
component. Equation (10-3) is based on the assumption that the yielding vehicle is aware of
the trajectory of the other vehicle and can adjust its own trajectory optimally26.

For simple paths like two vehicles traveling straight perpendicular to each other, finding the
exact syieldi,j and vconj is a relatively easy calculation. However, as these function are difficult
to derive for a lot of the possible conflicts a sampling based method utilizing linearization can
also be used. If the resolution for the sample is sufficiently high this will have only a marginal
difference with the exact result.

The resulting estimated delay only serves as a benchmark; we would like to stress that this is
neither an upper bound nor a lower bound for the delays for the given scenarios or for conflict
resolution in general. The main benefits of this metric are its relative ease to calculate/estimate

26Optimally in this context refers to minimum delay, actual implementations are likely to consider energy
consumption an important metric as well.
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Figure 10-6: Conflicting component of a trajectory, where i and j are samples for two possible
maneuvers and syield

i,j is the displacement in the orthogonal direction for j.

and its mathematical definition. The mathematical definition allows the metric to serve as a
consistent benchmark regardless of environment and/or simulator, making direct comparisons
of conflict resolution protocol efficiencies easier. The main suggested use for this metric would
be the percentage or ratio between the actual delay and the estimated delay.

10-4 Implementation

The MCR benchmarking tool is written in Python 3.7.9 for CARLA v0.9.9.4, using its
Python API27. The benchmarking tool allows the simulation frequency of CARLA to be set
independently from the vehicles operating frequency, this feature is to ensure realistic physics,
whilst reducing computational load caused by the conflict resolution and vehicle control. In
order to achieve consistent and repeatable results the CARLA server will have to be run at
a fixed time step. It is also possible to utilize the no-rendering-mode in order to disable the
graphical 3D rendering.

For the purpose of debugging and visualization the main view used is a simplified view, which
is derived from the included "no_rendering_mode.py" from the CARLA PythonAPI examples.
The same scenario of Figure 10-4 visualized in this simplified view can be seen in Figure 10-7

10-4-1 Conflict Detection

The main conflict detection algorithm in use will be the grid-based algorithm. The grid-based
algorithm functions by overlaying a grid on top of the intersection with configurable dimensions
and resolution. The conflict are detecting by comparing which cells will be occupied when

27The Python API allows users to access the CARLA simulator through Python programs.
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Figure 10-7: The same 4 way intersection as Figure 10-4 when depicted using a slightly modified
no-rendering-mode view.

traversing the trajectory, if the resolution is too low, the conflict detection can function poorly.
Given that both AMP-IP and TDCR require prior knowledge of the intersection map, which
is not required for OA-ADMM, the effect of this knowledge is analyzed. This is done by
studying the performance of AMP-IP and TDCR using various resolutions. The resolutions
used are defined as: high fidelity, i.e. an 8x8 grid, medium fidelity, i.e. a 4x4 grid, and low
fidelity, i.e. 1x1 grid. All resolutions are centered at the intersection and have a dimension
of 18x18 m. An example of a grid is given in Figure 10-2, which shows a 6x6 grid with a
dimension of around 30x30 m.
Detecting whether a vehicle has entered a grid cell is performed by sampling points along the
corners and edges of the vehicles, with the default amount being 4 samples on each corner
and 10 spread along the edges. When any of the samples first enters a grid cell the vehicle is
deemed to have entered that cell until all samples leave that cell.
The temporal conflict detection simply checks for an overlap in the expected occupancy
timeslots. For the sake of robustness an extra margin is added with the default being ε = 0.25s.
The detection is implemented as the following condition:

conflict if tAi < tEj + ε and tEi > tAj − ε. (10-4)
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10-4-2 Capsule based collision avoidance

In comparison with the simulations performed in Matlab given in Section 9-2-2, the simulations
performed in CARLA are a lot more realistic. When the vehicle is modeled as a double
integrator, a sphere-based collision avoidance model is satisfactory; when considering a more
advanced model, such as the unicycle or bicycle model, as described in Section 2-3-2, this
is no longer ideal. What this means for OA-ADMM MPC and collision avoidance is that it
is not longer acceptable to utilize a simple minimum distance constraint like the one given
in Equation (9-2), as this only measures the distance between two points. The circular
nature of the collision avoidance constraint has a significant downside: in order for a circle to
include the entirety of the vehicle, a significant portion of collision avoidance constraint will
be overestimating the actual dimensions. For that reason a capsule is used instead, where a
capsule can essentially be viewed as a rectangle with a semi-circle placed on both ends.

Delft Center for Systems and Control

Figure 10-8: The difference between the circular hull and the capsular hull for the car.

The advantage of capsule-based collision avoidance is easily visible in Figure 10-8, where the
collision avoidance region is shown for both the circle and the capsule. The capsule shape is
a much better approximation for the vehicle shape than the circle. For the example shown in
Figure 10-8, which assumes that the car is a rectangle with dimensions of 4 m ×1.75 m, the
surface area of the rectangle is 7 m2, whereas the circular hull has a surface area of 14.972 m2,
and the capsular hull has a surface area of 8.971 m2. The overestimated surface of the circular
hull comes down to 54.25 %, which is a majority of the surface area, whereas the overestimated
surface of the capsular hull comes down to 21.97 %, which is a significant improvement over
the circular hull. The uniform nature of the circular hull has another significant disadvantage;
the circular hull extends significantly to its sides, which will lead to constraint violations
for vehicles passing from opposing lanes. This can lead to deadlocks, or significant losses in
efficiency as the circular is not properly representing the shape of the vehicles. In the example
used the dimensions are based on a conventional car, if a bus or a truck is used this difference
is even more extreme.

10-4-2-1 Minimum distance between two capsules

The capsule shape requires two parameters to fully define its shape in 2D space: its length
l, its radius r. With the addition of its rotation θ, its entire position is 2D space is fully
defined. The capsule parameters are depicted in Figure 10-9 for two capsules; alongside the
parameters, three points are also defined: the front point F , the center point C and the rear
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Figure 10-9: Capsule parameters for two capsules and their point definitions.

point R. These points are used to explain how the minimum distance is found between two
capsules and how that minimum distance is further linearized.

