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Abstract

E
fficiency of the Analog to Digital Converters (ADCs) has always
been an issue of concern, especially, when it comes to sampling
wide band signals which require extremely high sampling rates.

As the systems with wide band signals are gaining the front posi-
tion in digital communications, the need to find ways to reduce the
sampling rates of ADCs but still maintaining exact reconstruction,
is becoming ever more resurgent. In this thesis we present the uti-
lization of a newly discovered technique to reduce the sampling rates
much below the Nyquist rates. We explore the combination of Com-
pressive Sampling (CS) with Pulse Position Modulation (PPM) and
Frequency Shift Keying (FSK) modulation schemes. CS has been sug-
gested for ’sparse signals’ [1], [2]. Sparsity helps represent the signal in
much less dimensions. We evaluate the suitability of this technique for
PPM and FSK modulated signals in multipath fading environments
so as to reduce the complexity at the receiver side. We detect the
signals without having to first estimate the channel. We present sce-
narios where we can achieve the most from the combination of CS and
PPM/FSK. We extend this frame work to Ultra Wide Band (UWB)
applications. We also give theoretical expressions for the error proba-
bilities of our signal models. The real challenge, with regard to using
CS, is to reconstruct the signal from its reduced dimensions. In this
respect, we have opted for the Orthogonal Matching Pursuit (OMP)
algorithm for most of the cases, nonetheless, we elaborate on other
available reconstruction methods as well.
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Abstract

E
fficiency of the Analog to Digital Converters (ADCs) has always been an issue
of concern, especially, when it comes to sampling wide band signals which require
extremely high sampling rates. As the systems with wide band signals are gaining

the front position in digital communications, the need to find ways to reduce the sam-
pling rates of ADCs but still maintaining exact reconstruction, is becoming ever more
resurgent. In this thesis we present the utilization of a newly discovered technique to
reduce the sampling rates much below the Nyquist rates. We explore the combination
of Compressive Sampling (CS) with Pulse Position Modulation (PPM) and Frequency
Shift Keying (FSK) modulation schemes. CS has been suggested for ’sparse signals’
[1], [2]. Sparsity helps represent the signal in much less dimensions. We evaluate the
suitability of this technique for PPM and FSK modulated signals in multipath fading
environments so as to reduce the complexity at the receiver side. We detect the sig-
nals without having to first estimate the channel. We present scenarios where we can
achieve the most from the combination of CS and PPM/FSK. We extend this frame
work to Ultra Wide Band (UWB) applications. We also give theoretical expressions for
the error probabilities of our signal models. The real challenge, with regard to using
CS, is to reconstruct the signal from its reduced dimensions. In this respect, we have
opted for the Orthogonal Matching Pursuit (OMP) algorithm for most of the cases,
nonetheless, we elaborate on other available reconstruction methods as well.
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don’t have words to express my gratitude for these two great men who made me grow
in my thesis from a scratch. I troubled them, every now and then, with even minor
questions but they never played it down and responded with full commitment. From
Geert, I learnt how to think critically and to combine multiple aspects to make my
work meaningful. From Hakan, I learnt never to forget minute details in research and
the difference between technical and non-technical writing. It will not be wrong to say
that without them, this thesis would not have seen the light of day. I would also like to
thank my professor, Dr. Alle-Jan Van der Veen for giving me the opportunity to work
in this group and for being a role model for all the young researchers. I would like to
thank Dr.ir. Homayoun Nikookar for being a member of my thesis committee.

I would like to thank my siblings and my father back home, for giving me the vital
moral support and encouragement which kept me going through all the ebb and flow of
this work. Though, miles away, their best wishes and prayers have always surrounded
me.

Finally, I would like to thank my late morther. She was always the happiest person
on earth for even very small achievements of her son. I miss her every day and every
moment of my life. This little work is dedicated to her.

Shahzad Sarwar Gishkori
Delft, The Netherlands
August 31, 2009

vii



viii



Contents

Abstract v

Acknowledgments vii

Abbreviations xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Effects of ADC Sampling Rates . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Discussion 7
2.1 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Basic Theory of CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Signal Model 9
3.1 General Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 General CS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 AIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 CS for PPM 13
4.1 PPM Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 PPM Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 PPM Detection Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Quasi-Synchronous 2-PPM . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Fully-Synchronous 2-PPM . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 PPM Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 CS for FSK 25
5.1 FSK Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 FSK Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 FSK Detection Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 N-FSK (single carrier) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 N-FSK (double carrier) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 FSK Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.7 Signal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Analysis of CS 39
6.1 CS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



7 CS for UWB 43
7.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Signal Model according to Mengali et al [3] . . . . . . . . . . . . . . . . 45

7.2.1 Simulation Results of [3] . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Analysis of the Signal Model of [3] . . . . . . . . . . . . . . . . . . . . . 49
7.4 Our Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.4.1 Simulation results for our Theoretical Model . . . . . . . . . . . 54
7.5 CS for UWB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.6 CS for UWB with Multiple Access . . . . . . . . . . . . . . . . . . . . 58

7.6.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6.2 CS Simulations for Multiple Access UWB . . . . . . . . . . . . 60

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusions and Future Work 63
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 64

A Analog to Information Converter 65
A.1 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Random Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3 Pseudo-random Demodulation . . . . . . . . . . . . . . . . . . . . . . . 66

x



List of Figures

1.1 ADC, ENOB versus sampling rate [4] . . . . . . . . . . . . . . . . . . . 3
1.2 ADC, Power versus sampling rate [4] . . . . . . . . . . . . . . . . . . . 3

3.1 CS Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Illustration of a received 2-PPM symbol (absolute squared) along with
the channel spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Matrix representation of CS for 2-PPM . . . . . . . . . . . . . . . . . . 14
4.3 Reconstruction and Detection Scheme (block-diagram) . . . . . . . . . 15
4.4 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel

with noise, Channel-taps (L) = 3, measurement matrix = DFT matrix,
reconstruction algorithm = OMP . . . . . . . . . . . . . . . . . . . . . 20

4.5 2-PPM BER for fully-synchronous scheme in a Gaussian fading channel
with noise, Channel-taps (L) = 3, measurement matrix = DFT matrix,
reconstruction algorithm = OMP . . . . . . . . . . . . . . . . . . . . . 21

4.6 2-PPM BER for quasi-synchronous scheme in a Gaussian fading chan-
nel with noise, Channel-taps (L) = 3, measurement matrix = Gaussian
random matrix, Reconstruction Algorithm: OMP . . . . . . . . . . . . 22

4.7 2-PPM BER for quasi-synchronous scheme in a Gaussian fading chan-
nel with noise, Channel-taps (L) = 3, measurement matrix = Gaussian
random matrix, Reconstruction Algorithm: BP . . . . . . . . . . . . . 22

4.8 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel
with noise, Channel-taps (L) = 3, measurement matrix = DFT matrix,
N=16, M =1:N, SNR = 0dB, Reconstruction Algorithm: OMP . . . . . 23

4.9 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel
with noise, Channel-taps (L) = 3, measurement matrix = DFT matrix,
N=16, M =1:N, SNR = 10dB, Reconstruction Algorithm: OMP . . . . 23

5.1 Matrix representation of CS for FSK (I) . . . . . . . . . . . . . . . . . 26
5.2 Matrix representation of CS for FSK (II) . . . . . . . . . . . . . . . . . 26
5.3 8-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel

with noise, N=8, M=4, measurement matrix = random matrix, Recon-
struction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel
with noise, N=16, M =[1:N], measurement matrix = random matrix,
Reconstruction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . 31

5.5 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel
with noise, N=16, M =[1:N], measurement matrix = random matrix,
Reconstruction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . 32

5.6 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel
with noise, N=16, M =[1:N], measurement matrix = Identity matrix,
Reconstruction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . 33

xi



5.7 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel
with noise, N=16, M =[1:N], measurement matrix = Identity matrix,
Reconstruction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . 33

5.8 8-FSK, Double Carrier, Channel-taps (L) = 3, Rayleigh fading chan-
nel with noise, N=8, M = 6, measurement matrix = Gaussian matrix,
Reconstruction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . 34

5.9 8-FSK, Double Carrier, Channel-taps (L) = 3, Rayleigh fading chan-
nel with noise, N=8, M = 6, measurement matrix = Identity matrix,
Reconstruction Algorithm: OMP . . . . . . . . . . . . . . . . . . . . . 35

6.1 2-PPM, Quasi-Synchronous, Channel-taps (L) = 3, Sparsity (K) = 3,
Gaussian fading channel with noise, M =N/2, measurement matrix =
random matrix, Reconstruction Algorithm: OMP . . . . . . . . . . . . 40

6.2 Lower bounds on sparsity, [5] (black for [6], red for [7] and green for [5]) 41

7.1 2-PPM UWB, Multiple frames Symbol, Nf = 2 . . . . . . . . . . . . . 43
7.2 2-PPM UWB, BER performance for Multiple frames for CM1, for large

integration interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 2-PPM UWB, BER performance for Multiple frames for CM3, for large

integration interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 2-PPM UWB, BER performance for Multiple frames for CM1, for small

integration interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.5 2-PPM UWB, BER performance for Multiple frames for CM3, for small

integration interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6 2-PPM UWB, BER performance using (??) on Multiple frames . . . . 52
7.7 2-PPM UWB, Comparison with small integration interval . . . . . . . . 55
7.8 2-PPM UWB, Comparison with large integration interval . . . . . . . . 56
7.9 2-PPM UWB, CS with reconstruction algorithm = OMP, measurement

matrix = DFT matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.10 2-PPM UWB, CS with reconstruction algorithm = OMP, Effect of M/N

variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11 2-PPM UWB, CS with reconstruction algorithm = OMP, measurement

matrix = Gaussian matrix . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.12 2-PPM UWB, CS with reconstruction algorithm = OMP, Effect of M/N

variations, measurement matrix = Gaussian matrix . . . . . . . . . . . 59
7.13 UWB symbol with Multiple Access . . . . . . . . . . . . . . . . . . . . 60
7.14 2-PPM UWB , comparison between single user and multiple users, CS

with reconstruction algorithm = OMP, measurement matrix = DFT matrix 61

A.1 AIC implementation with random sampling, [8] . . . . . . . . . . . . . 65
A.2 AIC implementation with random filtering (I), [9] . . . . . . . . . . . . 66
A.3 AIC implementation with random filtering (II), [9] . . . . . . . . . . . . 66
A.4 AIC implementation with pseudo-random demodulation, [10] . . . . . . 67

xii



List of Tables

6.1 Sparsity according to [11] . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Sparsity according to [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.1 IEEE Channel Parameters [12] . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Effect of Averaging on Multiframe Signal Model . . . . . . . . . . . . . 53

xiii



xiv



Abbreviations

ADC Analog to Digital Converter

AIC Analog to Information Converter

BER Bit Error Rate

BP Basis Pursuit

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FHSS Frequency Hopping Spread Spectrum

FSK Frequency Shift Keying

FTB-OMP Flexible Tree-search-Based OMP

GML Generalized Maximum Likelihood

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

LOS Line of Sight

MA Multiple Access

MP Matching Pursuit

NLOS Non Line of Sight

OMP Orthogonal Matching Pursuit

PPM Pulse Position Modulation

RIP Restricted Isometry Property

Seq-OMP Sequential OMP

SNR Signal to Noise Ratio

SS Spread Spectrum

UWB Ultra Wide Band

xv



xvi



Introduction 1
I

n this thesis we explore an alternative way of reducing the sampling rate for wideband
signals. Sampling rate is one of the key features of any communications system. Its
reduction can have far reaching effects on the overall performance of the communi-

cations system.

This chapter provides the motivation for the thesis along with the outline and our
contributions for that matter.

1.1 Motivation

Digital communications is witnessing a phenomenal growth in applications which in-
volve signals of very high bandwidth, for example, Ultra Wide Band (UWB) and Spread
Spectrum (SS) signals, etc. Due to this, PPM and FSK modulation schemes have gained
quite an importance in the realization of such systems. Efforts are being made by the
research community to find ways to reduce the overall system complexity in this regard.
CS with PPM and FSK yields one step forward in this direction.

At the receiver side, a big hurdle is the efficiency of the Analog to Digital Converter
(ADC). According to the classical Shannon-Nyquist-Whittaker-Kotelnikov sampling
theorem [13], [14], a band limited signal x(t) (or X(ω) = 0, |ω| > ωm) can be deter-
mined completely from its samples x(nT ) if T ≤ π/ωm. So the sampling rate should
be at least twice the highest frequency. Therefore, if the bandwidth of the signal is
too high, ADCs can be heavily stressed. It could take ’decades’ before the ADCs, with
current technology, can be fast and precise enough for the present day high bandwidth
applications [10]. Furthermore, it has been described in [13] that most of the signals
with large bandwidth have a small rate of information. This property of wideband
signals makes them sparse in information and has led to methods of sampling based
on the amount of information (or the rate of innovation). The combination of sparsity
with finite rate of innovation has been described in [15], primarily for the non-discrete
domain. CS offers more flexible options to deal with sparse signals in terms of the loca-
tion of the information and the non-uniformity of measurements as we shall elaborate
upon in subsequent sections. Therefore we take advantage of the sparsity of the signals
which are PPM and FSK modulated through CS.

