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Abstract—In this paper, a distributed optimal power flow 

(OPF) for the AC/DC hybrid grid, composed of the AC grid, 

renewable energy system (RES), and voltage source converter 

(VSC)-based multi-terminal DC (MTDC) grid, is presented. 

Firstly, we apply a series of linear approximations/convex 

relaxations to construct a mixed-integer convex AC/DC OPF 

model. To address the uncertainties from RESs, we then 

illustrate scenario-oriented decision making for the constructed 

AC/DC OPF model. Additionally, we verify that considering all 

possible scenarios can be replaced by a small set of extreme 

scenarios if the OPF model is (mixed-integer) convex. 

Furthermore, we develop a scenario-oriented multi-cut 

generalized Benders decomposition to achieve more efficient 

distributed problem solving for the constructed AC/DC OPF 

model. Finally, numerical results are provided to validate the 

effectiveness of our constructed AC/DC OPF model and our 

developed distributed problem-solving approach. 

Keywords—AC/DC hybrid grid, optimal power flow, extreme 

scenarios, generalized Benders decomposition. 

I. INTRODUCTION 

A. Background 

The utilization of multi-terminal DC (MTDC) grids, 
comprising voltage-source converters (VSCs), has emerged as 
a promising solution for efficiently transmitting substantial 
power generated by renewable energy systems (RESs) to the 
remote AC grid. As a powerful tool, the optimal power flow 
(OPF) technique offers many advantages for the safe and 
economical operation of such AC/DC hybrid grids [1]. 
However, the application of OPF models still encounters 
numerous challenges. A prominent one of these challenges is 
that archival centralized optimization is unsuitable for hybrid 
grids involving multiple entities. Hence, it is unsurprising that 
many studies have focused on distributed optimization [2-5].  

In terms of model accuracy, there is no doubt that 
nonconvex OPF models based on the well-known nonlinear 
power flow equations are the most preferred. However, 
nonconvex models cannot guarantee the rigorous convergence 
for some widely used distributed optimization algorithms [2-
3]. In recent times, groundbreaking work has been laid in [4]. 
The augmented Lagrangian alternating direction inexact 
Newton (ALADIN) method is utilized for the generalized 
nonconvex AC OPF model. Subsequently, [5] extends the 
application of ALADIN to the nonconvex AC/DC OPF model. 
Although ALADIN excels in distributedly solving nonconvex 
optimization problems, its scalability is relatively limited as it 
cannot handle integer variables, which are inevitably 
introduced in the AC/DC OPF model to account for unit 
commitment and topology reconfiguration in the AC/DC grid 
[6]. 

Many studies have investigated various linear 
approximations and convex relaxations of the power flow 
equations in AC and DC grids [7-9]. With the help of these 
techniques, the (mixed-integer)convex AC/DC OPF model is 
formulated. In this case, popular distributed optimization 
algorithms, like the alternating direction method of multipliers 
(ADMM) (for convex programming) [2] or generalized 
Benders decomposition (GBD) (for mixed-integer convex 
programming) [3], can be adopted. Although feasible 
solutions are presented in the literature mentioned above, the 
model-building and problem-solving aspects of the distributed 
AC/DC OPF problem still need improvement in terms of 
scalability, handling uncertainties, and considering the 
influence of local control behavior of VSCs. 

B.  Main Contributions 

Our work on the distributed AC/DC OPF for the hybrid grid 
is motivated by two key questions: i) How to consider the 
influences of uncertainties from RESs and the droop control 
of VSCs? ii) How can we enhance the performance of the 
selected distributed optimization approach? Our main 
contributions are listed below. 
 This work constructs a specific mixed-integer convex 
AC/DC OPF model to formulate the steady-state behavior of 
the hybrid AC/DC grid. Besides, the impact of the VSC droop 
control on OPF decision making is explicitly formulated. 
 This work converts the constructed AC/DC OPF model 
from the conventional deterministic formulation to the 
scenario-oriented formulation, addressing the uncertainties 
from RESs. Further, we mitigate the computational burden by 
considering the few extreme scenarios replacing massive 
possible scenarios, and demonstrate that this approach applies 
well to convex optimization problems. 
 We select GBD to solve the scenario-oriented AC/DC 
OPF model (considering that integer variables are involved) 
and modify the cut-returning procedure in the traditional GBD 
by partitioning slave problems according to the system types 
(AC grid or RES) and extreme scenarios. Then, we utilize the 
multi-cut generation technique [10] to enable parallel 
computation among the AC grid and RESs while enhancing 
the convergence rate. 

