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Abstract

This thesis will be about explaining a proof of a theorem about entropy presented in a scientific article by Ar-
stein, Barthe Ball and Naor [1] in detail. The original proof is complex, especially for bachelor-level students.
The goal of this thesis is to break down that proof, add mathematics and make the ideas understandable for
students at this level. The theorem is about mathematical entropy, a concept in probability theory, which is a
measure for uncertainty or chaos in an event or outcome. For instance, consider a coin toss: the outcome is
uncertain, and this uncertainty is measured by entropy. The greater the uncertainty, the higher the entropy.
There is also a concept of entropy in the world of physics, where it is a measure for describing the uncertainty
or randomness in which systems evolve. One of the goals of this theorem is its demonstration that these two
types of entropy, though defined in different contexts, exhibit analogous behavior. In particular, it shows that
the mathematical entropy behaves like the second law of thermodynamics, which states that entropy in an
isolated system increases over time. As an illustrative example, when a glass of water is spilled on a table, the
water gradually spreads out, increasing the disorder of the system. The theorem explains that if the entropy of
a normalised sum of independent events is taken, then this entropy will increase with the amount of events
that are summed. A normalized sum refers to the average obtained by summing independent events and
dividing by their count. This seems logical at first, since the uncertainty of for example two separate events
seems bigger than that of one event. However, the proof is complex and requires advanced analysis to prove.

The theorem is thus about the monotonicity of entropy of normalised sums. This thesis will connect the
entropy to Fisher information, which enjoys nicer analytical properties to use. The concept is clear, entropy
is a measure for uncertainty, while Fisher information quantifies the amount of information a random vari-
able carries. This thesis will thus first connect the Fisher information and entropy and show that proving an
increase of entropy can be done by proving a decrease in Fisher information. The proof of the decrease in
Fisher information will need another theorem. This theorem is about connecting the Fisher information to
the world of analysis. This requires some advanced analysis, like Green-Gauss on infinite surfaces and inte-
grating the divergence of functions over hyperplanes. With this connection to the world of analysis eventually
the decrease in Fisher information can be reached with some help from a lemma about commuting orthog-
onal projections in Hilbert spaces. All supporting theorems and lemmas will also be proved in detail in this
thesis. In conclusion, this thesis will show a lot about the behaviour of entropy under normalised summation
of independent events and show that these monotonically increase, which implies that the mathematical
form of entropy behaves like the second law of thermodynamics.
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Introduction

1.1. Background of entropy in physics and information theory

Entropy is a concept that is widely recognized in physics, where it is often associated with chaos or uncer-
tainty within a system. First introduced in the 19th century, entropy has played a central role in thermody-
namics. However, this thesis will not focus on the physical interpretation of entropy. Instead, it will explore
entropy from the perspective of information theory—a more mathematical formulation of the concept. It will
actually be discussed later that the main point of the article is to link the result about mathematical entropy
to a result from thermodynamics, namely the second law of thermodynamics.

The mathematical definition of entropy was introduced by Claude Shannon in the 1940s, in a groundbreaking
work that laid the foundation for information theory [6]. Some of Shannon’s results in this work will actually
be used later in this thesis. A well-known anecdote illustrates the link between physical and mathematical
entropy: when Shannon was trying to decide on a name for his invention, he asked the physicist John von
Neumann. Von Neumann told him [9]: "You should call it entropy, for two reasons: first, because it’s already
used in statistical mechanics; and second, because nobody really knows what entropy is, so in a debate you'll
always have the advantage." This already gives a connection between the physical form of entropy and the
mathematical form, and maybe more importantly that entropy is a difficult concept to grasp. It is hoped that
atthe end of reading this thesis the reader has a clearer understanding of entropy and is at an advantage when
the term entropy is used in a discussion.

1.2. Introduction to mathematical entropy

As said, the mathematical form of entropy is linked a lot with the physical form, which was about a state of
chaos or uncertainty. This gives also the core idea of information theory, which looks at the uncertainty of a
message. If a lot about a message is already known, then the informational value of this message is very low;
we already pretty much knew what was going to be sent before it was sent. The uncertainty or surprisal of
the message was low. On the other hand if on the other hand there is very little known about a message, the
informational value of this message is very high. The uncertainty or surprisal of the message was high.

To measure this surprisal of an event E, a function is needed that increases if the probability p(E) of an event
decreases. When p(E) is close to 1, the surprisal of the event is very low and vice versa. If p(E) is close to 0, the
surprisal of the event is very high. If the surprisal of E is defined by S(E), then the relationship can actually
only be described by the following function

1
S(E)=log| —=]|=-1 E)).
(E) Og(p(E)) og(p(E))

Shannon defined the entropy Ent(X) of a discrete random variable X as the expected value of the surprisal of
all possible events of X. This can be written as

Ent(X) = E[S(X)] = E[~log(p(X)] =~ ) _ p(x)log(p(x)) (1.1)
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2 1. Introduction

Here y are all possible events which can happen in the random variable and p(x) = P(X = x). Thus if we know
a lot about a random variable, then the entropy of a random variable is low and vice versa if we know very
little about a random variable, then the entropy of a random variable is very high. It can be seen that entropy
is thus a measure of uncertainty or chaos in the random variable.

This is introduced with a simple example, namely the coin flip. Take a coin flip with chance p for heads
and g for tails. Then the entropy will be the biggest if the surprisal of the events is the highest. It can be
deduced without calculations that this happens when p = g = %, since then the surprisal of the outcome is
the biggest. If p = 1, then the entropy is the smallest, since the outcome is already known. The graph of the
entropy for different p can be seen below.

Plot of the Entropy Function for differing coin flips

08 10

P(X=heads)
Figure 1.1: Binary entropy as a function of bias in a coin flip. From Entropy (information theory).

Figure 1.1 calculates the entropy with a base in the logarithm of 2. The base of the logarithm does not actually
matter. All properties of entropy still hold for all bases. The choice of 2 comes from the fact that this concept
was introduced in the information theory, which is interested in how many bits it for a computer takes to
send a message. It is then logical to choose a base of 2. A bit can be seen as a yes-no question for a computer.
If we look at the coin flip with p = %, it is clear that we need one yes-no question, so one bit. If p = 1 no yes-
no questions are needed as can be also seen from Figure 1.1. This introduces the concept of which entropy
was built on, the entropy of a random variable is equal to the least amount of bits it takes to determine the
outcome of a random variable.

This is further explained with another example. Imagine a letter is sent from computer a to computer b
and there are 4 possible letters, {A, B, C, D}, which can be sent. If all letters have the same probability to be
sent, p; = i, then it takes two yes-no questions for computer b to determine which letter was sent, as can be
seen in the figure below. This is equal to 2 bits. Thus this can be seen as a random variable with entropy equal

to 2.

Is the letter A or B?

Yes No

T v

Is the letter A7 Is the letter C7?

Letter = A Letter=B

Figure 1.2: Yes-no flowchart in the case with equal probabilities).

Now take the same random variable, but now assume we know more about the probabilities. For example,

P(X = A) = },P(X =B) = 1,P(X = C) = P(X = D) = §. Then it is logical to think the uncertainty of this

random variable is less and thus the entropy will also be less. We show this in the next figure in which we



1.3. Entropy of a continuous random variable 3

show that actually on average we only now need 1.75 yes-no questions, or equivalently 1.75 bits. The reader
can easily calculate the entropy with the formula introduced in Equation (1.1) and see that the entropy is also
equal to respectively 2 and 1.75.

Is the letter A?

Letter = A Is the letter B?

With p=1/2

Is the letter C?

With p=1/4

Letter=D

With p=1/8 With p=1/8

Figure 1.3: Yes-no flowchart in the case with different probabilities).

This is how the concept of entropy was introduced by Shannon, but the main point of thesis will be about
entropy of continuous random variables. This will be explained in the next section, but these concepts about
uncertainty and informational value will be the same. It is only not possible to then see it in bits, since it is
not discrete anymore. It is not really important, but the base of the logarithm further used will be the normal
e.

1.3. Entropy of a continuous random variable

Shannon did actually also introduce the form of entropy for continuous random variables in his first work. He
did this by once again taking the expected value of the surprisal, but then for a continuous random variable
X. Then the variable does not have a clear p(X = x), but a density function f : R — [0,00). He defined the
entropy then as

Ent(X) = E[-log(f)] = —fRflog(f). 1.2)

Shannon actually did not derive this but thought the continuous case was analogue to the discrete case. This
is actually not the case, since taking the logarithm of a density is not clearly defined. A density can have a
dimension and a logarithm is normally only defined for dimensionless functions. This is why this form of
entropy is called differential entropy. The actual form for entropy for continuous random variables is the lim-
iting density of discrete points. Differential entropy is a limiting case of the limiting density of discrete points
and loses some of its association with the discrete entropy. For example, the differential entropy can be nega-
tive, which is impossible in the discrete case (you can never send a message with negative bits). Furthermore,
since a logarithm is not well-defined for densities with a dimension, it is not invariant under scaling.

