Data assimilation in reservoir management

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 19 januari 2009 om 15:00 uur

door

Joris Rombout ROMMELSE

ingenieur in de technische wiskunde

geboren te Haarlem



Dit proefschrift is goedgekeurd door de promotoren:
Prof. dr. ir. A.W. Heemink
Prof. dr. ir. J.D. Jansen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. ir. J.D. Jansen, Technische Universiteit Delft and
Shell International E&P, promotor

Prof. dr. ir. AW. Heemink, Technische Universiteit Delft, promotor

Prof. dr. A.C. Reynolds, The University of Tulsa

Prof. dr. D.B. McLaughlin, Massachusetts Institute of Technology

Prof. dr. ir. P.M.J. Van den Hof, = Technische Universiteit Delft
Prof. ir. C.P.J.W. Van Kruijsdijk, Technische Universiteit Delftd Shell Canada
Dr. ir. C.B.M. Te Stroet, TNO - NITG

The research for and printing of this thesis was financially
supported by the Delphi consortium.
The printing of this thesis was financially supported by the J.E. Jus@3tichting.

Cover design: Han Verhoeven
Paranymphs: Gijs Rommelse & Nanda Lambregts-Rommelse

An electronic version of this thesis is available from http://wwwdry.tudelft.nl.
ISBN: 978-90-8891-079-1

Keywords: petroleum reservoir management, history-matching, data sgimi
filters and variational methods, production and seismic data

Copyright(c) 2008 by J.R. Rommelse

All rights reserved. No part of the material protected by this copyrightaatiay
be reproduced or utilised in any form or by any means, electronic or meahanic
including photocopying, recording or by any information storage and relrieva
system, without written permission from the author.

Printed by Proefschriftmaken, Oisterwijk, The Netherlands



1

Contents

INtrOUCHION . . . 1

1.1 The Exploration & Productionindustry ............. ... ... e, 1
1.1.1 Energyandoildemand .............. ... . .. i 1
1.1.2 OilField Development ............ ... i iiaaan . 3
1.1.3  Smartwells . ... e 3
114 SEISMICS . . ittt e 4

1.2 Closed-loop reservoirmanagement ................cc'viimiine.n....D
1.3 Research objectives and motivation ..................coeueevv......B

1.4 Thesisoutline ......... . e e e 7
Reservoir Simulation. . . ... e 9
2.1 Flow equations . . ...t e 9
2.1.1 From mass balance and DarcytoODE ................. .......9
212 FromODEtoPDEandback................... ... ... ..... 12
2.1.3 Discretizationintime ............. i e e 13
2.1.4 Wellmodel . ... 16
215 Simulating ... 17
2.1.6 MorerealisticphysiCs . ......... .. i 17
2.1.7  USErinput . ....o i 18
2.1.8 Simulating in weak constraint or stochastic mode ...............19
2.2 Simulator SENSItIVItIES . . ... oo e 21
2.2.1 Jacobians fornon-linearsolver .............. ... ... . .. cc.o.. 21
2.2.2 Irfluence of model parameters on systemstates .. ..................
2.2.3 Jacobiansforsensitivities ........... ... e 23
Data Assimilation . ............ i e e e 25
3.1 INtroduction . . ... e 25
3.2 Bayesiandataassimilation ............. ... .. . e 26
321 Bayesrule ... 26
3.22 SPECIAl CASES . ..ttt e 27
3.3 Variational data assimilation . ........... ... .. . 28
3.3.1 Variationalcalculus . ......... ... e 29

3.3.2 The reservoir simulator as a strong constraint. . .................30



3.3.3 The reservoir simulator as a weak constraint .....................32
3.3.4 Regularization . ........... i e 32
3.35 RepresenterMethod ........... ... ... .. . i 35
3.3.6  Approximated gradient . .......... ... . 38
34 FIeriNg . .o 40
3.4.1 Classical Kalman filter for linearsystems.....................40
3.4.2 Ensemble Kalman filter for non-linear systems ................40
3.4.3 EnKEtowards a non-linear measurementupdate. .................. 44
344 SMOOther ... ... 45
3.4.5 Adapting a filter to handle seismic data with time-corrélateors ... .46
3.4.6  Other low-order approximations . .............. ..ot mmun.. 46
3.5 Hybridmethod ......... ... . . . e 47
3.5.1 Expectation maximization................. it 47
3.5.2 Integrating a filter in a variational method .....................47

3.6 Relation between data assimilation methods ........... . couue......

4 An efficient weak-constraint gradient-based parameter estimation

algorithm using representer expansions . .. ........coverirereennnnnn... 51
4.1 INtrodUCHION . . .ot 52
4.1.1 Gradient-based parameter estimation .............ccuuu.....52
4.1.2 Model errorsstrong and weak constraints ........................ 52
4.1.3  NOtation . . ..o 53
4.1.4 RepresenterMethod ......... ... ... .. . i 54
4.2  Gradient of the strong constraint minimization problem ................ 55
4.2.1 Obtainingagradient ...............c it 55
422 Usingthegradient .. ........ ... i 56
4.3 Gradient of the weak constraint minimization problem . ................ 56
4.3.1 Localminimizer . ...... ... e 56
432 Basisfunctions ............ .. 57
4.3.3 Representer equations .. .........o.ii it —— 58
4.3.4 Representer Method as iterative minimizer.................... 59
4.3.5 Obtainingagradient ................0 it 60
4.3.6 Computational issuesin using the gradient...................61
437 ChooSIN@) . ..o 61
4.4  Numerical experiments: twin experiment. .. ...........mumuenennn.. 62
441 Inverted 5-SPot. ...t 62
4.4.2 Reservoir simulator in weak or stochastic mode .. .............. .62
4.4.3 Permeabilityreconstructed . ......... .. .. e 66
4.4.4  Additional output from minimization process ..................71
445 OrderreducCtion .. ...ttt 71
A5 DISCUSSION . . o ottt et et e e e 74

1 This chapter is based olRommelsest al. (2007), which was published as TUD-DIAM
report 07-05 and submitted to SPE Journal



4.5.1 Strong constraint solver and the RM as post-processor . ... .....74
452 Variabletime steps ... ..ot 74
453 Measure Of SUCCESS . .. v vttt ittt et e e 75
4.5.4  Use of parameter representers to quantify the impact of measusenmés
455 Dataselection ....... ... 76
456 Regularization . ...........c. i e 76
4.5.7 Computational efficiency. .......... ... .. ... . . 76
4.6 CONCIUSION ..ot 77
4.6.1 Recapitulation . ........... . e 77
4.6.2 CONCIUSIONS . . .ottt e —— 77
5 Comparison of the Ensemble Kalman Filter and a modified Represeet
Method for sensitivity to priordata? . . ...........ouiiirriiieeeaae.. 81
5.1 INtroduCtion . . ... e 81
5.1.1 Strong and weak constraint reservoir simulation .................82
5.1.2 Bayesiandata-assimilation ............... ... . . oo 83
5.2 Ensemble Filter . .. ... e 84
5.2.0  ENKF ..o 84
5.2.2 ESRKF .. e 85
5.2.3 Duplicatedmeasurements ................ it innnn....86
5.3 RepresenterMethod ......... . .. i e 87
5.3.1 Objective function and derivatives ............. ... ceen... 87
5.3.2 Local minimizer ........ ... e 89
5.3.3 Representer eXpansions . .. ....o.vt it e 89
5.3.4 Representer equations . .............iiit it ——— 90
5.4 Numerical eXperiments . ...t e 92
5.4.1 Correct prior and prior with exponentially decreasing correidéingth . 92
5,42 Filterresults. ... ... e 94
5.4.3 Representerresults ............. i e 95
5.4.4  Alternative quantification of success............cuuu.........98
5.5 CONCIUSIONS . . ottt e 109
6 \Variational estimation of permeability and model errors from 3D and 4D
seismic data using model-driven regularizatio® . ....................... 111
6.1  INtroduCtion . . ... o 112
6.1.1 Variational parameter estimation................ . .c.cc.... 112
6.1.2 Model errorsstrong and weak constraints .. ..................... 113
6.1.3 Regularization ......... ... ... i 113
6.2 TheVPERMmethod. .. ... ... .. .. it e e 113

2 This chapter is based olRommelseet al. (2008a), which was published as TUD-DIAM
report 08-16 and submitted to Computational Geosciences

3 This chapter is based oRpmmelseet al. (2008b), which was published as TUD-DIAM
report 08-18 and submitted to Computational Geosciences



6.2.1 High dimensional gradient of the weak constraint problem ..........
6.2.2 Low dimensional gradient of a strong constraint problem .. .. ... 115 .
6.2.3 Choosingthe basisfunctions................. .. ... ... . uuu 116
6.2.4 Quadraticlinesearch............. .. it mmnn . 117
6.3 Themodels .. ... .. 118
6.3.1 Weak constraint reservoir simulator ........................118
6.3.2 Rock-physicsmodel .......... ... ... .. . e, 118
6.3.3 Measuring impedance with syntheticnoise ...................120
6.4 Numerical eXperiments . ...t e 121
6.5  CONCIUSIONS . . oottt 133
7 Summary and CoONCIUSIONS. . . ... .. i e 139
7.1 SUMMANY .« oottt e e e e e e e e e e e e e 139
7.2 CONCIUSIONS . . oottt e e 140
NOMENCIAtUIE . . . o 143
Bibliography ... ..o 145
A Rock-physicsderivatives. . . ... 153
SUMIM ALY . oottt e e e e e e e e e 155
SameENVAttiNg. . . .o 157
Acknowledgments. . .. ... e 159

Aboutthe author . . ... .. 161



1.1 The Exploration & Production industry
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Chapter 1
Introduction

Energy and oil demand

Due to increasing prosperity, [EIA (2006)] predicts an increase in waiagy consumption
by 55% until 2030, Fig (1.1). Most of this energy will have to come from oil, gas@oal,
Fig. (1.2). Sometimesi itis suggested that there is not enough ail in the sudestarfaeet this
demand. This is true in terms of oil that is currently economically @blit. However, new
technologies or increasing oil price, Fig. (1.3), make the concept "ecoathynicofitable”
flexible. Due to thidlexible definition, world oil reserves are still increasing, Fig. (1.4).
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Figure 1.4: World crude oil reserves. Sourcé&lA (2006)

1.1.2 Oil Field Development
Conventional production from an oil field is categorized in three stages:

1. During primary recovery, the natural pressure of the reservoir pusadsytirocarbons
to the production wells. Wells can be stimulated by pumping or by gasAlfto
the flow through the reservoir near the wells can be improved by fracturing thie nea
wellbore by injecting water.

2. As fluids are produced, the pressure in the reservoir decreases. In the secondary

recovery stage, water or gas is (re)injected to push the hydrocanmomste injection
wells towards the production wells.

3. The tertiary recovery stage attempts to changdithe properties. The viscosity of
the oil can sometimes be decreased by injecting carbondioxide or othes,gaiskbg
heating the reservoir. Water may be blocked by turning it into gl ahemicals that
are dissolved in injected oil.

1.1.3 Smart wells

Recently, new technology has been developed to better monitor and contfalithow
through the reservoir. It has become possible to drill wells "around the caandrto drill
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wells off existing wells, creating a complex subsurface network of Sivetls. Due to
Inflow- or Interval Control Valves (ICV’s) it is possible to shut-in a partaofvell and still
keep producing from deeper parts of the well. Down-hole sensors allow fdy ceatinuous
monitoring of pressurejow rate,fluid composition, temperature or even electro magnetic
signals of wells and near-well areas.
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Figure 1.5: Smart Well

1.1.4 Seismics

Due to research in seismics and especially time-lapse sejsinissiow possible to track
changes ofluid composition in the subsurface at locations away from the wells. Thaiseis
process consists of three stages, acquiring seismic data, structagaig and characterizing
the subsurface [Berkhout (2004)]. In the acquisition stage, acoustic tic eldsations are
generated by vibrator units, air guns or explosions. These vibrations thawath the earth

as waves that get diffracted orfiected where the subsurface properties are discontinuous.
The rdlected waves are recorded at the surface. The second stage of seismssinptries

to reconstruct how these waves might have traveled through the subsurfadbdrdata that
were recorded at the surface. This gives information about the layering anocthprop-
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erties in the subsurface. This information can then be used in the ogseimaracterization
stage to better understand how water and hydrocarfbonghrough the reservoir.

The research for this thesis touches the third stage of the seismic grotesapter 6
synthetic seismic data are used in addition to production data to getaladerstanding of
two imaginary petroleum reservoirs.

1.2 Closed-loop reservoir management

The term closed loop reservoir management [Jaeseh (2005)] is used when a data as-
similation routine is present in addition to a reservoir simulator amdptimization routine
(Fig. 1.6). Optimization can be done over the lifetime of the reservoir ahamnt-term. The
optimal strategy can for example contain injectitow rates, bottomhole pressures in pro-
duction wells or valve settings that maximize the Net Present Value. Thmaltrategy
can be applied to the reservoir simulator and to the real reservsinglad sensor model, it
is possible to predict measurements. A discrepancy between the "pdedietsurements”
and the "measured measurements" may indicate that the simulator beaddrected. This
is the aim of data assimilation. In state estimation, the output of theaion, typically pres-
sure and saturation values, is updated. Optionally the simulator’s yimdgplarameters, like
permeability or porosity, may be updated. This is called parameieraiin. Parameter es-
timation is more appropriate to reservoir management, since statetsn does not alter
the simulator’s ability to make future predictions. Traditionally fazameters of the reser-
voir simulator are history-matched a few times during the lifetiménefreservoir. However
by integrating sensors in "smart" wells, it has become possible todwetecavailable on a
weekly or daily basis. When formulated in a general way, data assionilatgorithms pro-
vide a framework in which data from varying different sources, likesses in "smart" wells
or seismics, can together contribute to updating model parameters of wliffextures of
uncertainty, like permeability, porosity or PVT data. "The loop is closeuen data assimi-
lation routines are put in place to provide nearly continuous reservoir anogt From a
systems engineering point of view, there are actually two closed lbes both an opti-
mization routine and a data assimilation routine are manipulating the outthe céservoir
simulator.
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Figure 1.6: Closed-loop reservoir management

1.3 Research objectives and motivation

The objective of this thesis is formulated as:

Apply data assimilation techniques, invented and developed in other afeas
search, to petroleum reservoir engineering, modify them to be better $oiteabir

new application, and investigate how they can help to integrate both production
data and seismic data to support decision-making in petroleum reservoagean
ment.

The development of new hardware like smart wells and downhole sensors, openg up ne
possibilities to better produce hydrocarbon reservoirs. Smart wédls &r a much more
flexible and dynamic way of operating facilities than conventional wéltsvever, without
a better understanding of the subsurface, a smart well is just as "dwsrdtaenventional
well. New hardware allows for morexibility in producing hydrocarbons from the reser-
voir, but new software is also needed to supporidbeision-makingrocess. Improvements
of sensors in the smart wells and advancements in seismic resgadtite large quantities
of production- and seismic datéat cannot just be used in conventional history-matching.
Traditional history-matching is usually only performed at the reett@pment of a hydrocar-
bon reservoitrit does not take into account the uncertainties in the available data\atdaa
applying ad hoc techniques. The availability of (much) higher frequency datasnitake
teresting to adopdata assimilationtechniquegrom other fields of researdike oceanogra-
phy or atmospheric researchgetroleum reservoir engineerind\pplying data assimilation



1.4. Thesis outline 7

techniques to a new area of research introduces new criteria to ra¢hasperformance of
the data assimilation algorithms and the methods mustdaiified for their new application

With current technology, for example, we can not control the atmosphere or thesydrit

we do wish to manage subsurfdbad flows.

1.4 Thesis outline

This thesis was built around three articles. Chapter 4 proposes a ratdiiof the Repre-
senter Method (RM) and shows the applicability by estimating permgatvdim production
data. In chapter 5 the robustness of RM is compared with a modification of tteenibles
Kalman Filter EnKF) with respect to errors in prior information. Chagténtroduces the
VPERM method and illustrates the added value of assimilating seatgcin conjunction
with production data. Since the articles were written to be publistettalone in the open
literature, they contain some overlap. They share, for example, simiitadiictions of basic
variational algorithms and filters.

The articles are preceded by a general introduction, chapter 1, a discusgetraaum
reservoir simulation, chapter 2, and an introduction to data assiom|athapter 3. Chapter
7 concludes the thesis.






Chapter 2
Reservoir Simulation

Section 2.1 discusses a numerical model that can be used to simulfitedfiew through
the pores of a porous reservoir rock in the subsurface. It is not meant toak#iee details
about reservoir simulatignit only deals with physical processes that were considered in
this research. A discussion on more complicated reservoir sionglet presented in section
2.1.6. Section 2.1.7 indicates what information a user must provide béfosrmulator can
be run. Sections 2.1.6 and 2.1.7 indicate how simulators can produce wrong agslittow
much uncertainty must be dealt with by data assimilation methods.

When data are used to improve the reservoir simulator’s forecastpapdity, or when the
simulator is used to calculate optimal production strategies, soetieaais rely on the sensi-
tivity of the reservoir simulator’s output with respect to certain mgeebhmeters or control
parameters. Using numerical perturbations, as described in sectiois ar2 obvious, but
computationally not very efficient way to calculate these. Analytiaaliitaining gradients in
a way that is computationally feasible will be discussed later in@e8t 3.

2.1 Flow equations

2.1.1 From mass balance and Darcy to ODE

No matter how many approximations are made to speed up a simulatoeasédts imple-
mentation, every reservoir simulator contains a mass balance peripl Darcy’s law. If
the reservoir is divided in arbitrarily shaped volumes or grid blocks, themmass balance
equation performs bookkeeping of the water and hydrocarbon massedluidhghases, and
states that the accumulation of mass in grid block X is equal to the mass thébws in
from its neighboring grid blocks € X, plus a source/sink term

O (vegtsies) = 3 Qe + b, 21)

neERe

where
t [s]: time,
N [—]: set of all grid block indices,
¢ [#]: index of grid blocke,
V¢ [m?]: volume of grid blocke,
¢* [—]: porosity of grid block,
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S¢ [—]: saturation of component/phasen grid blocké,

0%, [kg m~=3]: density of component/phasein grid blocke,

7 [#]: index of neighbor of grid block,

N [—]: set of indices of neighbors of grid blogk

Q%" [m? s7']: massflux through¢n-interface,

P& [kg m~3]: density of component/phaseon {n-interface,

s [kg s*l]: injection/production of component/phasen grid block&.

Darcy’s law
kST AT pn — pS
én . Mo @ «
Qa - Mgn hgn I (22)

relates these mashixes Q5 through the¢n-interface with aread*” [m?| to a pressure
differencep — p§, [Pa = kg m~' s=2] over distancé®” [m] using

KkSn [mz]: permeability of component/phaaeon {n-interface,

ush [kg m~! s*l]: viscosity of component/phageon {n-interface.

The permeabilityt$” is usually split into a rock dependent permeabilify [m?] and a
fluid dependent relative permeability! [—].

For a two-phase (water-oil) reservoir without gravity or capillarggaure, a simulator can
be formulated as an ordinary differential equation (ODE)
d

5 (016 =£2 (). (2.3)

13

where the state vecter = [IS)} = [ {{gé }}5@‘] contains the pressure$ and water satura-
wfeen

tions S, of all grid blocks,

VEGESEps,
0= e, -

and
{qi + 2t (" —Pg)}
N
£ (x) = o e (2.5)
{q% + 2t (" —pg)}
nERe gen
where the transmissibilitie§” andt5” [m s| are defined as
ENfEn AEM HEN
#n — w (2.6)

Ngn hén
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The fluid-dependent part of the transmissibility is called the mobility, m =2 s], and is
defined as
A, = FraPa 2.7)
Ko
Sometimes the rock-dependent permeability is included in the mobilitjs]:

- kk
Ay = Lrala (2.8)
Ko

From grid block centers to interfaces

The state variables are usually defined at the grid block centers dieastrepresentative
for the entire grid block. Evaluating}, Eq. (2.5), requires state-dependfnid properties at
the grid block interfaces. Two strategies exigst the reservoir states are interpolated to the
interfaces and then tHuid properties are calculated, or vice versa. Here the former method
is used

3 7
P& = p+p” (2.9)

Sén St ifpt <p = (2.10)

{ S¢ if p& > p”

|
n
=
+
N
M
|
n
=
=
=
™
|
S
=
|

with the Heaviside functioi? (x) defined as

1 ifxz>0
H@x)=<¢ 0 ifz<0 . (2.11)
% ifx=0

Sometimes correlation of the permeability values at the grid blockfates is modelled by
defining permeability values at the grid block centers and interpoltiam to the interfaces.
Appropriate interpolation methods are under discussion [€lag) (2006)] and applicability
of these methods depend on the configuration of the reservoir rock and thestimehthe
fluid flow. Here the harmonic average is used

—1
k)T (k) %Sk
&n — (— _
] = ( 5 = (2.12)
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2.1.2 From ODE to PDE and back

ODE to PDE
When the ODE
d FEM €N AEM &M pn — €
_ E8QE £ — ro P&’ Pa — Pa 13
dt (V (b SaPa) - Z Mgn hgn +qaa (213)
nERe *

is applied to an infinitely small volumg = AxAyAz, then

e Vh v’

vye{z—,aty=,yt 2

d kkrap, A Qo
L @S = Y +}<7_)7(p3_p°*)+_ (214)

where subscripty refers to the interfaces of the small volume and superserigfers to
neighboring small volumes, or equivalently

p (kkmpa> PZ;*Pa _ (kkmpa> palpf

d _ He, A+ v He, 5 v '

7 (0Sap) = D A +3 (219
’YE{JE,y,Z}

When Taylor series are substituted, then the partial differdesdiaation (PDE)
0 0 (kkrap, Opa -
— o) = By T s 2.16
o (65a0,) We{;,z}% ( P ) +3 (2.16)

is obtained. Allowing for anisotropy in the permeability, the PDE bemme

) Frepa ~
a (¢Sapa) =V (K—pvpa> + Go, (217)

83

whereg, [kg m~* s~'] now denotes a mass injection/production density.

Discretization in space

Several methods can be used to discretize the PDE Eq. (2.17) in spaceraih@ack into
an ODE. Eq. (2.3) is just one example, but different ODE’s can be deriveddiStretization
methods can generally be categorized as finite difference [Strikvi20dd)], finite volume
[Versteeg and Malalasekra (1996)] or finite element methods [Zienki@valz(2005)]. Ina
finite difference discretization, the derivatives in the PDE are repléy differences, which
are usually calculated on a user-defined stencil or structured grid. Fahibee and finite el-
ement methods are more suitable for unstructured grids. In a finite el@ne¢hod, the state
variables are defined at the vertices of the grid blocks. The user mu#fyspemany ba-
sis functions as there are vertices. A solution is looked for as a weightedsthese basis
functions. In a finite volume method, the state variables are defined at the gekl den-
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ters and the ODE is obtained by integrating the PDE over every grid bloblen\whefluxes
through the grid block interfaces are calculated from the state vasiablthe centers of the
two adjacent grid blocks, the same ODE as in section 2.1.1 is obtained. Howepsoved
performance, in particular reduced sensitivity to grid orientationpleas reported [Aavats-
mark and Eigestad (2006)] when additional grid blocks are involved inghmaimation of
thefluxes.

Although the PDE is based on mass conservation, this property is not atitathy pre-
served after spatial discretization. The ODE that follows afterfinilume discretization is
mass conservative by construction. More care must be taken when finiteedide or finite
element discretization is performed. Even when the ODE is mass eatigey this can still
be destroyed by the time discretization or by the algebraic solver thasdbkwénon-linear)
system that results after discretizing the ODE in time.

Needless to say that an ODE can be obtained by completely skipping s2dti@ralto-
gether, as was done in this research. However, literature usuatty fstan a PDE formula-
tion.

2.1.3 Discretization in time

No matter what spatial discretization is used, the time discreaiizés usually done by fi-
nite differences. Two choices have to be madav many history states should be used
to approximate(% (f; (x)) of Eq. (2.3) and at what time(s) shouigl(x) be evaluated? De-
pending on these choices, totally different algebraic or numeric behavidnecanxpected
from the simulator.

Euler; forward, backward and combinations

In an Euler discretization scheme, the new (or future) statand one history (or current)
statex,,; is used to approximate the time derivatives. The result of the schepiedto
Eqg. (2.3), looks like

f (Xn) -1 (anl)
tn - tnfl

=1 —a)fy(x,-1) + ofy (x5) (2.18)

or

=15 ((1 — CY) Xn_1+ CYXn) P (219)

where Euler forwardd = 0) is fully explicit and Euler backwardh(= 1) is fully implicit.

In casef; is the identity functionf] (x) = x) andf; is linear §, (x) = Ax), Euler forward

is stable when the time step — t,,_ is chosen small enough. Euler backward is uncondi-
tionally stable, but introduces more numerical diffusion, and is thereém®dccurate. For
arbitraryf; andf,, Euler backward is, in general, only conditionally stable, but the condition
is less strict than for Euler forward. Therefore larger time steypsbe taken at the expense
of accuracy. The computational cost per time step is usually higher for Bad&ward, since
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the non-linearitie$; andf, must be dealt with iteratively, possibly converging to the wrong
solution. Euler forward only needs to deal with the non-linearitiefs.in

BDF

Due to the different time scales of the pressure- and saturation chahgeSDE may
show stiff behavior [Hairer and Wanner (1996)]. Solving these kind of problemsres
more advanced methods like Backward Differentiation Formulae (BBB} are multistep
extensions to Euler backward. Rpsteps, Eq. (2.3) is discretized as

£ (%) = Y i (560 i) + (tn — tn1) Bf2 (%) - (2.20)
i=1

The BDF coefficients are found by fittingzeth order polynomial through, at the new state
and theg previous states. The time derivativefpfis then evaluated as the derivative of the
polynomial, evaluated dt,. For example, ify = 1, then the polynomial is

(tn - t) f) (anl) + (t - tnfl) f| (Xn)
th —tn_1

P(t) = (2.21)

and its derivative

f1 (xn) — 1 (Xn—1)
tn —th-1

which is the same as Euler backward, Eq. (2.18) witk 1. Values for the coefficients, for

up to 5 steps, are shown in Thl. (2.1) [Benner and Mena (2004) (one minus-sigreicty}
it is assumed that the step size is constant.

P (t) =

, (2.22)

q B AXn,l AXn,2 Xn,3 Qn.4 Qn 5

1 1

2 [ 2/3 173 —1/3

3 6/11 18/11 —9/11 2/11

2 [ 12/25 | 48/35 —36/25 16/25 —3/35

5 [ 60/137 | 300/137 | —300/137 | 2007137 | —75/137 | +12/137

Table 2.1: BDF coefficients

BDF is the engine of the DASSL solver [Petzold (1983)], which turned out to biasbest
and most robust solver for the system described in section 2.1.1, out of lanterkc[Li-
oen and de Swart (1998)] of 6 solvers (DASSL, MEBDFDAE, PSIDE, RADRADAUS5,
VODE).
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IMPES

In an IMPES scheme (IMplicit Pressure Explicit Saturation), theE®g,. (2.3) is written
as

d
gl P (ﬁ“’ g} x+ b) , (2.23)

whereJ_, fx is the Jacobian df, with respect tax andf;, is split into states and state-dependent
fluid propemes When the state-dependent properties are evaluatedtigxatidithe states
themselves are evaluated both implicitly (for pressures) and explifit saturations), then
a parabolic pressure equation and a hyperbolic saturation equation are obtdieebeffi-
cients of the saturation equation depend on the solution of the pressureaquati
Although the implicit part of the IMPES equations is of much smaller dimentian
the BDF equations, it must be solved (many) more times, since the tipe ate linked to
explicit equations and therefore (a lot) smaller. @tial. (2004)] claims than IMPES is not
suitable for black-oil reservoir simulation. Modifications to IMPES hbgen made where
the time step of the pressure equation is of significantly higher order thamtbestp of the
saturation equation. The methods described in the following setetiarthis a step further.