The paper begins with the AC/DC OPF mathematical 
formulation in Section II. Then, scenario-oriented decision 
making is introduced in Section III, and GBD-based 
distributed problem solving is presented in Section IV. 
Numerical studies are presented and discussed in Section V, 
followed by the conclusion drawn in Section VI. 

II. MIXED-INTEGER CONVEX AC/DC OPF MODEL 

A. Linear Constraints for the AC Grid 

The nonlinear AC grid power flow on a branch (�, �) can 
be linearized by the successive linear approximation [9]: 

This work was supported by CRESYM project Harmony 
(https://cresym.eu/harmony/). 
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Fig. 1.  Equivalent impedance model of the VSC station. 

��� = 
���� − 
��
,� ������ − ���
,����� − ���,�� + 
��
,� ���,��
� , (1a) 

��� = ����,� ������ −����� − 
���,����� − ���,�� − ����,� ���,��
� , (1b)  ∀� ∈  !" , ∀(�, �) ∈ #!"  

where  !"  and #!"  are used to denote the node and branch 

sets for the AC grid. 
��
,� , ���
,�, 
���,�, ����,�, ���,�, $��,%&  are the 

determined parameters associated with the initial power flow 
points. 
��/��� is the conductance/susceptance. ��, the square 

of the nodal voltage $�, treated as an independent variable, 
enables the branch active/reactive power flow ���/���  with 

linear expression. More details can be found in [9]. 

According to (1), (2) representing nodal power injection on 
node � can be derived, such that: �� = ∑ ��� + �� ∑ *���(�,�) ,                     (2a) �� = ∑ ��� − �� ∑ +�� ,�(�,�)                      (2b) �� = ��, − ��- − ��!�. , �� = ��, − ��- − ��!�. ,         (2c) ∀� ∈  !" , ∀(�, �) ∈ #!"  
where *��/+��  is the real/imaginary part of /��  in the 

admittance matrix. ��,/��,  (resp. ��-/��- ) represents the 
active/reactive power produced (resp. power consumed) by 

generators (resp. demands). ��!�./��!�. represents the 
active/reactive power transmitted from the AC grid to the 
VSC station. Nodal active power injection ��  (resp. reactive 

power injection �� ) is contributed by ��, , ��- , ��!�.  (resp. ��, , ��-, ��!�.) . If node �  is not connected to the generator 

(resp. the VSC station), then ��, = 0, ��, = 0 (resp. ��!�. =0, ��!�. = 0). 

The remaining operational constraints are: 

 −1�� ≤ cos 6789:; ��� + sin 6789:; ��� ≤ 1�� , (3a) 

 −1�, ≤ cos 6789:; ��, + sin 6789:; ��, ≤ 1�, , (3b) 

 �� ≤ �� ≤ �� , (3c)  ∀� ∈  !" , ∀(�, �) ∈ #!" , ∀> ∈ ?1, ⋯ , 97B 
where we use ∗/∗  to represent the lower/upper bound of 
variables. (3a) is the linearized constraint to approximate the 

nonlinear equation that 0 ≤ 1��� = ���� + ���� ≤ 1̅��� . The 

apparent power 1��  following the branch is constrained by 

using an N-vertex polygon approximation and defining a 
polyhedral norm [11]. Similarly, (3b) is the approximated 
linearized constraint that is used to constrain the apparent 

power 1�,  produced by the generator. (3c) regulates the 
allowable range of the squared nodal voltage ��. 
B. Linear Constraints for the RES 

RES E  is simplified to a PQ node, which satisfies the 
constraint below: −1FG ≤ cos 6789:; �FG + sin 6789:; �FG ≤ 1FG , 0 ≤ �FG ≤ �FG, (4a) 