The minimum distance between two circles in 2D is easily found by taking the Euclidean
distance between the two center points and taking away the two radii, e.g.

distcir(cir1, cir2) = ‖C1 − C2‖2 − (r1 + r2),

where C1 and C2 are the center points of the two circles cir1 and cir2, and r1 and r2 are
the radii of the two circles. Applying capsule-based collision avoidance is however not as
easy as circle-based collision avoidance; the minimum distance between two capsules cannot
be defined with a single L2-norm. Since a capsule is essentially a line segmented of length
l, inflated with a radius r, the minimum distance between two capsules is identical to the
minimum distance between two line segments minus the two radii.

The minimum distance dmin between two line segments can be found by finding the minimum
distance between a point and a line for each end point (F1, R1, F2, R2) of the two line segments
(−−−→F1R1,

−−−→
F2R2), i.e.

distls(ls1, ls2) = min
(
distpl(F1,

−−−→
F2R2),distpl(R1,

−−−→
F2R2), distpl(F2,

−−−→
F1R1),distpl(R2,

−−−→
F1R1)

)
,

(10-5)
where distls(ls1, ls2) is the minimum distance between the two line segments ls1 and ls2,
and distpl(p1, ls2) is the minimum distance between the point p1 and the line segment ls2.
In Figure 10-10, three cases are shown for finding the minimum distance between a point
and a line segment: Figure 10-10(a) and Figure 10-10(c) show the cases where the minimum
distances is between the point F1 and the ends of the line segment (F2 and R2), Figure 10-10(b)
shows the case where the minimum distance is between the point F1 and the point P2, which
is the perpendicular projection of F1 onto the line segment −−−→F2R2.

In order to find which of the cases shown in Figure 10-10 is applicable a vector projection can
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Figure 10-10: Three essential cases for finding the minimum distance dmin between two capsules,
with the definitions being identical to that of Figure 10-9. In Figure 10-10(a), dmin is the distance
between F1 and F2; in Figure 10-10(b), dmin is the distance between F1 and P2, which is the
perpendicular distance between F1 and −−−→F2R2; in Figure 10-10(c) dmin is the distance between
F1 and F2. The other cases can be achieved by swapping F1 with R1, or by swapping the the
subscripts.

be performed from −−−→F2F1 onto the line segment −−−→F2R2:
−−−→
F2P2 = proj−−−→

F2R2

−−−→
F2F1.

Using this projection we can easily determine which case is relevant by measuring the magni-
tude m of −−−→F2P2 relative to −−−→F2R2, i.e.

m1 =
−−−→
F2F1 ·

−−−→
F2R2

‖−−−→F2R2‖
.

If m1 is negative, then dmin is measured between F1 and F2; if m1 is smaller than 1, then
dmin is measured between F1 and P2; if m1 is larger than 1, then dmin is measured between
F1 and R2. In mathematical form this can be written as

distpl(F1,
−−−→
F2R2) =


‖F1 − F2‖ m1 ≤ 0
‖F1 − P2‖ 0 < m1 < 1
‖F1 −R2‖ m1 ≥ 1,

(10-6)

where F1 is the vector to point F1. The distpl(·) in Equation (10-6) is the equation for the
minimum distance between a single point and a single line segment, this has to be performed
four times in order to get the dmin between two line segments as per Equation (10-5) (distls).

To get the distance between two capsules, the radii of the capsules (r1, r2) should be subtracted
from the distls given in Equation (10-6). The minimum distance between two capsules is
therefore

distcap(cap1, cap2) = distls(ls1, ls2)− (r1 + r2), (10-7)

where cap1 and cap2 are two capsules, and ls1 and ls2 are their corresponding line segments.
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10-4-2-2 Linearized minimum distance between two capsules

The equation for the minimum distance between two capsules is given in Equation (10-
7), which requires Equation (10-6) and Equation (10-5). In order for the capsule-based
collision avoidance to be implemented into OA-ADMM MPC, the function will have to be
linearized. Regardless of which of the three cases from Equation (10-6) is applicable, the
distance function is the Euclidean distance between two points. The function for the Euclidean
distance constraint two points i and j, with a minimum distance Dmin, is distp(pi, pj) ≥ 0,
with distp(pi, pj) being

distp(pi, pj) =
[
p>i p>j

] [ I −I
−I I

] [
pi
pj

]
−D2

min, (10-8)

where pi ∈ R2 is the vector to point i, and I ∈ R2×2 is the identity matrix. To linearize this
function the first order taylor expansion is taken around p̄i and p̄j , i.e.

ldistp(pi, pj) =
[
p̄>i p̄>j

] [ I −I
−I I

] [
p̄i
p̄j

]
+ 2

[
p̄>i p̄>j

] [ I −I
−I I

]([
pi
pj

]
−
[
p̄i
p̄j

])
−D2

min,

(10-9)
where ldistp(pi, pj) stands for the linearized distance between point pi and pj , and p̄i is the
linearization point of pi. In our MPC implementation the state vector only includes the x
and y coordinates of vehicle at its geometric center. Because of that, a transformation has
to be applied to the states in the state vector in order to refer to the relevant point of the
capsule (F,R, or P ), i.e.

pi = ci + vi, (10-10)

where ci is the center of the capsule, and vi is a vector pointing from the center to the relevant
point.

To summarize, the distance function between two capsules is given in Equation (10-7). To
evaluate this function, the distance between the two line segments of the capsules has to
be found. Finding this distance requires the minimum distance from each end point to the
opposing line segment as stated in Equation (10-5), this can be found using Equation (10-6).
The distance between a point and a line segment always results in the distance between two
points, which can be linearized as per Equation (10-9). To implement in MPC, pi and pj
should be written in the form of Equation (10-10). Finally, the resulting equation can be
implemented as a linear inequality constraint, which has the form of Ax ≤ b, in the MPC
quadratic programming problem.

