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Janto Gundlach 1, Marc Böswald 2, Martin Tang 3, and Jurij Sodja 4

1 German Aerospace Center, Institute of Aeroelasticity, Bunsenstraße 10, 37085 Göttingen, Germany, janto.gundlach@dlr.de
2 German Aerospace Center, Institute of Aeroelasticity, Bunsenstraße 10, 37085 Göttingen, Germany, marc.boeswald@dlr.de
3 German Aerospace Center, Institute of Aeroelasticity, Bunsenstraße 10, 37085 Göttingen, Germany, martin.tang@dlr.de
4 Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands, j.sodja@tudelft.nl

ABSTRACT
There are technical applications where structures undergo deformation in the geometrically non-linear
domain. This is the case for high-aspect-ratio wings, which may play a more important role in the future
aircraft designs. Shape sensing methods can estimate the deflection of these structures during operation,
if a direct measurement of the displacements is inconvenient or not possible. For the geometrically non-
linear range, the modal rotation method has been proposed as a candidate suitable for slender structures.
The method superposes modal rotation increments of segments along the length of the structure, typi-
cally obtained from a finite element model. If the method is applied model-free, based on modal rotations
identified from test data, the variability of the modal rotations leads to uncertainty in the displacement
estimates. The present study illustrates how displacement output uncertainty can be expressed using
linearised propagation formulae, relying on the prerequisite that the modal rotations exhibit a normally
distributed and independent scatter around their mean. This uncertainty propagation is investigated in
the shape sensing of a high-aspect-ratio wing model, and verification through Monte Carlo simulations
demonstrates that the derived expressions accurately propagate the uncertainty from variable modal ro-
tations. Consequently, these expressions can be applied to specific shape sensing tasks in experiments
where this variability can be recorded.

Keywords: Shape Sensing, Modal Rotations, Modal Approach, Uncertainty Quantification

1. INTRODUCTION

In response to the growing demand for more sustainable and eco-friendly aviation, high aspect-ratio
wings are considered in future aircraft designs to reduce induced drag [1]. Such wings are more sus-



ceptible to large deflections, their aeroelastic behavior is prone to being influenced by geometric non-
linearities which affects their aeroelastic behaviour. The non-linearities are of particular interest from a
structural dynamics perspective, since they lead to changes in modal parameters, which in turn directly
affect the aeroelastic stability of associated structures. In order to discern whether the change in modal
properties is due to geometric non-linearities or a change in flow conditions, continuous monitoring of
wing deflections, along with other values such as dynamic pressure, is necessary during a wind tunnel
test or flight. The displacement reconstruction of wing-like structures based on strain or other kinematic
quantities, commonly denoted as shape sensing [2], is a prospective method for monitoring the state of
deflection whenever a direct measurement is not feasible. Different approaches for estimating the dis-
placements in the geometrically non-linear range have been proposed, where the non-linearity is captured
in an incremental sense [3, 4]. The modal rotations method (MRM) [5], on the other hand, estimates non-
linear displacements in a single step, which is accomplished by linear superposition of modal rotations
of the undeformed structure on a reference line. In the process, the rotation mode shapes are obtained
by normal modes analysis of the finite element model of the structure. The modal approach using mode
shapes of rotation increments is considered accurate, as the absolute rotation increments remain small
even in case of large deflections of the slender structure. In principle, modal rotations can be identified
in experimental or operational modal analysis, for instance, using data obtained with gyroscopic sen-
sors. Steady progress in the field of MEMS measuring rates of rotation make these sensor types more
prospective for application [6]. In [7] ground test results and mode tracking during flight demonstrate the
applicability of such sensors for modal identification. However, significant noise in the signals requires
long measurement times to improve particularly the damping estimates. If MRM is used model-free and
rotation mode shapes from test data are used in the shape sensing, the displacement reconstruction will
be affected by the uncertainties which are inevitably present in the identification results. For this purpose,
in this study linearised Gaussian propagation is employed to derive analytical expressions to assess the
output uncertainty of individual displacement components.

2. THEORY

The method introduced in [5] can be applied to 3D cases. As the focus of this work lies on the uncertainty
properties of MRM, the 2D version of the method is considered in the following. On that account, only
the uncertainties concerning flapwise bending deformation of a wing structure are investigated. For
application on more complex 3D problems, the uncertainty analysis has to be extended.

2.1. Modal rotations method

It is assumed that the modal rotations are identified along a spanwise reference line of the structure which
is defined in the yz-plane. As depicted in Figure 1, the structure is discretised in Ns segments.