�FG = �FG�. , �FG + �FHII = �FG�. ,             (4b) ∀E ∈ ?1, ⋯ , 9FB, ∀> ∈ ?1, ⋯ , 97B 

where �FG , �FG, 1FG  represent the active, reactive, and apparent 

power produced by the RES. (4a) regulates that �FG , �FG shou- 
1SOC relaxation [8] can also be an option to handle (1). However, commonly 
used off-the-shelf optimizers possibly fail to provide the high-fidelity 
extraction of duals for SOCP problem (https://github.com/jump-
dev/Gurobi.jl/issues/415), which would affects the GBD iteration procedure.  

ld not exceed the RES-rated capacity 1FG . �FG  should not 

exceed the available maximum power �FG that are affected by 

natural factors like solar radiance and wind speed. �FG�./�FG�. 
represents the active/reactive power transmitted from the 
RES to the VSC station. In this study, the RES is considered 
to operate in the grid-connected mode, thus we have (4b), and �FHII  is the additional reactive power provided by var 
compensation devices (e.g., STATCOM) installed at the RES. 

C. Convex Constraints for the MTDC Grid 

The nonlinear DC grid power flow can be handled by SOC 
relaxation [7]: 

 �� = ∑ ���(�,�) , ��� + ��� = J��E�� , (5a) 

 �� − �� = J������ − ����,  ���� ≤ E����, (5b) �� = −��K�. , �� = −��K�. ,                      (5c) 

 �� ≤ �� ≤ �� , (5d) ∀� ∈  KL-" , ∀(�, �) ∈ #KL-"  
where  KL-"  and #KL-"  are used to denote the node and 
branch sets for the MTDC grid. E��  represents the squared 

branch current ��� . (5a)-(5b) forms SOC relaxation of DC 

power flow by relaxing the inherent equation that ��� = ���$� . 
(5c) specify the nodal power injection. ��K�./��K�.  denote 
the active/reactive power transmitted from the MTDC grid to 
the VSC station. (5d) regulates the allowable range of the 
squared nodal voltage ��. 
D. Mixed-Integer Convex Constraints for the VSC Station 

The nonlinear AC power flow on the AC side of the VSC 
station (i.e. from the PCC bus to the AC terminal, as depicted 
in Fig. 1) can be handled by SOC relaxation1 [8]: 

 �� = M��*�� + ∑ �M��*�� − 1��+���,(�,�)  (6a) 

 �� = −M��+�� − ∑ �M��+�� + 1��*���,(�,�)  (6b) 

 M�� = M�� , 1�� = −1�� , M��� + 1��� ≤ M��M�� , (6c) 

 M�� = ��, �� ≤ �� ≤ �� , (6d) ∀� ∈  .N" , ∀(�, �) ∈ #.N"  
where  .N"  and #.N"  are used to denote the node and branch 
sets for the VSC staton AC side. In (6), M�� , M�� , 1��  are the 

introduced variables that have links with the squared nodal 

voltage ��. Given that ��: = P��+Q��, then we have that �� =M�� : = P�� + Q��, M�� : = P�P� + Q�Q�, 1�� : = P�Q� − P�Q� . SOC 

relaxation of AC power flow is formed by relaxing the 

instructive equation that M��� + 1��� = M��M�� . Besides, �� , �� for 

the VSC station can be specifically expressed as: 

 �& = ��!�. ∨ �& = ��G�. ,  �T = 0,  �U = ��K�. − ��FV&& ,(7a) 

 �& = ��!�. ∨ �& = ��G�. ,  �T = �T�T ,  �U = ��K�. , (7b) ∀� ∈  !" , ?1, Q, MB ∈  .N" , ∀� ∈  KL-"  

where we use ∨ to represent the concept either. ��FV&& is the 

power loss inside the VSC station. 

