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Summary

As a crucial component, one common challenge of power amplifiers (PA) is the nonlinearity in the
wireless communication system. Digital predistortion (DPD) is essential for mitigating nonlinearity in
radio frequency (RF) power amplifiers, particularly for wideband applications.

This thesis work aims to present the TCN-DPD model, a novel parameter-efficient architecture based
on temporal convolutional networks (TCNs) to enhance the performance of PA. Therefore, the main
problem should focused on the TCN-DPD model implementation with parameter efficiency.

When TCN architecture was designed with several noncausal and dilated depthwise convolution layers
and 1*1 convolution layers, optimized activation functions should be explored to complete the TCN
architecture. By evaluating on the OpenDPD framework with the DPA_200MHz dataset, Hardswish, Tanh,
SiLU, and GELU were considered by benchmarking different activations of TCN-DPD based on SIM-
NMSE and SIM-ACLR metrics on average. Hardswish was confirmed in the later experiments as the
optimized activation function in TCN architecture based on simulated results ACLR of -51.54 dBc and
NMSE of -44.61 dB.

Since the TCN-DPD architecture was completed, this proposed model’s performance in PA and DPD
benchmarks is desirable to be tested, and later experiments will use the same dataset and framework
as the benchmark of activation function did. In PA benchmarking, the TCN model achieves SIM-NMSE
-34.99 dB on average compared to other models, LSTM, GRU, RVTDCNN, VDLSTM, PNTDNN, and
DGRU. This achievement shows the TCN architecture has a high potential to handle a range of depen-
dencies efficiently in the DPD application system.

Furthermore, DPD benchmarking is the main experiment in this thesis. Two architectures were se-
lected as the pre-trained PA model: the DGRU and TCN models. When the pre-trained PA is fixed
as the DGRU model, TCN-DPD demonstrates superior linearization performance with only 500 real-
valued parameters, achieving averaged and simulated ACPRs of -51.58/-49.26 dBc (L/R), EVM of
-47.52 dB, and NMSE of -44.61dB. The results are simulated ACPRs of -50.39/-50.01 dBc (L/R), EVM
of -47.88 dB, and NMSE of -45.51 dB in average when the pre-trained PA model is TCN. Both DPD
benchmarks include different DNN-DPD models, and TCN-DPD has superior performance in the com-
parison, especially the SIM-NMSE and SIM-EVM performance is significantly higher than other models
when the pre-trained model is TCN. These results establish TCN-DPD as a promising solution for effi-
cient wideband PA linearization.

Moreover, the evaluation extended to DNN-DPD performance with various numbers of parameters
ranging from 200 to 1000, where the TCN-200 model highlighted its effectiveness by showing impres-
sive results in SIM-NMSE -41.27dB/-43.51dB(DGRU/TCN PA), achieving superior linearization perfor-
mance while using significantly fewer parameters than existing deep neural network solutions, proving
the TCN-DPD model’s parameters efficiency.

The research in this thesis conclusively demonstrates that TCNs can be implemented in DPD applica-
tions, providing more parameters efficiency, better performance, and robust PA linearization solutions,
potentially setting a new alternative in DPD technology.
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1
Introduction

1.1. Motivation
The increasing demand for high-efficiency, wideband communication systems has intensified the need
for effective power amplifier (PA) linearization techniques. As modern wireless systems push toward
broader bandwidths and higher efficiency requirements, digital predistortion (DPD) has become indis-
pensable for maintaining signal quality while allowing PAs to operate in their efficient nonlinear regions
[1, 2].

The historical evolution of DPD techniques shows the efforts to address PA linearization’s evolving
challenges in the past few decades. In the 1980s, memoryless polynomial models were proposed to
provide the initial methods for modeling static PA nonlinearities; this model stated the primary chapter
of DPD technology in the early stage [3]. In the 1990s, the Volterra series model was proposed, which
can capture the memory effects, but the computation load is heavy [4, 5]. As entered the 21st century,
Memory Polynomial(MP) models were introduced to offer a low complexity with memory effects to
linearize the PAs, but limited with the bandwidth [6, 7].

In the mid-2000s, the Generalized Memory Polynomial (GMP) model was proposed, a significant mile-
stone in DPD’s evolution. The GMP model has long been the industry standard for PA linearization [8].
However, as communication bandwidths expand and modulation schemes grow more complex, GMP’s
limitations in modeling sophisticated memory effects have become increasingly apparent [9, 10]. This
challenge has driven the exploration of more advanced modeling approaches capable of capturing
intricate PA behavior across wider bandwidths.

Deep learning has emerged as a promising solution for next-generation DPD systems. The evolution
began with Time Delay Neural Networks (TDNNs), which demonstrated remarkable effectiveness in
modeling the sequential memory characteristics inherent in PAs [11]. This success led to enhanced
variants such as the Phase-Normalized Real-valued Time Delay (PN-TDNN) architecture [12]. The
field subsequently witnessed the implementation of various recurrent neural architectures, including
Long Short-Term Memory (LSTM) [13], Vector Decomposed Long Short-Term Memory (VDLSTM)
[14], and Gated Recurrent Unit (GRU) [15] networks. These architectures have shown exceptional
capabilities in capturing temporal dependencies within RF signals. Recent innovations have also incor-
porated convolutional neural networks (CNNs), exemplified by the RVTDCNN model, which leverages
convolutional layers to model both spatial and temporal signal characteristics simultaneously. The RVT-
DCNN models use the 2D convolutional layers to operate the formatted features from in-phase(I) and
quadrature(Q) of the signals [16]. In contrast, TCNs employ 1D convolutions directly on the input time
series, combined with dilated convolutional layers that efficiently capture long-term memory effects.
This architectural difference probably enables TCNs to achieve more parameter-efficient wideband
DPD while maintaining or improving modeling accuracy. However, despite these advanced deep neu-
ral network(DNN) based digital predistortion (DPD) models, Temporal Convolutional Networks (TCNs)
remain largely unexplored in DPD applications, even though they have demonstrated significant advan-
tages in capturing long-range temporal dependencies with reduced computational complexity in time

1



1.1. Motivation 2

series prediction tasks [17, 18].

Given the demonstrated advantages in various time series prediction tasks, TCNs represent a promis-
ing frontier in the evolution of DPD technology. Their potential for improving the linearization of PAs
in complex, high-efficiency communication systems positions TCNs as a critical area of research. By
leveraging the historical insights and technological advancements outlined, exploring TCNs in DPD
could lead to substantial improvements in the performance and efficiency of future wireless communi-
cation systems.
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1.2. Problem Statement and Objectives
Digital predistortion (DPD) is essential for mitigating nonlinearity in radio frequency (RF) power ampli-
fiers, particularly for wideband applications. Temporal Convolutional Networks (TCNs) are widely used
for sequential tasks with high efficiency and effectiveness, TCNs’ characteristics are fairly affable for
the needs of DPD techniques by including the sequential data of inn-phase(I) and quadrature(Q) com-
ponents. The integration of TCNs into the DPD techniques shows a promising opportunity due to the
TCNs’ advantages, such as the parameter efficiency, computational complexity, and the capabilities to
handle long-range dependencies in the signal data.

Despite the theoretical alignment of TCNs’ capabilities with DPD requirements being agreeable, prac-
tical implementation of a TCN-based DPD system remains largely unexplored. This gap presents a
critical problem as Fig 1.2.1 show:

• TCNs own numerous advantages, such as their parameter efficiency, stability in handling long
sequences, and low computational complexity, which can be effectively harnessed to DPD tech-
niques for improving PA linearization.

Figure 1.2.1: Problem Statement of TCN-DPD

This research aims to address this problem by designing and testing a TCN-based DPD architecture.
The specific objectives are to:

• Design and Implementation:

Design a specific TCN architecture tailored to the requirements of the DPD system by successfully
handling the sequential I/Q data in the signal.

• Computational Efficiency:

Decrease the computational efficiency of TCNs in the DPD applications with similar performance
when compared with DNN-based DPD models in communication systems.

• Parameter Optimization:

Explore the parameters efficiency of TCN DPD for linearizing the PAs to achieve comparable or
superior performance with lower parameters.

• Performance Comparison:

With the same parameters and computational complexity, this work aims to validate the improve-
ment of accuracy and efficiency of the TCN architecture in DPD by achieving superior perfor-
mance when compared with the traditional DNN-based DPD models.

The successful integration of TCNs into DPD systems could be an evolution of PA linearization tech-
niques, offering a more robust, efficient, and scalable solution for modern and future communication
systems. This research will not only contribute to the theoretical understanding of TCN applications in
DPD but also aims to provide a practical solution that could be adopted in wireless systems.
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1.3. Research Questions and Scope
Research Questions for Integrating Temporal Convolutional Networks (TCNs) into Digital Pre-
distortion (DPD) Systems

• How can the advantages of TCNs—such as their parameter efficiency, stability in processing
long sequences, and computational advantages—be effectively harnessed to DPD techniques
for improving PA linearization?

• How can a Temporal Convolutional Network be specifically designed to meet the demands of
Digital Predistortion for handling the sequential in-phase (I) and quadrature (Q) components of
signals in communication systems?

• What are the computational efficiencies of TCNs when applied to Digital Predistortion systems?
• How does the parameter efficiency of TCNs affect their performance in modeling the nonlinearities
of power amplifiers compared to traditional DNN-based DPD models?

• How does a TCN-based DPD model perform in terms of linearization accuracy and system effi-
ciency when compared to traditional DNN-based DPD models?

Scope

This thesis is dedicated to exploring the potential of Temporal Convolutional Networks (TCNs) in Digital
Predistortion (DPD) systems, emphasizing simulation-based research within the OpenDPD framework.
The scope of this study is defined by several key limitations and focus areas that outline the boundaries
within which the research is indicated:

• Simulation-Based Approach: The research presented in this thesis relies exclusively on simu-
lations performed within the OpenDPD framework. No real-world measurements with physical
hardware setups are included. This approach allows for a controlled analysis of the TCN’s theo-
retical capabilities and performance in a standardized environment, facilitating comparisons with
existing DNN-based DPD models.

• Exclusion of Power Consumption Analysis: This study does not consider the specific power con-
sumption of the TCN-based DPD model. The focus remains primarily on the linearization perfor-
mance and computational aspects of the model rather than its energy efficiency. Future studies
may need to explore the power consumption metrics to provide a more comprehensive evaluation
of the model’s practical capability.

