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Chapter 1
Introduction

1.1 The Exploration & Production industry

1.1.1 Energy and oil demand

Due to increasing prosperity, [EIA (2006)] predicts an increase in world energy consumption
by 55% until 2030, Fig (1.1). Most of this energy will have to come from oil, gas and coal,
Fig. (1.2). Sometimes it is suggested that there is not enough oil in the subsurface to meet this
demand. This is true in terms of oil that is currently economically profitable. However, new
technologies or increasing oil price, Fig. (1.3), make the concept "economically profitable"
flexible. Due to thisflexible definition, world oil reserves are still increasing, Fig. (1.4).
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Figure 1.1: World energy consumption. Source: [EIA (2006)]
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Figure 1.4: World crude oil reserves. Source: [EIA (2006)]

1.1.2 Oil Field Development

Conventional production from an oil field is categorized in three stages:

1. During primary recovery, the natural pressure of the reservoir pushes the hydrocarbons
to the production wells. Wells can be stimulated by pumping or by gas lift. Also
theflow through the reservoir near the wells can be improved by fracturing the near
wellbore by injecting water.

2. Asfluids are produced, the pressure in the reservoir decreases. In the secondary
recovery stage, water or gas is (re)injected to push the hydrocarbons from the injection
wells towards the production wells.

3. The tertiary recovery stage attempts to change thefluid properties. The viscosity of
the oil can sometimes be decreased by injecting carbondioxide or other gasses, or by
heating the reservoir. Water may be blocked by turning it into gel with chemicals that
are dissolved in injected oil.

1.1.3 Smart wells

Recently, new technology has been developed to better monitor and control thefluid flow
through the reservoir. It has become possible to drill wells "around the corner"and to drill
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wells off existing wells, creating a complex subsurface network of Smart Wells. Due to
Inflow- or Interval Control Valves (ICV’s) it is possible to shut-in a part ofa well and still
keep producing from deeper parts of the well. Down-hole sensors allow for nearly continuous
monitoring of pressure,flow rate,fluid composition, temperature or even electro magnetic
signals of wells and near-well areas.

Network Splitter Isolation Unit (SIU)

SCSSV

Gas Lift Device

Wet Disconnect Unit

Zonal Isolation Packer

ICV with Sensors

Zonal Isolation Packer

ICV with Sensors

Zonal Isolation Packer

ICV with Sensors

Production Packer

SCSSV Control Line

Flat Pack with Single Hydraulic and Single Electrical Line

Dual Flat Packs each containing a Single Hydraulic and Single Electrical Line

Figure 1.5: Smart Well

1.1.4 Seismics

Due to research in seismics and especially time-lapse seismics, it is now possible to track
changes offluid composition in the subsurface at locations away from the wells. The seismic
process consists of three stages, acquiring seismic data, structuralimaging and characterizing
the subsurface [Berkhout (2004)]. In the acquisition stage, acoustic or elastic vibrations are
generated by vibrator units, air guns or explosions. These vibrations travel through the earth
as waves that get diffracted or reflected where the subsurface properties are discontinuous.
The reflected waves are recorded at the surface. The second stage of seismic processing tries
to reconstruct how these waves might have traveled through the subsurface fromthe data that
were recorded at the surface. This gives information about the layering and therock prop-
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erties in the subsurface. This information can then be used in the reservoir characterization
stage to better understand how water and hydrocarbonsflow through the reservoir.

The research for this thesis touches the third stage of the seismic process; in chapter 6
synthetic seismic data are used in addition to production data to get a better understanding of
two imaginary petroleum reservoirs.

1.2 Closed-loop reservoir management

The term closed loop reservoir management [Jansenet al. (2005)] is used when a data as-
similation routine is present in addition to a reservoir simulator andan optimization routine
(Fig. 1.6). Optimization can be done over the lifetime of the reservoir or onshort-term. The
optimal strategy can for example contain injectionflow rates, bottomhole pressures in pro-
duction wells or valve settings that maximize the Net Present Value. The optimal strategy
can be applied to the reservoir simulator and to the real reservoir. Using a sensor model, it
is possible to predict measurements. A discrepancy between the "predicted measurements"
and the "measured measurements" may indicate that the simulator shouldbe corrected. This
is the aim of data assimilation. In state estimation, the output of the simulator, typically pres-
sure and saturation values, is updated. Optionally the simulator’s underlying parameters, like
permeability or porosity, may be updated. This is called parameter estimation. Parameter es-
timation is more appropriate to reservoir management, since state estimation does not alter
the simulator’s ability to make future predictions. Traditionally theparameters of the reser-
voir simulator are history-matched a few times during the lifetime of the reservoir. However
by integrating sensors in "smart" wells, it has become possible to havedata available on a
weekly or daily basis. When formulated in a general way, data assimilation algorithms pro-
vide a framework in which data from varying different sources, like sensors in "smart" wells
or seismics, can together contribute to updating model parameters of different natures of
uncertainty, like permeability, porosity or PVT data. "The loop is closed" when data assimi-
lation routines are put in place to provide nearly continuous reservoir monitoring. From a
systems engineering point of view, there are actually two closed loopswhen both an opti-
mization routine and a data assimilation routine are manipulating the output ofthe reservoir
simulator.
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Figure 1.6: Closed-loop reservoir management

1.3 Research objectives and motivation

The objective of this thesis is formulated as:
Apply data assimilation techniques, invented and developed in other areasof re-
search, to petroleum reservoir engineering, modify them to be better suitedfor their
new application, and investigate how they can help to integrate both production
data and seismic data to support decision-making in petroleum reservoir manage-
ment.

The development of new hardware like smart wells and downhole sensors, opens up new
possibilities to better produce hydrocarbon reservoirs. Smart wells allow for a much more
flexible and dynamic way of operating facilities than conventional wells. However, without
a better understanding of the subsurface, a smart well is just as "dumb" as a conventional
well. New hardware allows for moreflexibility in producing hydrocarbons from the reser-
voir, but new software is also needed to support thedecision-makingprocess. Improvements
of sensors in the smart wells and advancements in seismic researchproduce large quantities
of production- and seismic datathat cannot just be used in conventional history-matching.
Traditional history-matching is usually only performed at the re-development of a hydrocar-
bon reservoir; it does not take into account the uncertainties in the available data and involves
applying ad hoc techniques. The availability of (much) higher frequency data makes it in-
teresting to adoptdata assimilationtechniquesfrom other fields of researchlike oceanogra-
phy or atmospheric research topetroleum reservoir engineering. Applying data assimilation
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techniques to a new area of research introduces new criteria to measure the performance of
the data assimilation algorithms and the methods must bemodified for their new application.
With current technology, for example, we can not control the atmosphere or the oceans, but
we do wish to manage subsurfacefluid flows.

1.4 Thesis outline

This thesis was built around three articles. Chapter 4 proposes a modification of the Repre-
senter Method (RM) and shows the applicability by estimating permeability from production
data. In chapter 5 the robustness of RM is compared with a modification of the Ensemble
Kalman Filter EnKF) with respect to errors in prior information. Chapter 6 introduces the
VPERM method and illustrates the added value of assimilating seismicdata in conjunction
with production data. Since the articles were written to be publishedstandalone in the open
literature, they contain some overlap. They share, for example, similar introductions of basic
variational algorithms and filters.

The articles are preceded by a general introduction, chapter 1, a discussion onpetroleum
reservoir simulation, chapter 2, and an introduction to data assimilation, chapter 3. Chapter
7 concludes the thesis.





Chapter 2
Reservoir Simulation

Section 2.1 discusses a numerical model that can be used to simulate thefluidflow through
the pores of a porous reservoir rock in the subsurface. It is not meant to teach all the details
about reservoir simulation; it only deals with physical processes that were considered in
this research. A discussion on more complicated reservoir simulators is presented in section
2.1.6. Section 2.1.7 indicates what information a user must provide before the simulator can
be run. Sections 2.1.6 and 2.1.7 indicate how simulators can produce wrong results and how
much uncertainty must be dealt with by data assimilation methods.

When data are used to improve the reservoir simulator’s forecasting capability, or when the
simulator is used to calculate optimal production strategies, some methods rely on the sensi-
tivity of the reservoir simulator’s output with respect to certain modelparameters or control
parameters. Using numerical perturbations, as described in section 2.2, is an obvious, but
computationally not very efficient way to calculate these. Analyticallyobtaining gradients in
a way that is computationally feasible will be discussed later in section 3.3.

2.1 Flow equations

2.1.1 From mass balance and Darcy to ODE

No matter how many approximations are made to speed up a simulator or toease its imple-
mentation, every reservoir simulator contains a mass balance principle and Darcy’s law. If
the reservoir is divided in arbitrarily shaped volumes or grid blocks, thenthe mass balance
equation performs bookkeeping of the water and hydrocarbon masses in thefluid phases, and
states that the accumulation of mass in grid blockξ ∈ ℵ is equal to the mass thatflows in
from its neighboring grid blocksη ∈ ℵξ plus a source/sink term

∂

∂t

(
V ξφξSξ

αρ
ξ
α

)
=
∑

η∈ℵξ

Qξη
α ρξηα + qξα, (2.1)

where
t [s]: time,
ℵ [−]: set of all grid block indices,
ξ [#]: index of grid blockξ,
V ξ

[
m3
]
: volume of grid blockξ,

φξ [−]: porosity of grid blockξ,



10 Chapter 2

Sξ
α [−]: saturation of component/phaseα in grid blockξ,

ρξα
[
kg m−3

]
: density of component/phaseα in grid blockξ,

η [#]: index of neighbor of grid blockξ,
ℵξ [−]: set of indices of neighbors of grid blockξ,
Qξη

α

[
m3 s−1

]
: massflux throughξη-interface,

ρξηα
[
kg m−3

]
: density of component/phaseα onξη-interface,

qξα
[
kg s−1

]
: injection/production of component/phaseα in grid blockξ.

Darcy’s law

Qξη
α =

kξηα Aξη

µξηα

pηα − pξα
hξη

, (2.2)

relates these massfluxesQξη
α through theξη-interface with areaAξη

[
m2
]

to a pressure
differencepηα − pξα

[
Pa = kg m−1 s−2

]
over distancehξη [m] using

kξηα
[
m2
]
: permeability of component/phaseα on ξη-interface,

µξηα
[
kg m−1 s−1

]
: viscosity of component/phaseα onξη-interface.

The permeabilitykξηα is usually split into a rock dependent permeabilitykξη
[
m2
]

and a
fluid dependent relative permeabilitykξηrα [−].

For a two-phase (water-oil) reservoir without gravity or capillary pressure, a simulator can
be formulated as an ordinary differential equation (ODE)

d

dt
(f1 (x)) = f2 (x) , (2.3)

where the state vectorx =

[
p

S

]
=

[{
pξ
}
ξ∈ℵ{

Sξ
w

}
ξ∈ℵ

]
contains the pressurespξ and water satura-

tionsSξ
w of all grid blocks,

f1 (x) =




{
V ξφξSξρξw

}
ξ∈ℵ{

V ξφξ
(
1− Sξ

)
ρξo

}
ξ∈ℵ


 (2.4)

and

f2 (x) =




{
qξw +

∑
η∈ℵξ

tξηw
(
pη − pξ

)
}

ξ∈ℵ{
qξo +

∑
η∈ℵξ

tξηo
(
pη − pξ

)
}

ξ∈ℵ



, (2.5)

where the transmissibilitiestξηw andtξηo [m s] are defined as

tξηα =
kξηkξηrαA

ξηρξηα

µξηα hξη
. (2.6)
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The fluid-dependent part of the transmissibility is called the mobility,λα
[
m−2 s

]
, and is

defined as

λα =
krαρα
µα

. (2.7)

Sometimes the rock-dependent permeability is included in the mobility,λ̃α [s]:

λ̃α =
kkrαρα
µα

. (2.8)

From grid block centers to interfaces

The state variables are usually defined at the grid block centers or are at least representative
for the entire grid block. Evaluatingf2, Eq. (2.5), requires state-dependentfluid properties at
the grid block interfaces. Two strategies exist; first the reservoir states are interpolated to the
interfaces and then thefluid properties are calculated, or vice versa. Here the former method
is used

tξηα = tξηα
(
pξη , Sξη

)
,

pξη =
pξ + pη

2
, (2.9)

Sξη =





Sξ if pξ > pη

Sη if pξ < pη

Sξ+Sη

2
if pξ = pη

= (2.10)

= Sη +
(
Sξ − Sη

)
H
(
pξ − pη

)
=

= Sξ +
(
Sη − Sξ

)
H
(
pη − pξ

)
,

with the Heaviside functionH (x) defined as

H (x) =




1 if x > 0
0 if x < 0
1
2 if x = 0

. (2.11)

Sometimes correlation of the permeability values at the grid block interfaces is modelled by
defining permeability values at the grid block centers and interpolatingthem to the interfaces.
Appropriate interpolation methods are under discussion [Pluget al. (2006)] and applicability
of these methods depend on the configuration of the reservoir rock and the dimension of the
fluid flow. Here the harmonic average is used

kξη =

((
kξ
)−1

+ (kη)−1

2

)−1
=

2kξkη

kξ + kη
. (2.12)
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2.1.2 From ODE to PDE and back

ODE to PDE

When the ODE

d

dt

(
V ξφξSξ

αρ
ξ
α

)
=
∑

η∈ℵξ

kξηkξηrαA
ξηρξηα

µξηα

pηα − pξα
hξη

+ qξα, (2.13)

is applied to an infinitely small volumeV = △x△y△z, then

d

dt
(φSαρα) =

∑

γ∈{x−,x+,y−,y+,z−,z+}

(
kkrαρα
µα

A

V h

)

γ

(pγα − pα) +
qα
V
, (2.14)

where subscriptγ refers to the interfaces of the small volume and superscriptγ refers to
neighboring small volumes, or equivalently

d

dt
(φSαρα) =

∑

γ∈{x,y,z}

(
kkrαρα

µα

)
γ+

pγ
+

α −pα
△γ −

(
kkrαρα

µα

)
γ−

pα−pγ
−

α

△γ

△γ
+

qα
V
. (2.15)

When Taylor series are substituted, then the partial differential equation (PDE)

∂

∂t
(φSαρα) =

∑

γ∈{x,y,z}

∂

∂γ

(
kkrαρα
µα

∂pα
∂γ

)
+ q̃α, (2.16)

is obtained. Allowing for anisotropy in the permeability, the PDE becomes

∂

∂t
(φSαρα) = ∇ ·

(
K
krαρα
µα

∇pα
)
+ q̃α, (2.17)

whereq̃α
[
kg m−3 s−1

]
now denotes a mass injection/production density.

Discretization in space

Several methods can be used to discretize the PDE Eq. (2.17) in space and turn it back into
an ODE. Eq. (2.3) is just one example, but different ODE’s can be derived. Thediscretization
methods can generally be categorized as finite difference [Strikwerda(2004)], finite volume
[Versteeg and Malalasekra (1996)] or finite element methods [Zienkiewiczet al. (2005)]. In a
finite difference discretization, the derivatives in the PDE are replaced by differences, which
are usually calculated on a user-defined stencil or structured grid. Finitevolume and finite el-
ement methods are more suitable for unstructured grids. In a finite element method, the state
variables are defined at the vertices of the grid blocks. The user must specify as many ba-
sis functions as there are vertices. A solution is looked for as a weighted sum of these basis
functions. In a finite volume method, the state variables are defined at the grid block cen-
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ters and the ODE is obtained by integrating the PDE over every grid block. When thefluxes
through the grid block interfaces are calculated from the state variables at the centers of the
two adjacent grid blocks, the same ODE as in section 2.1.1 is obtained. However, improved
performance, in particular reduced sensitivity to grid orientation, hasbeen reported [Aavats-
mark and Eigestad (2006)] when additional grid blocks are involved in the approximation of
thefluxes.

Although the PDE is based on mass conservation, this property is not automatically pre-
served after spatial discretization. The ODE that follows after finite volume discretization is
mass conservative by construction. More care must be taken when finite difference or finite
element discretization is performed. Even when the ODE is mass conservative, this can still
be destroyed by the time discretization or by the algebraic solver that solves the (non-linear)
system that results after discretizing the ODE in time.

Needless to say that an ODE can be obtained by completely skipping section2.1.2 alto-
gether, as was done in this research. However, literature usually starts from a PDE formula-
tion.

2.1.3 Discretization in time

No matter what spatial discretization is used, the time discretization is usually done by fi-
nite differences. Two choices have to be made; how many history statesx should be used
to approximateddt (f1 (x)) of Eq. (2.3) and at what time(s) shouldf2 (x) be evaluated? De-
pending on these choices, totally different algebraic or numeric behavior canbe expected
from the simulator.

Euler; forward, backward and combinations

In an Euler discretization scheme, the new (or future) statexn and one history (or current)
statexn−1 is used to approximate the time derivatives. The result of the scheme, applied to
Eq. (2.3), looks like

f1 (xn)− f1 (xn−1)

tn − tn−1
= (1− α) f2 (xn−1) + αf2 (xn) (2.18)

or
f1 (xn)− f1 (xn−1)

tn − tn−1
= f2 ((1− α)xn−1 + αxn) , (2.19)

where Euler forward (α = 0) is fully explicit and Euler backward (α = 1) is fully implicit.
In casef1 is the identity function (f1 (x) = x) andf2 is linear (f2 (x) = Ax), Euler forward
is stable when the time steptn − tn−1 is chosen small enough. Euler backward is uncondi-
tionally stable, but introduces more numerical diffusion, and is therefore less accurate. For
arbitraryf1 andf2, Euler backward is, in general, only conditionally stable, but the condition
is less strict than for Euler forward. Therefore larger time steps can be taken at the expense
of accuracy. The computational cost per time step is usually higher for Eulerbackward, since
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the non-linearitiesf1 andf2 must be dealt with iteratively, possibly converging to the wrong
solution. Euler forward only needs to deal with the non-linearities inf1.

BDF

Due to the different time scales of the pressure- and saturation changes,the ODE may
show stiff behavior [Hairer and Wanner (1996)]. Solving these kind of problems requires
more advanced methods like Backward Differentiation Formulae (BDF). BDF are multistep
extensions to Euler backward. Forq steps, Eq. (2.3) is discretized as

f1 (xn) =

q∑

i=1

αn,if1 (xn−i) + (tn − tn−1)βnf2 (xn) . (2.20)

The BDF coefficients are found by fitting aq-th order polynomial throughf1 at the new state
and theq previous states. The time derivative off1 is then evaluated as the derivative of the
polynomial, evaluated attn. For example, ifq = 1, then the polynomial is

P (t) =
(tn − t) f1 (xn−1) + (t− tn−1) f1 (xn)

tn − tn−1
(2.21)

and its derivative

P′ (t) =
f1 (xn)− f1 (xn−1)

tn − tn−1
, (2.22)

which is the same as Euler backward, Eq. (2.18) withα = 1. Values for the coefficients, for
up to 5 steps, are shown in Tbl. (2.1) [Benner and Mena (2004) (one minus-sign incorrect)];
it is assumed that the step size is constant.

q β αn,1 αn,2 αn,3 αn,4 αn,5
1 1 1
2 2/3 4/3 −1/3
3 6/11 18/11 −9/11 2/11
4 12/25 48/25 −36/25 16/25 −3/25
5 60/137 300/137 −300/137 200/137 −75/137 +12/137

Table 2.1: BDF coefficients

BDF is the engine of the DASSL solver [Petzold (1983)], which turned out to be thefastest
and most robust solver for the system described in section 2.1.1, out of a benchmark [Li-
oen and de Swart (1998)] of 6 solvers (DASSL, MEBDFDAE, PSIDE, RADAU, RADAU5,
VODE).



2.1. Well model 15

IMPES

In an IMPES scheme (IMplicit Pressure Explicit Saturation), the ODE Eq. (2.3) is written
as

dx

dt
= J−1fx1

([
Tw 0

To 0

]
x+ b

)
, (2.23)

whereJ−1fx1 is the Jacobian off1 with respect tox andf2 is split into states and state-dependent
fluid properties. When the state-dependent properties are evaluated explicitly and the states
themselves are evaluated both implicitly (for pressures) and explicitly (for saturations), then
a parabolic pressure equation and a hyperbolic saturation equation are obtained.The coeffi-
cients of the saturation equation depend on the solution of the pressure equation.

Although the implicit part of the IMPES equations is of much smaller dimensionthan
the BDF equations, it must be solved (many) more times, since the time steps are linked to
explicit equations and therefore (a lot) smaller. [Liet al. (2004)] claims than IMPES is not
suitable for black-oil reservoir simulation. Modifications to IMPES havebeen made where
the time step of the pressure equation is of significantly higher order than the time step of the
saturation equation. The methods described in the following sectiontake this a step further.

Streamlines

In a streamline simulator, the pressure equation is decoupled from the saturation equa-
tion(s) by an IMPES scheme. The solution from the pressure equation is used to make as
many time steps for the saturation equation as possible [Datta-Guptaet al. (2001)]. More-
over, the saturation equation is not solved in the original 3D space. Instead, it is mapped onto
streamlines, which are traced from the 3D pressure field, producing a setof 1D problems, all
parameterized by a time-of-flight (TOF) coordinate. Modern streamline simulation rests on
five key principles [Thiele (2001)]:

· tracing 3D streamlines and periodically updating them

· mapping of the mass conservation and Darcy equations onto streamlines

· solving 1D transport problems along streamlines

· operator splitting to account for gravity effects

· extension to compressibleflow

[Thiele (2001)] also claims that "the speed and efficiency as well as theavailability of new
data make streamlines potentially the most significant tool for solving complex optimization
problems related to history-matching and optimal well placements". Thisdoes not hold
with the development of adjoint reservoir simulators, Eq. (3.19), which will be discussed in
section 3.3.
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2.1.4 Well model

Wells can be modelled by boundary conditions, but also by settingqξw > 0, qξo = 0 for in-
jection orqξw < 0, qξo < 0 for production in Eq. (2.5) while enforcing no-flow boundary
conditions. Usually wells can be operated under pressure or rate constraints. Too high pres-
sures may cause damage to the reservoir (although in some applications this is in fact the
goal) and surface facilities are only capable of handling a limited amount of production or
injectionfluids. The actualflow rate in a well is determined by the most stringent constraint.
For example, the actualflow rate of a production well can firstly be limited by the amount of
oil or water that can be processed by the surface facilities. As the pressure in the reservoir
decreases, this may become the most stringent constraint. Thereforea switching mechanism
must be built into a reservoir simulator.

Here only bottomhole pressure constraints and surface rate constraints are considered. The
switching is left to the user, so only one type of constraint can be applied to a well at one
point in time.

Rate constraint

In case the wellboreflow rate at the surfaceQ
[
m3 s−1

]
is specified, the massflow rateqξα[

kg s−1
]

to/from grid blockξ is calculated by dividing the mass over the grid volumes that
are penetrated by the well, proportionally to the mobility Eq. (2.7), so

Q =
∑
α

∑

ξ

∣∣qξα
∣∣

ρSTC
α

. (2.24)

This means that

qξα = −QρSTC
α

λξα
λt

(2.25)

for production and

qξw = QρSTC
w

∑

α

λξα
λt

, qξo = 0 (2.26)

for injection, with the total mobilityλt
[
m−2 s

]
defined as

λt =
∑

α

∑

ξ

λξα. (2.27)

Pressure constraint

The massflow rateqξα
[
kg s−1

]
to/from grid blockξ is proportional to the pressure differ-

ence between that grid block and the wellbore pressurepwb

[
kg m−1 s−2

]
and the mobility

[Peaceman (1977)]. For production of theα-phase, this is the mobility of that phase;

qξα = λξαω
ξ
(
pξwb − pξα

)
, (2.28)
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for injection, it is the sum of the mobilities of all phases that have to be displaced from the
grid block;

qξw =
(
λξw + λξo

)
ωξ
(
pξwb − pξw

)
, qξo = 0. (2.29)

The well factor or well indexωξ
[
m3
]

is taken constant in this research. More realistic
choices may depend on the direction of the well, the angle that is open toflow, an effective
permeability, the well radius and a skin factor [Peaceman (1977), Wheeler (1988)].

2.1.5 Simulating

Performing one time step comes down to findingxn that satisfies

f (xn,xn−1, · · · ,xn−q, θ) = 0, (2.30)

givenq history states{xn−1, · · · ,xn−q} and a set of model parametersθ (for example per-
meability values in all grid blocks). From Eq. (2.18), it follows that for Euler backward

f (xn,xn−1, θ) = f1 (xn,θ)− (tn − tn−1) f2 (xn, θ)− f1 (xn−1,θ) . (2.31)

A robust simulator needs to contain a time step regulator. The time step must be chosen as
large as possible to minimize computational costs. Simultaneously, the time step is bounded
by accuracy and stability constraints. Moreover, Eq. (2.30) may have non-unique roots,
possibly including physically unrealistic ones (negative pressure, saturation outside[0, 1]).
These constraints can be explicitly checked for every solution of Eq. (2.30). When the
solution is not satisfactory, another attempt can be made with a smaller time step. The time
step can then be increased again slightly after every successful step. The decrement factor
should be significantly larger than the increment factor.

2.1.6 More realistic physics

Section 2.1.1 describes the reservoir simulator that was used for this research. Significant
physical phenomena were neglected:

· Fluid miscibility; thefluid components can be defined as the phases that are present at
standard or surface conditions. At reservoir conditions, components can exist in other
phases. For example, in a Black Oil model [Aziz and Settari (1979)], the gas component
can be present in both the gas phase and the oil phase. Adding this to Eq. (2.17) givesa
new PDE for the gas component

∂

∂t
(φSoboRgo + φSgbg) = ∇ ·K

(
krobo
µo

Rgo∇po +
krgbg
µg

∇pg
)
+ boRgoq̂o + bg q̂g,

(2.32)
wherebα [−] is the reciprocal formation volume factor, expressing how the volume of
a phase changes and gets split into the separate components if the volume were moved
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from reservoir conditions to standard/surface conditions,

1

bα
= Bα =

ρSTC
α +

∑
β �=α

RβαρSTC
β

ρα
, (2.33)

andRβα [−] is the volume fraction of componentβ in theα-phase. The production terms
q̂α
[
s−1

]
are in volume of liquid at standard conditions per volume of grid block and per

second. In a fully compositional model, all components can exist in all phases.

· Gravity effects; besides pressure differences, also density differences can causefluidflow.
This can be modelled by substituting∇pα − ραg∇D for ∇pα in Eq. (2.17), whereD
[m] stands for depth.

· Capillary pressure; capillary effects [Leverett (1941), Morrow (1970)] are caused by the
fact that on the pore scale theflow behavior of thefluids are affected by adhesive forces
between rock andfluid molecules, rather than just cohesive forces within thefluids. The
fluid pressures are different because thefluids interact differently with the rock, sopcαβ =
pα − pβ 
= 0. The capillary pressure does not just depend on thefluid saturations, but
also on their time derivatives:

∗ Imbibition; the wettingfluid displaces the non-wettingfluid

∗ Drainage; the non-wettingfluid displaces the wettingfluid

· Appropriate well model; in section 2.1.4 a constant well factorωξ is used. More physi-
cally realistic models can be found in [Peaceman (1977), Wheeler (1988)].

· Higher order effects; Darcy’s law for anisotropic porous media can be derived from the
Navier-Stokes equation by using a formal averaging procedure [Neuman (1977)]. This
only holds for an incompressible homogeneous Newtonianfluid moving slowly through a
rigid porous medium with uniform porosity under isothermal and steady state conditions.
In other cases the applicability of Darcy’s law is questionable and adding higher order
terms may be appropriate.

· Temperature; fluids behave differently at different temperatures. To accurately setup the
fluid flow equations, thefluid properties must be evaluated at the correct local temper-
ature. An extra equation, based on conservation of energy, must then be introducedto
model the temperature changes over time.

2.1.7 User input

Running a reservoir simulation can be done after
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· the user has specified the grid. A grid specification consists of a list of grid blocks with
their volumes, porosity values and links to the neighboring grid blocks. For everylink
between two grid blocks, the area of the interface and the distances from the grid block
centers to the interface must be specified. When gravity effects are taken into account,
also the orientation of the interface must be specified, for example by a vector that is
normal to the interface. Permeability values must be specified for all grid block interfaces,
or they must be specified at the grid block centers and interpolated to the interfaces using
the center-interface distances.