These properties mean that the differential entropy is not really useful in some cases. If the random vari-
able has a dimensionless density for example, then the differential entropy is useful. It is not really important
for the proof of the main theorem of the paper, but it is good to note that differential entropy only makes
sense when the integral in Equation (1.2) is well-defined and makes sense. This is because the proof in this
thesis will be about differential entropy.



4 1. Introduction

1.4. Thesis outline

This bachelor thesis aims to explain the article by Artstein, Barthe, Ball, and Naor [1], which presents a proof
of the monotonicity of entropy in the the theorems which will be introduced in Section 2.3. The article itself
is quite dense and difficult for undergraduate students to follow. The goal of this thesis is to break down and
clarify the proof, making it accessible to a bachelor-level mathematics student. The rest of this thesis will
focus on carefully presenting and proving this theorem step by step.



Formulation of the Entropic Monotonicity
Theorem

In this chapter we will introduce the main theorem to be proved in this bachelor thesis. These will be about
the monotonicity of entropy in random variables. The rest of the chapters will be about developing a strategy
to prove the theorems in this chapter.

2.1. Motivation behind the main theorem
Recall from Chapter 1 that we have defined the entropy of a random variable X with density f: R — [0,00) as

Ent(X) = — f flog(f) @2.1)

provided that the integral makes sense. Now it is known that among random variables with variance 1 that the
Standard Gaussian has the largest entropy. You can find a proof of that the Gaussian is actually the random
variable with the largest entropy for a fixed variance in Soch [7], but we don'’t go into it any further here. Then,
if X; are independent copies of a random variable with expected value 0 and variance 1, then the normalized
sums

1 n
Y, =— X; 2.2
n \/ﬁ; (2.2)

approach the standard Gaussian as n tends to infinity. This is a result of the central limit theorem. Because
as n increases, the normalised sum Y;, converges towards a Gaussian, which has the largest entropy, it makes
sense to think that the entropy of the normalised sum also increases. The case where n = 2 was already proved
by Shannon in the 1940’s [6]. This result is enough to prove indeed that in big steps, in a sequence of powers
of 2, the normalised sum’s entropy keeps getting better, which we show by induction. We want to show that

Ent(Yye) = Ent(Ye-1). 2.3)

For this we show that

2ok-1

Y, L sz:X ! L Y Xi+ L sz X, ! (Yok1 + Yyi1) 2.4)
k= — = — | — i — i| = —= k-1 k-1). .
TUVeRI T Ve Ve ST VeRT Ly ve ’

We show in Equation (2.4) that Y, is built of the normalised sum of 2 copies of Y,«-1. But since we can see
Y,k-1 as a random variable with variance 1, we can apply the base case, which is Ent(Y>) = Ent(Y7). This gives
the desired result of Equation (2.3). Because of this it was naturally conjectured that the entire sequence Y},
was increasing with 7. This problem actually remained open for a long time, until it was proven in the paper
this thesis is about. It was even not proven that Ent(Y3) = Ent(Y>) and this specifies the difficulty of this proof.
There is no natural way to “build” the sum of three independent copies of X out of the sum of two.

The aim of this thesis is not only to prove this statement, but also generalise it even more for independent

5



6 2. Formulation of the Entropic Monotonicity Theorem

random variables to a case where the variance need not be 1. This is done by generalising it even more by in-
troducing a theorem for which the random variables are not restricted to be copies or better said, identically
distributed.

2.2. Intuition behind the theorem

As said in the section before, it is quite difficult to even prove that the entropy of a normalised sum of 3
IID random variables is bigger than the entropy of a normalised sum of 2 IID random variables. To give
some intuition that this is the case however, we give an example. If we take exponential distributions with
parameter A = 1 as IID random variables in the normalised sum, thus as X; in (2.2), then we show numerically
that the entropy of Y, is increasing. The X; were originally distributed with expected value 0 and variance 1,
while the X; chosen have expected value 1 and variance 1. This does not actually matter, since the entropy
of a standard Gaussian is the same as the entropy of normally distributed random variable with expected
value p and variance 1. This is not explained further, but it is logical that the uncertainty does not depend on
the expected value. What we want to show is that the entropy of Y}, the normalised sum, goes towards the
entropy of a standard Gaussian. Again Y, goes towards a Gaussian distribution by the central limit theorem
with variance 1. In the figure below the entropy of Y, is plotted up until n = 10.

Entropy of Normalized Sums of i.i.d. Exponential Variables

1.40 4

1.35 4

1.30 1

1.25 4

1.20 4

Entropy of Yn

1.15 4

1.10 +

1.05 +

2 4 6 8 10
Number of Summed Variables (n)

Figure 2.1: The entropy of Yy, plotted up until n = 10. The red-dashed line is the entropy of a standard Gaussian.

The entropy in figure 2.1 is numerically integrated by estimating the density with kernel density estimation
and numerically integrating the integral in (2.1). The part about kernel density estimation is out of the scope
of this thesis, but is only used to estimate the density in this case. The code with which the figure was plotted
can be found in Appendix A. From the figure it is clear that the entropy is step-wise increasing towards the
entropy of a standard Gaussian.

We could do this for different random variables with variance 1, but this does not actually prove anything.
It does give some intuition however, that the theorems defined in the next section are correct. The theorems
are even defined with less assumptions then we have defined up until now. It does not matter if the variance
of the random variables are 1, the entropy will still be increasing. In that case not towards the entropy of a
standard Gaussian, but towards the entropy of the Gaussian distribution with the same variance. There will
even be a theorem defined in the case where the random variables are not identically distributed.
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2.3. Entropic monotonicity theorem
First we introduce the theorem for independent random variables.

Theorem 1 (Entropy increases at every step). Let Xy, Xy, ... be independent and identically distributed square-
integrable random variables. Then

X1+ + X X1 +--+ X
Ent(—1 "“)zEnt Arran ”) 2.5)
vn+1 vn

The main point of the result is that one can now see clearly that convergence in the central limit theorem
is driven by an analogue of the second law of thermodynamics. The second law of thermodynamics states
that in any energy transfer, the total entropy of an isolated system does not decrease. This can be compared
to Theorem 1 by seeing that adding an extra random variable only increases the entropy, which can be seen
as an energy transfer. Adding extra random variables thus only increases the entropy, which means that the
normalised sum must converge to a Gaussian, since this has the largest entropy. This is why we can see that
the central limit theorem is driven by an analogue of the second law of thermodynamics. Now we continue
with a theorem for non-identically distributed random variables, since there are also versions of the central
limit theorem for those.

Theorem 2. Let X, X»,..., X,+1 be independent random variables and let (ay, ..., an+1) € S be a unit vector.
Then

n+1 n+ll—a§ 1
Ent| ) a;X;|= ) -Ent Y aiXi|. (2.6)
i=1 j=1 N ,/1—a§ i#]

In particular,
Xp+- -+ Xpan sy

NS )Z PP (f,;X’

First, we show that Equation (2.7) follows from Equation (2.6). We can choose each a; = \/%, since then

Ent

) 2.7

n+l1

n+1 n+1l

Lai=) (=

which implies a € S”. Then filling these a; into Equation (2.6) gives

ntl ntl]— (=L 1 1
Ent(z X,-)zz n+1° . Ent >3 X |,
s vn+l aoon \/1_(ﬁ) iz Vn+1
which gives
1 n+l n+l
Ent(m; ) Z \/E l¢]\/nT

which can be seen to be exactly the same as Equation (2.7).

We are going to continue the rest of this thesis to prove Theorem 2 and show here that this theorem implies
Theorem 1. If we asssume Xj, ..., X,+1 to be independent identically distributed square-integrable random
variables, then we see by Theorem 2 that Equation (2.7) holds. If we compare this to Equation (2.5), we see
that the left-hand sides are already equal. We are only left to prove that in this case

n+1 1 ( )
=Y —Ent Y X; (2.8)

montl l#]

Xy 4+ X
Em(;

Vv

For this we need to see that with our assumptions it actually does not matter which j is not taken in the inner
sum of the entropy on the right-side, since all X; are identically distributed. Thus we can see that

n+1 n

2 Xi=) X
i=1, i=1
iZj
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for all j. Using this in the right-side of Equation (2.8) we see that

o] 1 1l 1 n+1 1
jZ—Ent(TZX,-)szEnt(TZXi)zn+1Ent(ﬁi_ZlXi).

qntl nizj =1 niz
This gives
n+1
1 1 Xp++ X,
——Ent[— ) X;|=Ent[ ———"
jantl (\/ﬁ#j ) vn

as desired, thus proving Theorem 2 is enough to prove Theorem 1.