• Single Dataset for Stability: To ensure the stability and reproducibility of the simulation results, all
experiments tested as part of this thesis utilize only one dataset. This controlled variable approach
helps maintain consistency across tests but limits the generalizability of the findings. The dataset
represents typical scenarios encountered in DPD applications, but variations in different dataset
conditions could lead to different outcomes.

• Exploratory Nature and Reference Use: The findings and conclusions drawn from this research
are intended for reference and as a preliminary exploration into the application of TCNs in DPD
systems. While the results provide valuable insights into the potential benefits and limitations of
using TCNs for PA linearization, they are indicative rather than definitive. The actual performance
of the TCN-based DPD model should ideally be validated through real-world measurements and
a broader set of experiments to confirm their efficacy outside of the simulated environment.
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1.4. Thesis novitiates

Figure 1.4.1: Basic concept of TCN-DPD with pre-trained PA model for linearization; example with noncausal 1D convolution
layers with dilation sizes D = 1, 2, 4 up to dN in the last layer, and kernel size of 3

1. A Novel TCN-based DPD Model proposed: As Fig 1.4.1 shows, this thesis’s work proposes
a novel approach by implementing the temporal convolutional network(TCN) into the digital pre-
distortion(DPD) of power amplifiers(PAs). This model architecture design can effectively process
the sequential data in-phase(I) and quadrature(Q) components of radio frequency(RF) signals by
using noncausal and dilated convolutional layers to capture the long-range temporal dependen-
cies.

2. Computational complexity reduced: Another novelty of this thesis’s work is the reduction in
the computational complexity. The TCN DPD model achieved a similar performance with lower
parameters, showing the computational load reduced without sacrificing the performance. The
reduced computational complexity enhances the ability to adapt the TCNDPDmodel in real-world
communication systems.

3. Parameters Efficiency Achieved: One of the significant novelties of the thesis’s work is the
achievement of remarkable parameter efficiency in the DPD field. The TCN-based DPD model
can achieve excellent performance with fewer parameters, which fairly improves the sustainability
of DPD systems.

4. Superior Performance Compared to Other DNN-based DPD Models: The most impactful
novelty is the benchmark results provided by the thesis, which show that the TCN-based DPD
model achieves superior performance and outperforms all the existing deep neural network(DNN)
based DPD models. This finding shows the potential of TCN architecture in the DPD field and
offers an efficient approach and alternative for linearizing the PAs in the real-world communication
system.
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1.5. Outline
Chapter 2: Literature Review

The second chapter gives a comprehensive literature review, including the traditional and deep neural
network-based DPD technique approaches and the general temporal neural networks(TCNs) architec-
ture design. In the first subsection, the evolution of DPD techniques is introduced and summarized to
have a basic concept of DPD. In the subsequent subsection, the DNN-based DPD are explained with
the classic architecture like RNNs, TDNNs and CNNs, these DNN-based DPD models are also the
compared model in the thesis. In the final subsection, the general TCN architecture will be analyzed,
especially the utilization of causal and dilated convolutions and the advantages and disadvantages of
residual block.

Chapter 3: TCN Architecture Design

The third chapter introduces the TCN DPD architecture design. It includes various innovations like
the noncausal convolution for capturing the future elements in the signals, dilated convolutions for
expanding the receptive fields, and the core depth separable convolutional block instead of the residual
block for achieving high performance with a low number of parameters. This architecture is tailored for
the DPD techniques and tests on the OpenDPD framework.

Chapter 4: Experimental Results

In the experimental results chapter, the experimental setup and the results will be provided based on the
TCN-based DPDmodel test on the DPA_200MHz dataset. These experiments include the benchmarks
of different activation functions, the power amplifier’s behavioral evaluation, and the digital predistortion
performance based on the different pre-trained PA models in the final. The results show that TCN’s
performance comparison with other DNN-based DPD models proves this work supports the thesis’s
objectives and innovations.

Chapter 5: Conclusion and Recommendation

The final chapter shows the main findings of this thesis’s work, answers the research questions, and
proves the objectives that have been supported. The main contributions also reflect the innovation of
DPD systems in this thesis. The limitations have also been indicated in the recommendation, which will
be helpful for further research. The recommendation introduces the subsequent actions that should be
taken to improve the TCN DPD model’s capability in the future.



2
Literature Review

2.1. Digital Predistortion (DPD)
Power amplifiers(PAs) are crucial components in modern communication systems. By amplifying the
signal power, PAs cost great quality power in the communication infrastructure. Power consumer’s
roles make the PAs significant in the transmission system. However, one of the biggest challenges is
the nonlinearities in PAs, which can fairly degrade the signal quality and introduce interference. This
problemmakes the reliability of data transmission unstable in the real world; addressing these nonlinear
distortions is imperative [1].

Higher data rates and wide bandwidth are necessary and should be adopted in advance by the evolution
of wireless communication, such as themodulation techniques, which includeOrthogonal Frequency Di-
vision Multiplexing (OFDM) and Quadrature Amplitude Modulation (QAM). These ever-changing meth-
ods’ complex signal structures are quite sensitive to nonlinear distortions. This characteristic also will
make PAs’ challenges greater, like communication errors and interference with nearby channels, and
developing linearization techniques is essential for eliminating the distortions in the data transmission.

Early research on linearization techniques can be introduced in the 20th century. In 1920, feedforward
and feedback techniques were proposed to meet the demands of the telecommunications industry and
radio broadcasting. Feedback and feedforward techniques were effective but limited by the complexity
and power consumption. These two early approaches have the foundation for subsequent studies in
PA linearization [2].

Predistortion is an alternative to feedback and feedforward techniques to linearize the PA. In the early
implementation, analog was always considered with the development of digital signal processing, digital
restoration techniques surfaced in this field. DPD technique offers greater flexibility and adaptability
compared to analog predecessors, making it the preferred choice in the modern communication system.
Fig 2.1.1 shows the basic concept of the DPD technique to linearize the power amplifiers.

Figure 2.1.1: Basic Concept of DPD For PA Linearization

As a crucial technology in modern wireless communication systems, Digital Predistortion (DPD) stands

7
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out in improving the performance and efficiency of Radio Frequency Power Amplifiers(RFPAs) while
reducing costs and computational complexity. Especially when the modern communication system
needs comparable efficiency with wide bandwidth, the role of DPD becomes more important, which is
why the DPD technique enables maximum power efficiency and maintains signal integrity in PAs.

There are several metrics, Normalized Square Error(NMSE), Error Vector Magnitude (EVM), and Adja-
cent Channel Power Ratio(ACPR), are used to evaluate the linearity and signal quality of DPD systems
as evidence. By enabling PAs to function more efficiently, DPD development is fairly historical due to
the aims of reducing the power consumption in wireless transmission and promoting the economic and
environmental sustainability of communication networks.

This section introduces a historical evolution of DPD techniques as a foundation since the thesis’s main
problem is implementing the TCN architecture into DPD systems. By researching DPD’s development
from the early stage to the used and complicated DPD systems today, we can understand the main
innovative ideas in this field. Table 2.1.1 shows the milestones in the DPD development history.

Decade Technique Key Paper Highlights

1980s Memoryless Polynomial [3] Early modeling for static PA linearization.

1990s Volterra Series [4, 5] Captured memory effects but computation-
ally heavy.

2000s Memory Polynomial [6, 7] Low complexity but limited bandwidth.

2000s Generalized Memory
Polynomial

[8] Trade-off between complexity and accu-
racy, but overfitting with wider bandwidth
in modern communication system.

2010s TDNN [19, 11, 12] Early DNN based DPD model with good
performance

2010s RNN [14, 15] Learn complex memory effects.

2010s CNN [16] First CNN DPD approach with comparable
efficiency

2020s OpenDPD Framework [20] Benchmarking framework for DPD re-
search.

Table 2.1.1: Evolution of Digital Predistortion Techniques for PA Linearization

From the earliest development of DPD techniques, which are the memoryless polynomial models, this
memorylessmodel has been the foundational research in DPD development until now. Themain idea is
only to consider the static nonlinearities in the memoryless polynomial model, like the amplitude to am-
plitude(AM/AM) and amplitude to phase(AM/PM) distortions in PAs. Without considering the memory
effects, which are the past values in signal processing, the output value at time t will only be influenced
by the current value. This assumption will make the equation simple as the output is equal to a func-
tion of the input amplitude and will make this model computation and parameters efficient in the DPD
application. However, it is easy to know the accuracy will not be excellent in the real world; acceptable
linearization should be achieved only when the frequency range is narrow and memory effects are neg-
ligible. The earliest application of the memoryless model is used in the satellite systems to linearize
the Travelling Wave Tube Amplifiers (TWTAs) with sufficient accuracy in data transmission [3]. This
model shows the early approach to linear Power Amplifiers (PAs) as a foundation for more complicated
studies in the future. The limitation of bandwidth and memory effects to motivate the development of
memory effects is considered a model.
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Volterra series model, as a significant advancement in Digital Predistortion(DPD) system, since the
biggest difference is considered the memory effects after memoryless polynomial model [4]. The spe-
cific characteristic is to capture both static and dynamic effects in linearization processing, which is
crucial to increasing the signal quality. Since the traditional methods can not address the management
of high-order nonlinearities, [5] proposed an approach by using the Indirect Learning architecture (ILA).
This architecture applied a Recursive Least Squares (RLS) algorithm in the signal processing, which
can adapt the pre-distorter coefficients iteratively to increase the efficiency and applicability of lineariza-
tion. The Volterra series model was applied to satellite communications practically, with the memory
effects considered; the complex signal modulations also could be handled with superior linearization
performance in the 1990s. With these advantages, the Volterra series model’s limitation is the compu-
tational demands, especially when the complex signal modulation with extended memory. In general,
the Volterra model with Indirect Learning Architecture advances the evolution of DPD technology.

After a few years, the Memory Polynomial (MP) model was proposed for linearizing Power Ampli-
fiers(PAs). This model provided another solution for PAs linearization with memory effects, especially
for wideband systems like OFDM signals. The difference with the general Volterra model is that the
MP model only considers the captured memory terms and nonlinearity interactions. This will reduce
the computational complexity and make this model computationally feasible. Therefore, the MP model
offers a way that can trade off the computational complexity and accuracy in the DPD system, as
a specific case of the Volterra model with Indirect Learning Architecture(ILA) [6, 7]. The MP model
addressed the problem of memoryless approaches and the Volterra series models, like the memory ef-
fects and intensive computation. However, the limitation of the MP model is the wideband applications
with higher-order nonlinearities and long memory effects. Overall, the ability to balance the complexity
and accuracy makes the MP model an alternative to the DPD system for the real world.