10-4-3 Deadlock Detection

Deadlock detection is currently only utilized by TDCR for its tie detection algorithm. The
implementation utilizes a Breadth first search starting from a specified vehicle exploring the
edges, terminating when all nodes have been explored or a cycle is found. This implementation
is not a general cycle detection algorithm as described in Section 3-3-3 as it only detects whether
a cycle exists between two agents. Additionally the cycle detection requires all vehicles to
share their temporal advantage graph in order for the detection to be completed locally.
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10-4-4 Motion Planning and Control

The motion planning and control is separated into path planning, velocity planning and velocity
control. This separation allows the utilization of the global route planner included with the
CARLA PythonAPI (agents.navigation). The algorithm utilizes A* in combination with
CARLA waypoints in order to generate a path from any point to any other point, with the
waypoints utilizing the OpenDRIVE [128] format for the road information.

The velocity planner decides on a reference velocity which will be fed to the lower level velocity
controller. For AMP-IP a simple car-following algorithm is used, where a desired reference
velocity is maintained unless it results in a collision with another vehicle or in the vehicle
entering the intersection when it should yield. In these cases, the desired velocity is adjusted
based on the current velocity and the distance to the vehicle or zone.

Whilst [22] suggested the use of speed profile planning via temporal optimization for TDCR
[129], it is possible to use any constrained speed profile planner. A common choice for
constrained optimization is an MPC approach, also compatible with the interest in MPC in
the automotive industry [130]. As the goal is velocity planning, the states of the system are
simplified to be x = [s, v]>, u = a, where s is the displacement along the path, v is the velocity
along the path, and a is the acceleration implemented as v[k+ 1] = v[k] +a ·dt which is fed to
the low level velocity controller. The model is a simple discrete integrator system, enhanced
with states for the deviation from the reference velocity; additionally upper and lower bounds
are set for the velocity and acceleration as inequality constraints. The temporal constraints
are implemented as state constraints for a certain time step. For example the entry time
constraint tA(·) > 1.4s with dt = 0.1 and N = 20 is implemented as the inequality constraint
s[14] < sA(·), where s[14] is the first state at time step 14 and sA(·) is the displacement at
which the vehicle enters a certain region. The cost function J is a quadratic cost function
that penalizes control inputs and deviation from the reference velocity.

Due to the nonlinear nature of the vehicle dynamics in CARLA, designing an optimal controller
is difficult. The nonlinear behavior is mainly attributed to two main mechanisms: the nonlinear
engine torque curve, and air, tire, and internal frictions; additionally gear shifting, inertia,
and the steering/velocity curve can further complicate things. To avoid over complicating the
velocity controller, and since the velocity controller is used universally among all protocols, a
PID controller has been used for the velocity control.

10-4-4-1 OA-ADMM Model Predictive Control

The OA-ADMM MPC approach utilizes Model Predictive Control for trajectory optimization,
using a kinematic bicycle model as given in Section 2-3-2. Given the nonlinear nature of the
kinematic model, linearization has to be performed to get reasonable results. We repeat the
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kinematic bicycle model here for convenience:

ẋ = v cos(θ + ψ) (10-11a)
ẏ = v sin(θ + ψ) (10-11b)
v̇ = a (10-11c)

θ̇i = v

lr
sinψ (10-11d)

ψi = tan−1
(

tanφ lr

lr + lf

)
, (10-11e)

Given that the control inputs in CARLA are the throttle and the steering angle the state
vector is x =

[
x, y, v

]>
and the input vector is u =

[
a, φ

]>
. To linearize these, the small

angle approximation around x̄ =
[
x̄, ȳ, v̄

]>
, ū =

[
ā, φ̄

]>
, and ψ̄ = tan−1

(
tan φ̄ lr

lr+lf
)
,is used.

Additionally, a local coordinate system is used, resulting in θ = 0, taking these steps into
account the linearized equations are:

˙̄x = v cos(ψ̄) (10-12a)
˙̄y = v sin(ψ̄) (10-12b)
˙̄v = a (10-12c)

where the equations are linearized around the state vector x̄ and a local coordinate system is
used. The linearized formulation is only accurate near the linearization point, for this reason
adaptive MPC is used. Adaptive MPC linearizes the system at each control step, allowing the
linearized system to maintain accuracy whilst avoiding having to deal with difficult nonlinear
systems. The final step is to discretize the linearized equations, which results in the following
state space matrices:

Ad =

1 0 cos(ψ̄)dt
0 1 sin(ψ̄)dt
0 0 1


Bd =

 0 −φ̄ · dt/2
0 φ̄ · dt/2
dt 0


(10-13)

10-4-5 OA-ADMM Functions

The implementation of OA-ADMM MPC requires the design of two functions, the adaptation
function φ and the similarity function µ. Given that the goal is to achieve safe and robust
conflict resolution the adaptation function is using a similar approach to the function used in
Section 9-1-2. The functions used in CARLA are

φ(·, k)ij =



wiφ
min, if

(
Dmin

distcap(xk
i ,x

k
j )

)a
< φmin

wiφ
max, if

(
Dmin

distcap(xk
i ,x

k
j )

)a
> φmax

wi

(
Dmin

distcap(xk
i ,x

k
j )

)a
, otherwise

(10-14)
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and
φ(·, k)ii = wi

1
Ni

∑
j∈Ni

(
φ(·, k)ij

)a
, (10-15)

which only differs from Equations (9-21) and (9-22) in the used of the capsule based distance
function distcap and the bounded value of φij to improve the robustness. The parameters
used in the simulation are a = 1.75, Dmin = 1.25 · 2capr,φmax = 2 · 1, and φmin = 0.01 · 1,
where capr is the capsule radius and 1 is a vector containing only ones. The minimum bound
serves as a guarantee that ρ > 0, preventing problems related to ill-conditioning in the solver,
the maximum bound serves to limit the possibility for disturbances to destabilize the system.