· a set of wells is added. For every well an operating constraint must be specified as well
as a list of grid blocks that are penetrated by the well.

· the fluid properties (density, viscosity, gas-oil ratio, formation volume factor, relative
permeability, capillary pressure) are specified as functions of the pressure and saturation
state variables. Some examples are shown in Fig. (2.1). When they are defined as
analytical functions, also the derivatives must be defined as analytical functions. In case
they are specified as lookup tables, new approximate lookup tables for the derivatives can
be automatically generated.
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Figure 2.1: Density, viscosity and relative permeability of water and oil.

2.1.8 Simulating in weak constraint or stochastic mode

Due to unmodelled physics or numerical approximations, a reservoir simulator is never able
to produce results that perfectly match the true reservoir state, even when the correct model
parametersθ were known. These imperfections can all be lumped together and modelled us-
ing additional parametersεn. These model errors can be sampled from an appropriate prob-
ability distribution, or they can be prescribed by a variational method, as will be described
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in section 3.3.3. In the former case, the additional parametersεn are stochastic variables. In
the latter case, the simulator is used as a weak constraint in a minimization problem. With-
out these model errors, the simulator is called a strong constraint in such aminimization
problem.

After every time step the oil and water mass that is present in a grid block is wrongly
predicted. This is corrected by artificially injecting or producing extramass into/from the
grid block. Eq. (2.31) can be extended to

f̃ (xn,xn−1, θ, εn) = f1 (xn,θ)− (tn − tn−1) f2 (xn,θ)− f1 (xn−1,θ) + f3 (xn, θ, εn) ,
(2.34)

wheref3 < 0 stands for extra injection andf3 > 0 for extra production. Adding too much
mass gives physically unrealistic values for the state variables, forexample very high pres-
sures. Subtracting too much mass gives physically impossible results, for example negative
pressures or saturations outside[0, 1]. This is modelled by constrainingf3 with an upper
bound that is calculated fromf1:

f3 (xn,θ, εn) = min {f1 (xn, θ) , (tn − tn−1)εn} . (2.35)

This givesεn the dimension
[
kg s−1

]
. Eq. (2.35) can also be written using the Heaviside

function and regularized in the same way as Eq. (2.10) in section 2.2

min {a, b} = aH (b− a) + bH (a− b) = (2.36)

= a+ (b− a)H (a− b) =

= b+ (a− b)H (b− a) .

The stochastic reservoir simulator used in this research is thereforedenoted by

f̃ (xn,xn−1,θ, εn) = f (xn,xn−1, θ) + f1 (xn, θ)−H (ε̃n)⊗ ε̃n, (2.37)

where

ε̃n = f1 (xn, θ)− (tn − tn−1)εn, (2.38)

and⊗ stands for element-wise multiplication. The corresponding Jacobians aregiven by

∂ (H (ε̃n)⊗ ε̃n)
∂ε̃n

= diag (H (ε̃n) + δ (ε̃n)⊗ ε̃n) , (2.39)

J
f̃xn

= Jfxn + (I− diag (H (ε̃n) + δ (ε̃n)⊗ ε̃n))Jfxn1 , (2.40)

J
f̃θ
= Jfθ + (I− diag (H (ε̃n) + δ (ε̃n)⊗ ε̃n))Jfθ1 , (2.41)

J
f̃ εn

= (tn − tn−1) diag (H (ε̃n) + δ (ε̃n)⊗ ε̃n) . (2.42)
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2.2 Simulator sensitivities

2.2.1 Jacobians for non-linear solver

Most non-linear solvers depend on, or can be speeded up by, using the Jacobian with respect
to the state variablesJfx. For Eq. (2.31) this Jacobian can easily be constructed from the
Jacobians off1 andf2:

Jfx (xn,xn−1,θ) = Jfx1 (xn,θ)− (tn − tn−1)Jfx2 (xn,θ) . (2.43)

These can be calculated from

∂fwξ
1

∂pξ
= V ξφξSξ ∂ρ

ξ
w

∂pξ
,

∂foξ1
∂pξ

= V ξφξ
(
1− Sξ

) ∂ρξo
∂pξ

, (2.44)

∂fαξ1
∂pζ

= 0 ∀ζ /∈ ξ, (2.45)

∂fwξ
1

∂Sξ
= V ξφξρξw ,

∂foξ1
∂Sξ

= −V ξφξρξo ,
∂fαξ1
∂Sζ

= 0 ∀ζ /∈ ξ, (2.46)

∂fαξ2
∂pξ

=
∂qξα
∂pξ

+
∑

η∈ℵξ

((
pη − pξ

) ∂tξηα
∂pξ

− tξηα

)
, (2.47)

∂fαξ2
∂pη

=
(
pη − pξ

) ∂tξηα
∂pη

+ tξηα , (2.48)

∂fαξ2
∂Sξ

=
∂qξα
∂Sξ

+
∑

η∈ℵξ

(
pη − pξ

) ∂tξηα
∂Sξ

, (2.49)

∂fαξ2
∂Sη

=
(
pη − pξ

) ∂tξηα
∂Sη

, (2.50)

∂fαξ2
∂pζ

=
∂qξα
∂pζ

,
∂fαξ2
∂Sζ

=
∂qξα
∂Sζ

, (2.51)

∂tξηα
∂pξη

= tξηα

(
1

ρξηα

∂ρξηα
∂pξη

− 1

µξηα

∂µξηα
∂pξη

)
, (2.52)

∂tξηα
∂Sξη

=
kξηAξη

hξη
ρξηα

µξηα

∂kξηrα
∂Sξη

=
tξηα

kξηrα

∂kξηrα
∂Sξη

, (2.53)

∂tξηα
∂pζ

=
∂tξηα
∂pξη

∂pξη

∂pζ
+

∂tξηα
∂Sξη

∂Sξη

∂pζ
. (2.54)

∂tξηα
∂Sζ

=
∂tξηα
∂Sξη

∂Sξη

∂Sζ
(2.55)
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Calculating these properties is as easy as evaluatingf1 andf2 themselves, except for three
issues:

· Making sure the derivatives end up at the correct places in the Jacobian requires quite
some bookkeeping, especially for unstructured grids.

· The derivatives of thefluid properties with respect to the state variables must be available.
In case these properties are available in the form of analytical functions, additional func-
tions must be supplied. In case thefluid properties are available in the form of lookup
tables, new tables can be created by interpolation.

· The term∂pξη

∂pζ in Eq. (2.54) can be calculated from Eq. (2.9). The terms∂Sξη

∂pζ and ∂Sξη

∂Sζ

in Eq. (2.54) and Eq. (2.55) cannot be calculated from Eq. (2.10), since the Heaviside
function is not differentiable. As a regularization method the Heaviside function can
be smoothed resulting in a differentiable function. Alternatively, the derivative of the
Heaviside function, a Dirac delta function, can be neglected.

The derivatives for injection/production∂q
ξ
α

∂pξ
, ∂qξα
∂Sξ

, ∂qξα
∂pζ

and ∂qξα
∂Sζ

can be calculated using

∂

∂xη

(
λξα
λt

)
=
1

λt

∂λξα
∂xξ

δξη −
λξα
λ2t

∑

α

∂ληα
∂xη

(2.56)

for rate constraints and Eq. (2.52) and Eq. (2.53) with mobility at the grid block centers
substituted for transmissibility at the grid block interfaces for pressure constraints.

2.2.2 Influence of model parameters on system states

While xn is calculated fromxn−1 by f (xn,xn−1, θ) = 0 (in caseq = 1), the sensitivity
matrix dxn

dθ
can also be updated fromdxn−1

dθ
simultaneously by

df

dθ
(xn,xn−1, θ) = 0, (2.57)

∂f

∂xn
(xn,xn−1,θ)

dxn

dθ
+

∂f

∂xn−1
(xn,xn−1,θ)

dxn−1

dθ
+

∂f

dθ
(xn,xn−1,θ) = 0. (2.58)

Substituting Eq. (2.31) gives

(
Jfx1 (xn, θ)− (tn − tn−1)Jfx2 (xn, θ)

) dxn

dθ
(2.59)

= Jfx1 (xn−1,θ)
dxn−1

dθ
+ (tn − tn−1)Jfθ2 (xn, θ)

+Jfθ1
(xn−1,θ)− Jfθ1

(xn,θ) .
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The sensitivity matrix can be used to calculate the gradient of some objective function
J(x1, · · · ,xn) w.r.t. the parameters:

d

dθ
J(x1, · · · ,xn) =

∂J

∂x1

dx1
dθ

+ · · ·+ ∂J

∂xn

dxn

dθ
, (2.60)

or
(
dJ(x1, · · · ,xn)

dθ

)T

=

(
dx1
dθ

)T (
∂J

∂x1

)T

+ · · ·+
(
dxn

dθ

)T (
∂J

∂xn

)T

. (2.61)

This is computationally expensive because it requires doing as many simulations as there are
parameters inθ with a linearized reservoir simulator. A computationally much more efficient
way to calculate this gradient will be described in section 3.3.2.

2.2.3 Jacobians for sensitivities

Updating the sensitivity matrixdxndθ , requires the availability of the JacobiansJfθ1
andJf θ2

(Eq. (2.59)).

· The Jacobian off1 with respect to porosity valuesφ can be evaluated by substituting
φξ = 1 in Eq. (2.4) and doing some bookkeeping to make sure the derivatives end up in
the correct columns ofJfθ1 .

· The Jacobian off2 with respect to permeability values at the grid block interfaceskξη

can be evaluated by substitutingkξη = 1 in Eq. (2.6) and Eq. (2.5).

· The Jacobian off2 with respect to permeability values at the grid block centers can be
found by multiplying the result with the derivatives of Eq. (2.12), according to the chain
rule for differentiation. These are

∂kξη

∂kξ
= 2

(
kη

kξ + kη

)2
. (2.62)

· The derivatives with respect to the logarithm of permeability values can be obtained by
multiplying with the permeability values, according to

dy

d lnx
=

dy

dx

dx

d lnx
=

dy

dx

1
d ln x
dx

= x
dy

dx
. (2.63)





Chapter 3
Data Assimilation

3.1 Introduction

The aim of data assimilation is to improve numerical models by adding measurement infor-
mation. In case of petroleum engineering, the model might be the combinationof a reservoir
simulator, a rock-physics model and a wave propagation package. Measurements can origi-
nate from geology, seismics, petrophysics, down-hole sensors and surface facilities. The
models are updated by estimating their parameters. These parameterscan for example be the
porosity values of all grid blocks, the permeability values on the grid block interfaces, the
elastic moduli of the reservoir rock or the parameters of a parameterized capillary pressure
curve.

In a probabilistic setting, the likelihood of the model parameters given the measurements
is maximized. The numerical model is used as a weak constraint, since it is assumed that
besides the uncertainty in the model parameters, there is an additional source of uncertainty,
the model errors. Without these model errors, the model is assumed to be perfect and it is
used as a strong constraint. In practice the problem is often reduced to aleast squares prob-
lem by assuming Gaussian error statistics, resulting in a variety ofrelated data assimilation
algorithms. For linear systems they solve the same least squares problem; for non-linear sys-
tems, like multiphaseflow in porous media, they have their own peculiarities and utilization.
This chapter gives an overview of data assimilation algorithms and shows howthey are re-
lated. Numerical examples are shown in chapters 4, 5 and 6 to illustrate the applicability of
the methods by estimating permeability values.

Bayes rule, section 3.2.1, can be seen as the basis from which many data assimilation
routines are derived. However, most data assimilation algorithms can also be formulated
independently from Bayes rule.

In general, two families of derived methods can be distinguished: variational methods and
filters. In variational methods, the sensitivity of the data-mismatchbetween predicted data
and measured data over the lifetime of the reservoir with respect to model parameters is
used to get a better estimate of the parameters. This is repeated until convergence. Filters
work locally in time;measurements are assimilated whenever they become available without
recomputing the reservoir history. However, this is done in such a way that some kind of
optimality criterion is honoured, ensuring consistency with previously assimilated data.

In the context of variational methods, regularization methods will be discussed. Regu-
larization is performed to decrease the number of degrees of freedom of the data-mismatch
objective function. This also reduces the number of local minima of the objective and in-
creases the chance that gradient-based optimization algorithms find a local minimum that
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is closer to the global minimum. Usually basis functions are chosen that map a coefficient
space to the parameter space of much higher dimension. Optimal coefficients are searched
for rather than the parameters themselves. Optionally the basis functions may be updated
adaptively, as is done by the Representer Method [Bennett (2002)] or by Binary Levelset
functions [Nielsen (2006)].

The Kalman filter [Kalman (1960), Gelb (1974), Welch and Bishop (1995)] for state and
parameter estimation of linear systems will be introduced. To deal with non-linear sys-
tems that arise from petroleum simulation applications, the Ensemble Kalman filter [Evensen
(2003)] can be applied. Also an improvement is discussed to handle non-linear measurement
operators. Data that are correlated in time, like seismic measurements, can be assimilated
using a smoother [Cohnet al. (1994)] or by a modified filter with a double ensemble size
(section 3.4.5).

3.2 Bayesian data assimilation

3.2.1 Bayes rule

Reservoir simulation can be embedded in a stochastic or probabilistic framework. In that
case the reservoir state variables (pressures and saturations in allgrid blocks) do not have
deterministic values, but are described by a multivariate probabilitydistribution (or density)
function (PDF). The stochastic nature of the state variables is causedby the uncertainty in the
initial states, the uncertainty in the model parameters (permeability, porosity, etc.) and the
fact that the reservoir simulator is imperfect (gravity or capillary effects were not modelled or
3 components were modelled where 5 would have been more appropriate). The uncertainty
in the measurements are caused by two effects; sensors try to monitor a stochastic quantity
and are subject to influences that might damage them or otherwise corrupt the data.

Bayes rule [Bayes (1763)]

P (x|y) = P (y|x)P (x)
P (y)

, P (x|y) ∝ P (y|x)P (x) = P (x,y) , (3.1)

states that theposteriorPDFP (x|y) (the probability of the reservoir states and parameters
given the data) is proportional to theprior PDFP (x) (the probability of the reservoir states
and parameters) multiplied by thelikelihoodP (y|x) of the data given the reservoir states.

Thex of Eq. (3.1) can be interpreted in two ways:

1. x contains the reservoir state variables at all times, augmented with theuncertain static
model parameters.
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2. x contains all uncertain parameters att = t0, including state variables and static model
parameters. In this case, the state variables att 
= t0 are not shown in Eq. (3.1).

In the former case, the prior can be calculated by running a modified reservoir simulator
on the initial reservoir states. The likelihood of the data can then be calculated by inserting
the results into a forward predicting sensor model. In the latter case, the prior is defined at
t = t0 and the likelihood is affected by both the reservoir simulator and the sensor model.
No inverse sensor model is needed; the inversion is done by Bayes rule.

Bayes rule can only be used analytically for very simple PDF’s, reservoir models (1 phase)
and sensor models (only pressure measurements). In other cases the PDF’s must be approx-
imated numerically or sampled by a random number generator. To represent multi-modal
or otherwise complex PDF’s, many samples are needed, making Bayesian data assimilation
very computationally intensive or infeasible.

3.2.2 Special cases

Some properties of the multivariate Gaussian probability density/distribution are:

·

p(x) =
1√
|2πΣ|

e−
1
2 (x−µ)

TΣ−1(x−µ) , P (x) =

x∫

(−∞,··· ,−∞)

p(y)dy, (3.2)

with meanµ and covarianceΣ

· If x is Gaussian, thenAx+ b is Gaussian

· If (x,y) is jointly Gaussian, thenAx+By+ c is Gaussian

· If (x,y) is jointly Gaussian, thenx|y andy|x are Gaussian

Consequently:

· If the prior is Gaussian and the simulator and sensor model are linear, then theposterior
is Gaussian

· Hence, it suffices to only compute the mean and covariance of the posteriorinstead of the
full posterior

· Let (θ,ε,y) be jointly Gaussian, with mean
(
µθ, 0,µy

)
and covariance



Pθ 0 0

0 Pε 0

0 0 Py


 . (3.3)
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θ contains the model parameters,ε contains the model errors that are caused by unmod-
elled physics and numerical errors andy contains the measurements. Then the posterior
probability density is proportional to the joint probability density, or

p (θ,ε|y) ∝ e−J , (3.4)

J =
(
y −µy

)T
P−1

y

(
y−µy

)
+ (θ − µθ)

T
P−1

θ (θ − µθ) + ε
TP−1

ε ε. (3.5)
Finding the maximum a posteriori estimate (MAP) can be done by minimizingJ .

3.3 Variational data assimilation

Even though Eq. (3.5) does not have any physical or probabilistic interpretationwhen the
prior is not Gaussian or the reservoir simulator or sensor model is not linear, it still is the
basis for variational data assimilation methods. The quadratic objective, Eq. (3.5), could
have been derived from Bayes rule. In that casePy, Pθ andPε can be seen as scaling
matrices that represent how accurate the sensors are and how much trustis given to the
initial model parameters (µθ) and the model itself.y contains the "measured measurements"
andµy contains the "predicted measurements", which are related to the model parametersθ
through the reservoir simulator and the sensor model. The calculated physics are allowed to
deviate from the reservoir model, since the reservoir model does not correctly model the true
physical phenomena. This deviation is modelled byε. Thus,θ−µθ andε both model errors
in the reservoir simulator; θ−µθ represents a quantification of errors in the modelled physics
andε represents a quantification of errors in the unmodelled physics, or a superposition of
physical phenomena where the individual effects can not be quantified. Mathematically, the
termεP−1

ε ε can be augmented to(θ − µθ)
T
P−1

θ (θ − µθ) by introducingµε = 0.

The idea of variational data assimilation is that the first (or higher) order variation of the
objectiveJ w.r.t. the parametersθ is used to update these parameters. Usually the initial
estimate ofθ is equal toµθ. The second term at the right-hand side of Eq. (3.5) can be
deleted, but often it is needed to regularize the minimization or keepθ within a physically
meaningful range.

Section 3.3.1 discusses the computational resources involved in calculating the gradient of
J w.r.t. θ and introduces the term "adjoint reservoir state". Explicitly allowing the model
errorsε to be not equal to0 (using the reservoir simulator as a weak constraint) introduces
an extra obstacle in obtaining a gradient. This effect is explained in sections 3.3.2 and 3.3.3.
Section 3.3.4 describes regularization methods that decrease the dimension ofthe parameter
space and reduce the number of local minima of the objective function. The Representer
Method was designed as a regularization method that deals with weak constraints and is
explained in section 3.3.5.
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3.3.1 Variational calculus

Constrained optimization of a static system

Imagine that the objectiveJ = J (y,θ) needs to be minimized w.r.t.(θ,y), wherey is
related toθ by the static systemf (y, θ) = 0. The gradientdJdθ can be obtained by applying
the chain rule for differentiation (indicated by subscipts):

dJ

dθ
= Jθ + Jyyθ. (3.6)

The Jacobianyθ originates from differentiating the static systemf :

fθ + fyyθ = 0 ⇒ yθ = −f
−1
y fθ. (3.7)

This is known as forward sensitivity analysis, and requires solving|θ| linear systems of order
|y|, where|·| stands for counting the number of elements in a vector.

It can also be done by just solving1 linear system of order|y|. In the forward sensitiv-
ity analysis, firstyθ is calculated and then the rows are summed byJy. In the backward
or "adjoint" sensitivity analysis, a linear combination of the rows ofyθ is calculated with-
out explicitly calculatingyθ itself. In order to do so, Eq. (3.7) is first multiplied by (yet
undetermined) weighting factorsλ.

λT fθ + λ
T fyyθ = 0. (3.8)

The weighting factorsλ can now be determined by requiring that the summation of the rows
of yθ is the same for both the forward and the adjoint sensitivity analysis, thus (compare
second terms of Eq. (3.6) and Eq. (3.8))

Jy = λ
T fy ⇒ λ = f−T

y JT
y . (3.9)

Now the gradient can be determined by substituting Eq. (3.8) and Eq. (3.9) intoEq. (3.6):

dJ

dθ
= Jθ − λT

fθ. (3.10)

This method is equivalent to minimizing the alternative objectiveJ̃ = J (y, θ)+λT
f (y,θ)

w.r.t. (θ,y,λ) without extra explicit constraints; the constraint is implicitly present in the
objective function.

Constrained optimization of a dynamic system

Consider an objective of the formJ = J (ytn) which has to be minimized w.r.t.yt0 under
the constraint thatyti = f

(
yti−1

)
. By applying the chain rule:

dJ

dyt0

=
dJ

dytn

df
(
ytn−1

)

dytn−1

· · · df (yt0)

dyt0

. (3.11)
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If Eq. (3.11) is evaluated fromt0 to tn, then every time step requires a matrix-matrix
product and attn one matrix-vector product is needed. Computer memory can be saved if
Eq. (3.11) is evaluated fromtn to t0, because only matrix-vector products are needed. When
f represents a reservoir simulator with an implicit time discretization scheme, then the above
should be read with "matrix-matrix product" replaced by "matrix-inverse-matrix product"
and "matrix-vector product" replaced by "solving a linear system". Evaluating fromtn to
t0 not only saves computer memory but also a lot of computation time. Moreover, if the
interest isdJdθ rather than dJ

dyt0
and the constraint is of the formyti = f

(
yti−1 , θ

)
, the choice

to evaluate in inverse time becomes even more apparent.

Obtaining a gradient

A numerical gradient can be obtained by perturbing all parameters, eachtime running the
reservoir simulator and evaluating the data-mismatch objective function. An analytical gra-
dient can be obtained by forward or adjoint sensitivity analysis as discussed above. It is
computationally much more efficient to introduce adjoint reservoir states and modify the
reservoir simulator to compute these adjoint variables in inverse time.Calculating a numeri-
cal gradient requires almost the same amount of computer resources as forward sensitivity
analysis.

3.3.2 The reservoir simulator as a strong constraint

In variational data assimilation, the non-linear reservoir simulator

xt0 = x0 (θ) , f
(
xtj ,xtj−1 ,θ

)
= εj, (3.12)

with model errorsεj is added to the objective function, Eq. (3.5), by a Lagrange multiplier
or adjoint stateλ

J =
(
y−µy

)T
P−1

y

(
y−µy

)
+ (θ− µθ)

T
P−1

θ (θ −µθ) + (3.13)

+
M∑

j=1

εTj P
−1
εj εj + 2

M∑

j=1

λT
j

(
f
(
xtj ,xtj−1 ,θ

)
− εj

)
.

In order to find a minimum of the original objective function Eq. (3.5) w.r.t.the model
constraints, it suffices to look for a saddle point of the modified objective function Eq. (3.13).
A necessary condition for a saddle point ofJ is that the first order variations ofJ w.r.t. εj ,
λj , xtj andθ equal zero. These variations are

∂J

∂εj
= 2

(
P−1

εj
εj −λj

)T
, (3.14)
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∂J

∂λj
= 2

(
f
(
xtj ,xtj−1 , θ

)
− εj

)T
, (3.15)

∂J

∂xtj

= −2
(
y− µy

)T
P−1

y

∂µy

∂xtj

+ 2λTj
∂f
(
xtj ,xtj−1 ,θ

)

∂xtj

+ 2λT
j+1

∂f
(
xtj+1 ,xtj , θ

)

∂xtj

,

(3.16)

∂J

∂θ
= −2

(
y− µy

)T
P−1

y

∂µy

∂θ
+ 2(θ − µθ)

T
P−1

θ + 2
M∑

j=1

λT
j

∂f
(
xtj ,xtj−1 ,θ

)

∂θ
, (3.17)

respectively. The first term of Eq. (3.17) is only unequal to zero if model parameters can
be directly measured, for example permeability of core samples after drilling of new wells.
Even then the term can be made equal to zero by adding this new data to the priorµθ andPθ

of the second term.
From these, the forward system

xt0 = x0 (θ) , f
(
xtj ,xtj−1 , θ

)
= εj = Pεjλj , (3.18)

and adjoint system

λM+1 = 0(
∂f(xtj ,xtj−1 ,θ)

∂xtj

)T

λj = −
(

∂f(xtj+1 ,xtj ,θ)
∂xtj

)T

λj+1 +
(

∂µy
∂xtj

)T
P−1

y

(
y −µy

) ,

(3.19)
can be derived, as well as the parameter equation

θ = µθ −Pθ

M∑

j=1

(
∂f
(
xtj ,xtj−1 ,θ

)

∂θ

)T

λj (3.20)

and the desired gradient

(
∂J

∂θ

)T

= 2P−1
θ (θ − µθ) + 2

M∑

j=1

(
∂f
(
xtj ,xtj−1 , θ

)

∂θ

)T

λj . (3.21)

If Pεj is explicitly set to zero, the reservoir simulator is used as a strong constraint. This
can be done if the model is assumed to be perfect, for example if data are synthesized with
the same model that is used to do data assimilation in a twin experiment orif the user has
really no clue what value to use forPεj . In that case the following iterative algorithm can be
used:

· Make an initial guess forθ; usuallyθ = µθ.

· Run the forward model, Eq. (3.18), to obtain the statesxtj .

· Run the adjoint system backward in time, Eq. (3.19), to obtain the adjoint statesλj.
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· Improve the parameter estimates using Eq. (3.20) or supply the gradient Eq.(3.21) to
some advanced gradient-based search algorithm. Eq. (3.20) can also be usedwhen the
model parameters linearly enter the model. In that case, the algorithm is finished in one
iteration.

· Loop until satisfied.

3.3.3 The reservoir simulator as a weak constraint

In case of weak constraint variational data assimilation, the algorithm mentioned in the pre-
vious section cannot be used directly, since the forward and backward simulations become
coupled. It can however be used if the model errorsεj are initialized by zero. In later iter-
ations, the model errors for the forward simulation can be calculated from the adjoint sim-
ulation of previous iteration. Alternatively, an extra loop can be included, where Eq. (3.18)
and Eq. (3.19) are used sequentially until convergence, before the step is made to the param-
eter update Eq. (3.20) or Eq. (3.21). Without this extra loop, the algorithm is equivalent to
augmentingεj to θ:

θ̃=(θ,ε1, · · · ,εM ) , f̃
(
xtj ,xtj−1 , θ̃

)
= f

(
xtj ,xtj−1 ,θ

)
− εj. (3.22)

The Representer Method, as described in section 3.3.5, is an alternative method that also
regularizes (see section 3.3.4) the minimization process. Moreover, it gives information
about the "value of data" as a bonus.

3.3.4 Regularization

When "smart" wells are equipped with downhole gauges, data from these gauges might in-
dicate that the path between two wells is more permeable than predicted by the reservoir
simulator. This can be corrected by increasing the permeability of the grid blocks that are
in theflow path. However, there are many ways to make such a correction if there are more
than one grid block in theflow path; the permeability in grid blocks A and B can both be
increased a little, or the permeability in grid block A can be increased a lot while it is kept
constant in grid block B. This corresponds to multiple local minima in the data-misfit ob-
jective function. Regularization is the subjective process of choosing a solution out of many
possible solutions. This choice is not made after calculating all solutions and evaluating their
quality, but it consists of a set of rules that hopefully guide the searchalgorithm towards a
solution of preference.
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Decomposition into basis functions

The guiding rules are usually represented by basis functions. The basis functions are used
to (linearly or non-linearly) map a coefficient space to the parameter space of much higher
dimension. Sometimes the deviations of the parameters from the prior are used rather than
the parameters themselves, so for a linear mappingθ = Rθb or

θ −µθ = Rθb, (3.23)

where the columns ofRθ contain the basis functions andb contains the coefficients (the
parameters of the lower order minimization problem). Equations Eq. (3.18),Eq. (3.19) and
Eq. (3.21) do not need to be modified, or in other words, the adjoint reservoir simulator
remains unchanged. Instead a translation layer must be implemented in between the adjoint
simulator and the minimization algorithm. The layer translates coarse scale parameters into
fine scale parameters Eq. (3.23), and translates the fine scale gradient into a coarse scale
gradient, (

∂J

∂b

)T

= RT
θ

(
∂J

∂θ

)T

. (3.24)

After initialization of the fine scale parameters, the coarse scale parameters need to be ini-
tialized by inverting Eq. (3.23). The best (in terms of minimal Euclidiandistance) coarse
scale initialization can be found by projectingθ − µθ onto the space spanned by the basis
functionsRθ , so

b0=
(
RT
θRθ

)−1
RT
θ (θ0−µθ) = R

†
θ (θ0−µθ) . (3.25)

Choosing the basis functions

Piecewise constant functions

Based on the prior informationµθ , a histogram can be derived. Parameters that have
similar values can be grouped together and averaged to obtain a characteristic parameter of
that group. Individual parameters of the group are then overwritten by the characteristic
group parameter. The basis function of every group contains ones for fine scaleparameters
that are assigned to the group and zeros at all other positions; it is a Heaviside function. The
coarse scale parameters are equal to the groups characteristic parameters.