PPM and FSK signals are sparse in the time and frequency domains respectively.
Both M-ary PPM and M-ary FSK can be represented in the geometric form of M-

1



dimensional orthogonal vectors as in [16],

a0 =
(√

S, 0, 0, · · · , 0
)T

a1 =
(
0,
√

S, 0, · · · , 0
)T

...

aM−1 =
(
0, 0, · · · , 0,

√
S
)T

,

(1.1)

where S represents signal energy. So there are many zeros in the signal but only one
significant component. CS aims at exploiting such structures of the signals.

1.2 Effects of ADC Sampling Rates

Sampling rates (fs) have a direct bearing on the Performance of ADCs besides resolution
(i.e., Effective Number of Bits (ENOB)). The two most widely used figures-of-merit
P and F are defined as in [4],

P = 2ENOB fs

F =
2ENOB fs

Pdiss

(1.2)

where ENOB is also called SNR bits as in [17]. The performance trend of past-
present-and-future for different ADCs has been given in [4] and [17]. Figure 1.1 gives
the relationship between ADC resolution and sampling rates for different ADC archi-
tectures. It is clear that flash ADCs give the highest sampling rates (in the range of
Giga samples per second)but lowest resolution. Sigma-Delta give highest resolution
but the sampling rates are very low. The pipelined structure ADCs can be considered
to give very good over all performance.

Furthermore, its is clear from (1.2) that power dissipation is inversely proportional
to the performance of ADCs. The relationship between the power dissipated and reso-
lution along with sampling frequency is almost linear. A derivation of this relationship
has been presented in [18] with the assumptions that 1. power is consumed only at the
sample-and-hold block of the ADC, 2. the input signal supplies the power to charge the
sample-and-hold capacitance . It is given as,

Pmin = k T fs 10(6N+1.76)/10 [W] (1.3)

where N is stated number of bits of resolution, k is Boltzmann’s constant and T is
temperature.

The slope between consumed power and sampling frequency according to (1.3) is
quite linear but in practical (or non-ideal) situations it is even steeper. Figure 1.2 shows
the plot for power consumed versus sampling frequency for different ADC architectures.
It shows that the power consumed for higher sampling rates is extremely high. The
flash structures consume highest power though the number of resolution bits is very

2



Figure 1.1: ADC, ENOB versus sampling rate [4]

Figure 1.2: ADC, Power versus sampling rate [4]

small (see Figure 1.1). Along with the sampling rate and number of resolution bits,
alot of power is consumed in the comparator processes. In the case of flash ADCs,
number of comparisons are around 2Nfs. Given the purely parallel structure of flash

3



ADCs, power consumed is highest. On the other hand, we can see from Figure 1.2 that
the sigma-delta ADCs consume least power with very good resolution (see Figure 1.1)
but at the same time low sampling rates. Both these architectures have to ’sacrifice’
alot of power to give a ’balanced performance’.

So if the signals are wideband, very high sampling rates would be required as per the
requirement of Shannon-Nyquist-Whittaker-Kotelnikov sampling theorem. This would
imply, in view of the above discussion, very high power consumption. Our goal in this
thesis is to reduce the sampling rates in order to increase the efficiency of ADCs.

1.3 Outline and Contributions

In this thesis we have utilized CS to reduce sampling rates for the wideband signals.
We explicitly explored the effect of CS on PPM and FSK modulated signals. We have
provided theoretical analysis for these schemes and simulations thereof. We have come
out with a detailed analysis of the scenarios where CS can be utilized to its maixmum
potiential. We have contributed to the understanding of measurement matrices in terms
of their structures and utilization. We have highlighted upon the bounds on the order
of sparsity for better reconstruction of the signals. We have also given the applicability
of CS for UWB signals. We have also provided the effect of multiuser interference on
the performance of CS for UWB signals. We have considered non coherent detection
to reduce complexity on the receiver side.

Chapter 2: Background Discussion

In this chapter we provide the necessary background material relating to our thesis.
We briefly describe the basic theory of compressive sampling. We focus mostly on the
key points which directly affect the performance in terms of its application.

Chapter 3: Signal Model

We provide general signal model in this chapter. It includes the improtant notations
and terminologies which shall be used subsequently in the thesis. We also present the
CS model.

Chapter 4: CS for PPM

In this chapter we provide the application of CS on PPM modulated signals. We present
the theoretical analysis of PPM signals. We present the important issues relating to
the application of CS for PPM.

Chapter 5: CS for FSK

In this chapter we provide the application of CS on FSK modulated signals. We present
the theoretical analysis of FSK signals both for single tone and dual tone FSK. We
present the important issues relating to the application of CS for FSK.

4



Chapter 6: CS Analysis

In this chapter we analyse our findings regarding application of CS for PPM and FSK
signals. We focus on the measurememt matrices and the order of sparsity for better
reconstruction of the signal resulting in improved performance of CS.

Chapter 7: CS for UWB

In this chapter we present the application of CS for UWB signals. We provide our
theoretical analysis for the signal model and comparison with an existing model. We
extend the application of CS for the UWB signal with multiple access.

5
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Background Discussion 2
I

n this chapter we provide the necessary background material relating to our thesis.
We briefly describe the basic theory of compressive sampling. We focus mostly on
the key points which directly affect the performance in terms of its application.

2.1 Sparsity

Sparsity is a relevent term. In terms of image theory, a sparse structure may mean
having few large coefficients and many small coefficients. So the image can be approx-
imated by these large coefficients. In terms of analog signals, it may mean that the
signal is constituted by few of its basis functions at a unit interval of time, out of a
large dictionary of possible basis functions. An other way of putting it is that we can
define a signal in terms of such basis functions which give it a sparse structure but still
we need to know the basis functions to reconstruct the signal.

2.2 Basic Theory of CS

Compressive Sampling can be thought of as a concept to reduce the number of mea-
surements required to approximate a signal without any loss of important information.
So the signal is transformed into a compressed representation. Therefore, it can be
processed with less resources and then finally reconstructed to its original form. This
theory works under certain assumptions viz a viz the class of signals and the transform
operator. Let xN×1 be a discrete-time signal (in vector representation), which is sparse
in some basis (e.g., Fourier, Wavelet, etc.). If ΨN×N represents the matrix containing
the basis vectors of x and sN×1 its respective coefficients then we can write,

x = Ψs. (2.1)

Since x is sparse in its basis then s will have very few non-zero coefficients. Therefore
x can be represented by M linear measurements with M ≪ N . Let ΦM×N be the
transform operator: R

N 7→ R
M , with M linear functionals as its rows. Then x can be

transformed into a new representation yM×1 i.e.,

y = ΦΨs. (2.2)

Here we shall attribute the basis matrix Ψ as the sparsity matrix and Φ as the mea-
surement (or the sparsifying) matrix. The sparsity matrix consists of orthogonal basis
vectors and s contains the coefficients of the basis functions which constitute the signal
x. In sparse signals, s contains very few large coefficients and many zeroes or negli-
gibly small valued coefficients (obeying e.g., a power-law decay condition [19]). It is
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this sparse structure of the signals which motivates their compressed representation.
The key role played here is by the measurement matrix Φ. It is a special matrix with
certain requirements. It does not only have to reduce the dimensions of the signal but
should also allow for its reconstruction. Therefore, as a first condition, it has to satisfy
the restricted isometry property (RIP) [2] and as our signals are mostly sparse in some
orthonormal basis, RIP should hold for Θ : = ΦΨ [20]. Secondly, its rows should be
incoherent with the basis matrix [21].

Let xi constitute the elements of x, and let T = supp{i : xi 6= 0} (i.e., support of
x), with K = |T | (i.e., cardinality of T ) then the signal is said to be K-sparse (i.e.,
K = ||x||l0). RIP can then formally be written as,

(1 − δK)||s||l2 ≤ ||Θs||l2 ≤ (1 + δK)||s||l2 (2.3)

where δK is a sparsity constant of order K, 0 < δK < 1. If ΘT represents a submatrix
of Θ with columns θi : i ∈ T , then RIP implies that the eigenvalues of Θt

TΘT are in
[(1− δK)2, (1 + δK)2] [22]. Furthermore RIP of order K implies that RIP also holds for
sparsity less than K [22].

If the above conditions are met then one can reconstruct s by solving the following
minimization problem,

mins ||s||l1 :=
∑N

i=1 |si|
s.t. y = Θs,

(2.4)

with
M = CKlog(N/K), (2.5)

linear measurements where C is a positive constant (C > 0 and may range between
2 − 20) [1, 2]. In literature, a number of measurement matrices have been sug-
gested which comply with the above mentioned requirements. For example, Gaussian,
Bernoulli, Fourier ([1], [2], [20]) matrices and other random matrices based on prede-
fined probabilities [23]. Though most of the literature on CS has been suggesting ran-
dom measurement matrices, Candès et al, [21] strongly advocate the use of structured
matrices e.g., Fourier matrices. We shall discuss this particular issue in subsequent
sections.

Reconstruction with the help of (2.4) is known as Basis Pursuit (BP). This is not the
only way to recover the signal but it is one of the stable methods for sure. In [24], it was
demonstrated, both theoretically and empirically, that Orthogonal Matching Pursuit
(OMP) [25] can recover a signal with almost similar bounds on the required linear
measurements as that of (2.5). We also consider OMP as our primary reconstruction
algorithm as it has been proven to be a faster alternative to BP [24].
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Signal Model 3
I

n this chapter we define our general signal model. This consists of the transmitted
and received signal structures along with the general CS model.

3.1 General Signal Model

Let a(t) be the transmitted signal. a(t) can either be PPM modulated or FSK modu-
lated. The signal travels through the channel. Let h′(t) represent the impulse response
of the physical communications channel. At the receiver end, additive white Gaussian
noise n(t) gets added to the signal. So the received signal x(t) can be represented as
the combination of noise and the convolution of a(t) and h′(t). Assuming that a′(t)
represents the signal along with pulse shaping we can write,

x(t) = h′(t) ∗ a′(t) + n(t) (3.1)

where ∗ denotes the convolution.
We define a(t) for the k-th information symbol as,

ak(t) =
N−1∑

n=0

an,kδ(t − nT ) (3.2)

where N is the total number of samples of the signal, sampled at the Nyquist rate. T is
the sampling interval and equals inverse of twice the bandwidth, i.e., T = 1/2B where
B stands for the signal bandwidth. Furthermore, we can define an,k separately for the
case of PPM and FSK as,

a
(PPM)
n,k =

Nf−1∑

i=0

δ [n − iN/Nf − k] (3.3)

a
(FSK)
n,k = exp[j2πkn/N ] (3.4)

where Nf are the number of frames per PPM symbol with a duration of Tf for an
individual frame. We shall consider the scenarios where Nf = 1 and where Nf > 1.

Moreover, the physical channel h′(t) can be defined as,

h′(t) =

Z−1∑

z=0

vzδ(t − Tz) (3.5)

where vz are the channel coefficients which we assume to be independently identically
distributed, Z is the total number of multipaths with inter-path arrival time, Tz. We
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also define the maximum channel delay spread Tmds := ZT where T is the sampling
interval.

Furthermore, we consider the notion of composite channel h(t) as the convolution
of physical channel h′(t) and the received pulse shape p(t), i.e.,

h(t) = h′(t) ∗ p(t) (3.6)

Then we can define h(t) as,

h(t) =
L−1∑

l=0

hlp(t − Tl) (3.7)

where hl are the channel coefficients which we assume to be independently identically
distributed, L is the total number of multipaths with inter-path arrival time, Tl. We
also define the maximum channel delay spread Tmds := LT where T is the sampling
interval.

For the sake of a general model, we now evaluate (3.1) with the composite channel
h(t) instead of the physical channel h′(t). The basic principle will still remain same in
either case. Given the fact that the channel has a Finite Impulse Response (FIR) of
LT , (3.1) can be written as,

x(t) = h(t) ∗ a(t) + n(t)

=

∫ LT

0

h(τ)a(t − τ)dτ + n(t)

=

∫ LT

0

h(τ)

N−1∑

i=0

aiδ(t − τ − iT )dτ + n(t)

=

N−1∑

i=0

ai

∫ LT

0

h(τ)δ(t − τ − iT )dτ + n(t)

=
N−1∑

i=0

aih(t − iT ) + n(t) (3.8)

Defining xn = x(nT ), hn = h(nT ) and nn = n(nT ), we can write (3.8) as,

xn =
N−1∑

i=0

aihn−i + nn

=

L−1∑

l=0

hlan−l + nn (3.9)

To make every received frame independent, we consider a guard interval of length
L−1 with every frame. We do zero padding in the case of PPM and add a cyclic prefix
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Φ

=

Ψ Φy s n

Figure 3.1: CS Signal Model

in the case of FSK, both of length L− 1. Thus we can write (3.9) in the matrix-vector
notation as,

x = Ha + n. (3.10)

Here H represents the channel convolution matrix, vectors x, a and n contain all
elements of xn, an and nn.