The similarity function implemented is a simple one, based on the idea that the relevance
of the previous λ is positively correlated to the value of ρ. An intuitive explanation for the
conflict resolution case is to view λ as a penalty by OA-ADMM aiming to enforce the collision
avoidance constraint. When a collision is close to occurring, the value of ρ will be higher
due to the design of the adaptation function φ. In this case, it is desirable that to increase
the penalty λ to enforce the constraint. However, when the system is far from collision, the
relevance of the previous λ is diminished and can result in unnecessary suboptimality. This
simple idea is implemented as follows:

µ(·, k) = ηµ(·, k − 1) + (1− η)min(ρJI
1
wi
,1), (10-16)

where the elements of µ are bounded to be less or equal to one, along with a weighted average
between the current and the previous value of µ. The weighted average is scaled with 0 ≤ η ≤ 1
acting as a simple filter to reduce the effects of disturbances. Also note that µ returns a vector,
allowing the element-wise update of the Lagrange multiplier λ.

10-5 Simulation Results

The simulations are carried out in CARLA using the benchmarking tool described in Section 10-
3. The metrics measured are the total travel time per vehicle for their respective cases, these
are compared against the no conflict case for each respective protocol to get the added delay
caused by each protocol. The no conflict case for each protocol simulates the same amount
of vehicles with the same exact reference velocities, ensured by the identical random seeds,
in order to reduce the effect of the different control approaches. A major difference between
OA-ADMM MPC and the traditional methods of AMP-IP and TDCR lies that OA-ADMM
MPC does not require the map of the environment beforehand. In order to attempt to show
the effects of this prior knowledge, the traditional approaches are simulated for the three
different fidelity cases mentioned in Section 10-4-1. Note that AMP-IP and TDCR have
been tuned to be optimal where possible, except for the prior knowledge. Additionally, these
simulations are focused on the performance of one implementation of OA-ADMM MPC, with
potential changes in adaptation and similarity functions being beyond the scope of this thesis.

All the protocols are tested by spawning vehicles at equal distance to the intersection center
with a reference velocity of 4 m/s, with uniformly distributed variations between −0.15 m/s
and 0.15 m/s. All the possible cases depicted in Figure 10-5, except for the vehicle follower
case, are simulated in threefold and averaged out. The simulator is ran at a frequency of
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Figure 10-11: Comparison of the delay values for the decentralized protocols.

160 Hz, with the vehicles running the protocols at 20 Hz, however, vehicles perform the low
level control at 40 Hz to reduce instability in the low level control.
The average delay for the AMP-IP, TDCR, and OA-ADMM is shown in the form of a bar
figure in Figure 10-11, where AMP-IP and TDCR are shown separately for each of their grid
fidelity cases.

Protocol (case) Average Time (s) Average Delay (s) Average Added Delay
AMP-IP (no conflicts) 17.804 (−) (−)
AMP-IP (low fidelity) 21.806 4.002 3.593
AMP-IP (medium fidelity) 19.346 1.542 1.133
AMP-IP (high fidelity) 19.231 1.427 1.018
TDCR (no conflicts) 17.809 (−) (−)
TDCR (low fidelity) 21.493 3.684 3.275
TDCR (medium fidelity) 19.117 1.307 0.898
TDCR (high fidelity) 18.974 1.165 0.756
OA-ADMM (no conflicts) 18.158 (−) (−)
OA-ADMM 18.960 0.802 0.394

Table 10-1: Summary of AMP-IP, TDCR, and OA-ADMM results for the Carla simulations using
the MCR benchmark. The average delay is measured relative to the no conflict case, the average
added delay is measured against the average estimated delay (0.4089 s) from the benchmark.

The average time and average delay for all the protocols are given in Table 10-1. Each protocol
has its average delay measured against their respective ’no conflict’ cases. The ’no conflict’
cases are unique for each protocol because of their different control methods. The average
added delay is measured against the average estimated delay, which is defined in Section 10-3-2.
The average estimated delay for the tested cases is found to be 0.4089 s using a sampling-based
method.
Compared with AMP-IP, OA-ADMM MPC is found to have a 79.95 %, 47.95 %, and 43.74 %
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decrease in average delay for the low, medium, and high fidelity cases respectively. The
percentage decrease in average added delay regarding the low, medium, and high fidelity cases
for AMP-IP are 89.04 %, 65.25 %, and 61.32 % respectively.

Compared with TDCR, OA-ADMM MPC is found to have a 78.21 %, 38.61 %, and 31.11 %
decrease in average delay for the low, medium, and high fidelity cases respectively. The
percentage decrease in average added delay regarding the low, medium, and high fidelity cases
for AMP-IP are 87.98 %, 56.18 %, and 47.93 % respectively.

L,L L,F L,R F,L F,F F,R R,L R,F R,R
Est. Delay L 0.80 0.80 0.00 0.00 0.72 0.83 0.80 0.75 0.00
Est. Delay F 0.75 0.66 0.00 0.72 0.00 0.00 0.80 0.66 0.96
Est. Delay R 0.00 0.96 0.00 0.83 0.00 0.00 0.00 0.00 0.00
AMP-IP (h) L 1.66 1.55 0.86 1.15 1.40 1.33 1.66 1.92 0.00
AMP-IP (h) F 1.92 0.59 0.00 1.40 0.00 0.00 1.55 0.59 1.01
AMP-IP (h) R 0.00 1.01 0.00 1.33 0.00 0.00 0.86 0.00 0.00
TDCR (h) L 1.26 1.60 1.22 1.31 1.45 0.35 1.26 1.21 0.00
TDCR (h) F 1.21 0.56 0.00 1.45 0.00 0.00 1.60 0.56 0.20
TDCR (h) R 0.00 0.20 0.00 0.35 0.00 0.00 1.22 0.00 0.00
OA-ADMM L 0.71 0.55 0.00 0.02 0.15 0.00 0.71 1.91 0.00
OA-ADMM F 1.91 0.69 0.00 0.15 0.00 0.00 0.55 0.69 0.02
OA-ADMM R 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.01