To better explain how to formulate voltage and power 
couplings between VSC AC and DC terminals, we first give 
the original nonlinear formulation, such that: 

 $U = W$� , 0 ≤ W ≤ W, �U + �� + ��FV&& = 0, (8a) 

 ��FV&& = XYU�U� + X�U�U + XZU , (8b) 

 �U = [(�U� + �U�) $U�⁄ , 0 ≤ �U ≤ �U ,            (8c) M ∈  .N" , ∀� ∈  KL-"  
where (8a) indicates the voltage and power couplings 
between the AC and DC terminals. W denotes the amplitude 
modulation factor of PWM. (8b) and (8c) indicate that the 
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Fig . 2.  Illustration regarding scenario-oriented decision making. 

power loss inside the VSC station is a quadratic function with 
respect to �U , which is the magnitude of current fflowing 
through the VSC station. XYU/X�U/XZU  is the 
quadratic/linear/constant loss coefficient. 

We take three key steps to handle (8): (i) �U takes the place 
of $U to express the nodal voltage to be compatible with the 
SOC relaxed power flow constraint (6). (ii) The quadratic 
term �U� is handled by bivariate quadratic relaxation [12]. (iii) 

The nonlinear equation �U = [(�U� + �U�) $U�⁄  is handled by 
SOC relaxation. Consequently, we have the following mixed-
integer convex constraints: 

 �U ≤ �W����, �U + �� + ��FV&& = 0, (9a) 

 ��FV&& = XYUEU + X�U�U + XZU , (9b) 

 EU ≥ ∑ �U,^�� , EU ≤ ∑ ?�U,^�U,^ +^ �U,^�U,^ − �U,^�U,^�^B, (9c) 

 ∑ �^^ = 1, ∑ �U,^ = �U^ , �U,^�^ ≤ �U,^ ≤ �U,^�^ , (9d) 

 �U,^ = �_(^`Y)9a , �U,^ = �_9̂a , (9e) 

M ∈  .N" , ∀� ∈  KL-" , ∀� ∈ b1, ⋯ , 9̂ c 

where (9a)-(9b) correspond to step (i), (9c)-(9e) correspond 
to step (ii), and (9f) corresponds to step (iii). A total of 9̂  

subranges are divided. �U,^ denotes the variable within the �th 

subrange [�U,^ , �U,^] , and the binary variable �^ ∈ ?0,1B  is 

used to denote the status of each subrange, whether it is 
enabled (binary-1) or disabled (binary-0). (9c)-(9e) provide a 
tight convex envelope to approximate that EU ≔ �U�. 

Furthermore, we consider the impact of VSC droop control 
on OPF decision making. Particularly, V2-P droop control is 
considered here [13], and the function can be expressed as: 

 �� = g�Ihi��� − ��hjT� + ��hjT , (10a) 

 g�Ihi ≤ g�Ihi ≤ 0, �� ≤ ��hjT ≤ �� , (10b) ∀� ∈  KL-"  

where ��hjT , ��hjT
 denote voltage and power references in the 

droop control function. g�Ihi
 is the droop slope. 

To improve droop control performance, the droop control 

parameters ��hjT , ��hjT , g�Ihi
 are regarded as optimization 

variables. In this way, bilinear terms g�Ihi��  and g�Ihi��hjT
 

are involved. We handle them using McCormick evenlope, 

e.g., k� ≔ g�Ihi�� can be approximated as: 

 k� ≥ g�Ihi ∙ �� + �� ∙ g�Ihi − g�Ihi ∙ �� , (11a) 

 k� ≥ 0 ∙ �� + �� ∙ g�Ihi − 0 ∙ ��, (11b) 

 k� ≤ g�Ihi ∙ �� + �� ∙ g�Ihi − g�Ihi ∙ ��, (11c) 

 k� ≤ 0 ∙ �� + �� ∙ g�Ihi − 0 ∙ �� . (11d) 

Besides, k�hjT ≔ g�Ihi��hjT
 can be approximated with a set of 

constraints that are similar to (11). Eventually, (10a) is 
rewritten as a linear equation, such that: 

 �� − ��hjT = k� − k�hjT . (12) 

E. Quadratic Optimization Objective for the AC/VSC-
MTDC Hybrid Power System 

Regarding the optimization objective, we consider 
minimizing the generation costs and the total power losses 
(including AC line losses, DC line losses, and converter 
losses), such that:  

m�> n∑ ?MY�(��,)� + M����, + MZ�B�opppppppqpppppppr
P>PJXs�t> Mt1s1 +∑ ?��, − ��-B + ∑ �FGF�opppppqppppprstsXE �tuPJ Et11P1 v,   
 ∀� ∈  !" , ∀E ∈ ?1, ⋯ , 9FB (13) 

where the generation cost is a quadratic function with respect 

to ��, . MY�/M��/ MZ�  is the quadratic/linear/constant cost 
coefficient. Total power losses can be calculated by 
subtracting load demands from power generation. 