The generalized memory polynomial (GMP) was proposed in 2006 as a significant milestone over the
past conventional DPD model. The main contribution is that it provides a solution that can linearize
the PAs accurately with memory effects in wideband communication systems, addressing the common
challenge of the memoryless model, Volterra series model, and memory polynomial (MP) model. The
working principle of the GMP model is similar to the MP model, but considering the cross term between
the delayed samples and using the least square techniques will fairly improve the performance of PAs
linearization with wideband signals. Like the MP model, the GMP model also uses the Indirect Learn-
ing Architecture. This approach can also give the GMP model a trade-off between computation and
performance to become a practical deployment in the real world. Since the GMP model takes a signifi-
cant step forward in developing DPD research, the GMP model has long been the industry standard for
PA linearization [8]. However, as communication bandwidths expand and modulation schemes grow
more complex, GMP’s limitations in modeling sophisticated memory effects have become increasingly
apparent [9, 10]. This challenge has driven the exploration of more advanced modeling approaches
capable of capturing intricate PA behivior across wider bandwidths.

To address the challenges of RF Power Amplifiers with complex nonlinearities and memory effects in
wideband signals, deep neural network-based digital predistortion (DNN-based DPD) techniques have
been developed and applied with different architectures. Time delay neural networks (TDNNs) were
proposed for phoneme recognition [19] by Waibel for the first time and were widely explored to the
DPD system by extracting the time delayed in-phase and quadrature components from the input sig-
nals, which is the I and Q to the network’s architecture [11]. In the early stage, TDNNs DPD have
been treated as an efficient approach for linearizing the PAs, recent research like phase normalized
TDNNs, which was proposed to achieve high accuracy with reduced complexity in wideband system by
preprocessing the input with phase normalization [12]. Based on TDNNs’ advancement in the DPD sys-
tems, Recurrent Neural Networks(RNNS) provide a huge potential to capture the long-memory effects
of their mechanisms. Specially, Long short-term (LSTM) and Gated Recurrent Units (GRU) are spe-
cial RNNs that avoid the gradients vanishing and exploding problem, which have been applied to the
DPD systems [14, 15, 21]. These models are fairly suited for modern RF power amplifiers (PAs) since
the DPD techniques can be simplified into a special sequential task. At the same time, convolutional
neural networks (CNNs) are a very powerful architecture for image processing. Therefore, a desirable
expectation from the scientist is that their advantages could be connected to the DPD systems. CNN-
based DPD approach, real-valued time delay convolution neural network (RVTDCNN), was proposed
to linearize the PAs by extracting the input features into the structured layers. This model can reduce
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the computation load significantly compared to other traditional neural networks in the communication
system with high bandwidth signals [16]. Overall, these deep neural networks(DNNs) provide a robust
evolution in DPD techniques, integrating adaptability and computational efficiency to meet the demands
of modern communication systems. Otherwise, these DNN-based DPD models will be introduced in
detail in the next section as the compared model in the thesis.

Besides the DPD’s historical evolution, several architectures have always been used for the various
DPD models, such as Iterative Learning Control (ILC), Direct Learning Architecture (DLA), and Indirect
Learning Architecture(ILA). As Table. 2.1.2 shows, different architectures have strengths and limita-
tions.

Feature DLA ILA ILC

Adaptation
Method

Direct feedback from out-
put error

Inverse modeling Iterative error minimiza-
tion

Convergence
Speed

Depends on complexity of
error

Faster, based on inverse
model

Slower, needs multiple it-
erations

Computation
Load

High (depending on com-
plexity)

Lower Higher, especially for high-
order models

Robustness
to Errors

Can be sensitive to initial
conditions

Robust (if inverse model
is accurate)

More robust, adjusts itera-
tively

Handling
Memory
Effects

Effective with complex
models

Can handle memory ef-
fects indirectly

Naturally compensates
memory effects

Table 2.1.2: Comparison of DLA, ILA, and ILC Architecture in DPD

ILA is one of the most widely used architectures for DPD techniques since its straightforward implemen-
tation analyzes the output of its input as an inverse modeling. This simplicity makes the computational
load low with acceptable militarization but is limited by the difference between the training conditions
and real-world situations [6, 8]. DLA was designed to address the limitations of ILA by directly receiving
feedback from the output error. This architecture can be more effective with complex models but limited
with high computation load and sensitivity of initial conditions [22]. ILC was proposed and became the
most flexible architecture compared with ILA and DLA. ILC utilizes iterative optimization to adapt the
PA input based on the real output and the desired linear output. This method makes the model achieve
high adaptability with strong memory effects. However, the limitation is the convergence speed will be
slow when the communication is at a high speed [23]. The architectures could be selected based on
the different needs of DPD models. ILA will be attractive when the requirements are low computation
and high-speed processing; DLA could be used when the DPD models need to handle complex sig-
nals, and ILC could be applied when the computation load could be ignored but high performance is
necessary.

In summary of this section, the DPD technique is a cornerstone of RF power amplifier linearization and
vital for the wireless communication system. The continuous evolution of DPD techniques will be crucial
to achieving greater performance and capabilities in the future. There are still plenty of challenges,
such as the complexity of DPD modeling, parameter efficiency, multiband signals, etc. This thesis
will address some of the challenges of DPD techniques by proposing a TCN DPD model with efficient
parameters.
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2.2. Deep Neural Network Based Digital Predistortion (DPD)
2.2.1. Time Delay Neural Network Based DPD
Time-delay neural Networks (TDNNs) were proposed to execute the sequential data with temporal
properties and can be treated as a type of feedforward neural network. The main characteristic of
TDNN is that the neurons can handle the data from different points in time instead of relying only on the
current moment. This working principle can make TDNNs capture more temporal connections in data.
TDNNs have been widely used in different applications like speech recognition, gesture recognition,
and also DPD techniques [11].

In detail, and different from other neural network architecture, TDNNS can make a moving window
of the input features like the I and Q in DPD systems by adding a series of delays to the input for
recognizing the patterns across the different time steps. The main core of TDNN architecture is similar
to a standard feedforward neural network with the addition of time delays between the connected layers.
These delays will create memory effects by using the information from various time points.

In DPD systems, the TDNN model is often used to correct the nonlinearities of RF power amplifiers,
which are easily affected by past signal states. TDNNs DPD models generally learn to predict the
distortion by a predistortion function, which can produce the output signal by taking the transmission
signal as input and transforming it into the predistorted signal. Recently, Phase Normalized Real-Valued
Time-Delay Convolutional Neural Network (PN-TDNN) architecture was proposed and achieved great
results in DPD application [12], also will be treated as the compared model in this thesis. As Fig 2.2.1
shows, the core architecture of the PN-TDNN DPD model and components are listed here:

Figure 2.2.1: Block Diagram of Phase Normalized Real-Valued Time-Delay Convolutional Neural Network DPD Architecture

• Input Layer: The network receives complex I/Q inputs, where ’I’ is the in-phase and ’Q’ is the
quadrature component. Each I/Q sample is normalized by its phase, using the phase normaliza-
tion factor to focus the network’s learning on amplitude and relative phase changes rather than
absolute phase values. This normalization involves dividing the complex I/Q vector by its mag-
nitude and adjusting its phase angle towards zero, making the input purely real for the phase of
the current sample. The input vector is augmented with past values(memory effect) and possibly
other derived features, such as powers of the baseband amplitude, to capture the dynamics and
memory effects of the amplifier more effectively.

• Hidden layer: These layers are composed of real-valued neurons and capture the nonlinear
relationships between the normalized inputs and the desired output. These layers can use various
activation functions to introduce non-linearity, such as ReLU.

• Output Layer: At the output, the learned real-valued signals are converted back into complex I/Q
format by re-applying the phase information normalized at the input stage. This ensures that the
output retains the correct phase characteristics necessary for accurate RF performance, The final
output is reconstructed by re-integrating the phase information through a complex multiplication,
which aligns the output back with the original I/Q phase, ensuring that the predistorted signal
correctly compensates for the amplifier’s nonlinearities.
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This architecture is powerful for real-time DPD applications, but it is sensitive to the overfitting problem.
Therefore, the setup of hyperparameters, such as the depth of the network, number of layers, and
learning rate, is fairly important. As a compared model with TCN, parameter tuning is necessary before
the experiments.

2.2.2. Recurrent Neural Network Based DPD
Recurrent Neural Networks(RNNs), as a classic neural network, are proposed specifically for sequen-
tial tasks. RNNs are highly different from the standard feedforward neural networks, like fully connected
networks. The core working principle is that RNNS maintains the memory effects by utilizing the output
as part of the input. This method will make the RNNs effective for the historical data, which are signif-
icant for applications like language processing, time series analysis, and signal processing. However,
the advantages of RNNs are impressive but limited by vanishing and exploding gradient problems due
to the long-term dependencies. Long Short-TermMemory (LSTM) networks and Gated Recurrent Units
(GRUs) have been developed to solve this limitation and are introduced below:

LSTM

To address the vanishing or exploding problem in traditional Recurrent Neural Networks(RNNs), Long
Short-Term Memory (LSTM) networks are designed. The working principle is mainly dependent on the
designed gates in the architecture. With input time series xt, LSTMs include a bunch of gates, which
are input gate i, output gate o, cell gate C̃ and forget gate f to process the information in the memory
cell state C. At time step t, output gate o will decide what cell memory should be transferred to the
hidden state h. These gates decide which information to maintain or eliminate, enabling the network to
capture long-term dependencies [13]. The formulations are:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

which W and b are the weight matrices and bias vectors, and σ is the logistic sigmoid function.

GRU

Since the LSTMs still suffer from complicated structures, Gated Recurrent Units (GRUs) are designed
to simplify the LSTM structure by combining the input and forget gates into a single gate, which is
named the update gate. The reset gate r and new hidden state h̃t are also proposed, resulting in a
more efficient learning process [15]. The formulations are:

zt = σ(Wz · [ht−1, xt] + bz)

rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(W · [rt ∗ ht−1, xt] + b)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t

where zt is the update gate, rt is the reset gate, h̃t is the candidate for the new hidden state, and other
symbols are the same as the LSTM.