Table 10-2: Detailed table of AMP-IP, TDCR, and OA-ADMM results for the Carla simulations
using the MCR benchmark, showing the delays for each possible combination depicted in Figure 10-
5 excluding the follower vehicle cases. The protocols along with their respective action is listed in
the leftmost column, e.g. “AMP-IP (h) L” refers to a vehicle (A) making a left turn using the
AMP-IP algorithm with a high fidelity grid map. The column names refer to the actions made by
the other vehicle, e.g. “L,F” refers to a vehicle (B) arriving from the left, going forward (relative
to B). This delay is then referred to as the delay for “AMP-IP (h) L/L,F”, with the conflict case
being referred to as solely “L/L,F”. This specific case is shown in the third row and third column
of Figure 10-5, along with the cases “L/L,R” and “L/L,L”.

A detailed overview of the delays for the protocols is given in Table 10-2, where the delay
for each individual conflict case is given separately. Note that only the high fidelity cases
are shown, the delays for the lower fidelity cases are deemed less relevant for the detailed
comparison as they are always higher than the delays for the high fidelity cases.
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Chapter 11

Discussion

This chapter contains the discussion for the result of OA-ADMM, AMP-IP and TDCR per-
formed using the Modular Conflict Resolution (MCR) benchmark in the CARLA simulations.
The chapter is separated in the following sections: Section 11-1, where the benchmarking
tool is discussed, Section 11-2, which analyzes the application of OA-ADMM MPC to a
more realistic vehicle model, Section 11-3 which compared OA-ADMM MPC against the
AMP-IP method, Section 11-4, which covers the differences in execution and results between
OA-ADMM MPC and TDCR, finally Section 11-5, summarizes the most important points
from the discussion.

11-1 Benchmarking Tool Discussion

The main goal of the benchmark is to provide a consistent and insightful results for the
comparison of decentralized conflict resolution protocols. With a focus on the efficiency of the
conflict resolution, which is measured using the added delay metric. The discussion on the
benchmark is covered in three sections: firstly the metric and its advantages is discussed in
Section 11-1-1; secondly, the implementation of the benchmark and its effects on the results is
discussed in Section 11-1-2; thirdly, the design of the OA-ADMM functions and how to tune
them is discussed in Section 11-1-2-1.

11-1-1 Metric

The purpose of the estimated delay metric is to provide a direct comparison point for the
measured delays, instead of relying on the comparison between protocols. This allows protocols
from various works to be compared directly, even when the works do not compare the same
protocols. Without the estimated delay metric this would not be possible, as a metric such as
the delay compared with the no conflict case is highly dependent on the implementation, such
as the environment, the reference velocities, etc. Since the definition of the estimated delay is
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given as a function of two trajectories, an analytical solution can be found for all cases which
involve two trajectories.

Another benefit of the estimated delay is that it is no longer necessary to perform simulations
of a centralized solution to compare against, when comparing between decentralized solutions.
The main case for decentralized protocols is its use in environments where a centralized
solution is not available, comparing the results against the centralized solution, whose results
are once again dependent on the implementation of the centralized solution, does not serve
as a consistent and insightful metric for decentralized protocols.

11-1-2 Implementation

The implementation of the benchmarking tool in CARLA has vehicles spawning at the inter-
section with equal distance to the intersection center. The vehicles are assigned a random
reference velocity, which results in different arrival times at the intersection and different
contact locations between two trajectories. For that reason, it is possible for vehicles to not
have a conflict in trajectories in some cases. For example, the conflict case depicted in the
top left intersection in Figure 10-5, shows conflicts between a vehicle traveling forward and a
vehicle approaching from its right. When the magenta vehicle is traveling significantly faster
than the blue vehicle, it is possible that no conflict occurs between the two vehicles: the
magenta vehicle will have passed the conflicting part of the path by the time that the blue
vehicle arrives there.

Another part of the benchmark implementation that affects the obtained results is the control
methods of the various protocols. As the AMP-IP protocol suggests a simple algorithm where
vehicles simply stop before a certain area, and otherwise travel at their reference velocity, a
simple PID controller for its velocity is sufficient. The TDCR protocol on the other hand
requires a constrained motion planner to ensure that the time slot constraints are not violated,
this is implemented through a Model Predictive Control velocity planner, which implements
the time slot constraints as a displacement constraint on the planned path. The OA-ADMM
MPC problem is formulated as a general motion planning problem, which results in a Model
Predictive Controller that plans a trajectory which can deviate from the reference path. The
ability to adjust the trajectory of the vehicle can result in a difference in delays, as certain
conflict can be avoided by deviating slightly from the planned paths. One example of this
is the simultaneous left turns from opposing lanes, depicted in the third row, second column
in Figure 10-5. The default planned trajectories given by the A* planner in CARLA has a
minor conflict between these two trajectories, this can only be resolved without invoking a
passing order by adjusting the trajectories. Due to the difference in motion planning and
control solutions, the delays are compared with the no conflict case for their respective motion
planning and control solutions.

The chosen environment of the benchmark is also has a significant effect on the obtained
results. Being a small intersection with narrow lanes provides an environment where deviation
in the trajectories can be difficult to realize. This can result in OA-ADMM MPC obtaining
results which do not properly show the benefit of the ability to adjust trajectories. However,
if the benefit can be shown, it is likely that the benefit will be more significant when the
environment is more spacious.
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11-1-2-1 OA-ADMM functions design and tuning

Given that OA-ADMM introduces two new functions it is important to discuss the approach
used to tune the functions and parameters. Starting with the adaptation function φ, the
intuition behind the designed functions Equation (10-14) and Equation (10-15) is to penalize
the deviation from the collision free copies z as the possibility of collision increases. The goal
therefore is to implement a metric which is represents some form of collision probability. The
easiest solution is to simple implement the ratio between a desired distance between vehicles,
and the actual distance. This function increases as the distance between the samples decreases,
resulting in the ρ increasing for the constraint between those two samples. To give a short
example of how this works in practice we take the following x trajectories:

xi =
[
2, 0, 3, 0

]>
xj =

[
3, 2, 3, 1

]>
,

(11-1)

where the x vectors include the x and y coordinates for the first two samples. Suppose that
the minimum distance constraint Dmin is 2 meters, a possible collision free solution z could
be

zi =
[
2, 0, 3,−0.5

]>
zj =

[
3, 2, 3, 1.5

]>
.