Example
If µθ =(1, 2, 5) and regularization is done by reducing the size of the parameter vector

from three to two elements by a piecewise constant function, then a possiblechoice would
be to group the first two parameters together

θ̃0 =



1 0
1 0
0 1



[
1
2 (1 + 2)

5

]
. (3.26)
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Using these basis functions, it is not possible to reconstruct the original parameters (̃θ0 
=
µθ ). Optionally, the columns ofRθ may be normalized to produce an orthogonal matrix.
The scaling factors that are needed to do this must then also be incorporated in the coarse
scale parametersb.

Detecting dominant features from a training image

In general, the prior does not just consist ofµθ but alsoPθ. Maybe even higher order
moments or a full non-Gaussian probability distribution is known. Extra constraints can be
added to this prior. For example, the probability distribution of permeability values can be
modified when core samples become available after drilling of wells. This can be used to
sample realizations of the parameter vector. These realizations canbe put as columns in a
matrix to form a large database. Theoretically, this matrix contains the same information as
the original probability function if infinitely many realizations areused. The database can
be compressed with methods like Proper Orthogonal Decomposition (POD) [Smaoui and
Garrouch (1997), Heijnet al. (2004)]. This results in a set of basis functions and a measure
of their dominance in the database in terms of energy. This energy measure provides a
criterion to select a useful number of basis functions. This feature is not available when the
parameter vector is decomposed in piecewise constant functions. [Jafarpour and McLaughlin
(2007)] claims that a cosine transform is better suited to parameterize a permeability field
than the principal components that are obtained from a database with POD. When the prior
only consists ofµθ , this can also be used to generate a database. Small portions ofµθ can
be taken randomly or deterministically and added as columns to the database. [Strebelle
(2002)]. Regression methods can also be used [Draper and Smith (1998)].

Updating the basis functions

Basis functions that come from a POD-like method represent some kind of digitized proba-
bility distribution. These functions are based on the prior but are alsoreasonably adequate in
representing the posterior. Heaviside basis functions can be constructed to reasonably repre-
sent the prior, but they are in general not suited to represent the posterior. The basis functions
need to be updated iteratively in order to obtain a good estimate of the parameters. Two steps
can be used:

1. Keeping the basis functions fixed, improve the coarse scale parameters

2. Keeping the coarse scale parameters fixed, update the basis functions

Step 1 is present in all variational data assimilation algorithms,step 2 is optional. [Lien
et al. (2006)] starts out with very few Heaviside basis functions. After step1 has converged,
the small scale gradient obtained from the adjoint system is used to evaluate how every basis
function can be cut into two smaller scale basis functions. In [Nielsen (2006)] the basis
functions are present only implicitly and the number of basis functions necessarily needs to
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be equal to a power of 2 due to the representation. This can easily be extended to an arbitrary
number of basis functions [Rommelseet al. (2004)]. Updating a basis function comes down
to deciding whether a small scale parameter should stay in its coarseparameter group or
move to another group. This can be naively done by running two reservoir simulations and
putting the small scale parameter in the group that gives the lowest data-misfit. In [Nielsen
(2006)] the decision is made based on the fine scale gradient obtained by the adjoint system.

Non-linear parameterizations

Sometimes it is more appropriate to apply basis functions to the parameters of interest after
some non-linear transformation. For example, in reservoir simulation applications it has be-
come common practice to apply basis functions to the logarithm of reservoir grid block per-
meabilities, rather than the reservoir permeabilities themselves. [Jafarpour and McLaughlin
(2007)] proposes a different non-linear parametization, using the Discrete Cosine Transform.

3.3.5 Representer Method

The essence of the Representer Method (RM) [Bennett (2002), Baird and Dawson (2005),
Valstar (2001), Valstaret al. (2004), Przybysz (2004)] is threefold:

· The results of the reservoir simulator, Eq. (3.18), are needed to calculate the adjoint states
by Eq. (3.19). However, the model errors of the simulator depend on the adjoint states
throughεj = Pεjλj (section 3.3.3). These equations are decoupled by the Representer
Method.

· Non-linear data assimilation is notoriously ill-posed; several (or many) different param-
eter sets exist that minimize the squared data-misfit. Trying to determine more details
than there are present in the data is called over-fitting. Regularization (section 3.3.4) is
the subjective process of choosing one solution out of many solutions. Usually regular-
ization is done by mapping a low order space of basis functions to the original high order
parameter space. Instead of estimating the original parameters, the parameters of this
mapping are estimated. The subjective nature of regularization is because the user has
to choose the basis functions, for example by POD [Smaoui and Garrouch (1997), Heijn
et al. (2004)]. In the Representer Method, the number of basis functions is chosen equal
to the number of measurements. Over-fitting is avoided, because the levelof detail that is
looked for in the solution is equal to the level of detail in the measurement data. Unlike
most methods, the actual form of the basis functions in the Representer Method is not
chosen by the user, but is obtained by the simulator, Eq. (3.18), and the adjoint simulator,
Eq. (3.19).

· After convergence of the Representer Method a parameter estimate isfound that (locally)
minimizes the data-misfit objective function. Moreover, every basisfunction provides in-



36 Chapter 3

formation on the impact and influence in space and time of the measurement correspond-
ing to that basis function. The RM therefore has the potential to quantify the usefulness
of data. This might help to design optimal measuring strategies. When, where and what
should be measured in order to better understand reservoirs in an early stage of produc-
tion? How is that going to affect the production strategies? How can measurement design
be included in lifetime production optimization?

This section describes the RM as it was formulated in the literature that is referenced at the
top of this section. Modifications to RM will be proposed in chapter 4 and used throughout
this thesis.

Not only the parameters, but also the forward and adjoint reservoir states are decomposed
into basis functions, called representer functions or representers. The deviation of the param-
eters from the prior(θ −µθ) and the model errorsεj = Pεjλj are developed around zero,
whereas the forward states are developed around the states of previous iteration. In order to
use the same representer coefficientsb, an extra correction termxcorr

tj
must be introduced:

θ = µθ +Rθb, (3.27)

λj = Rλjb,

xtj = x
f
tj + xcorr

tj +Rxtj
b.

Adjoint representers
The representer coefficients can be defined as

b = P−1
y

(
y− µy

)
, (3.28)

or equivalently

b = P
−1
y

(
y −

(
yf + ycorr +Rxb

))
,

(
Py+Rx

)
b = y−

(
yf + ycorr

)
,

(3.29)
whereRx is a concatenation ofRxtj

for all time steps andRxtj
only contains the rows of

Rxtj
at positions where the state vector can be directly measured.Rx is a square matrix,

since there are as many basis functions as there are measurements. Following this definition,
substitution of the adjoint representer expansions Eq. (3.27) into the adjoint system Eq.
(3.19) gives a system for updating the adjoint representers:

RλM+1 = 0(
∂f(xtj ,xtj−1 ,θ)

∂xtj

)T

Rλj = −
(

∂f(xtj+1 ,xtj ,θ)
∂xtj

)T

Rλj+1 +
(

∂µy
∂xtj

)T . (3.30)

Parameter representers
Substitution of adjoint and parameter representer expansions Eq. (3.27) into theparameter

equation Eq. (3.20) gives a system for updating the parameter representers:

Rθ = −Pθ

M∑

j=1

(
∂f
(
xtj ,xtj−1 , θ

)

∂θ

)T

Rλj . (3.31)
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State representers
A system for updating the state representers is found by perturbing the forward system Eq.

(3.18), linearization and then substituting the unperturbed forward system:

Xt0 =
∂x0(θ)
∂θ Rθ

∂f(xtj ,xtj−1 ,θ)
∂xtj

Rxtj
+

∂f(xtj ,xtj−1 ,θ)
∂xtj−1

Rxtj−1
+

∂f(xtj ,xtj−1 ,θ)
∂θ Rθ −PεjRλj = 0

.

(3.32)
Correction term
In addition to steps 1 and 2 of section 3.3.4, there is an additional third step:

1. Keeping the basis functions fixed, improve the coarse scale parameters

2. Keeping the coarse scale parameters fixed, update the basis functions

3. Whenever parameters are changed, different state predictions should be expected and
the linearization of the state representers around the forward prediction should be
updated accordingly by modifying the correction termxcorr

tj .

The criterion for step 3 is that the state representer decompositionshould be consistent for
the old (η − 1) and the new (η) iteration, soxcorr

tj
(η) is calculated from Eq. (3.27) by:

xtj (η − 1) = x
f
tj (η) + xcorr

tj (η) +
[
Rxtj

b
]
(η) . (3.33)

The term
[
Rxtj

b
]
(η) = γtj is approximated by multiplying Eq. (3.32) byb and substitut-

ing [Rθb] (η − 1) = ψ and
[
Rλjb

]
(η − 1) = φj for [Rθb] (η) and

[
Rλjb

]
(η):

γt0 =
∂x0(θ)
∂θ ψ

∂f(xtj ,xtj−1 ,θ)
∂xtj

γtj +
∂f(xtj ,xtj−1 ,θ)

∂xtj−1
γtj−1 +

∂f(xtj ,xtj−1 ,θ)
∂θ ψ = Pεjφj

. (3.34)

Flow chart
The computations involved in the representer method for solving the inverse parameter

estimation problem are shown in the followingflow chart:

1. Initialize withλ = 0 andθ = µθ

2. Solve the forward model, Eq. (3.18)

3. For each measurement

∗ calculate the adjoint representer, Eq. (3.30)

∗ calculate the parameter representer, Eq. (3.31)
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∗ calculate the state variable representer, Eq. (3.32)

4. Calculate correction term, Eq.(3.33), Eq. (3.34)

5. Calculate representer coefficients, Eq. (3.29)

6. Update adjoint and parameters, Eq. (3.27)

7. Go to 2 if convergence criterion is not met

3.3.6 Approximated gradient

A reservoir simulator implements differential equations that are discretized in time and space.
Whenever the discretization scheme is changed, the adjoint reservoir simulator needs to be
modified for consistency as well. Often reservoir simulators contain highly complicated nu-
merical routines for the time integration that are optimized for computational efficiency or
stability. These solvers usually do not come with a consistent adjoint solver. It is possible to
also use the forward solvers for the adjoint computation. In that case, the adjoint system is
not derived from the time-discretized reservoirflow equations but from the time-continuous
formulation. The time-continuous forward and adjoint systems are discretized by the numeri-
cal routines independently from each other. An approximated gradient is obtained, instead of
the true gradient. Using this gradient in a gradient-based search algorithm is not necessarily
worse than using the true gradient [Caoet al. (2002)].

The time-continuous space-discrete version of a reservoir simulator canbe written as

xt0 = x0 (θ) ,
∂f1 (x (t) ,θ)

∂t
= f2 (x (t) , θ) + ε (t) , (3.35)

which is not as general as Eq. (3.18).f1 models the accumulation of water/oil mass in each
grid block andf2 models theflow of liquids due to pressure changes and production/injection.
For one liquid phase, Eq. (3.35) can be solved by an ODE-solver (ordinary differential equa-
tion), requiring the first order derivatives off1 andf2. A more realistic reservoir simulator
with more phases requires higher order derivatives or a DAE-solver (differential algebraic
equation). The system must then be formulated as

[
I 0

0 0

][ ·
x2
·
x1

]
=

[
f2 (x1,θ) + ε
f1 (x1, θ)− x2

]
(3.36)

(usingx1 = x, x2 = f1 (x1,θ)), where· denotes a time derivative. The system Jacobian
equals

J =

[
0 Jfx2
−I Jfx1

]
. (3.37)
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The time-continuous adjoint system is the tangent linearization of the forward system Eq.
(3.36)

[
I 0

0 0

]

∗

λ2
∗

λ1


 =

[
0 Jfx2
−I Jfx1

]T [
λ2
λ1

]
, (3.38)

where∗ denotes a time derivative in inverse time. It can be derived by setting the derivatives
of the objective function

J̃ = J + 2

tend∫

t0

λT
(
∂f1 (x (t) ,θ)

∂t
− f2 (x (t) , θ)− ε

)
dt, (3.39)

or

J̃ = J + 2λT (tend) f1 (x1 (tend) , θ)− 2λT (t0) f1 (x1 (t0) , θ) (3.40)

−2
tend∫

t0

(
·

λ
T

f1 + λ
T (f2 + ε)

)
dt,

w.r.t. the reservoir statesx (t) equal to zero (and substitutingλ1=
∗

λ, λ2= −λ). This also
gives the magnitude of the discontinuities of the adjoint states at times whenmeasurements
are available;

2JT
fx1
(x1, θ)

(
λafter − λbefore

)
= − ∂J

∂x1
, (3.41)

(
JT
fx1
(x1, θ)λ2

)after
=
(
JT
fx1
(x1, θ)λ2

)before
+
1

2

∂J

∂x1
. (3.42)

In general the reservoir states will be continuous (soJ
after
fx1

= J
before
fx1

), but not when calcu-
lated by a filter [section 3.5.2]. The relation betweenε andλ remains unchanged (ε = Pελ)
and the gradient that is passed to the search algorithm is calculated by

(
∂J

∂θ

)T

= 2P−1
θ (θ − µθ)− 2

(
Jfx1

dx0
dθ

+ Jfθ1

)
λ (t0)− 2

tend∫

t0

(
JT
fθ1

·

λ+ JT
f θ2
λ

)
dt.

(3.43)
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3.4 Filtering

3.4.1 Classical Kalman filter for linear systems

The classical Kalman filter is based on Bayes rule Eq. (3.1) and the fact that statistically
independent measurements can be assimilated sequentially

P (x|y1,y2) ∝ P (y2|x)P (y1|x)P (x) . (3.44)

It works as follows:

· At t = t0 no model data are yet available and the posterior probability ofθ is equal to the
Gaussian prior with meanµθ and covariancePθ. The expectation of this pdf,µθ , results
in zero when substituted into Eq. (3.5), since the first and last term are already zero at
t = t0.

· If the numerical model is linear, it can be written asxtj = Axtj−1 +Bu+Fεj , wherex
contains the reservoir states augmented with the estimated parameters andu andεj are
deterministic and stochastic forcings respectively. If there are no measurements available
as time increases, it suffices to updatex andPx by

x← Ax+Bu , Px← APxA
T+FPεjF

T . (3.45)

· If the measurement operator is linear (y =Cx) and measurements errors are assumed to
be Gaussian with zero mean and known covariancePy, thenx can be calculated from a
statistically optimal weighing betweenx andy:

x← x+K (y−Cx) , K = PxC
T
(
CPxC

T +Py

)−1
. (3.46)

Here Cx are the "predicted measurements" andy contains the "measured measure-
ments". The measurement update causes discontinuities of the state variables (augmented
with model parameters) at points in time where measurements are available.

3.4.2 Ensemble Kalman filter for non-linear systems

Both the time update and the measurement update of the Kalman filter assumethat the state
variables augmented with the model parameters are Gaussian. This Gaussianity is lost when
the prior is not Gaussian or when either the reservoir model or the measurementoperator is
non-linear. The measurement operatory = g (x) can always be written in linear form by
state augmentation,

x̃ : =

[
x

g (x)

]
, g̃ (x̃) :=

[
0 I

] [ x

g (x)

]
= C̃x̃, (3.47)
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however, this only shifts the source of non-Gaussianity in the measurementupdate instead
of solving it. All sub-optimal approximations of the Kalman filter that were designed to deal
with nonlinearities calculate the first and second order moments of the posterior, even though
these are not representative for a probability that is possibly much richer than a multivariate
Gaussian. In the Extended Kalman filter (EKF) the reservoirflow equations are linearized
and the Jacobians are substituted into Eq. (3.45) forA andF. For a system of the form

[
xtj

θ

]
= f

([
xtj−1

θ

])
+ εj =

[
f̃
(
xtj−1 , θ

)

θ

]
+ εj, (3.48)

these Jacobians are

A =

[
∂f̃
∂x

(
xtj−1 ,θ

)
∂ f̃
∂θ

(
xtj−1 ,θ

)

0 I

]
, F = I. (3.49)

The same is done with the measurement operator and Eq. (3.46) for the measurement update,
or C̃ (Eq. (3.47)) is used. The first moment of the posterior calculated by the EKFis biased.
The Ensemble Kalman Filter (EnKF) corrects this.

The Ensemble Kalman Filter (EnKF) [Evensen (2003)] was designed to deal with non-
linear models or simulators that do not haveA andF from Eq. (3.45) explicitly available.
The covariance matrixPx is decomposed as

Px=
LL

T

n− 1 , (3.50)

where the columns ofL represent statistical deviations from the mean reservoir state. To
updatePx correctly requires as many reservoir simulations as the dimension of the state
vector (#grid blocks * #phases * ...). The EnKF (under)estimatesPx by randomly sampling a
lower number of columns forL, typically 100. Alternatives are available where the sampling
is based on eigendecompositions. Also hybrid methods exist that combine deterministic
and random sampling. When the mean reservoir statexf is added to the deviations̃xf

i , an
ensemble of reservoir state vectors is obtained. These are independently propagated by the
non-linear model for the time update. The measurement update for the EnKF canbe written
as

xa = xf +K
(
yo −Cxf

)
, x̃a

i = x̃
f
i +K

(
ỹo
i −Cx̃

f
i

)
, (3.51)

K = LL̃T
(
L̃L̃T + (n− 1)Py

)−1
, L̃ = CL.

The application

· All ensemble members are updated independently from each other by a reservoir simu-
lator. The model errors are sampled randomly. Optionally the model parameters may be
updated simultaneously by some appropriate stochastic process.
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· When a measurement becomes available, all ensemble members are augmented with the
model parameters that are to be estimated, as well as the non-linear "forecasted measure-
ments". The matrixL is formed by putting all these augmented ensemble members as
columns in a matrix.

· The matrixL̃ is created by deleting the rows ofL that correspond to quantities that can not
directly be measured. This can vary over the different assimilation points in time, making
the assimilation step veryflexible to different kinds of sensors with their corresponding
frequencies.

· The Kalman gain matrix is calculated. If the sensors are (nearly) independent, then
Py is (close to) a diagonal matrix and easily invertible. Calculating the full inverse of
L̃L̃T + (n− 1)Py may result in numerical problems when different sensors have very
different accuracies, or when there is a large range in the state error (co)variance. Us-
ing Woodbury’s [Woodbury (1950)] equations for low-rank updating of matrix inverses
partially takes care of that.

· Using the Kalman gain, the observation is assimilated into every ensemble member sep-
arately. In order to do so, an ensemble of observations is created from one observation
by randomly sampling from the probability distribution of the sensor error.

Extrapolating measurements to reservoir states and parameters

L̃ = CL, Eq. (3.51), means thatC operating onL cuts away certain rows, creating̃L.
The inverse is non-unique, but a pseudo-inverse exists; L ≈ C

T
L̃. In other words, a pseudo-

inverseL can be recreated by adding zero-rows toL̃ at places where rows were cut away.
These zeros were not present in the originalL. Using the pseudo-inverseC−1 ≈ CT , the
Kalman gain matrix Eq. (3.51) can be written as

K ≈ CT L̃L̃T
(
L̃L̃T + (n− 1)Py

)−1
. (3.52)

Now assuming that the error covariance structure of the observations is equal to the error co-
variance structure of the state variables that can be directly measured ((n− 1)Py = αL̃L̃T ),
the Kalman gain becomes

K =
CT

1 + α
, (3.53)

meaning that the measurement update becomes

xa
o =

α

1 + α
xf
o +

1

1 + α
y , xa

no = xf
no, (3.54)

or in other words, for as far as the states than can be directly measured, the analyzed values
are weighted averages between the forecasted values and the observations.
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It can be concluded that there are two mechanisms responsible for extrapolating observa-
tions to parameters that can not be directly measured:

1. The error covariance of the observations differs significantly from the error covariance
of the observable states ((n− 1)Py 
= αL̃L̃T ).

2. L is not formed by adding zero-rows tõL, but from the original state data, including
the covariance between the state variables that can be directly measured and the state
variables that cannot be directly measured.

Ensemble Square Root Kalman Filter

Correlated measurements

From Eq. (3.51) it follows that the reservoir state error covariance isupdated by

Pa
x = x̃a

i x̃
aT
i =

(
(I−KC) x̃f

i +Kỹo
i

)(
(I−KC) x̃f

i +Kỹo
i

)T
= (3.55)

= (I−KC) x̃f
i x̃

fT
i (I−KC)T +Kỹo

i ỹ
oT
i K =

= (I−KC)Pf
x (I−KC)T +KPyK

T .

If no noise would be added to the observations, thenPa would be underestimated by the
first term, while the second term would be missing. The idea of the EnsembleSquare Root
Kalman Filter (ESRKF) is to update the mean and deviations of the statewithout adding
noise to the observations,

{
xa = xf +K

(
yo −Cxf

)

x̃a
i = x̃

f
i − K̃Cx̃

f
i

, (3.56)

in such a way that the underestimation of the state error covariance is compensated for.
Obviously,K̃ must be chosen such that

(
I− K̃C

)
Pf
x

(
I− K̃C

)T
= (I−KC)Pf

x (I−KC)T +KPyK
T . (3.57)

Whitaker and Hamill [Whitaker and Hamill (2002)] have shown that

K̃ = Pf
xC

T

(√(
CPf

xC
T
+Py

)−1
)T (√

CPf
xC

T
+Py +

√
Py

)−1
, (3.58)

hence the name SQUARE ROOT filter. These square roots are non-unique and canbe calcu-
lated by Cholesky or SVD. Because the square roots are non-unique, choices must be made.
[Evensen (2004)] claims that it is necessary to make sure there is somevariation in these
consecutive choices.
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Uncorrelated measurements

When the measurements are uncorrelated (Py is a diagonal matrix), they can be assimi-
lated sequentially. Thus, without loss of generality it can be assumed thatCT is equal to a
unit vector (CT = ej ) andPy is scalar. Now

K̃ =
K

1 +
√

Py

(CPf
xC

T+Py)
−1

, (3.59)

and updating the deviations can be done byL : = L− K̃L̃

3.4.3 EnKF; towards a non-linear measurement update

Whenever measurements are available, there is a jump in the analyzedstates. When the cur-
rent estimate is close to the true value, then this jump will be small. When the measurements
are very inaccurate, the analyzed state will be much closer to the forecasted state than the
observation, so the jump will also be small. In case of accurate measurements, the jump
may be large. Many large jumps cause filter divergence or at best poor estimates, because
the magnitude of the jumps is overestimated by the linear measurement update. For numeri-
cal stability it is often better to have many inaccurate measurements available than a few
accurate ones. This section attempts to duplicate an accurate measurement into several less
accurate measurements.

Uncorrelated measurements

In 1D (uncorrelated measurements are assimilated sequentially) twoGaussian stochastic
variables, a reservoir state and an observation, with parameters

(
µf , σf

)
and (µo, σo) are

combined by a Kalman update to a new Gaussian with parameters(µa, σa) , where

σ2a =
σ2fσ

2
o

σ2f + σ2o
, µa =

σ2oµf + σ2fµo
σ2f + σ2o

. (3.60)

Alternatively to assimilatingxo once with uncertaintyσo, it can also be attempted to assimi-
latexo n times sequentially with higher uncertaintyσ̃o. In that case

σ2a
∣∣
0
= σ2f , σ2a

∣∣
i
=

σ2a
∣∣
i−1

σ̃2o

σ2a|i−1 + σ̃2o
, σ2a = σ2a

∣∣
n
, (3.61)

or equivalently

σ2a =
σ2f σ̃

2
o

2n−1σ2f + σ̃2o
. (3.62)
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The number of duplicate measurements must be specified by the user. This thesis proposes to
let σa be invariant under this approach; only the discontinuity in the first statistical moment
is reduced while the second moment is left unchanged. From Eq. (3.60) and Eq. (3.62),it
follows that

n = 1 + log2

(
σ̃2o
σ2o

σ2f + σ2o

σ2f + σ̃2o

)
or σ̃2o = 2

n−1σ2o. (3.63)

Example: if σ̃a = σf (bring the uncertainty of "measured measurements" to the order of
"predicted measurements"), then

n = 1 + log2

(
σ2f + σ2o
2σ2o

)
, (3.64)

so if σ2f = 10
11 andσ2o = 10

3, thenn ≈ 26.58. Settingn = 27 givesσ̃2o = 6.7 · 1010.

3.4.4 Smoother

A long term production optimization algorithm typically runs over a time interval from the
present to the end of the estimated lifetime of the reservoir. The input forsuch an algorithm is
a reservoir simulator that has been history-matched using all available data up to the present.
Both a reservoir simulator that has been history-matched using a variational method or a
reservoir simulator that has been history-matched using a filter satisfy this condition. How-
ever, the history of the former simulator is consistent with all data,whereas only the present
time of the latter simulator is consistent with all data. This is due to the sequential nature
of a filter; data improves the present estimate of a reservoir simulator but does not havean
impact back in time. Applications exist where it is necessary to estimate the past state of a
reservoir using measurements taken at a later point in time. Variational methods can be used
for such applications without modifications. A filter must be modified into a smoother; a fil-
ter estimates the present given the history, a smoother estimates the present given the history
and the future (or it estimates the past given the history and the present). Mathematically, the
results of a smoother can be seen as if obtained by a statistically optimal weighing of the out-
come of two filters, one running forward and one running backward in time. Implementing
a smoother is quite a lot harder than a filter.

In current implementations of closed-loop reservoir management, the production optimiza-
tion and data assimilation are decoupled by an iterative scheme. Basedon all available
knowledge, an optimal production strategy is calculated. This strategy isthen applied to the
reservoir simulator and in the field. Measurements are assimilated whenever they become
available. A new optimal strategy is obtained from the updated simulator. When the mea-
surement errors are not correlated in time, a filter is quite suited inclosed-loop reservoir
management. Otherwise, a smoother must be used or other modifications must be made to a
filter [section 3.4.5].
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3.4.5 Adapting a filter to handle seismic data with time-correlated
errors

3D seismic data can be assimilated into a reservoir simulator usinga filter, provided that
there is a forward model that predicts seismic data based on the outcome of the reservoir
simulator. If seismic data are inverted to grid block pressures andsaturations, they can be
assimilated as if originating from production measurements. Different levels in between are
also possible. In 4D seismic data inversion, the data typically consistsof two (or more) sets
of repeated data at different points in time. Usually 4D inversion isdone by inverting the
difference in data back to pressure changes and saturation changes rather than pressures and
saturations themselves. Both sets of 3D data contain large uncertainties, but this is partially
cancelled out by the differencing. 4D data seismic data can be assimilated using a smoother
and has been done in [Skjervheimet al. (2005)].

This thesis proposes an alternative. Instead of differencing two sets of3D data to reduce
the uncertainty, both sets of 3D data can be assimilated by a method that explicitly takes
uncertainties into account. A standard filter can not handle time-correlated data, so a modi-
fication needs to be made. An Ensemble Kalman filter can be used with a doubleensemble
size. Every ensemble member has a (non-identical) twin brother in the ensemble. Whenever
production data are available, these are assimilated into both ensembles, but keeping the two
ensembles separate. Whenever measurements become available that arecorrelated to pre-
vious measurements, half of the ensemble members are destroyed; the ones that contained
the seismic data. New twin brothers are created as exact copies of the ensemble members
that only contain production data. Now the seismic data are assimilatedinto the duplicate
ensemble, keeping the original ensemble unharmed. In order to assimilate all 3D data sets
simultaneously, the duplicate ensemble members also need to be augmented with historic
versions of the original ensemble members.

