
Enumeration of Minimal Separators
with Special Properties

Master’s Thesis

Andrea Nardi

Enumeration of Minimal Separators
with Special Properties

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Andrea Nardi
born in Boston, USA

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2022 Andrea Nardi.

Enumeration of Minimal Separators
with Special Properties

Author: Andrea Nardi
Student id: 5180120

Abstract

In this paper we give a historical and theoretical background to minimal
triangulation and its relation to minimal separators.

We introduce a new type of minimal separators, the minimal meta sepa-
rator, which its size is a lower bound for the treewidth problem, its fill-in is
a lower bound for the minimum fill-in problem and can be used for the aid of
enumeration of minimal separators.

Furthermore, we introduce the idea of transformation which are controlled
graph modifications that predictably modify the minimal separators of such
graph. Namely, we introduce the transformations of inclusion minimal clique
decomposition, saturate minimal separator, edge addition and minimal meta
separator decomposition. These transformations can aid the architecting of
algorithms for the enumeration of minimal separators.

Finally, we then apply such methods on the problem of enumeration of
minimal almost-clique separators and demonstrate faster runtimes compared to
the current state of the art.

Thesis Committee:

Chair: Dr. M. de Weerdt, Faculty EEMCS, TU Delft
University supervisor: Dr. E. Demirović, Faculty EEMCS, TU Delft
Committee Member: Dr. L. van Iersel, Faculty EEMCS, TU Delft

a.nardideidafilicaiadotti@gmail.com

Preface

The main topic of this thesis is the enumeration of minimal separators. The enu-
meration of minimal separators is a step in the solving of many graph theoretical
problems, ranging from the treewidth problem, the minimum fill-in problem, the
treedepth problem and many more.

In this thesis we introduced the idea of transformation which is a graph transfor-
mation that predictably changes the minimal separators in said graph. We later use
the idea of transformation to design two algorithm for the enumeration of minimal
almost-clique separators, which are an important tool for the preprocessing for the
treewidth problem. We show that our algorithms run faster than the state of the
art algorithms, and we prove that one of our algorithm has runtime complexity of
O(n3m) which is a new result to the best of out knowledge. For a more in depth
summary of our contribution, refer to Chapter 6.

This thesis would not have been possible without the support of many people.
Many thanks to my supervisor, Emir Demirović, whom I exchanged many theoretical
ideas, read numerous time my thesis and met me on a weekly basis. Many thanks
to Steven Kelk, my bachelor’s professor, for his engaging teaching style, which grew
my curiosity for graph theory. Also thanks to Mathijs de Weerdt and Leo van Iersel
for offering support. Finally I would like to thank my friends and family. They
supported me with love throughout my thesis had to endure my passionate talks
about separators.

Andrea Nardi
Delft, the Netherlands

August 26, 2022

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Preliminary 3
2.1 Notation . 3
2.2 Minimal Separators . 3
2.3 Minimal Separators With Special Properties 6
2.4 Triangulation . 9

3 Transformation 17
3.1 Inclusion Minimal Clique Separator Decomposition (IMCSD) 17
3.2 Saturate Minimal Separator (SMS) 20
3.3 Edge Addition . 21
3.4 Minimal Meta Separator Decomposition (MMSD) 23

4 Enumeration of Minimal Separators With Special Properties 27
4.1 Number of Atoms After Decomposition By A Set of Pairwise Parallel

Separators . 27
4.2 Minimal Separator Enumeration Preprocessing 28
4.3 Enumeration of All Minimal Almost Clique Separators 28
4.4 Enumeration of Maximal Set of Pairwise Parallel Minimal Almost

Clique Separators . 30
4.5 Enumerate of Minimal Separators with Condition 32

5 Experimental Results 33
5.1 Implementation, Hardware and Instances 33
5.2 Enumeration of All Minimal Almost Clique Separators 33
5.3 Enumeration Pairwise Parallel Minimal Almost Clique Separators . . 34

v

Contents

5.4 Treewidth Lowerbound Comparison 34

6 Conclusion 39

Bibliography 41

vi

Chapter 1

Introduction

Many algorithms require a set of minimal separators to generate a solution and often
the runtime is mostly determined by the enumeration of said minimal separators.

The Bouchitté and Todinca dynamic programming algorithm[11] for solving
treewidth and minimum fill-in problems requires the enumeration of all minimal
separators of a graph, the Bodlaender algorithm[9] for treewidth preprocessing re-
quires the enumeration of minimal almost-clique separators, Tamaki’s algorithm[35]
for computation of treewidth requires the computation of minimal separators of size
at most k, Korhonen’s algorithm[23] requires the enumeration of small minimal sep-
arators to solve the treedepth problem, graph separation problems algorithms[27]
require enumeration of what the literature has refereed to as important separators.

We will discuss the relation between minimal separators and the problem of
minimal triangulation and the problem of optimal triangulation and discuss how
the problem of enumeration of minimal separators aids the minimal triangulation
problem and vice versa.

We will introduce the idea of transformation, which are controlled graph modifi-
cations that predictably transforms the minimal separators of said graph and prove
such transformations. We will use the transformations to architect an algorithm
for the enumeration of minimal separators that are interesting in the field of opti-
mal triangulation, namely the minimal almost-clique separators and what we will
introduce as minimal meta separators.

Finally we will empirically compare the newly architected algorithms with func-
tionally similar algorithms in the literature.

The chapters will be structured in the following way:

• In Chapter 2 we will introduce the graph theory notation, give the theoretical
background of minimal separator, minimal triangulation, minimal separators
interesting in the field of minimal triangulation and methods of enumerating
said minimal separators.

• In Chapter 3 we will present the idea of transformation, which is a controlled
graph modification which predictably modifies the minimal separators of said
graph. Furthermore we will prove each transformation for their correctness.

1

1. Introduction

• In Chapter 4 we will architect algorithms for the enumeration of minimal
separator which are interesting in the field of minimal triangulation with the
transformations presented in Chapter 3.

• In Chapter 5 we will empirically compare the newly architected algorithm with
a functionally similar algorithm in the literature.

• In Chapter 6 we will give our final remarks.

2

Chapter 2

Preliminary

2.1 Notation
We use standard graph theory notation. The graphs referenced in this work are
simple graphs, meaning that the graphs are finite, with no self loops and no parallel
edges. We often represent with G an arbitrary graph. V (G) represents the vertex
set of G. E(G) represents the set of edges of G. G[X] where X ⊆V (G) is the induced
subgraph of G with V (G[X]) = X and E(G[X]) = {{v,u}|v ∈ X ∧u ∈ X |{v,u} ∈ E(G)}}.
Given a vertex set S let N(S) be the vertex set neighboring S or more formally
N(S) = {v|v ̸∈ S∧ u ∈ S|{v,u} ∈ E(G)}. Given a graph G and a vertex set S we will
represent G+ clique(S) the graph where G is made into a clique, or more formally
V (G+clique(S)) =V (G) and E(G+clique(S)) = E(G)∪{{v,u}|v ̸= u|vu ∈ S}. Given a
graph G and two non adjacent vertices we will represent as G+ edge(v,u) the graph
where V (G+ edge(v,u)) =V (G) and E(G+ edge(v,u)) = E(G)∪{v,u}.