RNNs apply to Digital Predistortion (DPD) by modeling the dynamic behivior of RF power amplifiers,
exhibiting non-linear responses and memory effects. In DPD, an RNN can learn the complex relation-
ships between the input signals and the distorted outputs produced by the amplifiers. By training on
historical data of input-output pairs, the RNN effectively predicts and compensates for these distortions,
adjusting the input signal to minimize errors in the output [14, 21].

[20] offers a concrete example of how Recurrent Neural Networks (RNNs), as Fig 2.2.2 shows, specifi-
cally through a Dense Gated Recurrent Unit (DGRU) architecture, can be effectively applied in the field
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of Digital Predistortion (DPD) techniques for power amplifiers. This novel DGRU-DPD architecture in-
corporates a Gated Recurrent Unit (GRU) with a dense skip path that includes a feature extraction layer
(FEx), input layer, GRU layer, hidden fully connected (FC) layer, and an output FC layer.

The feature extraction layer is instrumental as it processes the input signal components, the in-phase
(I) and quadrature (Q) components, which represent the real and imaginary parts of the signal in the
time domain. It computes the absolute value, cubic value, sine, and cosine of the angle between the I
and Q components, which are then forwarded to subsequent layers. This preprocessing is critical for
enhancing the model’s ability to capture the nonlinear characteristics and dynamic behivior of the RF
amplifier being modelled, and this model will be compared with the thesis’s work TCN-DPD model.

By integrating these extracted features back into the input of the output FC layer through concatenation,
this architecture aims to combat the vanishing gradient problem commonly happening in training deep
neural networks. Moreover, this strategy leverages the inherent temporal modeling capabilities of the
GRU,making it exceptionally suited for the dynamic nature of DPD, where the amplifier’s characteristics
may change over time due to thermal effects and ageing. This approach shows how RNN enhances
the linearization efficiency of the model in the field of RF communications.

Figure 2.2.2: Dense Gated Recurrent Unit DPD Architecture

2.2.3. Convolutional Neural Network Based DPD
Convolutional Neural Networks(CNNs) are also very classic and powerful neural networks designed
especially for image processing. The general CNN architecture includes a series of layers, which
are convolutional, pooling layers, and fully connected layers. This architecture is fairly effective for
capturing the spatial features and can be applied in the real world popularly, like the complex image
recognition tasks and autonomous driving [24, 25].

Convolutional Neural Networks (CNNs) provide numerous attractive advantages in feature extraction
and make CNNs a potential candidate for Digital Predistortion implementation. Until now, there are
only a few research to explore the CNNs DPD application; a novel CNNs DPD model was proposed
by [16] and also the compared model in our thesis.

Real-valued time-delay Convolutional Neural Networks (RVTDCNN) are proposed to combine theCNNs’
advantages to the DPD systems and aim to achieve efficient linearization and memory characteristics
in wideband PAs. The objective of the RVTDCNN model design is also to address the high signal
bandwidth limitations that most conventional DPD models face as significant obstacles.
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The RVTDCNN model successfully implemented a convolutional neural network architecture to the
DPD systems by handing the one-dimensional time-varying elements of signal data like the in-phase
and quadrature (I/Q) components differently. These one-dimensional inputs will be formatted into a
two-dimensional structure and still include the original information. The formatted input features will
be captured by using the convolutional layers to make complex interactions through a predefined filter
and be processed by the subsequent layers in the network architecture. The RVTDCNN structure is
illustrated as Fig 2.2.3:

Figure 2.2.3: Real-Valued Time-Delay Convolutional Neural Network DPD Architecture

• Input Layer: The input data I and Q will be formatted into a two-dimensional pattern and pro-
cessed by the convolutional layers.

• Convolutional Layer (Predesigned Filter): The formatted features from the input will be convo-
luted by multiple convolutional layers with kernels; the function of these convolution layers is to
reduce the model complexity by sharing the weight in CNN.

• Fully Connected Layer: Integrates extracted features to model the PA behivior from the convo-
lutional layers’ output.

• Output Layer: Produces the final output corresponding to the I/Q components of the PA output
signal.

The obvious innovation of the RVTDCNN model is the use of the convolutional approach in DPD tech-
niques. After the one-dimensional features from the input signal are formatted into two-dimensional
features, the convolution layers use several predesigned filters to extract the input features from the
signal; this can significantly enhance the ability to linearize the PAs by capturing the memory effects
without increasing the computation load. A fully connected layer will process the convolutional layers’
output by integrating the features to predict the final output in the output layer, providing a detailed
representation of the PAs’ behivior. During the whole process, the activation functions were used to
connect each layer and achieve high performance by enhancing the model’s ability to handle nonlinear
dynamics.

The RVTDCNN model has also been validated in the real world and achieves a comparable or superior
performance to other traditional neural network DPD models. Besides that, the RVTDCNN model
is fairly suitable for handling higher bandwidth signals, which achieve comparable results with fewer
coefficients and lower computation load by processing the convolution. [16] shows that RVTDCNN
can effectively improve signal quality by evaluating the normalized mean square error (NMSE) and
adjacent channel power ratio (ACPR).

Overall, the RVTDCNN model shows a significant advancement in DPD evolution, especially for wide-
band applications. RVTDCNN’s ability can make it an efficient solution for DPD techniques in modern
wireless communication systems. However, RVTDCNN’s performance is highly dependent on the con-
volution process, and this process should be redesigned based on the complex signals in the modern
communication system; the memory depth and computation load will be highly increased when the
convolution process can not be suited to DPD system well.
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2.3. Temporal Convolutional Network (TCN)
When there is a sequential task that needs to be handled by deep learning methods in the real world,
Recurrent Neural Networks (RNNs) have always been the preferred choice because of their ability to
model time dependencies in a standard way. The real applications, including language translation,
time series forecasting, and speech recognition, have benefited by utilizing the sequential processing
capabilities of RNNs. With these numerous advantages of RNNs, there are still limitations, like strug-
gling with long-range dependencies and gradients vanishing or exploding problems during the training.
These limitations motivate the exploration of more efficient and robust models.

Temporal Convolutional Networks (TCNs) were proposed to address the limitations of RNNs as a fairly
powerful alternative. The characteristics of TCNs and RNNs are highly different; TCNs apply a convo-
lutional architecture to parallel the sequence processing and eliminate the gradient problems of RNNs.
The core architecture of TCNs incorporates the one-dimensional dilated convolutional layers to expand
the receptive field, this method will make the network architecture get longer sequences without losing
the resolution or coverage. The causal technique will make the TCNs predict the output based on the
past and current values. Therefore, TCN architecture has been considered as an alternative model
that can capture long-range dependencies in sequential tasks.

TCNs have been applied to various applications and achieve the state of the art performance, especially
outperforming the classical RNNs [17, 18, 26, 27]. Besides that, TCNs provide a more straightforward
architecture by using the one-dimensional convolution layers, which also makes the TCNs more scal-
able and adaptable to have a huge potential in academia and industry applications.

Based on these advancements, this thesis will explore this architecture’s core components, the appli-
cation field, and the advantages, aiming to take their advantages to the DPD application as an efficient
and robust solution. Therefore, the systematic analysis of TCNs is necessary, and to know the main
working principles, this section will dive into the general TCN architecture.

2.3.1. Sequential modeling

Figure 2.3.1: Basic Concept of Sequence modeling

Sequencemodeling is a crucial technique inmachine learning that involves predicting future elements in
a sequence based on observed elements, considering the order of data points essential. This approach
is foundational in domains where temporal dynamics and sequential dependencies govern the system’s
behivior. There are many applications of sequence modeling in the real world, like Natural Language
Processing (NLP) that aims to predict the next word based on the provided previous words, time series
forecasting for weather or finance, audio processing that predicts the next note depends on the previous
notes in speech system, etc.

There is a main constraint of sequence modeling as Fig 2.3.1 shows: the output sequence length
should be the same as the input sequence length, which can make a direct correspondence between
the elements of input and output to preserve the temporal structure of the sequence.
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2.3.2. Causal and 1D Dilated Convolution

Figure 2.3.2: Causal and 1D Dilated Convolution with dilation factors d=2 and kernel size=3, D represents the dilation size in
each layer

Causal convolutions are a type of convolutional operation where each output at time t is computed
solely from elements from time t and earlier in the input sequence. This ensures that the model does
not inadvertently use future input information to predict the present or past values, adhering to the
principle of causality in sequence modeling. This design is crucial in applications like real-time series
forecasting where future data points are naturally unavailable [17, 18, 28]. In practical terms, TCNs
achieve this causal architecture by padding the input sequence appropriately before each convolutional
layer. This padding strategy ensures that the convolution operation does not extend beyond the current
time step into the future, maintaining the output length equal to the input length and thereby satisfying
both the causality and length constraints fundamental to sequence modeling [29].

Dilated convolutions are employed to enhance the capability of TCNs to capture long-range depen-
dencies within a sequence. A dilated convolution involves skipping input values at regular intervals
during the convolution process, effectively enlarging the receptive field of the convolutional filters with-
out increasing their size. This allows the network to integrate information over larger spans of the input
sequence with fewer layers, enhancing both the efficiency and scalability of the model [30, 31].

As Fig. 2.3.2 shows, the length of the receptive field is dependent on the dilation size D and kernel size
in each layer. The dilation size D is based on the dilation factor, denied as d, which is the stride in the
convolutional filer over the sequence. When a dilation factor d=1 means the layer includes a standard
convolution, as d increases to 2 like in Fig. 2.3.2, the filter will skip more input elements in the sequence,
to increase the receptive field. Therefore, careful consideration is necessary when implementing the
causal and dilated convolutions into the TCN architecture. In the first, a larger kernel size can increase
the receptive field in each layer but obtain a higher computational complexity. Secondly, the dilation
factor can increase the receptive field quickly but has a high potential for overfitting problems with big
dilated factors.

In general TCN architecture, the layers are stacked and the dilation size increases with the subsequent
layer. Each layer includes both one-dimensional causal and dilated convolution, to obtain the ability to
process information over long time steps by making the network depth grow. This exponential growth
in the receptive field will make the network cover a very long input sequence to handle more model
dependencies, which is crucial for effective learning in sequential tasks which require the information
of long-term dependencies like audio processing, natural language processing tasks and weather fore-
casting.