3.4.6 Other low-order approximations

Other low order approximations exist, where the columns ofL, Eq. (3.50), are chosen differ-
ently. In the RRSQRT-filter (Reduced Rank Square Root) [Verlaan and Heemink (1997)], the
ensemble members are updated in time without randomly sampling model errors. Instead a

square root of the model error covariance is concatenated toL, L̂=
[
L

∣∣∣
(
(n− 1)Pεj

)1/2 ]
,

after whichL̂ is reduced back to its original size by selecting then leading singular vec-
tors. The POEnKF (Partial Orthogonal EnKF) [Verlaan and Heemink (1997)] and COF-
FEE (Complementary Orthogonal subspace Filter For Efficient Ensembles) [Heeminket al.
(2001)] combine an ensemble of singular vectors with a randomly sampled ensemble. The
spaces spanned by these two ensembles overlap partially. In POEnKF this overlap is ignored,
in COFFEE the random ensemble members are projected onto the complement of the space
that is spanned by the singular vector ensemble.
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3.5 Hybrid method

3.5.1 Expectation maximization

The Expectation Maximization (EM) [Dellaert (2002), Bilmes (1998)]attempts to find the
parametersθ that best explain the datay by maximizing the likelihood function

L (θ) := ln p (y|θ) . (3.65)

The maximization problem is simplified by introducing auxiliary distribution functionsp (x)
over the hidden variablesx. These variables are needed to forward predict the data given the
parameters and contain the reservoir states. The likelihood can be written as

L (θ) := ln p (y|θ) = ln
∫

p (x,y|θ) dx = ln
∫

p (x)
p (x,y|θ)
p (x)

dx, (3.66)

and a lower bound can be found because of the concaveness of theln-function

L (θ) ≥
∫

p (x) ln
p (x,y|θ)
p (x)

dx =

∫
(p (x) ln p (x,y|θ)− p (x) ln p (x)) dx. (3.67)

The EM algorithm iterates over an expectation step and a maximizationstep.

· In the expectation step of theη-th iteration, the lower bound Eq. (3.67) is maximized
with respect to the distribution functions over the hidden variablesp (x), while keeping
the parameters fixed. It can be shown [Bilmes (1998)] that the maximum is obtained
when

pη (x) = p (x|θη−1,y) , (3.68)
for which the bound becomes an equality.

· In the M-step, the lower bound is maximized with respect to the parameters, while keep-
ing p (x) fixed, so

θη = argmax
θ

∫
pη (x) ln p (x,y|θ) dx. (3.69)

3.5.2 Integrating a filter in a variational method

The first (µx) and second (Px) order moments ofpη (x) from the E-step, Eq. (3.68), can be
calculated by an (Ensemble) Kalman smoother. Unlike what was discussed in section 3.4.4,
the model parameters need not be augmented to the reservoir states. According to Eq. (3.68),
or equivalently

θη = argmin
θ

Epη(x) {− ln p (x,y|θ)} = argmin
θ

Epη(x)J, (3.70)
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the expectation of the objective function Eq. (3.5) with respect topη (x), is minimized with
respect to the parametersθ. Taking this expectation comes down to replacing the terms(
y− µy

)T
P−1

y

(
y−µy

)
andεTP−1

ε ε of Eq. (3.5) by(x−µx)
T
P−1

x (x− µx). Mini-
mizing the objective

J = (x− µx)
T
P−1

x (x−µx) + (θ− µθ)
T
P−1

θ (θ− µθ) (3.71)

can be done with the existing adjoint reservoir simulator; the real measurementsy can be
replaced by the analyzed reservoir states from the forward simulation x.

Like a classical variational method, a gradient of the objective with respect to the param-
eters can be obtained by Eq. (3.19) and Eq. (3.21) applied to the ensemble mean of the
forward simulations. Like a filter/smoother with parameters augmented to the state, it is also
possible to update the second order moment of the parameter probability distribution using
EM. In order to do so, an ensemble of parameters must be sampled from theprior distribu-
tion, and Eq. (3.19) and Eq. (3.21) must be applied to every ensemble memberseparately.

For the full EM method, a gradient-based search algorithm in the M-step must converge
before the E-step is again performed. Optionally, the search algorithm may be truncated
after several (or just one) iteration. This will increase the number of iterations of the EM
algorithm, but will reduce the computational costs of the M-step. It might also converge to a
better parameter estimate.

The smoother in the E-step may be replaced by a filter [Sweppe (1973), te Stroet (1995)].
Implementing a filter is significantly easier than implementing a smoother. The adjoint equa-
tions must be adapted to handle discontinuous trajectories, which is a small effort. The
variational algorithm might need more iterations with a filter than a smoother but does not
necessarily result in a better or a worse parameter estimate.

3.6 Relation between data assimilation methods

At first glance, Kalman filtering/smoothing and variational data assimilation might look like
totally different methods. In a Kalman smoother, the prior probability distribution of the
model parameters is updated by sequential time integration steps and measurement steps.
The time update takes into account model errors that are not caused by errors in the parame-
ters. The results are the first (mean) and second (covariance) order statistical moments of the
posterior distribution of the reservoir states and model parameters conditioned on the data.
In a variational method, the squared difference of the predicted and observed measurements
is minimized, regularized by the squared deviations of the parameters from the prior. Op-
tionally, model errors can be taken into account, meaning that the reservoir simulator is used
as a weak constraint. If model errors are not taken into account, the reservoir simulator acts
as a strong constraint. The different terms in the squared objective function can be given
weights, in the form of scaling matrices.
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Although smoothers and variational methods can be formulated independently, theyboth
can be derived from a higher probabilistic principle, Bayes rule. The scaling matrices in
the data-misfit objective function must then be interpreted as covariance matrices. When
the prior is Gaussian and the system and sensor models are linear, then theposterior is also
Gaussian. The first and second order statistical moments that are calculated by the smoother,
are therefore sufficient information for the full posterior distribution. Aweak constraint vari-
ational method like the Representer Method, finds the minimum of the objective function at
the point where the posterior density is maximal, called the mode. For a multivariate Gaus-
sian, the mode and mean coincide, meaning that a Kalman Smoother and the Representer
Method result in identical parameter estimates (ignoring roundoff error). Both methods give
some extra information. A smoother provides, besides the parameter estimates, parameter
uncertainties in the form of a covariance matrix. The Representer Methods also specifies the
separate effect of every measurement in space and time on the final parameter estimate.

When the prior is not Gaussian, or the system or sensor model is non-linear, a smoother
and a weak constraint variational method are not equivalent in the parameter estimates. A
smoother still gives the first and second order statistical moments, but these are no longer
sufficient to fully represent a probability function. A weak constraint variational method
calculates the mode of something that hopefully resembles the posterior probability density.

In a smoother, the reservoir states and model parameters are always consistent with all data.
Whenever measurements become available, the history of the reservoir states is updated to be
consistent with the new model parameters. To make future predictions, it is often sufficient
if the reservoir states and model parameters are consistent with alldata for the current time,
rather than the full history. A Kalman Filter is a simplification of a Kalman Smoother, where
every measurement is used only to make the current reservoir states and model parameters
consistent, without modifying the whole reservoir history. In fact, a Kalman smoother can
be implemented as weighted average of two Kalman filters; one running forward in time and
one running backward in time.





Chapter 4
An efficient weak-constraint

gradient-based parameter estimation
algorithm using representer expansions4

Abstract
The discrepancy between observed measurements and their model-predicted antitheses can

be used to improve either the model output alone or both the model output andthe parameters
that underlie the model. In case of parameter estimation, methods exist that can efficiently
calculate the gradient of the discrepancy to changes in the parameters, assuming that there
are no uncertainties in addition to the unknown parameters. Usually many different parame-
ter sets exist that minimize the discrepancy locally, so the gradient must be regularized before
it can be used by gradient-based minimization algorithms. This chapter proposes a method
for calculating a gradient in the presence of additional model errors, through the use of rep-
resenter expansions. The representers are data-driven basis functions that perform the regu-
larization. All available data can be used during every iteration of the minimization scheme,
as is the case in the classical Representer Method (RM). However, the method proposed here
also allows adaptive selection of different portions of the data during different iterations to
reduce computation time. The user now has the freedom to choose the number ofbasis func-
tions and revise this choice at every iteration. The method also differs from the classic RM
by introducing measurement representers in addition to state, adjoint and parameter repre-
senters and by the fact that no correction terms are calculated. Unlike the classic RM, where
the minimization scheme is prescribed, the RM proposed here provides a gradient that can
be used in any minimization algorithm.

The applicability of the modified method is illustrated with a syntheticexample to estimate
permeability values in an inverted 5-spot waterflooding problem.

4 This chapter is based on [Rommelseet al. (2007)], which was published as TUD-DIAM report 07-05
and submitted to SPE Journal
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4.1 Introduction

4.1.1 Gradient-based parameter estimation

Data assimilation methods aim to improve numerical models by comparing actual measure-
ments of a physical system with the numerical model predictions of these measurements
[Bennett (2002), Lewiset al. (2006), Evensen (2007), Oliveret al. (2008)]. As the parame-
ters of the numerical model are changed, concequently the predicted state variables and the
predicted measurements change. The discrepancy between the "measuredmeasurements"
and the "predicted measurements" can be used to update only the state variables (state esti-
mation) or also the parameters (parameter estimation) in order to decrease this discrepancy.
When only the state of the model is predicted, the model itself is not corrected. Alternatively,
the model parameters and hence the model itself, may be changed until the predicted out-
put is satisfactorily close to the measurements. Parameter estimation aims at improving the
predictive ability of the model, whereas state estimation attemptsto find an initial estimate
for a model that is assumed to already have a good predictive ability for theprediction inter-
val of interest. Estimating initial states falls in the category parameter estimation, estimating
all other states is state estimation. When the output of the model is used to make decisions,
state estimation is appropriate for time scales on which the error in themodel’s predictive
ability can be neglected. When the model is used for making long-term decisions,parameter
estimation algorithms must be used.

This chapter focusses on gradient-based parameter estimation algorithms. More precisely,
it proposes a method for calculating the gradient of the discrepancy with respect to changes
in the parameters, in the presence of model errors.

4.1.2 Model errors; strong and weak constraints

Often, the discrepancy between the actual measurements and the predicted measurements
is formulated using the Euclidean norm. The objective of the data assimilation is then to
minimize the square of this norm with respect to the model parameters while the numerical
model is used as a (strong) constraint.

However, there is an additional phenomenon that may cause the discrepancy. The model
is an approximation, so even if the parameters were known, the model might still produce
incorrect output. These errors can be modelled as extra parameters, which are also added
to the objective function. The model is then used as a weak constraint in the minimization
problem.
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4.1.3 Notation

The state variables at timeti are denoted byxi, i ∈ {0, · · · , n}. The models of interest in
this chapter are written in function format

g (xi,xi−1, θ, εi) = 0, (4.1)

where the Jacobian∂(xi,xi−1,θ ,εi)∂xi
is assumed to be never singular. The model parameters

are collected in the vectorθ and the model errors on interval[ti−1, ti] are contained in the
vectorεi. The measurement operator operates on all state variables at all time steps and is
denoted by

y = h
(
x{0,··· ,n}

)
. (4.2)

The initial states may be part of the parameter estimation process,sox0 = x0 (θ). The
minimization relies on the availability of the first (mean) and second (covariance) order statis-
tics of the model parameters and model errors. These are denoted byθprior , Pθ , εpriori = 0

andPεi .
In the so-called strong constraint case, the model errors are explicitly set to zero. The

objective function that has to be minimized is

J =
1

2

(
h
(
x{0,··· ,n}

)
−m

)T
P−1
y

(
h
(
x{0,··· ,n}

)
−m

)
+ (4.3)

+
1

2

(
θ − θprior

)T
P−1
θ

(
θ − θprior

)
+

n∑

i=1

λT
i g (xi,xi−1,θ,0) ,

wherem contains the actual physical measurements, possibly taken at differenttimes. Py

represents the uncertainty in the measurements in the form of an error covariance matrix.
The last term of Eq. (4.3) represents the system equationsg that have been adjoined to the
objective function with the aid of Lagrange multipliersλi; see e.g. [Bennett (2006), Lewis
et al. (2006), Oliveret al. (2008)]. If the prior parameters and the measurement errors
have a Gaussian probability distribution and the reservoir simulatorg and sensor modelh
are linear, Eq. (4.3) can be interpreted in a probabilistic setting as Bayes rule for updating
a prior. The estimate that is found by minimizing Eq. (4.3) is then equivalent to a posterior
that represents the mean of the probability function of the model parametersθ conditional
to the measurements; see e.g. [Gavalaset al. (1976)], [Zhanget al. (2005)] and [Oliver
et al. (2008)] for further petroleum-related references. If the assumptions ofGaussian prior
parameters and measurement errors and linear functionsg andh are not fulfilled, Eq. (4.3)
does not have a physical or probabilistic interpretation.
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When model errorsεi are taken into account they become additional parameters in the
minimization process. They are assumed to be zero-mean, so the objective becomes

J =
1

2
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)
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)T
P−1
y
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εTi P
−1
εi
εi +

+
n∑
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λT
i g (xi,xi−1,θ,εi) .

In the data assimilation literature equation Eq. (4.4) is referred to as the weak constraint
problem. For realistically-sized problems in reservoir engineering,minimization problems
Eq. (4.3) and Eq. (4.4) are most efficiently solved using gradient-based methods where the
gradient is obtained with an adjoint or co-state formulation. For petroleum-related appli-
cations of strong-constraint least-squares minimization problems, seee.g. [Chaventet al.
(1975)], [Ruijianet al. (2003)], [Rodrigues (2006)] and [Oliveret al. (2008)] for further
references.

4.1.4 Representer Method

The Representer Method (RM) was introduced in oceanography as an efficient gradient-
based technique to solve the weak constraint least-squares minimizationproblem ([Bennett
and McIntosh (1982)], [Eknes and Evensen (1997)]). However, although the representer
method was introduced as a method to solve the weak constraint problem, it may equally
well be applied to the strong constraint problem. Subsequent work by [Bennett (2002)] also
addressed nonlinear applications for state estimation. [Baird and Dawson (2005)] applied
the method to linear state estimation in single-phase reservoirflow, [Valstaret al. (2004)]
extended it to nonlinear parameter estimation in ground waterflow, and [Rommelseet al.
(2006)], [Przybyszet al. (2007)] and [Baird and Dawson (2007)] further developed the
method for use in two-phase reservoirflow. The RM simultaneously decomposes the devia-
tion of the estimated parameters from the prior parameters into the isolated effects of every
measurement. This regularizes the minimization problem and it also gives information that
can be used to quantify the usefulness of every single measurement.

In this chapter, a modification of the classic RM is derived as a postprocessor that eval-
uates the effect of the measurements on the solution of the weak constraint minimization
problem. It is then reformulated to produce a regularized gradient thatcan be used by any
gradient-based minimization algorithm in order to find the solution of theweak constraint
minimization problem. The method allows decomposition of the parameter vector into a
general number of basis functions rather than a number that necessarily needs to be equal
to the number of measurements as in the classical method. This makes the methodcompu-
tationally more attractive for applications where many measurements are available. Due to
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a different linearization, no correction terms have to be calculated, as was the case in the
earlier versions of the RM when applied to non-linear problems.

4.2 Gradient of the strong constraint minimization problem

4.2.1 Obtaining a gradient

The derivatives of Eq. (4.4) with respect toλi, εi, xi andθ are
(
∂J

∂λi

)T

= g (xi,xi−1,θ,εi) , (4.5)

(
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∂θ

)T

λi. (4.8)

Eq. (4.5) and Eq. (4.6) are valid fori ∈ {1, · · · , n}, whereas Eq. (4.7) is valid fori ∈
{1, · · · , n− 1}. For tn, the term includingλi+1 is missing from Eq. (4.7). Alternatively,
λn+1 = 0 may be introduced. Fort0, the term includingλi is missing. In case the initial
statesx0 are part of the parameter estimation process, the term

(
∂x0 (θ)

∂θ

)T (
∂g (x1,x0, θ, ε1)

∂x0

)T

λ1 (4.9)

should be added to Eq. (4.8). For the strong constraint case, whereεi is explicitly set to

0, the gradient of the objective function with respect to the model parameters,
(
∂J
∂θ

)T
, can

be calculated using Eq. (4.8), where the model statesxi and adjoint statesλi follow from

sequentially solving Eq. (4.5) and Eq. (4.7) with the left-hand sides,
(

∂J
∂λi

)T
and

(
∂J
∂xi

)T
,

set to zero. Eq. (4.6) does not need to be used; insteadεi = 0 is used.
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4.2.2 Using the gradient

To solve the strong constraint minimization problem, a numerical routine must be imple-

mented that evaluatesJ as given in Eq. (4.3), and
(
∂J
∂θ

)T
, as given in section 4.2.1. This

routine can then be passed to any gradient-based minimization software package, together
with a set of initial parameters (usuallyθinit = θprior) and some appropriate minimization
options that are algorithm-dependent.

Often the objective function has multiple local minima and the minimization process needs
to be regularized. If low-order parametersb are introduced such thatθ = θprior+Qb, with

QTQ = I, then a regularized gradient can be found asQQ
T
(
∂J
∂θ

)T
. The orthogonal matrix

Q can for example be obtained by selecting several left-singular vectors (section 4.3.7) of a
square rootL of the covariance matrixPθ = LLT .

4.3 Gradient of the weak constraint minimization problem

4.3.1 Local minimizer

In a stationary point (denoted by superscripts) of Eq. (4.4), all gradients are equal to zero,
so

g
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s, εsi
)
= 0, (4.10)

εsi = −Pεi

(
∂g (xi,xi−1,θ,ε

s
i )

∂εi

)T

λsi , (4.11)
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(
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i+1,x

s
i ,θ

s, εsi+1
)

∂xs
i

)T

λs
i+1,

P−1
θ

(
θprior−θs

)
=

n∑

i=1

(
∂g
(
xs
i ,x

s
i−1,θ

s,εsi
)

∂θs

)T

λs
i . (4.13)

Unlike in section 4.2.1, the forward equations Eq. (4.10) and the adjoint equations Eq. (4.12)
are now coupled because the model errorsεsi are no longer equal to zero; they are related to
the adjoint statesλs

i by Eq. (4.11).
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4.3.2 Basis functions

The minimization algorithm is started withθstart = θprior andεstarti = λstart
i = 0.

Applying these prior conditions to Eq. (4.10) gives the prior system statesx
prior
i . Given the

prior states, also prior measurements can be predicted,h
(
x
prior
{0,··· ,n}

)
. The causes for the

variables to move away from their prior are parameterized byb. In the classic RM there is
a 1-1-relationship between one such cause and an isolated measurement in space and time.
In this chapter, this assumption is abandoned. Moreover, for computational purposes, it is
interesting to assume that the number of parameters in the vectorb is (much) smaller than
the number of measurements.

The deviations from the priors are now decomposed as

xs
i − x

prior
i = Rxib, (4.14)

λs
i = Rλib, (4.15)

θs − θprior = Rθb, (4.16)

h
(
xs
{0,··· ,n}

)
− h

(
x
prior
{0,··· ,n}

)
=Ryb. (4.17)

The columns ofRxi , Rλi , Rθ andRy contain the state representers, the adjoint repre-
senters, the parameter representers and the measurement representers respectively. When
the measurement operatorh is linear, the measurement representersRy can be constructed
by applyingh to the matrix that is obtained by concatenating the state representersRxi as
row blocks. Alternatively, the RM can be formulated in terms of staterepresenters without
defining measurement representers, as is done in the classic RM. The introduction of mea-
surement representers only has added value when the measurement operator is non-linear.
Theoretically, it is also possible to introduce error representers

εsi =Rεib. (4.18)

However, looking at Eq. (4.11), these error representers are nothing more than modified
adjoint representers

Rεi = −Pεi
(
∂g (xi,xi−1, θ, ε

s
i )

∂εi

)T

Rλi , (4.19)

and have no practical application.
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4.3.3 Representer equations

Substitution of Eq. (4.14), Eq. (4.15) and Eq. (4.16) into Eq. (4.12) and Eq. (4.13) results in


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{0,··· ,n}
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(4.20)

=
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(
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)T

Rλib. (4.21)

Eq. (4.20) can be simplified by requiring

P−1
y

(
m− h

(
xs
{0,··· ,n}

))
= Qb. (4.22)

How to choose the selection matrixQ will be explained in section 4.3.7. In the classical
formulation, whereQ = I, b contains the differences between the observed and predicted
measurements, decorrelated byPy. Using requirement Eq. (4.22) provides a means to
calculate theadjoint representersRλi :

(
∂g
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)
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Rλi (4.23)
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Theparameter representersRθ follow by removingb from Eq. (4.21)

Rθ = −Pθ

n∑

i=1

(
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(
xs
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Rλi . (4.24)

Optionally, the term

(
∂x0 (θ

s)

∂θs

)T (
∂g (xs

1,x
s
0,θ

s,εs1)

∂xs
0

)T

Rλ i (4.25)
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has to be added to Eq. (4.24) for estimating the initial states. Thestate representersRxi are
obtained by differentiating Eq. (4.10) with respect to the representer coefficientsb;

∂g
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i ,x

s
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s,εsi
)

∂xs
i

Rxi +
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(
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i ,x

s
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∂xs
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Rxi−1 + (4.26)

+
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s,εsi
)
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Rθ (4.27)
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s,εsi
)

∂εsi
Pεi

(
∂g (xi,xi−1, θ,ε

s
i )

∂εsi

)T

Rλi

and the same is done with Eq. (4.17) to obtain themeasurement representersRy;

Ry=
n∑

i=0

∂h
(
xs
{0,··· ,n}

)

∂xs
i

Rxi . (4.28)

Substitution of Eq. (4.17) into Eq. (4.22) indicates that therepresenter coefficientsb should
be obtained as the least-squares solution of

(Ry+PyQ)b =m− h
(
x
prior
{0,··· ,n}

)
. (4.29)

4.3.4 Representer Method as iterative minimizer

The representer method can be used as post-processor after a local minimum of Eq. (4.4) has
been found by another method, in which case equations Eq. (4.23) and Eq. (4.24) need to be
calculated. If no such local minimum has yet been found, the representer methodcan also be
used in an attempt to approach a minimum by Picard iterations. The idea of Picard iterations
is to solveθ from f (θ) = 0 by θi+1 = θi± f (θi). Heref (θ) = dJ(θ)

dθ . The steps that need
to be taken then are (superscripts now stands for estimate, rather than stationary point):

1. Initialize the parameter estimateθs equal to the parameter priorθprior.

2. Initialize the adjoint statesλs
i and model errorsεsi equal to zero.

3. Run the non-linear model Eq. (4.10).

4. ChooseQ, as will be discussed in section 4.3.7.

5. Calculate the adjoint representers Eq. (4.23).

6. Calculate the parameter representers Eq. (4.24).

7. Calculate the state representers Eq. (4.26).

8. Calculate the measurement representers Eq. (4.28).
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9. Calculate new representer coefficients Eq. (4.29).

10. Calculate new adjoint states Eq. (4.15).

11. Calculate the model errors Eq. (4.11).

12. Calculate new parameters. Eq. (4.16) can be used, or a line search can beincluded;

θsnew = (1− α)θsold + α
(
θprior +Rθb

)
. (4.30)

13. Go to 3 if stopping criterion has not been fulfilled.

It could be argued that with these definitions of the representers and representer coeffi-
cients, Eq. (4.14) through Eq. (4.17), and with the Picard iterations used in this formulation
of the representer method, the results from steps 7 and 9 cannot be substituted inEq. (4.14)
to reproduce the results of step 3, in contrast to the original formulation of therepresenter
method [Valstaret al. (2004), Baird and Dawson (2005), Przybyszet al. (2007)]. This argu-
ment is true for the modified RM, but a similar argument can be given for the original RM. In
the original formulation of the RM, a correction term is used and the states are decomposed
around the states of the previous iteration, rather that around the prior states. The criterion
for calculating this correction term,xcorr

i , is in fact that the original version of Eq. (4.14),

xs
i −

(
x
f
i − xcorr

i

)
= Rxib, (4.31)

remains valid. However, a Picard-type of approximation is made to come upwith a workable
equation for the correction termxcorr

i , so Eq. (4.31) only holds if a minimum of the objective
function has been found and not during the iteration process.

4.3.5 Obtaining a gradient

The measurements can be predicted after step 3 of section 4.3.4 has finished. Together with
the input parameters (step 1) and the model errors (step 11), the objective Eq.(4.4) can be
evaluated. Instead of step 12, a direction that decreases the objective can be calculated as

ddecrease = θ
prior +Rθb− θsold, (4.32)

so an (approximate) gradient is given by

(
∂J

∂θs

)T

= θs − θprior −Rθb. (4.33)
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4.3.6 Computational issues in using the gradient

The objective and its gradient cannot directly be used in standard gradient-based minimiza-
tion algorithms because the interface of a standard minimization algorithm is usually not
equipped to handle the adjoint states and model errors. A standard minimization algorithm
provides a set of parameters to a routine that evaluates the objective and its gradient and then
modifies the parameters. Such a routine for the representer method would contain steps 3 to
12 of section 4.3.4 with the modification of section 4.3.5. The routine also modifies the val-
ues of the adjoint states and model errors, which the minimization algorithmdoes not know
about. Moreover, during a line search of the minimization algorithm, the gradient routine
modifies the model errors. When the line search method rejects a step, the model errors must
be reset to the last accepted values. With some modifications, the interface of a minimiza-
tion algorithm can be enriched to handle the routine of the representer method that evaluates
the objective function and its gradient. Because of these modification to the minimization
algorithm, the method is not suited to interface with third party software without the avail-
ability of the source code. However, if the source code is available, making the modifications
is almost trivial.

Unlike the gradient of the strong constraint problem that needs regularization,as was dis-
cussed in section 4.2.2, the gradient of the weak constraint problem is already regularized by
the representer expansions.

4.3.7 ChoosingQ

Eq. (4.23) states thatQ must be chosen such that several rows of
∂h(xs{0,··· ,n})

∂xsi
are removed

by the multiplication

QT
∂h
(
xs
{0,··· ,n}

)

∂xs
i

. (4.34)

Here, the terms∂h∂xs
i

are column blocks of the full measurement sensitivity matrix

Jh =
∂h
(
xs
{0,··· ,n}

)

∂xs
{0,··· ,n}

=
[
∂h(xs{0,··· ,n})

∂xs0
· · · ∂h(xs{0,··· ,n})

∂xsn

]
. (4.35)

It is needed to remove rows of the fullJh instead of the individual blocks. In other words,
the same linear transformation is used to remove rows of all individualblocks, orQ is the
same for all time steps. Eq. (4.23) allowsQ to be different for different time steps, but then
the operation in Eq. (4.29) would no longer be well-defined.

For example, a singular value decomposition ofJh can be used, soJh = UΣVT , where
Σ has the form

Σ =



σ1 0 0

... 0 0
σm 0 0


 , (4.36)
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and the bottom part ofVT is filled with zeros. Extra zero-rows can be created in the prod-
uct ΣVT = UTJh by setting the smallest singular values to zero, which is equivalent to
removing the bottom rows ofUT . Therefore theQ matrix that is proposed in this chapter is

Q =U[:,1:k], (4.37)

which means thatQ is formed by calculating the left-singular vectors ofJh in a matrixU
and then keeping onlyk columns. The singular values inΣ can even help to make a decision
on the number of representer functionsk, based on a preservation of energy principle.