2.2 Minimal Separators
Intuitively speaking, a separator is a vertex set which removal will divide the graph
into separate connected components which are called associated components (Def-
inition 2.2.3). For example in Figure 2.1, we can observe that the removal of the
vertices S from G divides the graph into the connected components C1, C2 and C3,
therefore, we say that C1, C2 and C3 are associated components of the separator S.

An associated component C of a separator S is said to be full if all its neighboring
vertices are in S, or more formally, S = N(C) (Definition 2.2.5). In Figure 2.1 C1 and
C2 are full components of S as S = N(C1) = N(C2).

A separator S is defined as a vu-separator if S “separates” the vertices v and u
into two separate associated components (Definition 2.2.1). In Figure 2.1, S is a
vu-separator, vw-separator and a wu-separator.

We say that a vu-separator S is minimal if there is no subset of S which is also
a vu-separator (Definition 2.2.2). In Figure 2.1, S is a minimal vu-separator but
not a minimal wv-separator as {t} ⊂ S is a (minimal) wv-separator. It is intuitivelly

3

2. Preliminary

discernable that a separator S is a minimal separator if and only if it has at least
two full components C1 and C2. This is because S is a minimal vu-separator for an
arbitrary v ∈C1 and u ∈C2 and there cannot be a minimal vu-separator subset of S
as any vertex in S = N(C1) = N(C2) would “bridge” C1 and C2 (Theorem 2.1).

Generally we say that a separator S is a minimal separator if there exists two
vertices vu such that S is a minimal vu-separator. In Figure 2.1, both S and {t} are
minimal separators even though one is a subset of the other.

An inclusion minimal separator (Definition 2.2.4) is a minimal separator for
which there is no subset which is a minimal separator. In Figure 2.1, {t} is an
inclusion minimal separator (but not S). It is intuitively discernible that a separator
is an inclusion minimal separator if and only if all its associated component are
full components (Theorem 2.2). This is because if a minimal separator S has an
associated component C that is not full then the separator Z = N(C) is a subset
minimal separator and if S has only full components then S cannot have a subset
separator Z ⊊ S as any vertex v ∈ S\Z would “bridge” all the associated components
of S into one connected component.

SC1

C2

C3

v

t

u

w

Figure 2.1: S is a minimal separator (because it minimaly separates v and u). C1, C2
and C3 are associated components of S. C1 and C2 are full components of S (because
N(C1) = N(C2) = S). S is a vw-separator but not a minimal vw-separator because
{t} ⊂ S is also a vw-separator. {t} is an inclusion minimal separator but not S.

Definition 2.2.1. A vertex set S is a vu-separator if and only if the following conditions
are met:

4

2.2. Minimal Separators

1. S⊆V (G)\{v,u}.

2. Every path from v to u has a vertex w ∈ S.

Definition 2.2.2. A vu-separator S is a minimal vu-separator if and only if there is
no subset Z ⊂ S where Z is a vu-separator.

Generally we say that a vertex set S is a minimal separator if there exists two
vertices vu such that S is a minimal vu-separator. We can observe that given a vu-
separator S, if removed from G, or more formally, given G′ = G[V (G)\S], G′ has at
least two connected components, one containing v and one containing u. We define
these connected components as associated components of S.

Definition 2.2.3. The vertex set C is an associated component of S or C ∈ C (S) if C
is a connected component of G[V (G)\S].

Definition 2.2.4. A minimal separator S is an inclusion minimal separator if and only
if there is no minimal separator Z such that Z ⊂ S.

Full components are useful tools to determine if a separator is a minimal sepa-
rator and/or an inclusion minimal separator. They are defined in Definition 2.2.5.

Definition 2.2.5. An associated component C of S is said to be a full component if
S = N(C).

Theorem 2.1 ([1]). A separator S has at least two full components if and only if S is
a minimal separator.

Theorem 2.2 ([9]). A separator S is an inclusion minimal separator if and only if all
it’s associated components are full components.

S1

S2

S3

v

uw

t

Figure 2.2: S1 is parallel to S2 and S3. S2 crosses S3 because S2 is a vw-separator
(and S3 is a ut-separator).

An important relation among minimal separators is whether two separators are
parallel or crossing(Definition 2.2.6).

5

2. Preliminary

Definition 2.2.6. Two separators S and Z are said to be crossing or S♯Z if S is a
vu-separator where vu ∈ Z. Otherwise S and Z are said to be parallel or S ∥ Z.

It is not hard to prove that this relation is symmetric for minimal separators
[1, 31].
From the Definition 2.2.6 we will prove that clique separators have no crossing
separators.

Lemma 2.2.1 ([31]). A clique separator has no crossing separators.

Proof. Let S be a clique separator. Let Z for the sake of contradiction be a separator
such that Z♯S. That means that there exists vu ∈ S such that Z is a vu-separator.
But this is a contradiction because S is a clique and therefore {v,u} ∈ E(G).

Lemma 2.2.2. Given two minimal separators S and Z where S ∥ Z, there exists an
associated component C ∈ C (S) of S such that Z ⊆C∪S.

Proof. For the sake of contradiction, let us assume there is no C ∈ C (S) such that
Z ⊆C∪S. That means that there are two associated components Cv,Cu ∈ C (S) where
vu ∈ Z and v ∈Cv and u ∈Cu. That means that S is a uv-separator and S♯Z, which is
a contradiction.

2.3 Minimal Separators With Special Properties
Here we will describe some of the minimal separators that are important in the field
of optimal triangulation.

2.3.1 Minimal Clique Separator
Minimal clique separators, as their name implies, are minimal separators which
are cliques. Many NP-Hard problems can be solved with a divide and conquer
approach, where the graph is decomposed around the minimal clique separators, a
solution is found per atom of the decomposition and a solution is merged between
the atoms. Some of the problems that can be solved with this scheme are graph
coloring, maximum clique, maximum independent set, treewidth and minimum fill-
in. Refer to [5] for an historical and theoretical background about minimal clique
separators.

2.3.2 Minimal Separator of Size at Most k

Tamaki in [36, 35] proposes an algorithm for determining whether tw(G)≤ k which
requires only the minimal separators of G of size at most k.

Furthermore, certain algorithms[23, 41] for solving the treedepth problem require
the set of small minimal separators. It has been later proven in [40] that only
the minimal separators of size |S| ≤ 2tw(G) are required for solving the treedepth
problem.

6

2.3. Minimal Separators With Special Properties

Minimal separators of size at most k are commonly enumerated [35, 22] with an
algorithm that in the literature is referred to as Takata’s recurrence[34]. Takata’s
recurrance[34] is a recursive formulation of the set of minimal vu-separators of G.
Let ∆vu(G,C,X) be the set of minimal vu-separators S of G such that S∩C = /0 and
S ⊇ X . Takada’s recurrence search tree has as root node ∆vu(G,{v}, /0) and as leaf
nodes ∆vu(G,C,N(C)) = {N(C)}. The recursive formulation of Takada’s recurrence is
∆vu(G,C,X) = ∆vu(G,C∪{w},X)∪∆vu(G,C,X ∪{w}) for w ∈ N(C) where intuitively,
∆vu(G,C∪{w},S) is the set of all minimal vu-separators which do not contain w and
the set ∆vu(G,C,X ∪{w}) is the set of all minimal vu-separators which do contain w.