3.2 General CS Model

At the receiver side, we first compress the signal and then sample at reduced rate.
Given x to be the received signal, we can express the compressed signal y in terms of
the basis functions matrix Ψ and coefficient vector s of x as

y = ΦΨs + Φn (3.11)

where Φ is the measurement matrix as defined in Section 2.2. Figure 3.1 gives an
illustration of our CS model.

3.2.1 AIC

We carry out the compression of the analog signals through Analog to Information
Converter (AIC). A number of different implementations of AICs have been suggested
in literature. Appendix A describes the details of these implementations. So the re-
ceived signal shall be first processed by the AIC to give it a compressed representation
and sampled at sub-Nyquist. Then, we reconstruct the signal through CS reconstruc-
tion algorithms e.g., BP and OMP. Later on, we apply our detection rule over the
reconstructed signal.
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CS for PPM 4
I

n this chapter we focus on the utilization of CS for PPM modulated signals. We
present the PPM signal models for quasi-synchronous and fully-synchronous cases,
theoretical expressions for the probability of error and simulation results.

4.1 PPM Scheme

Pulse Position Modulation (PPM) is an M-ary orthogonal modulation scheme [26].
PPM is the most common time-based modulation technique used in Ultra Wide Band
(UWB) communications [27]. Different symbols are realized by shifting a pulse to
specific positions in time within the specified symbol duration. A simple example of
2-PPM with the symbol duration Tf divided equally into two pulse positions is shown
in Figure 4.1. PPM is advantageous because of its simplicity and the ease of controlling
delays [27] but the disadvantage (in the sense of receiver ADCs) is the large bandwidth
associated with it. CS can ease the stress (because of PPM) on ADCs. Our signal
model follows next.

Tmds = LT

0.5 Tf

t

Tf = NT

Figure 4.1: Illustration of a received 2-PPM symbol (absolute squared) along with the channel
spread
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y Φ Η a Φ n

=
+

Figure 4.2: Matrix representation of CS for 2-PPM

4.2 PPM Signal Model

Let a(t) represent the chain of transmitted PPM symbols. For the purpose of illustra-
tion we present the case of 2-PPM symbols. Extension to M-PPM is quite straight-
forward. Let h(t) be the multipath channel impulse response (see (3.6)). We assume
that the maximum channel delay spread Tmds < Tf/2 (see Figure 4.1), so each pulse
is contained within its pulse position and does not spill over to other pulse positions.
hl represents the l-th channel path coefficient. We assume that the channel coefficient
hl is i.i.d Gaussian random variables i.e., hl∼ N(0, 1). h(t) includes the pulse shaping
filters both at the transmitter and the receiver side. So in our model, a(t) would ba-
sically consist of Diracs at the beginning of every pulse and as it travels through the
channel, the shape and length of the pulse would be the result of its convolution with
the channel. If n(t) describes the additive white Gaussian noise i.e., n(t)∼ N(0, σ2), we
can write the received signal x(t) in the matrix form as in (4.1), i.e.,

x = Ha + n. (4.1)

Although we shall process the signal in the analog form, for reasons of understanding
and simulations, we shall describe it in a discrete form sampled at the Nyquist rate. So
after compressive sampling (i.e., taking M linear measurements of the signal), we can
write the received signal as,

y = ΦHa + Φn (4.2)

Figure 4.2 gives an illustration of (4.2). In terms of (2.1) and (2.2) we can write (4.2)
as;

y = ΦΨs + Φn. (4.3)

where,
s = Ha and Ψ = I. (4.4)

4.3 PPM Detection Rule

A block diagram of the reconstruction and detection process for PPM is given in Fig-
ure 4.3. It shows mainly, the AIC, reconstruction block and the decision block. We
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Figure 4.3: Reconstruction and Detection Scheme (block-diagram)

shall talk about the reconstruction process (i.e., from y to ŝ where ŝ is the reconstructed
vector) in detail in a later section (jointly for PPM and FSK), but here we describe the
detection rule for PPM.

Since our goal is to reduce the overall system complexity, we have used noncoherent
receivers for our system model. The advantage of noncoherent detection is the reduc-
tion in complexity and power consumption [3]. Our detection process is more like a
generalized maximum likelihood detector. From the reconstructed signal ŝ, our decision
is based on the estimate as to which pulse position contains more energy than the rest
of the positions. We process every frame (i.e., symbol) separately. We take the abso-
lute square of the signal and integrate it over the different pulse position intervals. The
interval which contains more energy than the rest (within the symbol) is our decision.
In this way we do not need to estimate the channel. Instead, we are collecting the
energy of the multipath components of the signal to increase the detection probability
of the actual transmitted pulse.

As an example, we can consider the case of 2-PPM (Figure 4.1). If N is the total
number of Nyquist rate samples of the symbol, then the decision rule is based on the
following relation,

0

||̂s1: N
2

||22 ≷ ||̂sN
2

+1:N ||22, (4.5)

1

where ŝi:j denotes the subvector of ŝ from position i to j with i, j ∈ Z
+. The relation

(4.5) solves for bit 0 or bit 1. From (4.1)-(4.4), we can see from (4.5), that a decision
on ŝ leads to that of a. Since the channel effect is limited to the duration of the pulse,
multiple paths in fact contribute to a correct decision. Furthermore, the noise n can
affect the decision in two ways. If we have perfect synchronization, i.e., we only compare
the intervals which might contain the received pulse (i.e., within Tmds, see Figure 4.1), in
both of the pulse positions. In case of quasi-synchronous communications, we compare
the whole pulse interval as described in (4.5). As noise is assumed to be an i.i.d
Gaussian random sequence, in the former case (perfectly synchronous), only the noise
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from the exact pulse interval contributes to the pulse estimate, whereas in the latter
(i.e., quasi-synchronous case), extra noise also becomes part of the pulse energy. We
shall experiment with both of these cases separately.

We define our average Signal to Noise Ratio (SNR) as,

SNR =
E||a||22 E||h||22

E||n||22
(4.6)

where E||a||22 is the average signal energy (let it be denoted by S := E||a|22), E||h||22
is the average channel energy (given that the channel coefficients are zero mean i.i.d
Gaussian random variables with unit variance, it is equal to L) and E||n||22 is the
average noise energy (for i.i.d Gaussian ∼ N(0, σ2) noise variables, it is equal to Nσ2,
where N is the Nyquist rate sampling factor). So (4.6) represents the average signal to
noise ratio. For the case of PPM, let it be denoted by ΥPPM ,

ΥPPM =
SL

Nσ2
. (4.7)

We shall express the SNR in terms of dB through out all the simulations. Our
Bit Error Rate (BER) is in fact an indicator of how well Compressed Sensing has
performed. To compare the performance of CS, we have derived the probability of
error for our system model without CS to give us a theoretical reference. In the next
section we present these mathematical expressions both for quasi-synchronous and the
fully synchronous cases.

4.4 Quasi-Synchronous 2-PPM

Let hi ∼ N(0, 1) be the channel coefficients, ni ∼ N(0, σ2) be the independent Gaussian
distributed noise random variables and S be the signal energy. We can write (hi + ni)

∼ N(0, 1 + σ2) and (
√

Shi + ni) ∼ N(0, S + σ2) where
√

S is a deterministic value.
Let the received vector be represented as

x =
[
(
√

Sh1 + n1), (
√

Sh2 + n2), · · · , (
√

ShL + nL), (nL+1), · · · , (nN)
]T

. (4.8)

If U1 = ‖x(1 : N
2
)‖2 and U2 = ‖x(N

2
+ 1 : N)‖2, then in light of (4.5), the probability

of error for the case when the pulse is transmitted in the first half of Tf (see Figure 4.1),
can be written as,

Pe = Pr(U1 < U2|U1). (4.9)

The decision variable U1 can be written as

U1 =

N
2∑

i=1

|
√

Shi + ni|
2
. (4.10)
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Given L channel taps and the condition that L < N
2
, we can write (4.10) as

U1 =

L∑

i=1

|
√

Shi + ni|
2
+

N
2
−L∑

i=1

|ni|2. (4.11)

Let

X1 =

L∑

i=1

|
√

Shi + ni|
2
,

X2 =

N
2
−L∑

i=1

|ni|2.
(4.12)

X1 and X2 represent independent Chi-square random variables. The probability density
functions (pdfs) of these variables can be written as [26]

pX1
(x1) =

x1

n1
2
−1

σn1

1 2
n1
2 Γ

(
n1

2

)e
−x1

2σ2
1 , n1 = L , σ2

1 = S + σ2 (4.13)

pX2
(x2) =

x2

n2
2
−1

σn2

2 2
n2
2 Γ

(
n2

2

)e
−x2

2σ2
2 , n2 =

N

2
− L , σ2

2 = σ2 (4.14)

As a consequence U1 is a random variable which is the sum of two Chi-square random
variables i.e.,

U1 = X1 + X2 (4.15)

and the pdf of random variable U1 is the convolution of (4.13) and (4.14). i.e.,

pU1
(u1) =

∫ ∞

0

pX1
(x1)pX2

(u1 − x1)dx1. (4.16)

Using [28, Eq. (5.26)], a solution of (4.16) can be written as,

pU1
(u1) =

1

2σ1σ2Γ(n1+n2

2
)

[
u1

2σ2
1

]n1−1

2
[

u1

2σ2
2

]n2−1

2

×e
−u1

2σ2
2 1F1

[
n1

2
,
n1 + n2

2
;
(σ2

2 − σ2
1)

2

2σ2
1σ

2
2

u1

]
,

(4.17)

where 1F1 [., .; .] is the Kummer confluent hypergeometric function which is defined in
[29, Eq. (9.210.1)] as,

1F1[α, β; z] = 1 +
α

β

z

1!
+

α(α + 1)

β(β + 1)

z2

2!
+

α(α + 1)(α + 2)

β(β + 1)(β + 2)

z3

3!
+ · · · (4.18)

It can be seen that (4.18) is an ever increasing function. Since the largest value repre-
sentable by Matlab is around 1.79e308, it is not possible to get an accurate value for

1F1[α, β; z] using this software especially for higher values of z.
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The decision variable U2 can be written as,

U2 =
N∑

i= N
2

+1

|ni|2. (4.19)

So we can also write U2 as a Chi-square distributed random variable with pdf,

pU2
(u2) =

u
n
′

2
−1

2

σn′

w 2
n
′

2 Γ
(

n′

2

)e
−u2

2σ2
w : n

′

=
N

2
, σ2

w = σ2 (4.20)

The probability of correct decision is:

Pr (U2<u1|U1 = u1) =

∫ u1

0

pU2
(u2) du2 (4.21)

Using (4.20), we can write,

Pr (U2<u1|U1 = u1) =

∫ u1

0

u
n
′

2
−1

2

σn′

w 2
n
′

2 Γ
(

n′

2

)e
−u2

2σ2
w du2 (4.22)

Pr (U2<u1|U1 = u1) =
γ(n

′

2
, u1

2σ2
w
)

Γ(n′

2
)

(4.23)

where γ(., .) is the lower-incomplete-gamma function and Γ(.) is the gamma function
such that γ(n, u) =

∫ u

0
tn−1e−tdt and Γ(n) =

∫ ∞
0

tn−1e−tdt, [29].
Since U1 is a random variable with pdf given by(4.16), we need to average it out in

(4.23) to get the probability of error. Thus,

Pe = 1 −
∫ ∞

0

Pr (U2<u1|U1 = u1) pU1
(u1)du1

= 1 −
∫ ∞

0

γ(n
′

2
, u1

2σ2
w
)

Γ(n′

2
)

pU1
(u1)du1

(4.24)

Since (4.24) is not in closed form, we solve it numerically for the purpose of simu-
lations. Clearly it is computationally intensive.