4.4 Numerical experiments: twin experiment

4.4.1 Inverted 5-spot

Experiments were done on a 2D 2-phase waterflooding application with wells in an inverted
5-spot configuration. Water is injected at a rate of one pore volume per year and the produc-
tion wells are constrained toflow at0.25 pore volumes per year. The state of the reservoir is
described by pressure and water saturation in all 21x21x1 grid blocks of 10x10x20m. Cap-
illary pressure is ignored, as well as gravity effects. All otherfluid and reservoir parameters
have been listed in Tbl. (4.1). Synthetic data are generated by picking one realization out of
a database of 1000 realizations as the "true" permeability, Fig. (4.1), andrunning a reservoir
simulation with model errors that are sampled as white noise, Fig. (4.2).Note that although
in reality production data consist of phase rates, bottom hole pressures or tubing head pres-
sures, we will use the gridblock pressures as "measurements" to assess the performance of
the algorithms. The pressure and saturation responses in the well gridblocks after simulating
with these model errors are shown in Fig. (4.3). This figure also shows 10 synthetic pressure
"measurements" in all well gridblocks at 100 and 200 days of simulation. The other realiza-
tions from the database are used to construct a covariance matrix that is used in the objective
function that has to be minimized.

4.4.2 Reservoir simulator in weak or stochastic mode

The 2-phase reservoir simulator can be written as

d

dt
(f1 (x)) = f2 (x, θ) , (4.38)

wherex contains the water saturation and water pressure (equal to oil pressure)for every
grid block andθ contains the permeabilities of all grid blocks.f1 describes the presence of
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Symbol Variable Value SI units Value Field units
h Gridblock height 20 m 65.62 ft
∆x,∆y Gridblock length/width 10 m 32.81 ft

µo Oil dynamic viscosity 1.0× 10−3 Pa s 1.0 cP

µw Water dynamic viscosity 1.0× 10−3 Pa s 1.0 cP

ct Total compressibility 1.0× 10−8 Pa−1 7.0× 10−5 psi−1

pR Initial reservoir pressure 10 × 106 Pa 1450.4 psi

k0ro Endpoint relative permeability, oil 1.0 −

k0rw Endpoint relative permeability, water 0.5 −
no Corey exponent, oil 2.0 −
nw Corey exponent, water 2.0 −
Sor Residual oil saturation 0.2 −
Swc Connate water saturation 0.2 −
φ porosity 0.3 −

Table 4.1: Reservoir andfluid properties for the example
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water and oil mass in the grid blocks andf2 models theflow through the grid block interfaces.
Injection/production is modelled as sources/sinks, which are included inf2.

A fully implicit time discretization is used;

g̃ (xi,xi−1, θ) = f1 (xi)− (ti − ti−1) f2 (xi, θ)− f1 (xi−1) = 0. (4.39)

The model errors are introduced as additional sources/sinks in all grid blocks. In other
words, afterxi has been solved from Eq. (4.39), the water and oil masses in the grid blocks
have not correctly been predicted and must still be modified. The prediction deteriorates as
the time step(ti − ti−1) gets larger. Therefore the correction is modelled proportionally to
(ti − ti−1). If the additional sources become too strong, then unrealistically high pressures
will be observed. If the additional sinks become too strong, then saturationsoutside[0, 1]will
occur. In this chapter, the additional sinks are non-linearly constrained byf1. The stochastic
reservoir simulator has the form

g (xi,xi−1,θ,εi) (4.40)

= f1 (xi)− (ti − ti−1) f2 (xi,θ)− f1 (xi−1) +min{f1 (xi) , (ti − ti−1)εi} = 0.

For the synthetic truth,εi is generated as white noise, Fig. (4.2). Applying this stochastic
forcing to the reservoir simulator results in wiggly pressure and saturation responses in the
wells, Fig (4.3). Although the pressure is not smooth in time, it is stillsmooth in space, Fig
(4.4). This is not the case for the water saturation.
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4.4.3 Permeability reconstructed

Four cases were examined with zero, low, middle and high model errors with standard de-
viations of0, 5 · 10−4, 5 · 10−3 and5 · 10−2

[
kg s−1

]
respectively. For the first case, the

gradient of the strong constraint problem was used and regularized by the leading 25 left-
singular vectors ofPθ . The best possible permeability that can be reconstructed using these
basis functions is shown in Fig. (4.1). The gradient of the weak constraintproblem was
obtained and regularized by the Representer Expansions. For the strong constraint case, ex-
periments were done with fixed basis functions and with Representers. In the former case,
the classic adjoint method provides the gradient, in the latter case the gradient is obtained
from the Representer Method. Steps 2, 10 and 11 of section 4.3.4 can be ignored whenthe
RM is used for solving a strong constraint problem. The gradients were used ina steepest
descent scheme and in the LBFGS [Gao and Reynolds (2006), Ulbrich (2002)] algorithm.
Three different line search strategies were tried; a fixed step size, a step size that decreases
exponentially while the objective function does not decrease and a quadratic line search. In
the quadratic line search, the objective function along the line is approximated bya parabola,
given the current value of the objective, its slope along the line and the value at a potential
step size. A new potential step size is found at the minimum of the parabola. It is simi-
lar to Wolfe conditions [Nocedal and Wright (1999)] in the sense that it usesthe gradient
to determine the direction of the line search as well as using it to estimate the optimal step
size. However, the Wolfe conditions contain some extra options to apply a relaxation fac-
tor or to be less greedy, whereas the quadratic line search method does not.Fig (4.5), Fig
(4.6) and Fig (4.7) show the decrease of the objective function as function of iteration num-
ber, step size and the product of step size and the norm of the gradient, for both minimization
algorithms, all four cases, and three different line search strategies. In general, the objective
functions of the different cases contain different weight factors and are therefore not compa-
rable. However, the synthetic true model errors are created in such a way, that they contribute
identically to the objective functions of the high, middle and low cases.

The objective of the strong constraint problem gradually decreases when the adjoint method
and steepest descent are used for the minimization. (L)BFGS and RM both require additional
computation time per iteration. This can be compared to making an effort tocalculate some
approximation of the 2nd order derivatives of the objective function, the Hessian. Apply-
ing BFGS does not contribute extra when the RM is also applied. However, the BFGS does
have a clear effect on the strong constraint problem that is solved with the adjoint method;
with a relatively simple but effective line search algorithm (exponential), BFGS converges
significantly faster than steepest descent. Although BFGS provides a better search direction
than SD, this does not help the convergence if a fixed step size is used. For the strong con-
straint case with the adjoint method, the quadratic line search providesreduced computation
time per iteration as well as faster convergence. In this case the advantage of BFGS over SD
can no longer be observed. The quadratic line search does not work properly in combination
with RM, because the slope of the objective along the search direction cannot be calculated
accurately. In order to calculate this slope correctly, the dot productof the gradient and the
search direction needs to be calculated. In case of SD with the adjoint method, the search
direction is equal to the gradient. In case of BFGS, the gradient is modified by an approxi-
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Figure 4.5: Three views on the objective functions; as function of iteration number, step size, and step
size multiplied by the norm of the gradient. From top to bottom: high level model errors to zero model
errors. RM is used for the weak constraint cases. Both RM and the adjoint with 25 svd basis functions
are used for the strong constraint case. Steepest descent and LBFGS were applied. The step size is
fixed.
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Figure 4.6: Three views on the objective functions; as function of iteration number, step size, and step
size multiplied by the norm of the gradient. From top to bottom: high level model errors to zero model
errors. RM is used for the weak constraint cases. Both RM and the adjoint with25 svd basis functions
are used for the strong constraint case. Steepest descent and LBFGS were applied. The step size was
exponentially decreased until the objective improved.
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Figure 4.7: Three views on the objective functions; as function of iteration number, step size, and step
size multiplied by the norm of the gradient. From top to bottom: high level model errors to zero model
errors. RM is used for the weak constraint cases. Both RM and the adjoint with 25 svd basis functions
are used for the strong constraint case. Steepest descent and LBFGS were applied. The step size was
determined by a quadratic line search.
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mation of the Hessian to obtain the search direction. In case of RM, a regularized gradient
or search direction is obtained directly, while the true gradient is unknown. As a result, the
quadratic line search underestimates the step size and the algorithm stopsbefore even finding
a local minimum of the objective function.

The RM only needs one iteration for a linear problem (linear simulator (onefluid phase),
estimating the initial state while the model parameters are assumed to be known, additive
model errors). For more complicated problems more iterations are needed, but still most of
the decrease of the objective function is achieved in the first iteration. RM converges even
faster in case of higher model errors. This is due to the fact that the non-linear relationship
between the model parameters and the state variables get overshadowed bythe model errors,
making the problem more linear.

The RM is greedier than the adjoint method; much more work is done per iteration, but
less iterations are needed. It seems that the RM is punished slightly forits greed, because for
the strong constraint case the objective function value of the adjoint methodis a little smaller
than the RM after convergence.

The prior permeability and the true permeability as well as the final reconstructions for the
cases with zero, low, middle and high model errors using SD are shown in Fig. (4.8). In
the strong constraint case, the gradient was regularized using 25 basis functions that were
obtained as left-singular vectors of the permeability covariance matrix.
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Figure 4.8: Prior permeability and final estimates in the cases with zero/low/middle/high model errors.
The classical adjoint with 25 basis functions was used for the case with no model errors. RM was used
for the other cases.



4.4. Order reduction 71

4.4.4 Additional output from minimization process

Besides reconstructing parameters, the (modified) RM gives additional information. Fig.
(4.9) shows the model errors that were reconstructed by SD with exponential line search
for the case where the truth was synthesized using high model errors. Compared to the
original, Fig. (4.2), they are underestimated and smoothed. All the high resolution model
errors that were not time-correlated cannot be reconstructed by the measurements that have
a much lower time resolution. Consequently, artificial time correlation of the model errors is
introduced by the RM. Fig. (4.10) shows the reconstructed pressure and saturation responses
in the well gridblocks. These are smoothed as well. The parameter representers multiplied
by their representer coefficients are plotted in Fig. (4.11). The different scales show that
some measurements have a larger impact on the final permeability estimate than others, both
in space (different columns) and time (different rows). Measurements atthe same location at
different moments in time affect the estimated permeability similarly and therefore result in
similar representer functions. Fig. (4.12) shows all representers on thesame scale.
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Figure 4.9: High model errors reconstructed by SD with exponential line search.

4.4.5 Order reduction

Fig. (4.8) was obtained without any order reduction (Q was chosen equal to the identity ma-
trix). Fig. (4.13) was created using an order reduction by a factor two; Q is obtained by a
permutation of the columns of the identity matrix and then adding the right most columns to
the left most columns. The resulting columns are then normalized. The permutation is dif-
ferent and random for every iteration. In every iteration, the objective decreases by steepest
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Figure 4.10: Pressure and saturation response in the well gridblocks reconstructed by LBFGS using
the 10 pressure measurements in the 5 wells at the 2 measurement times indicated by the dotted lines.
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Figure 4.11: Parameter representers. Top row: pressure measurements after 100 days; bottom row:
after 200 days;middle column: measurements obtained from injection well; other columns: north-west
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Figure 4.12: Scaled parameter representers. Top row: pressure measurements after 100 days; bottom
row: after 200 days; middle column: measurements obtained from injection well; other columns:
north-west (NW), SW, NE and SE producers, indicated by the black bullets.

descent and exponential line search. Since in every iterationQ is chosen differently, also
the objective function has a different interpretation in every iteration. Therefore it appears in
Fig. (4.13) that the objective function sometimes increases, whereas in fact it is a slightly dif-
ferent objective function. If the columns ofQ are lumped too much, at some stage LBFGS
reaches the stopping criterion after zero iterations.
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4.5 Discussion

4.5.1 Strong constraint solver and the RM as post-processor

In theory, the weak constraint minimization problem can easily be turnedinto a strong con-
straint minimization problem by treating the model errors as additional model parameters;

θ̃ =
[
θT εT1 · · · εTn

]T
. (4.41)

Now any strong constraint solver can be used to solve the weak constraint problem. However,
strong constraint solvers depend to a high degree on regularization techniquesor methods
to reduce the order of the parameter space. Usually basis functions are chosen and used
during the entire minimization process. The result is then accepted as the solution of the
minimization problem. The RM discussed in this chapter can be used as a post-processor
to evaluate the outcome of the strong constraint solver and to update or overwrite the user-
defined basis function to initialize a new strong constraint estimation procedure.

4.5.2 Variable time steps

Most modern simulators are equipped with a time-stepping mechanism that detects insta-
bilities or unphysical values for the state variables and decreases the time step accordingly.
Whenever possible the time step is increased again to reduce computation time. In an itera-
tive method the length and the number of time steps therefore vary.

Building a strong constraint minimization problem out of a weak constraint one, as de-
scribed in section 4.5.1, is not possible when successive iterations use different time steps,
because the parameter vector Eq. (4.41) is only defined for one iteration. However, the modi-
fied RM can still be used. The model errorsεsi that were calculated in the old iteration must
be interpolated to run the model in the new iteration Eq. (4.10). Here an integral average,

ε
j
i =

1

tji − tji−1

tji∫

tji−1

εj−1dt, (4.42)

is used, whereεj−1 is the step function that is defined by
{
tj−10 , · · · , tj−1n

}
×
{
ε
j−1
1 , · · · ,εj−1n

}
(4.43)

from the old iteration.
An improvement in the parameters may cause the simulator to use more time steps, which

could make the term12ε
TP−1ε εwith εT =

[
ε1 · · · εn

]T
in Eq. (4.4) increase dispropor-
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tionately. Normalization factors can be added, so

J =
1

2 |m|
(
h
(
x{0,··· ,n}

)
−m

)T
P−1
y

(
h
(
x{0,··· ,n}

)
−m

)
+ (4.44)

+
1

2 |θ|
(
θ − θprior

)T
P−1
θ

(
θ− θprior

)
+

1

2 |ε|ε
TP−1

ε ε+

+
n∑

i=1

λT
i g (xi,xi−1,θ,εi) ,

where|·| stands for counting the number of elements in a vector.

4.5.3 Measure of success

Variational data assimilation methods are designed to minimize some data-misfit objective,
Eq. (4.4). Their success can be measured by which (local) minimum they can find and
how fast they can find it. However, different performance measures can be explored as
well. Figures Fig. (4.3) and Fig. (4.10) can be compared for example. When waterbreaks
through in production wells, these become financially less profitable and eventually have to
be shut in. The goal is to predict water breakthrough long before the water actually arrives
at the production wells, so different control strategies can be applied to postpone the water
breakthrough. How well the saturation profiles in the well gridblocks are reconstructed can
be used as an alternative measure of success for a data assimilationalgorithm. The difference
between Fig. (4.3) and Fig. (4.10) must therefore be quantified somehow. [Cheng et al.
(2005)] proposes to shift the curves in time to find a best fit; the shift quantifies how well the
water breakthrough is estimated in time, the fit quantifies how well the behavior of the water
during the breakthrough is estimated.

4.5.4 Use of parameter representers to quantify the impact of
measurements

Fig. (4.11) shows the effect of every measurement on the final parameterestimate. Even
when the modified RM is used in order-reduced mode, one extra iteration canbe made af-
ter convergence of the method to produce all the parameter representers by running in full
mode. Using the parameter representers, the usefulness of measurements must somehow be
quantified, preferably expressed in terms of money. Care must be taken when interpreting
these quantities. For example, a measurement can give a better understandingof the sub-
surface, but it might also indicate that oil production will be lower than prognosed. This
does not mean that the impact of the measurement should be quantified with a negative num-
ber. Research in this area is ongoing. Once the effect of measurementscan be quantified,
representers may be of help in designing measurement strategies.
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4.5.5 Data selection

Attempts have been made to preprocess the data and discard the data with the most un-
certainty to reduce the number of representer functions and reduce the computation time.
[Schwaighofer and Tresp (2003)] mentions the Random and the Sparse GreedyMatrix Ap-
proximation (SGMA) versions of the Subset of Representers Method (SRM). Such prepro-
cessing is based on the measurement uncertainty matrixPy and remains unchanged during
the minimization process. This chapter proposes to choose a different preprocessing of the

data at every iteration based on the measurement sensitivity matrix Jh =
∂h(xs{0,··· ,n})
∂xs

{0,··· ,n}
.

Since the preprocessing itself costs computation time, the selection from the full dataset can
also be used for more than one iteration. These two criteria can also be combined. In that
casePy moves from Eq. (4.29) to Eq. (4.23) and the choice ofQ is based onP−1

y Jh, which
looks like a good compromise between how much the user trusts the measured data (Py) and
how sensitive the forecasted measurements are to changes in the state variables. These crite-
ria are also used in the Greedy Posterior Approximation version of SRM [Schwaighofer and
Tresp (2003)], although there the number of basis functions is fixed.

4.5.6 Regularization

One might think that solving the representer coefficientsb from Eq. (4.22) instead of Eq.
(4.29) makes the state representers, Eq. (4.26), and measurement representers, Eq. (4.28),
obsolete. This may be true if extra, user-defined, regularization is applied to the resulting
gradient, since the state- and measurement representer functions are part ofthe regulariza-
tion.

4.5.7 Computational efficiency

Calculating one gradient comes down to one non-linear simulation to compute thereservoir
states, and two sets of linear simulations to compute the adjoint/parameter representers and
the state/measurement representers. No reduction is necessary formeasurements that are
sparse in time and space. For a large number of measurements, the full RM is not feasible.
At every iteration different portions of the data must be selected to keep the number of
representers limited. However this selection, based on svd, requires additional computation
time. A good balance is application-dependent.
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4.6 Conclusion

4.6.1 Recapitulation

This chapter introduces a modified formulation of the representer method. Since it can han-
dle non-linear dynamics, non-linear measurement operators and non-linear model errors, it
can deal with situations that are more realistic than previous implementations [Valstaret al.
(2004), Baird and Dawson (2005), Rommelseet al. (2006), Przybyszet al. (2007), Baird
and Dawson (2007)]. The derivation was explained and the method was illustrated by esti-
mating the permeability of a reservoir in a 2-phase 5-spot waterflood setting. Experiments
were done comparing a strong constraint with weak constraints of different magnitude. The
use of gradients of the strong and weak constraint problems in steepest descent and LBFGS
minimization schemes was illustrated. An example was shown where the number of repre-
senters was reduced by a factor two, without degrading the quality of the final permeability
estimate.

4.6.2 Conclusions

The RM that was used in this chapter was modified from the original RM on fouraccounts:
it can interact with different gradient-based minimization algorithms, the number of repre-
senters may be (much) smaller than the number of measurements, the representer functions
are defined differently so no correction terms need to be calculated,and the "measurement
representer" is introduced.

The modified RM method does not solve the weak constraint minimization problemdi-
rectly; it produces a regularized gradient that can be used by any gradient-based minimiza-
tion algorithm (after minor modifications). Solving the minimization problem is then left to
this algorithm.

In the classic RM, the number of representer coefficients is equal to the number of mea-
surements. In applications where there are many measurements, computational feasibility
needs to be created by selecting a subset of the data, or, as was done in this chapter, com-
pressing the measurement into a smaller amount of pseudo measurements. This can for
example be done by analyzing the data covariance matrix or the Jacobian of themeasure-
ment operator with a singular value decomposition. This choice can be made before starting
the iterative process and it can be chosen differently for various iterations. Even the number
of basis functions can be changed during minimization.

Both in previous non-linear versions of the RM [Valstaret al. (2004), Baird and Dawson
(2007)] and in the RM proposed in this chapter, the state variables are essentially decomposed
around the prior state variables. In the modified RM, the prior state variables are explicitly
calculated by a forward simulation with the prior parameters, whereas the classic RM splits
the prior state variables into the results of the last simulation and a correction term. The
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criterion that is used to calculate the correction term, is that atevery iteration the linearized
equations are solved. By using this criterion, the state variables of the last simulation and
the correction term do no longer add up to the prior state variables. One couldargue that the
modified RM converges slower than the classic RM, since, besides the presence of a penalty
term in the objective function that keeps the parameters close to the prior parameters, an
additional penalty is introduced that keeps the state variables close to the prior state variables
[Przybysz (2007)]. It can also be argued that the modified RM tries to solve the same non-
linear equations as the classic RM without requiring that the linearized equations need to be
solved at every iteration. Without this limitation, the modified RM mayalso converge faster
than the classic RM. Convergence of the RM has not been proven for non-linear problems,
and the convergence behavior is also not yet well understood. Convergence behavior ofthe
classic RM and the modified RM should be further examined for larger, field-scale problems.

The classic RM is derived without "measurement representers", probably because in the
case of a linear measurement operator, the measurement representers are constructed by con-
catenating the state representers of different time steps as row blocksinto one large matrix.
In this chapter the measurement operator is more complex, and measurementrepresenters
were introduced to handle this.

The RM only needs one single iteration for a linear problem. In general the RM uses
more than one iteration for a non-linear problem, but still converges considerably faster than
steepest descent. It also needs a lot more computation time per iteration.(L)BFGS can speed
up steepest descent at little extra computation time. A small effort is made to calculate some
approximation of the second order derivatives of the objective function, the Hessian. RM
costs about as much computation time as explicitly calculating the Hessian. BFGS can also
be applied on top of RM, but this does not contribute to faster convergence.

It is recommended to use a good line search algorithm. Although BFGS provides abet-
ter search direction than SD, this does not help the convergence if a fixedstep size is used.
For the strong-constraint case with the adjoint method, the quadratic line search performed
so well for SD, that BFGS could not outperform it. BFGS did perform better with an expo-
nential line search. The quadratic line search does not work properly incombination with
RM, because the slope of the objective along the search direction cannot be calculated accu-
rately. As a result, the quadratic line search underestimates the step size and the algorithm
stops before even finding a local minimum of the objective function.

The RM achieves most of the decrease of the objective function in the first iteration. How
much work is left for successive iterations depends on the magnitude of themodel errors.
If the model errors are large, then the non-linear relation between model parameters and
state variables is overshadowed and the minimization problem becomesmore linear. Hence,
convergence is faster.

In the example considered in this chapter, order reduction can be used to reduce compu-
tation time without loss of quality of the estimated parameters. When theorder is reduced
to the extreme, the minimization algorithm reaches the stopping criterion before performing
any iterations. Applications may exist where this becomes a problem for smaller reductions.
With or without reduction, no proof of convergence of the RM exists for non-linear problems.
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The resolution of the model errors that were reconstructed by RM was neverhigher than
the resolution of the measurements. Compared to the high resolution model errors that were
used to create the synthetic measurements, the RM introduced artificialcorrelation between
the model errors on time intervals in between separate measurements.





Chapter 5
Comparison of the Ensemble Kalman Filter

and a modified Representer Method for
sensitivity to prior data5

Abstract
Data assimilation algorithms or computer-assisted history-matching methods are meant to

improve the predictive capability of reservoir simulation models. Theyrely on two sources of
uncertain information: measured data, typically production data such as well bore pressures
and phase rates, and prior information, for example a statistical description of the reservoir
properties. In a synthetic numerical experiment the uncertainties in thedata and the prior are
known; in a field application they are not. One could say that there are not only uncertainties
in the data and the reservoir properties, but there is also "uncertainty in the uncertainty".

In this chapter the robustness of the Ensemble (Square Root) Kalman Filter and a gradient-
based algorithm using Representer Expansions are compared with respect to prior input data.
Some algorithm-dependent settings are explored to try to make the filter reproduce the results
of the Representer Method: the ensemble size, the initialization method andthe Kalman
update. The concept of assimilating data more than once with dampened weightingfactors
(added uncertainty) is introduced.

First the equations that underlie the Ensemble Kalman Filter and the Representer Method
are given. Then numerical experiments are presented and two measuresof quantifying the
success of the methods are introduced. According to one such measure, the Representer
Method performed better for all numerical examples considered. The parameters of the filter
can be chosen such that the filter with the correct input data is just as successful as the
Representer Method, using the second measure. When the methods are fed with the wrong
prior input, the second measure also favours the Representer Method, so for the examples
considered in this chapter the Representer Method is less sensitive to"wrong" prior data than
the Kalman Filter.

5.1 Introduction

Section 5.1.1 introduces the concept of running a reservoir simulator in strong (deterministic)
or weak (stochastic) mode. The relationship between the Ensemble Filter and the Represen-

5 This chapter is based on [Rommelseet al. (2008a)], which was published as TUD-DIAM report 08-16
and submitted to Computational Geosciences
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ter Method is discussed in section 5.1.2 and the two methods are interpreted as different
approximations of Bayes rule.

5.1.1 Strong and weak constraint reservoir simulation

Running a reservoir simulator with incorrect model parameters, like permeability or poro-
sity, causes a discrepancy between observations and measurement forecasts. There is an
additional phenomenon that causes the discrepancy; the model is an approximation, so even
if the parameters were known, the model would still produce incorrect output. These model
errors can be explicitly set to zero for simple numerical experiments. The reservoir simu-
lator is then used deterministically. For more realistic experiments or field applications, the
model errors can be modelled as additional parameters, which aresampled by a Monte Carlo
method or estimated along with the other model parameters. In this case the reservoir simu-
lator is used in stochastic mode. In variational or gradient-based dataassimilation, the terms
deterministic and stochastic mode correspond to using the reservoir simulator as a strong or
as a weak constraint respectively.

Running the reservoir simulator and predicting measurements can be writtenin general
state-space notation as

xi =M (xi−1) , y = H (x) , (5.1)

wherexi, i ∈ {0, · · · , n} are vectors of state variables (typically pressures and saturations)

at time ti, x =
[
xT
1 · · · xT

n

]T
, y is a vector of measurements (outputs), andM and

H are model and measurement operators respectively. In this chapter running the reservoir
simulator and predicting measurements is denoted by

g (xi,xi−1,θ,εi) = 0 , y = h (x) , (5.2)

whereg andh are vector-valued functions, where the model parameters (for example per-
meabilities and porosities) are collected in the vectorθ and the model errors on interval
[ti−1, ti] are contained in the vectorεi. In fact, the mass balance and Darcy equations [Aziz
and Settari (1979)]

d

dt
(f1 (x)) = f2 (x, θ) , (5.3)

are discretized in time using a the implicit Euler scheme, resulting in a deterministic reservoir
simulator:

g (xi,xi−1,θ,0) = f1 (xi)− (ti − ti−1) f2 (xi, θ)− f1 (xi−1) = 0. (5.4)

The presence of water and oil mass in the grid blocks is described byf1, while f2 models the
flow through the grid block interfaces and the injection/production offluids in the wells. The
model errors are introduced as additional sources/sinks in all grid blocks.In other words,
afterxi has been solved from Eq. (5.4), the water and oil masses in the grid blocks have not
correctly been predicted and must still be modified. The prediction gets worse as the time step
(ti − ti−1) grows larger. Therefore the correction is modelled proportional to(ti − ti−1). If
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the additional sources become too strong, unrealistically high pressures will be observed. If
the additional sinks become too strong, saturations outside[0, 1] will occur. In this chapter,
the additional sinks are non-linearly constrained byf1. The stochastic reservoir simulator
has the form

g (xi,xi−1,θ,εi) (5.5)

= f1 (xi)− (ti − ti−1) f2 (xi,θ)− f1 (xi−1) +min{f1 (xi) , (ti − ti−1)εi} = 0.

5.1.2 Bayesian data-assimilation

Reservoir simulation can be embedded in a stochastic or probabilistic framework; see e.g.
[Gavalaset al. (1976)] for an early reference, [Zhanget al. (2005)] for applications and
[Oliver et al. (2008)] which also contains further petroleum-related references. In this case
the reservoir state variables (pressures and saturations in all grid blocks) do not have de-
terministic values, but are described by a multivariate probability distribution (or density)
function (PDF). The stochastic nature of the state variables is causedby the uncertainty in
the initial states, the uncertainty in the model parameters (permeability, porosity, etc.) and
the fact that the reservoir simulator is imperfect (e.g. gravity or capillary effects were not
modelled, or three components were modelled where five would have been moreappropri-
ate). The uncertainty in the measurements is caused by two effects; 1) sensors monitor a
stochastic quantity and 2) they are subject to influences that might damage them or other-
wise corrupt the data.