Streamlines

In a streamline simulator, the pressure equation is decoupled fromtihatgan equa-
tion(s) by an IMPES scheme. The solution from the pressure equation isaisgake as
many time steps for the saturation equation as possible [Datta-@tpta(2001)]. More-
over, the saturation equation is not solved in the original 3D space. Indtesahapped onto
streamlines, which are traced from the 3D pressure field, producingodHetproblems, all
parameterized by a time-difight (TOF) coordinate. Modern streamline simulation rests on
five key principles [Thiele (2001)]:

- tracing 3D streamlines and periodically updating them

- mapping of the mass conservation and Darcy equations onto streamlines
- solving 1D transport problems along streamlines

- operator splitting to account for gravity effects

- extension to compressibfow

[Thiele (2001)] also claims that "the speed and efficiency as well aavidi&ability of new
data make streamlines potentially the most significant tool for solving coropkmization
problems related to history-matching and optimal well placements". dtés not hold
with the development of adjoint reservoir simulators, Eq. (3.19), whidhbeidiscussed in
section 3.3.
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2.1.4 Well model

Wells can be modelled by boundary conditions, but also by setfing 0, ¢5 = 0 for in-
jection orgs, < 0, ¢5 < 0 for production in Eq. (2.5) while enforcing ntew boundary
conditions. Usually wells can be operated under pressure or rate cotssti@o high pres-
sures may cause damage to the reservoir (although in some applicatoissithfact the
goal) and surface facilities are only capable of handling a limited amountduption or
injectionfluids. The actuallow rate in a well is determined by the most stringent constraint.
For example, the actuibw rate of a production well can firstly be limited by the amount of
oil or water that can be processed by the surface facilities. As #aspre in the reservoir
decreases, this may become the most stringent constraint. Theaefwitching mechanism
must be built into a reservoir simulator.

Here only bottomhole pressure constraints and surface rate constraintsaidered. The
switching is left to the user, so only one type of constraint can be applied &l atwone
point in time.

Rate constraint

In case the wellboréow rate at the surfac@ [m3 s*l] is specified, the mas®ow rateg;,

[kg s*l] to/from grid block¢ is calculated by dividing the mass over the grid volumes that
are penetrated by the well, proportionally to the mobility Eq. (2.7), so

3
Q=Y ’g;’C. (2.24)
« g (03

This means that .
)‘a
= Qe (2:29)
for production and

)\5
0w = Qpy, Ea y ; 7% =0 (2.26)

for injection, with the total mobility\,; [m~2 s| defined as

A= 3N (2.27)
« 3

Pressure constraint

The masslow rateq$, [kg s*l] to/from grid block¢ is proportional to the pressure differ-
ence between that grid block and the wellbore presgyge[kg m~1 s*z] and the mobility
[Peaceman (1977)]. For production of thephase, this is the mobility of that phase

af = X5 (h, — ) (2.28)
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for injection, it is the sum of the mobilities of all phases that have to bplaced from the
grid block

@ = (/\i + /\5) wt (pfub — pi) . ¢=0. (2.29)
The well factor or well indexv® [m?] is taken constant in this research. More realistic

choices may depend on the direction of the well, the angle that is ofdawtoan effective
permeability, the well radius and a skin factor [Peaceman (1977)el&ihEL988)].

2.1.5 Simulating

Performing one time step comes down to findiggthat satisfies
f(xnaxnfla"' ,Xn,q,a) = Oa (230)

givengq history stategx,,_1,-- - ,x,—4 } and a set of model parametérgfor example per-
meability values in all grid blocks). From Eq. (2.18), it follows that Euler backward

f (Xn, Xn—1, 0) = fl (Xn, 0) — (tn — tnfl) f2 (Xn, 0) — fl (anl, 0) . (231)

A robust simulator needs to contain a time step regulator. The tipenstist be chosen as
large as possible to minimize computational costs. Simultaneouslyntbestep is bounded
by accuracy and stability constraints. Moreover, Eq. (2.30) may havainiopie roots,
possibly including physically unrealistic ones (negative pressure, satuitside|0, 1]).
These constraints can be explicitly checked for every solution of Eq. (280)en the
solution is not satisfactory, another attempt can be made with desrtiale step. The time
step can then be increased again slightly after every successbul Bhe decrement factor
should be significantly larger than the increment factor.

2.1.6 More realistic physics

Section 2.1.1 describes the reservoir simulator that was used $oredgarch. Significant
physical phenomena were neglected:

- Fluid miscibility; the fluid components can be defined as the phases that are present ai
standard or surface conditions. At reservoir conditions, componentsxesrireother
phases. For example, in a Black Oil model [Aziz and Settari (1979)], ttegaponent
can be present in both the gas phase and the oil phase. Adding this to Eq. (2.13) gives
new PDE for the gas component

0 krobo krgb ~ ~
e (0SoboRgo + ¢Sgby) =V - K ( RyoVp, + %Vpg> +boRyoGo + byqy,
o g
(2.32)
whereb,, [—] is the reciprocal formation volume factor, expressing how the volume of

a phase changes and gets split into the separate components if the volume wede mo
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from reservoir conditions to standard/surface conditions,
. ParC+ 3 Reaps'
~ —B, = fra : (2.33)

ba Pa

andRg, [—]is the volume fraction of componefitin thea-phase. The production terms
Qo [s*l] are in volume of liquid at standard conditions per volume of grid block and pe
second. In a fully compositional model, all components can exist in all phases

- Gravity effectsbesides pressure differences, also density differences canfzad sew.

This can be modelled by substitutingp,, — p,gV D for Vp, in Eq. (2.17), wherd)
[m] stands for depth.

- Capillary pressurecapillary effects [Leverett (1941), Morrow (1970)] are caused by the

fact that on the pore scale tfiew behavior of thefluids are affected by adhesive forces
between rock anfluid molecules, rather than just cohesive forces withinfihiels. The
fluid pressures are different becausefthiels interact differently with the rock, $0.5 =

pa — pp # 0. The capillary pressure does not just depend orflthié saturations, but
also on their time derivatives:

x Imbibition; the wettingfluid displaces the non-wettirfid

x Drainage the non-wettindluid displaces the wettingjuid

- Appropriate well modelin section 2.1.4 a constant well factof is used. More physi-

cally realistic models can be found in [Peaceman (1977), Wheeler ({L988)

- Higher order effectsDarcy’s law for anisotropic porous media can be derived from the

Navier-Stokes equation by using a formal averaging procedure [Neuman (191%]. T
only holds for an incompressible homogeneous Newtoftiath moving slowly through a
rigid porous medium with uniform porosity under isothermal and steady statetiomsdi

In other cases the applicability of Darcy’s law is questionable and addgitehorder
terms may be appropriate.

- Temperaturefluids behave differently at different temperatures. To accuratélyp ske

fluid flow equations, théluid properties must be evaluated at the correct local temper-
ature. An extra equation, based on conservation of energy, must then be intréaluced
model the temperature changes over time.

2.1.7 Userinput

Running a reservoir simulation can be done after
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- the user has specified the grid. A grid specification consists of a lisiabtpcks with
their volumes, porosity values and links to the neighboring grid blocks. For éwnéry
between two grid blocks, the area of the interface and the distancesHeogritl block
centers to the interface must be specified. When gravity effects ae o account,
also the orientation of the interface must be specified, for example bgtarv@at is
normal to the interface. Permeability values must be specifiedlfgridblock interfaces,
or they must be specified at the grid block centers and interpolated tatémaces using
the center-interface distances.

- a set of wells is added. For every well an operating constraint mugiduified as well
as a list of grid blocks that are penetrated by the well.

- the fluid properties (density, viscosity, gas-oil ratio, formation volumediaaelative
permeability, capillary pressure) are specified as functions of tespre and saturation
state variables. Some examples are shown in Fig. (2.1). When thegeéined as
analytical functions, also the derivatives must be defined as a&alfdanctions. In case
they are specified as lookup tables, new approximate lookup tables for thatites\can
be automatically generated.

rho x10™ visc relperms
1200 102 1
10 08 water
1100 - : oil
—_ _— —_
e _— £ 98 06
21000 ES S
° z 96 0.4
900 9.4 0.2
800 ——— 9.2 0
0 5 10 0 5 10 0 05 1
p[Pa] x10° p[Pa] x10° s, 0

Figure 2.1: Density, viscosity and relative permeability of water and oil

2.1.8 Simulating in weak constraint or stochastic mode

Due to unmodelled physics or numerical approximations, a reservoir sonidanever able

to produce results that perfectly match the true reservoir state,veven the correct model
parameter® were known. These imperfections can all be lumped together and modelled us-
ing additional parametees,. These model errors can be sampled from an appropriate prob-
ability distribution, or they can be prescribed by a variational methedyit be described
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in section 3.3.3. In the former case, the additional parameteese stochastic variables. In
the latter case, the simulator is used as a weak constraint in a izaiom problem. With-
out these model errors, the simulator is called a strong constraint in sonthiraization
problem.

After every time step the oil and water mass that is present in a goickbé wrongly
predicted. This is corrected by artificially injecting or producing exti@ss into/from the
grid block. Eq. (2.31) can be extended to

f (Xna Xn—1;s 0; €n) =1 (Xna 0) - (tn - tnfl) £ (Xna 0) - (anla 0) +1f3 (Xna 0; €n) )

(2.34)
wheref; < 0 stands for extra injection arfy > 0 for extra production. Adding too much
mass gives physically unrealistic values for the state variablegxtomple very high pres-
sures. Subtracting too much mass gives physically impossible resulesidmple negative
pressures or saturations outsiflel]. This is modelled by constraininfy with an upper
bound that is calculated frofij:

f3 (x,,,0,¢,) = min {f; (x,,,0),(t, —th_1)eEnt. (2.35)

This givese,, the dimension[kg s*l]. Eg. (2.35) can also be written using the Heaviside
function and regularized in the same way as Eqg. (2.10) in section 2.2
min{a,b} = aH(b—a)+bH (a—0)= (2.36)
= a+(b-—a)H(a—b)=
= b+(a—bH(b—a).

The stochastic reservoir simulator used in this research is theddgomted by

f (Xna Xp—15 0; €n) =f (Xna Xn—1, 0) + f1 (Xna 0) -H (gn) ® Ena (237)

where
gn =1 (Xna 0) - (tn - tnfl) €n, (238)
and® stands for element-wise multiplication. The corresponding Jacobiargvareby

0(H (g,) ®€y)

9% =diag (H (€,) +0(€,) ®E,), (2.39)
T =Jpen + (L= diag (H (€n) + 0 (€) ®€n)) Jgzn, (2.40)
J?G =Jgo + (I — diag (H (Aén) +4 (gn) ® Aén)) Jff ) (241)

Ji., = (tn — tn1) diag (H (€,) + 6 (€n) ® Ey) - (2.42)
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2.2 Simulator sensitivities

2.2.1 Jacobians for non-linear solver

Most non-linear solvers depend on, or can be speeded up by, using the Jacobiaspéti r

to the state variable®ex.

For Eq. (2.31) this Jacobian can easily be constructed from the

Jacobians of, andfs:

Jex (Xna Xn—1, 0) = Jff (Xna 0) - (tn - tnfl) Jf;‘ (Xna 0) . (243)
These can be calculated from
ofe dps, of* Aps
e e /AT A A —L — &t (1 — 5¢) e 2.44
of _
e 0 V(¢¢, (2.45)
&wg Vi(b& S ilog — _Vﬁ(bé S afag =0 V(g€ (2.46)
aS¢ Y Po v e o
OfyS  9gs, o .
o~ ot 2 07 e i) @
nENe
ot N
g~ W) e
ofs*  0qs 8t5”
a5t = g T 2 (P —1%) G- (2:49)
nENe
ot N
as7 — PP G (250
ofsS  0qf ot 0g§ (2.51)
aps — op¢ 8¢ 98¢’ '
otén 1 apin 1 aﬂén
o En [ = a = [}
apﬁn ¢ <pgn apﬁn Mgn 8p5n> (252)
OtEn KEMAST oS OkSL 1 OKSD 253
9SEn — hEn E@S&n - @asén’ (2.53)
Ot Ot§T 9p<n - Ot 9Sen (2.54)
opS  Opfm Ops  9SEn opt '
Otén otén 9Sén
& = _—a 2.55
05¢  9S5¢&m 9S¢ (2.55)
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Calculating these properties is as easy as evaluéitiagdf, themselves, except for three
issues:

- Making sure the derivatives end up at the correct places in the Jac@jaines quite
some bookkeeping, especially for unstructured grids.

- The derivatives of théuid properties with respect to the state variables must be available.

In case these properties are available in the form of analyticaliunsstadditional func-
tions must be supplied. In case tfieid properties are available in the form of lookup
tables, new tables can be created by interpolation.

- The term2Z in Eq. (2.54) can be calculated from Eq. (2.9). The te@gigr and 257
in Eq. (2. 54) and Eq. (2.55) cannot be calculated from Eg. (2.10), since thesidteaw
function is not differentiable. As a regularization method the Hedei$unction can
be smoothed resulting in a differentiable function. Alternatively, thavdtive of the
Heaviside function, a Dirac delta function, can be neglected.

The derivatives for |nject|on/product|o%?&, o and 83( can be calculated using

B ap

¢ ¢ ¢ 7
0 (A_) L LN, daymoN (2.56)

oxn \ M\ Ar Oxg &n )\f - ox"n

for rate constraints and Eq. (2.52) and Eq. (2.53) with mobilityhatdrid block centers
substituted for transmissibility at the grid block interfaces for gues constraints.

2.2.2 Influence of model parameters on system states

While x,, is calculated fromx,,_; by f (x,,x,_1,0) = 0 (in caseg = 1), the sensitivity
matrix d—xﬂ can also be updated frorfiaf"é,—*1 simultaneously by

;i; (X, Xp—1,0) =0, (2.57)
of dx,  Of dx, | | Of B
aXn (Xna Xn—1, 0) 4o 8Xn71 (Xna Xn—1, 0) ) + - ) (Xna Xn—1, 0) =0. (258)

Substituting Eq. (2.31) gives

@xn

(Jgx (%, 0) — (tn — tn—1) Jgx (x4, 9)) (2.59)

do
dx,,—
= Jff‘ (anla 0) 10 ! + (tn - tnfl) Jfg (Xna 0)

+‘]f19 (anla 0) - ‘]ff (Xna 0) .
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The sensitivity matrix can be used to calculate the gradient of sofjeetdfe function
J(x1,---,%x,) W.r.t. the parameters:

ij(x Xp) = 9J dxy 0J dxp

N N %, do’

de
d T d T T d T T
i)\ ()T (OINT eI g,
do do 0x1 do 0%,
This is computationally expensive because it requires doing as many sonalas there are

parameters ifl with a linearized reservoir simulator. A computationally much mdfieient
way to calculate this gradient will be described in section 3.3.2.

(2.60)

or

2.2.3 Jacobians for sensitivities

Updating the sensitivity matri%ﬂ, requires the availability of the Jacobia.m§ andeg
(Eq. (2.59)).

- The Jacobian of; with respect to porosity values can be evaluated by substituting

#° = 1in Eq. (2.4) and doing some bookkeeping to make sure the derivatives end up in

the correct columns af .

- The Jacobian of, with respect to permeability values at the grid block interfacés
can be evaluated by substitutih§’ = 1 in Eq. (2.6) and Eqg. (2.5).

- The Jacobian of, with respect to permeability values at the grid block centers can be

found by multiplying the result with the derivatives of Eq. (2.12), adawg to the chain
rule for differentiation. These are

OkEN kN 2
ke 2 (m) : (2.62)

- The derivatives with respect to the logarithm of permeability valcan be obtained by
multiplying with the permeability values, according to

dy —dy dz dy 1 —x@

dlnz  drdlnz dx% T dx”

(2.63)






Chapter 3
Data Assimilation

3.1 Introduction

The aim of data assimilation is to improve numerical models by adding neaeut infor-
mation. In case of petroleum engineering, the model might be the combidtmeservoir
simulator, a rock-physics model and a wave propagation package. Meas\seameorigi-
nate from geology, seismics, petrophysics, down-hole sensors and satditees. The
models are updated by estimating their parameters. These paracagtfos example be the
porosity values of all grid blocks, the permeability values on the gridkbloierfaces, the
elastic moduli of the reservoir rock or the parameters of a parametecapillary pressure
curve.

In a probabilistic setting, the likelihood of the model parameters gikemieasurements
is maximized. The numerical model is used as a weak constraint, sircassumed that
besides the uncertainty in the model parameters, there is an additoned ©f uncertainty,
the model errors. Without these model errors, the model is assumed tofbet pad it is
used as a strong constraint. In practice the problem is often reducdeéastaquares prob-
lem by assuming Gaussian error statistics, resulting in a variatglated data assimilation
algorithms. For linear systems they solve the same least squaresmyfdsinon-linear sys-
tems, like multiphasé@low in porous media, they have their own peculiarities and utilization.
This chapter gives an overview of data assimilation algorithms and showshiegvare re-
lated. Numerical examples are shown in chapters 4, 5 and 6 tadlashe applicability of
the methods by estimating permeability values.

Bayes rule, section 3.2.1, can be seen as the basis from which many datdatsa
routines are derived. However, most data assimilation algorithmslsarba formulated
independently from Bayes rule.

In general, two families of derived methods can be distinguishedati@mal methods and
filters. In variational methods, the sensitivity of the data-mismagtiween predicted data
and measured data over the lifetime of the reservoir with respecbtieinparameters is
used to get a better estimate of the parameters. This is repeatedonntrgence. Filters
work locally in timg measurements are assimilated whenever they become available without
recomputing the reservoir history. However, this is done in such a waystimae kind of
optimality criterion is honoured, ensuring consistency with previouslyrélséed data.

In the context of variational methods, regularization methods will beudsed. Regu-
larization is performed to decrease the number of degrees of freeftibva data-mismatch
objective function. This also reduces the number of local minima of the olgeatid in-
creases the chance that gradient-based optimization algorithms foodlaninimum that
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is closer to the global minimum. Usually basis functions are chosen thatnsaefficient
space to the parameter space of much higher dimension. Optimal coefficestsaached
for rather than the parameters themselves. Optionally the basis fumctiay be updated
adaptively, as is done by the Representer Method [Bennett (2002)] or byyBirselset
functions [Nielsen (2006)].

The Kalman filter [Kalman (1960), Gelb (1974), Welch and Bishop (1995)] fatesind
parameter estimation of linear systems will be introduced. To de@l man-linear sys-
tems that arise from petroleum simulation applications, the Ensembieaikdilter [Evensen
(2003)] can be applied. Also an improvement is discussed to handle non-liraaurement
operators. Data that are correlated in time, like seismic measmtspcan be assimilated
using a smoother [Cohet al. (1994)] or by a modified filter with a double ensemble size
(section 3.4.5).

3.2 Bayesian data assimilation

3.2.1 Bayesrule

Reservoir simulation can be embedded in a stochastic or probabilsteivork. In that
case the reservoir state variables (pressures and saturationgyiid dilocks) do not have
deterministic values, but are described by a multivariate probadiktyibution (or density)
function (PDF). The stochastic nature of the state variables is caygbd uncertainty in the
initial states, the uncertainty in the model parameters (pernityapibrosity, etc.) and the
fact that the reservoir simulator is imperfect (gravity or capilldfgas were not modelled or
3 components were modelled where 5 would have been more appropriate). Efinte
in the measurements are caused by two effegssors try to monitor a stochastic quantity
and are subject to ftuences that might damage them or otherwise corrupt the data.
Bayes rule [Bayes (1763)]

P (y|x) P (x)

P(xly) = P

, P(xly) < P(ylx) P(x) = P(x,y), (3.1)

states that thposteriorPDF P (x|y) (the probability of the reservoir states and parameters
given the data) is proportional to tipgior PDF P (x) (the probability of the reservoir states
and parameters) multiplied by tikelihood P (y|x) of the data given the reservoir states.
Thex of Eg. (3.1) can be interpreted in two ways:

1.  x contains the reservoir state variables at all times, augmented withtiegtain static
model parameters.
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2.

x contains all uncertain parameterg at ¢, including state variables and static model
parameters. In this case, the state variablesfat, are not shown in Eq. (3.1).

In the former case, the prior can be calculated by running a modified o@ssimulator
on the initial reservoir states. The likelihood of the data can then balasdd by inserting
the results into a forward predicting sensor model. In the lattee,ce prior is defined at
t = to and the likelihood is affected by both the reservoir simulator and the serstel.
No inverse sensor model is need#te inversion is done by Bayes rule.

Bayes rule can only be used analytically for very simple PDF’s, resamailels (1 phase)
and sensor models (only pressure measurements). In other cases the BEIfs approx-
imated numerically or sampled by a random number generator. To represeinmodil
or otherwise complex PDF’s, many samples are needed, making Bayetaasdinilation
very computationally intensive or infeasible.

3.2.2 Special cases

Some properties of the multivariate Gaussian probability densityliiston are:

L deew™ 0em | py) = / p(y)dy,  (3.2)

p(x) = \/|277r—2|
with meany and covarianc&

- If x is Gaussian, theAx + b is Gaussian

- If (x,y) is jointly Gaussian, theAx + By + c is Gaussian

- If (x,y) is jointly Gaussian, ther|y andy|x are Gaussian

Consequently:

- If the prior is Gaussian and the simulator and sensor model are linear, theostiegior
is Gaussian

- Hence, it suffices to only compute the mean and covariance of the postetaad of the
full posterior

- Let(0,e,y) be jointly Gaussian, with mea(rug, 0, uy) and covariance

P, 0 0
o P. 0]. (3.3)
o o P,
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6 contains the model parametegs;ontains the model errors that are caused by unmod-
elled physics and numerical errors andontains the measurements. Then the posterior
probability density is proportional to the joint probability density, or

p(8.ely) oce”, (34)

T ~_ _ _
T=(y—m,) P (y—p,)+0—n) Pl (0—py)+e"P e (3.5)
Finding the maximum a posteriori estimate (MAP) can be done by minimizing

3.3 Variational data assimilation

Even though Eg. (3.5) does not have any physical or probabilistic interpreteltien the
prior is not Gaussian or the reservoir simulator or sensor model is not,lihséH is the
basis for variational data assimilation methods. The quadratic objeé&iye (3.5), could
have been derived from Bayes rule. In that cBsg Py and P. can be seen as scaling
matrices that represent how accurate the sensors are and how mudk gishn to the
initial model parameterg4,) and the model itselfy contains the "measured measurements"”
andp,, contains the "predicted measurements”, which are related to the modeigiars)
through the reservoir simulator and the sensor model. The calculated phygsatboaed to
deviate from the reservoir model, since the reservoir model does not cpmrexdkel the true
physical phenomena. This deviation is modelle&byhus,0 — n, ande both model errors

in the reservoir simulatop — 1, represents a quantification of errors in the modelled physics
ande represents a quantification of errors in the unmodelled physics, or a superpositi
physical phenomena where the individual effects can not be quantified. Maitegathe
termeP_ ‘e can be augmented t6 — p1,)" P, (8 — ,) by introducingu, = 0.

The idea of variational data assimilation is that the first (or higher)rordegation of the
objective J w.r.t. the parameter8 is used to update these parameters. Usually the initial
estimate off is equal tou,. The second term at the right-hand side of Eq. (3.5) can be
deleted, but often it is needed to regularize the minimization or Keefihin a physically
meaningful range.

Section 3.3.1 discusses the computational resources involved in tialgtke gradient of
J w.r.t. 8 and introduces the term "adjoint reservoir state". Explicitly altayvihe model
errorse to be not equal t® (using the reservoir simulator as a weak constraint) introduces
an extra obstacle in obtaining a gradient. This effect is explaimedétions 3.3.2 and 3.3.3.
Section 3.3.4 describes regularization methods that decrease the dimeritk®pafameter
space and reduce the number of local minima of the objective function. Thedeeper
Method was designed as a regularization method that deals with weatkadotssand is
explained in section 3.3.5.



3.3. Constrained optimization of a dynamic system 29

3.3.1 Variational calculus

Constrained optimization of a static system

Imagine that the objectivéd = J (y, @) needs to be minimized w.r.{0,y), wherey is
related tof by the static systerfi(y, 8) = 0. The gradien% can be obtained by applying
the chain rule for differentiation (indicated by subscipts):

dJ

The Jacobiatyy originates from differentiating the static systém
fp+f,y9=0 = yo = —f, ' fs. (3.7)

This is known as forward sensitivity analysis, and requires solMhlinear systems of order
|y |, where|-| stands for counting the number of elements in a vector.

It can also be done by just solvinglinear system of ordely|. In the forward sensitiv-
ity analysis, firsty, is calculated and then the rows are summed/py In the backward
or "adjoint" sensitivity analysis, a linear combination of the rows gfis calculated with-
out explicitly calculatingy, itself. In order to do so, Eq. (3.7) is first multiplied by (yet
undetermined) weighting facto?s

ATty + AT,y = 0. (3.8)

The weighting factors\ can now be determined by requiring that the summation of the rows
of yy is the same for both the forward and the adjoint sensitivity analysis, twmspare
second terms of Eqg. (3.6) and Eqg. (3.8))

J, = A"t = A=f,"J]. (3.9)
Now the gradient can be determined by substituting Eq. (3.8) and Eq. (3. Bdnt®.6):
dJ T
0" Jo — X £y, (3.10)

This method is equivalent to minimizing the alternative objecfl\te J(y, 0)+/\Tf (v,0)
w.r.t. (6,y,\) without extra explicit constraintghe constraint is implicitly present in the
objective function.

Constrained optimization of a dynamic system

Consider an objective of the forth= J (., ) which has to be minimized w.r.§:;, under
the constraint thag;, = f (y+,_, ). By applying the chain rule:

dJ _ dJ df (yi,.)  df (ys,)

= 3.11
dyy,  dyt, dyi,_, dyt, (.10)
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If Eq. (3.11) is evaluated fromy to t,,, then every time step requires a matrix-matrix
product and at,, one matrix-vector product is needed. Computer memory can be saved if
Eqg. (3.11) is evaluated from to tq, because only matrix-vector products are needed. When
f represents a reservoir simulator with an implicit time discrabpeécheme, then the above
should be read with "matrix-matrix product” replaced by "matrix-igeematrix product"
and "matrix-vector product" replaced by "solving a linear system". uatalg fromt,, to
to not only saves computer memory but also a lot of computation time. Mergii\the
interest is2Z rather than(% and the constraint is of the forg, = f (y:,_,, 6), the choice

to evaluate in inverse time becomes even more apparent.

Obtaining a gradient

A numerical gradient can be obtained by perturbing all parameterstieaehunning the
reservoir simulator and evaluating the data-mismatch objectivaifum An analytical gra-
dient can be obtained by forward or adjoint sensitivity analysis as diedusbove. It is
computationally much more efficient to introduce adjoint reservoir statel modify the
reservoir simulator to compute these adjoint variables in inverse @aleulating a numeri-
cal gradient requires almost the same amount of computer resources aglfeenaitivity
analysis.