Connection between the Fisher
information and entropy

We start with proving Theorem 2 by transforming the problem of the form of entropy into another information-
theoretic notion, the Fisher information of a random variable. The Fisher information is a way of measuring
the amount of information a random variable X carries about an unknown parameter 6.

3.1. Background of the Fisher information

Let f(x;0) be the probability density function for X conditioned on 8, which describes the probability that we
observe a given outcome of X, given 6. If f changes a lot with respect to changes in 8, then it is easy to deduce
the correct value of 6 from the data or equivalently, the random variable provides a lot of information about
the parameter. On the other hand, if f is flat and spread-out with respect to 6, then the random variable
provides less information about the parameter. Here we introduce the score function, which measures the
sensitivity of a change in 6 and is

0
—log(f(x;6)).
0g

The Fisher information is the variance of the score function, since this measures how sensitive the likelihood
function is to changes in the parameter. Now

0 00 =E( 2 02— )2
Var(=510g(f(x;0)) = (55 10g(f (x;0)") ~ E(=5 10g(f (x;0)) (3.1

We simplify this first by showing that if some regularity conditions are met (differentiability and integrability),
then by using the chain rule

0 0 1 0
[E(%log(f(x,ﬂ))—fm{£log(f(x,0))f(x,9)dx— Rm@(f(xﬁ))f(x,ﬂ)dx.

We can now see this term vanishes, because

1 0 0 0 0
Rmﬁ(f(xﬂ))f(x,e)dx—fﬂﬁf(x,(?)dx—ﬁju;f(x,(?)dx—ﬁl—o.

This means that 5
E(o5log(f (% )% =0. (3.2)

We continue with

9 a2y — [ (9 N2 £+ _f( 9 . )2 .
[E((ae log(f (x;0)) )—/R(ae log(f (x;0)” f(x;0)dx = o\ F o) 0 (f(x0)| f(x;0)dx.
We can see this is equal to
1 0 .A1)2
jl;f(x;e)(%(f(xﬁ)) dx. (3.3)

9



10 3. Connection between the Fisher information and entropy

Now filling Equations (3.2) and (3.3) into Equation (3.1) gives that the Fisher information of arandom variable
X with density f is
("
J(f) = f —
f o [

It is known that among all random variables with variance 1, the standard Gaussian has the smallest Fisher
information, namely 1. If we remember that the more we knew about a random variable, the less the entropy
got, we see that this is logical, since the standard Gausssian also had the biggest entropy.

3.2. Connecting Fisher information and entropy in a simple case

We now are going to try to connect the Fisher information and the entropy of a random variable. We start by
introducing the adjoint Ornstein-Uhlenbeck semigroup, which are used in de Bruijn (see e.g. [8], Bakry and
Emery [2] and Barron [3]. The operation of this semigroup is as follows

X—x®

where

XD =Ve2tX+V1-e2G.

Here, X ¥ is called the evolute at time f of the random variable X under the semigroup. We see that the evolute
has the same distribution as an appropiately weighted sum of X with a standard Gaussian. The connection
between Fisher information and entropy is made by Carlen and Soffer [4], which we will just state without
proof. It says that entropy gap between a random Variable X and the standard Gaussian G can be written as
an integral over all evolutes

Ent(G) - Ent(X) = f JxDy-1)at (3.4)
0

Now we make the claim that proving the increase of entropy of IID random variables X, Theorem 1, can be
deduced to proving a decrease of information, J(S,+1) < J(S,). Here, S, is the normalised sum of » IID copies
of an evolute X”. We start by showing that taking the evolute of Y,,, where Y}, is a normalised sum of X; IID
random variables, is the same as taking the normalised sum of n IID copies of an evolute X (1) We first show

the evolute of Y3,

Xp 4+ X, | Xi+-+ X

e e B 5
Vn Vn

Next, we show that this is the same of taking the normalised sum of copies of an evolute X o

S = X{t)+...X,(lt) ~ Ve 2lX, +V1-e2Gy+--+ Ve 2l X, +V1-e2lG,
"Tvn 7 .

Here each G; is just a standard Gaussian. This is equal to

Ve-2t %) V1 —e2t (G1+—\/_+G”) =Ve2t %) +V1-e2G. (3.6)
n n n

In the last step we used the fact that taking the normalised sum of n standard Gaussians gives once again
a random variable which has the distribution of a standard Gaussian. Furthermore, we used that taking IID
copies of arandom evolute X (0 which S,, does, is the same as taking the sum of the evolutes of all X;, since the
X; are IID. Now we see that Equations (3.5) and (3.6) are the same and thus it does not matter if we first sum
or first take the evolution. In other words the operation of the semi-group commutes with self-convolution.
Now we show this proves that we only have to prove the decrease of information. If J(S,+1) < J(S,), then
since the Fisher information is non-negative

(0] oo
fo U(Sn+1) — l)dtsfo (J(Sp) - 1)dt,
which implies by what we proved earlier, S, = Y,Et), that
[e o] (0]
f (](Y,EQI)—l)dtsf J(Y D) ~1)dt = Ent(G) — Ent(Yy41) < Ent(G) — Ent(Yy,).
0 0

Here, we used Equation (3.4). But this shows exactly what we wanted to prove, Ent(Y;+1) = Ent(Y},).
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3.3. Connecting the fisher information and entropy in a more complex

case

We now extend the proof of this claim to Theorem 2, where the X; may not be identically distributed, but are
independent. We summarise this claim in a theorem.

Theorem 3. Let X1, X»,:-+, X41 be independent random variables and let G = (ay,..., an+1) € S™ be a unit
vector. If for every by, -+, by+1 € R satisfying

n+1

. 2
j;b],/l a;=1 3.7)

it holds that

J a;X;i|<n b5 ] aiX;i|, (3.8)
(i:l l l) j=1 ] l—a i#j l

then

n+l n+l11— a?
Ent(z aiXi) =) ! Ent Y aiXi |-

i=1 j=1 I J1-a j i#]

Essentially this theorem is saying that if we can prove Inequality (3.8), then Theorem 2 is proved as well. This
is exactly how we are going to prove Theorem 2, we first prove Theorem 3. Next, we prove that Inequality (3.8)
actually holds for all b; for which Inequality 3.7 holds. In conclusion, this proves Theorem 2, since we use the
same assumptions to get the same conclusion.

Proof of Theorem 3:
Letb; = —, /1— a , then b fulfills Inequality 3.7, because

’ill(l 2 _ n+l1 1 )
— _a —_— =],
mn n n

Here we used that a € S", which implies that Z’” aj = 1. Filling these b; in Inequality (3.8) gives

n+l n+1
J a; X n —(l—a )] a; X |. (3.9
(,_Zl i 1) Z —l_a #Z] 14\

Next, we remember that the only thing we assume about the X;’s are that they are independent. Now, since
taking the evolute just adds a weighted Gaussian to the original random variable, the evolutes, le s also
satisfy Inequality (3.9). We first show just as in the earlier claim that it does not matter if we sum the evolutes
or take the evolute of the sum of random variables. This follows the same arguments, thus

n+l1

Z a,Xm Z Ve?2ta;X; + Z V1-e2tq;G;

where each G; is an independent standard Gaussian. We can now see that the summing these Gaussians gives
once again a standard Gaussian, since
n+1 n+1 n+1
Var()_ a;G;) = Z a?Var(G)=)Y a:-1=1,

i=1 i=1

where in the last step we used that a € S;. This gives

n+1 n+l ()
Z a,X(” Z Ve 2ta; X; + Z V1-e2tG= (Z a,-X,-) .
i=1
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This gives exactly what we wanted to show. The arguments for \/1;72 Y.i#j a;i X; are exactly the same, but the
—as

only difference is that we show

Var(——— Za,G)— 1 Y aivar(G)=—— Za 1=

1
2 2
\/1-— (1 i#] l_ajif-j ' l-a 'zf—] l_aj

The conclusion, summing the evolutes gives the same as taking the evolute of the sum is the same. Now with
Inequality (3.9) and the previous results we can show that

2y _
(1-ap=1,

o) n+1
f(](Zale)—l)dt<nZ (l—a)f J| —— ZainF” ~1)dt,
0

1 az#;

which is the same as

(7)
oo rf () rill—a? 0o Z '
U a; X; -1dt < f U a; X -1)dt.
fﬂ ((z‘=1 l l) ) =1 n Jo ,/1 a i#] o

But by Equation (3.4) this is equal to

n+1 n+1 l—a
Ent(G) —Ent(z aiXi) <Ent(G)- ) Ig Y aiXi|,
i=1 j=1 N ,/l—a i#]

which gives

n+1 n+1 l—a]
Ent| ) a;iXi|= ) Y aiXi|. O
i=1 j=1 N ,/l—a i#]

Now to prove Inequality (3.8) holds for every b; satisfying Inequality (3.7) we need a different theorem which
we prove in Chapter 4, at last we prove Inequality (3.8) in Chapter 5, which finalises the proof of Theorem 2.