4.5 Fully-Synchronous 2-PPM

In the case of full synchronization, we can write (4.10) as

U1 =

L∑

i=1

|
√

Shi + ni|
2

(4.25)
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So U1 is a Chi-square random variable. Similar to (4.19), U2 can be written as

U2 =

N
2

+L∑

i= N
2

+1

|ni|2. (4.26)

The pdf for U1 is given by

pU1
(u1) =

u1

n1
2
−1

σn1

1 2
n1
2 Γ

(
n1

2

)e
−u1

2σ2
1 : n1 = L , σ2

1 = S + σ2. (4.27)

Similarly the pdf for U2 is given by

pU2
(u2) =

u
n2
2
−1

2

σn2

2 2
n2
2 Γ

(
n2

2

)e
−u2

2σ2
2 : n2 = L , σ2

2 = σ2 (4.28)

The probability of a correct decision given that pulse is transmitted in the first half
of the symbol, can be written as,

Pr (U2<u1|U1 = u1) =

∫ u1

0

pU2
(u2) du2, (4.29)

which, similar to (4.22) and (4.23), can be simplified to,

Pr (U2<u1|U1 = u1) =
γ(L

2
, u1

2σ2
2

)

Γ(L
2
)

. (4.30)

Since U1 is a Chi-square random variable, we need to average it out in (4.30) . Thus
the probability of error is;

Pe = 1 −
∫ ∞

0

Pr (U2<u1|U1 = u1)pU1
(u1)du1

= 1 −
∫ ∞

0

γ(L
2
, u1

2σ2
2

)

Γ(L
2
)

pU1
(u1)du1

(4.31)

By using [29, Eq. (6.455.2)], we can have (4.31) reduced to the following closed
form,

Pe = 1 − 2Γ(L)

L[Γ(L
2
)]2

[
σ1σ2

σ2
1 + σ2

2

]L

2F1

(
1, L;

L

2
+ 1;

σ2
1

σ2
1 + σ2

2

)
(4.32)

where 2F1(., .; .; .) is the Gaussian hypergeometric function and is defined by [29, Eq.
(9.14.2)] as,

2F1[α, β; κ; z] =1 +
α.β

κ.1
z +

α(α + 1)β(β + 1)

κ(κ + 1).1.2
z2

+
α(α + 1)(α + 2)β(β + 1)(β + 2)

κ(κ + 1)(κ + 2).1.2.3
z3 + · · · .

(4.33)
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Figure 4.4: 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel with
noise, Channel-taps (L) = 3, measurement matrix = DFT matrix, reconstruction algorithm
= OMP

4.6 PPM Simulation

We consider 2-PPM. The symbol was represented by 16 components taken at the
Nyquist rate (so N = 16). The channel coefficients were generated as real Gaus-
sian random variables and three taps were used (i.e., L = 3). The noise variance was
calculated from (4.7). In general we took compression ratio (i.e., M/N) around 50
percent (i.e., M = 8 in our case). Figure 4.4 describes the BER for the case of quasi-
synchronous PPM where the measurement matrix used was the Fourier matrix (i.e.,
DFT matrix). Figure 4.4 displays three curves for Gaussian fading channel with white
Gaussian noise, the BER obtained after using compressed sensing, the BER without
CS (i.e., noncoherent detection of the received signal without processing through CS
block, see Figure 4.3) and the theoretical BER plot for 2-PPM (according to (4.24)).

We see in Figure 4.4 that the simulated curve without CS closely follows the theoret-
ical plot. The difference between the plot after CS and the reference plot is only around
2 dB. So for this quasi-synchronous setup, CS is performing very well. Figure 4.5 shows
the BER simulation results for the fully synchronous case. The simulation parameters
are the same as before. Here we see that the BER performance has improved by around
2 dB but the performace of CS is similar. The reason is that although we have changed
our decision criterion, for CS, the reconstruction is still based on the same signal vector.

Figure 4.6 shows some results for quasi-synchronous PPM where we have used a
Gaussian random matrix (∼ N(0, 1√

M
)) as measurement matrix instead of a DFT ma-

trix. The result, as can be seen, is quite surprising. We see that the BER performance
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Figure 4.5: 2-PPM BER for fully-synchronous scheme in a Gaussian fading channel with
noise, Channel-taps (L) = 3, measurement matrix = DFT matrix, reconstruction algorithm
= OMP

of CS saturates after 10 dB and that the margin of error is large even before that.
Though all the simulation conditions are the same as for Figure 4.4 except for the
measurement matrix, the performance is quite different. This means that CS with a
random Gaussian measurement matrix and OMP as the recovery algorithm, could not
reconstruct a 3-sparse signal (since L = 3, we have K = 3).

In the CS literature, Basis Pursuit has been suggested as a stable reconstruction
method, so we used the l1-magic recovery program of [30] where a primal-dual algorithm
was used to solve the standard BP problem as given in (2.4). Figure 4.7 shows the
result of this algorithm. We see that even this does not help much and we still have
the same kind of result. This shows that the problem may be lying in the choice of
the measurement matrix. We shall talk about the behavior of these matrices in later
sections.

Since the probability of error is an indictor for the performance of CS, we now
present some results for the BER corresponding to different compression ratios for an
SNR value. Figure 4.8 shows the curves for such a setup where the compression ratio
varies from 0.1 to 1 for 0 dB SNR. We see that the CS curve catches the theoretical
curve very quickly as we increase the compression ratio. Similarly, Figure 4.9 shows the
case when SNR = 10 dB. Again we see that the CS curve approaches the theoretical
limit at a compression ratio of 50 to 60 percent. Figure 4.8 and Figure 4.9 demonstrate
that CS can achieve a very good performance result with a compression ratio of around
60 percent.
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Figure 4.6: 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel with
noise, Channel-taps (L) = 3, measurement matrix = Gaussian random matrix, Reconstruction
Algorithm: OMP
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Figure 4.7: 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel with
noise, Channel-taps (L) = 3, measurement matrix = Gaussian random matrix, Reconstruction
Algorithm: BP
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Figure 4.8: 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel with
noise, Channel-taps (L) = 3, measurement matrix = DFT matrix, N=16, M =1:N, SNR =
0dB, Reconstruction Algorithm: OMP
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Figure 4.9: 2-PPM BER for quasi-synchronous scheme in a Gaussian fading channel with
noise, Channel-taps (L) = 3, measurement matrix = DFT matrix, N=16, M =1:N, SNR =
10dB, Reconstruction Algorithm: OMP
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4.7 Conclusions

In this chapter we focused on the utilization of CS for PPM modulated signals. We
saw that CS gives very good results for PPM modulated signals. We found that the
measurement matrix plays a very important role in the reconstruction of the signal
and finally the performance of CS. We presented the PPM signal models for quasi-
synchronous and fully-synchronous cases along with their theoretical expressions for
the probability of error. Our theoretical analysis portrays the exact behavior of our
signal models.
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CS for FSK 5
I

n this chapter we focus on the utilization of CS for FSK modulated signals. We
present the FSK signal models for single-tone and dual-tone cases, theoretical ex-
pressions for the probability of error and simulation results. We shall also describe

our reconstruction algorithm.

5.1 FSK Scheme

M-ary Frequency Shift Keying (M-FSK) is a Spread-Spectrum (SS) modulation
scheme, mostly used in Frequency Hopping Spread Spectrum (FHSS). Each M-FSK
symbol consists of M different frequency slots. These slots contain equal-energy or-
thogonal signal waveforms [26]. So M-FSK consists of M basis functions and one basis
function is transmitted at one time [31].

5.2 FSK Signal Model

We define the FSK signal a in the frequency domain and transmit it in the time domain
by taking its normalized inverse Discrete Fourier Transform (IDFT), i.e., FHa. If F
represents the N × N normalized Discrete Fourier Transform (DFT) matrix then,

FH = (F)−1, (5.1)

is the normalized inverse Discrete Fourier Transform (IDFT) matrix, where (.)H stands
for the Hermitian of a matrix. Different symbols of aN×1 can be realized by making any
of its components equal to one and the rest to zero. The transmitted signal convolves
with the multipath fading channel and at the receiver, it suffers from the additive noise.
As in the case of PPM, we consider the channel to consist of L paths and we assume
the uniformly spaced channel coefficients to be Rayleigh faded with unit variance. The
noise is assumed to be i.i.d Gaussian i.e., n(t)∼ N(0, σ2). We can write the received
signal as,

x = HFHa + n. (5.2)

where HN×N represents the channel convolution matrix and nN×1, the noise vector.
After compressed sensing, we can write (5.2) as;

y = ΦHFHa + Φn (5.3)

where ΦM×N represents the measurement matrix and yM×1, the compressed signal
vector as described before. Figure 5.1 gives an illustration of (5.3). Also, by using the
fact that FHF = I, we can write (5.3) as,
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Figure 5.1: Matrix representation of CS for FSK (I)
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Figure 5.2: Matrix representation of CS for FSK (II)

y = ΦFHDa + Φn (5.4)

where DN×N is the diagonal matrix containing the eigenvalues of the channel matrix
(since H is a circular matrix), i.e.,

D = FHFH (5.5)

Figure 5.2 gives an illustration of (5.4). In terms of our model equations (2.1) and (2.2)
we can write (5.4) as;

y = ΦΨs + Φn (5.6)

where,

Ψ = FH

s =Da
(5.7)

Furthermore, we define the Signal to Noise Ratio (SNR) for the FSK modulated
signals, as in (4.6). So the average SNR for N-FSK can be written as,

ΥFSK =
SL

kσ2
: k = log N (5.8)

where S is the average signal energy, L is the average channel energy, σ2 is the noise
variance and k is the number of bits.
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5.3 FSK Detection Rule

For FSK we use noncoherent energy detection. Noncoherent detection excludes the
phase estimation from the FSK detection process and hence further simplifies the de-
tection process. From (5.7), we can see that a decision on the vector s is in fact the
decision on the transmitted signal. This is how we have also excluded the process of
channel estimation. Furthermore, although there are L channel taps, because of (5.5),
the vector s would be one-sparse if every FSK symbol is represented by a single tone
(i.e., frequency signal). So the CS reconstruction process becomes much easier and
fewer linear measurements are needed to estimate the signal.

The probability of error is calculated from the reconstructed signal vector s. To
make a decision of which carrier was transmitted, we estimate the energy for each
component of s. So if si represents an element of s (after reconstruction) then we can
write the decision variable u as,

u = arg max
i:∈{1 ··· N}

‖si‖2
2 (5.9)

Moreover, the case when two carriers have been transmitted, we call it as Dual
tone FSK. Dual tone FSK has been presented in literature (e.g., [32]) as a solution for
limited frequency bands to improve multiple access performance in frequency-hopped
spread spectrum communications. The benefit of dual tone is in terms of the ability
to increase multiple access but at the same time, the tone energy is half that of the
conventional M-FSK. Therefore, the benefit of increase in multiple access comes at the
cost of degradation in noise performance. So dual-tone trades noise performance for
multiple access enhancement [32].

Out of a total of N frequency bands (where M = N in this case), G unique com-
binations are possible where each combination consists of two frequency bands. So we
can say as in [32],

G 6
(N)(N − 1)

2
(5.10)

Thus the decision will be based on the maximum energy of any two unique combinations
of elements of s, i.e.,

{u1, u2} = arg max
i,j:∈{1 ··· N}

i6=j

∑ (
‖si‖2

2 + ‖sj‖2
2

)
(5.11)

But as is clear from (5.11), we cannot use all these combinations since these combina-
tions can potentially produce dependent variables. For the purpose of simplicity, we
only consider independent combinations. So we assume that out of only N/2 combina-
tions one is transmitted in a consecutive fashion and we compare the energies of these
many combinations to assess the combination with maximum energy. So we can say,

{u1, u2} = arg max
(i,j)∈{(1,2),(3,4),··· ,(N−1,N)}

∑(
‖si‖2

2 + ‖sj‖2
2

)
(5.12)
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In the next section we present the theoretical expression for the probability of error
for N-FSK for the case when only one carrier is transmitted per symbol and when two
carriers are transmitted (i.e., dual tone).

5.4 N-FSK (single carrier)

Let U1 represent the decision variable when first carrier in the FSK symbol was trans-
mitted. So following the procedure of [26, section 14.4.3], we can write

U1 =
[
|
√

She−jφ + n′
1|

]2

(5.13)

where h is the respective diagonalized channel coefficient value (see (5.5). φ is the
respective carrier phase, S is the carrier energy and n′

1 is the noise component. Then
we can write the pdf for the Chi-square distributed random variable U1 as [26],

pU1
(u1) =

u
n1
2
−1

1

σn1

1 2
n1
2 Γ

(
n1

2

)e
−u1

2σ2
1 , n1 = 2, σ2

1 = SL + σ2 (5.14)

Similarly, the decision variable for any other element of s, e.g., Ui : i 6= 1, can be
written as,

Ui = [|n′
i|]2, (5.15)

Its respective pdf can be written as,

pUi
(ui) =

u
n2
2
−1

i

σn2

2 2
n2
2 Γ

(
n2

2

)e
−ui

2σ2
2 , n2 = 2, σ2

2 = σ2 (5.16)

We can write (5.14) and (5.16) in the following simplified form,

pU1
(u1) =

e
−u1

2σ2
1

2σ2
1

(5.17)

pUi
(ui) =

e
−ui

2σ2
2

2σ2
2

(5.18)

The probability of correct decision given that the first carrier was transmitted is,

Pr (Ui<u1|U1 = u1) =

∫ u1

0

pUi
(ui) dui (5.19)

Using (5.18),

Pr (Ui<u1|U1 = u1) =

∫ u1

0

e
−ui

2σ2
2

2σ2
2

dui
(5.20)
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Pr (Ui<u1|U1 = u1) = 1 − e
−u1

2σ2
2 (5.21)

If all the decision variables Ui, where i = 2, · · · , N are identically and independently
distributed as (5.16), so we can write the joint pdf as,

Pr (U2<U1, U3 < U1, · · · , UN < U1) =

[
1 − e

−U1

2σ2
2

]N−1

(5.22)

Probability of error can be calculated by averaging out U1,

Pe = 1 −
∫ ∞

0

[
1 − e

−U1

2σ2
2

]N−1

pU1
(u1) du1

= 1 − 1

2σ2
1

∫ ∞

0

[
1 − e

−U1

2σ2
2

]N−1

e
−u1

2σ2
1 du1

(5.23)

Using [29, Eq. (3.312)], we were able to get (5.23) in the following closed form,

Pe = 1 − σ2
2

σ2
1

B

(
σ2

2

σ2
1

, N

)
(5.24)

where B(., .) is the beta function such that B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt [29].