3.3.2 The reservoir simulator as a strong constraint

In variational data assimilation, the non-linear reservoir simulato
Xtp = X0 (0) ’ f (th’xtj—l s 0) = €j, (312)

with model errorg; is added to the objective function, Eq. (3.5), by a Lagrange multiplier
or adjoint state\

J o= (y=m) P, (y—p,)+(0—p) P (O —py)+ (313

M M
+Z€?P;1€j + QZAf (f (th,xtj71 s 0) — 83) .
j=1 j=1

In order to find a minimum of the original objective function Eq. (3.5) w.the model
constraints, it suffices to look for a saddle point of the modified objeativetfon Eq. (3.13).
A necessary condition for a saddle pointbfs that the first order variations of w.r.t. €,
A;j, x;; and@ equal zero. These variations are

o ./, T
92 =2 (PE]_ € — ,\j) , (3.14)
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0J

a :2(f (th’xtj—l’a) _ej)Ta (3.15)
oJ aliy Taf (Xt], t] 1 0) of (th+1 , th’ 0)
ath =2 (y - u’y) Py 8 + 2A 8—,5] + 2A3+1 8th
(3.16)
oJ op . M 5 Of (xtj,th,l,a)
%:_Q(y ) P, ' 80y+2(0_N9) P91+22/\j — a0 (3.17)

j=1
respectively. The first term of Eq. (3.17) is only unequal to zero if modelnpeters can
be directly measured, for example permeability of core samples aftiengiof new wells.
Even then the term can be made equal to zero by adding this new data tothe,@ndPy
of the second term.
From these, the forward system

Xto = X0 (0) ’ f (th y Xtj_1s 0) =€&; = PEj Aja (318)
and adjoint system
Av+1 =0
Of (xu, xi, | .0) T Of (xi, | %1, .0) r T 4 )
é)xtj AJ = - é)xtj AJ+1 + (é)xt ) Py (y - “y)

(3.19)

can be derived, as well as the parameter equation

M T
of (th 5 th71 s 0)

0=y — ng; (T A (3.20)

and the desired gradient

T T
f( 0
(%) — 2139 (0 — 1) + 22 : <8Xta’—xtﬂl’)> A (3.21)

If P, is explicitly set to zero, the reservoir simulator is used as a strongtint. This
can be done if the model is assumed to be perfect, for example if data aressxmtheith
the same model that is used to do data assimilation in a twin experimértheruser has
really no clue what value to use fB ;. In that case the following iterative algorithm can be
used:

- Make an initial guess fofl; usually® = .
- Run the forward model, Eq. (3.18), to obtain the states

- Run the adjoint system backward in time, Eqg. (3.19), to obtain the adjoins state
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- Improve the parameter estimates using Eq. (3.20) or supply the gradieri8 24) to
some advanced gradient-based search algorithm. Eq. (3.20) can also heéheseithe
model parameters linearly enter the model. In that case, the &igoistfinished in one
iteration.

- Loop until satisfied.

3.3.3 The reservoir simulator as a weak constraint

In case of weak constraint variational data assimilation, the ditgonmentioned in the pre-
vious section cannot be used directly, since the forward and backwardasionslbecome
coupled. It can however be used if the model eregrare initialized by zero. In later iter-
ations, the model errors for the forward simulation can be calculated fihe adjoint sim-
ulation of previous iteration. Alternatively, an extra loop can be inddérere Eq. (3.18)
and Eq. (3.19) are used sequentially until convergence, before the stagedothe param-
eter update Eq. (3.20) or Eq. (3.21). Without this extra loop, the algorithm is equitalen
augmenting; to 6:

Aé: (0,81, o a€]\4) ) f (th’xtj—l’0> =f (th’xtj—l’a) —&j. (322)

The Representer Method, as described in section 3.3.5, is an altermegtiliod that also
regularizes (see section 3.3.4) the minimization process. Moredvgies information
about the "value of data" as a bonus.

3.3.4 Regularization

When "smart" wells are equipped with downhole gauges, data from thesegganight in-
dicate that the path between two wells is more permeable than mwedig the reservoir
simulator. This can be corrected by increasing the permeabilitgenfjtid blocks that are
in the flow path. However, there are many ways to make such a correction if tteenecsie
than one grid block in théow path the permeability in grid blocks A and B can both be
increased a little, or the permeability in grid block A can be incréastot while it is kept
constant in grid block B. This corresponds to multiple local minima in the-dasfit ob-
jective function. Regularization is the subjective process of choosinfutian out of many
possible solutions. This choice is not made after calculating altisols and evaluating their
guality, but it consists of a set of rules that hopefully guide the sealgibrithm towards a
solution of preference.
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Decomposition into basis functions

The guiding rules are usually represented by basis functions. The basisfisrarte used
to (linearly or non-linearly) map a coefficient space to the parameteesgfanuch higher
dimension. Sometimes the deviations of the parameters from the priorexdeatber than
the parameters themselves, so for a linear mappiagReb or

0 — gy = Rgb, (3.23)

where the columns oRg contain the basis functions amdcontains the coefficients (the
parameters of the lower order minimization problem). Equations Eq. (E§8)3.19) and
Eg. (3.21) do not need to be modified, or in other words, the adjoint reservaitaton
remains unchanged. Instead a translation layer must be implementetivieeln the adjoint
simulator and the minimization algorithm. The layer translates ecggale parameters into
fine scale parameters Eq. (3.23), and translates the fine scale gratleatdoarse scale
gradient,

AN A 394

ob) % \o0) - (3.24)
After initialization of the fine scale parameters, the coarse seaiengeters need to be ini-
tialized by inverting Eq. (3.23). The best (in terms of minimal Euclidiistance) coarse
scale initialization can be found by projectifg- 1, onto the space spanned by the basis
functionsRg, SO

bo=(RIRo)  RY (80—pg) = Ry (Bo—psy) (3.25)
Choosing the basis functions

Piecewise constant functions

Based on the prior informatiop,, a histogram can be derived. Parameters that have
similar values can be grouped together and averaged to obtain a chistiagbarameter of
that group. Individual parameters of the group are then overwritten by thectbastc
group parameter. The basis function of every group contains ones for fingpacafaeters
that are assigned to the group and zeros at all other positiéans Heaviside function. The
coarse scale parameters are equal to the groups characteristiefgsam

Example

If o =(1,2,5) and regularization is done by reducing the size of the parameter vector
from three to two elements by a piecewise constant function, then a posisdite would
be to group the first two parameters together

10
8o=[1 0 [% (1;2)} (3.26)
01
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Using these basis functions, it is not possible to reconstruct the origirmhpaaersféo %
Le). Optionally, the columns oRy may be normalized to produce an orthogonal matrix.
The scaling factors that are needed to do this must then also be ingt@gan the coarse
scale parameteis.

Detecting dominant features from a training image

In general, the prior does not just consistigf but alsoPy. Maybe even higher order
moments or a full non-Gaussian probability distribution is known. Extra caing$ can be
added to this prior. For example, the probability distribution of permisabilues can be
modified when core samples become available after drilling of wdllés can be used to
sample realizations of the parameter vector. These realizationsecput as columns in a
matrix to form a large database. Theoretically, this matrix costttie same information as
the original probability function if infinitely many realizations anseed. The database can
be compressed with methods like Proper Orthogonal Decomposition (PODY{iarzd
Garrouch (1997), Heijet al. (2004)]. This results in a set of basis functions and a measure
of their dominance in the database in terms of energy. This energy measuigepra
criterion to select a useful number of basis functions. This featuneti available when the
parameter vector is decomposed in piecewise constant functionspplafand McLaughlin
(2007)] claims that a cosine transform is better suited to parametenzrmeability field
than the principal components that are obtained from a database with Pdnh the prior
only consists ofu,, this can also be used to generate a database. Small portipisoain
be taken randomly or deterministically and added as columns to the datafBtrebelle
(2002)]. Regression methods can also be used [Draper and Smith (1998)].

Updating the basis functions

Basis functions that come from a POD-like method represent some kind tif itjpproba-
bility distribution. These functions are based on the prior but arerasspnably adequate in
representing the posterior. Heaviside basis functions can be constructaddonably repre-
sent the prior, but they are in general not suited to represent theipostée basis functions
need to be updated iteratively in order to obtain a good estimate of the@ts. Two steps
can be used:

1. Keeping the basis functions fixed, improve the coarse scale parameters

2. Keeping the coarse scale parameters fixed, update the basis functions

Step 1 is present in all variational data assimilation algorittstey 2 is optional. [Lien
et al. (2006)] starts out with very few Heaviside basis functions. After &tbps converged,
the small scale gradient obtained from the adjoint system is used to e/atwaevery basis
function can be cut into two smaller scale basis functions. In [Ne(2006)] the basis
functions are present only implicitly and the number of basis functions necggsseeills to
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be equal to a power of 2 due to the representation. This can easily be extendeudlttrary
number of basis functions [Rommelseal. (2004)]. Updating a basis function comes down
to deciding whether a small scale parameter should stay in its cparaemeter group or
move to another group. This can be naively done by running two reservoirationd and
putting the small scale parameter in the group that gives the lowestrisiia- In [Nielsen
(2006)] the decision is made based on the fine scale gradient obtained by ihégdjtem.

Non-linear parameterizations

Sometimes it is more appropriate to apply basis functions to the paeéinterest after
some non-linear transformation. For example, in reservoir simulagiphications it has be-
come common practice to apply basis functions to the logarithm ofusisgrid block per-
meabilities, rather than the reservoir permeabilities themse[afarpour and McLaughlin
(2007)] proposes a different non-linear parametization, using the DiscosteeCTransform.

3.3.5 Representer Method

The essence of the Representer Method (RM) [Bennett (2002), Baird ansbD42005),
Valstar (2001), Valstaet al. (2004), Przybysz (2004)] is threefold:

- The results of the reservoir simulator, Eq. (3.18), are needed to calthisadjoint states
by Eq. (3.19). However, the model errors of the simulator depend on the adpties s
throughe; = P A; (section 3.3.3). These equations are decoupled by the Representer
Method.

- Non-linear data assimilation is notoriously ill-posegveral (or many) different param-
eter sets exist that minimize the squared data-misfit. Trying teraéne more details
than there are present in the data is called over-fitting. Regularizgtection 3.3.4) is
the subjective process of choosing one solution out of many solutions. Usuallgrregul
ization is done by mapping a low order space of basis functions to the original high orde
parameter space. Instead of estimating the original parameters,rdragtars of this
mapping are estimated. The subjective nature of regularization is leetteusiser has
to choose the basis functions, for example by POD [Smaoui and Garrouch (199i), Hei
et al. (2004)]. In the Representer Method, the number of basis functions is chosen equal
to the number of measurements. Over-fitting is avoided, because theflelathil that is
looked for in the solution is equal to the level of detail in the measureméat talike
most methods, the actual form of the basis functions in the Representieodvist not
chosen by the user, but is obtained by the simulator, Eq. (3.18), and the abfjait#tsr,
Eqg. (3.19).

- After convergence of the Representer Method a parameter estinat@dthat (locally)
minimizes the data-misfit objective function. Moreover, every basistion provides in-
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formation on the impact andfinence in space and time of the measurement correspond-

ing to that basis function. The RM therefore has the potential to quantify #faloess
of data. This might help to design optimal measuring strategies. Whenewhdrwhat
should be measured in order to better understand reservoirs in an eggyo$tproduc-
tion? How is that going to affect the production strategies? How canurezagnt design
be included in lifetime production optimization?

This section describes the RM as it was formulated in the literabaites referenced at the
top of this section. Modifications to RM will be proposed in chapter 4 and usedghout
this thesis.

Not only the parameters, but also the forward and adjoint reservaassiaé decomposed
into basis functions, called representer functions or representers. iagateof the param-
eters from the prio(@ — p,) and the model errors; = P, \; are developed around zero,
whereas the forward states are developed around the states of previatisritdn order to
use the same representer coefficidntan extra correction term;?"” must be introduced:

0 = py+Ryb, (3.27)
A; = Ry,b,
Xt x{j +xi77" + Ry, b.

Adjoint representers
The representer coefficients can be defined as

b= P;l (y — uy) , (3.28)

or equivalently
DBy R) L BAR by - T
3.29

whereRy is a concatenation d:_txtj for all time steps andl_{xtj only contains the rows of

Rth at positions where the state vector can be directly measiRgds a square matrix,
since there are as many basis functions as there are measuremdotgngahis definition,
substitution of the adjoint representer expansions Eq. (3.27) into the adjoiatrs¥sd.
(3.19) gives a system for updating the adjoint representers:

- R)\M+1 =0 -
Of (x¢; %, _,.0) Of (x¢,,, %t .0) o, \T . (3.30)

Parameter representers
Substitution of adjoint and parameter representer expansions Eq. (3.27) iptrdnecter
equation Eq. (3.20) gives a system for updating the parameter representers:

MO (xe, %, . 0) )
Ry =Py (T) Ry, . (3.31)

=1
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State representers
A system for updating the state representers is found by perturbing the fiosystem Eq.

(3.18), linearization and then substituting the unperturbed forward system

. axg 0
Xiy = 20

of (xt Xt ) f(xt Xt . ,0 af(xt Xt )
J’ N et B J = _
e T R g R, gt Ry — PRy, =0

(3.32)

Correction term
In addition to steps 1 and 2 of section 3.3.4, there is an additional third step:

1. Keeping the basis functions fixed, improve the coarse scale parameters
2. Keeping the coarse scale parameters fixed, update the basis functions

3. Whenever parameters are changed, different state predictions skangdrted and
the linearization of the state representers around the forward poedsttould be

updated accordingly by modifying the correction texfri'.

The criterion for step 3 is that the state representer decompostktmrid be consistent for
the old { — 1) and the newsx() iteration, sax; " (n) is calculated from Eq. (3.27) by:

xi, (n—1) =1, (n) +x:"" (n) + [Re, b (1) (3.33)

The term [Rth b] (n) = Vi, is approximated by multiplying Eq. (3.32) thyand substitut-
ing [Rob] (n — 1) =4 and[Rx,b] (n— 1) = ¢, for [Reb] (1) and[Rx,b] (n):

Ox0 (0
oM ) o N o) (3.34)
et e T g =Py

J

Flow chart
The computations involved in the representer method for solving thesienmarameter

estimation problem are shown in the followifigw chart:
1. Initialize withA = 0 and@ = p,
2. Solve the forward model, Eq. (3.18)

3. For each measurement

x calculate the adjoint representer, Eq. (3.30)

x calculate the parameter representer, Eq. (3.31)
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x calculate the state variable representer, Eq. (3.32)
Calculate correction term, Eq.(3.33), Eq. (3.34)
Calculate representer coefficients, Eq. (3.29)

Update adjoint and parameters, Eq. (3.27)

N g A

Go to 2 if convergence criterion is not met

3.3.6 Approximated gradient

Areservoir simulator implements differential equations that areeliged in time and space.
Whenever the discretization scheme is changed, the adjoint resgimoiator needs to be
modified for consistency as well. Often reservoir simulatorsaiarttighly complicated nu-
merical routines for the time integration that are optimized for comprtatiefficiency or
stability. These solvers usually do not come with a consistent adjoirgrsdivs possible to
also use the forward solvers for the adjoint computation. In that casegjhiatasystem is
not derived from the time-discretized resenfdaw equations but from the time-continuous
formulation. The time-continuous forward and adjoint systems are tisetey the numeri-
cal routines independently from each other. An approximated gradient is ahtaistead of
the true gradient. Using this gradient in a gradient-based search algoritlotnnsagssarily
worse than using the true gradient [Gatal. (2002)].

The time-continuous space-discrete version of a reservoir simulatdrecanitten as

x=x(0) . OO 0 em. @)
which is not as general as Eq. (3.18).models the accumulation of water/oil mass in each
grid block andf; models thelow of liquids due to pressure changes and production/injection.
For one liquid phase, Eq. (3.35) can be solved by an ODE-solver (ordirféaseditial equa-
tion), requiring the first order derivatives 6f andf;. A more realistic reservoir simulator
with more phases requires higher order derivatives or a DAE-solvéerglitial algebraic
equation). The system must then be formulated as

o[l

(usingx; = x, x2 = fj (x1,0)), where- denotes a time derivative. The system Jacobian
equals

_ |0 Jg
- [0 3] -



3.3. Approximated gradient 39

The time-continuous adjoint system is the tangent linearization of the fdrsyetem Eq.

(3.36)
I 0] |x 0 Je]' A
R AN

wherex denotes a time derivative in inverse time. It can be derived lilfngdghe derivatives
of the objective function

fzJ—i—Q//\T<w—fg(x(t),0)—e>dt, (3.39)

or

J = T4 22T (tena) f1 (X1 (tend) , 0) — 2T (t0) f1 (x1 (to) , 0) (3.40)

tend T
—2/ <,\ fi + AT (f + e)) dt,

to

w.r.t. the reservoir states(t) equal to zero (and substituting =\, Ao= —A). This also
gives the magnitude of the discontinuities of the adjoint states at times nvbasurements
are available

aJ

2‘]%} (X], 0) (AaftE’l‘ _ AbEfO’I‘e) _ 8_)(1’ (341)
after before 1 0J
(J%}. (x1,6) ,\2) — (J’{ (x1,6) ,\2) oo (3.42)

In general the reservoir states will be continuousX$d” = J5:/°"), but not when calcu-
1 1

lated by a filter [section 3.5.2]. The relation betweesmd\ remains unchanged & P.)\)
and the gradient that is passed to the search algorithm is calculated by

ten
8J T 1 dXO ! T A T
to

(3.43)
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3.4 Filtering

3.4.1 Classical Kalman filter for linear systems

The classical Kalman filter is based on Bayes rule Eq. (3.1) and theHat statistically
independent measurements can be assimilated sequentially

P (x|y1,¥2) o< P (y2|x) P (y1|x) P (x). (3.44)
It works as follows:

- Att = tg no model data are yet available and the posterior probabiliyi®equal to the
Gaussian prior with megm, and covarianc®,. The expectation of this pdfi,, results
in zero when substituted into Eqg. (3.5), since the first and last teeralezady zero at
t =tp.

- If the numerical model is linear, it can be writtemas = Ax;, , +Bu+ Fe;, wherex
contains the reservoir states augmented with the estimated parsuaede ande; are
deterministic and stochastic forcings respectively. If there are rasunements available
as time increases, it suffices to updatandP, by

x —Ax+Bu P,— AP, AT+FP_F". (3.45)

- If the measurement operator is linegr£ Cx) and measurements errors are assumed to
be Gaussian with zero mean and known covaridgethenx can be calculated from a
statistically optimal weighing betweenandy:

x—x+K(y-Cx) , K=P,C’(CP,C"+P,) . (3.46)

Here Cx are the "predicted measurements" anatontains the "measured measure-
ments". The measurement update causes discontinuities of the stabeg@@agmented
with model parameters) at points in time where measurements aletdeai

3.4.2 Ensemble Kalman filter for non-linear systems

Both the time update and the measurement update of the Kalman filter asmirtie state
variables augmented with the model parameters are Gaussian. Thigdbiyss lost when
the prior is not Gaussian or when either the reservoir model or the measurgeeator is
non-linear. The measurement operagoe= g (x) can always be written in linear form by
state augmentation,

i;:[gz‘ } ., E®:=[0 1] [gx }zéi, (3.47)

X)
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however, this only shifts the source of non-Gaussianity in the measureipeate instead
of solving it. All sub-optimal approximations of the Kalman filter that wereigiesd to deal
with nonlinearities calculate the first and second order moments of theipastgen though
these are not representative for a probability that is possibly much richea thmultivariate
Gaussian. In the Extended Kalman filter (EKF) the reserfiow equations are linearized
and the Jacobians are substituted into Eq. (3.45AfandF'. For a system of the form

i) [ e

these Jacobians are

A:[% (Xté-m@) %(thu")} . F=1L (3.49)

The same is done with the measurement operator and Eq. (3.46) for the messurpdate,
or C (Eq. (3.47)) is used. The first moment of the posterior calculated by thei€biBsed.
The Ensemble Kalman Filter (EnKF) corrects this.

The Ensemble Kalman Filter (EnKF) [Evensen (2003)] was designed tondtbanon-
linear models or simulators that do not hadeandF from Eq. (3.45) explicitly available.
The covariance matri®,, is decomposed as

T
p, -t (3.50)
n—1
where the columns ok represent statistical deviations from the mean reservoir state. To
updateP, correctly requires as many reservoir simulations as the dimension ofatee st
vector (#grid blocks * #phases * ...). The EnKF (under)estimBteby randomly sampling a
lower number of columns fdk, typically 100. Alternatives are available where the sampling
is based on eigendecompositions. Also hybrid methods exist that combine idéttiem
and random sampling. When the mean reservoir statis added to the deviatiorféf, an
ensemble of reservoir state vectors is obtained. These are independeptgated by the
non-linear model for the time update. The measurement update for the EnKie eaitten
as

>

7 — % 4LK (yo _ Cif) ’ X0 = gg‘ + K (yg — Cif) , (3.51)

~ ~~ —1
K = LLT(LLT—l—(n—l)Py) , L=CL

The application

- All ensemble members are updated independently from each other by aohesinu-
lator. The model errors are sampled randomly. Optionally the model pteemmeay be
updated simultaneously by some appropriate stochastic process.



42 Chapter 3

- When a measurement becomes available, all ensemble members arataagmith the
model parameters that are to be estimated, as well as the non-lioeard$ted measure-

ments". The matridL is formed by putting all these augmented ensemble members as

columns in a matrix.

- The matrixL is created by deleting the rowsbfthat correspond to quantities that can not
directly be measured. This can vary over the different assimilgtoints in time, making
the assimilation step verfjexible to different kinds of sensors with their corresponding
frequencies.

- The Kalman gain matrix is calculated. If the sensors are (nearly) indepgrtien
P, is (close to) a diagonal matrix and easily invertible. Calculating thieiriverse of
LLT + (n —1) P, may result in numerical problems when different sensors have very
different accuracies, or when there is a large range in the state eojea(iance. Us-
ing Woodbury's [Woodbury (1950)] equations for low-rank updating of matrix iseer
partially takes care of that.

- Using the Kalman gain, the observation is assimilated into evesgrehle member sep-
arately. In order to do so, an ensemble of observations is created from @reailosn
by randomly sampling from the probability distribution of the sensor error.

Extrapolating measurements to reservoir states and parameters

L = CL, Eq. (3.51), means th&® operating orlL cuts away certain rows, creatirfg
The inverse is non-unique, but a pseudo-inverse eists C”'L. In other words, a pseudo-
inverseL can be recreated by adding zero-rowd.tat places where rows were cut away.
These zeros were not present in the origlhalUsing the pseudo-invergg—! ~ C7, the
Kalman gain matrix Eq. (3.51) can be written as

~ ~ —1
K~ CTLLT (LLT +(n—1) Py> . (3.52)

Now assuming that the error covariance structure of the observationsaste the error co-
variance structure of the state variables that can be directly negbgur— 1) Py, = oLL7),
the Kalman gain becomes

CT
K= 3.53
T (353)
meaning that the measurement update becomes
x0 = 2 xf + ! Yy x4 =x/ (3.54)
(o} 1+a (o} 1+a ) no no’

or in other words, for as far as the states than can be directly measheeanalyzed values
are weighted averages between the forecasted values and the tbssrva
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It can be concluded that there are two mechanisms responsible for extragpolaserva-

tions to parameters that can not be directly measured:

1.

The error covariance of the observations differs significantly fiweretror covariance
of the observable stateg(— 1) P, # aLLT).

L is not formed by adding zero-rows Ig but from the original state data, including
the covariance between the state variables that can be directyuredaand the state
variables that cannot be directly measured.

Ensemble Square Root Kalman Filter

Correlated measurements

From Eg. (3.51) it follows that the reservoir state error covarianapdsted by

p: = xoxeT = ((I ~KO)X + Kyg) ((I ~KO)X + Kyg)T —  (3.55)

= I-KO)Xx/"(1-KC)" +Ky'yTK =
= I-KC)P,I-KC)" +KP,K".
If no noise would be added to the observations, tRénwould be underestimated by the
first term, while the second term would be missing. The idea of the Enseéqblare Root
Kalman Filter (ESRKF) is to update the mean and deviations of the witlieut adding
noise to the observations,
x* =%/ + K (y° - Cx/)
x¢ =%/ — KCx/ ’
in such a way that the underestimation of the state error covariancenipensated for.
Obviously,K must be chosen such that

(3.56)

~ ~ T
(I - KC) P/ (I - KC) = (I-KC)P!(I-KC)" + KP,K”. (3.57)
Whitaker and Hamill [Whitaker and Hamill (2002)] have shown that

T -1
~ —1
K = PiCT (\/(CchT + Py> ) (y/CPf(CT i \/Py> . (3.58)

hence the name SQUARE ROOT filter. These square roots are non-unique delozdcu-
lated by Cholesky or SVD. Because the square roots are non-unigue, choices masighe m
[Evensen (2004)] claims that it is necessary to make sure there is\sammgon in these
consecutive choices.
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Uncorrelated measurements

When the measurements are uncorrelaleg is a diagonal matrix), they can be assimi-
lated sequentially. Thus, without loss of generality it can be assumatC” is equal to a
unit vector C”' = e;) andP,, is scalar. Now

~ K
K= , (3.59)

P
- -y @@
1+ (cpPLcT+py) !

and updating the deviations can be dondby= L — KL

3.4.3 EnKF; towards a non-linear measurement update

Whenever measurements are available, there is a jump in the anatgesl When the cur-
rent estimate is close to the true value, then this jump will ballsiwhen the measurements
are very inaccurate, the analyzed state will be much closer to thedsted state than the
observation, so the jump will also be small. In case of accurate n@asuts, the jump
may be large. Many large jumps cause filter divergence or at best pooatsstjrbecause
the magnitude of the jumps is overestimated by the linear measurement. Upatatemeri-
cal stability it is often better to have many inaccurate measenésnavailable than a few
accurate ones. This section attempts to duplicate an accurate measuirgim several less
accurate measurements.

Uncorrelated measurements

In 1D (uncorrelated measurements are assimilated sequentiallypawssian stochastic
variables, a reservoir state and an observation, with parar(w}ebgc) and (u,,0,) are
combined by a Kalman update to a new Gaussian with parameigrs, ) , where

0203 og + 02 o
- R ’ " :M. (3.60)

a ofc—i—og a ofc—i—og

Alternatively to assimilating:, once with uncertainty,, it can also be attempted to assimi-
latex, n times sequentially with higher uncertairgy. In that case

2’ ~2
ag_|. g
2 2 2 ali—1”0 2 2
Oa’OZOf ’ Ga’i: 02| : +52 s Oazaa’na (361)
al;g—1 o
or equivalently
2 0?53
Oq = . (3.62)

N 2”*10? + 53
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The number of duplicate measurements must be specified by the usahddis proposes to
let o, be invariant under this approaatmly the discontinuity in the first statistical moment
is reduced while the second moment is left unchanged. From Eq. (3.60) and Eqg. i(3.62),
follows that

~2 2 2
n =1+ log,y (0—;05 +io
06 0% +o

) or &2 =2""152 (3.63)

Example: if 7, = o (bring the uncertainty of "measured measurements" to the order of
"predicted measurements"), then

o2 +02

n =1+ log, ( ! O) , (3.64)

2
20z

soifo} = 10" ando? = 10%, thenn ~ 26.58. Settingn = 27 givess> = 6.7 - 1010,

3.4.4 Smoother

A long term production optimization algorithm typically runs over a timeial from the
present to the end of the estimated lifetime of the reservoir. The inpstifbran algorithm is
a reservoir simulator that has been history-matched using all aladata up to the present.
Both a reservoir simulator that has been history-matched using a gaghtnethod or a
reservoir simulator that has been history-matched using a filtefystitis condition. How-
ever, the history of the former simulator is consistent with all datereas only the present
time of the latter simulator is consistent with all data. This is duénéosequential nature
of a filter; data improves the present estimate of a reservoir simulator but does narhave
impact back in time. Applications exist where it is necessary to estirthe past state of a
reservoir using measurements taken at a later point in time.thén@ methods can be used
for such applications without modifications. A filter must be modified into a sheaa fil-
ter estimates the present given the history, a smoother estimates thet |giesn the history
and the future (or it estimates the past given the history and the prelgiathiematically, the
results of a smoother can be seen as if obtained by a statisticatlyabpieighing of the out-
come of two filters, one running forward and one running backward in time. mgéng
a smoother is quite a lot harder than a filter.

In current implementations of closed-loop reservoir management, the pi@daptimiza-
tion and data assimilation are decoupled by an iterative scheme. Baselll available
knowledge, an optimal production strategy is calculated. This stratafggnsapplied to the
reservoir simulator and in the field. Measurements are assichielbenever they become
available. A new optimal strategy is obtained from the updated simuldiben the mea-
surement errors are not correlated in time, a filter is quite suitedosed-loop reservoir
management. Otherwise, a smoother must be used or other modifications mustelte ima
filter [section 3.4.5].
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3.4.5 Adapting a filter to handle seismic data with time-correlated
errors

3D seismic data can be assimilated into a reservoir simulator asfiltgr, provided that
there is a forward model that predicts seismic data based on the outcoime refservoir
simulator. If seismic data are inverted to grid block pressuressanhgations, they can be
assimilated as if originating from production measurements. Riffelevels in between are
also possible. In 4D seismic data inversion, the data typically cordisi® (or more) sets
of repeated data at different points in time. Usually 4D inversiotoise by inverting the
difference in data back to pressure changes and saturation changeshathmessures and
saturations themselves. Both sets of 3D data contain large untiesabut this is partially
cancelled out by the differencing. 4D data seismic data can be assiinilsing a smoother
and has been done in [Skjervhegnal. (2005)].