Bayes theorem for continuous probability distributions [Bayes (1763)]

f (θ|y) = f (y|θ) f (θ)
f (y)

, f (θ|y) ∝ f (y|θ) f (θ) = f (θ,y) , (5.6)

states that theposteriordensityf (θ|y) (the probability of the model parameters given the
data) is proportional to theprior densityf (θ) (the probability of the model parameters)
multiplied by thelikelihoodf (y|θ) of the data given the model parameters. This basically
means that the reservoir simulator and a measurement model must be used to construct the
joint density of the parameters and the measurement forecastsf (θ,y). The domain is then
restricted by substituting the observations, which causes the integral over the new function
to no longer be equal to1. Renormalization then gives the posterior density. The hidden
dependence of the measurement forecasts on the reservoir statesx can also be explicitly
written in Bayes theorem

f (θ,x|y) = f (x,y|θ) f (θ)
f (y)

, f (θ,x|y) ∝ f (x,y|θ) f (θ) = f (θ,x,y) .

(5.7)

For practical applications, it is hardly ever possible to compute Eq. (5.6)analytically, so
approximations have to be made. For the special case where the priorf (θ) is Gaussian and
the measurement forecasts linearly depend on the parameters (which requires that both the
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reservoir simulator and the sensor model are linear), the posteriorf (θ|y) is also Gaussian
[Tarantola (2005)], which means that it suffices to only calculate the mean and covariance.

The Kalman Filter, which will be described in section 5.2.1, exploits this property and
sequentially updates the two statistical moments by performing time updates and measure-
ment updates. In the non-linear case, the Ensemble Kalman Filter [Evensen (2003), Evensen
(2007)] samples the prior and updates the samples until a sampled representation of the pos-
terior is found. However, at every measurement update the density is again assumed to be
Gaussian.

When the posterior is Gaussian, the logarithm is proportional to a weighted average of the
model errors, the measurement errors and the parameter errors [Tarantola (2005)], (see also
section 5.3.1). This can be formulated as an objective that has to be minimized in order to
find the mode of the posterior, which is equal to the mean for a Gaussian. This is done in
variational methods. In the non-linear case, a mode of a probability distribution is found, but
it is usually not clear how this distribution is related to the posterior. Only one mode is found
if the posterior is multi-modal.

5.2 Ensemble Filter

5.2.1 EnKF

Due to increasing computer capacity, the Kalman filter [Kalman (1960), Gelb (1974)] is
growing more popular for computer-assisted history-matching. Implementing an Ensemble
Kalman Filter (EnKF) [Evensen (2003), Heeminket al. (2001)] is easy and does not require
modifications to existing reservoir simulators; see. e.g. [Naevdalet al. (2005)] for an early
application, and [Evensen (2007)] for further references.

In the Ensemble Kalman Filter , the prior is represented by an ensembleof samples{
θ(1), · · · ,θ(n)

}
. This sampling can be done randomly or deterministically. In the absence

of measurements, the samples are updated in the time update by the non-linear reservoir
simulator

g
(
x
(j)
i ,x(j)i−1,θ

(j), ε(j)i

)
= 0. (5.8)

Whenever measurements are available, the measurement update is performed. Augmented
ensemble members are created by concatenating the reservoir states, the measurement fore-
casts and (in case of parameter estimation) the parameters

l
(j)
f =



x
(j)
i

y
(j)
f

θ(j)


 , (5.9)
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where the measurement forecasts ensemble is obtained by running an ensemble of(non-
linear) measurement models

y
(j)
f = h

(
x
(j)
i

)
. (5.10)

The forecasted ensemble members are then split into a mean and a set ofdeviations

l
(j)
f = lf + l̃

(j)
f , (5.11)

which are updated by

Lf=
[
l̃
(1)
f · · · l̃

(n)
f

]
, L̃ =

[
0 I 0

]
Lf , (5.12)

K = Lf L̃
T
(
L̃L̃T + (n− 1)Py

)−1
, (5.13)

la = lf +K
(
m− yf

)
, La = Lf +K

([
m̃(1) · · · m̃(n)

]
− L̃

)
, (5.14)

to form the analyzed mean and deviations that can be used to form the analyzed ensem-
ble members. Herem is the vector of observed measurements. The Kalman gain matrix,
Eq. (5.13), is built from the measurement forecast’s autocovarianceL̃L̃T

n−1 , the observation’s
autocovariancePy (which must be specified by the user) and the cross covariance of the
measurement forecasts and the augmented forecasted ensemble members. The measurement
errorsm̃(j) are sampled usingPy. The analyzed measurements are a weighted average of
the measurement forecasts and the observations. The jump from the forecasted values to the
analyzed values is linearly extrapolated to the reservoir states and the parameters using the
cross covariances between them.

5.2.2 ESRKF

In the EnKF, the errors in the observationsỹ
(j)
o are sampled usingPy. Without these errors,

the uncertainty in the analyzed ensemble would be underestimated by

La =
(
I−K

[
0 I 0

])
Lf = Lf −KL̃. (5.15)

However, also deterministic solutions to this problem are available. In[Verlaan and Heemink
(1997)], extra columns are added toL̃ in Eq. (5.15). These columns are obtained as a square
root Ly of Py = LyL

T
y . After the augmentation, the number of columns is reduced to the

original number by selecting the leading left-singular vectors. In the EnsembleSquare Root
Kalman Filter (ESRKF), Eq. (5.15) is used, but with a modified Kalman gain matrix which,
in the one-dimensional case, can be written as

K̃=
K

1 +

√
(n−1)Py

L̃L̃T+(n−1)Py

. (5.16)

For more dimensions, the modified Kalman gain matrix involves calculating the non-unique
square roots of two matrices. Details can be found in [Whitaker and Hamill (2002)].



86 Chapter 5

5.2.3 Duplicated measurements

As mentioned in section 5.2.1, the analyzed measurements are a weightedaverage of the
measurement forecasts and the observations. The difference between the forecasted values
and the analyzed values is linearly extrapolated to the reservoir states and the model param-
eters using the cross covariances between them. These are both linearoperations which can
cause problems when the measurement operator is non-linear. Furthermore,the weighting
factors that are used for the averaging are the user-defined uncertaintyin the observations
and the covariance of the measurement forecasts. This second order statistical moment is
not appropriate when the state variables are predicted by a non-linear simulator, even when
it is obtained by a EnKF rather than an Extended Kalman Filter (EKF) [Evensen (2003)]. In
fact, using a EnKF without extra modifications often causes saturation values outside[0, 1]
and unrealistic pressure and permeability estimates. A quick engineeringtrick is to apply
a dampening factor to the jump from the forecasted values to the analyzedvalues, which is
equivalent to adding extra uncertainty to the observations.

Since in practice it costs money to obtain data, it is a waste to discarddata or to add extra
uncertainty to them. Results in this chapter are obtained by duplicating measurements to
assimilate them more than once, but with extra uncertainty. The extra uncertainty ensures
that the jump from the forecasted values to the analyzed values, which is overestimated by
the linear measurement update, is dampened. The duplication of measurements ensures that
the jump is not dampened too much, so no valuable data are discarded. When a measurement
is predicted with varianceσ2f and the uncertainty of the sensor isσ2o, then the measurement

is assimilatedn times with artificial uncertaintỹσ2o using two criteria:

1. The artificial sensor uncertaintỹσ2o is of the same magnitude as the measurement
forecasts varianceσ2f , soσ̃2o ≈ σ2f .

2. The variance of the analyzed measurements is invariant under this method,so

σ2a =
σ2fσ

2
o

σ2f + σ2o
=

σ2f σ̃
2
o

2n−1σ2f + σ̃2o
. (5.17)

Therefore, every measurement is used

n = 1 +

⌈
log2

(
σ2f + σ2o
2σ2o

)⌉
(5.18)

times, with variancẽσ2o = 2
n−1σ2o. By construction, the variance of the analyzed measure-

ments is identical to what it would be without duplicated measurements. However, the jump
from the forecasted values to the analyzed values is not; the sum of a set of small jumps is
less than one big jump.
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5.3 Representer Method

The discrepancy between observed measurements and their model predicted antitheses can
be formulated as an objective function that has to be minimized. This minimization process
is regularized by penalizing the deviation of the estimated parameters from the prior parame-
ters, while the model errors may also be added to the objective function, as will be discussed
in Section 5.3.1. If the posterior distribution is Gaussian, the mode (ormean) of the poste-
rior minimizes the objective. If not, the objective has a different meaning and the weighting
factors might have to be changed accordingly; covariance matrices that are sufficient to rep-
resent Gaussians are no longer appropriate and the user has to supply an alternative. When
the posterior is multi-modal, the objective function has multiple local minima and additional
regularization is required. Calculating a gradient of the objective function with respect to
the model parameters can be done efficiently using an adjoint reservoir simulator in case the
model errors are explicitly set to zero; see e.g. [Chaventet al. (1975)] for an early appli-
cation and [Oliveret al. (2008)] for further references. Regularization is usually done by
selecting a limited set of basis functions that are chosen as singular vectors of a root of the
covariance matrix of the parameters. When model errors are taken into account, the reser-
voir simulator and its adjoint can no longer be used sequentially to produce agradient. The
Representer Method (RM) [Bennett and McIntosh (1982), Eknes and Evensen (1997), Ben-
nett (2002), Valstaret al. (2004), Baird and Dawson (2005), Janssenet al. (2006), Przybysz
et al. (2007), Baird and Dawson (2007), Rommelseet al. (2007)] can then be used to solve
the weak constraint minimization problem. Regularization is also included in the method
and the basis functions are data-driven rather than specified by the user. Unfortunately the
computational cost is proportional to the number of measurements times the computational
cost of solving the strong constraint problem using the adjoint system.

The RM used in this chapter was introduced in [Rommelseet al. (2007)] and differs from
previous implementations. It produces a gradient that can be used in any minimization al-
gorithm (with minor modifications); here the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) method [Gao and Reynolds (2006), Ulbrich (2002)] is used. Another fea-
ture of the method introduced in [Rommelseet al. (2007)] is the abandoning of the one-to-
one relationship between the representer functions and isolated measurements in time and
space, which forms an essential element of the classic RM, making the method computa-
tionally more attractive. Moreover, the concept of measurement representers is introduced to
deal with non-linear measurement models and a new linearization is usedthat does no longer
require the calculation of special correction terms.

5.3.1 Objective function and derivatives

The objective that has to be minimized is formulated as
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J =
1

2

(
h
(
x{0,··· ,n}

)
−m

)T
P−1
y

(
h
(
x{0,··· ,n}

)
−m

)
+ (5.19)

+
1

2

(
θ − θprior

)T
P−1
θ

(
θ − θprior

)
+
1

2

n∑

i=1

εTi P
−1
εi
εi +

+
n∑

i=1

λT
i g (xi,xi−1,θ,εi) .

If the reservoir simulatorg and the sensor modelh were linear and the prior were Gaussian,
the weighting factorsPθ , Pεi andPy could be chosen equal to the model parameter uncer-
tainty, the model error uncertainty and the sensor uncertainty respectively, in order to find
the same solution that an EnKF would find. Otherwise different factors may have to be cho-
sen. In general, the initial reservoir states need to be estimated along with the permeability,
porosity and other parameters,x0 = f (θ), but in this chapter they are assumed known.

The derivatives of Eq. (5.19) with respect toλi, εi, xi andθ are
(
∂J

∂λi

)T

= g (xi,xi−1,θ,εi) , (5.20)

(
∂J

∂εi

)T

= P−1
εi
εi +

(
∂g (xi,xi−1,θ,εi)

∂εi

)T

λi, (5.21)

(
∂J

∂xi

)T

=

(
∂h
(
x{0,··· ,n}

)

∂xi

)T

P−1
y

(
h
(
x{0,··· ,n}

)
−m

)
+ (5.22)

+

(
∂g (xi,xi−1,θ,εi)

∂xi

)T

λi +

(
∂g
(
xi+1,xi, θ,εi+1

)

∂xi

)T

λi+1,

(
∂J

∂θ

)T

= P−1
θ

(
θ− θprior

)
+

n∑

i=1

(
∂g (xi,xi−1,θ,εi)

∂θ

)T

λi. (5.23)

For the strong constraint case, whereεi is explicitly set to0, the gradient of the objective

function with respect to the model parameters,
(
∂J
∂θ

)T
, can be calculated using Eq. (5.23),

where the model statesxi and adjoint statesλi follow from sequentially solving Eq. (5.20)

and Eq. (5.22) with the left-hand sides,
(

∂J
∂λi

)T
and

(
∂J
∂xi

)T
, set to zero. Eq. (5.21) does

not need to be used; insteadεi = 0 is used.
To interface with gradient-based minimization algorithms, a numericalroutine must be

implemented that evaluatesJ , Eq. (5.19), and
(
∂J
∂θ

)T
, Eq. (5.20), Eq. (5.22) and Eq.

(5.23).QQT
(
∂J
∂θ

)T
is the regularized gradient if orthogonal basis functions are chosen for

the regularization and placed as columns in the matrixQ.
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5.3.2 Local minimizer

In a stationary point of Eq. (5.19), all gradients are equal to zero, so

g (xi,xi−1, θ, εi) = 0, (5.24)

εi = −Pεi

(
∂g (xi,xi−1, θ,εi)

∂εi

)T

λi, (5.25)

(
∂h
(
x{0,··· ,n}

)

∂xi

)T

P−1
y

(
m− h

(
x{0,··· ,n}

))
(5.26)

=

(
∂g (xi,xi−1,θ, εi)

∂xi

)T

λi +

(
∂g
(
xi+1,xi,θ,εi+1

)

∂xi

)T

λi+1,

θ = θprior −Pθ

n∑

i=1

(
∂g (xi,xi−1,θ,εi)

∂θ

)T

λi. (5.27)

Calculating and regularizing a gradient as was done in section 5.3.1, is no longer possible
since the forward model Eq. (5.24) and the adjoint model Eq. (5.26) are now coupled because
the model errorsεi are no longer equal to zero; they are related to the adjoint statesλi by
Eq. (5.25).

5.3.3 Representer expansions

Since it is not possible to obtain a gradient of the weak constraint minimization problem
directly and regularize it, the Representer Method was introduced to regularize Eq. (5.24)
through Eq. (5.27) and then find a minimization scheme. Unlike in section 5.3.1, where the
basis functions are chosen by the user, in the RM the regularization is donesymbolically and
then substituted into Eq. (5.24) through Eq. (5.27) to obtain the basis functions. In [Valstar
et al. (2004), Przybyszet al. (2007)] the number of basis functions is chosen equal to the
number of measurements, such that

xi = x
forecast
i + xcorrection

i +Rxib, (5.28)

λi = Rλib, (5.29)

θ = θprior +Rθb, (5.30)
where the columns ofRxi , Rλi andRθ are the basis functions, called the state representers,
adjoint representers and parameter representers. The representer coefficients are contained
in the vectorb.

In [Rommelseet al. (2007)] a different regularization is introduced. The minimization
algorithm is started withθinit = θprior andεiniti = λinit

i = 0. Applying these initial
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conditions to Eq. (5.24) gives the initial system statesxinit
i . These are not initial in the

sense that they are defined att0, but they are initial in the minimization algorithm. Given

the initial states, also initial measurements can be predicted,h
(
xinit
{0,··· ,n}

)
. The causes for

the variables to move away from their prior are parameterized byb. The 1-1-relationship
between one such cause and an isolated measurement in space and time is abandoned. For
computational purposes, it is interesting to assume that the number of parameters in the
vectorb is (much) smaller than the number of measurements. The deviations from the priors
are decomposed as

xi − x
prior
i = Rxib, (5.31)

λi = Rλib, (5.32)

θ − θprior = Rθb, (5.33)

h
(
x{0,··· ,n}

)
− h

(
x
prior
{0,··· ,n}

)
= Ryb. (5.34)

The columns ofRy contain the measurement representers.

5.3.4 Representer equations

After substitution of Eq. (5.31), Eq. (5.32) and Eq. (5.33) into Eq. (5.24), Eq. (5.26)
and Eq. (5.27) and some manipulation [Rommelseet al. (2007)], the representer equations
are obtained. These can be used to obtain a regularized gradient for the weak constraint
minimization problem as follows:

1. If the model errorsεi have not yet been approximated by a previous iteration of the
minimization algorithm, initialize them to zero. Given the model parametersθ and
the model errorsεi, run the non-linear model Eq. (5.24). After the model has been
run for the first time, save the prior statesx

prior
i and forecast the prior measurements

h
(
x
prior
{0,··· ,n}

)
.

2. Choose the selection matrixQ, as discussed in detail in [Rommelseet al. (2007)].
A convenient choice isQ = U[:,1:k], whereU is a matrix of left singular vectors of
the measurement sensitivity matrix, and wherek is typically much smaller than the
number of measurements.

3. Calculate the adjoint representersRλi from
(
∂g (xi,xi−1,θ,εi)

∂xi

)T

Rλi (5.35)

=

(
∂h
(
x{0,··· ,n}

)

∂xi

)T

Q−
(
∂g
(
xi+1,xi,θ,εi+1

)

∂xi

)T

Rλi+1 .
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4. Calculate the parameter representersRθ from

Rθ = −Pθ

n∑

i=1

(
∂g (xi,xi−1,θ,εi)

∂θ

)T

Rλi . (5.36)

5. Calculate the state representersRxi from

∂g (xi,xi−1, θ,εi)

∂xi
Rxi +

∂g (xi,xi−1, θ, εi)

∂xi−1
Rxi−1 + (5.37)

+
∂g (xi,xi−1,θ,εi)

∂θ
Rθ

=
∂g (xi,xi−1, θ,εi)

∂εi
Pεi

(
∂g (xi,xi−1, θ,εi)

∂εi

)T

Rλi .

6. Calculate the measurement representersRy from

Ry=
n∑

i=0

∂h
(
x{0,··· ,n}

)

∂xi
Rxi . (5.38)

7. Calculate new representer coefficientsb as the least-squares solution given by

(Ry+PyQ)b =m− h
(
x
prior
{0,··· ,n}

)
. (5.39)

8. Calculate new adjoint states Eq. (5.32).

9. Calculate the model errors Eq. (5.25).

10. Calculate the regularized gradient of the weak constraint minimization problem
(
∂J

∂θ

)T

= θ − θprior −Rθb. (5.40)

Comments:

· In the routine that calculates the gradient, also the model errors are updated. For mini-
mization algorithms that calculate more than one gradient per iteration,there must be a
mechanism in the gradient routine that can store the model errors as wellas the temporary
changes. The changes must be made definite whenever that is signaled by the minimiza-
tion algorithm, for example after a successful line search. This requiresa minor update
to the minimization routine, meaning that third-party software libraries can only be used
if the source code is also available.

· By setting the model errors equal to zero and ignoring steps 8 and 9, the RM canalso be
used to obtain a regularized gradient for the strong constraint minimization problem.



92 Chapter 5

Symbol Variable Value SI units Value Field units
h Gridblock height 20 m 65.62 ft
∆x,∆y Gridblock length/width 10 m 32.81 ft

µo Oil dynamic viscosity 1.0× 10−3 Pa s 1.0 cP

µw Water dynamic viscosity 1.0× 10−3 Pa s 1.0 cP

ct Total compressibility 1.0× 10−8 Pa−1 7.0× 10−5 psi−1

pR Initial reservoir pressure 10 × 106 Pa 1450.4 psi

k0ro Endpoint relative permeability, oil 1.0 −

k0rw Endpoint relative permeability, water 0.5 −
no Corey exponent, oil 2.0 −
nw Corey exponent, water 2.0 −
Sor Residual oil saturation 0.2 −
Swc Connate water saturation 0.2 −
φ porosity 0.3 −

Table 5.1: Reservoir andfluid properties for the example

5.4 Numerical experiments

Experiments were done on a 2D 2-phase waterflooding application with wells in an inverted
5-spot configuration that was also used in [Rommelseet al. (2007)]. Water is injected
at a rate of one pore volume per year and the production wells are constrained toflow at
0.25 pore volumes per year. The state of the reservoir is described by pressure and water
saturation in all 21x21x1 grid blocks of 10x10x20m. Capillary pressure and gravity effects
are ignored. All otherfluid and reservoir parameters have been listed in Tbl. (5.1). Synthetic
data are generated by picking one realization out of a database of 1000 realizations as the
"true" permeability, Fig. (5.1), and running a reservoir simulation with model errors that are
sampled as white noise, Fig. (5.2). Note: although in reality production dataconsist of phase
rates, bottom hole pressures or tubing head pressures, we will use the gridblock pressures
as "measurements" to assess the performance of the algorithms. The pressure and saturation
responses in the well gridblocks after simulating with these model errorsare shown in Fig.
(5.3). This figure also shows 10 synthetic pressure "measurements" in allwell gridblocks
at 100 and 200 days of simulation. The other realizations from the database are used to
construct a covariance matrix that is used in the objective functionthat has to be minimized.

5.4.1 Correct prior and prior with exponentially decreasing
correlation length

The filter is initialized by choosing an ensemble of permeability fields. For a variational
method, like the RM, an initial permeability estimate must be specified as well as the uncer-
tainty. These are extracted from the database as the mean and the sample covariance matrix.
For an honest comparison of the methods, the same mean and covariance matrixshould also
be used to initialize the filter. In order to do so, samples must be drawn fromthe covariance
matrix and added to the mean to obtain the ensemble members. This sampling can be done
randomly, which is equivalent to picking ensemble members from the database, or determin-
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Figure 5.3: True pressure and saturation in the well gridblocks as functions of time. The top plot
contains the 10 synthetic measurements at 100 and 200 days.

istically, for example by selecting the principal components of a square root of the covariance
matrix.

In field applications, specifying such a covariance matrix for the permeability is a rather
arbitrary process. It could be said that there is "uncertainty in the uncertainty", meaning
that it is not clear how the covariance matrix should be chosen. In this chapter, the effect of
specifying the wrong covariance matrix is investigated. The "wrong" covariance matrix is
obtained from the "correct" covariance matrix by preserving the magnitude of the variance,
but imposing a different spatial correlation pattern. The covariance between the permeability
values in two grid blocksi andj decreases exponentially as function of the distance between
grid blocksi andj; the covariance is specified as

P̃ij =
√
PiiPjje

−
dist(i,j)

l , (5.41)

wherel is the correlation length; it is obtained by minimizing the square-sum-difference of
P̃ij andPij , resulting in a value of72.43 [m], Fig. (5.4)

5.4.2 Filter results

Some initial ensemble members are shown in Fig. (5.5). Fig. (5.6) presents the initial
mean and covariance. The final estimates obtained with the correct prior covariance and 50
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Figure 5.4: Correct prior covariance matrix and prior with exponentially decreasing covariance

ensemble members of ESRKF are shown in Fig. (5.7). The estimated mean, the left plot of
Fig. (5.8), resembles the true permeability, Fig. (5.1). A more quantitative comparison is
given in section 5.4.4. The results using the prior with exponentially decreasing covariance
are presented in Fig. (5.9) and Fig. (5.10).

Fig. (5.11) shows the first four statistical moments of the ensemble after picking 100 re-
alizations from the database. The covariance is a matrix, but only the diagonal elements are
plotted. The third- and fourth-order moments are higher order tensors, but alsoonly the "di-
agonals" are plotted. Fig. (5.13) shows what happens when a singular value decomposition
is used to initialize the ensemble. The probability density that is represented by the ensem-
ble is skewed and therefore does not at all represent a Gaussian probability density. This
negatively impacts the performance of the EnKF. A random orthogonal matrix can be used
to de-skew the ensemble, preserving the first and second order statistical moments. This is
shown in figures Fig. (5.12) and Fig. (5.14).

The randomness that is introduced by picking realizations from the database is largely
suppressed by picking a large enough set of realizations, 100. If (5.11) were created again
using 100 different realizations from the database, it looks quite similar,Fig. (5.15). This is
not the case if the ensemble size is smaller.

5.4.3 Representer results

Permeability estimates of the RM using the correct prior and the prior with exponentially
decreasing covariance are shown in Fig.(5.16) and Fig. (5.17). Fig. (5.18) and Fig. (5.20)
show the parameter representers. The model errors that are reconstructed by the RM are
presented in Fig. (5.22).
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Figure 5.5: Some initial ensemble members
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Figure 5.6: Synthetic true permeability, initial ensemble mean, covariance and variance.
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Figure 5.7: Some ensemble members, estimated with ESRKF using the correctprior.
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Figure 5.8: Synthetic true permeability, initial ensemble mean, and estimated ensemble mean, covari-
ance and variance, estimated with ESRKF using the correct prior.
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Figure 5.9: Some ensemble members, estimated with ESRKF using a prior with exponentially decreas-
ing covariance.

5.4.4 Alternative quantification of success

Unlike in a field application, in a synthetic experiment the reconstructed parameters can
be compared to the ones that were used to synthesize the data. Consequently, the RMSE
between all ensemble members and the truth can be calculated. A histogram isplotted in
Fig. (5.23) for the case where the correct prior was used.

Another important quantification of the success of a data assimilation algorithm in reser-
voir management comes from looking at the water breakthrough curves in the wells. It is
too late to react to water breakthrough in the production wells after ithas been observed. A
data assimilation method may therefore add considerable value if a reasonable prediction of
the water breakthrough can be made (long) before it actually occurs. Only then the control
strategy of the (smart) wells can be changed to delay the water breakthrough. Fig. (5.24)
shows the water saturation curves for the synthetic truth in all wells. It also shows the same
curves for one ensemble member of an EnKF. The curves are shifted in time to optimally fit
the truth. The shift is a measure of how well the water breakthrough could be predicted. It is
calculated as the integral average of the difference of the true and the predicted curve in the
saturation domain:

1

Sfinal − Sinit

Sfinal∫

Sinit

(ttrue (S)− (tpredicted − tshift)) dS = 0. (5.42)
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Figure 5.10: Synthetic true permeability, initial ensemble mean, and estimated ensemble mean, covari-
ance and variance, estimated with ESRKF using an exponential prior.
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Figure 5.11: Four statistical moments of the ensemble. 100 members were picked randomly from the
database.
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Figure 5.12: Four statistical moments of the ensemble. 100 members were picked randomly from the
database and then 100 random linear combinations were created.
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Figure 5.13: Four statistical moments of the ensemble. 100 leading singularvectors were calculated
from the database.
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Figure 5.14: Four statistical moments of the ensemble. 100 leading singularvectors were calculated
from the database and then 100 random linear combinations were created.
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Figure 5.15: Four statistical moments of the ensemble. 100 members were picked again from the
database, different from Fig. (5.11).
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Figure 5.16: Permeability estimates of the RM using the correct prior
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Figure 5.17: Permeability estimates of the RM using the prior with exponentially decreasing covariance
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Figure 5.18: Parameter representers using correct prior. Different colums represent the deviation of
the permeability estimates from the prior by different measurement locations (the wells). The locations
are denoted by the black dots. Different rows represent different assimilation times.
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Figure 5.19: Parameter representers using correct prior, plotted on thesame scale. Different colums
represent the deviation of the permeability estimates from the prior by different measurement locations
(the wells). The locations are denoted by the black dots. Different rows represent different assimilation
times.
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Figure 5.20: Parameter representers using exponential prior. Different colums represent the devia-
tion of the permeability estimates from the prior by different measurementlocations (the wells). The
locations are denoted by the black dots. Different rows represent different assimilation times.
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Figure 5.21: Parameter representers using exponential prior, plotted on the same scale. Different
colums represent the deviation of the permeability estimates from the prior by different measurement
locations (the wells). The locations are denoted by the black dots. Different rows represent different
assimilation times.
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Figure 5.22: Model errors reconstructed by the RM using the correct prior

After tshift has been calculated, the area between the true and the shifted predicted curve
can be used to quantify the performance of the assimilation method to predict the shape of
the water front as it breaks through:

A =

Sfinal∫

Sinit

|ttrue (S)− (tpredicted − tshift)| dS. (5.43)

A histogram can be plotted, Fig. (5.25), whentshift is calculated for all ensemble members.
For comparison with the RM, where the ensemble consists of only one ensemble member,
the mean of the ensemble oftshift values is used to quantify the performance of the filter.