5.5 N-FSK (double carrier)

If two carriers, si and sj , have been transmitted then according to our detection rule we
need to find any two unique combinations of the vector s which give us the maximum
energy according to (5.11). Probability of error would be the probability of such a
wrong decision. Similar to Section 5.4, our decision variable will have same pdf as
(5.14) with twice its degrees of freedom, i.e.,

pU1
(u1) =

u
n1
2
−1

1

σn1

1 2
n1
2 Γ

(
n1

2

)e
−u1

2σ2
1 , n1 = 4, σ2

1 = SL + σ2 (5.25)

which reduces to the following simplified form,

pU1
(u1) =

u1e
−u1

2σ2
1

4σ4
1

(5.26)

The pdf for the second decision variable Ui will be similar to (5.16) with two times
its degrees of freedom, i.e.,

pUi
(ui) =

u
n2
2
−1

i

σn2

2 2
n2
2 Γ

(
n2

2

)e
−ui

2σ2
2 , n2 = 4, σ2

2 = σ2 (5.27)
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which can be simplified to,

pUi
(ui) =

uie
−ui

2σ2
2

4σ4
2

(5.28)

The probability of correct decision given that the carrier of decision variable U1 were
transmitted is,

Pr (Ui<u1|U1 = u1) =

∫ u1

0

pUi
(ui) dui

=
1

4σ4
2

∫ u1

0

uie
−ui

2σ2
2 dui

(5.29)

Using [29, Eq. (3.351.1)], (5.29) simplifies to,

Pr (Ui<u1|U1 = u1) = 1 − e
−u1

2σ2
2

(
1 +

u1

2σ2
2

)
(5.30)

The decision variable U1, has to be compared with every other two unique combi-
nations of the elements of s. So if all other variables are independently distributed and
there are G such variables then we can write the joint pdf as,

Pr (U2<U1, U3 < U1, · · · , UG < U1) =

[
1 − e

−u1

2σ2
2

(
1 +

u1

2σ2
2

)]G

(5.31)

And the probability of error can be written as,

Pe = 1 −
∫ ∞

0

[
1 − e

−u1

2σ2
2

(
1 +

u1

2σ2
2

)]G

p (u1)du1 (5.32)

Using (5.26), we can write (5.32) as,

Pe = 1 − 1

4σ4
1

∫ ∞

0

[
u1

1

G e−a1u1 − u1
1

G e−a2u1 − u1
G+1

G

2σ2
2

e−a2u1

]G

du1 (5.33)

where,

a1 =
1

2σ2
1G

a2 =

(
1

2σ2
2

+
1

2σ2
1G

) (5.34)

5.6 FSK Simulation

For the simulation of FSK, we consider first, 8-FSK. so vector a consists of 8 components
representing eight subcarriers in frequency domain (so N = 8) and let M = 4 (i.e., 50
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Figure 5.3: 8-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=8, M=4, measurement matrix = random matrix, Reconstruction Algorithm: OMP
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Figure 5.4: 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=16, M =[1:N], measurement matrix = random matrix, Reconstruction Algorithm: OMP
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Figure 5.5: 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=16, M =[1:N], measurement matrix = random matrix, Reconstruction Algorithm: OMP

percent compression). We considered complex Rayleigh fading channel. Noise variance
was calculated according to (5.8). Figure 5.3 shows the simulation results for 40, 000
realizations of noise and channel when 3 channel taps were used. The figure shows three
curves, similar to the case of PPM. One curve with using CS and the other without CS
while the third one is the theoretical FSK curve for a Rayleigh fading channel according
to (5.24). We see that the plot without CS follows the theoretical curve closely. The
difference between the plot with CS and without CS is around three dBs. This a very
good performance with 50 percent compression ratio.

Furthermore, Figure 5.4 and Figure 5.5, show simulation results for probability of
error as a function of compression ratio for 20 and 40 dBs. For this scenario, we
considered N = 16, M = 1 : N and measurement matrix as Gaussian matrix. We see
that for a compression ratio of above 40 percent, results of CS are very close to the
reference plots. In these figures we observe some fluctuations in CS plots. This can be
attributed to the randomness of the Gaussian matrix. To clear this point we do the
same simulations with the only difference of a structured matrix (here, Identity matrix)
as our measurement matrix. Figure 5.6 and Figure 5.7 show the simulation results for
probability of error as a function of compression ratio for 20 and 40 dBs with Identity
measurement matrix. The results show more smoother performance that the Gaussian
matrix. Also, above a compression ratio of 40 percent, CS results are comparable to
the theoretical plot. Therefore, we can say that for single tone FSK, CS gives good
results both for random as well as for structured measurement matrices.

For the dual tone FSK, i.e., the sparsity level is of order 2, the simulation results
are shown in Figure 5.8 and 5.9 with the Gaussian and identity matrix as the measure-
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Figure 5.6: 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=16, M =[1:N], measurement matrix = Identity matrix, Reconstruction Algorithm: OMP
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Figure 5.7: 16-FSK, Single Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=16, M =[1:N], measurement matrix = Identity matrix, Reconstruction Algorithm: OMP
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Figure 5.8: 8-FSK, Double Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=8, M = 6, measurement matrix = Gaussian matrix, Reconstruction Algorithm: OMP

ment matrices respectively. We can see from the simulation results that the Gaussian
matrix is not giving us good performance in comparison to the structured matrix. The
performance of Gaussian matrix is similar to that of PPM for sparsity order of more
than one as explained in previous sections.

5.7 Signal Reconstruction

For signal reconstruction, we have tried a number of different algorithms. These algo-
rithms range from Basis Pursuit (BP) [30] and Orthogonal Matching Pursuit (OMP)
[25] to Matching Pursuit (MP) [33], Flexible Tree-search-Based OMP (FTB-OMP) [34]
and Sequential OMP (Seq-OMP) [35]. Though BP is the optimal choice for signal
recovery but we found OMP feasible from a practical point of view. BP is more pow-
erful than OMP in situations where the measurement matrices used are Gaussian or
Bernoulli matrices [25]. The Greedy pursuit (i.e., OMP) is advantageous in terms of
computational cost especially when the signal vector is highly sparse [25]. OMP did
better than BP, in terms of computational time, for our simulations (the results can
be seen in Figure 4.6 and Figure 4.7). Also OMP is easier to implement than BP
[25]. Furthermore, the recovery performance of OMP is better than MP, FTB-OMP
and Seq-OMP for our system setup. Here we briefly describe the our slightly modified
OMP.

The signal is approximated by projecting the received signal onto its basis func-
tions. OMP is an improved form of MP, in the sense that the projections onto basis
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Figure 5.9: 8-FSK, Double Carrier, Channel-taps (L) = 3, Rayleigh fading channel with noise,
N=8, M = 6, measurement matrix = Identity matrix, Reconstruction Algorithm: OMP

functions are optimized. The received signal is projected onto a basis matrix. The aim
is to find the basis vectors which best represent the signal. A set of basis vectors is
selected based on the correlation with the signal. The basis vector which gives the least
residual becomes part of the signal representation. Every new selection depends on the
previously selected basis functions as well. Every basis vector is selected once. This
process is iterated a number of times as per requirement for the algorithm to converge.

In our case, the basis matrix used for reconstruction is the product of the sparsity
matrix and the measurement matrix i.e. ΘM×N . So we can write it as;

Θ = ΦΨ (5.35)

The [M × 1] dimensional vectors, θi where i = 1, 2, 3, · · · , N , constitute the matrix Θ,
i.e.,

Θ = [ θ1 θ2 θ3 · · · θN ] (5.36)

Let Ω be the set of vectors which best represent the signal. The set will have a new
index of the suitable vector with every new iteration. Also Ω is an empty set at the
time of initialization, i.e., Ω0 = {∅}.

Now we present the steps involved in the reconstruction algorithm;

1. The received signal y itself is considered as the initial residual error r. i.e. r0 = y
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2. At the k-th iteration rk is projected onto all columns of Θ and the maximum
correlation value is selected to shortlist a number of basis vectors.;

ck+1 = max|〈rk, θi〉| : i = 1, 2, 3, · · · , N − k (5.37)

Let,

Λk+1 = {i : |〈rk, θi〉| ≥ αck+1; i = 1, 2, 3, · · · , N − k } (5.38)

where the set Λk+1 contains the indices of the candidate basis vectors depending
on the value of α which ranges from 0 to 1.

3. Among the vectors indiced by Λk+1, the best candidate is the one which (in union
with the already selected most suitable basis functions Ωk) gives the minimum
residual after being projected upon by the current residual;

λk+1 = arg min
λ∈Λ

{
‖rk − Pspan{θt∪λ:t∈Ωk}r‖2

}
(5.39)

4. λk+1 is made part of Ωk so;

Ωk+1 = Ωk ∪ λk+1 (5.40)

5. The residual is updated;

rk+1 = y −Pspan{θt:t∈Ωk+1}y (5.41)

6. We remove vector θk+1 from the matrix Θ and record its actual postion in the
original basis matrix. Then repeat from step 2 and continue till a certain level of
residual error (which is a fraction of the received signal energy) and/or maximum
no. of allowed iterations is achieved.

7. In the end the signal is approximated. The recorded positions of the used basis
functions correspond to the components of s that have to be assigned values.
These values are generated by the following equation.

z = Θ†y (5.42)

where Θ represents the reduced form of matrix Θ, containing vectors indiced by
Ω. Also, Θ† represents Moore-Penrose pseudo inverse of Θ, i.e.,

Θ† =
(
ΘHΘ

)−1
ΘH . (5.43)
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5.8 Conclusions

In this chapter we focused on the utilization of CS for FSK modulated signals. We
saw that CS gives very good results for FSK modulated signals. We presented the
FSK signal models for single-carrier and dual-carrier cases along with their theoretical
expressions for the probability of error. Our theoretical analysis portrays the exact
behavior of our signal models. Furthermore, the role of measurement matrix became
vivid especially for the case of dual-carrier FSK. Overall, CS is still valid for the case
of FSK. Finally we presented our reconstruction algorithm.

37



38



Analysis of CS 6
I

n this chapter we present an analysis of CS for the PPM and FSK signals.

6.1 CS Analysis

We presented different scenarios for the application of CS for PPM and FSK signal.
We used both random and structured measurement matrices. We used lower values
of N (i.e., 8, 16) and hence even lower values of linear measurements M . We found
that for the sparsity of order one (i.e., K = 1), both kinds of measurement matrices
performed well. When the order of sparsity was increased from one to two or three,
the random matrices performed poorly. Even then, the structured matrices had still
acceptable results. This phenomenon points to the fact that the random matrices do
not fulfill the basic requirements of RIP and/or non coherence.

For incoherence, it is required that the rows (φk) of the measurement matrix Φ
should not be able to sparsely represent the columns (ψj) of the basis matrix Ψ.
In other words, we can say that the rows of the measurement matrix should not be
concentrated but rather ’spread out’ in the Ψ domain [21]. If µ(Θ) represents the
mutual coherence between Φ and Ψ then, following [21], we can write,

µ(Θ) = max
k,j

| 〈φk,ψj〉 | : Θ = ΦΨ (6.1)

Lack of incoherence can have direct impact upon the required number of measure-
ments [21]. Furthermore, we require that the measurement matrix should be ideally
orthonormal. Since the rows of measurement matrix are much less than the columns,
this may not be possible. So Restricted Isometry Property (RIP) gives us a less strict
condition. According to (2.3), the measurement matrix should not amplify the signal
vector beyond a specific value related to δK (where δK is determined for a specific
sparsity order).