This thesis proposes an alternative. Instead of differencing two s&3 data to reduce
the uncertainty, both sets of 3D data can be assimilated by a method thattlyxiakes
uncertainties into account. A standard filter can not handle time-ctwdettata, so a modi-
fication needs to be made. An Ensemble Kalman filter can be used with a dnsielmble
size. Every ensemble member has a (non-identical) twin brother in the lesafthenever
production data are available, these are assimilated into both ensetniilkeeping the two
ensembles separate. Whenever measurements become available tioatedated to pre-
vious measurements, half of the ensemble members are desttogazhes that contained
the seismic data. New twin brothers are created as exact copies of g#ratdasnembers
that only contain production data. Now the seismic data are assimitdtethe duplicate
ensemble, keeping the original ensemble unharmed. In order to assimil3k ddta sets
simultaneously, the duplicate ensemble members also need to be aufyméhthistoric
versions of the original ensemble members.

3.4.6 Other low-order approximations

Other low order approximations exist, where the columri,diq. (3.50), are chosen differ-
ently. In the RRSQRT-filter (Reduced Rank Square Root) [Verlaan asthie (1997)], the
ensemble members are updated in time without randomly sampling modis. dnistead a

square root of the model error covariance is concatenatig o= [L ’ (n—1) st)m}

after whichL is reduced back to its original size by selecting thieading singular vec-
tors. The POENnKF (Partial Orthogonal EnKF) [Verlaan and Heemink (1991¢)]GOF-
FEE (Complementary Orthogonal subspace Filter For Efficient Ensemblesinikleet al.
(2001)] combine an ensemble of singular vectors with a randomly sampled leleseFhe
spaces spanned by these two ensembles overlap partially. In PORisK~erlap is ignored,
in COFFEE the random ensemble members are projected onto the complentensphte
that is spanned by the singular vector ensemble.
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3.5 Hybrid method

3.5.1 Expectation maximization

The Expectation Maximization (EM) [Dellaert (2002), Bilmes (199&)empts to find the
parameter® that best explain the databy maximizing the likelihood function

L(6):=Inp(y|O). (3.65)

The maximization problem is simplified by introducing auxiliary distribotfunctionsp (x)
over the hidden variables These variables are needed to forward predict the data given the
parameters and contain the reservoir states. The likelihood can benva#t

=1 = n X X =1n XMX
L(O):=mp(¥10) =n [ p(xyl0)dx=tn [p(0 20 E ax (o0

and a lower bound can be found because of the concavenesdoffthetion

umz/mmmﬂ§%@w=/@@mw@mm—mmmmme (3.67)

The EM algorithm iterates over an expectation step and a maximizstepn

- In the expectation step of theth iteration, the lower bound Eg. (3.67) is maximized
with respect to the distribution functions over the hidden variaples), while keeping
the parameters fixed. It can be shown [Bilmes (1998)] that the maximum imetita
when

Pn (X) =p (Xlanfla y) ) (368)
for which the bound becomes an equality.

- In the M-step, the lower bound is maximized with respect to the paras)etbile keep-
ing p (x) fixed, so

0, = arg max/pn (x)Inp(x,y|0) dx. (3.69)
0

3.5.2 Integrating a filter in a variational method

The first {«,,) and secondK,) order moments o, (x) from the E-step, Eq. (3.68), can be
calculated by an (Ensemble) Kalman smoother. Unlike what was detirssection 3.4.4,
the model parameters need not be augmented to the reservoir stateslidgto Eq. (3.68),
or equivalently

0, = argminE, ) {—Inp(x,y|0)} =argmink, )/, (3.70)
0 0
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the expectation of the objective function Eq. (3.5) with respegt;tax), is minimized with
respect to the parametefis Taking this expectation comes down to replacing the terms
(y - uy)TP;1 (y — p,) ande”P- e of Eq. (3.5) by(x — p,)" P, (x — p,). Mini-
mizing the objective

J=(x—p,) Pl (x— ) + (80— ) Py (60— py) (3.71)

can be done with the existing adjoint reservoir simutatbe real measuremenyscan be
replaced by the analyzed reservoir states from the forward dimmba

Like a classical variational method, a gradient of the objective wiheet to the param-
eters can be obtained by Eq. (3.19) and Eq. (3.21) applied to the ensendieofine
forward simulations. Like a filter/smoother with parameters augetttat the state, it is also
possible to update the second order moment of the parameter probabilityudisir using
EM. In order to do so, an ensemble of parameters must be sampled frgmdhdistribu-
tion, and Eq. (3.19) and Eq. (3.21) must be applied to every ensemble msepaeately.

For the full EM method, a gradient-based search algorithm in the M-step om&tige
before the E-step is again performed. Optionally, the search algoritaynb® truncated
after several (or just one) iteration. This will increase the nunabéterations of the EM
algorithm, but will reduce the computational costs of the M-step. It milgiat @onverge to a
better parameter estimate.

The smoother in the E-step may be replaced by a filter [Sweppe (1973)p&d Qt995)].
Implementing a filter is significantly easier than implementing a smootiner adjoint equa-
tions must be adapted to handle discontinuous trajectories, which is a g$fogdll &he
variational algorithm might need more iterations with a filter than a sherydiut does not
necessarily result in a better or a worse parameter estimate.

3.6 Relation between data assimilation methods

At first glance, Kalman filtering/smoothing and variational data asatioh might look like
totally different methods. In a Kalman smoother, the prior probabilisgritiution of the
model parameters is updated by sequential time integration steps andremeaist steps.
The time update takes into account model errors that are not causeditsyiethe parame-
ters. The results are the first (mean) and second (covariance) ottitgicstiamoments of the
posterior distribution of the reservoir states and model parametaditoned on the data.
In a variational method, the squared difference of the predicted andvedseeasurements
is minimized, regularized by the squared deviations of the parameters timprior. Op-
tionally, model errors can be taken into account, meaning that thevoise&mulator is used
as a weak constraint. If model errors are not taken into account, theogssimulator acts
as a strong constraint. The different terms in the squared objectivedarezin be given
weights, in the form of scaling matrices.
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Although smoothers and variational methods can be formulated independentligothey
can be derived from a higher probabilistic principle, Bayes rule. Therggatiatrices in
the data-misfit objective function must then be interpreted as o matrices. When
the prior is Gaussian and the system and sensor models are linear, tipostirgor is also
Gaussian. The first and second order statistical moments that areatzdidoy the smoother,
are therefore sufficient information for the full posterior distributionvéak constraint vari-
ational method like the Representer Method, finds the minimum of the objectigédn at
the point where the posterior density is maximal, called the mode. For avamigte Gaus-
sian, the mode and mean coincide, meaning that a Kalman Smoother andotiesdréer
Method result in identical parameter estimates (ignoring roundoff)eath methods give
some extra information. A smoother provides, besides the parameteatestjmarameter
uncertainties in the form of a covariance matrix. The Representer Methsadseecifies the
separate effect of every measurement in space and time on the finalgbarastimate.

When the prior is not Gaussian, or the system or sensor model is non-linear, taemoo
and a weak constraint variational method are not equivalent in the paaestimates. A
smoother still gives the first and second order statistical momeritshége are no longer
sufficient to fully represent a probability function. A weak constrainiateanal method
calculates the mode of something that hopefully resembles the postetiabjlity density.

In a smoother, the reservoir states and model parameters are abmaistent with all data.
Whenever measurements become available, the history of thesestates is updated to be
consistent with the new model parameters. To make future predicttaasften sufficient
if the reservoir states and model parameters are consistent withtalfor the current time,
rather than the full history. A Kalman Filter is a simplification of alkian Smoother, where
every measurement is used only to make the current reservoir statescalel parameters
consistent, without modifying the whole reservoir history. In fact, anka smoother can
be implemented as weighted average of two Kalman fjltare running forward in time and
one running backward in time.






Chapter 4
An efficient weak-constraint
gradient-based parameter estimation
algorithm using representer expansion$

Abstract

The discrepancy between observed measurements and their model-preditiedesican
be used to improve either the model output alone or both the model outptiteapdrameters
that underlie the model. In case of parameter estimation, methodshadistan efficiently
calculate the gradient of the discrepancy to changes in the parametersingsthanthere
are no uncertainties in addition to the unknown parameters. Usually niffengdt parame-
ter sets exist that minimize the discrepancy locally, so the gradiesttipe regularized before
it can be used by gradient-based minimization algorithms. This chapoggs a method
for calculating a gradient in the presence of additional model errom ghrthe use of rep-
resenter expansions. The representers are data-driven basisrsrictibperform the regu-
larization. All available data can be used during every iteration@fiiinimization scheme,
as is the case in the classical Representer Method (RM). Howkgendthod proposed here
also allows adaptive selection of different portions of the data duringréliffaterations to
reduce computation time. The user now has the freedom to choose the nurasisdtinc-
tions and revise this choice at every iteration. The method also diffars the classic RM
by introducing measurement representers in addition to state, adpmiriaaameter repre-
senters and by the fact that no correction terms are calculatedkeUhé classic RM, where
the minimization scheme is prescribed, the RM proposed here provides angthdiecan
be used in any minimization algorithm.

The applicability of the modified method is illustrated with a synthetiample to estimate
permeability values in an inverted 5-spot wétsoding problem.

4 This chapter is based oRpmmelseet al. (2007), which was published as TUD-DIAM report 07-05
and submitted to SPE Journal
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4.1 Introduction

4.1.1 Gradient-based parameter estimation

Data assimilation methods aim to improve numerical models by comparingl aseasure-
ments of a physical system with the numerical model predictions of thessurements
[Bennett (2002), Lewigt al. (2006), Evensen (2007), Olivet al. (2008)]. As the parame-
ters of the numerical model are changed, concequently the predictedasiatdes and the
predicted measurements change. The discrepancy between the "measasoiements"
and the "predicted measurements" can be used to update only the stegaistate esti-
mation) or also the parameters (parameter estimation) in order teaecthis discrepancy.
When only the state of the model is predicted, the model itself is notatedeAlternatively,
the model parameters and hence the model itself, may be changed until theeutedit-
put is satisfactorily close to the measurements. Parameter @stinadms at improving the
predictive ability of the model, whereas state estimation attetogfiad an initial estimate
for a model that is assumed to already have a good predictive ability faréaiéction inter-
val of interest. Estimating initial states falls in the categoryapaater estimation, estimating
all other states is state estimation. When the output of the model is useakodacisions,
state estimation is appropriate for time scales on which the error imtitel’s predictive
ability can be neglected. When the model is used for making long-term decisaasyeter
estimation algorithms must be used.

This chapter focusses on gradient-based parameter estimation algoNtbresprecisely,
it proposes a method for calculating the gradient of the discrepancy wjihae® changes
in the parameters, in the presence of model errors.

4.1.2 Model errors strong and weak constraints

Often, the discrepancy between the actual measurements and theegotedezisurements
is formulated using the Euclidean norm. The objective of the data aasimnilis then to
minimize the square of this norm with respect to the model parameteles the numerical
model is used as a (strong) constraint.

However, there is an additional phenomenon that may cause the discrepaeayodel
is an approximation, so even if the parameters were known, the model mi¢jpratilice
incorrect output. These errors can be modelled as extra parameteth, avhialso added
to the objective function. The model is then used as a weak constraint in timigation
problem.
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4.1.3 Notation

The state variables at timte are denoted by;,i € {0,--- ,n}. The models of interest in
this chapter are written in function format

g(XZ‘,Xz‘,l,a, 81‘) = 0; (41)

where the Jacoblaﬁ(’”’”—lee%— is assumed to be never smgular The model parameters
are collected in the vectd) and the model errors on intervil 4, ;] are contained in the
vectore;. The measurement operator operates on all state variables at all éjpseasid is
denoted by

Yy = h (X{O’... ’n}) . (42)

The initial states may be part of the parameter estimation prosess, = x, (8). The
minimization relies on the availability of the first (mean) andoset(covariance) order statis-
tics of the model parameters and model errors. These are deno@&tdBy Py, /""" = 0
andP.,.

In the so-called strong constraint case, the model errors are dypéieitto zero. The
objective function that has to be minimized is

(g0, ) )" By (g, ) ) + 43

l\)l»—l —

(0 0;07‘107‘) 51 (0 _ aprior) + ZA;Tg (XZ‘, Xi—1; 0; 0) )

i=1

wherem contains the actual physical measurements, possibly taken at diffenest P,
represents the uncertainty in the measurements in the form of an erariacme matrix.
The last term of Eq. (4.3) represents the system equagidhat have been adjoined to the
objective function with the aid of Lagrange multiplieks; see e.g. [Bennett (2006), Lewis
et al. (2006), Oliveret al. (2008)]. If the prior parameters and the measurement errors
have a Gaussian probability distribution and the reservoir simugatord sensor modéd
are linear, Eq. (4.3) can be interpreted in a probabilistic setting geBaile for updating
a prior. The estimate that is found by minimizing Eq. (4.3) is then equitatea posterior
that represents the mean of the probability function of the model paranéetersditional
to the measurementsee e.g. [Gavalast al. (1976)], [Zhanget al. (2005)] and [Oliver
et al. (2008)] for further petroleum-related references. If the assumptio@aossian prior
parameters and measurement errors and linear fungtiansih are not fulfilled, Eq. (4.3)
does not have a physical or probabilistic interpretation.
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When model errorg; are taken into account they become additional parameters in the
minimization process. They are assumed to be zero-mean, so thewabEstomes

1
J = 5(h(x{o,_,n})—m)TP;1 (h (x(o... nj) —m) + (4.4)
1 ri0T T ri0T 1 = —
+3 (0= 07 Byt (0-07) 53 el Prle

+ZAZTg (Xia Xi—1, 0’ ei) .

i=1

In the data assimilation literature equation Eq. (4.4) is refeweabstthe weak constraint
problem. For realistically-sized problems in reservoir engineermgimization problems
Eqg. (4.3) and Eq. (4.4) are most efficiently solved using gradientshasthods where the
gradient is obtained with an adjoint or co-state formulation. For petmolelated appli-
cations of strong-constraint least-squares minimization problemss.gegChaventt al.
(1975)], [Ruijianet al. (2003)], [Rodrigues (2006)] and [Oliveat al. (2008)] for further
references.

4.1.4 Representer Method

The Representer Method (RM) was introduced in oceanography as an effiaelrrdgr
based technique to solve the weak constraint least-squares minimigaildem ([Bennett
and Mclintosh (1982)], [Eknes and Evensen (1997)]). However, although theseepze
method was introduced as a method to solve the weak constraint probleray iequally
well be applied to the strong constraint problem. Subsequent work by [Ben@@g){zlso
addressed nonlinear applications for state estimation. [Baird andg@a(2005)] applied
the method to linear state estimation in single-phase resetwaiy [Valstaret al. (2004)]
extended it to nonlinear parameter estimation in ground wider, and [Rommelset al.
(2006)], [Przybyszet al. (2007)] and [Baird and Dawson (2007)] further developed the
method for use in two-phase resernvdaw. The RM simultaneously decomposes the devia-
tion of the estimated parameters from the prior parameters intodlesad effects of every
measurement. This regularizes the minimization problem and it alses giformation that
can be used to quantify the usefulness of every single measurement.

In this chapter, a modification of the classic RM is derived as a postgsor that eval-
uates the effect of the measurements on the solution of the weak constiaimization
problem. It is then reformulated to produce a regularized gradient#mabe used by any
gradient-based minimization algorithm in order to find the solution ofwtkek constraint
minimization problem. The method allows decomposition of the paramettorvimto a
general number of basis functions rather than a number that necessarily méedsdual
to the number of measurements as in the classical method. This makes the owstipd
tationally more attractive for applications where many measurement@vailable. Due to
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a different linearization, no correction terms have to be calculatedjas the case in the
earlier versions of the RM when applied to non-linear problems.

4.2 Gradient of the strong constraint minimization problem

4.2.1 Obtaining a gradient
The derivatives of Eq. (4.4) with respectXg, ¢;, x; and@ are

aJ\"
<8A> :g(xi,xi,l,a,ei), (45)
8g(xiaxifla0a€i) T )
( ) —Ple + ( = ) A (4.6)
() - () 5 e
8g (Xzaxz 1;0 5) 8g (Xi+1axza0a51+1) ’
+ %, A+ T Ait1,

Q prwr 8g Xiy Xi— 1’0€i) ’ )
(aa) =P, (66 +Z;< T ) ;. (4.8)

Eq. (4.5) and Eq. (4.6) are valid fere {1,--- ,n}, whereas Eq. (4.7) is valid far €
{1,--- ,n—1}. Fort,, the term including\;; is missing from Eq. (4.7). Alternatively,
Ant+1 = 0 may be introduced. Fdg, the term including)\; is missing. In case the initial
statesx, are part of the parameter estimation process, the term

0% (0) r Jg (x1,%0,0,¢€4) ’
( 90 ) ( I%o 1) . )

should be added to Eq. (4.8). For the strong constraint case, wh&explicitly set to
0, the gradient of the objective function with respect to the model paramté%)T, can
be calculated using Eq. (4.8), where the model stateend adjoint stated; follow from
sequentially solving Eq. (4.5) and Eq. (4.7) with the left-hand sié%)T and (g—};’i)T,
set to zero. Eq. (4.6) does not need to be useteads; = 0 is used.
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4.2.2 Using the gradient

To solve the strong constraint minimization problem, a numerical routine neushjble-

mented that evaluates as given in Eq. (4.3), an@%)T, as given in section 4.2.1. This
routine can then be passed to any gradient-based minimization safpaakage, together
with a set of initial parameters (usuay™"* = #”"'°") and some appropriate minimization
options that are algorithm-dependent.

Often the objective function has multiple local minima and the minitiopgorocess needs
to be regularized. If low-order parametérsire introduced such th@t= 877°" 4+ Qb, with

Q’Q =1,thena regularize_d gradient can be foundyl” (g—g)T. The orth_ogonal matrix
Q can for example be obtained by selecting several left-singular nge(gection 4.3.7) of a
square rooL of the covariance matriPy = LL”.

4.3 Gradient of the weak constraint minimization problem

4.3.1 Local minimizer

In a stationary point (denoted by superscepbf Eq. (4.4), all gradients are equal to zero,
so

g(xf,xf,l,as,sf) =0, (410)
s T
e =P, <8g (X“X“’a’ei)> by (4.11)
881‘
T

S T S T
_ (8g(xf,xfl,0,ef)> As+(8g(xf+1,xf,6',efﬂ)> N
- 7 i+1

ox? oxs

K2 K3

T
_ , " [ Og (x$ x5 ,,0° 85)
1 prior _ s\ _ 70 M —1 »=q s
P,' (6 0°) ; ( T XS (4.13)
Unlike in section 4.2.1, the forward equations Eq. (4.10) and the adjoint egedig. (4.12)
are now coupled because the model eregrare no longer equal to zerthey are related to
the adjoint stated; by Eq. (4.11).
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4.3.2 Basis functions

The minimization algorithm is started with**"* = """ andes'*"* = A;""" = 0.
Applying these prior conditions to Eq. (4.10) gives the prior system st4téS". Given the

prior states, also prior measurements can be predihttédf{’gfffn} . The causes for the

variables to move away from their prior are parameterizet.bin the classic RM there is
a 1-1-relationship between one such cause and an isolated measuremeat iargpime.
In this chapter, this assumption is abandoned. Moreover, for computational mjrigdse
interesting to assume that the number of parameters in the ledcsaimuch) smaller than
the number of measurements.

The deviations from the priors are now decomposed as

x§ —xP"" = Ry, b, (4.14)

XY =Ra,b, (4.15)

0° — 677" = Ryb, (4.16)

B (x{o....p) =B (x5 ) = Ryb. (4.17)

The columns ofRx,, Ry,, Re andRy contain the state representers, the adjoint repre-
senters, the parameter representers and the measurementniepsespectively. When
the measurement operafoiis linear, the measurement represenieyscan be constructed
by applyingh to the matrix that is obtained by concatenating the state repres&tteress

row blocks. Alternatively, the RM can be formulated in terms of stapgesenters without
defining measurement representers, as is done in the classic RM. Tuation of mea-
surement representers only has added value when the measuremertr aperan-linear.
Theoretically, it is also possible to introduce error representers

e =R.,b. (4.18)

However, looking at Eq. (4.11), these error representers are nothing harertodified
adjoint representers

0g (xi,x;-1,0, €f)>TRX (4.19)

R., =P, ( o

and have no practical application.
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4.3.3 Representer equations
Substitution of Eq. (4.14), Eg. (4.15) and Eq. (4.16) into Eq. (4.12) and4&3) results in

T

("G} ) =

K2

S S S S T S S S S T
_ <8g (x5,%x7_,,0 ,51')) Ry b+ <8g (%711, %5, 0 ,ei)> R, . b
i i+1

S S
0x; 0x;

T
" (O s x5 .. 0% s
Rgb = —P02< g(x“);(;i’ ’€Z)> Rab. (4.21)
i=1
Eqg. (4.20) can be simplified by requiring
P! (m —h (X?O’___ n})) — Qb. (4.22)

How to choose the selection mati€y will be explained in section 4.3.7. In the classical
formulation, whereQQ = I, b contains the differences between the observed and predicted
measurements, decorrelated By. Using requirement Eq. (4.22) provides a means to
calculate thedjoint representer® y ;:

8 ( s s 05 s) T
> > s
( g XZ;XZ,1; i ) ) RAi (423)
ox;
T
S S S T
B dh (X{o,... ,n}> Q- og (xfﬂ, x;,0 ,si) R
N ox? ox? Avtr
Theparameter representeil®y follow by removingb from Eq. (4.21)
n 8 ( s s 05 s) T
g\ X, X1,V ,&
Ry =-P § Ra.. 4.24
6 6¢:1 ( 99° ) A ( )

Optionally, the term

Ox0 (0°)\" (98 (x5,x5,0%,€5)\"
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has to be added to Eq. (4.24) for estimating the initial states sttte represente®Ry, are
obtained by differentiating Eq. (4.10) with respect to the representsficientsb;

0g (x5,x5_,,0° €) 0g (x5,x5_1,0°,€)

Ry, +

Ry, , + (4.26)

aXZS axf,I
Og (x;,%x;_,, 6% €;)
26° R (4.27)
g (x5.x5 ,.0° &° . x. s\ T
o g(xzaxzfla ’€Z)P5v 8g(xzaxzflaaa€z) R)‘v
Oe$ ' Oe '

and the same is done with Eq. (4.17) to obtainrtieasurement representdRs; ;

Ry:iw Ry,. (4.28)

=0 g

Substitution of Eq. (4.17) into Eq. (4.22) indicates thatrdresenter coefficients should
be obtained as the least-squares solution of

(Ry+PyQ)b=m—h (x[;" ). (4.29)

4.3.4 Representer Method as iterative minimizer

The representer method can be used as post-processor after a localmufiig. (4.4) has

been found by another method, in which case equations Eq. (4.23) and Eq. (4.24) need to b

calculated. If no such local minimum has yet been found, the representer neathatso be
used in an attempt to approach a minimum by Picard iterations. The idézaofl Rerations
is to solved fromf () = 0by 0,1 = 0, = (0;). Heref () = %@. The steps that need
to be taken then are (superscriptow stands for estimate, rather than stationary point):

Initialize the parameter estimadé equal to the parameter pri@f™°".
Initialize the adjoint statek; and model errors? equal to zero.

Run the non-linear model Eq. (4.10).

Choosd), as will be discussed in section 4.3.7.

Calculate the adjoint representers Eq. (4.23).

Calculate the parameter representers Eq. (4.24).

Calculate the state representers Eq. (4.26).

Calculate the measurement representers Eq. (4.28).
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9. Calculate new representer coefficients Eq. (4.29).
10. Calculate new adjoint states Eq. (4.15).
11. Calculate the model errors Eq. (4.11).

12. Calculate new parameters. Eq. (4.16) can be used, or a line searchicalnded

afww = (1 - CY) GZld + o (0;07‘1'07‘ + Reb) . (430)

13. Go to 3 if stopping criterion has not been fulfilled.

It could be argued that with these definitions of the representers and erfmesoeffi-
cients, Eq. (4.14) through Eq. (4.17), and with the Picard iterations agbdsiformulation
of the representer method, the results from steps 7 and 9 cannot be substitted4ri4)
to reproduce the results of step 3, in contrast to the original formulation okfiresenter
method [Valstaet al. (2004), Baird and Dawson (2005), Przybygzal. (2007)]. This argu-
ment is true for the modified RM, but a similar argument can be given for thmal RM. In
the original formulation of the RM, a correction term is used and thestat decomposed
around the states of the previous iteration, rather that around the fates.sThe criterion
for calculating this correction ternx$°", is in fact that the original version of Eq. (4.14),

x5 — (x{ - ng’”) — Ry b, (4.31)

remains valid. However, a Picard-type of approximation is made to comethip workable
equation for the correction tergf°"", so Eq. (4.31) only holds if a minimum of the objective
function has been found and not during the iteration process.

4.3.5 Obtaining a gradient

The measurements can be predicted after step 3 of section 4.3.4 Hasdinisgether with
the input parameters (step 1) and the model errors (step 11), the objectié.Eocan be
evaluated. Instead of step 12, a direction that decreases the objeantibe calculated as

ddecrease - aprior + Rob — GZld’ (432)

S0 an (approximate) gradient is given by

T
( g ;) =0° — """ — Rgb. (4.33)
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4.3.6 Computational issues in using the gradient

The objective and its gradient cannot directly be used in standard gtdodieed minimiza-
tion algorithms because the interface of a standard minimization algorghmually not
equipped to handle the adjoint states and model errors. A standard mitmiakyorithm
provides a set of parameters to a routine that evaluates the objective gratlient and then
modifies the parameters. Such a routine for the representer method watdihcsteps 3 to
12 of section 4.3.4 with the modification of section 4.3.5. The routine algtifies the val-
ues of the adjoint states and model errors, which the minimization algodtas not know
about. Moreover, during a line search of the minimization algorithm,gtadient routine
modifies the model errors. When the line search method rejects a stemdiebarrors must
be reset to the last accepted values. With some modifications, thiagetef a minimiza-
tion algorithm can be enriched to handle the routine of the representer mbti@aluates
the objective function and its gradient. Because of these modificatidretminimization
algorithm, the method is not suited to interface with third partyvearfé without the avail-
ability of the source code. However, if the source code is available hgaké modifications
is almost trivial.

Unlike the gradient of the strong constraint problem that needs regularizasiovas dis-
cussed in section 4.2.2, the gradient of the weak constraint problemashaimegularized by
the representer expansions.

4.3.7 ChoosingQ
Eq. (4.23) states th&) must be chosen such that several rowg}ég’%t) are removed
by the multiplication
Qr oh (X{O’___ ’n}>
oxs '

Here, the term% are column blocks of the full measurement sensitivity matrix

Oh (X?O’___ ’n}>

(4.34)

gz Do) _ponty ) )] (a9
X{O..n} X0 Xn

It is needed to remove rows of the ful], instead of the individual blocks. In other words,
the same linear transformation is used to remove rows of all individlaaks, orQ is the
same for all time steps. Eq. (4.23) allo@sto be different for different time steps, but then
the operation in Eq. (4.29) would no longer be well-defined.
For example, a singular value decompositiod gfcan be used, sb, = UX V7', where
¥ has the form
01 0 0
0 0

Om
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and the bottom part 6V is filled with zeros. Extra zero-rows can be created in the prod-
uct VT = UTJ, by setting the smallest singular values to zero, which is equivalent to
removing the bottom rows df”. Therefore th&Q matrix that is proposed in this chapter is

Q :U[:,lzk]’ (437)

which means thaf) is formed by calculating the left-singular vectorsXf in a matrixU
and then keeping only columns. The singular values ¥ can even help to make a decision
on the number of representer functidgndased on a preservation of energy principle.