2.3. Temporal Convolutional Network (TCN) 17

2.3.3. Residual Block
The core component of TCNs architecture, residual block was proposed to be used in Residual Net-
works(ResNets) by [32]. With the development of TCNs, the residual block was widely used and
helped the TCNs to handle very deep network training effectively. These residual blocks can make
the network handle more complex sequential tasks through its ability to access a long history of prior
inputs.

Figure 2.3.3: Residual Block Diagram

The TCNs normally contain a series of components, which are causal dilated convolutional layers,
activation functions, normalizations, and shortcut connections by adding the block input to its output.
Fig 2.3.3 shows the general formulation of a residual block in a TCN, which also can be expressed as:

• Dilated Causal Convolutional Layers:

In the residual block of TCNs, normally, two dilated causal convolutional layers will be used. These
dilated causal convolutional layers will increase the receptive field without losing the resolution
or coverage to make the TCNs effectively handle the information from a longer historical context.
Since the causal convolution with zero padding will make the input length longer, the dropout
technique will keep the same length between the output from the last residual block and input for
the next residual block to promote a robust learning process.

• Activation Function:

The Rectified Linear Unit (ReLU) activation function is always used in the residual block. ReLU
function can introduce the nonlinearity into the block and capture the complex patterns in the data.
However, there are not many explorations that benchmark that different activation functions will
affect the TCN’s performance. Therefore, the following section results will study the effects of
TCN models when the activation functions are different.

• Normalization:

Weight or batch normalizations are applied in the residual block after convolutional layers, and
this method will help the training process stale by controlling the weights not to become too large



2.3. Temporal Convolutional Network (TCN) 18

or too small. However, this technique should be dependent on the requirements of the specific
sequential tasks.

• Shortcut Connections:

Shortcut connections are always applied in TCNs’ architecture to help mitigate the gradient prob-
lem by directly adding the input to the output. This skip connection will make it feasible for the
TCNs to train more effectively.

Residual block’s advantages and disadvantages in TCNs can give a comprehensive view of its ability
and adaptability to help the author to design the TCN DPD architecture and list here:

Advantages:

• High Performance:

The residual block in TCNs can handle complex sequential tasks with a deeper network, especially
tasks requiring long sequence dependencies. This powerful method will make the predictionmore
accurate by adding several residual blocks.

• Avoid the Gradients Problem:

By using the skip connection in the residual block, the gradients vanishing or exploding problem
will be eliminated.

• Flexibility and Scalability:

The requirements of the receptive field could decide the number of residual blocks in the TCNs’
architecture. Different numbers will affect the size of the model, which is dependent on the com-
plexity of the tasks.

Disadvantages:

• Increased Complexity:

The complexity will be increased when the residual blocks are incorporated into TCNs, which can
handle the complex sequential tasks. The increased complexity will make the network design
complicated and also need more parameters in the learning process. Especially the number
of parameters should be limited in the DPD system, which is a big challenge when the author
designs the TCN DPD architecture.

• Potential for Overfitting: When the sequential tasks are not complex and can not provide large
input data to the TCNs, applying residual blocks possibly leads to overfitting. With so many deep
learning techniques in the residual blocks, adding more residual blocks will make the TCNs’ archi-
tecture so deep. Deep architecture probably does not contribute to performance improvements,
and it even decreases performance because of complexity. This limitation will also be a key
consideration when designing the TCN architecture since the DPD systems do not need a large
network architecture.

• Dependency on Skip Connections: The TCNs’ performance improvements mainly rely on the
skip connections in the residual block. In some tasks, the skip connections may not contribute
the benefits too much.

TCNs with residual blocks achieve superior performance in sequential tasks in the real world, outper-
forming recurrent neural networks(RNNs) like LSTMs and GRUs. It shows effectiveness by adding the
residual learning techniques into the convolutional architectures. In summary, the integration of resid-
ual blocks into the TCN architectures makes a significant advancement in neural network design for
sequential tasks. TCNs with residual blocks provide a very good architecture design for large sequential
tasks, but limitations should also be considered when designing the TCN DPD model.



3
Temporal Convolution Network

Architecture Design

3.1. Noncausal and 1D Dilated Convolution

Figure 3.1.1: Causal and Noncausal Convolution

Traditional TCN implementations rely on causal convolution, where network predictions are based ex-
clusively on past data [17, 18, 28]. This design philosophy, inherited from TDNNs, ensures that outputs
at time step t depend solely on data from t and earlier timesteps as Fig 3.1.1 shows. Such causal sys-
tems require leading zero-padding along the time dimension at each layer of TCN to maintain temporal
alignment, as defined by Eq. 3.1:

Causal Padding Size = K − 1 (3.1)

where K represents the convolutional kernel size. While one-dimensional fully-convolutional networks
(FCN) can partially address this challenge bymaintaining consistent input-output sequence lengths [29],
they still demand significant computational resources. Even the causal way needs more computation
resources and compensates for the accuracy, but it is still used popularly. One of the most significant
reasons that most TCN architectures use the causal convolution consistently is that it can adapted
to real-world applications, like speech recognition and weather forecasting, etc. These applications
are all real-time scenarios and only capture current and past information; future information cannot be
accessed.

19
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Since the dataset 200_MHZ from the OpenDPD framework has already recorded all the signal infor-
mation [20]. From this perspective, the signal information from the future can be captured during the
training. Therefore, the approach implements noncausal convolution since the simulation results are
more focused in this thesis, which reduces the required padding size according to Eq. 3.2:

Noncausal Padding Size =
K − 1

2
(3.2)

This noncausal design enables the TCN to capture both past and future temporal dependencies within
each I/Q data context window of the convolutional kernel size, thereby improving DPD modeling accu-
racy. Also, it decreases the computation resources with different padding ways compared to causal
convolution.

Sequential tasks requiring extensive historical context often challenge standard convolutional architec-
tures, which struggle to capture long-range temporal dependencies [28]. This TCN architecture ad-
dresses this limitation by incorporating dilated convolutions, building upon established approaches [30,
31]. These dilated convolutions expand the network’s receptive field exponentially without requiring
additional layers or larger kernels. By progressively increasing dilation sizes across layers, the net-
work efficiently processes extended temporal sequences while maintaining parameter efficiency. Each
input within the effective history receives processing from at least one kernel, ensuring comprehensive
modeling of long-term dependencies. Therefore, the dilated convolution will still be used in this work.
Fig. 1.4.1 demonstrates how this dilated structure systematically expands the receptive field across
network layers.

3.2. Proposed Architecture
The TCN-DPD architecture, illustrated in Fig. 3.2.2, comprises three main components: input and out-
put 1×1 convolution layers sandwiching a core Depthwise Separable Convolution Block, with activation
functions (Act. Funcs.) connecting each layer to enable nonlinear modeling.

Figure 3.2.1: General TCN Residual Block and Proposed D-Conv Block Comparison

3.2.1. 1*1 Convolution Layer
The network employs 1×1 convolution layers at its input and output boundaries. These layers serve
as dimensional adaptation interfaces, efficiently transforming feature representations between the net-
work’s internal processing stages. Not only does the feature integration function in the proposed archi-
tecture, but it also keeps the computation efficient with less multiplication during the training, which is
helpful for the proposed model parameter efficiency.
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Figure 3.2.2: The residual TCN architecture with depthwise separable convolutional (D-Conv) layers. D = dN−1, where D is
the dilation size of each D-Conv layer, d is the dilation base, and N is the number of D-Conv layers

3.2.2. Depthwise Separable Convolution Block
When the traditional TCNs’ architecture usually uses the residual block, as section 2.3.3 explained, it
can achieve superior performance in many sequential tasks like speech recognition, etc. However,
the DPD technique is highly affected by parameter efficiency, but the usual residual block will lead to
an increase in depth in the architecture with more parameters. Therefore, the residual block will be
decomposed into one depthwise separable convolution block layer with activation function as Fig 3.2.1
show. In this work, the architecture’s core lies a Depthwise Separable Convolution Block featuring
multiple depthwise separable convolution layers [33]. Each layer implements progressively larger dila-
tion sizes, enabling efficient capture of temporal information through an expanding receptive field as
Fig. 3.2.2 presents. The padding size for these dilated layers follows Eq. 3.3:

Dilated Noncausal Padding Size =
K − 1

2
×D (3.3)

where D represents the dilation size and K denotes the kernel size. Each layer incorporates an acti-
vation function to model complex nonlinear signal patterns.

3.2.3. Input Features Extracted from I/Q
The network processes both I and Q, along with their derived features, as illustrated in the input layer
shown in Fig. 3.2.2. This enriched input representation provides comprehensive amplitude and phase
information as sections 2.2.2 and 2.2.3 mentioned when introducing the DGRU and RVTDCNN DPD
model.

3.2.4. Residual Connections
The architecture implements residual connections directly linking I andQ inputs to the output, enhancing
the model stability in training. During the training, early layers will update the weight difficulty since the
gradients are small when propagating backwards. These connections preserve critical input information
while addressing the vanishing gradient challenges common in deep architectures [32].



4
Experimental Results

4.1. Experimental Setup
There are three main benchmarks in this section, which are the benchmark of Activation Functions, PA
benchmarking, and DPD benchmarking. And there are some common experimental setups could be
indicated in the beginning:

• Simulation Framework and Data Collection:

All experiments were conducted using the Open-DPD framework, which holds a status and func-
tion analogous to that of the MNIST [34] dataset in the field of deep learning for DPD applications.
It was also conducted using the DPA_200MHz dataset, which contains 200 MHz bandwidth signals
(10 channels × 20 MHz) with 64-QAMOFDMmodulation, measured from a 40 nm digital transmit-
ter [35]. While simulated results may differ from measured performance, previous research has
demonstrated that the relative performance rankings among different architectures remain consis-
tent between simulation and measurement, validating our simulation-based evaluation approach
[20].

• Training and Validation:

The DPA_200MHz dataset will be divided into three parts, including the training, validation, and
testing sets. The training set is designed to train the models, the validation set can be used to
evaluate the models initially, and the testing set is served to evaluate the models robustly as a
thorough assessment.