It has been shown in [2], [1] and [20] that given the number of measurement as
in (2.5), the Gaussian matrix fulfills RIP with high probability. Recently, [36] has
determined that for a Gaussian measurement matrix to have sufficient RIP, δ2K <√

2 − 1 in (2.3). But the most important thing is that the number of measurements
in (2.5) are sufficient for the ’asymptotic’ case. Where the value of N ranges from
several hundreds to several thousands. Even then these measurements are not the
most optimum value but rather sufficient for good reconstruction. We carried out
simulations to prove this point and we found it to hold true (see Figure 6.1).

To put the above conditions plainly, we require at least two conditions to be fulfilled
for a measurement matrix to fully recover the sparse vector.
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Figure 6.1: 2-PPM, Quasi-Synchronous, Channel-taps (L) = 3, Sparsity (K) = 3, Gaussian
fading channel with noise, M =N/2, measurement matrix = random matrix, Reconstruction
Algorithm: OMP

1. Every collection of the K columns of the measurement matrix must form a full
rank matrix to be invertible so that we can get K-nonzero values.

2. Every K columns of measurement matrix must span a different subspace than the
rest of the columns so that the positions of the K nonzero elements are known.

We can see that the above two properties are readily fullfilled by both Fourier and
Identity (structured) matrices by selecting at least their first M rows. Whereas, for
Gaussian matrix to fulfill these properties, it has to have high dimensional matrix.
Though Gaussian matrix has many properties which made it an element of choice
for researchers but these properties are better utilized in the asymptotic sense for
Compressed Sensing.

The performance of CS, is heavily dependent on the measurement matrix used. RIP
is one way of characterizing the measurement matrix as a sufficient condition. There
are other ways to describe the conditions for the measurement matrix so that (2.4) can
give sparse approximation with an overwhelming probability. In [6], a K-neighborly
polytope characterization for the measurement matrix is given. Similarly, in [11], a null-
space characterization of the measurement matrix is given. Both these characterizations
are sufficient and necessary conditions and assume N −→ ∞. Similarly, a geometric
functional analysis for the measurement matrices has been done in [7]. A comparison
of the different methods of analysis for the random measurement matrices has been
carried out in [5]. For the sake of insight and then their relation to our proposition, we
define below some new notations.
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Figure 6.2: Lower bounds on sparsity, [5] (black for [6], red for [7] and green for [5])

Let ρ = K
M

and ζ = M
N

(i.e., the compression ratio). Furthermore, let ρ(ζ) be a
function of the compression ratio. Then, in terms of [6], [7] and [5], we can write a
generalized expression for the bound on ρ, so that (2.4) can recover the sparse signal
with high probability,

ρ ≤ (1 − ǫ)ρ(ζ) (6.2)

where ǫ > 0 is a small constant. In [5], a graphical description for the bounds on ρ as
a function of ζ for all the above cited methods has been given (as shown in Figure 6.2
where the variable δ stands for ζ in our case). There we see that the bounds given by
[7] and [5] are the tightest and guarantee better results than [6].

Here we describe some numerical results relating to these bounds for clear intuition.
From the discussion above, we can write,

K 6 ρM = ρζN = (1 − ǫ)ρ(ζ)ζN. (6.3)

(6.3) shows that the number of nonzero elements that can be recovered, grow linearly
with N for a fixed compression ratio (while N −→ ∞). This relation can indirectly
be interpreted in terms of the minimum value of N needed to guarantee the sparse
recovery of order K with high probability.

Considering ǫ = 0.011 and ζ = 0.5, according to [6], the relation between K and
N can be calculated as, K 6 (0.044708)N . Similarly, this relationship, according to
[7], amounts to K 6 (0.01483)N and [11] puts it at K 6 (0.0016)N . We tabulate
below the exact numerical values of N for a required order of sparsity K for the two
extreme bounds. Tables 6.1 and 6.2 show these results. From Table 6.2, it is clear
that for a sparsity of order 3, N should be greater than 67. These results vindicate our
proposition regarding the dimensions of the random measurement matrices. Figure 6.1
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shows the effect of increasing values of N on the probability of error which in turn is
an indicator for the recoverability of CS with the Gaussian measurement matrix.

Table 6.1: Sparsity according to [11]
K = 0.0016N

K N

1 625
3 1875
5 3125

Table 6.2: Sparsity according to [6]

K = 0.044708N

K N

1 22
3 67
5 112

6.2 Conclusions

In this chapter we analyzed the performance of CS in terms of sparsity of the signals.
We saw that the compression ratio is not an enough parameter for the true performance
of CS. It is also vital that the both M and N should be asymptotic in nature, especially
for the random measurement matrices to work. In the literature, this aspect has not
been really emphasized to its true degree of import.
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CS for UWB 7
I

n this chapter we shall analyse the applicability of CS for Ultra Wide Band (UWB)
based on PPM. First, we present the signal models, theoretical expressions, a com-
parison of our models with [3]. Secondly, we shall present the application of CS to

PPM based UWB.

7.1 Signal Model

We use 2-PPM for our UWB transmitted signal. Here we consider a single-user trans-
mission. We shall use Gaussian as well as, more importantly, IEEE 802.15.3a [12]
channel models. Now we mention some of the notations that will be used in our model.
Some of these have been borrowed from [3]. The PPM signal interval is denoted by
Tsig. If one symbol contains multiple frames (i.e. Nf), each with frame time Tf , then
Tsig = NfTf . So in this case one signal interval contains multiple copies of the same
symbol. If Nf = 1 then Tsig = Tf . h(t) represents the channel impulse response and
Tmds represents the maximum delay spread of the channel. Figure 7.1 gives a view of
a PPM symbol consisting of two frames.

T


T
mds
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T
f
 T
f


...


t


T
sig


Figure 7.1: 2-PPM UWB, Multiple frames Symbol, Nf = 2
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Our Eb/N0 is defined as below.

Eb

N0
=

Es

σ2/B

while

Es = NfEh

(7.1)

Es is the symbol energy (which in our case is equal to the bit energy i.e., Eb), Eh is the
channel energy B is the receiver bandwidth and σ2 is the noise variance. The channel
energy can be defined as [3],

Eh =

∫ +∞

−∞
h2(t)dt

≃
∫ ∆

0

h2(t)dt

(7.2)

where ∆ is the integration interval. It is our design parameter and ∆ = LT . We have
assumed that the channel delay spread Tmds is less than the pulse interval QT := Tf/2
(see Figure 7.1), but in the case where there is no perfect channel synchronization, the
integration interval can make the difference. Its prudent choice is important to capture
actual signal energy while keeping excessive noise accumulation at bay.

The IEEE 802.15.3a channel model [12] is based on the S-V model [37]. It can
briefly be described as follows (for one realization),

h(t) = X

I∑

i=0

K∑

k=0

αk,i δ(t − Ti − τk,i)

Pr(Ti|Ti−1) = Λ exp[−Λ(Ti − Ti−1)], i > 0

Pr(τk,l|τ(k−1),i) = λ exp[τ(k) − τ(k−1),i], k > 0

(7.3)

where αk,i is the multipath gain coefficient, Ti is the delay of the i-th cluster, τ(k),i is the
delay of k-th multipath component in relation to the i-th cluster arrival time Ti and X
caters for the shadowing effect which is distributed log-normally. Λ is the cluster arrival
rate and λ is the ray arrival rate within each cluster. IEEE 802.15.3a considers four
channel models i.e., CM1-CM4. We shall use CM1 and CM3 which correspond to Line
of Sight (LOS) and Non Line of Sight (NLOS) signal transmission situations. Given Γ
and γ as the cluster and ray decay factors respectively, Table 7.1 briefly describes the
values for channel parameters.

Table 7.1: IEEE Channel Parameters [12]
Model Parameters CM 1 CM 3

Λ [1/nsec] 0.0233 0.0667
λ [1/nsec] 2.5 2.1
Γ 7.1 14.00
γ 4.3 7.9
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Finally the pulse that we use for the purpose of simulation is the second derivative of
a Guassian pulse with unit energy. We construct the pulse such that the pulse duration
is 1 nsec. The mathematical expression for the second derivative of a Gaussian pulse
is given below,

p(t) = P
−2

τ ′

(
1 − 2t2

τ ′2

)
exp

[−t2

τ ′2

]

s.t.

P = τ ′

√
τ ′
E

3
√

π/2

(7.4)

where E is the pulse energy as described in [27] (it has been taken as unity) and τ ′ is
the time scaling factor (it has been adjusted so that the complete pulse is contained
within 1 nsec).

7.2 Signal Model according to Mengali et al [3]

In [3], an M-PPM noncoherent receiver for UWB has been presented. The signal is
transmitted in multiple frames. The motivation for a multiple frame transmission has
been attributed to the FCC limits on the signal power spectral density. Repeating a
pulse Nf times, reduces the energy of an individual pulse for a constant symbol energy.

Since the UWB received pulses do not have a fixed shape and are a result of a
superposition of many multipath components, the received waveform has the following
form,

r(t) =

∞∑

k=−∞
h(t − kTf − akTf/M− τ) + n(t) (7.5)

where h(t) is the unknown channel impulse response (only the maximum delay spread
is known which is equal to Tmds). ak is the data symbol taken from the alphabet
{0, 1, · · · ,M− 1} (M = 2 in the case of 2-PPM). n(t) is the white Gaussian noise
with power spectral density N0/2 in the interval −B ≤ f ≤ B (B is the bandwidth of
the rectangular low-pass filter at the receiver). τ is the time offset between the transmit
and receive clocks.

If the symbol is transmitted in Nf frames then the received signal for the k-th
symbol, with full synchronization, can be written as,

r(t) =

Nf−1∑

j=0

h(t − (j + kNf )Tf − akTf/M) + n(t) (7.6)

For the sampled version of (7.6) with sampling interval T := 1/2B, r[i] := r(iT ),
n[i] := n(iT ), all samples are stacked into vectors r(j) and n(j). Assuming that the
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channel remains fixed during the symbol, (7.6) can be written in the following vector
form,

r(j) = u(ak,h) + n(j) (7.7)

where u(ak,h) is the concatenation of M subvectors. For the case of 2-PPM, it is a
concatenation of two vectors where each vector will have half of the samples of one
frame. If the received signal vectors corresponding to each frame are stacked in one big
vector r (i.e., r := [ r(0)T r(1)T · · · r(Nf−1)T ]T ) then the pdf of the received signal can
be written as,

p(r|ak,h) = C exp




− 1

2σ2

Nf−1∑

j=0

‖r(j) − u(ak,h)‖2
2




 (7.8)

where C is a positive constant and σ2
n = N0B is noise variance. Using generalized maxi-

mum likelihood (GML) criterion, (7.8) can be maximized by minimizing its summation
term which equals the following cost function,

Λ(ak,h) =

Nf−1∑

j=0

L−1∑

l=0

(h2
l − 2hlr[(j + kNf )MQ + akQ + l]) (7.9)

where Q is the oversampling term and MQ = Tf/T . Next, varying h while keeping ak

fixed,

hl =
1

Nf

Nf−1∑

j=0

r[(j + kNf )MQ + akQ + l]) : 0 ≤ l ≤ L − 1 (7.10)

which leads to their decision variable, i.e.,

âk = arg max
m∈[0,M−1]

Nf−1∑

j=0

ik,j,m+L−1∑

i=ik,j,m

r2[i] (7.11)

where ik,j,m := [(j + kNf)M + m]Q is the first sample in the m-th slot of the j-th
frame. (7.11) can be interpreted as maximizing the sum of the squares of the samples
(of the received signal) at every pulse location over all frames. We shall explore in next
sections if this conclusion can be derived from (7.9) and (7.10). Furthermore, using
a Gaussian approximation of the decision variable they have suggested the following
theoretical expression for the probability of error,

Pe = Q




[
2

(
N0

Es

)
+ 2NfB∆

(
N0

Es

)2
]−1/2



 (7.12)
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Figure 7.2: 2-PPM UWB, BER performance for Multiple frames for CM1, for large integration
interval

7.2.1 Simulation Results of [3]

Figures 7.2-7.5 show the simulation results according to the methodology of [3] with
different number of frames both for the CM1 and CM3 channel models. All these four
figures show simulation results for one, ten and twenty frames respectively. The frame
time Tf has been considered as 100 nsec for these simulations which is sufficient to
analyse the behavior of this signal model. So each pulse interval QT is at most 50
nsec. The plots depict results of signal simulation as well as the Q-function according
to (7.12).

Figure 7.2 shows the multi-frame simulation results for CM1 with an integration
interval (∆) of 20 nsec. This corresponds to 40 channel taps (L) with the receiver
bandwidth (B) of 1 GHz and a sampling interval (T ) of 0.5 nsec. Figure 7.3 shows
the multi-frame simulation results for CM3 with and integration interval (∆) of 45
nsec. This corresponds to 180 channel taps (L) with the receiver bandwidth (B) of
2 GHz and sampling interval (T ) of 0.25 nsec. We see that in both of these figures,
simulation closely follows the Q-function. But it is also very suspicious that the overall
BER performance degrades with an increasing number of frames.