III. SCENARIO-ORIENTED DECISION MAKING 

The OPF problem formulated in (1)-(12) is deterministic 
(abbrev. D-OPF). The effectiveness of D-OPF is affected by: 

(i) Uncertain �FG  related to the RES. (ii) Droop control 

influences related to VSC. Due to these reasons, D-OPF 
cannot fully reflect the operational status of the AC/DC 
hybrid power grid. In this regard, the concept of possible 
scenarios is introduced, and a scenario-oriented OPF (abbrev. 
S-OPF) model is formulated as below: 

 
m�> ∑ w(x)(y(x), z, {(x))x1. s. |(x)�y(x), z, {(x)� ≤ 0, }(x)�y(x), z, {(x)� = 0, (14) 

∀x ∈ ~ 
where we use ∗(x) to represent the variable in the possible 

scenario x. ~ denote the set that covers all possible scenario x . y(x)  refers to �FG  which is regarded as the uncertain 

variable. z, {(x) are decision variable vectors. z refers to the 

droop control parameters k�hjT , ��hjT , ��hjT , g�Ihi
 and they 

keep fixed among different scenario x. {(x) are the remaining 

decision variables that respond to possible scenario changes. 
We can see that z is crucial and needs to be decided before {(x) since it cannot be adjusted when encountering different 

possible scenarios. As indicated in (14), to guarantee the 
existence of feasible {(x) , an intuitive way is to list the 

constraints rrelatedto all possible scenarios, but it is evidently 
mass computation. Fortunately, if the S-OPF problem is 
convex, considering extreme scenarios ℯ is sufficient, which 
will significantly reduce the computation cost, and (14) can 
be reduced to: m�> ∑ w(ℯ)(y(ℯ), z, {(ℯ))ℯ1. s. |(ℯ)�y(ℯ), z, {(ℯ)� ≤ 0, }(ℯ)�y(ℯ), z, {(ℯ)� = 0, (15) 

∀ℯ ∈ � ⊆ ~ 
where we use ∗(ℯ) to represent the variable in the extreme 

scenario ℯ. � denote the set that covers all possible scenario  ℯ. More specifically, assuming a fluctuation range of y(x) is [y, y], the extreme scenario refer that y(ℯ): = y ∨ y.  

We provide the illustration in Fig. 2 and give the proof 
[14]-[15]. Given that ∑ Jj = 1,ℯ Jj ≥ 0 , we can know that 
arbitrary y(x)  can be expressed as y(x) = ∑ Jjy(ℯ)ℯ . Review 

(1)-(12), constraints in (15) can be further expressed as : 

}(ℯ)�y(ℯ), z, {(ℯ)� ≔ ��y(ℯ) + ��z + ��{(ℯ) = 0,   (16a) |H(ℯ)�y(ℯ), z, {(ℯ)� ≔ �,�(ℯ) + �,z + �,{(ℯ) ≤ 0, (16b)

 |�(ℯ)�y(ℯ), z, {(ℯ)� ≔ �� ∘ �y(ℯ), z, {(ℯ)�⊺�� −
                                                  ��y(ℯ), z, {(ℯ)�⊺ ≤ 0,            (16c) 
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Fig. 3.  Test system of the AC/DC hybrid grid. 

where ��/, , ��/, , ��/, , �, � are the coefficient matrix. (16a) 

and (16b) corresponds to linear equality constraints and 
inequality constraints, respectively. (16c) corresponds to 
SOC relaxed convex constraints. 