• Random Seeds:

The random seeds will be applied to initialize the weights of the neural networks. This method
in the benchmarks is crucial to assess the variability in model performance and ensure that the
results are not biased by specific conditions. In all benchmarks, the random seeds will be set with
5.

• Performance Evaluation:

Some metrics will be used to evaluate the performance of different DNN-based DPD models, in-
cluding the adjacent channel power ratio (ACPR), error vector magnitude (EVM), and normalized
mean square error (NMSE). NMSE metric is used to evaluate the accuracy of PA behaviours.
ACPR metric is crucial for evaluating the interference caused in the different DNN-based DPD
models. EVM, which is used to measure the constellation error in signal transmission. Lower
EVM shows a clearer and more accurate signal representation, this metric is important for evalu-
ating the high quality of signals.

22
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Benchmark of Activation Functions

After establishing the core TCN architecture, a systematic investigation of activation functions will be
conducted to optimize network performance. Traditional TCN implementations often employ ReLU or
its variants [17, 28]. However, these functions present two significant limitations for DPD applications:
their inability to process negative values effectively and their non-smooth characteristics, which can
introduce spectral leakage. These limitations typically require additional network parameters to model
the target function accurately.

To identify the most effective activation function, 22 different options will be evaluated by using a base-
line TCN configuration with 4 depthwise convolution layers, kernel size K = 5, and dilation base d = 2.
Each activation function was tested across 5 random seeds, with results presented in Fig. 4.2.1. To
ensure reliability, the averaged performance metrics across all seeds, as detailed in Table 4.2.1.

Power Amplifier Benchmarking

When the selection of activation functions was decided and the TCN architecture was finalized, the next
benchmark was planned to use this configuration to evaluate the behavior of power amplifiers (PAs).
This power amplifier benchmark is crucial since it can evaluate the efficacy of the TCN-based DPD
approach in the simulation and check whether the implementation was successful. The main metric
will be the Normalized Mean Square Error (NMSE), which shows the model’s accuracy in correcting
the power amplifier distortions. The compared models include the LSTM, GRU, DGRU, VDLSTM, PN-
TDNN and RVTDCNN, these established models will be compared with the TCN model by evaluating
the NMSE results. By analyzing the NMSE simulation results across the different models, the superior
capability of the TCN DPD model in capturing the memory effects and mitigating the non-linearities will
be assessed.

Digital Predistortion Benchmarking

After the benchmarking of various PA models, the DGRU and the designed TCN models are the pre-
trained PA models to evaluate the DPD performance further. There are several reasons for choosing
these two architectures. Like the choice of DGRU architecture, there are two purposes. The first is to
compare the results directly with previous research in existing literature. Secondly, with the same exper-
iment setup condition, offer a benchmark to ensure the findings are reliable and robust. The choice of
the TCN PA model is mainly dependent on its demonstrated potential to simulate superior performance
in modeling PA behavior. Using these two pre-trained PA models as references, DPD benchmarking
can provide a comprehensive understanding of the TCN-based DPD approach compared to traditional
DNN-based DPD models. The strengths and limitations of the TCN DPD approach can be analyzed
based on the results to explore its potential to linearize the PA in the real world.

When the pre-trained PA models are selected, the evaluated configurations range from 200 to 1000
parameters against other state-of-the-art DNN-based DPD models, the same as the PA benchmarking.
Each configuration underwent testing across the setup of random seeds to ensure statistical signifi-
cance and choose the best model over 5 random seeds in the validation set. To consolidate the results
from the validation set, choose the configuration of around 500 parameters and average the results on
the test set over all random seeds for a robust analysis.
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4.2. Benchmark of Activation Functions

Figure 4.2.1: TCN Act. Func. benchmarking with a fixed DGRU PA pre-trained Model on the dataset of DPA_200MHz
validation, each curve stands the optimal performance of different Act. Func. across 5 random seeds.

Table 4.2.1: DPD Performance Comparison of 22 Act. Funcs. Based on a Fixed DGRU PA Pre-trained Model on the dataset
of DPA_200MHz Validation, Averaged across 5 Random Seeds

ID 1 2 3 4 5 6 7 8 9 10 11
Act. Func. CELU ELU GELU Hardshrink Hardtanh Hardswish LeakyReLU LogSigmoid Mish ReLU ReLU6

SIM-NMSE (dB) -43.62 -43.62 -44.79 -11.10 -42.00 -44.89 -38.20 -35.62 -44.33 -36.74 -36.77
SIM-ACLR (dBc) -50.21 -50.20 -51.52 -32.92 -48.00 -51.54 -44.16 -40.88 -51.17 -42.53 -42.53

ID 12 13 14 15 16 17 18 19 20 21 22
Act. Func. RReLU SELU SiLU Softplus Softshrink Softsign Tanh Tanhshrink Hardsigmoid Sigmoid PReLU

SIM-NMSE (dB) -37.25 -41.08 -44.70 -38.59 -11.10 -43.65 -44.58 -11.10 -38.05 -35.62 -41.70
SIM-ACLR (dBc) -43.06 -47.53 -51.54 -44.02 -32.92 -50.14 -51.37 -32.92 -44.88 -40.88 -47.98
a TCN architecture set up with 4 depthwise convolution layers, kernel size K = 5, and a predefined dilation base d = 2.

Fig. 4.2.1 and Tab. 4.2.1 reveal significant insight into the model performance with different activation
functions. The initial comparative evaluation of activation functions was presented in Fig. 4.2.1 by
choosing the best model of different architecture, demonstrating that the Hardswish activation function
achieves the best performance across all the metrics, including NMSE, ACPR, and EVM. To further
validate the results from Fig. 4.2.1, Tab. 4.2.1 shows the averaged results on the test set and establishes
the Hardswish activation function’s robust performance by achieving SIM-NMSE -44.89 dB and SIM-
ACLR -51.54 dBc. Even the optimized activation function was selected, there are three activation
functions GELU, SiLU, and Tanh, also demonstrate strong performance with averaged results SIM-
NMSE -44.79 dB and SIM-ACPR -51.52 dBc, SIM-NMSE -44.70 dB and SIM-ACPR -51.54 dBc, SIM-
NMSE -44.58 dB and SIM-ACPR -51.37 dBc.

Figure 4.2.2: The Top-4 performing activation functions in Table 4.2.1

Fig. 4.2.2 shows four activation functions, which achieved good simulated results in the benchmark.
When looking at the schematic diagram of these activation functions, there are some important common
characteristics. First, these functions are differentiable across their domains. Secondly, the range of
the domain accepts both positive and negative input values and has smooth gradient transitions. These
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properties make these four activation functions specifically well-suited for the DPD techniques, offering
viable alternatives to the commonly used ReLU variants in deep learning architectures.

4.3. Power Amplifier (PA) Modelling

Figure 4.3.1: The 500-parameter PA modeling NMSE over training epochs simulation results on OFDM signals at 200 MHz, 10
channels by 20 MHz from the dataset of DPA_200MHz validation and test with 5 different random seeds (a) Optimal PA model
selected from 5 random seeds on the validation set over 100 training epochs. (b) Averaged NMSE comparison with different

models on the test set.

The benchmark of PA behavioral modeling mainly aims to find whether performance enhancement ex-
ists when using the Temporal Convolutional Network (TCN) architecture. As illustrated in Fig. 4.3.1(a),
various DNN-based models’ performance of PA were compared across 100 training epochs over 5
random seeds. The TCN model, also labeled as ”Ours,” shows superior performance by using the
NMSE metric. This first benchmark of PA modeling on the validation set provides evidence that TCN
architecture could be implemented to linearize the PAs successfully, and it shows great improvement.

Fig. 4.3.1(b) and Tab. 4.3.1 further consolidate these findings by comparing the averaged NMSE results
across different models on a test dataset. The bar diagram illustrates the different models’ performance
and the TCN model as a leader, surpassing all the traditional DNN models by evaluating the NMSE
metrics. Table 4.2.2 provides a comprehensive comparison insight of Normalized Mean Square Error
(NMSE) and Error Vector Magnitude (EVM) across models, where the TCN-500 model again stands
out with an NMSE of -34.99 dB and an EVM of -39.57 dB. These results are not only better than
those achieved by the LSTM and GRU models, which recorded SIM-NMSE of -31.85 dB and -31.84
dB, respectively, but also superior to the other specialized DNN architectures like RVTDCNN and PN-
TDNN with the simulated results SIM-NMSE -28.98 dB and -29.39 dB.

Table 4.3.1: Performance Comparison of PA Modelling with estimated 500 Real-Valued Parameters on DPA_200MHz
Test Set, Averaged Over 5 Random Seeds ± Standard Deviations

Classes PA Models SIM-NMSE
(dB)

SIM-EVM
(dB)

Base RNN LSTM -31.85±0.21 -33.97±0.84
GRU -31.84±0.54 -34.28±1.07

Prior Model

RVTDCNN [16] -28.98±0.07 -30.98±0.07
VDLSTM [14] -29.39±0.09 -31.39±0.11
PN-TDNN [12] -30.98±0.02 -33.01±0.01
DGRU [20] -31.94±0.78 -34.02±1.43

This Work TCN-500 -34.99±0.06 -39.57±0.11

This significant improvement in NMSE metrics of PA behavioral modeling highlights the TCN architec-
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ture’s capability to handle complex non-linearities and memory effects more efficiently. Overall, the
TCN-based model shows a distinctive advantage in PA modeling, providing substantial improvements
over the traditional DNN models. These results prove the hypothesis that TCNs provide a robust and
effective solution for linearizing the Power Amplifiers(PAs) in communication systems.

4.4. Digital Predistortion (DPD) Benchmarking
4.4.1. DPD benchmarking based on DGRU PA model

Figure 4.4.1: The 500-parameter DPD modeling AM/AM and AM/PM plot comparison between TCN DPD and Without DPD,
TCN training simulation results on OFDM signals at 200 MHz, 10 channels by 20 MHz from the dataset of DPA_200MHz
validation, the optimal performance TCN model was selected across 5 random seeds with a fixed DGRU PA model.

Fig. 4.4.1 illustrates the amplitude-to-amplitude (AM/AM) and amplitude-to-phase (AM/PM) plots with
and without the DPD technique. The TCN DPD shows a remarkable improvement in linearity, indicating
the effective correction of nonlinear distortions in power amplifiers (PAs). This AM/AM and AM/PM plot
also confirm that implementing the TCN DPD model successfully addresses the inherent nonlinear
characteristics of the Power Amplifiers (PAs), enhancing the signal integrity.