Figure 7.4 shows the multi-frame simulation results for CM1 with an integration
interval (∆) of 10 nsec. This corresponds to 20 channel taps (L) with the receiver
bandwidth (B) of 1 GHz and sampling interval (T ) of 0.5 nsec. We see that the simu-
lation deviates from the Q-function and this deviation keeps increasing with increasing
number of frames. Figure 7.5 shows the multi-frame simulation results for CM3 with
and integration interval (∆) of 40 nsec. This corresponds to 80 channel taps (L) with
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Figure 7.3: 2-PPM UWB, BER performance for Multiple frames for CM3, for large integration
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Figure 7.4: 2-PPM UWB, BER performance for Multiple frames for CM1, for small integra-
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Figure 7.5: 2-PPM UWB, BER performance for Multiple frames for CM3, for small integra-
tion interval

the receiver bandwidth (B) of 1 GHz and sampling interval (T ) of 0.5 nsec. We see that
the simulation deviates from the Q-function which is even more wider than the case
of CM1. Furthermore, the overall BER performance is also degraded with increasing
number of frames.

These simulation results show,

1. The Q-function assumption of (7.12) is valid only for the case of a large integration
interval when a large number of channel components are available.

2. The Q-function assumption of (7.12) is not valid for a small integration interval
and the deviation from the actual performance is larger for CM3 than for CM1.

3. The overall BER performance degrades with an increasing number of frames which
is a questionable result.

In the next section we shall analyse the model of [3] and provide our suggestions
and/or improvements in this regard.

7.3 Analysis of the Signal Model of [3]

We now analyze the detection and decision model of [3], especially from (7.8) to (7.11).
We carry out the in between steps of these equations to be better able to assess the
conclusions reached by [3] in justification of the multi-frame methodology.
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Starting from the maximum likelihood function, it is clear that to maximize (7.8),
we need to minimize the summation term. The cost function can thus be written as,

Λ(ak,h) =

Nf−1∑

j=0

‖r(j) − u(ak,h)‖2
2

=

Nf−1∑

j=0

L−1∑

l=0

(h2
l − 2hlr[(j + kNf )MQ + akQ + l])

=

Nf−1∑

j=0

L−1∑

l=0

(h2
l − 2hlr[Pj,l]) (7.13)

where Pj,l = (j + kNf )MQ + akQ + l for notational simplicity. Now taking derivative
w.r.t h and keeping ak fixed we obtain,

∂Λ(ak,h)

∂h
=

∂

∂h






Nf−1∑

j=0

L−1∑

l=0

(h2
l − 2hlr[Pj,l])




 (7.14)

For the l-th component of h we can write (7.14) as,

∂Λ(ak, hl)

∂hl
=

∂

∂hl






Nf−1∑

j=0

(h2
l − 2hlr[Pj,l])




 (7.15)

Now minimizing the cost function would mean setting its gradient w.r.t. hl to zero,
i.e.,

0 =

Nf−1∑

j=0

{
(2ĥl − 2r[Pj,l])

}

Nf−1∑

j=0

ĥl =

Nf−1∑

j=0

r[Pj,l]

Nf ĥl =

Nf−1∑

j=0

r[Pj,l]

ĥl =
1

Nf

Nf−1∑

j=0

r[Pj,l] (7.16)

where ĥl is the estimate for hl. Rearranging (7.13) we obtain,
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Λ(ak,h) =

Nf−1∑

j=0

L−1∑

l=0

h2
l −

Nf−1∑

j=0

L−1∑

l=0

2hlr[Pj,l]

=

Nf−1∑

j=0

L−1∑

l=0

h2
l −

L−1∑

l=0

2hl

Nf−1∑

j=0

r[Pj,l] (7.17)

Now substituting (7.16) in (7.17) we get,

Λ(ak, ĥ) =

Nf−1∑

j=0

L−1∑

l=0

ĥ2
l −

L−1∑

l=0

2ĥl Nf ĥl

=

Nf−1∑

j=0

L−1∑

l=0

ĥ2
l − 2Nf

L−1∑

l=0

ĥ2
l

=

Nf−1∑

j=0

L−1∑

l=0

ĥ2
l − 2

Nf−1∑

j=0

L−1∑

l=0

ĥ2
l

= −
Nf−1∑

j=0

L−1∑

l=0

ĥ2
l (7.18)

So minimizing the cost function would mean,

min
ak

Λ(ak, ĥ) = max
ak

Nf−1∑

j=0

L−1∑

l=0

ĥ2
l

= max
ak

Nf

L−1∑

l=0

ĥ2
l (7.19)

From (7.19), it is clear that the decision criterion can be in fact independent of the
number of frames. Since each frame has a similar channel response, the only variation
possible is because of the noise. So if we take an average channel response for all the
frames then the performance will be similar whether their is one frame or multiple
frames. Also now if we replace ĥl in (7.19) by its value from (7.16), we can write,

min
ak

Λ(ak, ĥ) = max
ak

Nf

L−1∑

l=0



 1

Nf

Nf−1∑

j=0

r[Pj,l]




2

= max
ak

Nf

L−1∑

l=0



 1

Nf

Nf−1∑

j=0

r[(j + kNf)MQ + akQ + l]




2

(7.20)
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Figure 7.6: 2-PPM UWB, BER performance using (??) on Multiple frames

So from (7.20), we can see that if a decision on âk is made such that first we obtain
the signal by taking an average over all the frames and then apply energy detection
with respect to each pulse position to find the maximum, our performanc will be better
than (7.11).

We can validate our conclusion through simulations as well. Figure 7.6 shows the
simulation result for CM1 with an integration interval (∆) of 20 nsec. This corresponds
to 40 channel taps (L) with a receiver bandwidth (B) of 1 GHz and a sampling interval
(T ) of 0.5 nsec. We can see that though the number of frames per PPM symbol varies
from 1 to 20, the performance is similar to the case of a single frame per symbol.
Similarly, Table 7.2 shows the simulated BER values for the case Nf = 1, 10, 20. For
the Eb/N0 range [−10 : 2 : +10], we see very small changes in performance for a single
frame per symbol and multiple frames per symbol.

Given these conclusions we shall, from now on, use only signals with a single frame
per symbol and build our CS theory thereon. Our results for the application of CS on
one frame may indirectly reflect its effect on multi-frame models as well.

7.4 Our Theoretical Model

As we can see from Figures 7.2-7.5 that the approximation of (7.12) is not valid for all
situations of signal integration interval. Therefore we present our theoretical model to
provide exact analysis of signal detection.

Since we are using 2-PPM signal, so we have two decision variables. The first
decision variable will represent the energy contained in the signal duration of length
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Table 7.2: Effect of Averaging on Multiframe Signal Model
Eb/N0 [dB] Nf = 1 Nf = 10 Nf = 20

−10 0.4923 0.5017 0.4969
−08 0.4891 0.4971 0.4935
−06 0.4838 0.4916 0.4884
−04 0.4749 0.4820 0.4801
−02 0.4603 0.4687 0.4679
00 0.4385 0.4774 0.4461

+02 0.4040 0.4148 0.4094
+04 0.3509 0.3619 0.3582
+06 0.2767 0.2982 0.2824
+08 0.1851 0.1966 0.1930
+10 0.0917 0.0965 0.0959

LT nsec (i.e., ∆, the integration interval). This can be represented as following,

U1 =

L∑

i=1

|
√

Shi + ni|
2

(7.21)

The second decision variable will have the energy contained in the second pulse
interval position (see Figure 4.1 and 7.1). So we can write,

U2 =

N
2

+L∑

i= N
2

+1

|ni|2. (7.22)

We consider the channel modles according to CM1 and CM2. As the noise is zero
mean white Gaussian, U1 is a non-central chi-square distributed random variable. The
channel components in (7.21) cause its noncentrality. The noncentrality parameter is
given by,

s2 =

L∑

i=1

Sh2
i , (7.23)

and its pdf is given by [26] as,

pU1
(u1) =

1

2σ2

(u1

s2

)(n1−2)/4

exp

[−(s2 + u1)

2σ2

]

× In1/2−1

(√
u1

s

σ2

)
: n1 = L , u1 > 0

(7.24)

with n1 degrees of freedom. Iν(z) is the modified Bessel function of the first kind as
defined in [29, Eq. (8.445)], i.e.,

Iν (z) =

∞∑

k=0

1

k! Γ(ν + k + 1)

(z

2

)ν+2k

, z ≥ 0 (7.25)
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U2 is a central chi-square distributed random variable since the only parameter
involved is noise which is zero mean. The pdf of U2 is given by [26] as,

pU2
(u2) =

1

σn2 2
n2
2 Γ

(
n2

2

) u
(n2−2)/2
2 exp

[−u2

2σ2

]
: n2 = L , u2 > 0 (7.26)

with n2 degrees of freedom.
To calculate the probability of error, we first consider a converse case. That is to

say, we first find the probability that the energy due to only noise is less than the signal
interval. So the probability of such a correct decision given that pulse is transmitted
in the first half of the symbol, can be written as,

Pr (U2<u1|U1 = u1) =

∫ u1

0

pU2
(u2) du2

=

∫ u1

0

1

σn2 2
n2
2 Γ

(
n2

2

) u
(n2−2)/2
2 exp

[−u2

2σ2

] (7.27)

which can be simplified to,

Pr (U2<u1|U1 = u1) =
γ(n2

2
, u1

2σ2 )

Γ(n2

2
)

. (7.28)

where γ(., .) is the lower-incomplete gamma function.
Since U1 is a random variable, we need to average it out in (7.28) . Thus the

probability of error is;

Pe = 1 −
∫ ∞

0

Pr (U2<u1|U1 = u1)pU1
(u1)du1

= 1 −
∫ ∞

0

γ(n2

2
, u1

2σ2 )

Γ(n2

2
)

pU1
(u1)du1

(7.29)

which simplifies to,

Pe = 1 − 1

2σ2Γ(n2

2
)s(n1−2)/2
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2σ2

] ∫ ∞

0

γ
(n2

2
,

u1
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)
u

(n1−2)/4
1

× exp

[−u1

2σ2

]
In1/2−1

(√
u1

s

σ2

)
du1.

(7.30)

We can see that (7.30) is not in a closed form therefore it has to be computed numerically
which is computationally intensive process. We carried it out in Matlab.

7.4.1 Simulation results for our Theoretical Model

Figures 7.7 and 7.8 show the simulation results of our theoretical model for two scenarios
based on CM1. In case one, the integration interval is small i.e., ∆ = 10 nsec, which
corresponds to 20 channel taps (L) with a receiver bandwidth (B) of 1 GHz and a
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Figure 7.7: 2-PPM UWB, Comparison with small integration interval

sampling interval (T ) of 0.5 nsec. In case two, the integration interval is large i.e.,
∆ = 20 nsec, which corresponds to 80 channel taps (L) with a receiver bandwidth (B)
of 2 GHz and a sampling interval (T ) of 0.25 nsec.

In both cases we can see that our theoretical model is exact and it follows the
simulation results very closely, whereas the Q-function proposed by [3] falls short of the
exact values in the first case. In the second case, the Q-function is comparable with
our theoretical model.

7.5 CS for UWB

Now we apply our CS theory as presented in Section 4.2. The major factor for CS
to work is the sparsity of the signal. For the purpose of simulation, we consider first
the case of a CM1 channel model. We take an integration interval of 10 nsec. This
corresponds to 20 channel taps (L) with a receiver bandwidth (B) of 1 GHz and a
sampling interval (T ) of 0.5 nsec. So for a frame interval (Tf ) of 100 nsec, the total
signal vector has a size of N = 200. Using a compression ratio of 0.5, M = 100. For a
given sparsity, our previous analysis tells us that the total signal vector size N must be
sufficiently large for the Gaussian matrix to work as the measurement and consequently
as reconstruction matrix. We see in this first case, that for a sparsity order K = 20,
according to Table 6.1, N = 12500, and according to Table 6.2, N = 448, as a necessary
condition for the Gaussian matrix to work as a feasible measurement matrix. But we see
that in our case the available value of N falls short of both these bounds. Nonetheless,
in terms of simulations, large values of N can put an intensive pressure on software like
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Figure 7.8: 2-PPM UWB, Comparison with large integration interval
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Figure 7.9: 2-PPM UWB, CS with reconstruction algorithm = OMP, measurement matrix =
DFT matrix

Matlab which we are using for our simulation purpose, although in practice, this does
not play a role.
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Figure 7.10: 2-PPM UWB, CS with reconstruction algorithm = OMP, Effect of M/N varia-
tions

Keeping in mind the above discussion, we chose to use Fourier matrix as our mea-
surement matrix. Figure 7.9 shows the simulation results of the first case. The plots
shown correspond to the Q-function, our theoretical model, simulation results without
CS and the one after applying CS and then reconstructing thereof. We can see from
the Figure,

• Our theoretical plot exactly follows the simulation results.