(11-2)

Using the proposed design approach a possible φ can be

φ(xi,xj) = Dmin

dist(xi,xj)
, (11-3)

which results in the following penalty vector:

ρ =
[

2√
5 ,

2√
5 , 2, 2

]>
. (11-4)

The simple adaptation function increases the penalty for deviation from the collision free
trajectories by increasing the step size for the λ update and by increasing the squared L2-
Norm penalty for the x update.
The implementation of OA-ADMM MPC in CARLA also utilizes a parameter a to scale the
distance ratio along with a lower and upper bound for the penalty vector. The parameter a
can be used to decrease the value of the penalty vector for ratios < 1 and increase the value
of the penalty vector for ratios > 1. The lower bound φmin is implemented to prevent dual
infeasibility in the solver due to ill-conditioned problems. The minimum value might not be
necessary depending on the used solver, however if necessary it can be tuned by increasing
its value until the solver no longer results in dual infeasibility or maximum iterations reached.
The upper bound φmax can be used to prevent the time-dependent dynamics from causing
oscillations in the penalty parameter. In the case that the value of ρ is allowed to increase
by a large amount, the result is that λ will be increase significantly the next timestep. As a
result, the next planned trajectory will overcompensate and over prioritize the collision-free
trajectory compared with the reference trajectory. This in turn results in a very small ρ which
causes in the next planned trajectory to over-prioritize the reference trajectory rather than
the collision free trajectory. This is essentially what happens when the step-size of gradient
descent is too large. The upper bound φmax should be tuned by evaluating the oscillations in
ρ and λ, if the oscillations are too large, the bound should be lowered.
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11-2 OA-ADMM MPC Results Discussion

The OA-ADMM MPC strategy has been proposed and evaluated in Chapter 9, showing the
ability for OA-ADMM MPC to achieve priority based conflict resolution in a decentralized
fashion with holonomic vehicles. To contribute to these results the strategy is applied to a
more difficult problem in terms of vehicle dynamics. This is done by applying OA-ADMM
to simulated vehicles in CARLA, where it is compared against the AMP-IP and TDCR
decentralized protocols. These results are focused on the conflict resolution efficiency, and
therefore do not focus on deadlocks. However, given that we have shown that OA-ADMMMPC
is capable of following a priority order, a simple priority based deadlock resolution method can
be applied. Is it also possible that a more directly integrated approach to resolving deadlocks
is possible with OA-ADMM MPC, however that is beyond the scope of this thesis.

The results from the simulations in Section 10-5 show that OA-ADMM MPC can resolve
conflicts without primal constraint violation for non-holonomic vehicles with nonlinear dy-
namics. The use of adaptive-MPC, which linearizes the MPC state matrices at each control
input, reduces the prediction error. However, the prediction error for longer horizons is still
significant, especially when vehicles are to make a turn, where the prediction error can induce
issues in the conflict resolution algorithm. Given that OA-ADMM MPC utilizes the predicted
trajectory from MPC to adjust the trajectories to be collision free, it is important that the
predicted trajectory represents the actual planned trajectory to a certain degree. For example,
a vehicle intending to turn left may not consistently have a predicted trajectory going straight
or turning right, as this will lock the vehicle into resolving the conflict for a trajectory which
it is not intending to follow. Whilst there is no clear requirement for the prediction error, it
is always desirable to reduce it as much as possible. The use of Nonlinear model predictive
control can be a potential solution to this problem. Despite the importance of the prediction
error, the results show that OA-ADMM MPC is able to function with a simple linearized
kinematic bicycle model using adaptive MPC. This shows that OA-ADMM does not require
(close to) perfect prediction to achieve convergence. If it is known to the user that the pre-
diction error will be significant beyond a certain horizon length it is advisable to reduce the
horizon or to take the errors into account in the design of the similarity function.

11-3 OA-ADMM MPC vs AMP-IP Results Discussion

The results from Section 10-5 show a clear performance increase for OA-ADMM compared
with AMP-IP in terms of travel time, delay, and added delays. AMP-IP is a heuristic conflict
resolution method with discrete conflict zones in form of cells in a grid, whereas OA-ADMM
is an MPC-based conflict resolution method, which samples the trajectory on the R2 plane.
The MPC collision avoidance constraint between two samples is comparable to a grid with
infinite resolution. The only prior knowledge required by OA-ADMM MPC is the relative
position of the two vehicles, which can be easily obtained even without communication, and
the predicted trajectories, which is also required for AMP-IP. On the other hand, for AMP-IP
to obtain a resolution similar to that of OA-ADMM MPC, a very high resolution map is
needed of the intersection, which is not reasonable to expect to always be available. In the
case that a map is made with the on-board sensors, a solution must be provided to prevent
disagreements in the map and the cell division of the map.
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Another significant difference between OA-ADMM MPC and AMP-IP is the ability for OA-
ADMM to deviate from the reference trajectory, whereas AMP-IP only can affect the velocity
of the vehicle. If the vehicles plan their trajectory in a way that causes conflicts with many
other trajectories they cannot adjust their trajectories to avoid these conflict, and are instead
forced to simply wait their turn. Meanwhile, OA-ADMM MPC is not constrained to only
adjust its velocity as utilizes MPC for its trajectory optimization. This enables these conflicts
to be resolved without the need for a passing order, enabling faster conflict resolution than
AMP-IP can obtain, even if it has a map of infinite resolution.
The advantages of the MPC-based OA-ADMM approach is easily visible in the conflict
resolution efficiency results found in Section 10-5. In the case that AMP-IP has a low fidelity
map, the average delay is around 4 seconds, which is about five times as high as the average
delay of OA-ADMM, which is around 0.8 seconds. The main reason for this is that the low
fidelity map enables only one vehicle to enter the entire intersection at once, similar to how
a 4-way stop sign functions. This can be seen as the worst case scenario for AMP-IP, with
the exception of a disagreement in maps leading to collisions. When AMP-IP upgrades ot
a medium fidelity map the delay reduces to around 1.5 seconds, which is further reduces to
around 1.4 seconds with a high fidelity map. The substantial reduction in delay between the
low fidelity map and medium fidelity map is entirely the result of the improved resolution of
collision avoidance. The high fidelity is however close to the optimal performance of AMP-IP,
as the delay decrease between the medium fidelity and the high fidelity map is only 7.45 %,
compared with the decrease of 61.47 % between the low and medium fidelity maps. The
remaining difference between AMP-IP and OA-ADMM is likely caused by the ability to
deviate from the reference trajectory and the use of a predictive control method, compared
with the reactive velocity control method employed by AMP-IP.