Given a graph G, an algorithm for finding whether the treewidth of G is at most
k is to find a minimal triangulation H of G such that the maximum clique of H is
at most k+1 and the minimal separators of H are at most k [36, 35]. To find such
minimal triangulation only the enumeration minimal separators of G which sizes are
at most k are required. Tamaki in [35] proposes the the use of Takata’s recurrence to
enumerate all minimal separators of size at most k by pruning branches ∆vu(G,C,X)
where |X |> k.

2.3.3 Minimal Almost-Clique Separators

Bodlaender and Koster [9] define a safe separator S as a separator such that tw(G) =
tw(G+ clique(S)). The authors prove categories of separators as being safe separa-
tors, one of them being inclusion minimal almost-clique separator. An almost-clique
S is a vertex set for which there exists a vertex v ∈ S for which S \ {v} is a clique.
Figure 2.3 gives an example of a inclusion minimal almost-clique separator saturated
into a clique without modifying its treewidth.

Tamaki in [37] proves that also minimal almost-clique separators are safe sep-
arators. Furthermore Tamaki proposes a method for enumeration of all minimal
almost-clique separators in time O(n2m). Such method of enumeration of all almost-
clique minimal separators is reproduced in Algorithm 1. Furthermore Tamaki uses
this method to enumerating a pairwise parallel minimal separators that are safe in
G. He achieves that using the set of all almost-clique minimal separators to generate
a set of pairwise parallel minimal almost-clique separators reproduced in Algorithm
2 and saturating those separators in G and repeating until G is unchanged similarly
in Algorithm 3. Multiple query of pairwise parallel minimal almost-clique separa-
tors in Algorithm 3 are necessary as the saturation of a minimal separator might
generate other minimal almost-clique separators.

2.3.4 Minimal Triangulation

Minimal triangulation has a tight theoretical relation with minimal separators.
Many minimal triangulation algorithms require enumeration of minimal separators
and many minimal separator enumeration algorithms require a minimal triangula-
tion of a graph.

7

2. Preliminary

Algorithm 1 Enumerate All Minimal Almost-Clique Separators in G
Input: Graph G
Output: Set of All Minimal Almost-Clique Separators in G

1: procedure EnumerateAllAlmostCliqueSeparators(G)
2: ∆← /0
3: for all v ∈V (G) do
4: ∆′←MinimalCliqueSeparators(G[V (G)\{v}])
5: for all S ∈ ∆′ do
6: if S∪{v} is a minimal separator of G then
7: ∆← ∆∪{S∪{v}}
8: end if
9: end for

10: end for
11: return ∆
12: end procedure

Algorithm 2 Enumerate Pairwise Parallel Minimal Almost-Clique Separators in G
Input: Graph G
Output: Set of Pairwise Parallel Minimal Almost-Clique Separators in G

1: procedure PairwiseParallelAlmostCliqueSeparators(G)
2: ∆′← EnumerateAllAlmostCliqueSeparators(G)
3: ∆← /0
4: for all S ∈ ∆′ do
5: if S does not cross any separator in ∆ then
6: ∆← ∆∪{S}
7: end if
8: end for
9: return ∆

10: end procedure

Algorithm 3 Minimal Almost-Clique Separator Based Preprocessing
Input: Graph G
Output: Preprocessed G

1: procedure Preprocess(G)
2: repeat
3: ∆← PairwiseParallelAlmostCliqueSeparators(G)
4: for S ∈ ∆ do
5: G← G+ clique(S)
6: end for
7: until G is unchanged
8: return G
9: end procedure

8

2.4. Triangulation

S

1

2

34

5

1

2

34

5

Figure 2.3: S = {1,3,4} is an inclusion minimal almost-clique separator of G. S is
an almost clique separator because S because S\{1} is a clique. S can be saturated
without changing the treewidth of G

In this section we will give the definition and theoretical background of triangu-
lation and minimal triangulation and highlight how minimal separators are used to
find a minimal triangulation and how minimal triangulations are used to enumerate
minimal separators.

2.4 Triangulation
Before we can explain what a triangulation is, we have to define what a chordal
graph is. While there are many ways to define a chordal graph, we will use the
definition in Theorem 2.3.

Theorem 2.3 ([15]). A graph G is chordal if and only if every minimal separator of
G is a clique.

A triangulation of a graph G is a super graph H with V (H) =V (G) and E(H)⊇
E(G) such that H is chordal. Minimal triangulation H of a graph G is a triangulation
of G such that there is no triangulation H ′ of G such that E(H ′)⊊ E(H).

Figure 2.4: (far left) An arbitrary graph G. (middle left) Set of pairwise parallel
minimal separators S of G. (middle right) A minimal triangulation G by saturating
S ∈ S into a clique. (far right) A non-minimal triangulation of G.

9

2. Preliminary

2.4.1 Obtaining a Triangulation by Elimination Ordering

Elimination ordering is a problem which historically originates in the field of sparse
matrix factorization. A method of factorization of sparse symmetric matrices is
Gaussian elimination, where the pivoting of every rows and columns is iterativelly
done which during the process sometimes the replacement of a previously zero entry
with a non-zero entry is required. The entries that previously were zero and are
replaced by a non-zero value are called fill-in. The appearance of fill-in values during
Gaussian elimination comes with the negative effects of greater space requirements
for the representation of the sparse matrix and greater computational burden for the
following iterations of the Gaussian elimination. It was soon discovered that a good
order of the pivoting of the rows and columns reduces the numbers of fill-ins. Parter
in [32] introduced the idea of Elimination Game (EG) which, with the representation
of a n×n symmetric sparse matrix A as a graph G with n vertices, where the vertices
i j ∈ {1,2, ...,n} are adjacent if Ai j is non-zero, simulates the appearance of fill-in
values after each pivot in A, by simulating the pivoting of the ith row and column
in A by saturating the neighbors of the vertex i into a clique with what we will call
fill-in edges before eliminating the vertex i from the graph G. The pseudo code of
the EG can be found in Algorithm 4.

Algorithm 4 Elimination Game
Input: Graph G and vertex ordering σ
Output: Fill-in edges from the vertex ordering σ

1: procedure EliminationGame(G, σ)
2: F ← /0 ▷ Set of fill-in edges
3: G0← G
4: i← 1
5: for all v = σi do
6: Fi← /0
7: for all uw ∈ NGi−1(v) where {u,w} ̸∈ E(Gi−1) do
8: Fi← Fi∪{{u,w}}
9: end for

10: F ← F ∪Fi

11: V (Gi)←V (Gi−1)\ v
12: E(Gi)← E(Gi−1)∪Fi \{{v,u} | u ∈ NGi−1(v)} ▷ Remove edges adjacent to

v and add fill-in edges
13: i← i+1
14: end for
15: return F
16: end procedure

Given an arbitrary graph G and an arbitrary elimination ordering of V (G), we
will represent by G+

α the graph G with the additional fill-in edges resulting from
applying the EG with the α elimination ordering. In light of [17] a graph G and an

10

2.4. Triangulation

elimination ordering α, G+
α is a chordal graph. Therefore, an arbitrary elimination

ordering α can be used to obtain a triangulation G+
α of G while in practice the use

of heuristic elimination ordering is used to obtain triangulations with low minimum
fill-in or treewidth. For example, Minimum Degree (MD) ordering is a common
heuristic elimination ordering for the minimum fill-in problem [19] and Minimum
Average Fill (MAF) [29][37] is an effective elimination ordering for treewidth.

