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Correcting movement errors in frequency-sweeping
interferometry
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Absolute distance measurements can be performed with an interferometric method that uses only a single
tunable laser. This method has one major drawback, because a small target movement of the order of one
wavelength during a measurement will be interpreted as a movement of one synthetic wavelength. This
effect is usually mitigated by adding a second (nonscanning) laser. We show that absolute distance measure-
ments can be performed with only one laser if the movements encountered are smooth, on the time scale of
one measurement. In this case the movement errors can be compensated with a simple algorithm that com-
bines several subsequent measurements. First experimental results show good agreement with theory.
© 2005 Optical Society of America
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Several different techniques can be used to measure
absolute distances, among which are time-of-flight
measurements, high-frequency modulation schemes,
and interferometric methods. Of these, only the last
two have the potential to achieve resolutions below a
millimeter over several hundred meters. Most of
these methods are not truly absolute distance mea-
surements, but systems that are sensitive to changes
on the scale of a certain synthetic wavelength. The
total distance can be calculated only with a priori
(low-resolution) knowledge of the distance or by cas-
cading a number of systems with decreasing syn-
thetic wavelengths.1,2 Truly absolute, single-stage
distance measurements can be made by sweeping a
laser over a known wavelength range and measuring
the phase difference interferometrically during
the sweep, usually called frequency-sweeping
interferometry.3,4 This method suffers from a basic
drawback that has large consequences if the target
moves during a measurement. A movement of the
target over one optical wavelength is interpreted as
the movement over one synthetic wavelength. This
problem is usually solved by adding a second laser,
which reduces the sensitivity to movements of the or-
der of the synthetic wavelength itself.5,6

We explore a solution without a second laser, by
measuring in the presence of movements and correct-
ing for the movement errors in the data analysis. Our
intended application is absolute distance metrology
between satellites. The Darwin Space Interferometer,
for example, would require knowledge of the absolute
distance between two satellites with an accuracy of
better than 100 �m over a distance of 250 m.7

Consider an optical interferometer with a fixed op-
tical path length difference L that is equipped to
measure phase as a function of time. For fixed or
slowly changing optical frequency �, the phase � is
proportional to both the length and the frequency.
Because the phase is usually measured modulo 2�,
the absolute phase is unknown. By unwrapping the
phase over time it is, however, possible to measure
phase differences. If the light source is a tunable la-
ser that is swept from optical frequency �1 to �2, the

total phase difference will be
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with c the speed of light, �� the frequency difference
of the sweep, and � the so-called synthetic wave-
length defined by
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Reversing Eq. (1), the length L should be calculated
as
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The length is thus directly proportional to the total
phase difference ��, which can be determined by
measuring the phase before and after the sweep and
counting the number of fringes during the sweep. Er-
ror analysis of Eq. (3) yields the error in the length
measurement �L:
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The first term is constant and depends on the error in
the phase difference ���, which is determined by two
phase measurements with an error �� each. The sec-
ond term scales with the length L and depends on the
error in the synthetic wavelength ��. As indicated by
Eq. (2), the synthetic wavelength is determined by a
difference between two large frequencies with error
�� each. This leads to the amplification by a large fac-
tor � /��.

If the distance to be measured is not stationary
during one measurement, an additional error arises.
What is needed is the instantaneous difference of the
phases measured at the frequencies �1 and �2, which
is measured directly in conventional two-wavelength
interferometry. In our case these phases are mea-

sured at different moments in time, thereby confus-
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ing the effects of path length and optical frequency
change. To analyze the sensitivity to movement, the
length is expressed as a function of time t:

L�t� = L0 + L1t + L2t2/2 + L3t3/6 + ¯ . �5�

This is a standard Taylor expansion, where the sub-
scripts denote the order of the derivative. The phases
measured before and after the frequency sweep are
now
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where � is the time between the phase measure-
ments. Substituting Eqs. (5) and (6) into Eq. (3)
yields the calculated length Lcalc:
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where � is the average of �1 and �2. The first term
gives the correct distance at time t=0. The second
term, however, is proportional to the speed L1 and
contains the same large factor � /�� that was previ-
ously encountered in relation (4). Note that this term
is also dependent on �� and thus on the direction of
the frequency sweep. Since in practice the laser is re-
peatedly swept up and down, the calculated distances
will oscillate around the true value. An improvement
is to take the average of two such consecutive mea-
surements. This requires three phase measurements
at t=−� , 0 , � at optical frequencies �2, �1 and �2, re-
spectively:
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Fig. 1. Raw signals: (a) interferometric phase, (b) trans-
mission of the Fabry–Perot cavity. The dashed line is the
threshold value. (c) Unwrapped phase of (a). The dashed
lines and the arrow describe the four-point algorithm.
The length must now be calculated as
Lcalc =
�1 − 2�2 + �3
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The first large error term is now no longer dependent
on the speed L1, but on the acceleration L2. There is,
however, a certain asymmetry of using two measure-
ments at the higher frequency and only one at the
lower frequency. By once more combining two con-
secutive (three-point) measurements, we arrive at a
four-point algorithm. The measured phases are now
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and the length should be calculated as
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Again, there is no dependency on L1. There still is a
dependency on the acceleration L2, but this is a small
term comparable with the actual movement during a
sweep. The first large error term only appears in
third order.