Variational characterisation of the
information

In this chapter a theorem will be proved which is necessary for proving Inequality 3.8, which is needed to
finalise the proof of Theorem (2). The theorem and proof will be split up into two parts, which will both be
used in Chapter 5. For the first part we also introduce a lemma, needed to prove the first part.

4.1. Introducing the inequality

Theorem 4 (Variational characterisation of the information with inequality). Let w : R" — (0,00) be a contin-
uously twice differentiable density on R" with

f IVw]* f
, IHess(w)| < oco.

w

Let e be a unit vector and h the marginal density in direction e defined by

h(t) = f w.
te+et

Then the Fisher information of the density h satisfies

div(pw) \?
](h)SfW( ” ) w,

for any continuously differentiable vector field p : R" — R" with the property that for every x,
(p(x),e)=1

(and, say, [ |pllw < oco).

Remarks.

* The condition [ ||p|lw < oo is not important in applications but makes for a cleaner statement of the
theorem. The authors of Artstein [1] thanked Giovanni Alberti for pointing out this simplified formula-

tion of the result.
ow
6)61
ow
¢ Here the gradient of wis Vw(x) = fcz
ow
0xy,

13
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#h h .. _Ph

ax% 0x10x2 0x10x,

0°h Ph . _n
. . . 0x20x 0x2 0x20x

o The Hessian matrix of h is Hess(h)(x) = |~ - 2 2
2h Pn &n
0xn0x1  0x,0x2 ax3

1/2
2 \2
¢ |[Hess(h)(x)| = (Zf 12?—1 (%) ) , s0 the norm of the Hessian matrix is like seeing the matrix as
= 10x;
one big vector by putting the rows next to each other and taking the normal norm over that vector.

* The divergence of pw is div(pw) =Y. 6% (piwx)=V-pwx)

* h(t) = [,,,.. w. means that h(t) is the integral over all vectors perpendicular to te. Thus, this is an
integral over (n-1) dimensions. If we were to integrate h(¢) over ¢ in the interval (—oo,00) we would
integrate all of R"

4.1.1. Supporting lemma for the proof
First, a Lemma is introduced, which will be used in the proof of the first theorem.

Lemma 1. Ifw and h satisfy the same assumptions of Theorem 4, then

f div(pw) = f Oew
te+et te+et

Proof of Lemma 1

We prove this by decomposing the divergence into two parts. We do this by decomposing pw(x) into pw,(x) =
{(pw(x), e)e, the projection of pw along e, and pw,. (x) = pw(x) — pwe(x). Then pw(x) = pwe(x) + pw,. (x).
Then

f div(pw(x)) =f div.(pw(x)) +f div,. (pw(x)). 4.1)
te+el te+et te+elt

We first show that the most-right integral is zero by the Green-Gauss theorem. For this we use the ball with
radius R, B(R), on the hyperplane and take the limit of R — oo to integrate over this hyperplane.

| div,. (pw(x))| =| limf div,. (pw(x)|
L R—oc0JB(R)

tet+e

Now we use Green-Gauss, where S(R) is the boundary of the ball B(R) and N(x) is the outward pointing nor-
mal vector to the ball:

Ilimf div,. (pw(x))| =| limf pw(x) -Nx)| = limf Ilpw)| = limf Ip () | w(x)
B(R) R—oc0JS(R) R—ocoJs(R) R—ooJS(R)

R—o0

We assume that this last function is integrable over R", thus by substitution (transformation formula)

f Ilp(x)lw(x) :f f Ip(rx)ll wrx)r" tdxdr < co.
R" Rxo JS(1)
Since this integral is less than oo, the inner integral decays to 0 as r — oo, thus

lim ||p(rx)||w(rx)r”_1dx= limf lpo)llw(x)dx =0.
S(1) =00 Jsr)

r—o00

This shows
f div,. (pw(x)) =0. 4.2)
te+el

Now we continue with the other integral in Equation (4.1). Here we use the product rule for divergence with
the constant vector field e and the scalar-valued function (pw(x), e)

f dive(pw(x)) =f div{pw(x), e)e) =f V({pw(x),e)-e+{pw(x),e)div(e).
te+el te+el terel
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Now div(e) = 0, since e is just a constant vector. This gives

e+et

f V((pw(x),e>)'e=f 69<pW(x),e>=f Oe(w(x){p(x),e)) =/ O0ew(x)
te+el te+el te+el t

where at the end we use that (p(x), e) = 1. Now filling this all in Equation (4.1) gives
f div(pw(x)) =f 0.w(x)+0. O
te+el te+el

4.1.2. Proof of the inequality

Now we continue with the proof of Theorem 4.

Proof of Theorem 4:

We first derive a different version of the derivative of h(t), which we use later

, _if
hm_dt el w(x).

We perform a change of variables to get ¢ outside the integral boundary, since then we can apply the Leibniz
rule. Weuse x=te+y, Jye€ el, then

, _if
h(t)_dt N w(te+y).

This shows that the boundaries of the integral are now not dependent on ¢. Now using the change of differen-
tiation and integration, which we can use since w is smooth and continuously differentiable twice and after
applying the chain rule we get

h’(t):f iw(te+y)=f Vw(te+y)-e=f 0ew(te+y):f 0. w(x).
el dt el el tet+el

At the end we use that d,, of a function is the inproduct of the gradient of the function and e and we perform
the original change of variables backwards. This gives thus

W= f 0, w(x) 4.3)
te+el

. 2
f ( div(pw) ) w
n w

is finite, then div(pw) is integrable on R”. We show this by using a form of the Cauchy-Schwarz inequal-
ity, Holder’s inequality, with the following dot product. Note that if the integral is infinite, then the Fisher
information is always less then this integral and the theorem follows trivially.

Now if

<f»g>=ffg and [fglh = Ilfll2lgll2.

Weusefzmandgz\/wtoget

Jw
. .2
f Idiv(pw)lzf I—dlv(pW) \/mswf —dlv (pw)“f w<oo . (4.4)
R7 R7 \/w R? w R?

The two integrals multiplied are less than infinity are because we have assumed the left integral is integrable
and the right integral is integrable by definition, since it is a density. Thus div(pw) is integrable over R”. By
the full Lebesgue version of Fubini’s theorem div(pw) is integrable on almost every hyperplane perpendicular

to e, since
f div(pw):ff div(pw).
R” RJte+el

We are going to use Lemma 1 to see that

f 0w = f div(pw) (4.5)
te+et te+el
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We can now fill Equations (4.3) and (4.5) in the Fisher information of the marginal density A.

T h'(1)? _ f Srerel diV(plU))2.
R fte+el w

R h(1)
Next, we use the normal version of the Cauchy-Schwarz inequality

K2 <(f, g g

We use the same functions as in Equation (4.4) to show

. z div(pw) 2 div(pw)?
(j;eﬂzL le(pLU)) B (fte+ei \/w \/w) = fte+ei w j;e+eL v

Now we fill this in to see that

. di 2 .
(fte+el- le(pLU))Z < f fte+eL IV(ll:JW) fte+ei w _ f f div(p w)?
~Jr RJte+el w ’

R fte+el w fte+el w

We now use Fubini’s theorem again to complete the theorem. We use it in the way that if we integrate over all
possible hyperplanes, we essentially integrate over R”.

; 2
J(h) Sf dlv(%w) O (4.6)

4.2. Proof of equality in the theorem

We continue with showing the case where there is equality in the inequality of Theorem 4

Theorem 5 (Variational characterization of the information with equality). If w, h and p satisfy the same
assumptions as in Theorem 4, then if w satisfies [ || x]|*> w(x) < oo, then there is equality in the inequality

div(pw) \?
](h)SfW( ” ) w,

for some suitable vector field p.