• The Q-function falls short of the simulation results.

• The application of CS has given good results. The difference between the per-
formance of CS and the theoretical one is around 2 dB at a bit error rate of
10−3.

So we are sampling at half of the Nyquist rate (since the compression ratio is 0.5)
but the performance of CS is comparable with the Nyquist rate performance with a
margin of loss of only around 2 dB. These are quite promising results. Figure 7.10
displays the effect of increasing the value of M on the performance of CS for an Eb/N0

of 10 dB. We see that the CS curve closes on the references curves very quickly as the
compression ration (i.e., M/N) increases.

Furthermore, Figure 7.11 shows the result of applying CS on UWB for the case
when Gaussian matrix is used as the measurement matrix, rest of the conditions are
similar to Figure 7.9. Also Figure 7.12 shows the effects of varying compression ratio
on BER performance similar to Figure 7.10 with the only difference of Gaussian matrix
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Figure 7.11: 2-PPM UWB, CS with reconstruction algorithm = OMP, measurement matrix
= Gaussian matrix

as the measurement matrix. We can deduce from these figures that the structured
matrix is performing better than the random matrix as the measurement matrix which
vindicates our former claim on this issue as presented in section 6.1.

7.6 CS for UWB with Multiple Access

Multiple access in UWB was pioneered by Scholtz (e.g., [38]). Since then, alot of
progress has been made in realizing the vast potential of UWB for multiple users
through time hopping and spread spectrum (e.g., [39, 40, 41, 42]). The capacity of
multiple access in UWB is limited by the multiple users interference (MUI), multipath
channels and noise. In this section we see how CS would work with UWB when we
want to access a certain user among many users.

7.6.1 Signal Model

We consider binary PPM for time hopping spread spectrum. We transmit one symbol
in Nf frames, each frame of duration Tf . Each frame is divided into Nc chips, with
Tc as the duration of the chip. The transmitted pulse is position modulated within
the chip between two positions of duration Tm = Tc/2 each. So each transmitted bit
can be represented by these two positions, represented by b (fist position for bit 0 (i.e.,
b = 0)and second in case of bit 1 (i.e., b = 1)). We also assume that the maximum
channel delay spread Tmds :< Tc/2. The time hopping code cj can take values between 0
and Nc−1 at the most and the code is repeated after NfTf for each user. Furthermore,
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Figure 7.12: 2-PPM UWB, CS with reconstruction algorithm = OMP, Effect of M/N varia-
tions, measurement matrix = Gaussian matrix

the singal is amplitude modulated as a spreading code sequence i.e., dj :∈ {±1}. So we
can write our transmitted UWB signal in a multiple access environment for the k-th
user as,

a
(k)
MA(t) =

Nf−1∑

j=0

d
(k)
j p

(
t − jTf − c

(k)
j Tc − bkTm

)
(7.31)

where p(t) is the second derivative of a Gaussian pulse as described in (7.4).

For detection, we again opt for noncoherent energy detection. We also assume that
we are synchronized with the start of a symbol. Since in multiple access scheme signals
from different users will reach the receiver for the k-th user, there can be small delay of
arrival between different signals depending upon their distance and relative moment.
For our case we assume this difference to be negligible. Furthermore, since the time
hopping code and spreading sequence of a particular user is known at the receiver, the
desired user’s signal can be located. Then by using the spreading code, the averaging
process would ouster the undesirable users. Perfect orthogonal codes can be the best
choice but in our simulation we did not use completely orthogonal codes.

So the detection process first consists of despreading then CS is applied and the
received signal is sampled at the lower rate. Then the demodulation process is carried
on the reconstructed signal to make the final decision.
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Figure 7.13: UWB symbol with Multiple Access

7.6.2 CS Simulations for Multiple Access UWB

Now we present the results of our simulations for CS with UWB in presence of multiple
users interference, multiple paths and Gaussian noise.

We assume three users, i.e, Nu = 3, the frame interval Tf = 150 nsec, number of
frames per symbol Nf = 4, number of chips per frame Nc = 3 with a chip interval
Tc = 50 nsec. The time hopping codes for each user and their respective amplitude
codes are given in the form of matrices below with rows representing the users and
columns respective frames,

c =




1 3 1 3
3 3 3 2
2 3 2 1



 , (7.32)

d =




+1 −1 +1 −1
+1 +1 +1 +1
−1 +1 −1 +1



 . (7.33)

Figure 7.13 shows the received UWB symbol for multiple access with a channel
spread of 10 nsec which corresponds to L = 20 with a receiver filter bandwidth (B)
of 1 GHz and a sampling interval (T ) of 0.5 nsec. The signal vector on which CS
has to work consists of 100 samples (i.e., N). We take the number of measurements
M to be 50. Given a sparsity of order K = 20, Figure 7.14 shows the simulation
results for CS on UWB with multiple access. We can see from the figure that CS is
performing reasonably well. It also provides, for the sake of comparison, simulation
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results for the case of a single user. It can be seen that on the whole single user has
better performance because of the absence of any interference. But the performance
of CS is getting worse in case of multi-user in comparison to the case of a single user.
The difference between the performance results with and without CS is around 2 dB
in case of a single user and it is around 4 dB in case of the multiple users. The reason
can be the increase in the order of sparsity because of multiple interference. So we can
conclude that as the multiple users interference increases, CS may not be able to give
a very good performance.

7.7 Conclusions

In this chapter we provided an application of PPM modulated signals. UWB signals are
considered to be the most intensive in terms of sampling rates since the bandwidth is too
large. We have successfully presented our solution through CS. Firstly, We elaborated
upon the inconsistencies of the PPM based UWB model of [3] and then presented our
improved theoretical model. Then we have implemented our CS methodology with
achieving good results. We have also shown that CS can work even in the case of
multiple access. We have seen here as well that the performance of CS is influenced by
the level of sparsity of the signal.
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Conclusions and Future Work 8
I

n this chapter we conclude our work briefly and provide some possible options for
future research.

8.1 Conclusions

In this thesis we have explored CS for two major wideband modulation schemes, namely
PPM and FSK. We have utilized CS to reduce sampling rates for these signals. We
explicitly explored the effect of CS on UWB signals. We have provided theoretical
analysis for these schemes and simulations thereof. We have come out with a detailed
analysis of the scenarios where CS can be utilized to its maximum potential. We have
contributed to the understanding of measurement matrices in terms of their structures
and utilization. We have highlighted upon the bounds on the order of sparsity for better
reconstruction of the signals. We have also given the applicability of CS for UWB
signals. We have also provided the effect of multiuser interference on the performance
of CS for UWB signals. We have considered non-coherent detection to reduce overall
system complexity.

Chapter 3 provides the general signal model for FSK and PPM signals. It gives
a unified approach to the description of multipath channel. It also gives the general
CS model applied on wideband signals on the receiver side. In chapter 4 we have
provided the application of CS on PPM modulated signals. We considered quasi-
synchronous and fully-synchronous PPM signals. We have presented the theoretical
analysis of PPM signals for both these cases. We present the important issues relating
to the application of CS for PPM. These issues relate to the sparsity of the signals
and also the measurement matrices. We found that the structured matrices contribute
as good measurement matrices even when the signal is not largely sparse enough in
comparison to the random matrices. In chapter 5 we provided the application of CS
on FSK modulated signals. We considered single tone and dual tone FSK signals. We
presented the theoretical analysis of FSK signals for both the cases. We presented the
important issues relating to the application of CS for FSK in terms of sparsity and
reconstruction. Here again we found that the structured matrices were a better choice
when it comes to a reduction in the order of sparsity.

Our findings regarding structured and random matrices were analyzed in chapter 6.
We gave reasons which may cause a random matrix not to work as a good measurement
matrix. We have provided with explicit numerical values regarding the non-zero ele-
ments of a signal vector and the total number of basis functions. We saw that the CS
theory with especially the random matrices as measurement matrices is feasible only
when M and N are asymptotic in nature.

Last but not the least, we have provided the application of CS for UWB signals.
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We have given our theoretical analysis for the signal model and comparison with an
existing model. We have shown that our theory works for the IEEE 802.15.3a channel
models. We extended the application of CS on UWB signals in the presence of multiple
access. Even in this case we saw that CS gives promising results.

8.2 Suggestions for Future Work

CS has a very good potential of being applied in telecommunications. Below we present
some of the possible dimensions to extend the application of CS in the field of wireless
and data communications.

• One direct extension of our work can be the utilization of new reconstruction al-
gorithms which can provide more tangible parameters to gauge their performance.
Similarly a comprehensive analysis of available reconstruction algorithms can be
carried out to provide the most suitable algorithms for practical implementations
of CS.

• Since we have seen that sparsity plays an important role in the performance of CS,
research can be carried out to ascertain the best estimate of the sparsity of the
signal. This can have direct impact on the efficiency of reconstruction algorithms.
Furthermore, if the signal is not fully sparse then some sparsifying methods can be
applied to this end. It can also be analyzed what would be the cost of sparsifying
the signals in terms of BER performance.

• In this research we have shown that the signal detection and reconstruction can
be done without having to estimate the channel. In situations where the channel
estimate is crucial, CS can still be applied to estimate the channel as well.

• Research can be carried out to ascertain the performance of CS in situations with
practical abnormalities e.g., timing errors and amplifier non-linearities etc.
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Analog to Information

Converter A
I

n this appendix we briefly elaborate upon some of the implementations of AICs.
AICs aim at the practical realization of CS especially for the analog signals. We
present here three suggested implementations of AICs.

• Random sampling

• Random Filtering

• Pseudo-random Demodulation

A.1 Random Sampling

These architectures have been suggested in [8, 43]. It is suitable for wideband sig-
nals which are sparse in a local Fourier representation e.g., Frequency hopping, slowly
varying chirps from radar and geophysics, and many acoustic and audio signals. We
consider one of its implementation as given in [8]. This architecture scheme consists of
a parallel bank of low-rate ADCs with equal shifts between their starting converstion
points. So a set of shifted samples is produced by each ADC. Switching between the
ADCs is random. Figure A.1 shows an illustration of this scheme.

So we can look at this architecture as if implementing an identity matrix as the
measurement matrix with its rows being knocked out randomly (for a certain signal
length). This architecture can be implemented but it may increase the chip area and
the second challenge might be that of the jitter effect which may ensue when controlling
the switches.

Figure A.1: AIC implementation with random sampling, [8]
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A.2 Random Filtering

This architecture has been suggested in [9]. It is designed for a large class of com-
pressible signals and can be generalized to streaming and continuous-time signals (e.g.,
signals sparse in time, frequency and wavelet domains). In this approach, measurements
are obtained by convolving the signal (x) with a random-tap FIR filter (f) and then
downsampling the filtered signal by a factor of ⌊N

M
⌋. The filter taps (of certain length)

can be drawn from a normal distribution or from the Bernoulli distribution. Thus
the measurement matrix will have a quasi-Toeplitz structure with each row containing
shifted values of the filter taps. The amount of right shift equals ⌊N

M
⌋. Two implemen-

tations have been proposed for this architecture. One with obtaining measurements
by performing linear convolution and downsampling simultaneously (see Figure A.2)
and the other with first using the FFT for convolution and then downsampling the
inverse-FFT of their product (see Figure A.3).

The first method can be useful for streaming and continuous-time signals. The
second method can be faster than the first if filter has many taps but it needs the
presence of an entire signal. This architecture has given promising results for signals
which are sparse especially in time and frequency domains as per the simulation results
of [9].

A.3 Pseudo-random Demodulation

This architecture has been suggested in [10, 44, 45]. In this scheme the signal acquisition
process consists of mainly three components. These are demodulation, filtering and
uniform sampling. The signal is modulated via a ’chipping sequence’ of ±1s. This
sequence alternates at a rate which is equal to or faster than the Nyquist frequency of
the signal. The demodulation process spreads the frequency content of the signal so
that it is not destroyed at the second stage of the acquisition process. Second stage
consists of a lowpass filter. At the final stage, signal is sampled at reduced rate (M).
Figure A.4 shows a schematic of this architecture.
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Figure A.4: AIC implementation with pseudo-random demodulation, [10]

The process can be summarized as below.

• The signal is demodulated by multiplying it with a high-rate pseudonoise se-
quence, which spreads the tones (i.e., frequency content) across the entire spec-
trum.

• A lowpass ani-aliasing filter is applied as an integrator.

• The signal is sampled at relatively low rate.

In ideal form, the system can be modeled as a measurement matrix Φ containing
N/M pseudo-random ±1s on each row. The demodulator bypasses the need for a high-
rate ADC but still allows the use of a low-rate ADC. This architecture can be applied
to the signals which are sparse in both the time and frequency domains.
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