Relation (4) shows that �� should be chosen as
large as possible to reduce the measurement errors.
The type of laser limits this to a value of the order of
100 GHz. There is usually also a limit on the tuning
rate �� /�, caused by either the tuning mechanism or
the detection electronics. Inspection of Eq. (11) shows
that, with the value of � /�� fixed, the first large error
term scales with �2. For reducing the movement er-
ror, �, and thus ��, should be made smaller. These
two conflicting requirements on the size of �� can be
used as an opportunity to balance the sizes of the er-
rors in relations (4) and (11).

Fig. 2. Calculated distance as a function of speed for the

different methods.
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The method described above was used to calculate
the length in a setup for measuring absolute dis-
tances that we are developing.8 The laser source is a
Littman-type external cavity laser diode with a
wavelength of 633 nm. The optical frequency can be
tuned continuously over several tens of GHz with the
aid of a piezo actuator. The laser also has a current
modulation input, which is used for high-frequency
feedback. To simulate long distances, we built a ho-
modyne Mach–Zehnder interferometer with a 10 m
polarization-maintaining fiber in one of the arms.6

The phase is measured in quadrature by using polar-
ization multiplexing, and we compensate for polar-
ization mixing in the data analysis.

In the theory explained above, we assumed that
the laser was repeatedly swept up and down and that
a single phase measurement is performed at each
end point. In practice, however, we sweep the laser
with the piezo in a trapezoidal pattern. The fre-
quency is swept up or down over 7.5 GHz during 0.1
s. Subsequently, we lock the laser for 0.1 s to a very
high-finesse Fabry–Perot cavity by using the Pound–
Drever method.9 Between sweeps, the wavelength
stays fixed for a short period, during which multiple
phase readings can be made. The frequency differ-
ence �� is now defined at several free spectral ranges
of the cavity, so we can reference the unknown dis-
tance to the known length of the cavity.

Figure 1 shows a short section of the raw signals of
a 20 s measurement run. During this period the fiber
was briefly heated with a strong lamp to cause a
short expansion and subsequent contraction of the fi-
ber. In Fig. 1(a) the phase is plotted, which shows pe-
riods with slow fringes due to the movement only and
periods with fast fringes (not discernible) due to the
movement and the wavelength sweep. Figure 1(b)
shows the transmission of the Fabry–Perot cavity,
which shows when the laser locks to the cavity. Only
those points where the transmission of the Fabry–
Perot cavity is above a certain threshold are included
in the calculation, to guarantee that the wavelength
is well defined. In Fig. 1(c) the unwrapped phase is
shown. The graph closely resembles the waveform
applied to the piezo, but it is tilted because of the
path length change during the sweep. To calculate
the length with the two- and three-point algorithms,
we use the average of all the phase readings during
one locked period. The four-point algorithm is
slightly modified, since we now can fit two straight
lines through the upper and lower edges of the graph
[see Fig. 1(c)]. The phase difference is then calculated
by evaluating the two lines at t=0. The slope of the
fitted lines can also be used to calculate the speed of
the path length change.

Plotting calculated length versus speed allows the
sensitivity for target movement of the various meth-
ods to be studied; see Fig. 2. As can be seen from Eqs.
(7), (9), and (11), the error depends on the direction of
the frequency sweep. The speed is therefore first mul-
tiplied by the sign of the sweep. The two-point
method shows a very strong dependency on speed, as

expected. The slope agrees with theory to within ex-
perimental error. The slopes of the three- and four-
point method show dependencies that are 25 and 240
times lower, respectively, although both should have
shown no dependency at all. This might be the result
of the particular length trajectory (exponential decay
due to heating–cooling of the fiber), which has a
strong correlation among the various derivatives.
The standard deviation of roughly 100 consecutive
length measurements is 1.6 mm and 130 �m for the
three- and four-point method, respectively. The dif-
ference between these two methods is much larger
than could be explained by averaging over more
points alone. A few points show large errors due to
the discontinuities in the trajectory of the movement.
These were excluded from the evaluation. As in Fig.
2, the calculated lengths for the three- and four-point
methods can be plotted against the acceleration L2.
As expected, this shows a dependency on the accel-
eration for the three-point method and a much re-
duced sensitivity for the four-point method, but the
effect is less apparent because of other noise sources.

In summary, we have shown that we can do length
measurements with a one-laser frequency-sweeping
scheme with a much reduced sensitivity to target
movement. To achieve this we combine four consecu-
tive phase measurements instead of the normal two.
First measurements show a repeatability of 130 �m
at 15 m. It must be noted that our method does not
reduce the sensitivity to fast disturbances such as
turbulence or vibration experienced in an industrial
environment. For our application, which only experi-
ences smooth movements, this scheme could allow for
using only one laser. It might also be applicable to
systems that experience large (but relatively slow)
thermal drifts, but otherwise operate in a benign en-
vironment.
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