Proof of Theorem 5:
We are trying to find a suitable vector field p such that there is equality if f Ixl2w(x) < co. We start with
showing with that there exists a p such that for all ¢

h' (1)

div(pw) = o w. 4.7

f div(pw)? h'(t)zw_f h’(t)zf v
Re w o Jre k(D2 Jr h(D? Jierer

h/(t)zf h,(t)z
- h(t) = J(h).
thmZ et U Jg iz MO =0

Since we also need to ensure that (p, e) = 1 identically, we construct p separately on each hyperplane perpen-
dicular to e. This means we don't construct p on the normal x; coordinates, but we fix an orthonormal basis
of e' and index the coordinates of y € e with respect to this basis, 1, y»,-++, y»_1. We then index y, = e to
have an orthonormal basis of R. We construct p separately on each hyperplane, which means that we con-
struct it for each t. Remember that we split the space R" in fe + y. Regularity of p on the whole space can
be ensured by using a “consistent” method for solving the equation on the separate hyperplanes. This means
that we will show that p will not depend on ¢ when solving for p. At last, we fix the n'* component of p, p,,,
tobe 1, so that (p,e) = 1.

Since then

But now we see that

Then the last thing p needs to satisfy is

. (1)
div,. (pw) = mw—aew (4.8)
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since then by splitting the divergence in the same way as Equation (4.1), using the fact that div.(pw) =
0.(w{p, e)) and filling in Equation (4.8) we see that then

div(pw) = L w—0,w+0.(w(p,e)) = ’( D

h(t) T Y

where in the last step we used that we construct p such that (p, e) = 1. Thus we see if we construct p such that
Equation (4.8) holds, then Equation (4.7) holds as desired.
We can see that div,. (pw) is integrable on te + e*, since 71((:)) is just a constant and w and 9, w are integrable
by the assumptions of w. We furthermore see by Equation (4.3) that f,,, ,. 9. w = I'(1) and that thus

n o f h' (1) ,
- bew=7=2 ~H(5)=0 49
fe+el- h(t) te+et e h(t) Jreret s ® (4.9

where in the penultimate step we used that [,,, .. w = h(f). This ensures that the integral of the divergence
on the hyperplane is 0 when we define the divergence as in Equation (4.8). This corresponds with what we
showed earlier, that the divergence on the hyperplane needs to be 0 by Green-Gauss, as shown in Equation
4.2).

The hypothesis f IxlI2w(x) dx < cois needed only if we wish to construct a p for which f | p(x) I2w(x) dx < co.
For each real ¢t and each y € el set

/

n(
F(t,y) = —w(te+y) Oew(te+y).

h(1)
We are first going to show that the assumption [g» Ww” < oo, implies fRn 7 <oo.
h/Z W F2 hIZ h ) w2
pzzﬁw2 Zﬁwaew+aew2:>;= hz Zhaew+ 2

Now we show that all three of the terms on the right-side are integrable over R” and thus showing that the
hrz(n
h2(1)

left-side is integrable. We start with w(te+ y), we show using Fubini’s theorem again that

h/2 t h/Z t h/Z t
0 )—f 0 ()h(t)=](h).

——w(te+y)=| —5— w(te+y) =
o H2(1) VE R Jiery Y S R2 )
This shows it is integrable, since we assume the Fisher information is finite, otherwise any vector field which
gives an indefinite integral gives equality in (4.6) . Following the same arguments we show that the second

term is integrable
h(t) f h(1) h' (1)
—wl(te+y)=| —— te+y) = h(t) =J(h).
rr h(t) wite+y) R 1(2) Jetry wite+y) R h(t) (0=Jh)

[Bew)?|
w

Now to show that the third therm, is integrable , we use that

@cw)* _ |Vw|?
<
w w

and since the right-side is integrable so is the left side.
Next we use Holder’s inequality again, just as in (4.4), to prove that | F||| x| is integrable.

f|F|||x||— ﬂllxllx/w<\/f L fuanw
R" rR" /W “VJre w\ Jre '

2
We have earlier proved that % is integrable and we have earlier assumed that lxl2w is integrable and thus
we have proven that f |Flllx]l < co. This integrability can be used to find solutions to our equation

div,. (pw) = F(t,y)
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satisfying [gn |pwl < oo, for example in the following way. We build the remaining n — 1 components of p
and show that the divergence equation (4.8) holds as desired. Remember that in this process ¢ is fixed and we
do this process for every ¢, thus every hyperplane. In the next part the p will thus be independent of . We
use the same orthonormal basis of e+ as earlier. Let K(y2,...,yn-1) = [ F(t,¥1,¥2,-.., Yn-1)dy) and choose a
rapidly decreasing density g on the line in the y; direction. Then the function

F(t,y) - gy K(y2,...,yn-1)

integrates to zero on every line in the y; direction, since

fF(t,y)—g(yl)K(yz,...,yn-l)dyl =fF(t,y)dy1—K(yz,...,yn-l)fg(yl)dw

and since g is a density, this is equal to

/F(t;y)d.)/l_K(J/Zy---,J/nfl)l:fF(f»J’)dJ’l_/F(t;y)dJ/l =0.

This means that we can find p; (y) such that

0
W(pl(}’) w(te+y) =F(t,y) - gy )K(y2, ..., ¥n-1) (4.10)
1
and we set p) w by

J1
p1(w(te+y) =f F(t,8,¥2...,Yn-1) — 8K (y2,..., yn-1)ds. (4.11)

First, we note that p; w goes to 0 at infinity, since g is rapidly decreasing and that | F||| x| decays in all direc-
tions, thus so does F. This is also the reason the entire constructed p will be integrable. Next we continue to
do the same steps as before, but with a new function F,. We make this the residual of Equation (4.10). Take
Fo(y) = g(y1)K(y2,..., yn-1) and take

K(y) = sz(yl,yz,...,yn-ndyz = g(yl)fK(yz, = Yn-1)dy2 = g(y1) ffF(t,y)qudyz
and choose a rapidly decreasing density g, on this line. Then following the same arguments the function

F(y) - 822K (y)

integrates to zero on every line in the y» direction. Thus we can find p»(y), such that
0
E (p2(V)w(te+y)) = Fa(y) — 82(y2) Ko (y)
2

which gives
0
ﬁ(pz(y) w(te+y)) =F(y) - gz(yz)g(yl)ffF(t, ydydys. (4.12)
2
We continue this process n—1 times and then fill Equations (4.10) and (4.12) and the rest of the partial deriva-
tives into the divergence and show that Equation (4.8) holds as desired and we found our p.
n-1

. a
div, (p(Yw(te+y) =) a—y_(p(y)W(te+ y)) =
i=1 i

F(t,y) =gy KW +g)K(y) — &) K () + -+ gn—2(¥n-2)Kyu-1(y) -0,

which shows
div,. (pw) = F(t,y).

For this to hold, we only need to show that ay%(pn_l(y) w(te+y)) = §(¥n-2)Ku—2(y) — 0. If we follow the
same steps, we see that

0
I (Pn-1w(te+y) = gn—2(Yn—2)Kn-2(y) — &n-1(Yn-1)Ku-1(y). (4.13)
e
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Here, K;,—1 is just the integral over the entire hyperplane, this integral thus does not depend on any variables.
Now looking at Equation (4.12), we can see that

8n-1(Yn-1)Kn-1(y) = gn-1(Yn-1) - &1(y1) N F(t,y)=0

te+e

since each g is a rapidly decreasing density and we can see the integral is 0 from Equation (4.9). This proves
Equation (4.13) and therefore the entire theorem. At last we show the constructed p as follows. We note that
p was only independent of ¢, because ¢ was fixed. In reality this ¢ does influence p, but the p is constructed
in the exact same way as described in the part before. Therefore, since p is a function from R” — R”, thus

pi(t,y)
p2(t,y)
pt,y) = : . (4.14)
pn—l(t; J/)
1

Remember that p,(y) = 1, so that (p,e) = 1. This is done regardless of . From Equations (4.11),(4.12) and
(4.13) we can see that respectively

f}éoF(t»S,J/zr---,J/n—l) _g(S)K(}’z,---’J’n—l)dS
w(te+y)

ity =

V2 B (11,8 Y30 Yn-1) — 82981y ([ [ F(t,y)dy.dy1)ds
w(te+y)

pa2(t,y) =

and
« ):f_yc’,';lFn-l(yl,...,yn_z,S)ds
Pn-1thy w(te+y) ’

Now filling these three equations and all other p;’s constructed with the same steps into Equation (4.14) gives
the constructed p.0J






Finalising the proof of the Entropic
Monotonicity Theorem

In this chapter, we complete the remaining steps from Chapter 3 to finalize the proof of Theorem 2, and
consequently, Theorem 1. Specifically, we establish that Inequality (3.8) holds for all b; as stated in Theorem
3. The proof of this relies on two supporting lemmas, which are also proven in this chapter.