Some numbers:
Forty experiments were done to gain insight in the effects of different prior, ensemble

size, initialization method, de-skewing method and measurement update on the performance
of the EnKF/ESRKF. In [Rommelseet al. (2007)] the performance of the RM was inves-
tigated for different magnitudes of model errors, different line search algorithms, different
minimization algorithms and compared to the results of adjoint-based strongconstraint pa-
rameter estimation algorithms, but only the correct prior was used in the data assimilation
process. The RM options that led to the best results of that research wereused in this chapter
and applied to a twin experiment where a prior with exponentially decreasingcovariance was
used. Fig. (5.26) visualizes the results of the forty-two experiments; its shows the cross plots
of two different quality measures for all experiments.‖tShift‖ is calculated as the 2-norm of
the 5-dimensional vector with the means of Fig. (5.25). RMSE is the mean from Fig. (5.23).
The five different plots represent results obtained with different ensemble sizes, or with dif-
ferent measurement updates, but they all contain the same RM results for comparison. In
the ESRKF, measurements are assimilated sequentially using the duplication as described
in section 5.2.3. In the EnKF, measurements at different times are assimilated sequentially,
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Figure 5.23: Root-mean-square difference between estimated permeability and the truth, for all ensem-
ble members. 50 ensemble members were randomly picked from the database.
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Figure 5.24: True, predicted and shifted[s]water breakthrough curves of one ensemble member for all
wells
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Figure 5.25: True, predicted and shifted[days] water breakthrough curves of all ensemble member for
all wells

but measurements that were taken at the same time are also assimilated simultaneously and
without duplication. Effects of randomness between the different experimentsare reduced
by storing and re-using the random numbers. This way "between-subject" variability is re-
duced and the effects of "within-subject" variation can be studied [van der Poel and Jansen
(2004)]. The results of the ensemble methods are independent of the output of the random
number generator if the ensemble size is chosen sufficiently large. For a smaller ensemble
size (10, 25), results vary, but the effect of the ensemble size decreases between 50 through
100.

In terms of RMSE, the filter always performs worse than the RM. In terms of predicting
the water breakthrough curves, the performance of the RM can be reached by a filter if the
ensemble size is chosen sufficiently large and the correct prior is used. This is not true if a
prior with exponentially decreasing covariance is used, so it can be saidthat the RM was less
sensitive to using the "wrong" prior in this application than the filter. Nomatter what prior is
used, the filter usually performs best if it is initialized by SVD and then de-skewed. If no de-
skewing is applied, then randomly initializing the ensemble usually producesbetter results
than using SVD for the correct prior, but SVD performs better for the exponential prior. This
can be explained as follows; randomly picking ensemble members from the database gives
a rather symmetric ensemble, whereas the SVD ensemble is very skewed. For the prior with
exponential decreasing covariance, no such database is available. Picking ensemble members
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Figure 5.26: Crossplot of the two quality measures (RMSE andtshift) for different ensemble sizes,
EnKF or ESRKF, correct prior and prior with exponential decreasing covariance,ensemble randomly
picked or obtained by svd and with or without de-skewing of the ensemble. All plots also contain the
results of the Representer Method.
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involves picking columns from a Cholesky vector of the covariance matrix and results in a
skewed ensemble as well.

It is worth mentioning that ESRKF with duplicated measurements performs reasonably
better than EnKF in terms of RMSE and much better in terms of‖tShift‖ in the presence
of no or little measurement errors. In the presence of moderate or large measurement errors,
the results of EnKF or ESRKF are similar. The measurement update of EnKF makes a crude
Gaussian assumption, whereas the version with duplicated measurements makes a set of
smaller assumptions. The EnKF is a major improvement over the Extended Kalman filter
for dealing with nonlinearities in the reservoir model, but it is recommended not to use the
EnKF for non-linear problems without a modified measurement update if the measurements
are very accurate. Experiments to support this statement are not presentedin this chapter,
because the scope of this chapter is to compare the EnKF/ESRKF with the RM and not to
show all details of the EnKF.

5.5 Conclusions

The RM always performed better than the filter, in terms of RMSE between estimated and
true parameters. If the posterior probability of the parameters given the measurements is not
symmetric or even multi-modal, it makes sense that the RM performs better. In that case the
probability that the true parameters lie close to the mode of the posterior is larger than the
probability that the true parameters lie near the mean of the posterior.Also, the recursive filter
introduces errors during every measurement update. These errors accumulate. An iterative
algorithm has the opportunity in every iteration to reduce the errors that were made in the
previous iteration.

When using the correct prior, predicting the water breakthrough can be done equally
well by the filter as by the RM if the ensemble size is chosen sufficientlylarge. This also
shows that models that are not equally well history-matched might produce future predictions
equally well. This implies that a good history-match may not guarantee good predictions.

When using the prior with exponentially decreasing covariance, the filterdoes not perform
as well as the RM, both in terms of RMSE and predicted water breakthrough. Itcan be said
that the RM is less sensitive to using a "wrong" prior than a filter in thisapplication.

The best filter results can be obtained if the ensemble is initialized with SVD and then
de-skewed. Without de-skewing, SVD creates ensembles that are very skewed, causing poor
results in estimating model parameters. Randomly initializing the ensemble for the case with
the exponential prior involves picking columns from a Cholesky factor of the covariance
matrix, which also results in a skewed ensemble.





Chapter 6
Variational estimation of permeability and
model errors from 3D and 4D seismic data

using model-driven regularization6

Abstract
Automated history-matching methods, or data assimilation algorithms,can be used to sup-

port decision-making tools in closed-loop reservoir management. In variational data assimi-
lation, the discrepancy between observed measurements and their model predicted antithe-
ses is minimized with respect to parameters that underlie the reservoir model. Assuming that
there are no uncertainties in addition to the unknown parameters, there aremethods that can
efficiently calculate the gradient of the discrepancy to changes in the parameters. Usually
many different parameter sets exist that locally minimize the discrepancy, so the gradient
must be regularized before it can be used by gradient-based minimizationalgorithms. In the
presence of model errors, more advanced methods must be employed, like the Representer
Method (RM).

This chapter proposes a variational method to estimate the permeabilityof a reservoir rock
from static and time-lapse seismic data, that simultaneously estimates the model errors in
the reservoir simulator. Unlike in the (classic or modified) RM, the regularization and the
computation of the gradient are decoupled, which can save a lot of computation time. An
analytical gradient is available, whereas the RM uses an approximated one.

First the Variational Parameter Estimation method with Model-driven Regularization
(VPERM) is introduced and the relation to the RM is explained. Experiments are presented,
using three different data sets. The first data set contains synthetic pressure measurements in
the injection and production wells, the second and third data sets contain P-wave impedance
data in addition to pressure data. The second data set contains the baseline survey and the
monitor, the third one contains the baseline and the difference.

VPERM produces results that are similar to the results of the RM, but inless computa-
tion time. Both methods produce good results when only pressure data from the wells are
available. Sometimes seismic data removes outliers from the "history-future" crossplot; bet-
ter predictions are obtained from models that are not necessarily betterhistory-matched. In
other cases, seismic data gives better history-matched models and better predictions.

6 This chapter is based on [Rommelseet al. (2008b)], which was published as TUD-DIAM report 08-18
and submitted to Computational Geosciences
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6.1 Introduction

This chapter investigates the applicability of a weak constraint variational method to es-
timate reservoir permeability from 3D or 4D seismic data with a reservoir simulator that
contains model errors. Sections 6.1.1 and 6.1.2 introduce the variational parameter esti-
mation and weak constraints approaches. [Skjervheimet al. (2005)] used the Ensemble
Kalman Filter (EnKF) [Evensen (2003)] to estimate permeability from seismic data in the
presence of model errors. In order to do so, a non-linear rock physics model was augmented
to the non-linear reservoir model to predict changes in seismic response from changes in
fluid pressure and mixture. A weak constraint variational method is promising, since [Rom-
melseet al. (2008a)] showed that for a linear measurement operator the Representer Method
(RM) [Bennett and McIntosh (1982), Eknes and Evensen (1997), Bennett (2002), Valstar
et al. (2004), Baird and Dawson (2005), Janssenet al. (2006), Przybyszet al. (2007)] out-
performed the EnKF in terms of two quality measures; root mean square difference between
estimated and synthetic true permeability, and the ability to predict water breakthrough in
production wells.

6.1.1 Variational parameter estimation

Data assimilation methods aim to improve numerical models by comparing actual measure-
ments of a physical system with the numerical model predictions of these measurements.
The predicted state variables and the predicted measurements changeas the parameters of
the numerical model are perturbed. The discrepancy between the "measuredmeasurements"
and the "predicted measurements" can be used to update the parameters in order to decrease
this discrepancy. In variational methods, the discrepancy is formulated asan objective func-
tion that has to be minimized, often using the Euclidean norm. The dynamicmodel that
relates parameters to state variables, is usually adjoined to the objective function with the aid
of Lagrange multipliers [Bennett (2006)]. In reservoir management, the dynamic model is
implemented in the form of a reservoir simulator, the parameters of interest can for example
be porosity or permeability, and the state of the system is typically described by pressure and
saturation values in all grid blocks. The first or higher order variations are iteratively used
to improve the parameter estimate. Gradients can be approximated or efficiently calculated
by an adjoint reservoir simulator [Rommelseet al. (2007)]. Usually reservoir simulators
use time-implicit numerical schemes and first order derivatives, Jacobians, are used to speed
up the non-linear solvers. It is quite a task to construct the adjoint simulator, even when
the Jacobians are available in a reservoir simulator. Higher order derivatives are usually not
available. In the LBFGS [Gao and Reynolds (2006), Ulbrich (2002)] minimization algorithm
used in this chapter, second order derivatives are approximated by monitoringthe first order
derivatives over successive iterations and used in a Gauss-Newtonscheme.
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6.1.2 Model errors; strong and weak constraints

The discrepancy between measured measurements and predicted measurements is often for-
mulated using the Euclidean norm. The objective of the data assimilationis to minimize the
square of this norm with respect to the model parameters while the numerical model is used
as a (strong) constraint.

However, there is an additional phenomenon that may cause the discrepancy. The model
is an approximation, so even if the parameters were known, the model may still produce
incorrect output. These errors can be modelled as extra parameters, whichare also added to
the objective function using the 2-norm. The model is then used as a weak constraint in the
minimization problem.

6.1.3 Regularization

Variational methods often get trapped in local minima. Regularizationmethods must be em-
ployed to reduce the number of local minima. When model errors are taken intoaccount,
these can be modelled as additional model parameters to turn the weak constraint minimiza-
tion problem into a strong constraint problem of much higher order. Regularization then
becomes increasingly important.

The RM [Bennett and McIntosh (1982), Bennett (2002), Valstaret al. (2004)] turns the
weak constraint problem into a strong constraint problem of the same order as the number of
measurements. The regularization is part of the minimization scheme and the basis functions
are recalculated at every iteration. [Rommelseet al. (2007)] proposes an approximated
gradient and an additional reduction of the dimension of the parameter space.

This chapter proposes a Variational Parameter Estimation algorithm that uses Model-driven
Regularization (VPERM, section 6.2), similar to the RM. The regularization is decoupled
from the minimization scheme. Basis functions can be updated at any iteration, but they do
not necessarily need to be. The weak constraint problem is reduced to a strongconstraint
problem of an order that is much lower than the number of measurements. Assimilating
seismic data would not have been feasible otherwise. The gradient is analytical if the basis
functions are kept fixed, unlike the approximated gradient of the RM.

6.2 The VPERM method

This section introduces the VPERM method; Variational Parameter Estimation Regularized
by Model-driven basis functions.
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6.2.1 High dimensional gradient of the weak constraint problem

The state variables, pressures and saturations in all grid blocks, at timeti are denoted by
xi, i ∈ {0, · · · , n}. Running the reservoir simulator and predicting measurements is denoted
by

g (xi,xi−1, θ, εi) = 0 , y = h
(
x{0,··· ,n}

)
, (6.1)

where the model parameters are collected in the vectorθ and the model errors on interval
[ti−1, ti] are contained in the vectorεi. The initial states may be part of the parameter
estimation process, sox0 = x0 (θ). The minimization relies on the availability of the first
(mean) and second (covariance) order statistics of the model parameters and model errors.
These are denoted byθprior, Pθ , εpriori = 0 andPεi .

The objective function that has to be minimized is

J =
1
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wherem contains the actual physical measurements, possibly taken at different times, and
h is the measurement operator that operates on all state variables at all time steps. Py

represents the uncertainty in the measurements in the form of an error covariance matrix.
The last term of Eq. (6.2) represents the system equationsg that have been adjoined to
the objective function with the aid of Lagrange multipliersλi in the usual fashion [Bennett
(2006)].

The derivatives of Eq. (6.2) with respect toλi, xi, θ andεi are
(
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Setting the first two derivatives equal to zero gives the reservoir simulator, Eq. (6.1) and the
adjoint reservoir simulator

(
∂h
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x{0,··· ,n}

)

∂xi

)T

P−1
y

(
m− h

(
x{0,··· ,n}

))
(6.7)
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)T
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∂xi

)T
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Thus, for the weak constraint case, the gradient
[
∂J
∂θ

∂J
∂ε1

· · · ∂J
∂εn

]T
is calculated by

running the simulator and the adjoint simulator, using the current estimates of the parameters
and model errors as input, and substituting the results in Eq. (6.5) and Eq. (6.6). Thegradient
can be used in any gradient-based search algorithm to find a local minimum of the objective
function.

6.2.2 Low dimensional gradient of a strong constraint problem

The low dimensional problem is parameterized by a vectorb. In this low dimensional space
there is no model and hence no model errors. The model is only defined in the high order
space. From the low order parametersb, the high order parametersθ are constructed by

θ = θ̃ +Rθb, (6.8)

and the high order model errors are constructed by

εi = ε̃i +Rεib. (6.9)

The columns of the matricesRθ andEi contain the parameter and model error basis func-
tions. Whenever these basis functions are calculated, they are based onthe results of the last
iterationθ̃ andε̃i and the low order parameters are reset tob = 0. Before the first iteration,
θ̃ is initialized toθ̃ = θprior andε̃i is initialized toε̃i = 0. The RM also introduces state
representersRxi as

xi = x̃i +Rxib, (6.10)

and adjoint representersRλi as

λi = λ̃i +Rλib. (6.11)

The RM does not updatẽθ, ε̃i andλ̃i = 0, meaning that the quality of the parameteriza-
tion decreases as parameters move further away from the prior.x̃i is formed from the results
of the last iteration plus a correction term that is updated at every iteration. Effectivelyx̃i

is never updated and it is obtained by running the reservoir simulator onthe prior parame-
tersθprior without model errors. [Rommelseet al. (2007)] also introduced measurement
representers

h
(
x{0,··· ,n}

)
= h̃+Ryb. (6.12)
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Using the basis functions, Eq. (6.8) and Eq. (6.9), the low order gradient
(
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is calcu-

lated as
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,

with
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∂θ

)T
and

(
∂J
∂εi

)T
from Eq. (6.5) and Eq. (6.6).

6.2.3 Choosing the basis functions

To find new basis functionsRθ andRεi , equations Eq. (6.5) and Eq. (6.6) are set to zero

and linearized around
(
θ̃, x̃i, λ̃i, ε̃i

)
. The results are:
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and

Rεi = −Pεi
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Rλi . (6.15)

Obviously, first basis functionsRλi for the adjoint variables must be chosen. Similar to Eq.
(6.14) and Eq. (6.15), equations for the adjoint basis functions can be found
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which depend on the state variable basis functionsRxi , that can be calculated from

∂g

∂xi
Rxi +

∂g

∂xi−1
Rxi−1 +

∂g

∂θ
Rθ= O. (6.17)

In the RM, Eq. (6.16) and Eq. (6.17) can be solved sequentially, whereas here they are
coupled through Eq. (6.14). If an estimate of the basis functionsRθ for the parametersθ
is available, for example from a previous iteration, new basis functionscan be calculated by
sequentially solving Eq. (6.17), Eq. (6.16) and Eq. (6.14). This can be used in a Picard
iteration scheme. Here a different approach is taken; Rxi in Eq. (6.16) is obtained by a
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singular value decomposition:
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.

When the left-most columns ofUΣ are substituted in Eq. (6.16) to replace the left-hand-
side, the resulting equation can be used to find approximations forRλi . Thereafter, these
can be used in Eq. (6.14) and Eq. (6.15).

6.2.4 Quadratic line search

After the objectiveJ0 = J (θ) and the gradientg0 = dJ
dθ

have been evaluated, a step must be
taken in the direction of the gradient or a modified directiond. If the step size is parameter-
ized bys, thenJ̃ (s) = J (θ−sd) must be minimized. The gradient is not only used to find
the direction of the line search, but it also helps in finding the step size,as is the case with
Wolfe conditions [Nocedal and Wright (1999)]. However, here a different approach is taken:

1. Choose some potential step sizesp.

2. Evaluate the objectivẽJ (sp) = J (θ−spd).

3. If J̃ (sp) ≤ J̃ (0)− gT0 d, then acceptsp and end line search.

4. Calculate a new potential step size

s̃p :=
1

2
sp

gT0 dsp
gT
0 dsp + Jsp − J0

. (6.19)

5. Goto 2 ifJ̃ (s̃p) > J̃ (0).

Comments:

· Eq. (6.19) minimizes the parabola that is defined byJ̃ (0) = J0, J̃ (sp) = Jsp , and
dJ̃
ds (0) = −gT

0 d.

· If Jsp = J0, thens̃p :=
sp
2 , unless‖g0‖ = 0 (but if that were the case, thenJ (θ) is a

local minimum ofJ).

· In step 2, the objective function is evaluated. In step 5 it is evaluated again. However, in
numerical experiments [section 6.4], the step from 5 to 2 is never made.
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6.3 The models

6.3.1 Weak constraint reservoir simulator

A 2-phase (water/oil) reservoir simulator can be represented symbolically as

d

dt
(f1 (x)) = f2 (x, θ) , (6.20)

wherex contains the water saturation and water pressure (equal to oil pressure) for every grid
block andθ contains the permeabilities of all grid blocks.f1 describes the presence of water
and oil mass in the grid blocks andf2 models theflow through the grid block interfaces.
Injection/production is modelled as sources/sinks, which are included inf2. Eq. (6.20) is
formed by mass balance and Darcy equations [Aziz and Settari (1979)].

A fully implicit time discretization results in

g̃ (xi,xi−1, θ) = f1 (xi)− (ti − ti−1) f2 (xi, θ)− f1 (xi−1) = 0. (6.21)

The model errors are introduced as additional sources/sinks in all grid blocks. In other
words, afterxi has been solved from Eq. (6.21), the water and oil masses in the grid blocks
have not correctly been predicted and must still be modified. The predictiongrows worse
as the time step(ti − ti−1) increases. The correction is therefore modelled proportional to
(ti − ti−1). If the additional sources become too strong, unrealistically high pressures will be
observed. If the additional sinks become too strong, saturations outside[0, 1] will occur. In
this chapter, the additional sinks are non-linearly constrained byf1. The stochastic reservoir
simulator has the form

g (xi,xi−1,θ, εi) = 0 = (6.22)

= f1 (xi)− (ti − ti−1) f2 (xi,θ)− f1 (xi−1) + min {f1 (xi) , (ti − ti−1)εi} .

6.3.2 Rock-physics model

In addition to production data, seismic data can be used to estimate parameters in a reser-
voir simulation model, even though acoustic wave propagation is a totally different physical
phenomenon than multiphasefluid flow. Seismic data can consist of travel time data and
amplitude data, recorded by geophones or hydrophones. Travel time data are available as
the difference between the time at which human-made sources initiate acoustic waves that
travel into the subsurface and the time at which the reflected waves are recorded, usually at
the surface, but sometimes inside wellbores. In "passive seismic" the travel time data are the
difference between recordings of the same acoustic wave by different sets ofgeophones in
different well bores. In this case "mother nature" is used instead of a human-made source.
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Like reservoir engineers use reservoir simulators to predict theflow of fluids through the
subsurface, geophysicists make use of wave propagation simulators to predict how acous-
tic waves travel through the subsurface. And like history-matching inreservoir engineering,
inverse methods are applied in geophysics that bring the predictions of wavesimulations
closer to the actual recorded waves by changing the parameters of the wave simulator. The
parameter sets of both simulators have some overlap. Porosity for example, is an impor-
tant parameter in both simulators. Theoretically, seismic data and production data could be
merged into one big dataset and the parameter sets of both simulators could be merged to
create one big inversion or parameter estimation problem. This has never been done. Usu-
ally one inversion problem is solved partially and the results are used aspseudo-data in the
other inversion problem.

This chapter assumes that the seismic data has been inverted partially, until the level of
seismic impedance. The P-wave impedance is augmented to the productiondata to help
the history-matching of the reservoir simulation model. Besides a reservoir simulator, also
an impedance simulator is needed to predict seismic impedance fromfluid pressures and
saturations. This dependence is shown in Fig (6.1) and described in the restof this section.
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Figure 6.1: The dependence of the P-wave impedance on thefluid pressure and water saturation.
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The P-wave impedanceZp

[
kg m−2 s−1

]
and S-wave impedanceZs

[
kg m−2 s−1

]
are

defined as the velocities of the P and S-waves through the subsurface,Vp
[
m s−1

]
andVS[

m s−1
]
, multiplied by the density of the (fluid-filled reservoir) rockρb

[
kg m−3

]
, which is

a weighted average of the densities of the sandstone,ρs
[
kg m−3

]
, and thefluids

ρb = φ (Swρw + Soρo) + (1− φ) ρs. (6.23)

Including the dependence of the velocities on thefluid filled bulk modulusKff [Pa] and
shear modulusµm [Pa], the impedances can be written as

Zp =

√(
Kff +

4

3
µm

)
ρb , Zs =

√
µmρb. (6.24)

Thefluid filled bulk modulusKff is calculated according to Gassmann [Mavkoet al. (1998)]

Kff = Ks
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
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 , (6.25)

or withα = φ
(

1
Kf
− 1

Ks

)
andβ = 1− Km

Ks
:

Kff = Ks

(
Kmα+ β

Ksα+ β

)
, (6.26)

which combines the bulk moduli of the sandstone,Ks [Pa], the dry-frameKm [Pa] and the
fluid Kf [Pa]. This last modulus is calculated from the bulk modulus of oil,Ko [Pa] and
bulk modulus of water,Kw [Pa], by

Kf =
1

Sw
Kw

+ So
Ko

=
KwKo

SwKo + SoKw
. (6.27)

The elastic moduli, the porosity and the densities are assumed uncertain.However, deter-
ministic values are used and noise is added to the synthetic P-wave impedance, rather than
to the underlying parameters separately, section [6.3.3].

6.3.3 Measuring impedance with synthetic noise

Noise is added after the true impedance has been synthesized. However, this is done in such
a way that the difference of impedance measured at different times contains less noise than
the separate measurements. So

Z̃t1 = Zt1 + ed + et1 , (6.28)

Z̃t2 = Zt2 + ed + et2 , (6.29)
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Z̃t1 − Z̃t2 = Zt1 −Zt2 + et1 − et2 . (6.30)
.

If the error in the impedance measurements is modelled by a Gaussian distribution

ed + et1 ∽ N
(
0, σ2Z

)
, (6.31)

and so is the error in the impedance difference

et1 − et2 ∽ N
(
0, σ2dZ

)
, (6.32)

thenet1 , et2 anded are also Gaussian

et1 , et2 ∽ N

(
0,

σ2dZ
2

)
, (6.33)

ed ∽ N

(
0, σ2Z −

σ2dZ
2

)
. (6.34)

The uncertainty in the baseline surveyσ2Z , the monitorσ2Z and the differenceσ2dZ are
parameters of interest in the numerical experiments. The uncertainties in the synthetic noise,
σ2dZ
2 andσ2Z −

σ2dZ
2 , are derived from these.

6.4 Numerical experiments

Twin experiments were done on a horizontal 2D 2phase waterflooding application with
two different permeability and well configurations; an inverted 5-spot with vertical wells
(5SPOT) and two horizontal wells perpendicular to two high-permeable streaks (2STREAKS).
Synthetic pressure and impedance data were generated by running a reservoir simulator on a
"synthetic truth" permeability field. The synthetic truths for 5SPOT and2STRAKS and the
well configurations for both experiments are shown in Fig. (6.2).

Water is injected at a rate of one pore volume per year and the production wells are con-
strained to a quarter (5SPOT) or one (2STREAKS) pore volumes per year. The state of
the reservoir is described by pressure and water saturation in all 21x21x1 grid blocks of
10x10x20m each. Capillary pressure and gravity effects are ignored. For 5SPOT, the true
permeability is picked as one realization out of a database of 1000 realizations. The others
realizations are used to construct a covariance matrix which is used in the objective function.
For 2STREAKS, the truth is an academic caricature and realizations were sampled from a
covariogram [Vossepoel and Douma (2008)]. The synthetic true model errors were sampled
as white noise, similar to chapter 4. The state variables of the synthetic truth, located at the
well positions, are shown in Fig. (6.3) for 5SPOT and Fig. (6.4) for 2STREAKS as functions
of time. The synthetic pressure measurements are the reservoir pressures in the grid blocks
that are penetrated by wells at 100 and 200 days of the simulation, resulting in 10 measure-
ments for 5SPOT and 84 for 2STREAKS. Measurement errors are sampled and added to the
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5SPOT 2STREAKS

N N

E E

Figure 6.2: Well configurations. One vertical injector and four vertical producers for 5SPOT and two
horizontal wells for 2STREAKS

synthetic measurements. Fig. (6.5) and Fig. (6.6) show the state variables after 200 days of
simulation. The 882 impedance measurements, including measurement noise,are shown in
Fig. (6.7) and Fig. (6.8).

Fig. (6.9) and Fig. (6.10) show some permeability estimates and the objective function
during 38 iterations of VPERM on 5SPOT. Fig. (6.11) presents the estimated well responses.
Fig. (6.12), Fig. (6.13) and Fig. (6.14) show the same for 2STREAKS. All iterations use
the pressure data from the grid blocks that are penetrated by wells. Baseline and time-lapse
data are used starting from iteration 20. If impedance data are used from the first iteration,
a different local minimum of the objective function is found, usually one that gives aworse
history-match. Fig. (6.15) presents the objective function of RM for the caseswhere seismic
data are used in all iterations or only after the twentieth iteration. The first case converges
much slower than the second. Moreover, the root-mean-square-error (RMSE) between the
true and the estimated parameters is better for the second case; 0.5660 compared to 0.7536.
If a history-matching workflow without seismic data gives reasonable results, it is not yet
a trivial exercise to add seismic data. Additional data do potentially give more information,
but also increases the dimensionality of the non-linear estimation problem. Using impedance
data from the twentieth iteration instead of the first one is a practical trick to get a variational
history-matching workflow to work with impedance data. The extra seismic data introduces
new local minima in the neighborhood of the initial/prior estimate. Modifications to get an
Ensemble Kalman Filter to work with saturation data for 2STREAKSwere investigated by
[Vossepoel and Douma (2008)].

Once a history-matching workflow is set up to work with or without seismic data, the
influence of the seismic data can be assessed. In this research seismic data never had a
negative effect and usually had a positive effect. In order to assessthe effect of seismic data,
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Figure 6.3: State variables of the synthetic truth for 5SPOT. Only the 5 grid blocks that are penetrated
by the injection well and the north west (NW), SW, NE and SE production wellsare shown. The top
plot also shows synthetic pressure measurements prior to adding measurement noise,indicated by the
asterisks.
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Figure 6.4: State variables of the synthetic truth for 2STREAKS. Only the 42 grid blocks that are pen-
etrated by the horizontal injector and producer are shown. The top plot also shows synthetic pressure
measurements prior to adding measurement noise, indicated by the asterisks.
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Figure 6.5: State variables after 200 days of simulation for 5SPOT.
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Figure 6.6: State variables after 200 days of simulation for 2STREAKS.

baseline impedance

 

 

5 10 15 20

5

10

15

20
4

6

8

10

12
x 10

6 monitor impedance

 

 

5 10 15 20

5

10

15

20

4

6

8

10

12
x 10

6 difference impedance

 

 

5 10 15 20

5

10

15

20
-10

-5

0

5

x 10
5

Figure 6.7: Impedance measurements for 5SPOT.
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Figure 6.8: Impedance measurements for 2STREAKS.
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Figure 6.9: Permeability estimate during 38 iterations with VPERM for 5SPOT. Pressure data in the
wells is used for all iterations, baseline and time-lapse impedance data is used in iterations 21 and up.
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Figure 6.10: Objective function during 38 iterations with VPERM for 5SPOT. Pressure data in the
wells is used for all iterations, baseline and time-lapse impedance data is used in iterations 21 and up.
The plots on the right are close-ups of the plots on the left.
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Figure 6.11: Estimated well response after 38 iterations with VPERM for 5SPOT. Pressure data in the
wells is used for all iterations, baseline and time-lapse impedance data is used in iterations 21 and up.
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Figure 6.12: Permeability estimate during 37 iterations with VPERM for 2STREAKS. Pressure data in
the wells is used for all iterations, baseline and time-lapse impedance datais used in iterations 21 and
up.
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Figure 6.13: Objective function during 37 iterations with VPERM for 2STREAKS. Pressure data in the
wells are used for all iterations, baseline and time-lapse impedance data areused in iterations 21 and
up. The plots on the right are close-ups of the plots on the left.
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Figure 6.14: Estimated well response after 37 iterations with VPERM for2STREAKS. Pressure data
in the wells are used for all iterations, baseline and time-lapse impedance data are used in iterations
21 and up.