Figure 1: Segments and nodes describing an arbitrary reference line of the slender structure.
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of m = 1, . . . , Nm modes are determined at the i = 1, . . . , Ns+1 nodal positions.
For each segment, a modal rotation increment can be defined using the modal rotations at the nodal
points:

∆ϕθsm = ϕ
θ
(s+1)
m

− ϕ
θ
(s)
m
. (1)

These can be stored in a matrix containing modal rotation increments for all modes and segments:

∆Φθ =

 ∆ϕθ11 . . . ∆ϕθ1Nm
...

...
∆ϕθNs1

. . . ∆ϕθNsNm

 . (2)



A key aspect of MRM is that the rotation increments along the structure are computed in terms of the
modal superposition

∆θ = ∆Φθq (3)

with the modal coordinates q being the coefficients of the linear combination. The modal coordinates
can be determined in different ways. With known external forces and generalised stiffnesses, they are
obtainable from equilibrium in modal space (cf. [5]), otherwise q can be determined by linear regression
of strain mode shapes on strain values (cf. [4]). If determined solely from measured data, additional
uncertainty in the modal coordinates has to be taken into account, which is not dealt with in this study.
The rotation increments of the segments are employed in rotation matrices

Rs = Rs−1∆Rs; ∆Rs =

[
cos∆θs −sin∆θs
sin∆θs cos∆θs

]
, s = 1, . . . , Ns (4)

to compute the location of the nodes x(i) = [y(i), z(i)]
T

in the deformed states, starting from the root
outboard to the tip

x(i) = x(i−1) +Ri−1∆li−1, i = 2, . . . , Ns + 1, (5)

where ∆li−1 = X(i) −X(i−1) describes the length vector of the (i− 1)-th segment in the undeformed
configuration. The estimated displacement vector of the i-th node is computed as

û(i) = x(i) −X(i). (6)

2.2. Uncertainties from modal rotations

In order to assess the impact of possible uncertainties in identified modal rotations, it is assumed that
nodal components of each mode shape vector scatters around the mean µθm with a normal distribution
characterised by the standard deviation σθm . It is furthermore assumed that the modal rotations and
associated uncertainties are independent from each other. With these assumptions, the Gaussian error
propagation formula is applicable to evaluate the uncertainty in the displacement output. In general, the
uncertainty for the displacement components at i-th node reads:

σ
û
(i)
y/z

=

√√√√√ Nm∑
m=1

Ns+1∑
j=1

( ∂û(i)

∂ϕ
θ
(j)
m

)
y/z

σ
θ
(j)
m

2

. (7)

To gain insight into the partial derivatives in the expression, they are broken down step by step. From
Eq. (6) only the nodal coordinates x(i) of the deformed states that depend on ϕ

θ
(j)
m

, which, according to
Eqs. (1-4), are isolated in the incremental rotation matrices. Therefore, the recursive formulation of the
nodal positions in Eq. (5) is expressed from the root outboard by means of rotation matrix increments:

x(i) = x(1) +
i−1∑
k=1

 k∏
j=1

∆Rj

∆lk, i = 2, . . . , Ns + 1. (8)

For the node located at the root, it is assumed that the position in the deformed states is known, e.g.
x(1) = X(1) if the root is rigidly clamped. Considering the remaining nodes, the product rule implies
the derivation with respect to the modal rotation of the m-th mode at the j-th node:

∂x(i)

∂ϕ
θ
(j)
m

=
i−1∑
k=1

 k∑
n=1

n−1∏
p=1

∆Rp

 ∂∆Rp

∂ϕ
θ
(j)
m

 k∏
q=p+1

∆Rq

∆lk. j = 1, . . . , i. (9)



Note that in the expression the empty product convention is used, which indicates multiplication with
unity if no elements are in the product. With view on Eqs. (8) and (1-4), one observes that only derivatives
with respect to modal rotations of the first i nodes are defined. For a clamped structure, the number of
derivatives is reduced by the number of derivatives with respect to ϕ

θ
(1)
m

. The number of terms in Eq.
(9) is significantly reduced with further insight into the derivatives of the incremental rotation matrices.
These only exist for incremental rotations of the (j − 1)-th and j-th segment, respectively, such that the
updated equation yields
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∂ϕ
θ
(j)
m

=
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+
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∆Rp

 ∂∆Rj

∂ϕ
θ
(j)
m

 k∏
q=j+1

∆Rq

∆lk.