Figure 4.4.2: Training simulation results on OFDM signals at 200 MHz, 10 channels by 20 MHz from the dataset of
DPA_200MHz validation. Each curve stands the optimal performance of each architecture across 5 random seeds with a fixed

DGRU PA model.
(a) DPD NMSE comparison (b) DPD ACPR comparison (c) DPD EVM comparison

When the reliability of the TCN-based DPD model was initially established, subsequent experiments
in the DPD benchmarking should be the DPD performance comparison by evaluating different metrics,
including the Normalized Mean Square Error (NMSE), Adjacent Channel Power Ratio (ACPR), and
Error Vector Magnitude (EVM) across different DNN based DPD models, like LSTM, GRU, RVTDCNN,
VDLSTM, DGRU, PN-TDNN, and this work TCN. Fig. 4.4.2(a), (b), and (c) highlight the TCN’s superior
performance over the 100 epochs in all metrics, as the label ”Ours.” Each curve presents the best archi-
tecture performance with around 500 real-valued parameters over 5 random seeds. In this experiment,
the TCN model outperforms all standard DPD metrics, affirming TCN’s potential as a leading approach
in DPD techniques for PA linearization.
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Table 4.4.1: Performance Comparison of DPD Models Based on a Fixed DGRU PA Model with estimated 500
Real-Valued Parameters on the dataset of DPA_200MHz Test, Averaged across 5 Random Seeds ± Standard

Deviations

Classes DPD Models SIM-NMSE
(dB)

SIM-ACPR
(dBc, L/R)

SIM-EVM
(dB)

W/o DPDa - - -31.90±0.24 / -30.45±0.31 -34.02±1.42

Base RNN LSTM -35.22±3.86 -43.60±1.14 / -42.68±0.36 -37.52±5.11
GRU -40.01±1.68 -44.95±0.65 / -43.76±1.60 -42.70±2.23

Prior DPD

RVTDCNN [16] -32.03±1.19 -48.04±0.71 / -46.26±1.27 -34.61±1.81
VDLSTM [14] -32.50±0.71 -47.04±1.44 / -45.85±1.32 -34.94±1.54
PN-TDNN [12] -35.49±0.47 -49.25±0.64 / -48.43±1.11 -37.70±0.89
DGRU [20] -41.82±2.87 -50.57±1.82 / -49.16±1.67 -44.04±2.38

This Work
TCN-500 -44.61±1.37 -51.58±2.84 / -49.26±2.04 -47.52±1.49
TCN-200 -41.27±1.55 -45.83±2.39 / -46.76±1.23 -43.81±1.67
TCN-1000 -46.37±1.13 -52.58±2.43 / -50.84±1.44 -49.40±1.90

The following benchmarking experiment averages the results on the test set to prove the robustness
of the TCN-based DPD model. This experiment will confirm that the TCN DPD model’s superior per-
formance is not the result of overfitting or a particular seed but is consistent when various conditions
change.

Table 4.4.1 presents a comprehensive DPD performance comparison of different DNN-based DPD
models, including the traditional, prior and TCN DPD models across all the metrics. The Tab. 4.4.1
also shows TCNmodel shows remarkable performance, such as the TCN-500 model with achievement
SIM-NMSE of -44.61 dB, SIM-ACPR (L/R) of -51.58/-49.26 dBc, and SIM-EVM of -47.52 dB. These
averaged results not only demonstrate the TCN DPDmodel’s capability in linearizing the PA but also its
efficiency in signal integrity. Regardless of the base DPDmodel or the advanced models like PN-TDNN
and DGRU, the TCN model significantly improves by capturing the memory effects more efficiently.

These results robustly present that the integration of TCN into the DPD systems significantly improves
PA performance, providing substantial enhancements in linearity and signal quality. In summary, the
TCN model’s capability outperforms established DPD models consistently across various test condi-
tions, establishing the TCN model as a promising solution for PA linearization in the real world.

Figure 4.4.3: PSD comparison of the output signal with different 500 real-valued parameter DNN-DPD models on a 200 MHz
signal from the dataset of DPA_200MHz test. Each curve stands the best DPD performance of each model across 5 random

seeds based on a fixed DGRU PA model.

Fig 4.4.3 illustrates the Power Spectral Density (PSD) comparison of the output signal across dif-
ferent DNN-based Digital Predistortion (DPD) models implemented on a 200 MHz signal from the
DPA_200MHz test set. Each curve in the graph represents the best performance achieved by each
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model over five random seeds based on a fixed DGRU PA model.

Fig. 4.4.3 depicts how different DNN-based DPD models manage spectrum utilization and interference.
This plot clearly shows the TCNDPDmodel achieves superior performance by reducing the out-of-band
leakage compared to models without DPD and other DNN-based DPD. The PSD plot demonstrates
that the TCN DPD can suppress the spectral regrowth while maintaining a clearer spectral output.
The SIM-ACPR improvements are most obvious with the TCN’s result SIM-ACPR -54.43/-51.30 dBc,
significantly better than other DPD models, highlighting its capability to reduce interference.

Figure 4.4.4: DPD performance comparison across different parameter configurations based on a fixed DGRU PA model
(a) DPD NMSE comparison (b) DPD ACPR comparison (c) DPD EVM comparison

Fig. 4.4.4 illustrates the comprehensive DPD performance comparison across different parameter con-
figurations based on the DGRU pre-trained PA model. The SIM-NMSE, SIM-ACPR, and SIM-EVM
are still the standard metrics in the evaluation. Fig. 4.4.4 shows that this thesis’s work TCN-based
DPD model consistently outperforms other previous architecture across parameter ranges from 200 to
1000. With the real-valued parameters 500, Fig. 4.4.4 and Tab. 4.4.1 show that the TCN DPD model
performs best with the same number of parameters and conditions. This means that the performance
could be sacrificed to reduce the computation load in the TCNDPDmodel and provide a low-complexity
model with comparable performance. With just 200 parameters, Table 4.4.1 and Fig 4.4.4 show that
TCN-DPD achieves remarkable performance with average ACPR (L/R) of -45.83 and -46.76 dBc, and
an average EVM of -43.81 dB. This achievement is particularly significant as competing architectures
struggle to maintain comparable EVM performance at such low parameter counts, the lower parameters
highlighting the TCN’s potential as an efficient DPD solution while maintaining parameter efficiency.

4.4.2. DPD based on TCN PA model

Figure 4.4.5: The 500-parameter DPD modeling AM/AM and AM/PM plot comparison between TCN DPD and Without DPD,
TCN training simulation results on OFDM signals at 200 MHz, 10 channels by 20 MHz from the dataset of DPA_200MHz

validation, the optimal performance TCN model was selected over 5 random seeds with a fixed TCN PA model.

Fig 4.4.5 also shows the AM/AM and AM/PM conversion characteristics with and without DPD, the
benchmark step is the same as the section 4.4.1 but with a different pre-trained PA model. The TCN
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DPD also shows a significant improvement in linearity, indicating effective correction of nonlinear dis-
tortions of power amplifiers(PAs).

Figure 4.4.6: Training simulation results on OFDM signals at 200 MHz, 10 channels by 20 MHz from the dataset of
DPA_200MHz validation. Each curve stands the optimal performance of each architecture across 5 random seeds with a fixed

TCN PA model.
(a) DPD NMSE comparison (b) DPD ACPR comparison (c) DPD EVM comparison

This benchmark is the same as section 4.4.1 and different from using a TCN pre-trained PA model; the
results show that TCN also outperforms the previous models. Specifically, the TCN architecture is ben-
eficial when the PA and DPD are both based on TCN. This result shows that the DPD performance will
be affected when the PA behavioral modeling achieves better or worse performance. From Fig. 4.4.6,
we know that the DPD will become hard to train when the pre-trained PA model performs better.

The big difference is the results of SIM-NMSE and SIM-EVM when using a TCN pre-trained PA model
instead of the DGRU model. The SIM-NMSE and SIM-EVM results of the TCN DPD model are fairly
higher than those of other traditional DNN-based DPD models. It shows that the choice of PA modeling
significantly influences the performance of DPD, as Fig. 4.4.6 shows. As a result, the benchmarking
demonstrates that the TCN base DPD model significantly improves signal integrity. This robust and im-
proved performance based on the TCN-based PAmodel establishes the TCN architecture as a powerful
approach for future DPD techniques to meet the requirements of advanced communication systems.

Table 4.4.2: Performance Comparison of DPD Models Based on TCN PA Model with Approximately 500 Real-Valued
Parameters on the dataset of DPA_200MHz Test Averaged on 5 Random Seeds ± Standard Deviations.

Classes DPD Models SIM-NMSE
(dB)

SIM-ACPR
(dBc, L/R)

SIM-EVM
(dB)

Without DPDa - - -31.90±0.06/-30.44±0.27 -39.57±0.12

Base RNN LSTM -32.77±0.68 -43.60±0.27/-42.48±0.67 -33.77±0.72
GRU -33.82±1.72 -43.65±0.99/-42.99±0.8 -34.84±2.16

Prior DPD

RVTDCNN [16] -31.18±0.07 -48.65±0.49/-47.22±0.38 -31.55±0.08
VDLSTM [14] -30.58±0.17 -46.93±0.83/-46.31±1.31 -31.85±0.16
PN-TDNN [12] -32.57±0.32 -48.70±0.91/-49.43±1.06 -33.47±0.54
DGRU [20] -32.16±1.35 -47.90±1.03/-45.91±0.57 -33.31±1.32

This Work
TCN-500d -45.51±0.80 -50.39±1.19/-50.01±0.87 -47.88±0.73
TCN-200d -43.51±0.57 -47.46±0.63/-48.12±1.29 -46.11±0.22
TCN-1000d -46.90±0.29 -52.35±0.71/-51.96±0.60 -49.19±0.33

Table 4.4.2 shows the DPD performance comparison based on the TCN PA model on average for a
robust evaluation as in section 4.4.1. Not surprisingly, the TCN-DPD model still achieves the best
performance based on the SIM-NMSE -45.51 dB, SIM-ACPR -50.39/-50.01 dBc (L/R), and SIM-EVM
-47.88 dB when compared with other traditional DNN-based DPD models. When looking at Tab 4.4.2,
it is easy to find out that TCN-DPD has a big improvement in SIM-NMSE and SIM-EVM metrics; other
models normally achieve the SIM-NMSE and SIM-EVM around -35 dB; this number is fairly close to
the real-world measurement in previous research [20]. These results probably show that the simula-
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tion results are getting close to the measurement when the PA behavioral modeling achieves better
performance.

