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In this work, we have adapted and validated an iterative
learning-based basis parameter optimization that opti-
mizes the parameters of a flight path or orientation tra-
jectory for anairbornewindenergy ormarinehydrokinetic
kite system. This algorithm, first seen in [1] and further de-
veloped in [2], was adapted to accommodate parameters
that describe target roll and yaw trajectories.

The algorithm consists of two steps that take place after
each spool-out/spool-in (“pumping") cycle of the kite. In
the first step, a meta-model is updated using a recursive
least squares estimate to characterize an economic per-
formance index as a function of a set of basis parameters
(bk) that describe either a spatial path or orientation (roll
and yaw) trajectory. The second part is an iterative learn-
ing update, which uses information from past cycles to
update basis parameters at future cycles using a gradi-
ent ascent formulation with an added perturbation (Pk)
to push the controller out of local maxima.

While this algorithm can be applied to either airborne or
underwater kites, it was experimentally validated on a
1/12th scale experimental prototype underwater kite sys-
tem towed behind a test vessel in Lake Norman, North
Carolina. On top of the iterative learning update, a state
machine was used for transitioning from figure-8 cross-
current flight when spooling tether out to wings-level
flight on spool-in. Furthermore, lower-level controllers
were used to track setpoints generated based on the pa-
rameters updated by the iterative learning algorithm. Us-
ing our experimental systemandalgorithm,wewere able
to increase cycle-averaged power by 30 percent, relative
to an initial baseline controller.

System diagram, control law, experimental apparatus, and results
for an iterative learning-based optimization applied to a kite sys-
tem. Diagram: bk , are the basis parameters, p are the plant vari-
ables, Jk is the performance metric, and Ĵ(b) is the estimated re-
sponse surface. Control law: Kb and Ke are controller gains and
∇Ĵ(bk) is the estimated gradient of the response surface. Results:
Cycle- and spool-out-averaged power are greatly increased.
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