Further, we can deduce the following relationship based on 
the linear rules: 

 0 = ∑ bJj}(ℯ)�y(ℯ), z, {(ℯ)�cj =}(ℯ)�∑ Jjy(ℯ)ℯ , z, ∑ Jj{(ℯ)ℯ � ⇒ }(x)�y(x), z, {(x)� = 0,  (17a) 

 0 ≥ ∑ bJj|H(ℯ)�y(ℯ), z, {(ℯ)�cj = |H(ℯ)�∑ Jjy(ℯ)ℯ , z, ∑ Jj{(ℯ)ℯ � ⇒ |H(x)�y(x), z, {(x)� ≤ 0 (17b) 

here (17) indicates that if linear constraints in all extreme 
scenarios ℯ hold, then they, in all possible scenarios x hold. 

Besides, according to Jensen's inequality, we have that: 

 |�(ℯ)�∑ Jjy(ℯ)ℯ , z, ∑ Jj{(ℯ)ℯ � ≤∑ Jjj |�(ℯ)�y(ℯ), z, {(ℯ)� ≤ 0 ⇒ |�(x)�y(x), z, {(x)� ≤ 0 (18) 

here (18) indicates that if SOC constraints in all extreme 
scenarios ℯ hold, then they, in all possible scenarios x hold. 

IV. GBD-BASED DISTRIBUTED PROBLEM SOLVING 

We use GBD to solve (15) in a distributed manner. (15) 
can be reformulated as the combination of one master 
problem (MP) and several slave problems (SPs), such that: m�> ∑ w(ℯ)K
�z, �(j)K
 , �(j)K
�ℯ + ∑ ∑ w�(ℯ)N
 �y�(ℯ), ��(j)N
 , ��(j)N
 �ℯ�

1. s.
⎩⎪⎪
⎨
⎪⎪⎧

|(ℯ)K
�z, �(j)K
� ≤ 0, }(ℯ)K
�z, �(j)K
� = 0opppppppppppqpppppppppppr�7Ijij7Ij7� UV7&�H�7�& �7 K
|�(ℯ)N
 �y�(ℯ), ��(j)N
 � ≤ 0, }�(ℯ)N
 �y�(ℯ), ��(j)N
 � = 0oppppppppppppppqppppppppppppppr�7Ijij7Ij7� UV7&�hH�7�& �7 N
 �}�(ℯ)"
 ��(j)K
 , ��(j)N
 � = 0oppppppqpppppprUV�iF�7� UV7&�hH�7�& �j��jj7 K
 H7I N
 �

,  

(19) ∀ℯ ∈ ℰ ⊆ �, ∀g ∈ ?1, ⋯ , 9�B 
where we use ∗K
  to represent the objective, constraints, 

variables in MP and ∗�N
 to represent objectives, constraints, 
and variables in the SP k. MP is associated with the VSC-
MTDC and SPs are associated with the AC systems (refers to 

the AC grid or RESs). �  (refers to k�hjT , ��hjT , ��hjT , g�Ihi
) 

only appear in MP and �(j) (refers to �F,(j)G
) only appear in 

SPs. {(ℯ) splits into the independent �(ℯ) and coupled �(ℯ). 
GBD begins with solving SPs. Notice that: (i) There are no 

coupling constraints between arbitrary SP i and SP j, as the 
interconnection of any two AC systems is only via VSC-
MTDC. (ii) There are no coupling constraints between 
arbitrary extreme scenario a and extreme scenario b, as SPs 
do not contain the fixed decision variables z. In this case, 

solving m�> ∑ ∑ w�(ℯ)N
 �y�(ℯ), ��(j)N
 , ��(j)N
 �ℯ� equivalent to 

solving ∑ ∑ m�> w�(ℯ)N
 �y�(ℯ), ��(j)N
 , ��(j)N
 �ℯ� . Each original 

SP k in the extreme scenario ℯ can be solved in parallel: �J�
>XE �� ↦ m�> w�(ℯ)N
 �y�(ℯ), ��(j)N
 , ��(j)N
 �  1. s. |�(ℯ)N
 �y�(ℯ), ��(j)N
 � ≤ 0, }�(ℯ)N
 �y�(ℯ), ��(j)N
 � = 0 