5.1. The assumptions of the proof of the Entropic Monotonicity Theorem

In the proof of the Theorem in Section 5.2, let f; be the density of independent random variables X; and
consider the product density

w(xy, -+, Xpa1) = fr(x1) - fue1 (Xne1).

The density of Z?:ll a; X; is the marginal of w in the direction of (a,--, a,) € S,,. We shall show in the next
section that if w satisfies the conditions of Theorems 4 and 5, then Theorem 6 holds. Remember that the
assumptions for Theorem 4 are that w is twice continuously differentiable and that

fIIVWIIZf
, | I Hess(w)|| < oo

w

and that the assumption for Theorem 5 is

f||x||2w<oo.

2
We only show that the assumption [ % < oo holds for non-trivial cases. Non-trivial means that the Fisher
information is finite. Otherwise all the theorems hold trivially. In the case that the Fisher information is finite,

we have that
17
f ? <o (5.1)
i

for all i. We summarise the proof of the assumptions in two different lemmas, one for each theorem’s as-
sumptions.

Lemma 2 (Assumptions for Theorem 4). Let, X3, -+, X+1 be independent random variables with density func-
tions f1,--- fn+1 and finite Fisher information, then the product density w is twice continuously differentiable
and )
f IVwll
—— <o
w

Remark: The assumption that | Hes(w)| is also integrable is thought to follow from this lemma, but is not
discussed in this thesis and thought of to be true.

Proof of Lemma 2:
Since the Fisher information is finite for each random variable, we can see from (5.1) that each density is twice

21
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continuously differentiable. From this we can deduce that the product density is also twice continuously dif-
ferentiable. Next, we see that

IVwI? = (f] (1) - fre1 Genr1)) + -+ (A1) -+ fry g (ons1)?

which gives

IVwl? _ () frnn ) (G fy (nin))?
w Si(x1) -+ fue1(xnar Si(x1) -+ fue1(xnar
which is equal to
fi(x)? Fhr (na1)?

fo(x2) -+ fue1(xns1)

fita) A fulxn) fon1 Kne1)

This results in

Vw|? '(x1)? Lo (ne1)?
f“ wl =fﬁ(xz)---fn+1(xn+1)(fl : )+---+ff1(x1)---fn(xn)(f”“—”“ <o

w fi(x) Sn+1(xn41)

We can make the conclusion that this integral is less than infinity from the fact that all Fisher informations
are finite, (5.1), and that each integral is multiplied with densities, which are also finite. This means that each
integral is less than infinity and so is the sum of all these integrals. O

Next, we continue with the assumption for Theorem 5. In that case, we don’t need that the Fisher infor-
mation is finite, but that the variance of each X; is finite. If the variance is infinite, we are once again in a
trivial case and the subsequent theorems follow trivially.

Lemma 3 (Assumptions for Theorem 5). Let, X1, -+, X,+1 be independent random variables with density func-
tions f1,--- fn+1 and finite variance, then
f lxlw < oo,
RrHl

where w is the product density.

Proof of Lemma 3
We first show that

Ixl?w = ril(xg)LU:’il w (5.2)
Rn+1 Rn+1 i=1 t l ’ ’

i=1 R+l
Next we fill in the product density and split up the integrals to show

n+1 n+1

;ju;nﬂ xlgfl(xl)"'fn+1(xn+1)dxn+1"'dxl = ;‘[Rx?fi(xi)dxi

f

J=Lj#

(xj)dx;.
ifRfJ(xj) Xj

We simply integrate all the densities out of the equation. We can do this because all the densities which are
not dependent on x; have integrals which are equal to 1 when integrating over their entire domain. This gives

n+l1 n n+1
Yo #fipdx ] ffj(xj)dxj/: Yo | fixdx;-1----1.
i=1J/R j=1,j#i’R i=1JR

But now remember the definition of an expected value to see that

n+1 n+1

Y fR X2 fi(xp)dx; = Y E(X?). (5.3)
i=1 i=1

Combining Equations (5.2) and (5.3) gives
n+l
f Ixl?w =Y EXD).
Rn+1 i=1

But we can see that saying that this integral is less than infinity is equal to saying that each X; has finite
variance, since the variance is defined as

Var(X;) = E(X?) - E(X)*.

Remember that the variance of each X; was assumed to be finite. This proves the lemma. O
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5.2. The final piece of the proof of the Entropic Monotonicity Theorem
Theorem 6. Let Xi, X»...X,+1 be independent random variables, let a = (ay, ..., an+1) € Sy, be a unit vector
andby,...,by+1 €R, then

(n+l ) n+1 )
J a;iXi|lsn) b7J a; X;|.
izzl i ]; j ’—l—a I#Z} !

Proof of Theorem 6
For every j, denote a new vector

&]: (alr'”yaj—lyoyaj+1!”'!an+l)
l1-a
which is also a unit vector, since
n+1 .
Y (@)= Yai=—-(1-a)=1
4 i 2 J
i=1 i l#] dj

Now let p/ : R"*1 — R"*! be a vector field which realises the information of the marginal of w in direction &/
as in Theorem 5. This gives

B div(ij) 2
Y aiX; _fwﬂ (—) w. (5.4)

‘/l—a i#] w

Furthermore, we want to show that we can assume that p/ does not depend on x j and its j th coordinate is
0. We do this by applying Theorem 5 again, but then in n dimensions. We can do this by dropping the j*"
coordinate, since aj = 0 and because of that it follows that X; will not add anything to the Fisher information.
This gives a vector field p2 : R" — R” which realises the information of the marginal of w, in the direction 4/,
where

Wa (X1, Xj-1, Xj+1,7 5 Xne1) = f1 (1) -+ fi-1(Xj-1) fi+1(Xj41) -+~ fnr1 (Xn+1)

such that

2
div(w pl)
Zaz i Z/ (—sz) wy. (5.5)
v/J1— a i#]j R" W2

Essentially what we want to show is that we can construct p/ by taking it to be exactly the same as pg, but
adding an extra j*" coordinate which is 0. This would also mean p/ would not depend on xj, since that

coordinate did not even exist when pé was made. We start by showing that

A n+l n+1 0 . .
diviwp)= 3. (—(WPZ)kH—(wP])] =filx)) Y. (m—(w2p)i) = fi(xj)divwzpy).  (5.6)
k=Tk#j 0%k k=T Kz} 0%k

In the second step we used that (wp/) j = 0 and every other function of pl, (pHi = (pg) k- We can see from
Equations (5.4) and (5.5) that for this construction to work we need to be able to fill the constructed p; into
Equation (5.4) and get the same result as Equation (5.5). We fill the constructed p’ into (5.4) and use (5.6) to
see that

. 2 . 2
diviwp/)\* (xj) div(wa pl) div(ws pl)
[Rnu( - )) w:/w“(f] ; 2_p2 ) fj(xj)WZZfRnH(—zpz) fi(xj)wo.

w filxj)wa wo

Now we split the integrals over the domain of R” and x; and use the fact that f;(x;) is a density to see that

‘ 2
div(wpi)\* div(w, p div(ws pl)
o e [ o= (528 | g
2 i
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This has shown that in (5.4) we can use the fact that p; is independent of the x; coordinate and its j th coor-
dinate is 0.
Next, we consider the vector field p : R"**! — R"**! given by p = Z;’;’ll bjp’. To make sure we can use Theorem

4 we have to show that (p,a) = 1 and f pllw < oco. The second part is clearly satisfied, since each p; was
constructed to have [ | pjllw < oco. Next, we show that (p, &) = 1.

n+l1 n+l1 n+l . n+l n+1

(pay=3 aipi=) ay bjp/=) b; ) aip], 5.7)
i=1 i=1  j=1 j=1 =1
by changing the sums. Next, since {(4;,p;) =1,

Zp{aizl = Zp{ai: l—a?.