4.4 Numerical experiments: twin experiment

4.4.1 Inverted 5-spot

Experiments were done on a 2D 2-phase whteding application with wells in an inverted
5-spot configuration. Water is injected at a rate of one pore volume per yedreaptbtuc-
tion wells are constrained ttow at0.25 pore volumes per year. The state of the reservoir is
described by pressure and water saturation in all 21x21x1 grid blocks of 10xh0x28ap-
illary pressure is ignored, as well as gravity effects. All otfigid and reservoir parameters
have been listed in Thl. (4.1). Synthetic data are generated by picking alimaten out of

a database of 1000 realizations as the "true" permeability, Fig. (4.1)uandhg a reservoir
simulation with model errors that are sampled as white noise, Fig. (@& that although
in reality production data consist of phase rates, bottom hole pressuresray haaid pres-
sures, we will use the gridblock pressures as "measurements” t@ #ssgmerformance of
the algorithms. The pressure and saturation responses in the welbgKkdlaifter simulating
with these model errors are shown in Fig. (4.3). This figure also shows lietignpressure
"measurements" in all well gridblocks at 100 and 200 days of simulation. fftee ealiza-
tions from the database are used to construct a covariance matrix tis&d in the objective
function that has to be minimized.

4.4.2 Reservoir simulator in weak or stochastic mode

The 2-phase reservoir simulator can be written as

d
o (L (x) =£(x90), (4.38)
wherex contains the water saturation and water pressure (equal to oil prefsuesery

grid block andd contains the permeabilities of all grid block. describes the presence of
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Symbol Variable Value Slunits | Value Field units
h Gridblock height 20 m 65.62 ft
Az, Ay | Gridblock length/width 10 m 32.81 ft

u, Oil dynamic viscosity 1.0x 1072 | Pas 1.0 cP
[y Water dynamic viscosity 1.0x 102 | Pas 1.0 cP

¢ Total compressibility 1.0x 1078 | Pa! 7.0x107° | psi~?!
PR Initial reservoir pressure 10 x 10° Pa 1450.4 psi
kD Endpoint relative permeability, oil 1.0 —
K Endpoint relative permeability, wate 0.5 —

No Corey exponent, oil 2.0 -

N Corey exponent, water 2.0 —

Sor Residual oil saturation 0.2 -
Swe Connate water saturation 0.2 —

[ porosity 0.3 —

Table 4.1: Reservoir anfluid properties for the example

original true permeability permeability projected on 25 basis functions
[ ] [ ]
. - R
u 285
5
-29
10 e 10 295
|
i N 30
15 15
e -30.5
20 i 20 31
5 10 15 20 5 10 15 20

Figure 4.1: True permeability datdln (m?)] used to synthesize pressure data in the wells and best
possible reconstruction using 25 basis functions.
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water and oil mass in the grid blocks afidnodels thelow through the grid block interfaces.
Injection/production is modelled as sources/sinks, which are includéd in
A fully implicit time discretization is used

g (xi,xi-1,0) =f1 (x;) — (t; — tic1) f2 (x4,0) — f1 (x,-1) = 0. (4.39)

The model errors are introduced as additional sources/sinks in all gridsbldnkother
words, afterx; has been solved from Eq. (4.39), the water and oil masses in the gridsbloc
have not correctly been predicted and must still be modified. The piediteteriorates as
the time steft; — ¢;_1) gets larger. Therefore the correction is modelled proportionally to
(t; —t;—1). If the additional sources become too strong, then unrealistically hiegspres
will be observed. If the additional sinks become too strong, then saturatitsise]0, 1] will
occur. In this chapter, the additional sinks are non-linearly constrainéd Byne stochastic
reservoir simulator has the form

g (Xi,Xi,],a,Ei) (440)
= f1 (XZ) — (ti — tifl) f2 (Xi, 0) — f1 (Xifl) + min {fl (XZ) s (ti — tifl) Ei} =0.

For the synthetic truthg; is generated as white noise, Fig. (4.2). Applying this stochastic
forcing to the reservoir simulator results in wiggly pressure and sainreesponses in the
wells, Fig (4.3). Although the pressure is not smooth in time, it is stilboth in space, Fig
(4.4). This is not the case for the water saturation.

Model errors x 10 °Cumulative model errors
3

error [kg/s]

cumulative error [kg]

0 05 1 15 2 “o 05 1 15 2
time [s] %10 ’ time [s] 7

Figure 4.2: High model errors as functions of tifithee;’s are sampled for all grid blocks and defined
on dayly intervals. They are plotted at the end of the intervals.
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///7/,\7\\/7\\//\/ ~ "
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Figure 4.3: Pressure and saturation response in the well gridblocks whereginguwith large model
errors. The top plot also shows the 10 synthetic measurements, indicatstebigkes

permeability [In(m 2)]

ﬂ

5 10 15 20

5
10
15
20
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6 20
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water saturation [-]
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0.5

Figure 4.4: Spatial plots of permeability, pressure and water saturation @id2ys
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4.4.3 Permeability reconstructed

Four cases were examined with zero, low, middle and high model errtrsstaindard de-
viations of0, 5 - 1074, 5 - 103 and5 - 1072 [kg s~ '] respectively. For the first case, the
gradient of the strong constraint problem was used and regularized by thiegea left-
singular vectors oPy. The best possible permeability that can be reconstructed using these
basis functions is shown in Fig. (4.1). The gradient of the weak conspedblem was
obtained and regularized by the Representer Expansions. For the stronginbuase, ex-
periments were done with fixed basis functions and with Represeritetise former case,
the classic adjoint method provides the gradient, in the latter tasgradient is obtained
from the Representer Method. Steps 2, 10 and 11 of section 4.3.4 can be ignoretthehen
RM is used for solving a strong constraint problem. The gradients were usest@epest
descent scheme and in the LBFGS [Gao and Reynolds (2006), Ulbrich (200@)itlain.
Three different line search strategies were triedixed step size, a step size that decreases
exponentially while the objective function does not decrease and a ggdoh@atsearch. In
the quadratic line search, the objective function along the line is approximasegddnabola,
given the current value of the objective, its slope along the line andalue at a potential
step size. A new potential step size is found at the minimum of the paratiak simi-
lar to Wolfe conditions [Nocedal and Wright (1999)] in the sense that it tleegradient
to determine the direction of the line search as well as using it imat& the optimal step
size. However, the Wolfe conditions contain some extra options to apphaaaten fac-
tor or to be less greedy, whereas the quadratic line search method doésgn@t.5), Fig
(4.6) and Fig (4.7) show the decrease of the objective function as functionatfotenum-
ber, step size and the product of step size and the norm of the gradiemtHanimimization
algorithms, all four cases, and three different line search stratdgigeneral, the objective
functions of the different cases contain different weight factors and arddheremt compa-
rable. However, the synthetic true model errors are created in sual, that they contribute
identically to the objective functions of the high, middle and low cases.

The objective of the strong constraint problem gradually decreases wheatjdhe mmethod
and steepest descent are used for the minimization. (L)BFGS and RM botreradditional
computation time per iteration. This can be compared to making an effcai¢alate some
approximation of the 2nd order derivatives of the objective function, theidtes&\pply-
ing BFGS does not contribute extra when the RM is also applied. HowéeeBEGS does
have a clear effect on the strong constraint problem that is solved hathdjoint methogd
with a relatively simple but effective line search algorithm (exptiat), BFGS converges
significantly faster than steepest descent. Although BFGS providetea ®edirch direction
than SD, this does not help the convergence if a fixed step size is used.eFbraig con-
straint case with the adjoint method, the quadratic line search praddased computation
time per iteration as well as faster convergence. In this case tlamtdye of BFGS over SD
can no longer be observed. The quadratic line search does not work properlyldimation
with RM, because the slope of the objective along the search direction canndt ilateal
accurately. In order to calculate this slope correctly, the dot praafiitie gradient and the
search direction needs to be calculated. In case of SD with the adjethbd) the search
direction is equal to the gradient. In case of BFGS, the gradient is raddifi an approxi-
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Figure 4.5: Three views on the objective functioas function of iteration number, step size, and step
size multiplied by the norm of the gradient. From top to bottom: high level modeseéo zero model
errors. RM is used for the weak constraint cases. Both RM and the adjom2&ivd basis functions
are used for the strong constraint case. Steepest descent and LBFGS wégd.appk step size is
fixed.
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Figure 4.6: Three views on the objective functioas function of iteration number, step size, and step
size multiplied by the norm of the gradient. From top to bottom: high level modesd¢o zero model
errors. RM is used for the weak constraint cases. Both RM and the adjoin2%ithid basis functions
are used for the strong constraint case. Steepest descent and LBFGS pléxd.aphe step size was
exponentially decreased until the objective improved.
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mation of the Hessian to obtain the search direction. In case of Rbgwdarized gradient
or search direction is obtained directly, while the true gradient is unkn@s a result, the
guadratic line search underestimates the step size and the algorithrheftmgseven finding
a local minimum of the objective function.

The RM only needs one iteration for a linear problem (linear simulataz floird phase),
estimating the initial state while the model parameters are asbtoniee known, additive
model errors). For more complicated problems more iterations are needesti/lbmost of
the decrease of the objective function is achieved in the firstiberaRM converges even
faster in case of higher model errors. This is due to the fact that the mearlielationship
between the model parameters and the state variables get overshaddhedlogel errors,
making the problem more linear.

The RM is greedier than the adjoint methaduch more work is done per iteration, but
less iterations are needed. It seems that the RM is punished slighitly §oeed, because for
the strong constraint case the objective function value of the adjoint mistidittle smaller
than the RM after convergence.

The prior permeability and the true permeability as well as the finah&tcuctions for the
cases with zero, low, middle and high model errors using SD are showig.in4=8). In
the strong constraint case, the gradient was regularized using 25 bagisrfartbat were
obtained as left-singular vectors of the permeability covariancexmatr

prior true permeability zero, adj zero, RM
-28.5
5 286 ° 29 5 2¢
10 -29.5
2880 10 -2¢
15 15 30 15
29 -30.5 -3¢
20 20 20
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
high, RM middle, RM low, RM
-28.5
5 29 5 -29
10 2080 295
15 3015 30

20

5 10 15 20 5 10 15 20 5 10 15 20

Figure 4.8: Prior permeability and final estimates in the cases with lwahiddle/high model errors.
The classical adjoint with 25 basis functions was used for the case with no nmatel &M was used
for the other cases.
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4.4.4  Additional output from minimization process

Besides reconstructing parameters, the (modified) RM gives additioftairiation. Fig.
(4.9) shows the model errors that were reconstructed by SD with exponémtiaddarch
for the case where the truth was synthesized using high model errors. @ahtpathe
original, Fig. (4.2), they are underestimated and smoothed. All the highutesomodel
errors that were not time-correlated cannot be reconstructed by the nreastsehat have
a much lower time resolution. Consequently, artificial time con@tadf the model errors is
introduced by the RM. Fig. (4.10) shows the reconstructed pressure aratieatuesponses
in the well gridblocks. These are smoothed as well. The parameter eapees multiplied
by their representer coefficients are plotted in Fig. (4.11). The diftescales show that
some measurements have a larger impact on the final permeability tedtivaa others, both
in space (different columns) and time (different rows). Measuremettie aame location at
different moments in time affect the estimated permeabilitylaiyi and therefore result in
similar representer functions. Fig. (4.12) shows all representers @aithe scale.

x10° Model errors Cumulative model errors
4 3000

|
2000 / b
/
2 / \
| /
J

1000

error [kg/s]

-1000

cumulative error [kg]
o

-2000 |

-4 -3000
0 0.5 1 15 2 0 0.5 1 15 2

time [s] %107 time [s] %107

Figure 4.9: High model errors reconstructed by SD with exponential linecbear

4.45 Order reduction

Fig. (4.8) was obtained without any order reducti@was chosen equal to the identity ma-
trix). Fig. (4.13) was created using an order reduction by a factoy Qvis obtained by a
permutation of the columns of the identity matrix and then adding the rigist solumns to
the left most columns. The resulting columns are then normalized. The péonugadif-
ferent and random for every iteration. In every iteration, the ohjectecreases by steepest



72

Chapter 4

x10'

pressure

1.4

12—

L SE prod ‘ ‘

08 .
06 : L
| : — .

04 | / / i

0.2 L L L L /T L B L \7/7 L
0 2 4 6 8 10 12 14 16 18
x10°

Figure 4.10: Pressure and saturation response in the well gridblocks recmbetl by LBFGS using
the 10 pressure measurements in the 5 wells at the 2 measuremeniniificated by the dotted lines.

1

1

2

1

1

2

W

5 10 15 20

b |

5 10 15 20

° s
001

<002 10
003 15
008,

5 10 15 20

0 5

002 10

15
-0.04
2

0.2
0

02 19

0.4
0.6

1

5

5

-0.8 20

04 015
5 s

03 01

10 10
02 0.05

15 15
01 o

20 20
o 005

5 10 15 20 5 10 15 20 5 10 15 2
0
01 02
5 0o 5
02 02
0310 a0
04 15 06 15
05 08
20 20
5 10 15 20 5 10 15 20 5 10 15 2

-0.5

Figure 4.11: Parameter representers. Top row: pressure measnenafter 100 daysottom row:
after 200 daysmiddle column: measurements obtained from injection\eéler columns: north-west
(NW), SW, NE and SE producers, indicated by the black bullets.
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Figure 4.12: Scaled parameter representers. Top row: pressure measuteafter 100 daydottom
row: after 200 days middle column: measurements obtained from injection,watther columns:
north-west (NW), SW, NE and SE producers, indicated by the black bullets.

descent and exponential line search. Since in every iter@ids chosen differently, also
the objective function has a different interpretation in every itenatTherefore it appears in
Fig. (4.13) that the objective function sometimes increases, whereas ihig a slightly dif-
ferent objective function. If the columns €J are lumped too much, at some stage LBFGS
reaches the stopping criterion after zero iterations.
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Figure 4.13: Prior permeability and final estimate for the case with high rhmeders using full RM
and RM with 50% reduction. Steepest decend with exponential line search&eas us
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4.5 Discussion

4.5.1 Strong constraint solver and the RM as post-processor

In theory, the weak constraint minimization problem can easily be tumed strong con-
straint minimization problem by treating the model errors as additional hpadameters

1" (4.41)

0=[0" e ... &I
Now any strong constraint solver can be used to solve the weak constrdatgrprddowever,
strong constraint solvers depend to a high degree on regularization techaiqueshods
to reduce the order of the parameter space. Usually basis functions aencired used
during the entire minimization process. The result is then acceptdukasotution of the
minimization problem. The RM discussed in this chapter can be used as prposssor
to evaluate the outcome of the strong constraint solver and to update oriteehs user-
defined basis function to initialize a new strong constraint estimation guoee

4.5.2 Variable time steps

Most modern simulators are equipped with a time-stepping mechananaékects insta-
bilities or unphysical values for the state variables and decreasesnstep accordingly.
Whenever possible the time step is increased again to reduce computagomrtan itera-
tive method the length and the number of time steps therefore vary.

Building a strong constraint minimization problem out of a weak constraint andea
scribed in section 4.5.1, is not possible when successive iterationsfieserd time steps,
because the parameter vector Eq. (4.41) is only defined for one iterationvétothe modi-
fied RM can still be used. The model errefsthat were calculated in the old iteration must
be interpolated to run the model in the new iteration Eq. (4.10). Here agrahteverage,

J
t;

-1 / e, (4.42)

is used, where’—! is the step function that is defined by
{téila"' atgfl} X {ejl;la"' ’5%*1} (443)

from the old iteration.
An improvement in the parameters may cause the simulator to asetime steps, which

could make the tere” P, 'e withe” = [e; - -- sn]T in Eq. (4.4) increase dispropor-

€
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tionately. Normalization factors can be added, so

1

J = m(h(X{o,---,n})—m)TP;1 (h (X(0,....n}) —m) + (4.44)
L __ gprior TH-1 __ pprior L Tr—1
+2|0| (0 (7] ) PO (0 0 )+2|€|5 Pe €+

+ZAZTg (Xia Xi—1, 0’ ei) 9

i=1

where|-| stands for counting the number of elements in a vector.

453 Measure of success

Variational data assimilation methods are designed to minimize sotaevdsfit objective,
Eqg. (4.4). Their success can be measured by which (local) minimum #reyirdd and
how fast they can find it. However, different performance measures eaxored as
well. Figures Fig. (4.3) and Fig. (4.10) can be compared for example. When livatdes
through in production wells, these become financially less profitable amtualy have to
be shut in. The goal is to predict water breakthrough long before the water g@trales
at the production wells, so different control strategies can be appliedstpgwe the water
breakthrough. How well the saturation profiles in the well gridblocks are réwmbsd can
be used as an alternative measure of success for a data assinailg¢iothm. The difference
between Fig. (4.3) and Fig. (4.10) must therefore be quantified somehownd@heal.
(2005)] proposes to shift the curves in time to find a bestHi shift quantifies how well the
water breakthrough is estimated in time, the fit quantifies how well thavi@hof the water
during the breakthrough is estimated.

4.5.4 Use of parameter representers to quantify the impact of
measurements

Fig. (4.11) shows the effect of every measurement on the final paragstierate. Even
when the modified RM is used in order-reduced mode, one extra iteratidnecarade af-
ter convergence of the method to produce all the parameter representersmimgrin full
mode. Using the parameter representers, the usefulness of meassmmustsomehow be
qguantified, preferably expressed in terms of money. Care must be tdl@minterpreting
these quantities. For example, a measurement can give a better understdrtdmgub-
surface, but it might also indicate that oil production will be lowemtipgognosed. This
does not mean that the impact of the measurement should be quantified withieenegait
ber. Research in this area is ongoing. Once the effect of measureca@nt® quantified,
representers may be of help in designing measurement strategies.
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455 Data selection

Attempts have been made to preprocess the data and discard the dathewibost un-
certainty to reduce the number of representer functions and reduce the coomptitae.
[Schwaighofer and Tresp (2003)] mentions the Random and the Sparse GtattkyAp-
proximation (SGMA) versions of the Subset of Representers Method (SRIdh. (Bapro-
cessing is based on the measurement uncertainty nijrixnd remains unchanged during
the minimization process. This chapter proposes to choose a differenbgeeping of the

data at every iteration based on the measurement sensitivityxndat = %ﬁ
o,

Since the preprocessing itself costs computation time, the seleatiorttie full dataset can
also be used for more than one iteration. These two criteria can alsmnidgreed. In that
caseP,, moves from Eq. (4.29) to Eq. (4.23) and the choic€d$ based orP;th, which
looks like a good compromise between how much the user trusts the measar@e,Jand
how sensitive the forecasted measurements are to changes in thestdikes. These crite-
ria are also used in the Greedy Posterior Approximation version of SRM\&ghofer and
Tresp (2003)], although there the number of basis functions is fixed.

4.5.6 Regularization

One might think that solving the representer coefficidnfsom Eq. (4.22) instead of Eq.
(4.29) makes the state representers, Eq. (4.26), and measurement repsegent (4.28),
obsolete. This may be true if extra, user-defined, regularization isedptal the resulting
gradient, since the state- and measurement representer functions aretpantegfulariza-
tion.

4.5.7 Computational efficiency

Calculating one gradient comes down to one non-linear simulation to computestreoir
states, and two sets of linear simulations to compute the adjoint/ptganepresenters and
the state/measurement representers. No reduction is necessargdsurements that are
sparse in time and space. For a large number of measurements, the fudliritifeasible.
At every iteration different portions of the data must be selected ép kbe number of
representers limited. However this selection, based on svd, reqdilé®aal computation
time. A good balance is application-dependent.
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4.6 Conclusion

4.6.1 Recapitulation

This chapter introduces a modified formulation of the representdratdeSince it can han-
dle non-linear dynamics, non-linear measurement operators and non-lineelr enauds, it
can deal with situations that are more realistic than previous imgations [Valstaet al.
(2004), Baird and Dawson (2005), Rommetdeal. (2006), Przybyszt al. (2007), Baird
and Dawson (2007)]. The derivation was explained and the method was tkashy esti-
mating the permeability of a reservoir in a 2-phase 5-spot Watet setting. Experiments
were done comparing a strong constraint with weak constraints ofetiffenagnitude. The
use of gradients of the strong and weak constraint problems in steepesitdest€BFGS
minimization schemes was illustrated. An example was shown where the nofmiepre-
senters was reduced by a factor two, without degrading the quality of the&maeability
estimate.

4.6.2 Conclusions

The RM that was used in this chapter was modified from the original RM ondfoecounts:
it can interact with different gradient-based minimization aldwnis, the number of repre-
senters may be (much) smaller than the number of measurements, tleené@réunctions
are defined differently so no correction terms need to be calculabtedthe "measurement
representer” is introduced.

The modified RM method does not solve the weak constraint minimization praditem
rectly; it produces a regularized gradient that can be used by any gradient-baseizawini
tion algorithm (after minor modifications). Solving the minimization probls then left to
this algorithm.

In the classic RM, the number of representer coefficients is equaétouimber of mea-
surements. In applications where there are many measurements, coonplife@asibility
needs to be created by selecting a subset of the data, or, as was done in tldg chapt
pressing the measurement into a smaller amount of pseudo measuremestEar for
example be done by analyzing the data covariance matrix or the Jacobianmédsere-
ment operator with a singular value decomposition. This choice can be mante befrting
the iterative process and it can be chosen differently for variowibeis. Even the number
of basis functions can be changed during minimization.

Both in previous non-linear versions of the RM [Valsédral. (2004), Baird and Dawson
(2007)] and in the RM proposed in this chapter, the state variables argialy decomposed
around the prior state variables. In the modified RM, the prior statablas are explicitly
calculated by a forward simulation with the prior parameters, wieteaclassic RM splits
the prior state variables into the results of the last simulation andraatian term. The
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criterion that is used to calculate the correction term, is thavety iteration the linearized
equations are solved. By using this criterion, the state variabldsedast simulation and
the correction term do no longer add up to the prior state variables. Oneargulel that the
modified RM converges slower than the classic RM, since, besides trapessf a penalty
term in the objective function that keeps the parameters close toritreparameters, an
additional penalty is introduced that keeps the state variables cltise prior state variables
[Przybysz (2007)]. It can also be argued that the modified RM tries to saéveame non-
linear equations as the classic RM without requiring that the linearizeatiegs need to be
solved at every iteration. Without this limitation, the modified RM na#go converge faster
than the classic RM. Convergence of the RM has not been proven for non-linééems,
and the convergence behavior is also not yet well understood. Convergence behthwor of
classic RM and the modified RM should be further examined for larger, feelld problems.

The classic RM is derived without "measurement representers"”, llyobacause in the
case of a linear measurement operator, the measurement representerstructed by con-
catenating the state representers of different time steps as row ddekme large matrix.
In this chapter the measurement operator is more complex, and measurepresenters
were introduced to handle this.

The RM only needs one single iteration for a linear problem. In general lhaiges
more than one iteration for a non-linear problem, but still converges deratily faster than
steepest descent. It also needs a lot more computation time per ite(a)BRGS can speed
up steepest descent at little extra computation time. A small effonaide to calculate some
approximation of the second order derivatives of the objective function, #ssiah. RM
costs about as much computation time as explicitly calculating the &ieSBFGS can also
be applied on top of RM, but this does not contribute to faster convergence.

It is recommended to use a good line search algorithm. Although BFGS proviukts a
ter search direction than SD, this does not help the convergence if asfixedize is used.
For the strong-constraint case with the adjoint method, the quadraticelanetsperformed
so well for SD, that BFGS could not outperform it. BFGS did perform betithr an expo-
nential line search. The quadratic line search does not work propecignibination with
RM, because the slope of the objective along the search direction canndtidatea accu-
rately. As a result, the quadratic line search underestimates fhsisteand the algorithm
stops before even finding a local minimum of the objective function.

The RM achieves most of the decrease of the objective function in the fietidgte How
much work is left for successive iterations depends on the magnitude ofdbel errors.
If the model errors are large, then the non-linear relation between Impadameters and
state variables is overshadowed and the minimization problem beconaredinear. Hence,
convergence is faster.

In the example considered in this chapter, order reduction can be usetlit® reompu-
tation time without loss of quality of the estimated parameters. Wheorter is reduced
to the extreme, the minimization algorithm reaches the stoppingioritbefore performing
any iterations. Applications may exist where this becomes a problemmfaifes reductions.
With or without reduction, no proof of convergence of the RM exists for non-linedol @nus.
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The resolution of the model errors that were reconstructed by RM was higlar than
the resolution of the measurements. Compared to the high resolution modslteatowvere
used to create the synthetic measurements, the RM introduced artificielation between
the model errors on time intervals in between separate measurements.






Chapter 5
Comparison of the Ensemble Kalman Filter
and a modified Representer Method for
sensitivity to prior data”®

Abstract

Data assimilation algorithms or computer-assisted history+majanethods are meant to
improve the predictive capability of reservoir simulation models. Tagyon two sources of
uncertain information: measured data, typically production data suchlblsore pressures
and phase rates, and prior information, for example a statistical desorgdtithe reservoir
properties. In a synthetic numerical experiment the uncertainties ohetilacand the prior are
known in a field application they are not. One could say that there are not ongytantties
in the data and the reservoir properties, but there is also "uncsgriaitfiite uncertainty".

In this chapter the robustness of the Ensemble (Square Root) KalmaraRite gradient-
based algorithm using Representer Expansions are compared with respextitgpitidata.
Some algorithm-dependent settings are explored to try to make the filteduegrthe results
of the Representer Method: the ensemble size, the initialization methotharitalman
update. The concept of assimilating data more than once with dampened wefghtorg
(added uncertainty) is introduced.

First the equations that underlie the Ensemble Kalman Filter and the $eepee Method
are given. Then numerical experiments are presented and two meabgrestifying the
success of the methods are introduced. According to one such measure, thecRepre
Method performed better for all numerical examples considered. The ptaeof the filter
can be chosen such that the filter with the correct input data is just as dutessthe
Representer Method, using the second measure. When the methods arih fie wiirong
prior input, the second measure also favours the Representer Method, Be &@mples
considered in this chapter the Representer Method is less sensitiviotwy" prior data than
the Kalman Filter.

5.1 Introduction

Section 5.1.1 introduces the concept of running a reservoir simulator iggtteterministic)
or weak (stochastic) mode. The relationship between the Ensembledrittehe Represen-

5 This chapter is based olRopmmelseet al. (2008a), which was published as TUD-DIAM report 08-16
and submitted to Computational Geosciences
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ter Method is discussed in section 5.1.2 and the two methods are intdrpetdifferent
approximations of Bayes rule.

5.1.1 Strong and weak constraint reservoir simulation

Running a reservoir simulator with incorrect model parameters, likeng@ability or poro-
sity, causes a discrepancy between observations and measuremeadtforehere is an
additional phenomenon that causes the discrepdineymodel is an approximation, so even
if the parameters were known, the model would still produce incorrect outpuseThedel
errors can be explicitly set to zero for simple numerical experimenite réservoir simu-
lator is then used deterministically. For more realistic expeanisier field applications, the
model errors can be modelled as additional parameters, whicaamgled by a Monte Carlo
method or estimated along with the other model parameters. Inabéstbe reservoir simu-
lator is used in stochastic mode. In variational or gradient-baseddsitailation, the terms
deterministic and stochastic mode correspond to using the reservalagimas a strong or
as a weak constraint respectively.