 }�(ℯ)"
 6� (j)K
[�], ��(j)N
 ; = 0 | ¢�(j), (20) 

where we use ∗ [�] to represent the determined variable value 
at the  $th iteration in the GBD procedure. ¢�(j) is the dual 

multipliers corresponding to constraints }�(ℯ)"
 = 0 . The 

upper bound (�� ) of (19) is provided by (20). If (20) is 
infeasible, a relaxed SP is formed and will be solved: £PEX�P¤ �� ↦ m�> ¥¦�(j)¥Y + ¥§�(j)¥Y  1. s. |�(ℯ)N
 �y�(ℯ), ��(j)N
 � ≤ 0, }�(ℯ)N
 �y�(ℯ), ��(j)N
 � = 0 

 }�(ℯ)"
 6� (j)K
[�], ��(j)N
 ;−¦�(j) ≤ 0 | ¨�(j)©   

 −}�(ℯ)"
 6� (j)K
[�], ��(j)N
 ; − §�(j) ≤ 0 | ¨�(j)ª  (21) ¦�(j) ≽ 0, §�(j) ≽ 0, 
where ¦�(j), §�(j)  are vectors composed of small positive 

numbers and utilized to relax }�(ℯ)"
 = 0. ¨�(j)© , ¨�(j)ª  are the 

dual multipliers of constraints }�(ℯ)"
 −¦�(j) ≤ 0, −}�(ℯ)"
 −§�(j) ≤ 0. Conventionally, if one SP is infeasible, all SPs 

will be reformulated, i.e., uni-cut GBD (standard GBD 
version). This approach implies that solving SPs are not 
mutually independent. Considering this issue, the multi-cut 
generation technique is employed [10], and multi-cut GBD is 
formed. In this way, each SP will independently return a 
linear Benders cut to MP, such that: 

¬�(j) ≥ ℒ®�(j)[�] + 6∇�(°)±²ℒ�(j);⊺ 6�(j)K
 − �³ (j)K
[�]; 

+ 6∇�(°)±²ℒ�(j);⊺ 6�(j)K
 − � (j)K
[�];,                      (22a) 

0 ≥ ℋµ�(j)[�] + 6∇�(°)±²ℋ�(j);⊺ 6�(j)K
 − � (j)K
[�];,         (22b) 

 ℒ�(j) ≔ w(ℯ)K
 + w�(j)N
 + ¢�(j)⊺ }�(ℯ)"
 , (22c) 
 ℋ�(j) ≔ ¨�(j)©⊺ }�(ℯ)"
 − ¨�(j)ª⊺ }�(ℯ)"
 , (22d) 

where (22a) is called the optimality cut, generated from (20) 
and (22b) is called the feasibility cut, generated from (21). 

Consequently, MP is formulated as below and provides the 
lower bound (E�): 

 ¶� ↦ min ∑ ∑ ¬�(j)ℯ� , 1. s. (22X), (22�), (23) 

Distributed problem solving for (15) is achieved by 
alternatively solving (20)(or (21)) and (23), until |E� − ��| |E�| ≤ sℎJ.⁄ . It can be summarized that the division 
of SPs considers extreme scenario split and the cut generation 
is multiple at each iteration. Hence, we name this approach 
as scenario-oriented multi-cut GBD (S-M-GBD). 

V. NUMERICAL EXPERIMENTS 

We use the test system shown in Fig. 3 containing one 5-
node AC grid, one 4-node VSC-MTDC grid, and two RESs. 
The base power and voltage of the test system are assumed to 
be 100MVA and 345kV, respectively. OPF problem is 
computed in per unit value. Key variable bounds are set as ���, ��� = [0.95, 1.05]p. u., ∀� ∈  !" ⋃ .N"⋃ KL-" . 1�, =1p. u, 1�� = 1p. u, ∀� ∈  !" , ∀(�, �) ∈ #!" . �U = 1p. u.,M ∈   .N" . g�Ihi = −1, ∀� ∈  KL-" . W = 1 . For fair 

performance comparison among GBD, M-GBD, and S-M-
GBD, we initialize coupled voltage and power in these 
approaches to be consistent, as 1 and 0. sℎJ.  and the 
maximum iteration number are set to 1e-3 and 50, 
respectively. The case study is coded on MATLAB platform. 