11-4 OA-ADMM MPC vs TDCR Results Discussion

TDCR can essentially be seen as AMP-IP with a predictive control method, which should
reduce delays by allowing vehicles to adjust their velocities to enter a conflict zone the moment
the previous vehicle is planned to leave it. AMP-IP, conversely, only allows vehicles to start
accelerating the moment the other vehicle has already left the conflict zone. Comparing the
delays for TDCR with the delays from AMP-IP, TDCR decreases the average delay by 7.9 %
for the low fidelity case, 15.2 % for the medium fidelity case, and 18.4% for the high fidelity
case. When looking at the absolute decreases, the decrease is 0.32 s, 0.235 s, and 0.262 s for
the low, medium, and high fidelity cases respectively. This seems to suggest that the absolute
performance improvement caused by the predictive control method is around 0.25 seconds in
terms of the average delay.
Assuming that the high fidelity map achieves most of the improvements in terms of collision
avoidance resolution, it is likely that the reduction in delay between TDCR and OA-ADMM
is mainly caused by the ability to deviate from the reference trajectories. To support this
claim we can investigate the delays found in the detailed overview of conflict cases given in
Table 10-2. The row containing the conflict cases for a right turning vehicle show that there is
essentially no delay for OA-ADMM MPC, with the variance likely due to numerical errors in
the simulation and/or optimization. For the case of TDCR on the other hand, some significant
delays are found for the R/L,F case, the R/F,L case and the R/R,L case. The absence of these
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delays in OA-ADMM MPC can be attributed to the deviation from the reference trajectory,
as this is the major difference between the two approaches. The estimated delays are also
higher than the delays obtained by TDCR and OA-ADMM for the right turning vehicles, this
is likely due to the assumption that vehicles arrive at the conflict point at the same time for
the estimated delay, whereas the benchmark has both vehicles arriving at the intersection at
the same time.

Comparing the delays for the forward traveling vehicle between OA-ADMM and TDCR also
shows that OA-ADMM in general has lower delays, with the exception for the F/L,L case and
the F/L,F case. In these cases OA-ADMM obtained a delay of 1.91 seconds and 0.69 seconds
respectively, whereas TDCR obtained delays of 1.21 seconds and 0.56 seconds respectively. It
is likely that the optimal solution is for one vehicle to adjust its velocity and simply wait its
turn, which TDCR is effective at solving. However, the current implementation of OA-ADMM
MPC has no way to enforce certain vehicles to follow a passing order as this is not easily
defined in the trajectory MPC problem. It is possible to utilize a hybrid between the TDCR
approach and the OA-ADMM approach, in cases where it is known that the optimal solution
involves awaiting a passing order.

When comparing the results for the left turning vehicle, TDCR seems to consistently have
delays of above 1 second, except for two cases: L/F,R and L/R,R. OA-ADMM on the other
hand has only one case with a delay above 1 second: the L/R,F case. Note that the L/R,F
case is identical to the F/L,L case mentioned in the previous paragraph28. Left turns using a
passing order based solution results in significant delays for the system. These delays, however,
can be reduced significantly by allowing vehicles to adjust their trajectories. The cases where
this seems the most applicable are: L/L,F, L/L,R, L/F,L, L/F,F: these cases all show a
decrease in delay of over 1 second for OA-ADMM compared with TDCR.

11-5 Summary

OA-ADMM MPC generally achieves shorter delays than competing standards like AMP-IP
and TDCR. OA-ADMM MPC utilizes MPC based conflict resolution whereas AMP-IP and
TDCR utilize a reservation based conflict resolution method. The differences in delays between
OA-ADMM and AMP-IP suggests that the ability to deviate from trajectories, along with the
MPC based controller, is able to reduce delays significantly, whilst having fewer requirements
in terms of prior knowledge. When analyzing the delays for specific cases between OA-ADMM
and TDCR, the results suggest that the ability to deviate from the reference trajectories is a
major contributor to increase conflict resolution efficiency.

However, the results also indicate that for certain cases, the OA-ADMM MPC method results
in higher delays than TDCR, suggesting that in certain cases enforcing a passing order can
be more beneficial than the MPC based approach utilized by OA-ADMM MPC. It could be
possible to utilize a hybrid of these methods to achieve the best of both worlds.

It is also possible that this issue is the result of the prediction error caused by the linearized
kinematic bicycle model used by the adaptive MPC implementation for OA-ADMM MPC. If
a nonlinear MPC model is used instead, it is possible that this behavior is no longer found.

28L/R,F and F/L,L both refer to the same situation, with the difference being in which vehicle is taken as
the observer.
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Chapter 12

Conclusion

This chapter includes the conclusion of the Online Adaptive Alternating Direction Method
of Multipliers (OA-ADMM), along with its application to decentralized conflict resolution.
The conclusion is separated into three sections, first a general summary of the thesis is given
in Section 12-1; second, the limitations of OA-ADMM and OA-ADMM MPC is given in
Section 12-2; finally, potential future work to solve these limitations is given in Section 12-3.