Running the reservoir simulator and predicting measurements can be vimitiemeral
state-space notation as

x; = M (x;-1) ) y=H(x), (5.1)
wherex;, i € {0,--- ,n} are vectors of state variables (typically pressures and saturations)
at imet;, x = [x{ .- xZ]T, y is a vector of measurements (outputs), addand

H are model and measurement operators respectively. In this chaptergtine reservoir
simulator and predicting measurements is denoted by

g(xiaxiflaaaei) =0 ) y = h(X), (52)

whereg andh are vector-valued functions, where the model parameters (for example per
meabilities and porosities) are collected in the ve@and the model errors on interval
[t;—1,t;] are contained in the vectet. In fact, the mass balance and Darcy equations [Aziz

and Settari (1979)]

d
2 (6(x) = £(x.6). (53)

are discretized in time using a the implicit Euler scheme, regyiltia deterministic reservoir
simulator:

g (xi,X%i-1,0,0) =11 (x;) — (t; —ti—1) f2 (x4,0) — f1 (x5-1) = 0. (5.4)

The presence of water and oil mass in the grid blocks is describ&d ile f> models the
flow through the grid block interfaces and the injection/productidiuads in the wells. The
model errors are introduced as additional sources/sinks in all grid bldcksther words,
afterx; has been solved from Eqg. (5.4), the water and oil masses in the grid bloakadtav
correctly been predicted and must still be modified. The prediction getevas the time step
(t; —t;—1) grows larger. Therefore the correction is modelled proportiongte ¢;_1). If
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the additional sources become too strong, unrealistically high pressurbe wbserved. If
the additional sinks become too strong, saturations ouf8jdéwill occur. In this chapter,
the additional sinks are non-linearly constrainedfby The stochastic reservoir simulator
has the form

g (Xiaxiflaaaei) (55)
= f1 (XZ‘) — (tz‘ — tz‘,l) f2 (XZ‘, 0) — f1 (Xz‘,l) + min {fl (XZ‘) s (tz‘ — tz‘,l) 81‘} =0.

5.1.2 Bayesian data-assimilation

Reservoir simulation can be embedded in a stochastic or probabilistievirank see e.g.
[Gavalaset al. (1976)] for an early reference, [Zhamg al. (2005)] for applications and
[Oliver et al. (2008)] which also contains further petroleum-related referencethid case
the reservoir state variables (pressures and saturations in all gakishldo not have de-
terministic values, but are described by a multivariate probabilityibigton (or density)
function (PDF). The stochastic nature of the state variables is cdoystet uncertainty in
the initial states, the uncertainty in the model parameters (pernrtgapdrosity, etc.) and
the fact that the reservoir simulator is imperfect (e.g. gravity pilleay effects were not
modelled, or three components were modelled where five would have beerapmoopri-
ate). The uncertainty in the measurements is caused by two effgcdensors monitor a
stochastic quantity and 2) they are subject tuiences that might damage them or other-
wise corrupt the data.

Bayes theorem for continuous probability distributions [Bayes (1763)]

Flow) = LEELE

states that theosteriordensity f (8]y) (the probability of the model parameters given the
data) is proportional to thprior density f (@) (the probability of the model parameters)
multiplied by thelikelihood f (y|@) of the data given the model parameters. This basically
means that the reservoir simulator and a measurement model must be usestitoat the
joint density of the parameters and the measurement foret&8ts’). The domain is then
restricted by substituting the observations, which causes the integnathe/new function

to no longer be equal tb. Renormalization then gives the posterior density. The hidden
dependence of the measurement forecasts on the reservoirsstedesalso be explicitly
written in Bayes theorem

F(0,x[y) = w |

f@ly) < f(yl0)f(0)=f(6.y), (56)

f(0.x]y) o f(x,y]0) f(0) = f(0,xy).
(5.7)
For practical applications, it is hardly ever possible to compute Eq. éhélytically, so

approximations have to be made. For the special case where th¢ pfipis Gaussian and
the measurement forecasts linearly depend on the parameters (etjictes that both the
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reservoir simulator and the sensor model are linear), the posfef@y ) is also Gaussian
[Tarantola (2005)], which means that it suffices to only calculate threnna@d covariance.

The Kalman Filter, which will be described in section 5.2.1, exploits groperty and
sequentially updates the two statistical moments by performing timetegpdad measure-
ment updates. In the non-linear case, the Ensemble Kalman Filtang&wé2003), Evensen
(2007)] samples the prior and updates the samples until a sampled represasfttie pos-
terior is found. However, at every measurement update the densityirsagsamed to be
Gaussian.

When the posterior is Gaussian, the logarithm is proportional to a weighteabaveithe
model errors, the measurement errors and the parameter errastplar(2005)], (see also
section 5.3.1). This can be formulated as an objective that has to beimgdiin order to
find the mode of the posterior, which is equal to the mean for a Gaussian. sTdogé in
variational methods. In the non-linear case, a mode of a probability distnibis found, but
itis usually not clear how this distribution is related to the posterioty ©ne mode is found
if the posterior is multi-modal.

5.2 Ensemble Filter

5.2.1 EnKF

Due to increasing computer capacity, the Kalman filter [Kalman (1968)h GL974)] is
growing more popular for computer-assisted history-matching. ImplengeatirEnsemble
Kalman Filter (EnKF) [Evensen (2003), Heemiekal. (2001)] is easy and does not require
modifications to existing reservoir simulatpeee. e.g. [Naevdait al. (2005)] for an early
application, and [Evensen (2007)] for further references.

In the Ensemble Kalman Filter , the prior is represented by an enseshldamples

{0(1), ce,em } This sampling can be done randomly or deterministically. In the absence

of measurements, the samples are updated in the time update by the nondgezgoir
simulator

. (XZQ)’XZ@D 00, 854‘)) —0. (5.8)

Whenever measurements are available, the measurement updaferisieer Augmented
ensemble members are created by concatenating the reservaiy ttatemeasurement fore-
casts and (in case of parameter estimation) the parameters

l;j): y(j) , (5.9)
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where the measurement forecasts ensemble is obtained by running an ense(ble of
linear) measurement models

y;j) =h (XZ(.j)> . (5.10)

The forecasted ensemble members are then split into a mean and deaatibns
19 =T, +19, (5.11)

which are updated by
~ ~ ~
L= .. 1] . L=[o I oLy, (5.12)
~ ~— —1

K =L,L7 (LLT +(n—1) Py> , (5.13)
L=L+Km-5) . L=L+K([m" - &"]-L), (514)

to form the analyzed mean and deviations that can be used to form theehansem-

ble members. Heren is the vector of observed measurements. The Kalman gain matrix,
Eq. (5.13), is built from the measurement forecast’s autocovari%h{;ethe observation’s
autocovariancé,, (which must be specified by the user) and the cross covariance of the
measurement forecasts and the augmented forecasted ensemble mehwdersaurement
errorsm() are sampled using,. The analyzed measurements are a weighted average of
the measurement forecasts and the observations. The jump from thestedtealues to the
analyzed values is linearly extrapolated to the reservoir statbtherparameters using the
cross covariances between them.

5.2.2 ESRKF

In the EnKEF, the errors in the observati@ffé) are sampled using,,. Without these errors,
the uncertainty in the analyzed ensemble would be underestimated by

L,=(I-K[0 T 0])L;=L;—KL. (5.15)

However, also deterministic solutions to this problem are availab/eitaan and Heemink
(1997)], extra columns are addedItan Eq. (5.15). These columns are obtained as a square
rootL, of P, = L, L. After the augmentation, the number of columns is reduced to the
original number by selecting the leading left-singular vectors. In the Ensebajolare Root
Kalman Filter (ESRKF), Eq. (5.15) is used, but with a modified Kalman gatrix which,
in the one-dimensional case, can be written as

K

K= . (5.16)

1+ (n—-1)P,

LLT+(n—1)P,

For more dimensions, the modified Kalman gain matrix involves calogldée non-unique
square roots of two matrices. Details can be found in [Whitaker and IH2002)].
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5.2.3 Duplicated measurements

As mentioned in section 5.2.1, the analyzed measurements are a weagbtade of the
measurement forecasts and the observations. The difference betweeretizstied values
and the analyzed values is linearly extrapolated to the reservt@sstad the model param-
eters using the cross covariances between them. These are botlopeesions which can
cause problems when the measurement operator is non-linear. Furtheitmonreighting
factors that are used for the averaging are the user-defined uncentathty observations
and the covariance of the measurement forecasts. This second ordgicatatioment is
not appropriate when the state variables are predicted by a non-lineaatimael/en when
it is obtained by a EnKF rather than an Extended Kalman Filter (EKF) [Eare(Z003)]. In
fact, using a EnKF without extra modifications often causes saturatioesrautsid€o, 1]
and unrealistic pressure and permeability estimates. A quick enginegadkgs to apply
a dampening factor to the jump from the forecasted values to the analgkexs, which is
equivalent to adding extra uncertainty to the observations.

Since in practice it costs money to obtain data, it is a waste to disiediedor to add extra
uncertainty to them. Results in this chapter are obtained by duplicatingumezaents to
assimilate them more than once, but with extra uncertainty. The extrataintgiensures
that the jump from the forecasted values to the analyzed valldshus overestimated by
the linear measurement update, is dampened. The duplication of measuremsangs ¢hat
the jJump is not dampened too much, so no valuable data are discarded. Whasuaement
is predicted with variancefc and the uncertainty of the sensorwi%, then the measurement

is assimilatech times with artificial uncertainty?f) using two criteria:

1. The artificial sensor uncertaindy is of the same magnitude as the measurement
forecasts variancefc, S0G2 A~ afc.

2. The variance of the analyzed measurements is invariant under this msihod,

) 0?03 0?53
Ty = — 3 = o1 2 (5.17)
oy to, 2 oy to,

Therefore, every measurement is used

02 + o2
n=1+ ’710g2 ( f202 O)} (5.18)

times, with variancé” = 27142, By construction, the variance of the analyzed measure-
ments is identical to what it would be without duplicated measuremermtseter, the jump
from the forecasted values to the analyzed values isthetsum of a set of small jumps is
less than one big jump.
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5.3 Representer Method

The discrepancy between observed measurements and their model predittedes can
be formulated as an objective function that has to be minimized. This nziaiion process
is regularized by penalizing the deviation of the estimated pasmnfbm the prior parame-
ters, while the model errors may also be added to the objective functioril] s Wiscussed
in Section 5.3.1. If the posterior distribution is Gaussian, the modméam) of the poste-
rior minimizes the objective. If not, the objective has a different megaind the weighting
factors might have to be changed accordinglyvariance matrices that are sufficient to rep-
resent Gaussians are no longer appropriate and the user has to supply anvaltaiviaen
the posterior is multi-modal, the objective function has multiple lodaimma and additional
regularization is required. Calculating a gradient of the objective functitim nespect to
the model parameters can be done efficiently using an adjoint resemoilagor in case the
model errors are explicitly set to zersee e.g. [Chavergt al. (1975)] for an early appli-
cation and [Oliveret al. (2008)] for further references. Regularization is usually done by
selecting a limited set of basis functions that are chosen as singataryef a root of the
covariance matrix of the parameters. When model errors are tal@adcount, the reser-
voir simulator and its adjoint can no longer be used sequentially to produicalent. The
Representer Method (RM) [Bennett and Mcintosh (1982), Eknes and Even$),(B8n-
nett (2002), Valstaet al. (2004), Baird and Dawson (2005), Janseeal. (2006), Przybysz
et al. (2007), Baird and Dawson (2007), Rommetgel. (2007)] can then be used to solve
the weak constraint minimization problem. Regularization is alsauded in the method
and the basis functions are data-driven rather than specified by theUrfertunately the
computational cost is proportional to the number of measurements timesrtipitational
cost of solving the strong constraint problem using the adjoint system.

The RM used in this chapter was introduced in [Rommetsal. (2007)] and differs from
previous implementations. It produces a gradient that can be used in aimyizaiion al-
gorithm (with minor modificationsg)here the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) method [Gao and Reynolds (2006), Ulbrich (2002)] is used. Ariethe
ture of the method introduced in [Rommeksteal. (2007)] is the abandoning of the one-to-
one relationship between the representer functions and isolated measisrémtéame and
space, which forms an essential element of the classic RM, making tth®dneomputa-
tionally more attractive. Moreover, the concept of measurement eags is introduced to
deal with non-linear measurement models and a new linearization ishegatbes no longer
require the calculation of special correction terms.

5.3.1 Obijective function and derivatives

The objective that has to be minimized is formulated as
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1
J o= 5 (B ) ~m) Py (B (xg0,. 0y) —m) + (5.19)
1 ri0T T ri0T 1 = —
+3 (0= 07 Pyt (0-07) 53 el Ple

+ZAzTg (Xia Xi—1, 0’ ei) .
i=1

If the reservoir simulatog and the sensor modhlwere linear and the prior were Gaussian,
the weighting factor®y, P., andPy, could be chosen equal to the model parameter uncer-
tainty, the model error uncertainty and the sensor uncertainty respgctiverder to find
the same solution that an EnKF would find. Otherwise different factoyshaee to be cho-
sen. In general, the initial reservoir states need to be estimateg wiith the permeability,
porosity and other parametess, = f (0), but in this chapter they are assumed known.

The derivatives of Eq. (5.19) with respectXg, €;, x; and@ are

aI\"
<8A> :g(xiaxiflaaaei)a (520)
aJ T_ —1 8g(xiaxifla0a€i) r
(8@) =P 6”_( e, ) Ais (5.21)
T
as\" Oh (X(0.... n -
<BX'> - (7( o })) Py (B (%0, n}) —m) + (5.22)
T
0g (xi,Xi—1,0,€;) g 8g(Xz‘+1,Xz‘,9,€i+1)
* ( O%; At Ox; Aity

o0J T ] - 0 79 i — aaa j 4
(2Y eyt ooy 55 (Pmenied) s o
i=1

For the strong constraint case, wherés explicitly set to0, the gradient of the objective
function with respect to the model paramete{r%g)T, can be calculated using Eq. (5.23),
where the model states and adjoint stated; follow from sequentially solving Eq. (5.20)

T T
and Eq. (5.22) with the left-hand sid s{?—i) and (%) , set to zero. Eq. (5.21) does

not need to be usethsteads; = 0 is used.

To interface with gradient-based minimization algorithms, a numermatine must be
implemented that evaluates Eq. (5.19), anc(%)T, Eqg. (5.20), Eg. (5.22) and Eq.
(5.23).QQ7T (ﬂ)T is the regularized gradient if orthogonal basis functions are chosen for

00
the regularization and placed as columns in the m&rix
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5.3.2 Local minimizer

In a stationary point of Eq. (5.19), all gradients are equal to zero, so

g(xiaxiflaaa 51‘) = 0; (524)
T
e =P, <8g (X“’gg“ 0’”) Aiy (5.25)
T
ah (X{O n}) —
(T Py (m = (x(0,.. ) (5.26)
T
_ 0g (x;,%x;-1,0,¢;) T}\ g (Xi+1axia0a€i+l) A
B 0x; it 0%; i+1s
n T

0 — grrior _ POZ <8g (xi, Xazél; 0, ei)> AL (5.27)

1=1
Calculating and regularizing a gradient as was done in section 5.3.1, @gerlpossible

since the forward model Eq. (5.24) and the adjoint model Eq. (5.26) are now coupled®eca
the model errorg; are no longer equal to zerthey are related to the adjoint statesby
Eqg. (5.25).

5.3.3 Representer expansions

Since it is not possible to obtain a gradient of the weak constraint minimizatasigm
directly and regularize it, the Representer Method was introduced ttaremguEq. (5.24)
through Eq. (5.27) and then find a minimization scheme. Unlike in section 5.3etg\lne
basis functions are chosen by the user, in the RM the regularization isgarmlically and
then substituted into Eq. (5.24) through Eq. (5.27) to obtain the basis functionsalstdiv

et al. (2004), Przybyszt al. (2007)] the number of basis functions is chosen equal to the
number of measurements, such that

x; = x]orecast | yeorrection L R, (5.28)
i = Ry b, (5.29)
0 = 677" + Ryb, (5.30)

where the columns dR,, R, andRg are the basis functions, called the state representers,
adjoint representers and parameter representers. The represerfteilectefire contained
in the vectorb.

In [Rommelseet al. (2007)] a different regularization is introduced. The minimization
algorithm is started witt9*""* = ”"'°" ande!™* = X" = 0. Applying these initial
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conditions to Eq. (5.24) gives the initial system staté¥!. These are not initial in the
sense that they are definedtgt but they are initial in the minimization algorithm. Given

the initial states, also initial measurements can be predihtédf{gf?_ ﬂ}). The causes for

the variables to move away from their prior are parameterizet.byhe 1-1-relationship
between one such cause and an isolated measurement in space and hiamelcsead. For
computational purposes, it is interesting to assume that the number ofgiaranm the
vectorb is (much) smaller than the number of measurements. The deviations fequriohs

are decomposed as

x; — xP"°" = Ry, b, (5.31)

Ai = Ry, b, (5.32)

6 — 6”"" = Ryb, (5.33)

h (x{0,.,n}) —h (X?Sffﬁn}) =Ryb. (5.34)

The columns oR,, contain the measurement representers.

5.3.4 Representer equations

After substitution of Eq. (5.31), Eq. (5.32) and Eqg. (5.33) into Eq. (5.24), ER6)5.
and Eq. (5.27) and some manipulation [Rommelsal. (2007)], the representer equations
are obtained. These can be used to obtain a regularized gradient for the westlaiobd
minimization problem as follows:

1. If the model errorg; have not yet been approximated by a previous iteration of the
minimization algorithm, initialize them to zero. Given the model pagtarsfé and
the model errorg;, run the non-linear model Eq. (5.24). After the model has been
run for the first time, save the prior state’s**" and forecast the prior measurements

prior
h (X{O’... ’n}>-
2. Choose the selection mati@, as discussed in detail in [Rommelseal. (2007)].
A convenient choice i = U, ;.;;, whereU is a matrix of left singular vectors of

the measurement sensitivity matrix, and whiiie typically much smaller than the
number of measurements.

3. Calculate the adjoint represent®s, from

T
<8g (Xz;leaaaei)> R)\i (535)
8XZ‘

T T
_ (8h (X{O,...,n})> Q- (8g (Xz‘+1,xz‘,0a5¢+1)> R,
i41°

0x; 0x;
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10.

Calculate the parameter represenigsfrom

- 0 Xy Xij— ,0,81 T
Ro=Py> ( 8 ( o J) Ry, (5.36)
=1

Calculate the state representBrs from

0g (xi,%Xi—1,0,€;) 0g (xi,Xi—1,0,€;)

Ry, Ry, 5.37
0x; ot 0%X;_1 it ( )
8g (Xi; Xi—1, 0, 81)
+ 20 Ry
_ 8g (Xiaxiflaaaei)Pev 8g (Xiaxiflaaaei) TR)‘“
881‘ ‘ 881' ‘
Calculate the measurement represerI@’érom
8}’1 X{O

R, Z axz in. (5.38)

Calculate new representer coefficiehtas the least-squares solution given by

(Ry+P,Q)b=m—h ( prior n}) . (5.39)
Calculate new adjoint states Eq. (5.32).
Calculate the model errors Eq. (5.25).

Calculate the regularized gradient of the weak constraint miatroiz problem

T
(%) =60 — 6"°" — Ryb. (5.40)

Comments:

- In the routine that calculates the gradient, also the model errors aréedpd#or mini-

mization algorithms that calculate more than one gradient per iterdtiere must be a
mechanism in the gradient routine that can store the model errors aswied temporary
changes. The changes must be made definite whenever that is signaled byihizani
tion algorithm, for example after a successful line search. This reqaingisor update
to the minimization routine, meaning that third-party softwaredlites can only be used
if the source code is also available.

- By setting the model errors equal to zero and ignoring steps 8 and 9, the Rilkoare

used to obtain a regularized gradient for the strong constraint mirtiotizaroblem.
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Symbol Variable Value Slunits | Value Field units
h Gridblock height 20 m 65.62 ft
Az, Ay | Gridblock length/width 10 m 32.81 ft

i, Oil dynamic viscosity 1.0x 102 | Pas 1.0 cP
o Water dynamic viscosity 1.0 x 102 Pa s 1.0 cP

c Total compressibility 1.0x 10 % | Pa! 7.0x10°° | psi !
PR Initial reservoir pressure 10 x 10° Pa 1450.4 psi
kﬂo Endpoint relative permeability, oil 1.0 —
kﬂw Endpoint relative permeability, wate 0.5 —

ne Corey exponent, oil 2.0 —

Nw Corey exponent, water 2.0 —

Sor Residual oil saturation 0.2 —
Swe Connate water saturation 0.2 —

) porosity 0.3 —

Table 5.1: Reservoir anfuid properties for the example

5.4 Numerical experiments

Experiments were done on a 2D 2-phase whteding application with wells in an inverted
5-spot configuration that was also used in [Rommelsal. (2007)]. Water is injected
at a rate of one pore volume per year and the production wells are constraified tat
0.25 pore volumes per year. The state of the reservoir is described by pressiveater
saturation in all 21x21x1 grid blocks of 10x10x20 Capillary pressure and gravity effects
are ignored. All othefluid and reservoir parameters have been listed in Thl. (5.1). Synthetic
data are generated by picking one realization out of a database of 100@tieatizas the
"true" permeability, Fig. (5.1), and running a reservoir simulatiorwibdel errors that are
sampled as white noise, Fig. (5.2). Note: although in reality productiorcdatist of phase
rates, bottom hole pressures or tubing head pressures, we will use the dripi#esures
as "measurements" to assess the performance of the algorithms.eskargrand saturation
responses in the well gridblocks after simulating with these model earershown in Fig.
(5.3). This figure also shows 10 synthetic pressure "measurements'vielatjridblocks
at 100 and 200 days of simulation. The other realizations from the datalmsset to
construct a covariance matrix that is used in the objective funttiairhas to be minimized.

5.4.1 Correct prior and prior with exponentially decreasing
correlation length

The filter is initialized by choosing an ensemble of permeability fielBsr a variational
method, like the RM, an initial permeability estimate must be $igetas well as the uncer-
tainty. These are extracted from the database as the mean and the sarapéance matrix.
For an honest comparison of the methods, the same mean and covariancsneatidalso
be used to initialize the filter. In order to do so, samples must be drawntfrerwovariance
matrix and added to the mean to obtain the ensemble members.aimidirsy can be done
randomly, which is equivalent to picking ensemble members from the dagtatiadetermin-
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Figure 5.2: Synthetic true model errors
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Figure 5.3: True pressure and saturation in the well gridblocks as fonstiof time. The top plot
contains the 10 synthetic measurements at 100 and 200 days.

istically, for example by selecting the principal components of a squateftwe covariance
matrix.

In field applications, specifying such a covariance matrix for the pehbitity is a rather
arbitrary process. It could be said that there is "uncertainty in thertaicty”, meaning
that it is not clear how the covariance matrix should be chosen. Inhhister, the effect of
specifying the wrong covariance matrix is investigated. The "wrong" ravee matrix is
obtained from the "correct" covariance matrix by preserving the magnitithe variance,
but imposing a different spatial correlation pattern. The covagdetween the permeability
values in two grid blocks and;j decreases exponentially as function of the distance between
grid blocksi andj; the covariance is specified as

ﬁz‘j = \/Piipjjeiumlm, (541)

where! is the correlation lengttit is obtained by minimizing the square-sum-difference of
P;; andP;;, resulting in a value 0f2.43 [m], Fig. (5.4)

5.4.2 Filter results

Some initial ensemble members are shown in Fig. (5.5). Fig. (5.6) psetamntnitial
mean and covariance. The final estimates obtained with the correctpvariance and 50
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Figure 5.4: Correct prior covariance matrix and prior with exponentially d&asing covariance

ensemble members of ESRKF are shown in Fig. (5.7). The estimatad,the left plot of
Fig. (5.8), resembles the true permeability, Fig. (5.1). A more qusivet comparison is
given in section 5.4.4. The results using the prior with exponentially deirg covariance
are presented in Fig. (5.9) and Fig. (5.10).

Fig. (5.11) shows the first four statistical moments of the ensemble aftengit00 re-
alizations from the database. The covariance is a matrix, but only digewl elements are
plotted. The third- and fourth-order moments are higher order tensors, butrdysihe "di-
agonals" are plotted. Fig. (5.13) shows what happens when a singular value detiomposi
is used to initialize the ensemble. The probability density that is repted by the ensem-
ble is skewed and therefore does not at all represent a Gaussian prgludikity. This
negatively impacts the performance of the EnKF. A random orthogonal matrixecaseul
to de-skew the ensemble, preserving the first and second orderchtistments. This is
shown in figures Fig. (5.12) and Fig. (5.14).

The randomness that is introduced by picking realizations from the databdargely
suppressed by picking a large enough set of realizations, 100. If (5.11) wetedcagmin
using 100 different realizations from the database, it looks quite sirRilgr,(5.15). This is
not the case if the ensemble size is smaller.

5.4.3 Representer results

Permeability estimates of the RM using the correct prior and the pridr éiponentially
decreasing covariance are shown in Fig.(5.16) and Fig. (5.17). Fitg)(&nd Fig. (5.20)
show the parameter representers. The model errors that are recodshydte RM are
presented in Fig. (5.22).
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Figure 5.5: Some initial ensemble members
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Figure 5.6: Synthetic true permeability, initial ensemble mean, covarianceanahee.
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Figure 5.7: Some ensemble members, estimated with ESRKF using the poaect
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Figure 5.8: Synthetic true permeability, initial ensemble mean, and egttheatsemble mean, covari-
ance and variance, estimated with ESRKF using the correct prior.
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Figure 5.9: Some ensemble members, estimated with ESRKF using a phiexponentially decreas-

ing covariance.

5.4.4 Alternative quantification of success

Unlike in a field application, in a synthetic experiment the reconstructeanpeters can
be compared to the ones that were used to synthesize the data. ConsequentlySthe RM
between all ensemble members and the truth can be calculated. A histogulotiad in
Fig. (5.23) for the case where the correct prior was used.
Another important quantification of the success of a data assimilatgmmitdm in reser-
voir management comes from looking at the water breakthrough curves in tle Wés
too late to react to water breakthrough in the production wells afteastbeen observed. A
data assimilation method may therefore add considerable value if@naale prediction of
the water breakthrough can be made (long) before it actually occurs. Onlyrteeontrol
strategy of the (smart) wells can be changed to delay the watektbreagh. Fig. (5.24)
shows the water saturation curves for the synthetic truth in all wielidso shows the same
curves for one ensemble member of an EnKF. The curves are shifteceitcioptimally fit
the truth. The shift is a measure of how well the water breakthrough could bietec It is
calculated as the integral average of the difference of the true andatieted curve in the

saturation domain:

Sfinal

1

Sfinal -

Sinit

init

(ttrue (S) - (tpredicted - tshift)) dS =0.

(5.42)
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Figure 5.10: Synthetic true permeability, initial ensemble mean, and estireatemble mean, covari-
ance and variance, estimated with ESRKF using an exponential prior.
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Figure 5.11: Four statistical moments of the ensemble. 100 members werd mckmly from the
database.
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Figure 5.12: Four statistical moments of the ensemble. 100 members werd mckmly from the
database and then 100 random linear combinations were created.
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Figure 5.13: Four statistical moments of the ensemble. 100 leading singetaors were calculated
from the database.
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Figure 5.14: Four statistical moments of the ensemble. 100 leading singeéors were calculated

from the database and then 100 random linear combinations were created.
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Figure 5.15: Four statistical moments of the ensemble. 100 members wkesl @gain from the
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Figure 5.16: Permeability estimates of the RM using the correct prior
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Figure 5.17: Permeability estimates of the RM using the prior with exp@irdecreasing covariance
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Figure 5.18: Parameter representers using correct prior. Differasitims represent the deviation of
the permeability estimates from the prior by different measuremertidosa(the wells). The locations
are denoted by the black dots. Different rows represent different dagonitimes.
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Figure 5.19: Parameter representers using correct prior, plotted orsdmae scale. Different colums
represent the deviation of the permeability estimates from the prior feyetit measurement locations
(the wells). The locations are denoted by the black dots. Different rowssespirdifferent assimilation
times.
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Figure 5.20: Parameter representers using exponential prior. Differehtras represent the devia-
tion of the permeability estimates from the prior by different measureloeations (the wells). The
locations are denoted by the black dots. Different rows represent diffassimilation times.
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Figure 5.21: Parameter representers using exponential prior, plotted on the saale. Different

colums represent the deviation of the permeability estimates from itielyr different measurement
locations (the wells). The locations are denoted by the black dots. Diffeyesst iepresent different
assimilation times.
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Figure 5.22: Model errors reconstructed by the RM using the correct prior

After t.n;5: has been calculated, the area between the true and the shiftedqutenliove
can be used to quantify the performance of the assimilation method taiptieelishape of
the water front as it breaks through:

Sfinal
A= / |tt7‘ue (S) - (tpredicted - tshift)l ds. (543)
Sinit
A histogram can be plotted, Fig. (5.25), whigp;. is calculated for all ensemble members.