It is important to note that not every triangulation obtained by an arbitrary
elimination ordering yields a minimal triangulation. An example of elimination
ordering which yields a non-minimal triangulation can be observed in Figure 2.5. For
the problem of finding an elimination ordering which yields a minimal triangulation,
the Maximum Cardinality Search for Minimal Triangulation (MCS-M) [3] is an easy
and effective algorithm for finding minimal triangulation in time O(nm) while only
a restricted family of minimal triangulations can be obtained.

1

32

1

32

Figure 2.5: An example of elimination ordering which yields a non-minimal trian-
gulation. The left graph G is already a chordal graph, therefore, the only minimal
triangulation of G is G itself, but an edge has been added with this elimination
ordering.

2.4.2 Perfect Elimination Ordering

Given a graph G, a perfect elimination ordering is an elimination ordering of G which
does not yield fill-in edges. A definition of chordal graph is a graph which has a
perfect elimination ordering.

Theorem 2.4 ([17]). A graph G is a chordal graph if and only if G has a perfect
elimination ordering.

It is not hard to observe that given G+
α , α is a perfect elimination ordering of

G+
α .

Given a chordal graph G a method of finding its perfect elimination ordering
is an algorithm commonly referred to as Maximum Cardinality Search (MCS)[39]
which runs at O(n+m) time.

It is easy to observe that given a minimal triangulation H of G and the perfect
elimination ordering α of H, H = G+

α . This is because if there is a fill-in edge e such
that e ∈ E(G+

α) and e ̸∈ E(H) then α is not a perfect elimination ordering of H as e

11

2. Preliminary

would be one of its fill-in and if E(G+
α)⊊ E(H) then H is not a minimal triangulation

of G.

2.4.3 Problems Defined as an Optimal Triangulation Problem
The problem of optimal triangulation is, given a graph G, finding a minimal trian-
gulation H of G such that a certain objective is minimized.

The treewidth of a graph G can be expressed as a function of all its minimal
triangulations. Let Tr(G) be the set of all the minimal triangulations of G and let
MC(H) be the set of maximal cliques of H. To note that MC(H) can be computed
O(nm) time for chordal graphs[2]. Then the treewidth of G is defined as:

Theorem 2.5 ([7]). tw(G) = min
H∈Tr(G)

max
W∈MC(H)

|W |−1

Therefore, the problem of treewidth can be formulated as an optimal trian-
gulation problem of finding the the minimal triangulation H ∈ Tr(G) of minimum
maximum clique.

While the problem of minimum fill-in was originally the problem of finding an
elimination ordering with the minimum number of fill-ins, given the fact that the
minimum fill-in elimination ordering must yield a minimal triangulation H of G with
number of fill-ins equal to |E(H)| − |E(G)| and given that the perfect elimination
ordering of H is the elimination ordering of G that would yield H, the problem of
finding an elimination ordering with minimum number of fill-ins is equivalent as
finding a minimal triangulation H of G such that |E(H)|− |E(G)| is minimum.

Theorem 2.6 ([42]). m f i(G) = min
H∈Tr(G)

|E(H)|− |E(G)|

Therefore, the problem of minimum fill-in can be formulated as finding the min-
imal triangulation H of G such that |E(H)| is minimized. Once such H is found,
the perfect elimination ordering of H is the elimination ordering which yields the
minimum number of fill-ins in G.

For additional information regarding the treewidth and minimum fill-in problem
formulated as minimal triangulation problems, refer to [11].

Other problems that can be formulated as optimal triangulation problems are
generalized hypertreewidth[20], fractional hypertreewidth[28], phylogenetic trees identification[10],
treelength[16]. For additional information about problems that can be formulated
as optimal triangulation problem refer to [8, 18, 25].

2.4.4 Minimal Triangulation Sandwich Problem
The minimal triangulation sandwich problem is, given a graph G and an elimination
ordering α, finding a minimal triangulation H of G such that E(G)⊆ E(H)⊆ E(G+

α).
One of the reason why finding H is desirable, is that minimal triangulations have
lower or equal objectives in many optimal triangulation problems compared to their

12

2.4. Triangulation

non-minimal triangulation counterpart. This would allow use of a heuristic elimi-
nation ordering α to get a triangulation G+

α of low objective and finding a subgraph
H which is a minimal triangulation of G which will have a equal or lower objective
compared to G+

α .
This approach was introduced by Blair in [6] to further improve heuristic elimi-

nation orderings for the minimum fill-in problem.
Berry et al. in [4] developed the algorithm Minimal Minimum Degree (MMD) for

obtaining a minimal triangulation which is a subgraph of the triangulation obtained
from MD ordering. MMD has the advantage of giving empirically low minimum
fill-in and guaranteeing a minimal triangulation with fill-in lower or equal to its MD
counterpart.

The same approach was applied by Tamaki in [37] to obtain the algorithm Mini-
mal Minimum Average Fill (MMAF) from the MAF algorithm for the heuristic com-
putation of minimal triangulation with low treewidth. Similarly to MMD, MMAF
guarantees a minimal triangulation with treewidth equal or lower to its MAF coun-
terpart.

2.4.5 Minimal Triangulation and Minimal Separator

Parra and Scheffler in [31] proves a 1-to-1 correspondence between a maximal set of
pairwise parallel minimal separators S of G and its minimal triangulation H. The
author proves that given a minimal triangulation H of G, the minimal separators H
are minimal separators of G, or in other words, ∆(H)⊆ ∆(G) and ∆(H) is a maximal
set of pairwise parallel minimal separators of G. In the same manner, given a
maximal set of pairwise parallel minimal separators S , saturation of each minimal
separator S ∈ S into a clique yields a minimal triangulation H of G where ∆(H) = S .

Many minimal separator enumeration algorithms use this property to find a set
of pairwise parallel set of minimal separators from a graph G. In the same manner
many minimal triangulation algorithm use a set of minimal separators to find a
desirable minimal triangulation.

In the following sections we will explain what are some of the algorithms for the
enumeration of minimal separators from a minimal triangulation and some minimal
triangulation algorithms based on minimal separators.

2.4.6 Enumeration of Minimal Separators from a Minimal Triangulation

In the previous chapter, we discussed how to obtain a minimal triangulation of a
graph, such as MCS-M, MMD and MMAF. Here, we will discuss, given a minimal
triangulation H how to obtain its minimal separators and some of its main applica-
tions.

As we stated at the start of Section 2.4.5, Parra and Scheffler in [31] demonstrated
the 1-to-1 correspondence between a maximal set of parallel minimal separators
S ⊆ ∆(G) and a minimal triangulation H of G. More specifically, we are interested
in the following property:

13

2. Preliminary

Theorem 2.7 ([31]). Given a graph G and a minimal triangulation H of G, ∆(H) is
a maximal set of pairwise parallel minimal separators of G.