12-1 Summary

This thesis started by introducing the decentralized conflict resolution problem along with
the problem statement. The necessary background of the Alternating Direction Method
of Multipliers was explored extensively, including the proof of convergence for conventional
ADMM. Afterwards, the application of an adaptive penalty parameter was explored, along with
the application of ADMM to online/real-time problems. On that foundation, the novel Online
Adaptive-ADMM method was proposed, which introduces two novel functions: the adaptation
function φ and the similarity function µ. The adaptation function forms the adaptive part
of OA-ADMM, allowing the framework to adjust the priority of certain constraint depending
on the systems needs. The similarity function is what allows the system to function in a
time-dependent environment, where the optimal value of the Lagrange multiplier will shift
over time. This method is extensively proposed and analyzed, with convergence proven for
time-independent systems. Arguments for online convergence are given and analyzed.

The OA-ADMM method is then combined with MPC to achieve decentralized conflict reso-
lution. This method applies OA-ADMM to the centralized MPC based conflict resolution,
decomposing the problem into two parallelizable optimization problems. This method is
shown to be able to resolve a conflict using a priority based method for holonomic vehicles in a
Matlab simulation. The method was then compared against AMP-IP and TDCR in CARLA
simulations using the Modular Conflict Resolution (MCR) benchmarking tool. These simu-
lations were focused on the applicability of OA-ADMM MPC to the more difficult problem
involving non-holonomic vehicles and nonlinear dynamics. The benchmarking tool is focused
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on the travel delays caused by the conflict resolution, providing a metric for the estimated
delay for the tested conflict cases.
The results indicate that OA-ADMM is able to achieve lower delays for almost all conflict
cases, with three potential reasons. The first being the essentially infinite resolution achieved
by the sample based collision avoidance constraints in MPC compared with the grid based
collision avoidance methods utilized by AMP-IP and TDCR. The second possible reason is
only relevant to AMP-IP, as both OA-ADMM and TDCR use predictive controllers instead
of reactive controllers. The last possible reason is the ability for OA-ADMM to deviate from
the reference trajectories, whereas AMP-IP and TDCR can only vary their velocities. These
three reasons add up to OA-ADMM performing better, whilst having fewer requirements in
terms of prior knowledge.

12-2 Limitations

The major limitations of OA-ADMM is related to the novelty of the approach. Whilst
the convergence is proven for the time-independent case, the method is designed for time-
dependent systems. The inability to prove convergence for time-dependent cases is however
not unique to OA-ADMM, as this is a difficult problem to solve for all real-time optimization
methods. The adaptation and similarity functions of OA-ADMM however do allow the user
to increase the robustness of OA-ADMM, if the functions are designed properly.
Whilst a few examples are provided for the two functions, along with the analysis of their
effects, the exact design of these functions are not fully explored. When the method is applied
to a physical system an adaptation function related to the physical safety can be a decent
approach, however the mathematical aspects of the function design require more research.
The OA-ADMM MPC method proposed in this work is able to efficiently resolve conflicts
using a priority protocol. However, a priority based method still relies on a passing order
based deadlock detection method, which can lead to efficiency reductions in OA-ADMM MPC.
Currently, no deadlock detection or resolution method exists which is closely integrated with
an MPC-based conflict resolution or multi-agent motion planning and collision avoidance
approach.
As OA-ADMM MPC utilizes a predictive model, prediction errors affect the effectiveness
and robustness of the system. The simulations have shown that OA-ADMM MPC is able
to function even with significant prediction errors caused by the linearized bicycle model.
However, the exact bounds necessary to have good results are not known.

12-3 Future Work

Given that OA-ADMM is a novel method, a lot of work can be done to further explore
the proposed adaptation function and similarity function. It is important to set more exact
mathematical requirements and provide more mathematically founded design strategies to
allow the application of OA-ADMM to as of yet unexplored problems.
For OA-ADMM MPC it is important to consider to possibility of a more closely integrated
deadlock detection and resolution method. It is possible that this can be integrated in the
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adaptation function as the adaptation function is what enables OA-ADMM MPC to have
priority based conflict resolution. It is perhaps possible to adapt the values of ρ such when a
potential deadlock is deemed more likely.

Better guarantees and arguments for online convergence of OA-ADMM is needed. Whilst
the method is shown to function through simulations, a challenge for real-time optimization
in general is the lack of mathematical convergence proof. If this can be provided the direct
application of OA-ADMM to more safety critical systems can be considered. As of now,
OA-ADMM should be accompanied by a low level controller with safety guarantees for safety
critical applications.
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Glossary

List of Acronyms

ADMM Alternating Direction Method of Multipliers
AMP-IP Advanced Maximum Progression Intersection Protocol
BFS Breadth-First Search
BSM Basic Safety Message
C-V2X Cellular Vehicle to Everything
CAM Cooperative Awareness Message
CFS Convex Feasible Set
DFS Depth-First Search
DRS Douglas-Rachdord splitting
DSRC Dedicated Short-Range Communication
FCFS First Come First Serve
HGCS Hypothetical Generic Communication Standard
ITS-G5 Intelligent Transport Systems-G5
O-ADMM Online Alternating Direction Method of Multipliers
OA-ADMM Online Adaptive Alternating Direction Method of Multipliers
LICP Look-ahead Intersection Control Policy
MCR Modular Conflict Resolution
SQP Sequential Quadratic Programming
TDCR Timeslot-based Distributed Conflict Resolution
V2D Vehicle to Device
V2G Vehicle to Grid
V2I Vehicle to Infrastructure
V2N Vehicle to Network
V2P Vehicle to Pedestrian
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150 Glossary

V2V Vehicle to Vehicle
V2X Vehicle to Everything
VIN Vehicle Identification Number
WAVE Wireless Access in Vehicular Environments
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