For comparison with the RM, where the ensemble consists of only one elessraimber,
the mean of the ensembleqf,; s, values is used to quantify the performance of the filter.

Some numbers:

Forty experiments were done to gain insight in the effects of different,peizsemble
size, initialization method, de-skewing method and measurement upddte performance
of the EnNKF/ESRKF. In [Rommelset al. (2007)] the performance of the RM was inves-
tigated for different magnitudes of model errors, different line sealgbrithms, different
minimization algorithms and compared to the results of adjoint-based stmrgjraint pa-
rameter estimation algorithms, but only the correct prior was usegkeinata assimilation
process. The RM options that led to the best results of that researclisesr@ this chapter
and applied to a twin experiment where a prior with exponentially decreasirggiance was
used. Fig. (5.26) visualizes the results of the forty-two experiméatshows the cross plots
of two different quality measures for all experimeritgsy; ¢+|| is calculated as the 2-norm of
the 5-dimensional vector with the means of Fig. (5.25). RMSE is the meemFig. (5.23).
The five different plots represent results obtained with differentrabkesizes, or with dif-
ferent measurement updates, but they all contain the same RM resultsrfpaiison. In
the ESRKF, measurements are assimilated sequentially using theatigplias described
in section 5.2.3. In the EnKF, measurements at different times aimitsgted sequentially,
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Figure 5.23: Root-mean-square difference between estimated permeandithe truth, for all ensem-
ble members. 50 ensemble members were randomly picked from the database.
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Figure 5.24: True, predicted and shiftégd water breakthrough curves of one ensemble member for all
wells
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Figure 5.25: True, predicted and shiftééhy s] water breakthrough curves of all ensemble member for
all wells

but measurements that were taken at the same time are also afesinsimultaneously and
without duplication. Effects of randomness between the different experiraent®duced
by storing and re-using the random numbers. This way "between-subjectiiligris re-
duced and the effects of "within-subject" variation can be studied [vaRdel and Jansen
(2004)]. The results of the ensemble methods are independent of the output afdbenra
number generator if the ensemble size is chosen sufficiently large. Faalkeisensemble
size (10, 25), results vary, but the effect of the ensemble size desrbasveen 50 through
100.

In terms of RMSE, the filter always performs worse than the RM. In sesfrpredicting
the water breakthrough curves, the performance of the RM can be reached hyibtfike
ensemble size is chosen sufficiently large and the correct prior is uséslisThot true if a
prior with exponentially decreasing covariance is used, so it can béhsdithe RM was less
sensitive to using the "wrong" prior in this application than the filter.nmhadter what prior is
used, the filter usually performs best if it is initialized by SVD andtte-skewed. If no de-
skewing is applied, then randomly initializing the ensemble usually prochettsr results
than using SVD for the correct prior, but SVD performs better for the exgai@mior. This
can be explained as followsandomly picking ensemble members from the database gives
a rather symmetric ensemble, whereas the SVD ensemble is very skawelae prior with
exponential decreasing covariance, no such database is availigkiaglensemble members
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Figure 5.26: Crossplot of the two quality measures (RMSE #@gng.) for different ensemble sizes,
EnKF or ESRKF, correct prior and prior with exponential decreasing covariaaneemble randomly
picked or obtained by svd and with or without de-skewing of the ensembigotlalso contain the
results of the Representer Method.
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involves picking columns from a Cholesky vector of the covariance matdxrasults in a
skewed ensemble as well.

It is worth mentioning that ESRKF with duplicated measurements perforasonably
better than EnKF in terms of RMSE and much better in termigof; ;|| in the presence
of no or little measurement errors. In the presence of moderate or ladgineenent errors,
the results of EnKF or ESRKF are similar. The measurement update of EaKé&sma crude
Gaussian assumption, whereas the version with duplicated meassemakes a set of
smaller assumptions. The EnKF is a major improvement over the ExtendedhiKdilber
for dealing with nonlinearities in the reservoir model, but it is recanded not to use the
EnKF for non-linear problems without a modified measurement update if theune@asnts
are very accurate. Experiments to support this statement are not presetitisdchapter,
because the scope of this chapter is to compare the EnKF/ESRKF withivren& not to
show all details of the EnKF.

5.5 Conclusions

The RM always performed better than the filter, in terms of RMSE betwstimated and
true parameters. If the posterior probability of the parameters giemeasurements is not
symmetric or even multi-modal, it makes sense that the RM performs.hettbat case the
probability that the true parameters lie close to the mode of the posteremger Ithan the
probability that the true parameters lie near the mean of the postsor.the recursive filter
introduces errors during every measurement update. These erronsudai®u An iterative
algorithm has the opportunity in every iteration to reduce the errors thet made in the
previous iteration.

When using the correct prior, predicting the water breakthrough can be doneyequall
well by the filter as by the RM if the ensemble size is chosen sufficidate. This also
shows that models that are not equally well history-matched might produce fireatictions
equally well. This implies that a good history-match may not guarantee geoditpons.

When using the prior with exponentially decreasing covariance, thedibes not perform
as well as the RM, both in terms of RMSE and predicted water breakthrougdmn ke said
that the RM is less sensitive to using a "wrong" prior than a filter indpiglication.

The best filter results can be obtained if the ensemble is inglizith SVD and then
de-skewed. Without de-skewing, SVD creates ensembles that are vesgtslaausing poor
results in estimating model parameters. Randomly initializing teemible for the case with
the exponential prior involves picking columns from a Cholesky factor of twarance
matrix, which also results in a skewed ensemble.






Chapter 6
Variational estimation of permeability and
model errors from 3D and 4D seismic data
using model-driven regularization®

Abstract

Automated history-matching methods, or data assimilation algorittamshe used to sup-
port decision-making tools in closed-loop reservoir management. Irtieeidhdata assimi-
lation, the discrepancy between observed measurements and their nemtielgul antithe-
ses is minimized with respect to parameters that underlie thevoiiserodel. Assuming that
there are no uncertainties in addition to the unknown parameters, thenetireds that can
efficiently calculate the gradient of the discrepancy to changes in thenptaes. Usually
many different parameter sets exist that locally minimize the diserey, so the gradient
must be regularized before it can be used by gradient-based minimiafgimnithms. In the
presence of model errors, more advanced methods must be employed, like theeRigpre
Method (RM).

This chapter proposes a variational method to estimate the permeabditgservoir rock
from static and time-lapse seismic data, that simultaneously d@ssnttae model errors in
the reservoir simulator. Unlike in the (classic or modified) RM, the ra@dton and the
computation of the gradient are decoupled, which can save a lot of computatien An
analytical gradient is available, whereas the RM uses an approximated one

First the Variational Parameter Estimation method with Model-drRegularization
(VPERM) is introduced and the relation to the RM is explained. Experisnem presented,
using three different data sets. The first data set contains synthet&ype measurements in
the injection and production wells, the second and third data sets contaandéPhwpedance
data in addition to pressure data. The second data set contains thadaseley and the
monitor, the third one contains the baseline and the difference.

VPERM produces results that are similar to the results of the RM, bigiss computa-
tion time. Both methods produce good results when only pressure data from theareel
available. Sometimes seismic data removes outliers from the "}ifittare” crossplatbet-
ter predictions are obtained from models that are not necessarily bisti@ty-matched. In
other cases, seismic data gives better history-matched models amgpledietions.

6 This chapter is based oRpmmelseet al. (2008b), which was published as TUD-DIAM report 08-18
and submitted to Computational Geosciences
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6.1 Introduction

This chapter investigates the applicability of a weak constrainatranal method to es-
timate reservoir permeability from 3D or 4D seismic data with @&mesr simulator that
contains model errors. Sections 6.1.1 and 6.1.2 introduce the variatiaraheter esti-
mation and weak constraints approaches. [Skjervtetiml. (2005)] used the Ensemble
Kalman Filter (EnKF) [Evensen (2003)] to estimate permeabilipyrfrseismic data in the
presence of model errors. In order to do so, a non-linear rock physics moslalgmented
to the non-linear reservoir model to predict changes in seismic respamaechanges in
fluid pressure and mixture. A weak constraint variational method is pirggnisince [Rom-
melseet al. (2008a)] showed that for a linear measurement operator the RepresetttedMe
(RM) [Bennett and Mcintosh (1982), Eknes and Evensen (1997), Bennett (200&pgrVa
et al. (2004), Baird and Dawson (2005), Janss¢al. (2006), Przybyset al. (2007)] out-
performed the EnKF in terms of two quality measurest mean square difference between
estimated and synthetic true permeability, and the ability to preditémbreakthrough in
production wells.

6.1.1 \Variational parameter estimation

Data assimilation methods aim to improve numerical models by comparingl aseasure-
ments of a physical system with the numerical model predictions of theasumamnents.
The predicted state variables and the predicted measurements esatigeparameters of
the numerical model are perturbed. The discrepancy between the "meamasare ments"
and the "predicted measurements" can be used to update the parametegs io dedrease
this discrepancy. In variational methods, the discrepancy is formulaia @lsjective func-
tion that has to be minimized, often using the Euclidean norm. The dynamie| that
relates parameters to state variables, is usually adjoinéé thjective function with the aid
of Lagrange multipliers [Bennett (2006)]. In reservoir management, thendigmaodel is
implemented in the form of a reservoir simulator, the parametersexiesit can for example
be porosity or permeability, and the state of the system is typicallyithesidoy pressure and
saturation values in all grid blocks. The first or higher order varniatiare iteratively used
to improve the parameter estimate. Gradients can be approximatedcmngiffi calculated
by an adjoint reservoir simulator [Rommelstal. (2007)]. Usually reservoir simulators
use time-implicit numerical schemes and first order derivativeshians, are used to speed
up the non-linear solvers. It is quite a task to construct the adjoint sionukaten when
the Jacobians are available in a reservoir simulator. Higher ordeatiegis are usually not
available. Inthe LBFGS [Gao and Reynolds (2006), Ulbrich (2002)] minitimaalgorithm
used in this chapter, second order derivatives are approximated by monttaifigst order
derivatives over successive iterations and used in a Gauss-Nsgfeme.
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6.1.2 Model errorsg strong and weak constraints

The discrepancy between measured measurements and predicted meagiigoften for-
mulated using the Euclidean norm. The objective of the data assimilatiorminimize the
square of this norm with respect to the model parameters while the numeddal e used
as a (strong) constraint.

However, there is an additional phenomenon that may cause the discrepaeayodel
is an approximation, so even if the parameters were known, the modeltithgoyaduce
incorrect output. These errors can be modelled as extra parameters andllso added to
the objective function using the 2-norm. The model is then used as a weak guristthe
minimization problem.

6.1.3 Regularization

Variational methods often get trapped in local minima. Regularizatiethods must be em-
ployed to reduce the number of local minima. When model errors are takeadotant,
these can be modelled as additional model parameters to turn the weakicnsinimiza-
tion problem into a strong constraint problem of much higher order. Regulariztiten
becomes increasingly important.

The RM [Bennett and Mcintosh (1982), Bennett (2002), Valstaal. (2004)] turns the
weak constraint problem into a strong constraint problem of the same ordber msrhber of
measurements. The regularization is part of the minimization schedrtb@basis functions
are recalculated at every iteration. [Rommedseal. (2007)] proposes an approximated
gradient and an additional reduction of the dimension of the parameter space.

This chapter proposes a Variational Parameter Estimation algotitiirages Model-driven
Regularization (VPERM, section 6.2), similar to the RM. The regzddion is decoupled
from the minimization scheme. Basis functions can be updated at anyaiteraut they do
not necessarily need to be. The weak constraint problem is reduced to asr@tigaint
problem of an order that is much lower than the number of measurements. Assigil
seismic data would not have been feasible otherwise. The gradient is emlafytine basis
functions are kept fixed, unlike the approximated gradient of the RM.

6.2 The VPERM method

This section introduces the VPERM methagriational Parameter Estimation Regularized
by Model-driven basis functions.
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6.2.1 High dimensional gradient of the weak constraint problem

The state variables, pressures and saturations in all grid blatkisnet; are denoted by
x;, 1 € {0,--- ,n}. Running the reservoir simulator and predicting measurements is denoted
by
g(xiaxiflaaa ei) =0 , vy :h(X{On}) ’ (61)

where the model parameters are collected in the vettmd the model errors on interval
[t;—1,t;] are contained in the vecter,. The initial states may be part of the parameter
estimation process, sa) = x, (0). The minimization relies on the availability of the first
(mean) and second (covariance) order statistics of the model pararaetemodel errors.
These are denoted I/"", Py, /""" = 0 andP,,.

The objective function that has to be minimized is

1
J = 5 (h (X{o,---,n}) - m)TP;1 (h (X{O’... ’n}) - m) + (6.2)
1 rior\ 1 15— Ti0T 1 - -
+5(0-07) Pyl (0-0m) 4 33 TP e+

+ZAZTg (Xi; Xi—1, 0, ei) 9
i=1

wherem contains the actual physical measurements, possibly taken at diffenest, tind
h is the measurement operator that operates on all state variablédimieasteps. Py,
represents the uncertainty in the measurements in the form of an erariacme matrix.
The last term of Eq. (6.2) represents the system equagiaihgt have been adjoined to
the objective function with the aid of Lagrange multipliésin the usual fashion [Bennett
(2006)].

The derivatives of Eq. (6.2) with respectig, x;, @ ande; are

o7 \"
(8/\') =g (xiXi-1,0,¢;), (6.3)
T
oJ\" Oh (X{0.. )
(axi> = (%) Py1 (h (X{O’... ’n}) — m) + (6.4)
T
Og (xi, Xi-1,0, €;) ! 0g (xi41,%i,0,€,,,)
+ ( 8XZ' Az + 8XZ, AZ+1’

oJ T _ rior - 0 Xy Xi— aaaez‘ g
<%) =P, (606" )+Z< gl 801 )> i, (6.5)
i=1

T T
<8J> _ P;ilez‘ + <8g Xzaleaaaei)> i (6.6)

Oe; Oe;
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Setting the first two derivatives equal to zero gives the reservoinlsior, Eq. (6.1) and the
adjoint reservoir simulator

T
Oh (x50.... n _
(%) Py1 (m—h(x{oﬁ___’n})) (6.7)
X
_ og (x;,%;_1,0,0) T/\Z'-i- 0g (Xi+1,%,6,0) T/\Z,H.
Ox; 0x;
Thus, for the weak constraint case, the gradiét 22 - aaT{l]T is calculated by

running the simulator and the adjoint simulator, using the current estimates phtameters
and model errors as input, and substituting the results in Eq. (6.5) and Eq. (6.@jratlent

can be used in any gradient-based search algorithm to find a local minafhtihe objective
function.

6.2.2 Low dimensional gradient of a strong constraint problem

The low dimensional problem is parameterized by a vdstdn this low dimensional space
there is no model and hence no model errors. The model is only defined in the tagh or
space. From the low order parametbrshe high order parametefisare constructed by

6 =6+ Ryb, (6.8)
and the high order model errors are constructed by
e, =¢€; + Re,b. (6.9)

The columns of the matricdBy andE; contain the parameter and model error basis func-
tions. Whenever these basis functions are calculated, they are batedresults of the last
Eerationa andg; gnd the low order parameters are reséi to 0. Before the first iteration,
0 is initialized to@ = 6”""°" andg; is initialized toe; = 0. The RM also introduces state
representerRy, as

X; = iz‘ + in b, (610)
and adjoint representeRs,, as

XA = A + Ry, b. (6.11)
The RM does not upda@, g, andX; = 0, meaning that the quality of the parameteriza-
tion decreases as parameters move further away from therisrformed from the results
of the last iteration plus a correction term that is updated at evemtita. Effectivelyx;
is never updated and it is obtained by running the reservoir simulattteoprior parame-
ters77*°" without model errors. [Rommelsat al. (2007)] also introduced measurement
representers

h (x{o... n}) = h + Ryb. (6.12)
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Using the basis functions, Eq. (6.8) and Eqg. (6.9), the low order gra@%r)tT is calcu-

lated as
oI\ " 20\" roJ\" < foe,\T oI\
&) = @) @) (&) (&)= e»
oI\" & oI\ "
_ T X2 T
- R (5) 2R (o)

1=

with (%)T and( 0J )T from Eq. (6.5) and Eq. (6.6).

Oe;

6.2.3 Choosing the basis functions

To find new basis functionRy andR.,, equations Eqg. (6.5) and Eqg. (6.6) are set to zero
and linearized arouné@, X;, :\i, Ei). The results are:

n T
1{(9 _ _POZ <8g (Xza)galaaaei)> R)\i (614)
i=1
and
8g (XZ‘ Xi—1 0 81) T
R., = P, ( B S ) R,,. (6.15)

Obviously, first basis functiornR., for the adjoint variables must be chosen. Similar to Eqg.
(6.14) and Eq. (6.15), equations for the adjoint basis functions can be found

oh ( )\ ., on( ) og ( 0.c)\"
Xf0,---.mn _ X10,---.n X, Xi—1,0,€;
(el e Mo, (Bt i
8g (XiJrla Xy 0, €i+1) ’
N 0x; R

which depend on the state variable basis functiBrs, that can be calculated from

Jg Jg

Ry, + Ry, , + %8g,~0. (6.17)
8XZ‘ 8Xi,1

00

In the RM, Eqg. (6.16) and Eqg. (6.17) can be solved sequentially, wheezastliey are

coupled through Eq. (6.14). If an estimate of the basis functidndor the parameter8

is available, for example from a previous iteration, new basis functiange calculated by
sequentially solving Eq. (6.17), Eg. (6.16) and Eq. (6.14). This can be used taal Pi
iteration scheme. Here a different approach is taldep, in Eq. (6.16) is obtained by a
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singular value decomposition:

oh ( ) g 8h( )

X{O’... n} 1 X{O,--- n}

(78& ) P, — Ry, (6.18)
v7T I

— T~ 1 —

= UXV' X, =UX [Vg} vV, =UX [O} .

When the left-most columns dIX are substituted in Eq. (6.16) to replace the left-hand-
side, the resulting equation can be used to find approximatiorR {or Thereafter, these
can be used in Eq. (6.14) and Eqg. (6.15).

6.2.4 Quadratic line search

After the objectivel, = J (0) and the gradierg, = % have been evaluated, a step must be
taken in the direction of the gradient or a modified directiorif the step size is parameter-
ized bys, thenJ (s) = J (6—sd) must be minimized. The gradient is not only used to find
the direction of the line search, but it also helps in finding the step a&zis the case with

Wolfe conditions [Nocedal and Wright (1999)]. However, here a different agprisataken:
Choose some potential step size

2. Evaluate the objectivé (s,) = .J (8—s,d).

3. If f(sp) < J(0) —grd, then accept,, and end line search.

4, Calculate a new potential step size

_ 1 glds,
== . 6.19
T el ds, + J., — Jo (6.19)

5. Goto2ifJ (3,) > J(0).

Comments:

- Eq. (6.19) minimizes the parabola that is definedJo)) = J;, f(sp) = J,,, and

21 (0) = —gf d.

- If J,, = Jo, thens,, := 3£, unless||gy | = 0 (but if that were the case, thenh(6) is a
local minimum of.J).

- In step 2, the objective function is evaluated. In step 5 it is evaduagain. However, in
numerical experiments [section 6.4], the step from 5 to 2 is never made.
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6.3 The models

6.3.1 Weak constraint reservoir simulator
A 2-phase (water/oil) reservoir simulator can be represented syrabplis

d
2 (6(x) = £:(x.6) (6.20)

wherex contains the water saturation and water pressure (equal to oil pegfsusvery grid
block and@ contains the permeabilities of all grid blocks.describes the presence of water
and oil mass in the grid blocks arfgd models theflow through the grid block interfaces.
Injection/production is modelled as sources/sinks, which are includéd ikq. (6.20) is
formed by mass balance and Darcy equations [Aziz and Settari (1979)].

A fully implicit time discretization results in

g (xi,xi-1,0) =f1 (x;) — (t; —ti—1) f2 (x4,0) — f1 (x,-1) = 0. (6.21)

The model errors are introduced as additional sources/sinks in all gridsbldnkother
words, afterx; has been solved from Eq. (6.21), the water and oil masses in the gridsbloc
have not correctly been predicted and must still be modified. The prediptioms worse
as the time steft; — ¢;_1) increases. The correction is therefore modelled proportional to
(t; —t;—1). Ifthe additional sources become too strong, unrealistically high pessuilt be
observed. If the additional sinks become too strong, saturations o{@sidevill occur. In
this chapter, the additional sinks are non-linearly constrainefi.bihe stochastic reservoir
simulator has the form

g(xiaxiflaa’ei) =0= (622)
= fl (Xi) — (tz — tifl) f2 (Xi; 0) — fl (Xifl) =+ min {fl (Xi) s (tz — tifl) 81‘} .

6.3.2 Rock-physics model

In addition to production data, seismic data can be used to estimategiara in a reser-
voir simulation model, even though acoustic wave propagation is a totaiyelit physical
phenomenon than multiphafleid flow. Seismic data can consist of travel time data and
amplitude data, recorded by geophones or hydrophones. Travel time data areleaala
the difference between the time at which human-made sources initiateiacsages that
travel into the subsurface and the time at which thiected waves are recorded, usually at
the surface, but sometimes inside wellbores. In "passive seismaitfabel time data are the
difference between recordings of the same acoustic wave by different spismiones in
different well bores. In this case "mother nature" is used instead of arlrumaae source.
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Like reservoir engineers use reservoir simulators to predicfiéheof fluids through the
subsurface, geophysicists make use of wave propagation simulators to prediatdws-
tic waves travel through the subsurface. And like history-matchimgservoir engineering,
inverse methods are applied in geophysics that bring the predictions of sivauéations
closer to the actual recorded waves by changing the parameters of theimalsta. The
parameter sets of both simulators have some overlap. Porosity for exasgin impor-
tant parameter in both simulators. Theoretically, seismic dadgpaoduction data could be
merged into one big dataset and the parameter sets of both simulators ecuktded to
create one big inversion or parameter estimation problem. This hasmese done. Usu-
ally one inversion problem is solved partially and the results are uspseaglo-data in the
other inversion problem.

This chapter assumes that the seismic data has been inverted ypartitilithe level of
seismic impedance. The P-wave impedance is augmented to the prodiat#oto help
the history-matching of the reservoir simulation model. Besides av@ssimulator, also
an impedance simulator is needed to predict seismic impedancefiinapressures and
saturations. This dependence is shown in Fig (6.1) and described in tloé tléstsection.
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Figure 6.1: The dependence of the P-wave impedance gfuigressure and water saturation.
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The P-wave impedancg, [kgm~? s'| and S-wave impedancé, [kgm 2 s~!| are
defined as the velocities of the P and S-waves through the subsdr)‘)a{m s*l] and Vg
[m s~1], multiplied by the density of thell(id-filled reservoir) rockp, [kg m~3], which is
a weighted average of the densities of the sandsﬁgn@:g m*g] , and thefluids

Po = & (Swpy + Sop,) + (1 — ) p,. (6.23)

Including the dependence of the velocities on filwéd filled bulk modulusK s [Pa] and
shear modulug,,, [Pal, the impedances can be written as

4
= \/(Kff + §“m> Py Ls = Hmby (6.24)
Thefluid filled bulk modulusiy is calculated according to Gassmann [Maekal. (1998)]
1—Ew KoL — L
Bor =t ( - ([ff [f> : (6.25)
1_T(T+KS¢(K_f—E>
orwitha = ¢ (,%f - ,%) andp = 1 — L
Ko+ B
Kir=K\ % ars 6.26
ff S (Ksa'i‘ﬂ ) 9 ( )

which combines the bulk moduli of the sandstohg,[Pa], the dry-framek,,, [Pa] and the
fluid Ky [Pa]. This last modulus is calculated from the bulk modulus of &il, [Pa] and
bulk modulus of waterk,, [Pa], by

1 KK,

Sw | 8. :
Ko + K, SwKo+SoKw

K= (6.27)

The elastic moduli, the porosity and the densities are assumed unceftamyver, deter-
ministic values are used and noise is added to the synthetic P-wave impeddheethan
to the underlying parameters separately, section [6.3.3].

6.3.3 Measuring impedance with synthetic noise

Noise is added after the true impedance has been synthesized. Howevierdtrie in such
a way that the difference of impedance measured at different timesiesmh¢ss noise than
the separate measurements. So

Zt1 = Zt1 +edqd+ €15 (628)

th = th +edqd+ €ts, (629)
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Zt1 - th = Zt1 - th + €ty — €ty (630)

If the error in the impedance measurements is modelled by a Gaussidtutich
eq+ey, ~N (0, 022) , (6.31)
and so is the error in the impedance difference

€ty — Ety N (OaGZZ) ) (632)
theney,, e;, ande, are also Gaussian
0.2
€t1,€t2 “ N (0, %) 5 (633)
0.2
eq o N (0, oy — %) . (6.34)

The uncertainty in the baseline surve¥, the monitoro% and the differences?, are
parameters of interest in the numerical experiments. The uncertamtles synthetic noise,

2 2 i
Ziz ando?, — 744, are derived from these.

6.4 Numerical experiments

Twin experiments were done on a horizontal 2D 2phase fiateling application with
two different permeability and well configuratignan inverted 5-spot with vertical wells
(5SPOT) and two horizontal wells perpendicular to two high-permeabl&kst(2aTREAKS).
Synthetic pressure and impedance data were generated by running a resenlaiiosion a
"synthetic truth" permeability field. The synthetic truths for 5SPOT 28@RAKS and the
well configurations for both experiments are shown in Fig. (6.2).

Water is injected at a rate of one pore volume per year and the productianarelton-
strained to a quarter (5SPOT) or one (2STREAKS) pore volumes per year. tatheos
the reservoir is described by pressure and water saturation in>@l21 grid blocks of
10x10x20m each. Capillary pressure and gravity effects are ignored. For 5SROTrue
permeability is picked as one realization out of a database of 1000 temizaThe others
realizations are used to construct a covariance matrix which ésingke objective function.
For 2STREAKS, the truth is an academic caricature and realizatiores seenpled from a
covariogram [Vossepoel and Douma (2008)]. The synthetic true model errcesseueipled
as white noise, similar to chapter 4. The state variables of the simthéh, located at the
well positions, are shown in Fig. (6.3) for 5SPOT and Fig. (6.4) for 2STREAdfctions
of time. The synthetic pressure measurements are the reservoir psassitve grid blocks
that are penetrated by wells at 100 and 200 days of the simulation, resualtl@gneasure-
ments for 5SPOT and 84 for 2STREAKS. Measurement errors are sampled addatue
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5SPOT 2STREAKS
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Figure 6.2: Well configurations. One vertical injector and four vertical praglsdor 5SPOT and two
horizontal wells for 2STREAKS

synthetic measurements. Fig. (6.5) and Fig. (6.6) show the state eariitér 200 days of
simulation. The 882 impedance measurements, including measuremenaneiskown in
Fig. (6.7) and Fig. (6.8).

Fig. (6.9) and Fig. (6.10) show some permeability estimates and thetigbj&mction
during 38 iterations of VPERM on 5SPOT. Fig. (6.11) presents the estimaiécbgponses.
Fig. (6.12), Fig. (6.13) and Fig. (6.14) show the same for 2STREAKS. Alltitera use
the pressure data from the grid blocks that are penetrated by welldin@aaed time-lapse
data are used starting from iteration 20. If impedance data are imedHe first iteration,

a different local minimum of the objective function is found, usually one that giwesrae
history-match. Fig. (6.15) presents the objective function of RM for the sgisere seismic
data are used in all iterations or only after the twentieth iteratiThe first case converges
much slower than the second. Moreover, the root-mean-square-BMSK) between the
true and the estimated parameters is better for the second0ca880 compared to 0.7536.