This has some interesting uses, for example for the enumeration of minimal clique
separators. Because of Lemma 2.2.1 we know that any maximal set of pairwise paral-
lel minimal separators of a graph G must contain all of the minimal clique separator
of G. This is the approach used by Leimer in [26] which is a further development of
the method by Tarjan in [38] to enumerate all minimal clique separators of a graph.
The algorithm uses an elimination ordering α which yields a minimal triangula-
tion, oftentimes obtained with MCS-M to consequently enumerate all the minimal
separators of G+

α and filter out all the minimal separators that are not cliques.
Another use of minimal triangulation for the enumeration of minimal separators

is by Tamaki in [37] where he uses the minimal triangulation H of G obtained by
MMAF to heuristically enumerate minimal almost-clique separators.

A common algorithm to enumeration all the minimal separator of a chordal
graph is [13] and has O(n+m) runtime.

2.4.7 Minimal Triangulation from a Set of Minimal Separators

As Parra and Scheffler proved in [31], given a maximal set of pairwise parallel mini-
mal separators S of G, the graph H, obtained by saturating every S ∈ S from G into
a clique, H is a minimal triangulation of G or more formally:

Theorem 2.8 ([31]). Let S ⊆ ∆(G) a maximal set of pairwise parallel minimal sepa-
rators of the graph G. Let the graph H be the graph obtained by saturating every
S ∈ S in G into a clique. H is a minimal triangulation of G and ∆(H) = S .

This also has implications on the upper bound of the cardinality of any maximal
set of pairwise parallel minimal separators. Let us introduce the following property
on the number of minimal separators in a chordal graph.

Theorem 2.9 ([13]). Given a chordal graph H, |∆(H)| ≤ |V (H)|−1.

Or in other words, a chordal graph has at most n−1 minimal separators. This
naturally provides an upper bound on any maximal set of pairwise parallel minimal
separators S ⊆ ∆(G). To the best of our knowledge this is a novel result.

Lemma 2.9.1. Given a set of pairwise parallel minimal separators S ⊆ ∆(G) of G,
|S | ≤ |V (G)|−1.

Proof. For the sake of contradiction let |S |> |V (G)|−1. Let S ∗ be a maximal set of
pairwise parallel minimal separator such that S ∗ ⊇ S . By Theorem 2.8 the minimal
triangulation H obtained by saturating S ∈ S ∗ would have minimal separators S ∗ =
∆(H)> |V (H)|−1 which would contradict Theorem 2.9.

14

2.4. Triangulation

Furthermore, the Bouchitté-Todinca algorithm for finding optimal triangulation
[11], Tamaki’s algorithm for solving treewidth [35] and Carmeli et al. algorithm for
enumerating minimal triangulations [12] all rely on Theorem 2.8 to obtain a minimal
triangulation from a given list of minimal separators. For the sake of conciseness,
we will only give a rough explanation of the minimal triangulation enumeration
algorithm by [12].

The authors in [12] define what is referred as a separator graph G of a graph
G where V (G) = ∆(G) and for S,Z ∈ ∆(G), {S,Z} ∈ E(G) if and only if S♯Z. Or in
other words, each vertex of G is represented by a minimal separator of G, and two
minimal separators S,Z ∈ V (G) are adjacent in G if and only if S crosses Z. Once
G is represented, any maximal independent set of G corresponds to a maximal set
of pairwise parallel minimal separators of G which also corresponds to a unique
minimal triangulation of G. Therefore, the authors employ a maximal independent
set enumeration algorithm on G to enumerate the minimal triangulations of G. In
Figure 2.6 there is an example of a graph G, its separator graph G , two maximal
independent sets of G and its corresponding minimal triangulations of G.

1

2

3

45

{1,3}

{1,4}

{2,4} {2,5}

{3,5}

1

2

3

45

1

2

3

45

{1,3}

{1,4}

{2,4} {2,5}

{3,5}

{1,3}

{1,4}

{2,4} {2,5}

{3,5}

G G

G

G

Figure 2.6: G is a graph with its minimal separator circled. G , the separa-
tor graph of G, has as vertices the minimal separators of G, therefore, V (G) =
{{1,3},{1,4},{2,4},{2,5},{3,5}} and edges {1,3}− {2,5}, {2,5}− {1,4}, {1,4}−
{3,5}, {3,5}− {2,4}, {2,4}− {1,3}, because {1,3}♯{2,5}, {1,3}♯{2,5} and so on.
Each maximal independent set of G represents a minimal triangulation of G.

2.4.8 State of the Art Algorithms and Minimal Separators Enumeration
Bottleneck

The current state of the art algorithms for the treewidth and minimum fill-in prob-
lems is currently the Bouchitté and Todinca’s algorithm[11] often referred to as the

15

2. Preliminary

Treewidth

Minimum Fill-In

Generalized Hypertreewidth

Perfect Phylogeny

Figure 2.7: The execution of the BT algorithm presented by Korhonen in [25]. The
majority of the memout and timeout happens during the enumeration of minimal
separators, represented in the graphic as ”ms-enum”

BT algorithm in the literature. Both the winners of the treewidth and the minimum
fill-in challenge in the PACE 2017 challenge [14] use a modified version of the BT
algorithm.

The BT algorithm requires the enumeration of all minimal separators of a graph
and this has been shown to be a bottleneck.

In his master thesis [24], Korhonen reports runtime of the BT algorithm in many
optimal triangulation problems. From the data presented by Korhonen and shown in
Figure 2.7, the majority of execution timeout and memout happens in the minimal
separator enumeration phase of BT.

It can be also inferred from the research direction for many optimal triangulation
papers that the enumeration of minimal separators step is the most likely to allow
speedups. Tamaki’s approach in speeding up the treewidth problem is by enumer-
ating only separators of size k or using a heuristic non-exhaustive set of minimal
separators [35]. Kanig in [21] proposes a method of enumerating minimal separators
in order of cardinality to speed up the treewidth problem even though her paper
was conclusively wrong. Korhonen in [22] proposes a method that is fixed parame-
ter tractable for the enumeration of minimal separators of size at most k with the
possible application of speeding up the treewidth problem.

16

Chapter 3

Transformation

Here we will introduce the concept of transformation. A transformation in the
context of this paper is a function which, given a graph G and its set of minimal
separators ∆(G), applies a controlled transformation to G into G′ and outputs its set
of minimal separators ∆(G′).

We then show that the concept of transformation can be used to architect algo-
rithms for the enumeration of minimal separators. This concept of controlled graph
modification for the enumeration of minimal separators has been explored by Kenig
in [21] even though conclusively the paper was not correct. The transformations
that are introduced are inclusion minimal clique separator decomposition, saturate
minimal separator, edge addition and minimal meta separator decomposition.

Before we introduce the concept of transformation we must prove few simple
lemmas.

Lemma 3.0.1. Given G, S ∈ ∆(G), C ∈ C (S) and vu ∈C∪S then S ∈ ∆(G+egde(v,u)).

Proof. Because vu ∈ C ∪ S, S is not a vu-separator. Therefore, there must exist
wk ∈V (G) such that S is a minimal wk-separator and therefore, two full components
Cw,Ck ∈ C (S) such that w ∈ Cw and k ∈ Ck. Let G′ = G+ edge(vu). Cw,Ck ∈ CG′(S)
therefore S ∈ ∆(G′).

3.1 Inclusion Minimal Clique Separator Decomposition
(IMCSD)

Minimal clique separator decomposition is a divide and conquer approach applied in
many NP-Complete problems as we already explained in section 2.3.1. We will prove
that given a graph G and an inclusion minimal clique separator S, the separators
of the induced subgraphs resulting from the decomposition around S exhaustively
contain the separators of G apart from S itself.