(10)

By definition of Eq. (4) and recalling that the rotation increment of each segment is obtained from linear
superposition (cf. Eq. (3)), the remaining derivatives are computed via

∂∆Rj−1

∂ϕ
θ
(j)
m

= qm

[
−sin∆θj−1 −cos∆θj−1

cos∆θj−1 −sin∆θj−1

]
and

∂∆Rj

∂ϕ
θ
(j)
m

= −qm

[
−sin∆θj −cos∆θj
cos∆θj −sin∆θj

]
. (11)

From these results it is apparent that the derivatives can directly be expressed by a rotation of the incre-
mental rotation matrices about 90◦:

∂∆Rj−1

∂ϕ
θ
(j)
m

= qmRπ
2
∆Rj−1 and

∂∆Rj

∂ϕ
θ
(j)
m

= −qmRπ
2
∆Rj with Rπ

2
=

[
0 −1
1 0

]
. (12)

A rotation by 90◦ is a special case, since the rotation is commutative with other rotation matrices. For
this reason, the respective rotation matrix can be factorised outside of the summation and Eq. (10) is
further simplified to

∂x(i)

∂ϕ
θ
(j)
m

=qmRπ
2

 i−1∑
k=j−1

j−2∏
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∆Rp

∆Rj−1

 k∏
q=j

∆Rq

∆lk

−
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k=j

j−1∏
p=1

∆Rp

∆Rj

 k∏
q=j+1

∆Rq

∆lk

 .

(13)

Since ∆R0 is not defined, the first summation vanishes for all derivatives with respect to ϕ
θ
(1)
m

. For
all other derivatives with j ∈ [2, i], the terms in the first summation coincide with terms in the second
summation except for the very first term where k = j − 1. Therefore, the displacement sensitivities are
finally computable via

∂û(i)

∂ϕ
θ
(j)
m

=
∂x(i)

∂ϕ
θ
(j)
m

=


−qmRπ

2

i−1∑
k=1

∆R1

 k∏
q=2

∆Rq

∆lk, if j = 1

qmRπ
2

j−1∏
p=1

∆Rp

∆lj−1, if 2 ≤ j ≤ i.

(14)

The uncertainty propagation formula requires scalar sensitivities for each coordinate direction. There-
fore, the vectorial terms are multiplied with Rπ

2
. The multiplication exhibits the property Rπ

2
a =



[−a2, a1]
T such that the scalar sensitivities crystallise in

(
∂û(i)

∂ϕ
θ
(j)
m

)
y/z

=



±qm


i−1∑
k=1

∆R1

 k∏
q=2

∆Rq

∆lk


z/y

, if j = 1

∓qm


j−1∏

p=1

∆Rp

∆lj−1


z/y

, if 2 ≤ j ≤ i.

(15)

Due to the quadrature in Eq. (7), the opposing signs cancel each other out, resulting in the following
uncertainty of the displacement output:

σ
û
(i)
y/z

=


Nm∑
m=1

q2m




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∆R1

 k∏
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∆Rq
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
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σ
θ
(1)
m


2

+
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j=2



j−1∏

p=1
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σ
θ
(j)
m


2
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1
2

.

(16)

In case of a clamped cantilever structure and thus σ
θ
(1)
m

= 0, the first term cancels out for each mode
in the sum. It is also apparent from the propagation formulae that the output uncertainty increases with
increasing number of considered nodes and therefore sensors, if the method is applied on test data.

3. APPLICATION CASE

The uncertainty analysis of MRM is applied to the FE model of a high-aspect-ratio wing with symmetric
cross-sections. The wing has a swept and tapered design, which typically leads to less accurate shape
sensing estimates. Before uncertainties are considered in the modal rotations, the deterministic results
of the method for a bending load case in the geometrically non-linear domain are presented. The wing
model is composed of shells and shear webs made from sandwich-structured composites, along with
ribs that reinforce the cross-sections at regular intervals. The geometric dimensions are provided in
Tab. 1. The model consists primarily of 4-noded shell quadrilaterals with composite properties defining
the laminate lay-up. It has been generated using the DLR-AE in-house parametric tool ModGen [8] in
MSC.NASTRAN. A top view of the model is shown in Fig. 2. Since the wing is designed for multiple
purposes, it includes a folding wingtip, which is not relevant to this study.

Table 1: Parameters of the
wing geometry.

Parameter Value
half span 5m

planform area 3m2

aspect ratio 16.67
sweep angle 29◦

rigid hinge

gyroscope sensor
y

x

load introduction

strain sensor

Figure 2: Finite element grid of the wing with virtual gyroscope sensor and
strain sensor positions.



The hinge of the wingtip is modelled as locked using RBE2 elements; it appears as a 0.1 m gap at two-
thirds of the wing span. To conduct the shape sensing, it is assumed that modal rotations of Nm =
10 modes around the x-direction are available at 11 nodes (e.g. from gyroscope sensors) positioned
equidistantly on the quarter chord line of the wing. Thus, the rotation of Ns = 10 segments is considered
for the displacement estimate. The geometrically non-linear deformation is caused by a tip load in z-
direction also acting at the quarter chord of the cross-section. In order to determine the linear coefficients
required for the modal approach (Eq. (3)), it is assumed that the wing is instrumented with 20 strain
sensors located on the panels on both the pressure and the suction sides. The sensors measure uniaxial
strain in the deformed state and provide strain mode shape components of the first ten modes to compute
the modal coordinates (cf. [4]). The deformation estimate using MRM for the described setting is

Figure 3: Deflection line estimate of MRM application in comparison with non-linear FEM results in coordinates
normalised to the wing length.

depicted in Fig. 3, where the non-linear static FEM curve is considered as the true deformation result.
If MRM was run model-free, uncertainties would affect the displacement output and the deterministic
result would represent the mean displacement estimate.