If a history-matching worRow without seismic data gives reasonable results, it is not yet
a trivial exercise to add seismic data. Additional data do potentially gfiore information,

but also increases the dimensionality of the non-linear estimation problsimg lbhpedance
data from the twentieth iteration instead of the first one is a practickltb get a variational
history-matching workow to work with impedance data. The extra seismic data introduces
new local minima in the neighborhood of the initial/prior estimate. Modifices to get an
Ensemble Kalman Filter to work with saturation data for 2STREAK&Se investigated by
[Vossepoel and Douma (2008)].

Once a history-matching wofllow is set up to work with or without seismic data, the
influence of the seismic data can be assessed. In this research seimmewda had a
negative effect and usually had a positive effect. In order to afisesdfect of seismic data,
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Figure 6.3: State variables of the synthetic truth for 5SPOT. Only the 5 ¢pitkb that are penetrated
by the injection well and the north west (NW), SW, NE and SE production avelshown. The top
plot also shows synthetic pressure measurements prior to adding measuremerihdiiatsd by the

asterisks.



124 Chapter 6

x10" pressure

pressure [Pa]

time [s] 10
water saturation
1 ‘ ‘

08 N

ie) ~

2 001 e 7/;;,;,,7,77————777”* i

: Vv )

T 04 / —

g 2 E—— —

;  —— I .

0.2 : ‘ ! L L L L L
0 2 4 6 8 10 12 14 16 Iy

time [s] 10°

Figure 6.4: State variables of the synthetic truth for 2STREAKS. Only theid ®igcks that are pen-
etrated by the horizontal injector and producer are shown. The top plot also slyotetic pressure
measurements prior to adding measurement noise, indicated by the asterisks.
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Figure 6.5: State variables after 200 days of simulation for 5SPOT.
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Figure 6.6: State variables after 200 days of simulation for 2STREAKS.
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Figure 6.7: Impedance measurements for 5SPOT.
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Figure 6.8: Impedance measurements for 2STREAKS.
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Figure 6.9: Permeability estimate during 38 iterations with VPERM fdP63. Pressure data in the
wells is used for all iterations, baseline and time-lapse impedance dasedin iterations 21 and up.
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Figure 6.10: Objective function during 38 iterations with VPERM for 5SPO@&s8ure data in the
wells is used for all iterations, baseline and time-lapse impedance dasedin iterations 21 and up.
The plots on the right are close-ups of the plots on the left.
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Figure 6.11: Estimated well response after 38 iterations with VPERM folCSPressure data in the
wells is used for all iterations, baseline and time-lapse impedance dasedin iterations 21 and up.
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Figure 6.12: Permeability estimate during 37 iterations with VPERM for 2S9KEE Pressure data in
the wells is used for all iterations, baseline and time-lapse impedancaégdiasad in iterations 21 and

up.
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Figure 6.13: Objective function during 37 iterations with VPERM for RERKS. Pressure data in the
wells are used for all iterations, baseline and time-lapse impedance datssackin iterations 21 and
up. The plots on the right are close-ups of the plots on the left.
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Figure 6.14: Estimated well response after 37 iterations with VPERM8FREAKS. Pressure data
in the wells are used for all iterations, baseline and time-lapse impedaneeagaused in iterations
21 and up.
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crossplots were made between the history-match and the "futurérimitg. (6.16), Fig.
(6.17) and Fig. (6.18), where the history-matching viarks were repeated with different
priors/initial estimates and with three different datasets. Alagets contain the pressure
data in the grid blocks that are penetrated by wells. The second and ttasgtieontain the
baseline impedance data. The second dataset contains the monitor impedaiacel diata
third dataset contains the time-lapse impedance data. The "history-nmtpeintified by
the Root Mean Square Error (RMSE) between the estimated permeabititihe synthetic
truth permeability. The "future-match" is quantified by looking at the amuof the water
breakthrough curves. In fact, it is the square of the 2-norm of a vector thairtettia time
shifts of the estimated well responses to best match the synthetieggbnses. For 5SPOT,
Fig. (6.16), 3D seismic data does contribute to better history-matched meadtbisugh
these models do not have better predictive capability than models thahistrg/-matched
without seismic data. 4D seismic data reduces the outliers in the crqss@aning that
the models do have a better future predictive ability, without being betterpimatched.
This is also the message of [Walker and Lane (2007)]. It must be note@Ehakismic
data are actually 2D, and 4D are actually 3D, since the reservoir modehi2D and not
3D. For 2STREAKS, Fig. (6.18), 3D seismic data have hardly any effdatseismic data
give better history-matched models as well as better "future-matchedeéls. Fig. (6.17)
is a combination of 5SPOT and 2STREAKESTREAKS is used as the synthetic truth and
realizations were created by subtracting the mean from 5SPOT, adding thetgytruth
of 2STREAKS and performing some random dleibperations on the permeability fields.
Again, the availability of seismic data removes the outliers in thegplot.

The VPERM method turns a high-dimensional weak constraint parameter éstiqmab-
lem into a lower dimensional strong constraint parameter estimatiamiem by choosing
basis functions for the parameters and the model errors inspired by the represethod.
In the absence of model errors, it is very common to reduce the dimensjarfahe strong
constraint problem by choosing basis functions for the parameters, for exayngadéchlat-
ing the principal components of the parameter covariance using SVD. Opfidhale basis
functions may also be used for the parameters in a VPERMfiaovk Sometimes this even
results in faster convergence or convergence to a better local miniFign{6.19).

6.5 Conclusions

This chapter introduces a weak constraint Variational Parametiendt®n algorithm with
Model-driven Regularization (VPERM). The regularizations turns the bigler weak con-
straint parameter estimation problem into a lower order strong camigtrablem. The basis
functions that perform the regularization are model-driven, like in the é&gmter Method
(RM). However, if the basis functions are kept fixed in the VPERM, thearalytical gra-
dient can be obtained, whereas the gradient in the RM is merely an approxiniaisdhe
direction of a step in an iterative scheme with Picard iteratiat is not proven to converge.
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Figure 6.16: History-match future-match crossplot for 5SPOT using 2érdiit priors and 3 different
datasets.
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In the RM, basis functions, or representers, are calculated in @eeggion. In VPERM
the basis functions are not updated at every iteration. This reduces caomptit@ie per
iteration, but might also increase the total number of iterations.

Experiments were done with VPERM, attempting to assimilate productita baseline
and monitor P-wave impedance data and difference P-wave impedance data.hEsem t
experiments, the following can be concluded:

- VPERM produces results that are similar to the results of the RM, bussrclemputation
time per iteration. Most figures in this chapter show VPERM results andrigl (6.15)
shows RM results. However, many experiments were done with both methotkct
VPERM was developed when RM provided disappointing results (slow comegge
too high history-match RMSE) with seismic data, but then performedasino RM.

Both methods produce good results when only pressure data obtained from theevells a
available.

- If a data assimilation woffklow gives reasonable results without seismic data, adding
seismic data is not a trivial exercise. Although additional data doesipaltg give more
information, it also increases the dimensionality of the paramestiimation problem.
The seismic data introduced new local minima of the objective functioneimeighbor-
hood of the initial estimate. Perturbing the initial estimate in a randaection will
improve the seismic impedance predictions in some gridblocks, bualsdl move pre-
dicted impedance values away from the true impedance in other grid blocksnéan-
square-difference type of objective function these effects are dadarlt if there are as
many improvements as deteriorations. In the direction of the objective dungtadient
there are only improvements, as long as the step size is small enough.neighéor-
hood of the initial estimate the step size must be chosen so smallptheiviement is
only marginal and even below reasonable thresholds. In this research, tessgne data
in all iterations and using seismic data from the 20th iteration gave gesadts. Similar
modifications must be used for other data assimilation flonls. For example, [Vosse-
poel and Douma (2008)] investigated modifications for the Ensemble Kalman féilt
give good results with saturation data on the 2STREAKS model that was @ddaruthis
chapter.

- Using seismic data with VPERM never gives worse results than not gsiegnic data.

- In some cases, assimilating seismic data does not result in bettayhisatched mod-
els, whereas the models do give better future predictionliers in the history-future
crossplot are removed. This confirms the results of [Walker and L&AGY{R In other
cases, both the history-match and the "future-match" are improveddmisaiata.

- Sometimes convergence can be improved, or a better local minimum of thaivdje
function can be found, if the parameter basis functions are overwriftartive principal
components of the prior parameter covariance.
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Summary and conclusions

7.1 Summary

In this thesis two data assimilation techniques, the Kalman filterranBée&presenter Method,
were adopted from other areas of research and, with modifications, appl@atroleum
reservoir applications. Also a new method was introduced, the VPER MatieYariational
Parameter Estimation Regularized by Model-driven basis functions.

The specific kind of Kalman filter that was used in this thesis, was tiseiable Square
Root Kalman Filter (ESRKF). To improve the measurement update of tiRKESt was
decomposed as a set of measurement updates with more uncertain data.ghitedeaf
the added uncertainty was chosen to increase the uncertainty of the dathepevel of the
uncertainty in the parameters of interest. The number of times that measurement was
assimilated was chosen such that this multiple-updating-strategy fietyeal the estimated
mean of the parameters but not the estimated covariance. In thihweayltied uncertainty
is merely a numerical method and does not physically decrease the vaheedaita.

The Representer Method (RM) in this thesis was modified from previous imptatians
on four accountsthe number of representers may be (much) smaller than the number of
measurements, the representer functions are defined differently smthatrection terms
need to be calculated, it can interact with different gradient-baseitniaation algorithms
and the "measurement representer” was introduced. The number of repesentée cho-
sen by the user or can follow from a singular value decomposition and agygoreiserving
criterion. The RM has not been proven to converge for general non-linear psbieither
for previous implementations nor for the modified version. The number ofitesare-
quired depends very much on the specific problem. The convergence behavioclakgie
RM and the modified RM should be further examined for larger, field-scale pnsbl&he
classic RM is derived without "measurement representers" becaulke gase of a linear
measurement operator, the measurement representers are conftyunbedatenating the
state representers of different time steps as row blocks into oge taatrix. Measurement
representers were introduced to handle more complex measurement operators

The VPERM method (Variational Parameter Estimation Regularigéddrlel-driven ba-
sis functions) was introduced in this thesis. The basis functions that petti@rmegular-
ization are model-driven, like in the RM, and turn the high order wemstraint parameter
estimation problem into a lower order strong constraint problem. Unlike &ianalytical
gradient can be obtained in VPERM by keeping the basis functions fixed. The 'lytadie
RM is in fact the direction of a step in an iterative scheme wittaRl iterations. The ba-
sis functions, or representers, are calculated in RM in every iberalin VPERM, the basis
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functions are not updated at every iteration. This reduces computation tiriterpgon, but
might also increase the total number of iterations.

The data assimilation algorithms were tested using syntheticvmése Data was gener-
ated with reservoir models and noise was added. The data assimédgiarithms started
with the same reservoir models but with different parameters anasaakto reconstruct the
original parameters. This allows the use of two quality measures thatca available for
field cases. The performance of the methods was measured by the rootauess+error
(RMSE) between estimated and synthetic true parameters and theinoatgsiare time shift
between estimated water breakthrough curves and true water breakthrougb in the well
gridblocks.

First, experiments were done to improve the methods. For the Kalmantfilsled to the
choice of ESRKF with duplicated measurements with added uncertaistyowed the need
to preprocess the sampled parameter ensemble before starting tHedatduassimilation.
For the RM some relevant lessons were learned about gradient based mathadswithout
Hessian estimating functionality and about line search methods. Thevédvicompared
with the classic adjoint method. This method also underlies the RM, lest user-defined
regularization instead of the more advanced model-driven reguiarizaitthe RM.

Using the best settings and options that were found for the methoddgtdrans were
compared to each other investigating their sensitivity with respamcertainty information
that the user has to supply. This is a relevant topic since the usefyulsaalto guess how
uncertain the measurements are, whereas the guess itself introduces pewaintyc The
RM turned out to be less sensitive for the examples that were examinead thehis.

Finally, the applicability of RM and VPERM was examined with regpeceservoir mod-
els. VPERM produces results that are similar to the results of Melat in less computa-
tion time per iteration and without using significantly more iterationsthBnethods produce
good results when only production data are assimilated. When seismiwaktdded, per-
formance of VPERM never decreased. Depending on which performance measursed,
seismic data did increase performance. In some cases, assigidaismic data does not re-
sult in better history-matched models (first performance measure)eahéne models do
give better future predictions (second performance measure). Butlithe history-future
crossplot are removed. In other cases, both the history-match arituthee-match" are
improved by seismic data.

7.2 Conclusions

It is recommended to use a good line search algorithm. Although (L)BF®%das a bet-
ter search direction than SD, this does not help the convergence if asfixedize is used.
For the strong-constraint case with the adjoint method, the quadraticelanetsperformed
so well for SD, that BFGS could not outperform it. BFGS did perform betithr an expo-
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nential line search. The quadratic line search does not work propecignibination with

RM because the slope of the objective along the search direction canndtblateal accu-
rately. As a result, the quadratic line search underestimates fhsisteand the algorithm
stops before even finding a local minimum of the objective function. (L)Be@proximates
a Hessian by monitoring the behavior of the gradient over successiveadterati very little

cost. RM costs about as much computation time as explicitly calculatingdbsian. BFGS
can also be applied on top of RM, but this does not contribute to fasteemance.

The RM achieves most of the decrease of the objective function in the fieidgte How
much work is left for successive iterations depends on the magnitude ofdbel errors.
If the model errors are large, then the non-linear relation between Impadameters and
state variables is overshadowed and the minimization problem beeonaredinear. Hence,
convergence is faster.

Model errors should not be modelled with a higher resolution than the measuiem
Compared to the high resolution model errors that were used to creasgritietic mea-
surements in this thesis, the variational methods introduced artifariadlation between the
model errors on time intervals in between separate measurements.

The RM always performed better than the filter in terms of RMSE betwesémated and
true parameters. This makes sense for parameter estimation psolvlegne the posterior
probability of the parameters given the measurements is not symmeaven multi-modal.
The recursive filter introduces errors during every measurement update ardattseaccu-
mulate as the filter progresses. An iterative algorithm has the oppgrtoravery iteration
to reduce the errors that were made in the previous iteration. Falseifts can be improved
by choosing the initial ensemble size sufficiently large and by making surththansemble
is de-skewed.

The RM was less sensitive to using a "wrong" prior than afilter for the exaaplesidered
in this thesis in terms of the two performance measures that wetle use

VPERM turns the high order weak constraint parameter estimation problera lotver
order strong constraint problem. If the basis functions are kept fixed iWBEERM then,
unlike the RM, an analytical gradient can be obtained. VPERM producelisdisat are
similar to the results of the RM, but in less computation time pertitataSometimes con-
vergence can be improved or a better local minimum of the objective funiobe found,
if the parameter basis functions of VPERM are overwritten with tlirecgyal components of
the prior parameter covariance.

Adding seismic data to a history-matching application does not necessaelpeiter re-
sults. Although additional data do potentially give more information, theyialsease the
dimensionality of the parameter estimation problem. The seismic dadairted new local
minima of the objective function in the neighborhood of the initial estimalte seismic data
become valuable if the data assimilation methods are adapted to handierdesed com-
plexity that comes with the introduction of the extra data. Using seismicwidh VPERM
never produces worse results than not using seismic data. In some caseatass seis-
mic data does not result in better history-matched models, whereas thesrdodgve better
future predictionsoutliers in the history-future crossplot are removed.
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set of all grid block indice$—]

set of indices of neighbors of grid blogk{—]

index of neighbor of grid block [#]

total mobility [m =2 s|

mobility of component/phase [m 2 s]

viscosity of component/phaseon §n—interface[kg m~1 s*l]
shear modulus of matripPa]

well factor in grid blocks [m?]

element-wise multiplication operator

porosity of grid block [—]

Lagrange multiplier/adjoint state vector for interval ; - ¢;
prior model parameters

parameter vector

model error vector

model errorg kg s~ !

model parameters in low order space or representer coefficients
Jacobian of; w.r.t. x [—]

Kalman matrix

vector with measurements

model parameter uncertainty covariance

model error covariance

measurement uncertainty covariance

selection matrix

adjoint representers

parameter representers

model error representers

state representers

measurement representers

time-dependent state vector

state vector at timg,

correction term used in classic representer method
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density of component/phaseon {n-interface[kg m 3|
density of component/phasein grid blocké [kg m 3]

bulk density[kg m 3]

density of sandstongtg m 2]

volume (at STC) of injected/produced liquid per grid block volume1]
mobility of component/phase including permeability s
mass injection/production density of component/pha%kg m~3 s*l]
index of grid blocke [#]
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Nomenclature

area of¢n-interface[m?|

formation volume factor of phase[—]

distance between centers of grid blogkandr [m]
objective function

permeability or¢-interface in perpendicular directidm?|
relative permeability of component/phasen ¢n-interface[—|
bulk modulus offluid [ Pd]

bulk modulus of matriX Pa]

bulk modulus of ail[Pa)

bulk modulus of sandstori@«]

bulk modulus of watefPd]

fluid filled bulk modulug Pd]

pressure of component/phasén grid block¢ [kg m™! s72]
wellbore pressurékg m ="' s~

wellboreflow rate at the surfacen® s—!]

massflux throughén-interface[m?® s~
injection/production of component/phaseén grid block ¢ [kg s*l]
solution-« ratio [—]

saturation of component/phasen grid block¢ [—]

time [s]

transmissibility of component/phaseon {n-interface[m s|
volume of grid block [m?]

P-wave velocity[m s~

S-wave velocity|m s!]

P-wave impedancftg m =2 s~

S-wave impedancgg m=2 s7!]
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Rock-physics derivatives
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Summary

The research presented in this thesis aims at improving computer ntioaleddlow simula-
tions of water, oil and ga$ows in subsurface petroleum reservoirs. This is done by integrating,
or assimilating, measurements into physics-bases models. In ge@stpetroleum technol-
ogy has developed rapidly. Nowadays wells can be drilled to a depth of up kan1@ot
just vertically, but also at an angle, horizontally or with branchesrédver, downhole valves
can be installed which can be opened or closed from the surface and advanseid &an
be placed in the subsurface. This technology has the potential to drainepetroéservoirs
much more efficiently. In order to do so, the technology needs to be usablgensich re-
quires adequate knowledge of subsurface physical processes. Large amowdswements
can contribute to this, but conventional methods are often ad hoc and net tsuitendle the
large amounts of data that are available nowadays. Good “data asisimiitaethods are very
important to ensure that the growing demand for energy in the near future cagtbe m

The objective of this thesis is to apply data assimilation technigmesnted and developed
in other areas of research, to petroleum reservoir engineering, to ntbdify to be better
suited for their new application, and to investigate how they can tieeiptegrate both pro-
duction data and seismic data to support decision-making in petroleunigieseanagement.
Two data assimilation techniques, the Kalman filter and the Reperddnthod, were adopted
from other areas of research and, with modifications, applied to petnaieservoir applica-
tions. Also the VPERM method, Variational Parameter Estimation Reiged by Model-
driven basis functions, was introduced. The measurement update step of trenKittlen was
split into a set of update steps that are less sensitive to errorarthaitroduced because the
reservoir model or the sensor model are nonlinear. Also the initiizatf the filter with
samples from the uncertainty in the reservoir permeability was figated. The Represen-
ter Method (RM) in this thesis was modified from previous implementatiorfeur accounts
the number of representers may be smaller than the number of measureheergprésenter
functions are defined differently so no correction terms need to be caduiatan interact
with different gradient-based minimization algorithms and the 'suemment representer” was
introduced. The VPERM method was inspired by RM and uses model-drigearezation
with basis functions that are very similar to RM. VPERM turns thghldorder weak constraint
parameter estimation problem into a lower order strong constraint prollieike RM, an
analytical gradient can be obtained in VPERM by keeping the basis functions fixed.

Synthetic reservoirs were used to test the data assimilation thligisri Two quality mea-
sures were specified to quantify the performance of the methods, theneaot-square-error
(RMSE) between estimated and synthetic true parameters and the rosgsane time shift
between estimated water breakthrough curves and true water breakthtougb io the well
gridblocks. These quality measures are only applicable to syntheéis aad not to field cases.

First, experiments were done to improve the methods. For the KalmariHikéed to a spe-
cific variation of Kalman filter, the ESRKF, with an improved measaent update step and
a preprocessing method for the initialized ensemble that was used befdegsthe actual
data assimilation. For the RM some relevant lessons were learned abouhgbadied meth-
ods with or without Hessian estimating functionality and about lineckemethods. The RM
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was compared with the classic adjoint method. This method also underliesvthbuRap-
plies user-defined regularization instead of the more advanced modefdeigularization of
the RM.

Using the best settings and options that were found for the methods, théhatgowere
compared to each other investigating their sensitivity with reisfgeuncertainty information
that the user has to supply. This is a relevant topic since the user usually gasss how
uncertain the measurements are, whereas the guess itself introgwcaacertainty. The RM
turned out to be less sensitive for the examples that were examined ihekis.

Finally, the applicability of RM and VPERM was examined with respecs¢ismic data
and reservoir models. VPERM produces results that are similar teshdts of the RM, but
in less computation time per iteration and without using significantly niterations. Both
methods produce good results when only production data are assimilated. \\émeic siata
were added, performance of VPERM never decreased. Depending on whichrzeréer
measure was used, seismic data did increase performance. In ases assimilating seis-
mic data does not result in better history-matched models, whereas the modgls detter
future predictions. Outliers in the history-future crossplot are remolredther cases, both
the history-match and the "future-match" are improved by seismic &gmic data do po-
tentially provide additional information, but also increase the dinegiadity of the parameter
estimation problem. Data assimilation methods must be and have been addmedle this
increased complexity to give value to the seismic data.



Samenvatting

Het onderzoek, waarop dit proefschrift is gebaseerd, richt zich opehleéteren van compu-
termodellen waarmee water-, olie- en gasstromingen in ondergron@seaies kunnen wor-
den doorgerekend. Dit gebeurt door het integreren, ofwel assimileren, vagegeetns in
modellen die gebaseerd zijn op fysische principes. De afgelopen fadenantwikkeling van
oliewinningstechnologie snel gegaan. Putten kunnen tegenwoordig tot wel 10 krgediep
boord worden, en niet alleen vertikaal, maar ook om een hoek, horizontaat eftakkingen.
Bovendien kunnen er tegenwoordig ondergrondse kranen geinstalleerd wizrdan toven
de grond geopend of gesloten kunnen worden en kunnen zeer geavanceerde sensoren onde
grond geplaatst worden. Deze technologie heeft de potentie om olieresemel efficiénter
leeg te halen. Hiertoe moet de technologie wel verstandig benut worden,oeaaen goed
begrip van de ondergrondse fysische processen nodig is. De vele meetgkgawnen hier-
aan bijdragen, maar conventionele methodes zijn vaak erg ad hoc en elatiitop de grote
hoeveelheden data die tegenwoordig beschikbaar zijn. Goede “data assimikethoden zijn
dus zeer belangrijk om in de nabije toekomst aan de groeiende vraag naar energiecte ku
voldoen.

Het doel van dit proefschrift is het toepassen van data assimildtieéd®n, uitgevonden
en ontwikkeld in andere takken van onderzoek, in petroleum resengiinearing, ze te mo-
dificeren om ze beter geschikt te maken voor hun nieuwe toepassing, en uikén zoe
ze van dienst kunnen zijn om zowel productie data als seismische data ttehemm het
beslissingsproces in petroleum reservoir management te ondersteunen. Bwassdailatie
technieken, de Kalman filter en de Representer Methode, zijn gekdpideandere weten-
schappen en gemodificeerd voor toepassing in petroleum reservoir enggne®ak is de
VPERM methode, Variational Parameter Estimation Regularized by Mbtrden basis func-
tions, geintroduceerd. De measurement-update stap van de Kalman Gpgesplitst in een
set van kleinere update stappen die minder gevoelig zijn voor fouten dierzaakt worden
doordat het reservoir model of het sensor model niet-lineair zijn. Ook is tidigatie van de
filter met realisaties uit de onzekere ondergrondse gesteente doorstesbaidanderzocht.
De Representer Methode (RM) in dit proefschrift is op vier punten afgewe&preerdere
implementatieshet aantal representers kan kleiner zijn dan het aantal metingen, deerepres
ter functies zijn op een andere manier gedefinieerd zodat er ge@att@mitermen berekend
hoeven te worden, het kan ingebed worden in verschillende gradient-gebasaendaisatie
algoritmes en de "meet representer" is geintroduceerd. De VPERM methsdginspireerd
door de RM en gebruikt model-gedreven regularisatie met basis functiesgdigken op die
van de RM. VPERM verandert het hoogdimensionale weak-constraint parachetings-
probleem in een lager-dimensionaal strong-constraint probleem. In telljiegstot RM is er
bij VPERM een analytische gradient beschikbaar door de basis functies canastanten.

Synthetische reservoirs zijn gebruikt om de data assimilatie algaritséesten. Twee
kwaliteitsmaten zijn gebruikt om de performance van de methodes te kwardifi De eerste
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is de root-mean-square-error (RMSE) tussen de geschatte parapreteswerkelijke syn-
thetische parameters. De tweede is de root-sum-square van de tinesgeh de geschatte
water doorbraak grafieken en de werkelijke water doorbraak grafiekealleagridblocks met
een olieput. Deze kwaliteitsmaten zijn alleen toepashaar vathsijsche experimenten en
niet voor field cases.

Ten eerste zijn er experimenten uitgevoerd om de methodes teesentetoor de Kalman
filter heeft dit geleid tot een specifieke variatie van de Kalmaerfile ESRKF, met een ver-
beterde measurement-update stap en een preprocessing methode votalirien van het
ensemble voordat de eigenlijke data assimilatie plaatsvindt. Voor dedRiligk enkele rele-
vante lessen geleerd worden over gradient-gebaseerde method#szoreder functionaliteit
voor het schatten van de Hessian en over line-search methodes MDe \Rrgeleken met
de klassieke adjoint methode. Deze methode is tevens de basis voor de Ri\hastasser-
defined regularisatie toe in plaats van de meer geavanceerde mvdealrdgularisatie van de
RM.

Met de beste settings en opties die voor de methodes gevonden werden, zijnhde met
des met elkaar vergeleken en is uitgezocht hoe gevoelig de methodes zijntrakking tot
informatie die de gebruiker aan de methodes dient te verschaffen. &hiselevant onder-
werp, aangezien de gebruiker doorgaans moet schatten hoe onzeker de métingemvil
de schatting zelf weer nieuwe onzekerheid introduceert. De RM blesttengevoelig in het
geval van de voorbeelden die in dit proefschrift zijn beschouwd.

Tenslotte is de toepasbaarheid van de RM en VPERM voor seismische diaseevoir
modellen onderzocht. VPERM produceert resultaten die vergelijkbaamajrde resultaten
van de RM, maar in minder rekentijd per iteratie en zonder significadrriteraties nodig
te hebben. Beide methodes presteren goed als er alleen maar productie daitd gel-
den. Zodra seismische data wordt toegevoegd, wordt de performance van V@R kboit
slechter van. Afhankelijk van welke performancemaat gebruikt wordt, ve@ giterformance
juist verhoogd door het toevoegen van seismische data. In sommige gdsmltdret assimi-
leren van seismische data niet noodzakelijk tot modellen die beter bij dbigdenis van het
reservoir aansluiten, terwijl de modellen wel beter geschikt wordervaorspellingen mee
te maken. Uitschieters in de geschiedenis-toekomst crossplot woedetjderd. In andere
gevallen worden zowel de "history-match" als de "future-match" verbeterd sosmische
data. Seismische data bevatten in potentie extra informatie naaskfeodata, maar ze ver-
hogen ook de dimensionaliteit van het parameterschattingsprobleemad3atalatie metho-
des moeten aangepast worden, en zijn in dit proefschrift aangepastkannien omgaan met
de verhoogde complexiteit en zo de waarde van seismische data vollediguibein.
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