As a practical example let’s look at Figure 3.1. Let G, the graph on the left
and let S = {s, t} a minimal clique separator of G. G1 and G2 are the result of the
decomposition of G around the separator S as observed in the example. As we can

17

3. Transformation

observe from this example ∆(G) = ∆(G1)∪∆(G2)∪{S} and ∆(G1)∩∆(G2)∩{S}= /0.
While Leimer in [26] provides a similar property, our Theorem 3.1 is stricter as we
also prove that the sets of separators is strictly equal and disjoint.

G G1
G2s

t

Figure 3.1: The separators of G is equal to the combination of the separators of G1
and the separators of G2 and the separator {s, t}.

Theorem 3.1. Given an inclusion minimal clique separator S of G

∆(G) = {S}∪
∪

C∈C (S)

∆(G[S∪C])

where for {C1,C2, ...Cn} = C (S) the sets {S},∆(S∪C1]),∆(G[S∪C2]), ...,∆(G[S∪Cn])
are disjoint.

Proof. We will divide the proof into the following. (1) For any Z ∈ ∆(G) where
Z ̸= S there exists one and only one C ∈ C (S) such that Z ∈ ∆(G[S∪C]) (2) For any
Z ∈ ∆(G[S∪C]), Z ∈ ∆(G).

1. Lemma 2.2.1 implies Z ∥ S in the graph G. That means that there is an
associated component CS ∈ C (Z) such that S ⊆ Z∪CS and an associated CZ ∈
C (S) such that Z ⊆ S∪CZ. CZ is unique. The only way that CZ would not be
unique would be if Z ⊂ S but this is not possible as S is an inclusion minimal
separator.
If Z ⊃ S then Z must have the non full associated components CG(S)\CZ in G.
The associated components of Z in G[S∪CZ] are CG(Z)\(CG(S)\CZ) therefore Z
preserves its full components in G[S∪CZ] therefore Z is still a minimal separator
in G[S∪CZ].
If Z has two full components C1 and C2 where C1 ≠CS and C2 ̸=CS in G, Z is
also a minimal separator in G[S∪CZ] with the full components C1 and C2.

18

3.1. Inclusion Minimal Clique Separator Decomposition (IMCSD)

If Z has only two full components with CS being one then CS ∩ (CZ ∪ S) must
be a full component of Z in G[CZ ∪ S]. This is because if v ∈ Z neighbors a
vertex u ∈CS in G then either (case 1) u ∈CZ ∪S or (case 2) v ∈ S (by the fact
that S is a separator and there is no path between two associated components
that does not pass by S). So for any v ∈ Z (case 1) v neighbors a vertex in
CS ∩ (CZ ∪ S) because CS is a full component of Z or (case 2) v neighbors a
vertex in S\Z = S∩CS because S is a clique.

2. If G[S∪C] has a minimal separator Z, Z must have two vertices vu ∈ S∪C such
that Z is a minimal vu-separator in G[S∪C]. Z is still a minimal vu-separator
in G therefore Z ∈ ∆(G).

Theorem 3.1 has not only implications for inclusive minimal clique separators
but also minimal clique separators. This is because if a minimal clique separator S
is not an inclusive minimal clique separator then that means there exists a separator
Z⊂ S which is an inclusion minimal clique separator. If the transformation is applied
recursively to every subset minimal separator of S eventually we would get a graph
where S becomes inclusion minimal clique separator. Figure 3.2 demonstrates the
transformation applied to the separator {s, t} which is not initially inclusion minimal
separator.

s

t

t tt

s

s

t
tt

s

t

s

t
tt

Figure 3.2: {s} and {s, t} are both minimal clique separators in G. While {s, t}
is not an inclusion minimal separator we can apply the IMCSD transformation
by processing the transformation on {t} first to make {s, t} an inclusion minimal
separator. Further more we can apply the transformation to {s, t} consequently. If
we process {s, t} before {t}, then the minimal separator {t} is present twice in two
different atoms.

19

3. Transformation

3.2 Saturate Minimal Separator (SMS)
Here we demonstrate that the completion of a minimal separator S into a clique
removes all the separators in G which crosses S. While SMS is a common approach
of minimal triangulation of a graph [30, 11], we did not observe any proofs that shows
the relation of the minimal separators of the graph before and after the SMS step.
While Parra and Scheffler prove in [30] the separators of a graph after saturating a
maximal set of pairwise parallel separators, our proof is more general as it show the
relation of the minimal separators of a graph before and after saturating a single
minimal separator.

In Figure 3.3 there is an example of what happens to the separators of G once a
separator is saturated into a clique.

G G′

1

2

3

45

1

2

3

45

Figure 3.3: The separators of G and of G′ = G+clique({1,3}) where only separators
parallel to {1,3} remain. {2,5}, {2,4} ̸∈ ∆(G′) because {2,5}♯{1,3} and {2,3}♯{1,3}.

Theorem 3.2. Given a minimal separator S of G,

G′ = G+ clique(S)

∆(G′) = {Z | Z ∥ S | Z ∈ ∆(G)}

Proof. We will split the proof into three parts: (1) Given a minimal separator Z ∈
∆(G), if Z ∥ S then Z ∈ ∆(G′), (2) Given a separator Z ∈ ∆(G), if Z♯S then Z ̸∈ ∆(G′),
(3) For any Z ∈ ∆(G′), Z ∈ ∆(G) or in other words ∆(G′)⊆ ∆(G) .

1. Because Z ∥ S there must exist a component CS ∈ CG(Z) such that S ⊆CS∪Z.
Addition of edges in CS ∪ Z does not change the fact that Z is a minimal
separator due to Lemma 3.0.1.

20

3.3. Edge Addition

2. Because S♯Z there must exist two vertices vu ∈ Z such that S is a vu-separator
in G. S must be a vu-separator also in G′. For the sake of contradiction let us
assume that Z ∈ ∆(G′). That means that S♯Z which contradicts Lemma 2.2.1.

3. S ∥ Z in G′ due to Lemma 2.2.1. That means that there must be an associated
component CS ∈ CG(Z) such that S ⊆ (CS∪Z). Let C be a full component of S
for which C∩Z = /0. Note that C ⊆CS as there is no path to a vertex u ̸∈CS

which does not have a vertex in Z.

If CS is not a full component of Z then Z has at least two full components in
both G′ and G.

If CS is one of the two full components of Z in G′ then Z ∈ ∆(G) if and only
if CS is a full component of Z in G. This is only possible if CS is a connected
component and N(CS) = Z in G.

The only way that N(CS) = Z holds in G′ but does not hold in G is if there
are two vertices v ∈ Z and u ∈ CS for which {v,u} ∈ E(G′) and {v,u} ̸∈ E(G′)
which only holds if vu ∈ S. But S has a full component C ⊆CS which means
that v must still neighbors a vertex in CS if v ∈ S as v ∈C ⊆CS. This means
that Z = N(CS) also in G.

The only way that CS is not a connected component in G is if vertices in S are
in separate connected components of CS as edges were removed only among
vertices in S going from G′ to G. But because S has a full component C where
C ⊆CS for which N(C) = S and C is a connected component, S must be within
the same connected component in G which is a contradiction.