132 Chapter 6

0 20 40 60 80 100 120 140
455

460

465

470

475

480

485

490

495

500

505

O
bj

ec
tiv

e

Iteration number
0 10 20 30 40 50

455

460

465

470

475

480

485

490

495

500

505

O
bj

ec
tiv

e

Cumulative product of step size and gradient norm

0 10 20 30 40
0

100

200

300

400

500

O
bj

ec
tiv

e

Iteration number
0 10 20 30

0

100

200

300

400

500

O
bj

ec
tiv

e

Cumulative product of step size and gradient norm

28 28.5 29

457.6

457.8

458

458.2

458.4

458.6

458.8

O
b

je
ct

iv
e

Cumulative product of step size and gradient norm

Figure 6.15: Objective function of 5SPOT using RM. Top: all iterations use pressure data and baseline
and time-lapse impedance data. Bottom: impedance data are only used after iteration 20.
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crossplots were made between the history-match and the "future-match", Fig. (6.16), Fig.
(6.17) and Fig. (6.18), where the history-matching workflows were repeated with different
priors/initial estimates and with three different datasets. All datasets contain the pressure
data in the grid blocks that are penetrated by wells. The second and third dataset contain the
baseline impedance data. The second dataset contains the monitor impedance dataand the
third dataset contains the time-lapse impedance data. The "history-match"is quantified by
the Root Mean Square Error (RMSE) between the estimated permeabilityand the synthetic
truth permeability. The "future-match" is quantified by looking at the accuracy of the water
breakthrough curves. In fact, it is the square of the 2-norm of a vector that contains the time
shifts of the estimated well responses to best match the synthetic well responses. For 5SPOT,
Fig. (6.16), 3D seismic data does contribute to better history-matched models, although
these models do not have better predictive capability than models that werehistory-matched
without seismic data. 4D seismic data reduces the outliers in the crossplot, meaning that
the models do have a better future predictive ability, without being better history-matched.
This is also the message of [Walker and Lane (2007)]. It must be noted that3D seismic
data are actually 2D, and 4D are actually 3D, since the reservoir model isonly 2D and not
3D. For 2STREAKS, Fig. (6.18), 3D seismic data have hardly any effect.4D seismic data
give better history-matched models as well as better "future-matched"models. Fig. (6.17)
is a combination of 5SPOT and 2STREAKS; 2STREAKS is used as the synthetic truth and
realizations were created by subtracting the mean from 5SPOT, adding the synthetic truth
of 2STREAKS and performing some random shuffle operations on the permeability fields.
Again, the availability of seismic data removes the outliers in the crossplot.

The VPERM method turns a high-dimensional weak constraint parameter estimation prob-
lem into a lower dimensional strong constraint parameter estimationproblem by choosing
basis functions for the parameters and the model errors inspired by the representer method.
In the absence of model errors, it is very common to reduce the dimensionality of the strong
constraint problem by choosing basis functions for the parameters, for example by calculat-
ing the principal components of the parameter covariance using SVD. Optionally, these basis
functions may also be used for the parameters in a VPERM workflow. Sometimes this even
results in faster convergence or convergence to a better local minimum,Fig. (6.19).

6.5 Conclusions

This chapter introduces a weak constraint Variational Parameter Estimation algorithm with
Model-driven Regularization (VPERM). The regularizations turns the highorder weak con-
straint parameter estimation problem into a lower order strong constraint problem. The basis
functions that perform the regularization are model-driven, like in the Representer Method
(RM). However, if the basis functions are kept fixed in the VPERM, then ananalytical gra-
dient can be obtained, whereas the gradient in the RM is merely an approximation; it is the
direction of a step in an iterative scheme with Picard iteration that is not proven to converge.
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Figure 6.16: History-match future-match crossplot for 5SPOT using 25 different priors and 3 different
datasets.
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Figure 6.17: History-match future-match crossplot for 2STREAKS/5SPOT using 25 different priors and
3 different datasets.
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Figure 6.18: History-match future-match crossplot for 2STREAKS using 25 different priors and 3
different datasets.
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Figure 6.19: Top: VPERM for 5SPOT without seismic data. Bottom: parameter basis functions re-
placed using SVD.
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In the RM, basis functions, or representers, are calculated in everyiteration. In VPERM
the basis functions are not updated at every iteration. This reduces computation time per
iteration, but might also increase the total number of iterations.

Experiments were done with VPERM, attempting to assimilate production data, baseline
and monitor P-wave impedance data and difference P-wave impedance data. From these
experiments, the following can be concluded:

· VPERM produces results that are similar to the results of the RM, but in less computation
time per iteration. Most figures in this chapter show VPERM results and only Fig. (6.15)
shows RM results. However, many experiments were done with both methods.In fact
VPERM was developed when RM provided disappointing results (slow convergence,
too high history-match RMSE) with seismic data, but then performed similar to RM.
Both methods produce good results when only pressure data obtained from the wells are
available.

· If a data assimilation workflow gives reasonable results without seismic data, adding
seismic data is not a trivial exercise. Although additional data does potentially give more
information, it also increases the dimensionality of the parameter estimation problem.
The seismic data introduced new local minima of the objective function in the neighbor-
hood of the initial estimate. Perturbing the initial estimate in a randomdirection will
improve the seismic impedance predictions in some gridblocks, but willalso move pre-
dicted impedance values away from the true impedance in other grid blocks. Ina mean-
square-difference type of objective function these effects are cancelled out if there are as
many improvements as deteriorations. In the direction of the objective function gradient
there are only improvements, as long as the step size is small enough. In theneighbor-
hood of the initial estimate the step size must be chosen so small, that improvement is
only marginal and even below reasonable thresholds. In this research, using pressure data
in all iterations and using seismic data from the 20th iteration gave goodresults. Similar
modifications must be used for other data assimilation workflows. For example, [Vosse-
poel and Douma (2008)] investigated modifications for the Ensemble Kalman Filter to
give good results with saturation data on the 2STREAKS model that was also used in this
chapter.

· Using seismic data with VPERM never gives worse results than not usingseismic data.

· In some cases, assimilating seismic data does not result in better history-matched mod-
els, whereas the models do give better future predictions; outliers in the history-future
crossplot are removed. This confirms the results of [Walker and Lane (2007)]. In other
cases, both the history-match and the "future-match" are improved by seismic data.

· Sometimes convergence can be improved, or a better local minimum of the objective
function can be found, if the parameter basis functions are overwritten with the principal
components of the prior parameter covariance.



Chapter 7
Summary and conclusions

7.1 Summary

In this thesis two data assimilation techniques, the Kalman filter and the Representer Method,
were adopted from other areas of research and, with modifications, appliedto petroleum
reservoir applications. Also a new method was introduced, the VPERM method: Variational
Parameter Estimation Regularized by Model-driven basis functions.

The specific kind of Kalman filter that was used in this thesis, was the Ensemble Square
Root Kalman Filter (ESRKF). To improve the measurement update of the ESRKF, it was
decomposed as a set of measurement updates with more uncertain data. The magnitude of
the added uncertainty was chosen to increase the uncertainty of the data upto the level of the
uncertainty in the parameters of interest. The number of times that every measurement was
assimilated was chosen such that this multiple-updating-strategy only affected the estimated
mean of the parameters but not the estimated covariance. In this way the added uncertainty
is merely a numerical method and does not physically decrease the value ofthe data.

The Representer Method (RM) in this thesis was modified from previous implementations
on four accounts; the number of representers may be (much) smaller than the number of
measurements, the representer functions are defined differently so thatno correction terms
need to be calculated, it can interact with different gradient-based minimization algorithms
and the "measurement representer" was introduced. The number of representers may be cho-
sen by the user or can follow from a singular value decomposition and an energy preserving
criterion. The RM has not been proven to converge for general non-linear problems, neither
for previous implementations nor for the modified version. The number of iterations re-
quired depends very much on the specific problem. The convergence behavior of theclassic
RM and the modified RM should be further examined for larger, field-scale problems. The
classic RM is derived without "measurement representers" because in the case of a linear
measurement operator, the measurement representers are constructedby concatenating the
state representers of different time steps as row blocks into one large matrix. Measurement
representers were introduced to handle more complex measurement operators.

The VPERM method (Variational Parameter Estimation Regularized by Model-driven ba-
sis functions) was introduced in this thesis. The basis functions that performthe regular-
ization are model-driven, like in the RM, and turn the high order weak constraint parameter
estimation problem into a lower order strong constraint problem. Unlike RM, an analytical
gradient can be obtained in VPERM by keeping the basis functions fixed. The "gradient" in
RM is in fact the direction of a step in an iterative scheme with Picard iterations. The ba-
sis functions, or representers, are calculated in RM in every iteration. In VPERM, the basis
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functions are not updated at every iteration. This reduces computation time periteration, but
might also increase the total number of iterations.

The data assimilation algorithms were tested using synthetic reservoirs. Data was gener-
ated with reservoir models and noise was added. The data assimilation algorithms started
with the same reservoir models but with different parameters and areused to reconstruct the
original parameters. This allows the use of two quality measures that are not available for
field cases. The performance of the methods was measured by the root-mean-square-error
(RMSE) between estimated and synthetic true parameters and the root-sum-square time shift
between estimated water breakthrough curves and true water breakthroughcurves in the well
gridblocks.

First, experiments were done to improve the methods. For the Kalman filter,this led to the
choice of ESRKF with duplicated measurements with added uncertainty. It showed the need
to preprocess the sampled parameter ensemble before starting the actual data assimilation.
For the RM some relevant lessons were learned about gradient based methods with or without
Hessian estimating functionality and about line search methods. The RMwas compared
with the classic adjoint method. This method also underlies the RM, but uses user-defined
regularization instead of the more advanced model-driven regularization of the RM.

Using the best settings and options that were found for the methods, the algorithms were
compared to each other investigating their sensitivity with respect to uncertainty information
that the user has to supply. This is a relevant topic since the user usually has to guess how
uncertain the measurements are, whereas the guess itself introduces new uncertainty. The
RM turned out to be less sensitive for the examples that were examined in this thesis.

Finally, the applicability of RM and VPERM was examined with respect to reservoir mod-
els. VPERM produces results that are similar to the results of the RM, but in less computa-
tion time per iteration and without using significantly more iterations. Both methods produce
good results when only production data are assimilated. When seismic datawas added, per-
formance of VPERM never decreased. Depending on which performance measure was used,
seismic data did increase performance. In some cases, assimilating seismic data does not re-
sult in better history-matched models (first performance measure), whereas the models do
give better future predictions (second performance measure). Outliers in the history-future
crossplot are removed. In other cases, both the history-match and the"future-match" are
improved by seismic data.

7.2 Conclusions

It is recommended to use a good line search algorithm. Although (L)BFGS provides a bet-
ter search direction than SD, this does not help the convergence if a fixedstep size is used.
For the strong-constraint case with the adjoint method, the quadratic line search performed
so well for SD, that BFGS could not outperform it. BFGS did perform better with an expo-
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nential line search. The quadratic line search does not work properly incombination with
RM because the slope of the objective along the search direction cannot be calculated accu-
rately. As a result, the quadratic line search underestimates the step size and the algorithm
stops before even finding a local minimum of the objective function. (L)BFGS approximates
a Hessian by monitoring the behavior of the gradient over successive iterations at very little
cost. RM costs about as much computation time as explicitly calculating theHessian. BFGS
can also be applied on top of RM, but this does not contribute to faster convergence.

The RM achieves most of the decrease of the objective function in the first iteration. How
much work is left for successive iterations depends on the magnitude of themodel errors.
If the model errors are large, then the non-linear relation between model parameters and
state variables is overshadowed and the minimization problem becomesmore linear. Hence,
convergence is faster.

Model errors should not be modelled with a higher resolution than the measurements.
Compared to the high resolution model errors that were used to create thesynthetic mea-
surements in this thesis, the variational methods introduced artificial correlation between the
model errors on time intervals in between separate measurements.

The RM always performed better than the filter in terms of RMSE between estimated and
true parameters. This makes sense for parameter estimation problems where the posterior
probability of the parameters given the measurements is not symmetricor even multi-modal.
The recursive filter introduces errors during every measurement update and theerrors accu-
mulate as the filter progresses. An iterative algorithm has the opportunity in every iteration
to reduce the errors that were made in the previous iteration. Filter results can be improved
by choosing the initial ensemble size sufficiently large and by making sure that the ensemble
is de-skewed.

The RM was less sensitive to using a "wrong" prior than a filter for the examples considered
in this thesis in terms of the two performance measures that were used.

VPERM turns the high order weak constraint parameter estimation problem into a lower
order strong constraint problem. If the basis functions are kept fixed in theVPERM then,
unlike the RM, an analytical gradient can be obtained. VPERM produces results that are
similar to the results of the RM, but in less computation time per iteration. Sometimes con-
vergence can be improved or a better local minimum of the objective functioncan be found,
if the parameter basis functions of VPERM are overwritten with the principal components of
the prior parameter covariance.

Adding seismic data to a history-matching application does not necessarily give better re-
sults. Although additional data do potentially give more information, they alsoincrease the
dimensionality of the parameter estimation problem. The seismic data introduced new local
minima of the objective function in the neighborhood of the initial estimate.The seismic data
become valuable if the data assimilation methods are adapted to handle the increased com-
plexity that comes with the introduction of the extra data. Using seismic data with VPERM
never produces worse results than not using seismic data. In some cases, assimilating seis-
mic data does not result in better history-matched models, whereas the models do give better
future predictions; outliers in the history-future crossplot are removed.





Nomenclature

ℵ set of all grid block indices[−]
ℵξ set of indices of neighbors of grid blockξ [−]
η index of neighbor of grid blockξ [#]
λt total mobility

[
m−2 s

]

λα mobility of component/phaseα
[
m−2 s

]

µξηα viscosity of component/phaseα onξη-interface
[
kg m−1 s−1

]

µm shear modulus of matrix[Pa]
ωξ well factor in grid blockξ

[
m3
]

⊗ element-wise multiplication operator
φξ porosity of grid blockξ [−]
λj Lagrange multiplier/adjoint state vector for intervaltj−1 - tj
µθ prior model parameters
θ parameter vector
ε model error vector
εn model errors

[
kg s−1

]

b model parameters in low order space or representer coefficients
Jfx1 Jacobian off1 w.r.t. x [−]
K Kalman matrix
m vector with measurements
Pθ model parameter uncertainty covariance
Pε model error covariance
Py measurement uncertainty covariance
Q selection matrix
Rλi adjoint representers
Rθ parameter representers
Rεi model error representers
Rxi state representers
Ry measurement representers
x time-dependent state vector
xn state vector at timetn
xcorr
tj correction term used in classic representer method

y vector with measurements
ρξηα density of component/phaseα onξη-interface

[
kg m−3

]

ρξα density of component/phaseα in grid blockξ
[
kg m−3

]

ρb bulk density
[
kg m−3

]

ρs density of sandstone
[
kg m−3

]

q̂α volume (at STC) of injected/produced liquid per grid block volume[s−1]
λ̃α mobility of component/phaseα including permeability[s]
q̃α mass injection/production density of component/phaseα

[
kg m−3 s−1

]

ξ index of grid blockξ [#]
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Aξη area ofξη-interface
[
m2
]

bα formation volume factor of phaseα [−]
hξη distance between centers of grid blocksξ andη [m]
J objective function
kξη permeability onξη-interface in perpendicular direction

[
m2
]

kξηrα relative permeability of component/phaseα onξη-interface[−]
Kf bulk modulus offluid [Pa]
Km bulk modulus of matrix[Pa]
Ko bulk modulus of oil[Pa]
Ks bulk modulus of sandstone[Pa]
Kw bulk modulus of water[Pa]
Kff fluid filled bulk modulus[Pa]
pξα pressure of component/phaseα in grid blockξ

[
kg m−1 s−2

]

pwb wellbore pressure
[
kg m−1 s−2

]

Q wellboreflow rate at the surface
[
m3 s−1

]

Qξη
α massflux throughξη-interface

[
m3 s−1

]

qξα injection/production of component/phaseα in grid blockξ
[
kg s−1

]

Rβα solutionβ-α ratio [−]
Sξ
α saturation of component/phaseα in grid blockξ [−]

t time [s]
tξηα transmissibility of component/phaseα onξη-interface[m s]
V ξ volume of grid blockξ

[
m3
]

Vp P-wave velocity
[
m s−1

]

Vs S-wave velocity
[
m s−1

]

Zp P-wave impedance
[
kg m−2 s−1

]

Zs S-wave impedance
[
kg m−2 s−1

]
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Rock-physics derivatives

Derivatives with respect to pressure:
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Derivatives with respect to saturation:
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Summary

The research presented in this thesis aims at improving computer modelsthat allow simula-
tions of water, oil and gasflows in subsurface petroleum reservoirs. This is done by integrating,
or assimilating, measurements into physics-bases models. In recentyears petroleum technol-
ogy has developed rapidly. Nowadays wells can be drilled to a depth of up to 10km, not
just vertically, but also at an angle, horizontally or with branches. Moreover, downhole valves
can be installed which can be opened or closed from the surface and advanced sensors can
be placed in the subsurface. This technology has the potential to drain petroleum reservoirs
much more efficiently. In order to do so, the technology needs to be used sensibly, which re-
quires adequate knowledge of subsurface physical processes. Large amounts of measurements
can contribute to this, but conventional methods are often ad hoc and not suited to handle the
large amounts of data that are available nowadays. Good “data assimilation” methods are very
important to ensure that the growing demand for energy in the near future can be met.

The objective of this thesis is to apply data assimilation techniques,invented and developed
in other areas of research, to petroleum reservoir engineering, to modifythem to be better
suited for their new application, and to investigate how they can helpto integrate both pro-
duction data and seismic data to support decision-making in petroleum reservoir management.
Two data assimilation techniques, the Kalman filter and the Representer Method, were adopted
from other areas of research and, with modifications, applied to petroleum reservoir applica-
tions. Also the VPERM method, Variational Parameter Estimation Regularized by Model-
driven basis functions, was introduced. The measurement update step of the Kalman filter was
split into a set of update steps that are less sensitive to errors thatare introduced because the
reservoir model or the sensor model are nonlinear. Also the initialization of the filter with
samples from the uncertainty in the reservoir permeability was investigated. The Represen-
ter Method (RM) in this thesis was modified from previous implementationson four accounts;
the number of representers may be smaller than the number of measurements, the representer
functions are defined differently so no correction terms need to be calculated, it can interact
with different gradient-based minimization algorithms and the "measurement representer" was
introduced. The VPERM method was inspired by RM and uses model-driven regularization
with basis functions that are very similar to RM. VPERM turns the high order weak constraint
parameter estimation problem into a lower order strong constraint problem.Unlike RM, an
analytical gradient can be obtained in VPERM by keeping the basis functions fixed.

Synthetic reservoirs were used to test the data assimilation algorithms. Two quality mea-
sures were specified to quantify the performance of the methods, the root-mean-square-error
(RMSE) between estimated and synthetic true parameters and the root-sum-square time shift
between estimated water breakthrough curves and true water breakthrough curves in the well
gridblocks. These quality measures are only applicable to synthetic cases and not to field cases.

First, experiments were done to improve the methods. For the Kalman filter this led to a spe-
cific variation of Kalman filter, the ESRKF, with an improved measurement update step and
a preprocessing method for the initialized ensemble that was used before starting the actual
data assimilation. For the RM some relevant lessons were learned about gradient based meth-
ods with or without Hessian estimating functionality and about line search methods. The RM
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was compared with the classic adjoint method. This method also underlies the RM, but ap-
plies user-defined regularization instead of the more advanced model-driven regularization of
the RM.

Using the best settings and options that were found for the methods, the algorithms were
compared to each other investigating their sensitivity with respect to uncertainty information
that the user has to supply. This is a relevant topic since the user usually hasto guess how
uncertain the measurements are, whereas the guess itself introducesnew uncertainty. The RM
turned out to be less sensitive for the examples that were examined in thisthesis.

Finally, the applicability of RM and VPERM was examined with respect to seismic data
and reservoir models. VPERM produces results that are similar to the results of the RM, but
in less computation time per iteration and without using significantly moreiterations. Both
methods produce good results when only production data are assimilated. When seismic data
were added, performance of VPERM never decreased. Depending on which performance
measure was used, seismic data did increase performance. In some cases, assimilating seis-
mic data does not result in better history-matched models, whereas the models do give better
future predictions. Outliers in the history-future crossplot are removed.In other cases, both
the history-match and the "future-match" are improved by seismic data.Seismic data do po-
tentially provide additional information, but also increase the dimensionality of the parameter
estimation problem. Data assimilation methods must be and have been adaptedto handle this
increased complexity to give value to the seismic data.



Samenvatting

Het onderzoek, waarop dit proefschrift is gebaseerd, richt zich op het verbeteren van compu-
termodellen waarmee water-, olie- en gasstromingen in ondergrondse reservoirs kunnen wor-
den doorgerekend. Dit gebeurt door het integreren, ofwel assimileren, van meetgegevens in
modellen die gebaseerd zijn op fysische principes. De afgelopen jaren is de ontwikkeling van
oliewinningstechnologie snel gegaan. Putten kunnen tegenwoordig tot wel 10 km diepge-
boord worden, en niet alleen vertikaal, maar ook om een hoek, horizontaal of met aftakkingen.
Bovendien kunnen er tegenwoordig ondergrondse kranen geïnstalleerd worden die van boven
de grond geopend of gesloten kunnen worden en kunnen zeer geavanceerde sensoren onder de
grond geplaatst worden. Deze technologie heeft de potentie om oliereservoirs veel efficiënter
leeg te halen. Hiertoe moet de technologie wel verstandig benut worden, waarvoor een goed
begrip van de ondergrondse fysische processen nodig is. De vele meetgegeven kunnen hier-
aan bijdragen, maar conventionele methodes zijn vaak erg ad hoc en niet berekend op de grote
hoeveelheden data die tegenwoordig beschikbaar zijn. Goede “data assimilatie”-methoden zijn
dus zeer belangrijk om in de nabije toekomst aan de groeiende vraag naar energie te kunnen
voldoen.

Het doel van dit proefschrift is het toepassen van data assimilatietechnieken, uitgevonden
en ontwikkeld in andere takken van onderzoek, in petroleum reservoir engineering, ze te mo-
dificeren om ze beter geschikt te maken voor hun nieuwe toepassing, en uit te zoeken hoe
ze van dienst kunnen zijn om zowel productie data als seismische data te benutten om het
beslissingsproces in petroleum reservoir management te ondersteunen. Twee data assimilatie
technieken, de Kalman filter en de Representer Methode, zijn gekopieerd uit andere weten-
schappen en gemodificeerd voor toepassing in petroleum reservoir engineering. Ook is de
VPERM methode, Variational Parameter Estimation Regularized by Model-driven basis func-
tions, geïntroduceerd. De measurement-update stap van de Kalman filter isopgesplitst in een
set van kleinere update stappen die minder gevoelig zijn voor fouten die veroorzaakt worden
doordat het reservoir model of het sensor model niet-lineair zijn. Ook is de initialisatie van de
filter met realisaties uit de onzekere ondergrondse gesteente doorstroombaarheid onderzocht.
De Representer Methode (RM) in dit proefschrift is op vier punten afgewekenvan eerdere
implementaties; het aantal representers kan kleiner zijn dan het aantal metingen, de represen-
ter functies zijn op een andere manier gedefinieerd zodat er geen correctie termen berekend
hoeven te worden, het kan ingebed worden in verschillende gradient-gebaseerde minimalisatie
algoritmes en de "meet representer" is geïntroduceerd. De VPERM methode was geïnspireerd
door de RM en gebruikt model-gedreven regularisatie met basis functies dieerg lijken op die
van de RM. VPERM verandert het hoogdimensionale weak-constraint parameterschattings-
probleem in een lager-dimensionaal strong-constraint probleem. In tegenstelling tot RM is er
bij VPERM een analytische gradient beschikbaar door de basis functies constantte houden.

Synthetische reservoirs zijn gebruikt om de data assimilatie algoritmes te testen. Twee
kwaliteitsmaten zijn gebruikt om de performance van de methodes te kwantificeren. De eerste
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is de root-mean-square-error (RMSE) tussen de geschatte parametersen de werkelijke syn-
thetische parameters. De tweede is de root-sum-square van de time-shift tussen de geschatte
water doorbraak grafieken en de werkelijke water doorbraak grafieken van alle gridblocks met
een olieput. Deze kwaliteitsmaten zijn alleen toepasbaar voor synthetische experimenten en
niet voor field cases.

Ten eerste zijn er experimenten uitgevoerd om de methodes te verbeteren. Voor de Kalman
filter heeft dit geleid tot een specifieke variatie van de Kalman filter, de ESRKF, met een ver-
beterde measurement-update stap en een preprocessing methode voor het initialiseren van het
ensemble voordat de eigenlijke data assimilatie plaatsvindt. Voor de RM konden enkele rele-
vante lessen geleerd worden over gradient-gebaseerde methodes metof zonder functionaliteit
voor het schatten van de Hessian en over line-search methodes. De RM is vergeleken met
de klassieke adjoint methode. Deze methode is tevens de basis voor de RM, maar past user-
defined regularisatie toe in plaats van de meer geavanceerde model-driven regularisatie van de
RM.

Met de beste settings en opties die voor de methodes gevonden werden, zijn de metho-
des met elkaar vergeleken en is uitgezocht hoe gevoelig de methodes zijn met betrekking tot
informatie die de gebruiker aan de methodes dient te verschaffen. Dit iseen relevant onder-
werp, aangezien de gebruiker doorgaans moet schatten hoe onzeker de metingen zijn, terwijl
de schatting zelf weer nieuwe onzekerheid introduceert. De RM bleek minder gevoelig in het
geval van de voorbeelden die in dit proefschrift zijn beschouwd.

Tenslotte is de toepasbaarheid van de RM en VPERM voor seismische data enreservoir
modellen onderzocht. VPERM produceert resultaten die vergelijkbaar zijnmet de resultaten
van de RM, maar in minder rekentijd per iteratie en zonder significant meer iteraties nodig
te hebben. Beide methodes presteren goed als er alleen maar productie data gebruikt wor-
den. Zodra seismische data wordt toegevoegd, wordt de performance van VPERMdaar nooit
slechter van. Afhankelijk van welke performancemaat gebruikt wordt, wordtde performance
juist verhoogd door het toevoegen van seismische data. In sommige gevallenleidt het assimi-
leren van seismische data niet noodzakelijk tot modellen die beter bij de geschiedenis van het
reservoir aansluiten, terwijl de modellen wel beter geschikt worden om voorspellingen mee
te maken. Uitschieters in de geschiedenis-toekomst crossplot worden verwijderd. In andere
gevallen worden zowel de "history-match" als de "future-match" verbeterd doorseismische
data. Seismische data bevatten in potentie extra informatie naast produktie data, maar ze ver-
hogen ook de dimensionaliteit van het parameterschattingsprobleem. Dataassimilatie metho-
des moeten aangepast worden, en zijn in dit proefschrift aangepast, om tekunnen omgaan met
de verhoogde complexiteit en zo de waarde van seismische data volledig te benutten.
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