YALMIP toolbox is utilized to provide the mathematic 

programming modeling environment. CPLEX solver is 
invoked for solving the involved (mixed-integer)convex pro- 
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Fig. 4.  Comparison of the calculated system-wide voltage profiles (solved 
via centralized optimization). 

 
Fig. 5.  Iteration process of M-GBD and S-M-GBD. M-GBD does not 
consider extreme scenario split when forming SPs. 

TABLE I.  OPTIMIZATION OBJECTIVE IN POSSIBLE SCENARIOS 

Conventional decision making 
Scenario-oriented decision 

making 

Expected/Worst Feasible num. Expected/Worst  Feasible num. 
1.4115/1.5370 7 1.5082/1.8423 50 

 The expected objective value is calculated based on (�YG, ��G) =(0.5,0.5)p. u.. k�hjT , ��hjT , ��hjT , g�Ihi
 are kept fixed and brought into the OPF 

models with different scenarios to examine whether feasible solution exists. 

gramming problems. 
We first evaluate the accuracy of the power flow 

calculation in our constructed AC/DC OPF model. The 
benchmark results are obtained by using IPOPT to solve the 
original nonconvex AC/DC OPF model with the determined  ��, , ��, , �FG , �FG, �FHII  that are obtained from solving the 
constructed mixed-integer convex AC/DC OPF model. The 
initial point involved in (1) starts with a flat power flow status 
and then switches to an updated power flow status (power 
injection at AC nodes #2 and #5 are changed to the optimized 
value from zero). The comparison of the system-wide voltage 
profiles is shown in Fig. 4. Although our constructed AC/DC 
OPF model employs a series of linear approximation/convex 
relaxations to handle the nonlinearity in power flow, it still 
exhibits a decent performance in power flow calculation. The 
maximum relative error of nodal voltage is less than 0.2%. 

We subsequently illustrate the convergence rate of our 
proposed S-M-GBD. Four extreme scenarios are considered 
in our constructed AC/DC OPF model. They are assumed to 

be (�YG, ��G) ∈ ?(0.5,0.5), (0.5,0.3), (0.4,0.5), (0.4,0.3)Bp. u.. 
We compare the iteration numbers required for convergence 
among GBD, M-GBD, and S-M-GBD. Given the same initial 
iteration conditions, GBD fails to converge within 50 
iterations. As shown in Fig. 5, M-GBD and S-M-GBD 
converge successfully and approach the centralized 
optimization result (as the benchmark). Compared with M-
GBD, S-M-GBD consumed fewer iterations. This is because 
S-M-GBD forms SPs considering extreme scenario split, thus 
returning more Benders cuts to MP per iteration and thus 
enhancing the convergence rate. 

We finally validate the robustness of the scenario-oriented 
decision making. Conventional decision making is 
implemented with just 1 deterministic scenario that (�YG , ��G) = (0.5,0.5)p. u.. In contrast, our proposed scenario-

oriented decision making is implemented taking 4 extreme 
scenarios into account, which are consistent with the above-

mentioned. We randomly generate 50 possible scenarios 

where �YG ∈ [0.4, 0.5]p. u. , ��G ∈ [0.3, 0.5]p. u.  to compare 

the two kinds of decision making. As shown in Table I, 
despite our proposed scenario-oriented decision making 
having a more conservative objective value, the optimized 
droop control parameters in S-OPF model can hedge the 
uncertainties caused by RESs in all possible scenarios, but the 
conventional D-OPF cannot achieve the equivalent 
performance. 

VI. CONCLUSION 

This work presents a distributed OPF model for the AC/DC 
grid depending upon linear approximation and convex 
relaxation on AC/DC power flow and GBD. The results show 
that the constructed mixed-integer convex AC/DC OPF model 
provides satisfactory accuracy in the system-wide power flow 
calculation. The proposed scenario-oriented decision making 
ensures that the optimized droop control parameters can 
handle all possible scenarios resulting from the RES 
uncertainties. The proposed S-M-GBD enhances the 
convergence rate in solving the scenario-based OPF model.  
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