3.3 Edge Addition

To describe this transformation we will need to define certain constructs first.
Let ∆vu(G) be the set of minimal vu-separators in G. Let Γvu(G) be the set

of minimal vu-separators which has only two full components. Obviously, because
S ∈ Γvu(G) is a minimal vu-separator and has only two full components there exists
only two full components Cv,Cu ∈ CG(S) where v ∈Cv and u ∈Cu.

Given two parallel vu-separators S and Z let PvuG(S,Z) =CZ∩CS where CZ ∈ CG(S)
with Z ⊆CZ ∪S and CS ∈ CG(Z) with S⊆CS∪Z. Given a vu-separator and the vertex
w where either w = v or w = u let PvuG(S,{w}) = Cw \ {w} where Cw ∈ CG(S) with
w ∈Cw.

Given a vertex set C such that C ⊆V (G) let CompG(C) be the sets of connected
components of the induced subgraph G[C].

21

3. Transformation

Theorem 3.3. Given v,u ∈V (G) where {v,u} ̸∈ E(G) and v ̸= u.

G′ = G+ edge(v,u)

Π
∆(G′) = (∆(G)\Γvu(G))

∪{S∪Z | S ∥ Z∧∃C∈CompG(PvuG(S,Z))N(C) = S∪Z | S,Z ∈ ∆vu(G)}
∪{S∪{v}|∃C∈CompG(PvuG(S,{v}))N(C) = S∪{v} | S ∈ ∆vu(G)}
∪{S∪{u}|∃C∈CompG(PvuG(S,{u}))N(C) = S∪{u} | S ∈ ∆vu(G)}

Proof. We will divide the proof into the following parts: (1) S ̸∈ ∆(G′) where S ∈
Γvu(G), (2) S∈∆(G′) where S∈∆(G) and S ̸∈ Γvu(G), (3) S∪Z ∈∆(G′) where S ∥ Z and
there exists a C ∈CompG(PvuG(S,Z)) where N(C) = (S∪Z). (4) S∪{v} ∈ ∆(G′) where
there exists a C ∈CompG(PvuG(S{v})) where N(C) = (S∪{v}) (5) Given S ∈ ∆(G′), S
is derived by one of the above cases.

1. S is not a minimal separator in G′ because it has the only full component
Cv∪Cu in G′ where Cv,Cu ∈ CG(S) and v ∈Cv and u ∈Cu.

2. If S ̸∈ Γvu(G) then either S has more than two full components in G in which
case S will have at least two full components in G′, or S has at least one full
component not containing either v or u in G, which means that S will still be
a minimal separator in G′

3. Given Cv,Cu ∈ CG(S) and C′v,C
′
u ∈ CG(Z) where v ∈ Cv, v ∈ C′v, u ∈ Cu, u ∈ C′u,

S∪Z has the full component C and either Cv∪C′u or Cu∪C′v in the graph G′.

4. S∪{v} must have the full components C and Cu ∈ CG(S) where u ∈Cu in G′.

5. If there exists C ∈ C (S) where vu ∈C then:

• If C is not a full component of S in G′ then S must have the same full
components in G which means S ∈ ∆(G), S ̸∈ ∆vu(G), S ̸∈ Γvu(G).

• If C is a full component of S in G′ and C is a connected component then
C must be still a full component in G which means S ∈ ∆(G), S ̸∈ ∆vu(G),
S ̸∈ Γvu(G).

• If C is a full component of S in G′ and C is not a connected component in G
then there must exist two connected components C1 and C2 in the induced
subgraph G[C] where v ∈C1, u ∈C2, S = N(C1)∪N(C2) and N(C1),N(C2) ∈
∆vu(G)

Otherwise, C ∈ CG′(S) where v ∈C and u ∈ S.

• If u neighbors a vertex other than v in C then S must be a minimal
separator in G as S retains its minimal separators therefore S ̸∈ Γvu(G).

22

3.4. Minimal Meta Separator Decomposition (MMSD)

• If u neighbors only v in C then C is not a full component in G′. This
means that N(C \{u}) is a minimal separator in G.

An example of this operation can be seen in Figure 3.4.

v
u

S1 S2

Figure 3.4: Let G be the graph without the edge {v,u} and the G′ be the graph
with the edge {v,u}. S1 and S2 are two parallel minimal separators of G. G′ has
the minimal separators {v}∪ S2, {u}∪ S1 and S1 ∪ S2 resulting from the separators
S1 and S2.

3.4 Minimal Meta Separator Decomposition (MMSD)
We introduce the idea of minimal meta separator. A minimal separator S is meta if
and only if for all v ∈ S, |N(v)∩S| ≥ |S|−2.

Definition 3.4.1. A minimal separator S is meta if and only if for all vertices v ∈ S,
|N(v)∩S| ≥ |S|−2.

We consider minimal meta separators interesting in the field of minimal trian-
gulation, as every crossing separator Z must contain for uv ∈ S, Z ⊆ S \{v,u}. This
is because for any two non-adjacent vertices in vu ∈ S a minimal vu-separator Z
(therefore crossing S) must contain N(v)∩N(u).

23

3. Transformation

Lemma 3.3.1. Given a minimal meta separator S every crossing minimal separator
Z where Z is a minimal vu-separator for vu ∈ S, Z must contain S\{v,u}.

Proof. Let Z be a crossing separator of S. This means that there exists vu ∈ S
such that Z is a minimal vu-separator. Any vu-separator must contain N(v)∩N(u),
therefore Z ⊇ N(v)∩N(u). Because S is meta either |N(v)∩S|= |S|−1 or |N(v)∩S|=
|S|−2. If |N(v)∩S|= |S|−1 this would be a contradiction as v would have to neighbor
u and there cannot be any vu-separators. Therefore, |N(v)∩S|= |S|−2 and because
v does not neighbor u, N(v)∩ S = N(u)∩ S = N(u)∩N(v)∩ S = S \ {v,u}. Therefore
Z ⊇ N(u)∩N(v)⊇ S\{v,u}

Corollary 3.3.1. If a graph G has a minimal meta separator S then tw(G)≥ |S|.

Proof. Any crossing minimal separator Z of S must contain at least |S|−2 vertices
in S because of Lemma 3.3.1 and 2 outside S because S is a minimal vu-separator for
vu ∈ Z,vu ̸∈ S. This means for any crossing separator Z of S, |Z| ≥ |S|. Any minimal
triangulation H of G, H must either have S or one of its crossing separator in G as
a clique. This means that a maximal clique of H has at least size |S|+1. Therefore
tw(G)≥ |S|.

Corollary 3.3.2. If a graph G has a minimal meta separator S then the minimum
fill-in of G is at least F(S).

Proof. If S is filled then the fill of G is at least F(S). If a crossing minimal vu-
separator Z of S is filled where vu ∈ S then the fill of G is at least F(S \ {v,u})+
F({v,u}), which because N(v)∩S = N(u)∩S = S\{v,u} equals F(S).

Corollary 3.3.3. Given a graph G, a minimal meta separator S and two non adjacent
vertices vu∈ S of G, ∆vu(G) = {

∪
i Zi |Z1 ∈ ∆vu(G[C1∪S]) and Z2 ∈ ∆vu(G[C2∪S])...Zk ∈

∆vu(G[Ck∪S])} where Ci ∈ C (S).