4. UNCERTAINTY QUANTIFICATION

In the following, Eq. (16) is evaluated with given normally distributed variability of the modal rotations.
This is done by scaling the standard deviation of the modal rotation of each mode at every node to the
deterministic value obtained from the FE model:

cϕθ
v =

σ
θ
(i)
m

ϕ
(i)
θm

. (17)

According to this definition, every component of the modal rotation matrix is altered with the same coef-
ficient of variation. However, if the variability of the modal rotations is known from experimental testing,
they could still be taken into account individually. In theory, the displacement uncertainties can also be
assessed using Monte Carlo simulations (MCS). However, this requires significant effort when a large
number of nodes and samples are involved. In this study MCS is employed to verify the propagation
formulae for MRM. Therefore, modal rotation matrices are sampled using Latin Hypercube Sampling
in the UQLab framework [9]. The histograms in Fig. 4 illustrate the absolute frequency distribution of
the nodal displacement u(11) of the wing tip estimated by MRM in a MCS. In this simulation 106 modal
rotation matrices of ten modes have been considered with cϕθ

v = 0.1. The mean value and the standard
deviation from the MCS results is provided next to the deterministic MRM estimate and the standard
deviation of the output according to Eq. (16). For the displacements in both coordinate directions, the
uncertainty from MCS coincides well with the analytical results. The absolute uncertainties in the flap-
wise displacement estimates are higher than those in the spanwise displacement estimates, whereas the
opposite is true for relative uncertainty. Regarding the MCS mean value, there is a small deviation to the
deterministic reference of MRM, meaning that the distribution in the histogram is slightly asymmetrical,
which is attributed to the non-linearity of the transformation from modal rotations to displacements in the



(a) Histogram of tip node location in y-direction. (b) Histogram of tip node location in z-direction.

Figure 4: Results from MCS using 106 sampled modal rotation matrices consisting of ten modes with 10%
coefficient of variation.

MRM procedure, where trigonometric functions are applied in the rotation matrices (cf. Eq. (4)). In fact,
for smaller coefficients of variation, both the standard deviation and the mean value exhibit improved
agreement to the deterministic MRM results in combination with Gaussian uncertainty propagation.

(a) cϕθ
v = 0.1 (b) cϕθ

v = 0.5 (c) cϕθ
v = 1

Figure 5: Standard deviation of displacement estimates over nodes: Comparison of Eq. (16) with MCS for
different coefficients of variation.

In Fig. 5, the displacement uncertainties in the two coordinate directions are shown for all nodes along
the reference line. To facilitate comparison between the MCS and analytical uncertainties, different
coefficients of variation are applied to scale the variability of the modal rotations. One recognises in
the presented range of cϕθ

v = 0.1 − 1 that the output uncertainties are proportional to the input standard
deviation. Also, for both displacement directions, the uncertainty grows monotonously with increasing
number of nodes along the reference line. Both properties can also be recognised from the structure of
Eq. (16). As indicated in Fig. 5a, for cϕθ

v = 0.1 the different results lie directly on top of each other.
For cϕθ

v = 0.5, the curves are still nearly indistinguishable. However, for cϕθ
v = 1, where the standard

deviation equals the mean value of the modal rotation, the MCS results show a noticeable deviation
from the analytical results. This illustrates, in terms of uncertainty, very large coefficients of variation
are necessary for the non-linearity to be expressed. These observations confirm that for reasonably low
variability of the employed modal rotation modes, the propagation formulae can be used as a replacement
for costly MCS to quantify the displacement uncertainty.



5. CONCLUSIONS

In this research, analytical uncertainty propagation formulae for the modal rotation method (MRM) have
been presented. The shape sensing method has been applied on data provided by an FE model of a high-
aspect-ratio wing with virtual instrumentation which is reasonable for a real wind tunnel test in terms
of number and positions of sensors. The model is evaluated in a geometrically non-linear deformation
state, where the uncertainty quantification analysis reveals that displacement uncertainty is proportional
to the coefficient of variation of the modal rotation. Furthermore, the uncertainty grows from the root
outboard with increasing node number. Finally, it was demonstrated that the analytical approach may
replace an assessment via Monte Carlo simulations. Hence, the analytical quantification can contribute
to the effective assessment of the quality of shape sensing with MRM within a complex measurement
task in the geometrically non-linear domain.
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