1
,/1—a§ i#] i#]

Filling this in Equation (5.7) and using that 27;1 bj/1- a? = 1, we get that

{4j,pj) =

n+l1 n+1 n+1

pay=Y b; ¥ aip’ =Y bj\/J1-a?=1.
j2::1 J; LFj ]; J j

This makes sure we can use Theorem 4 to see that

nl diviwp)\* ntl - div(wpl) 2
](lzzl ale) Sjl‘anﬂ (T) w—fw“ ]ZZIbJT w. (58)

Let y; denote b; diV(Tw”]). Our aim is to show that in L, (w) (the Hilbert space of absolutely square integrable
functions with weight w):

Iy1+--+ Ypar 12 < nly 2+ + 1 yner 12 (5.9)

This would prove the Theorem, since then
N2 P2
n+1 le(w ]) n+1 n+1 n+1 le(w ])
[ (Zb,-—” w=||Zy,-||25n(Z||yj||2)=n2b§f(—p) w
R\ j=1 w =1 j=1 j=1 w

Now, using Equations (5.4) and (5.8) we can see that then

n+l1 n+1 1
](Za,’X,')anlﬁ] —ZaiXi .
i=1 im

,/1—a§ i#]

To prove this we use Lemma 5. We do this by introducing n + 1 commuting orthogonal projections such that
foreveryl<j<n+1,T- - Tpy1y; = 0. Atlast we need to show T;y; = y; for each i. Since then by the lemma

ITayr+-+ Turynar 12 < n Iyl + -+ 1 ynea ).
and because of the last step this is equal to
Iy -+t yuar 2 < n Iyl + -+ lynaa1?),
and we have shown Equation (5.9). For this we define T; : L (w) — Ly (w) by

(Tl(/))(x) = A¢(x1)"' y Uiy e rxn+l)ﬁ(ui)dui'

Essentially integrating out the i’ coordinate against f;. By Lemma 6 these are 7+ 1 commuting orthogonal
projections. Next, we show that forevery1 < j<n+1,11---T41y; = 0. We can see that if we take all T; over
an arbitrary function ¢ that then Ty -+ Ty, ¢ =

fRnHCP(ul,---,un+1)f1(u1)---fn+1(un+1)du1...dun+1 =er1+1¢(”1"“ JUprwduy...dug. (5.10)
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We are integrating over the entire domain, so we can leave out the the variables. Now in our case we use y; as
o, so filling this in Equation (5.10) gives

div(wp/) . ;
Tl.”TnJrlyi:jl;nﬂyiw:jl;nﬂbij:bj‘[;@nﬂ le(LUp]) (5.11)

We are now going to show this integral goes to 0 by using Green-Gauss. This follows the same strategy as used
earlier in this thesis when Equation (4.2) was proved. Therefore the usage here will not be described in detail.
Let B(r) be aball in n + 1 dimensions with radius r, S(r) be the boundary of this ball and N(x) the outward
pointing normal vector, then

. ] — 1; . ] = 1i ] i ] =
[I‘R"“ div(wp’) rlugo div(wp’) = lim wp N(x)s}g&ﬁm lwp’l=0. (5.12)

TJB(1) r=eoJsm

In the last step we used that by definition fRn+1 w|l pj | < co and that thus the integral becomes 0 if we take the
limit to infinity. Combining Equations (5.11) and (5.12) gives what we want, that T} --- T,+1 y; = 0 for each j.
To complete the proof we need to show that T; y; = y;.

Tiyi=jﬂ;yi(x1,~--,ui,~--,xn+1)ﬁ'(ui)dui=yifRfi(ui)dui=yi-

Here, we used that each y; is specificaly constructed to be independent of the i coordinate, so we can just
take it out of the integral and use that f; is a density. This proves Equation (5.9) and therefore the entire
Theorem. O

5.3. First supporting lemma

To prove the first supporting lemma, we actually need another general result about Hilbert spaces. This is
summarised in the lemma below.

Lemma 4. Let Py and P, be commuting orthogonal projections in a Hilbert space H. Then an orthogonal
decomposition of H can be made with

H= @ H,, H.={x:Pix=¢€1x,Pyx=¢€5x}.
£€{0,1)2

Proof of Lemma 4

We start with the use of Equation 2.7 from Conway [5] to see that an orthogonal projection, call it Py, projects
vectors in the hilbert space to a linear closed subspace, call it M;, such that Ran(P;) = M; . Furthermore,
from Conway we see that Ker(P;) = MlL = Ran(1 — P;), where (1 — P;) is also an orthogonal projection. We
see that we can write H as a direct sum of M; and Mf. This is because for every x € H we can write it as
x = Pyx+ (1 - Py)x. Here, by definition P, x € Mj, since it is in the range of the orthogonal projection P; and
(I1-Pyxe MIL, since it is in the range of the orthogonal projection (1 — P;).

But we can write it even cleaner, as the direct sum of H, with € € {0,1} and H, = {x : P;x = €x}. This can
be done because H; = M; and Hy = MIL. Since Hj is exactly the definition of the kernel of P; and for every
x € M, P1x = x, since P; sends the x to M, but it is already in M;. Now we continue with showing it for 2
orthogonal projections.

We can write every x € Has x = P1Pyx+ P;(1 - Py)x+ (1 - P1)Pox+ (1 - P1)(1 — Pp)x, thus following the same
arguments we can see that this H is a direct sum like

H= @ He, He={x:Pix=¢1x,Pox=¢,x}
£€{0,1}2

This decomposition can only be performed if the projections P; and P, are commuting orthogonal projec-
tions. For example, the term P; P> x is intended to correspond to the subspace H(;,1), which equals Ran(P;) N
Ran(P,). However, for Py P, x to actually lie in both Ran(P;) and Ran(P,), we require that

P1(P2x) = P2 (P1x),
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i.e., the projections must commute. Without commutativity, it is possible that P,x € Ran(P,), but applying
P; may move it out of Ran(P,). In this case, P; P,x ¢ Ran(P»), so it does not lie in the intersection Ran(P;) N
Ran(P,).

Now we need to show each subspace is orthogonal. Take € and €', such that ¢ # £/, then take x € H, and
¥ € Hy, then we need to show that (x, y) = 0. By definition, there exists some j such that ¢; # s’j and the fact
that each P; is an orthogonal projection (such that (P;x, y) = (x, P; y) ), we see that

50 =(Pjx, y) =(€jx,y) = €j{x, ) (5.13)
and that
(X, ) =(x,Pjy) =(x,€} ) = €/(x, y). (5.14)

In the last two equations we have used that € jx = Pjx and e’j ¥ = P;y, which follows from the definitions that
x € He and y € Hy. Combining Equations (5.13) and (5.14) we see that (x, y) = 0, since €; # E’j. This shows
that all H, are orthogonal subspaces. (I

Now we have the result we needed to prove the first supporting lemma, which we do in the proof below.

Lemmab5. Let Ty,..., Ty be m commuting orthogonal projections in a Hilbert space H. Assume that we have
m vectors y1,..., Ym such that forevery1 < j<m, Ty --- T, y; = 0. Then

IT1y1++ T yml> < m=1) (Iy1 12+ + lyml?).

Proof of Lemma 5

We first show that we can decompose the Hilbert space with the commuting projections into an orthogonal
decomposition. For this we use Lemma 4 and extend the argument for m commuting orthogonal projections
instead of 2. It can be seen that then we have an orthogonally decomposition of H with

H= @ He, He={x:Tix=¢;x,1<i<mj}

€€{0,1}™

Since this is an orthogonal decomposition, we can write each ¢ € H as } ¢ 13m ¢¢, where each ¢, € H,. We
use orthogonality to show

IPIZ =1 Y PelP=C Y. der Y. Py= 3 lpel®.

£€{0,1}m e€{0,1}" £€{0,1}" €€{0,1}""

Here, we used that every ¢, is orthogonal to each other and thus that for ¢¢1 # P2, (Pe1,Pe2) = 0. We do this
for each y; and write it as y; = ¥ c¢(0,13m Y. Then we can write

m m
Tip+-+Tmy=), Y. Tive= ) 2 Tiy.
i=1¢€€{0,1}m ee{0,1)m i=1
In the last step we just switched the sums. Now the second sum can be rewritten, Y- | T; yL. Since T;yl = ¢;y!
and remember that €; = 1 or €; = 0, we see that T; yé only adds something to the sum if €; = 1. Thus,

m . m . m

Y XTive= Y Y Tiye= ) ) Ve
eef{0,1} j=1 EE{O,I}m;f}i EE{O,I}’"g%}i
1= 1=

We use this and ||(/b||2 = ccio,ym | Pe I% to show that
m .
1Ty ++ Tmyml>= Y, 1Y yiI? (5.15)

ee{0, 1} i=1,
gi=1

Now we use that in a Hilbert space

L 2 & 2
1Y will®><=m)_ lluil?, (5.16)
i=1 i=1

which we will prove in a bit. Then by assumption in the Lemma T3, Tj,y; = 0. This gives that if all £; = 1,
then it does not add anything to the sum. This can be seen from the construction of each H,. Remember that
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in the construction yé with € =1 is the part with T; --- T}, y;, which was 0 by the assumption. So we can see
that every vector on the right-hand side of Equation (5.15) is a sum of at most m — 1 summands and using
Equation (5.16) we see that

m
ITiyi+-+ Tyml?< Y. (m- 1)2||yg|| =m-1Y Iyl
, i=1

e€{0,1}™m
=1

In the last step we switched the sums again and transformed back to the original vectors. This proves the
Lemma, so we only need to prove Equation (5.16).