Figure 4.4.7: PSD comparison of the output signal with different 500 real-valued parameter DNN-DPD models on a 200 MHz
signal from the dataset of DPA_200MHz test. Each curve stands the optimal DPD performance of each model across 5 random

seeds based on a fixed TCN PA model.

Like the last subsection, Fig 4.4.7 illustrates the Power Spectral Density(PSD) plot. The graph demon-
strates that the TCN-DPD model, indicated by the distinctive curve, consistently achieves superior
spectral containment compared to traditional and other neural network-based DPD models. Specifi-
cally, the SIM-ACPR values for the TCN model with -51.73/-50.87 dBc further confirm its efficiency in
maintaining a cleaner spectrum compared to other models where values, such as -31.97/-30.45 dBc
without DPD and -48.93/-45.33 dBc for DGRU, shows higher spectral leakage. This analysis proves
the robustness of the TCN-based DPD model in providing effective linearization with improved spectral
efficiency, making it a highly agreeable solution for modern communication systems that need stringent
spectral compliance.

Figure 4.4.8: DPD performance comparison across different parameter configurations based on a fixed TCN PA model

Fig 4.4.8 have the same benchmark in section 4.4.1 but a different PA model, which is TCN. The
results are also quite similar to Fig 4.4.4, the TCN-DPD model still achieves the best performance from
arranging 200 to 1000 parameters. The only difference is that SIM-NMSE and SIM-EVM results are
fairly improved. When the number of parameters is small, like 200 and 400, it can still be approved that
the TCN-DPD model is parameters efficient and reduces computation load.



5
Conclusion and Recommendation

5.1. Conclusion
This chapter draws the conclusion of the whole thesis based on the contribution and recommendation
for future study.

To address the gap between the TCN-based DPD model, this thesis proposed a novel idea by imple-
menting the TCN with noncausal dilated convolution into the DPD system. Following the whole process
in the thesis, the major conclusions are:

1. This thesis has successfully demonstrated the effective integration of Temporal Convolutional Net-
works (TCNs) into Digital Predistortion (DPD) systems for linearizing power amplifiers (PAs), address-
ing the complexities of non-linearities and memory effects prevalent in wideband applications. The
research presented here not only validates the potential of TCNs in enhancing PA performance but
also underscores the model’s superior parameter efficiency compared to previous methods.

2. Throughout this study, an exploration was made to discover the effects of the activation function
on DPD performance. Hardswish was identified as particularly effective, enhancing the model’s perfor-
mance across various benchmarks. Additionally, Hardswish, Tanh, SiLU, and GELU were considered
to be affable for the DPD techniques based on evaluating the averaged SIM-NMSE and SIM-ACPLR
on the benchmark in section 4.2. These four activation functions show similar characteristics, such
as input acceptation range and smooth curves. These results prove that the activation functions with
these characteristics are helpful for DNN-DPD design.

3. The thesis also provides the main experiment, DPD benchmarking. Two architectures were selected
for the pre-trained PA model, which is the DGRU and TCN model. When the pre-trained PA is fixed as
the DGRUmodel, TCN-DPD demonstrates superior linearization performance with only 500 real-valued
parameters, achieving averaged and simulated ACPR of -51.58/-49.26 dBc (L/R), EVM of -47.52 dB,
and NMSE of -44.61dB. The results are simulated ACPR of -50.39/-50.01 dBc (L/R), EVM of -47.88 dB,
and NMSE of -45.51 dB in average when the pre-trained PA model is TCN. Both DPD benchmarks
include different DNN-DPDmodels. TCN-DPD has superior performance in the comparison, especially
the SIM-NMSE and SIM-EVM performance is significantly higher than other models when the pre-
trained PAmodel is TCN. These results indicate that the TCN-DPDmodel is fairly outstanding compared
to previous DNN-based DPD models.

4. In the benchmark, the evaluation was extended to DNN-DPD performance with various parameters
ranging from 200 to 1000; the TCN-DPD model achieved impressive results with all metrics and sur-
passed all previous DNN-DPD models with different parameters. With the same number of real-valued
parameters in the benchmark, the performance of TCN DPD is higher than that of other models. This
is a pivotal finding as it suggests that TCNs can achieve comparable performance in PA linearization
with fewer parameters, thus reducing the computational load of the DPD system. where the TCN-200
model highlighted its effectiveness by showing impressive results in SIM-NMSE -41.27dB/-43.51dB

31



5.2. Recommendation 32

(DGRU/TCN PA), achieves superior linearization performance while using significantly fewer parame-
ters than existing deep neural network solutions, proving the TCN-DPD model’s parameters efficiency.

Finally, this thesis not only advances the author’s understanding of TCNs in DPD applications but
also opens new avenues for their potential integration into broader PA systems, promising substantial
improvements in efficiency and performance in the telecommunications industry.

5.2. Recommendation
The thesis implemented the TCNs architecture into the DPD system, this novel approach provides a
robust foundation for future research. Future studies could be continued to explore, and the author’s
suggestions are listed below:

1. Real-World Measurements:

Since all results in this thesis are simulations of the OpenDPD framework, one of the future studies
should aim to have real-world measurements to validate the simulation results. While the TCN-based
DPD models have shown promising results in the thesis’s research, testing them under actual oper-
ating conditions can provide insights into their practical viability and robustness against nonlinearities
and disturbances. Besides that, the proposed TCN-DPD model uses noncausal convolution, improv-
ing the simulation accuracy significantly. Previous research shows the consistency of simulation and
measurement results. However, the measurements are real-time processing and the future elements
of signals can not be provided, probably the TCN-DPD efficiency will be highly affected. Therefore, the
causal and noncausal TCN-DPD models are both suggested to be measured in the real world.

2. Incorporate Power Consumption Metrics: Based on the thesis’s results, the proposed TCN-DPD
model is fairly parameters efficient. When achieving a similar performance with lower parameters,
power consumption will also decrease in the whole system. However, the thesis did not include a spe-
cific analysis of the power consumption metrics. As energy efficiency is crucial for mobile and embed-
ded systems, subsequent studies should include power analysis. This will allow for a comprehensive
evaluation of the model’s efficiency, not just its performance in linearizing PAs but also its impact on
the overall power budget of the communication system.

3. Enhanced Dataset Diversity:

Since the thesis’s benchmarks were all tested on the same dataset, the performance evaluation was
still limited. To overcome the limitations imposed by using a single dataset, future research should in-
corporate multiple datasets that reflect a wider range of scenarios and conditions typically encountered
in DPD applications. This will enhance the robustness and adaptability of the TCN-based DPD models.
Based on the needs of communication systems at present, the dataset could include different types of
signals and bandwidths. These various datasets can be used to test whether any specific conditions
negatively impact their performance and how well the TCN DPD model adapts to real-world conditions.

4. Refinement of TCN Architectures:

Combining TCNs with other neural network architectures or traditional signal processing methods could
potentially lead to new findings in performance and capabilities, such as phase normalization, etc.

5. Optimization of TCN Architectures:

Even though this thesis has already explored the TCN architecture design, there are probably still some
components or tricks that have been ignored to optimize the proposed architecture to achieve better
performance and ability.
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A
Source Code

1 """
2 __author__ = "Huanqiang Duan , Chang Gao"
3 __email__ = "Huanqiang , chang.g" 4 """
5

6 import torch
7 import torch.nn.functional as F
8 import torch.nn as nn
9

10 class TCN(nn.Module):

11 def __init__(self, hidden_size, output_size, num_layers):
12 super(TCN, self).__init__()
13 self.in_channels = 6
14 self.hidden_channels = hidden_size
15 self.out_channels = output_size
16 self.kernel_size = 5
17 self.padding = (self.kernel_size -1) // 2
18 self.dilation_1 = 1
19 self.dilation_2 = 2
20 self.dilation_3 = 4
21 self.dilation_4 = 8
22 self.stride = 1
23

24 self.network = nn.Sequential(
25 nn.Conv1d(in_channels=self.in_channels, out_channels=self.hidden_channels,

kernel_size=1),
26 nn.Hardswish(),
27

28 nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size,stride=
self.stride,

29 padding=self.padding*self.dilation_1, dilation=self.dilation_1, groups=
self.hidden_channels, bias=False),

30 nn.Hardswish(),
31 nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size,stride=

self.stride,
32 padding=self.padding *self.dilation_2, dilation=self.dilation_2, groups

=self.hidden_channels, bias=False),
33 nn.Hardswish(),
34 nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size,stride=

self.stride,
35 padding=self.padding*self.dilation_3, dilation=self.dilation_3, groups=

self.hidden_channels, bias=False),
36 nn.Hardswish(),
37

38 nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size, stride=
self.stride,

39 padding=self.padding*self.dilation_4, dilation=self.dilation_4, groups=
self.hidden_channels, bias=False),

40 nn.Hardswish(),

35



36

41 #nn.Conv1d(self.hidden_channels2, self.hidden_channels2, self.kernel_size, stride
=self.stride,

42 #padding=(self.kernel_size -3)*self.dilation*16, dilation=self.dilation
*16, groups=self.hidden_channels2, bias=False),

43 # nn.Hardswish(),
44 nn.Conv1d(self.hidden_channels, self.out_channels, kernel_size=1, bias=False),
45 )
46

47 def forward(self, x, h_0):
48 # Feature Extraction
49 i_x = torch.unsqueeze(x[..., 0], dim=-1)
50 q_x = torch.unsqueeze(x[..., 1], dim=-1)
51 amp2 = torch.pow(i_x, 2) + torch.pow(q_x, 2)
52 amp = torch.sqrt(amp2)
53 amp3 = torch.pow(amp, 3)
54 cos = i_x / amp
55 sin = q_x / amp
56 input = torch.cat((i_x, q_x), dim=-1)
57 x = torch.cat((i_x, q_x, amp, amp3, sin, cos), dim=-1)
58 x_1 = x.transpose(1,2)
59 out = self.network(x_1)
60 out = out.transpose(1,2)
61 return out + input
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