m m m
1Y uil® =<3 wi Zuﬁ—ZZ(ul,u,)—leuzl +Z<u,,u]><ZI|uzl + 3 Nugllilugll
i=1 i=1 Jj=1 i=1j=1 iZ] i#j
We next use the AM-GM inequality to show
Z||ul||2+Z||u,||||u]||<Z||ul||2 2Z(||ui||2+||uj||2)
i#] i#]

The AM-GM inequality is

X1+ +Xp
M X1 Xp,

n
and we use it with n =2 and x7 = || y; || and x; = || ujll. Next, we count how many times each u; appears in the
second sum. It appears m — 1 times for each i # j, but since we also need to count j # i, it is counted 2(m —1)
times. This gives

m m
||Zu,| <Z||ul|| += Z(uzm + llujll )—Zn wi)?+ 2= Zn uil®>=m}y llu;l®

z#] i=1

which proves the lemma. O

5.4. Second supporting lemma

Lemma6. Let Xy, -, X;+1 beindependent random variables with corresponding densities fi(x1),+, fu+1(Xn+1)
with w the product density, then T; : Lo(w) — Ly (w) defined by

(Tz(P)(x) :jl;e(l)(xlr”' y Uiy ,xn+1)ﬁ(Ui)dui

are commuting orthogonal projections.

Proof of Lemma 6:
To show each T; is orthogonal, we have to show that Tl.z(,b =Tipand (Tip1,d2) = (1, Tih2) Vb, b1, 2 € Lo (w).
We start with T2¢p = T;¢:

T,-2</)= Tifwtp(xlu--,uiw-,xn+1)f,~(u,-)dui=fRfR</)(x1,-~-,uiw-,xn+1)ﬁ(ui)duiﬁ(vi)dvi,

but the function over which we take T; the second time, the inner integral, was already independent of the
i'" coordinate, so we can take it out of the outer integral and using the fact that f; is a density we get

T,-2</)=ju;¢(x1,~--,uiw-,xn+1)ﬁ(ui)duifwﬁ(ui)dui=fR</)(x1,--~,ui,---,xn+1)ﬁ(ui)du,--1: T;¢p.
Next, we show that (T;¢1,p2) = (¢p1, T;p2), we use here that dx,+ = dx; ... x,4] for notation purposes.
<Ti(l>1;¢2>ZL"H(Ti(Pl)'E‘Wan+1=[|;en+lﬁ|;¢)l(xly'”,ui,"‘,xn+1)fi(ui)dui(/72(x1;”'yxn+1)Wan+1-

By using the fact that w is a product density and decomposing the domain of the integral over R"*! into R”
and R, where we integrate over the variable x; we see that this is equal to

(Tih1,¢h2) = ]_[f](x] (fwcbl(xl,'--,uiw-,xn+1)ﬁ(ui)duiqubz(x1,---,xi---,xnﬂ)fi(xi)dxi dxyp. (5.17)
R j#i
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Now we show that we can decompose (¢1, T;¢p») in the same way:

<¢1’Ti¢2>:fw+l ¢1-(Tih2) - w dXns1 =fw+] (Pl(xl,"'rxn+l)fR(p2(x1y“‘;ui;"‘;xn+l)fi(ui)duidwxn+l-

Following the same arguments as before, we show that this is equal to

(1, Tih2) . [T (fwdn(xl,---,xi,--o,xn+1)ﬁ(xi)dxifm¢z(x1,~--,ui,-’-,xnﬂ)ﬁ(ui)dui dxy. (5.18)

Combing Equations (5.17) and (5.18) shows that (T;¢1, ¢p2) = (¢p1, Tih2). This is because in both equations x;

and u; are just dummy variables who are integrated out of the function. At last we need to show that they
commute, for this we show that T; Tj¢ = T; T;¢p. W.l.0.g. we assume i < j,then

TiTj¢=[f¢(x1,"',ui,"',Ltj,"',xn+1)fj(uj)ﬁ(ui)dujdui-

RJR

Following the same arguments we can show that T; T;¢p =
T,-Ti¢=fRfR¢(x1,m,ui,-'-,u,-,~~,xn+1)ﬁ(uim(uj)duiduj.

But these last two expressions are just equal, since we can switch the integrals. This shows T;T;¢ = T;T;¢
which was necessary to show they commute. OJ



Conclusion

The conclusion of this thesis will be mostly about pointing out where compared to the original article [1] new
mathematical findings were added. Furthermore it will explain the few parts that are still missing and could
be improved.

First of all, the structure of the proof in this thesis differs from the article. The part about the connection
between the Fisher information and the entropy in Chapter 3 is structured a lot more clearly to show what
is left to prove, while the article keeps this more condensed and expects the reader to understand it. In the
actual proof, the theorems are split up and more lemmas are introduced to keep the structure nice to read,
while the original article only uses one supporting lemma and only one theorem. These are not actual math-
ematical findings, but these do add to the flow for the reader and keeping it accessible for students who are
not specialised in this area.

In Chapter 4 a lot more mathematical details and findings are added. For example Lemma 1 is described
in one paragraph in the original article, while the rigorous proof to actually understand it takes one page.
This can also be seen in the proof of Theorem 5. The eventual p which is constructed in this theorem is only
described vaguely in one paragraph, but it is difficult to understand what each component of the function it
actually is. Constructing p rigorously takes more than an entire page in the proof in this thesis.

In Chapter 5 the same happens, a lot more mathematical details and findings are added in the proofs. In
the proof of Theorem 6 the article is especially quick with its calculations. Taking the integral in Equation
(5.4) actually has the wrong domain where the integral is taken over, namely R” instead of R”*!. This is prob-
ably, because the authors think this is easy to see, but explaining that we can reduce one dimension actually
takes another page, while the article does it in a few sentences. Especially when we take into account the part
where the article says it can be assumed that p/ does not depend on the j"* coordinate and its own j*" coor-
dinate is 0. The last part where a lot of new mathematical findings were added is in Lemma 5, but this makes
more sense. The authors probably presume that the reader has a lot of experience in Hilbert spaces, while a
bachelor student has little to no experience with it. This is the reason this needs a lot of added explanation in
its proof.

There are also still some small gaps in this thesis. If we go to the proof of Theorem 5 the article mentions
that each component of pw tends to 0 at infinity. This is vaguely proved in this thesis, but a more rigorous
proof would be even better. A relative bigger gap in this thesis is that in the proof of Theorem 6 it is only
proved for random variables for which the product density w satisfies the assumptions of Theorem 4. The
assumption that || Hess(w)| is integrable is not proved. It is kind of logical and is not used in the proof, thus
the reason why it was seen to be reasonable to omit this assumption. The proof of the other assumptions is
not mentioned at all in the article however, so these parts can be seen as entirely new mathematical findings.
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Increasing entropy plot

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import gaussian_kde,norm
from scipy.integrate import simpson

# Settings

np.random. seed (0)

n_samples = 100_000

max_n = 10

entropies = []

# Loop over 1 to 10 summed wvariables

for n in range(l, max_n + 1):
# Generate n independent Exponential (1) random wvariables
Xs = np.random.exponential(scale=1.0, size=(n, n_samples)) # Normalised sum
Y_n = np.sum(Xs, axis=0) / np.sqrt(n)

# Estimate density using KDE

kde = gaussian_kde(Y_n)

z_vals = np.linspace(min(Y_n), max(Y_n), 1000)
f_z_vals = kde(z_vals)

# Compute entropy

integrand = -f_z_vals * np.log(f_z_vals)
#numerically approrimate the integral
entropy = simpson(integrand, z_vals)
entropies.append(entropy)

z_vals_gauss = np.linspace(-6, 6, 1000)

f_gauss = norm.pdf(z_vals_gauss)

integrand_gauss = -f_gauss * np.log(f_gauss)
gaussian_entropy = simpson(integrand_gauss, z_vals_gauss)

# Plot entropy vs number of summed wvariables

plt.plot(range(l, max_n + 1), entropies, marker='o')

plt.axhline(y=gaussian_entropy, color='red', linestyle='--', label="Entropy of Standard Gaussian (nume:
plt.title("Entropy of Normalized Sums of i.i.d. Exponential Variables")

plt.xlabel ("Number of Summed Variables (n)")

plt.ylabel("Entropy of Yn")

plt.grid(True)
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34 A. Increasing entropy plot

plt.show()
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