Proof. For any separator in Z ∈ ∆(Gvu[S∪C]) where C ∈ CG(S), Z ⊇ N(v)∩N(u) ⊇
S\{v,u} must hold because Z♯S. Let {C1,C2,C3...Cn}= CG(S). Let Ki

v and Ki
u be the

associated component of Zi ∈ ∆vu(G[Ci∪S]) such that v ∈ Ki
u and u ∈ Ki

u. Ki
v and Ki

u
must be a full components of Zi in G[Ci ∪ S] because Zi is a minimal vu-separator.
This means Zi = N(Ki

v). Given two arbitrary separator Zi and Z j, Zi∩Z j = S\{v,u}.
Z ∈ ∆vu(G) where Z =

∪
i∈{1...n}Zi with full components Ku =

∪
i∈{1...n}Ki

v and Ku =∪
i∈{1...n}Ki

u.
For any minimal separator Z ∈ ∆vu(G) with the associated components Cv,Cu ∈

C (Z) where v ∈Cv and u ∈Cu. Z∩ (C∩S) must be a minimal vu-separator in G[C∪S]
with associated full components Cv∩ (C∩S) and Cu∩ (C∩S).

An example of Corollary 3.3.3 is showcased in Figure 3.5.
All the minimal separators generated by Corollary 3.3.3 applied to S are crossing

separators of S. This is because we are enumerating the minimal vu-separators where
vu∈ S. If we want to enumerate all the separators of G, we can use Corollary 3.3.3 to
enumerate all the crossing minimal separators of S and use the SMS transformation

24

3.4. Minimal Meta Separator Decomposition (MMSD)

v u

u

u

u

v

v

v

G
G1

G2

G3

Figure 3.5: S = {v,u} is a minimal meta separator of G. This means the ∆vu(G) =
{ S1∪S2∪S3 | S1 ∈ ∆vu(G1) and S2 ∈ ∆vu(G2) and S3 ∈ ∆vu(G3)}.

to enumerate all the separators parallel to S. We can further decompose the graph
by applying IMCSD to S, while ensuring beforehand that S is made into an inclusion
minimal separator. An example of this can be seen in Figure 3.6

25

3. Transformation

v

1
2

3

4

1

2

3

4

5

6

7

8

u
s t

u

t

5

6

7

8

v u

s t

v
s

1

2

3

4

u

t

5

6

7

8

v u
s t

v
s

G G2

G1

G3

G4

Figure 3.6: S = {v,u,s, t} is a minimal meta separator of G. The crossing separators
of S in G are ∆♯S(G) = {S1 ∪ S2 | S1 ∈ ∆vt(G1) and S2 ∈ ∆vt(G2)} ∪ {S1 ∪ S2 | S1 ∈
∆su(G1) and S2 ∈ ∆su(G2)}. The parallel separator of S in G are ∆∥S(G) = ∆(G3)∪
∆(G4). Therefore, all the minimal separators of G are ∆(G) = {S}∪∆♯S(G)∪∆∥S(G)

26

Chapter 4

Enumeration of Minimal Separators
With Special Properties

4.1 Number of Atoms After Decomposition By A Set of
Pairwise Parallel Separators

Many of the algorithms for the enumeration of minimal separators will heavily rely
on a step of SMS and a consequent IMCSD step. We will prove that at any step of
repeated application of SMS and a consecutive IMCSD step, the number of atoms
is at most V (G). One of the properties that we will be using to prove such is that
the number of maximal cliques in a chordal graph H is at most V (H). While we
could not find a source that explicitly proves such, Berry in [2] presents an algorithm
which exhaustively enumerates the maximal cliques of H which enumerates an upper
bound of n maximal cliques in any given chordal graph.

Lemma 4.0.1 ([2]). The number of maximal cliques in a chordal graph H is at most
V (H).

One of the consequences of the paper [11] is that in a chordal graph, any maximal
clique Ω is a strict superset of its containing minimal separators S, or in other words,
S ⊊ Ω.

Lemma 4.0.2 ([11]). Given a maximal clique Ω of a chordal graph H, There is no
minimal separator S ∈ ∆(H) for which Ω⊆ S.

Lemma 4.0.3 ([11]). Given a chordal graph H, a maximal clique Ω of H and a
minimal separator S of H, there is an unique associated component C ∈ C (S) for
which Ω⊆C∪S

Theorem 4.1. Given a set of minimal clique separators S of G such that S is either
inclusion minimal clique separator or every subset minimal separator is in S , iter-
ativelly applying IMCSD on S ∈ S in order of cardinality produces at most V (G)
atoms.

27

4. Enumeration of Minimal Separators With Special Properties

Proof. Let A be the set of atoms. Let S ∗ be an arbitrary maximal set of pairwise
parallel minimal separators of G such that S ∗ ⊇ S . Let H be the minimal triangu-
lation obtained from S ∗ described in the process of Theorem 2.8. For each maximal
clique Ω of H there must exist uniquely an atom A ∈ A such that Ω⊆ A because of
Lemma 4.0.3. Therefore A must have at most V (G) elements.

By proving Theorem 4.1, we show that iteratively applying IMCSD with the
set of minimal clique separators in order of cardinality can be done with a runtime
complexity of at most O(nm).

4.2 Minimal Separator Enumeration Preprocessing
As we saw from Theorem 3.1 and the IMCSD transformation, the decomposition
around an inclusion minimal clique separator does not change the minimal separa-
tors of a graph. We can use this fact to preprocess a graph G into smaller atoms
which minimal separators can be enumerated independently to eventually get the
separators of G.

We process the minimal clique separators in order of cardinality to make sure
that by the time we process a minimal clique separator, such separator is inclusive.
The algorithm is showcased in Algorithm 5. The enumeration of minimal clique
separators can be efficiently done in O(nm)[26], the sorting of the minimal clique
separators can be done in time O(n) with bucket sort because minimal clique sep-
arators are a set of pairwise parallel minimal separators because of Lemma 2.3.1,
therefore, because of Lemma 2.9.1 the set of minimal clique separators is at most of
size n−1. Once we have the set of minimal clique separators ordered by cardinality
we can apply a divide and conquer approach as showcased in Algorithm 5 to achieve
a runtime of O(nm).

4.3 Enumeration of All Minimal Almost Clique Separators
Because Bodlaender and Koster in [9] centered in finding inclusion minimal almost
clique separators, some of their proofs are centered around inclusion minimal almost
clique separators, here we will prove a similar lemma but more generally for mini-
mal almost clique separators before proceeding to show the algorithm to enumerate
minimal almost clique separators which are not necessarily inclusive.

Lemma 4.1.1. Given a graph G which has no minimal clique separator, S is a minimal
clique separator in G[V (G) \ {v}] if and only if S∪{v} is a minimal almost clique
separator in G.

Proof. If S∪{v} is a minimal separator, there must be two vertices uw ∈ V (G) for
which there is no path from u to w which does not have a vertex y ∈ (S∪ {v}),
therefore if there is minimally no path between uw which goes trough the vertices
V (G) that does not pass by S∪{v}, there must be minimally no path between uw

28

4.3. Enumeration of All Minimal Almost Clique Separators

Algorithm 5 Decompose G into its atoms such that the minimal separators are
preserved
Input: Graph G and
Output: A , the atoms of G, and ∆clique, the clique minimal separators of G

1: procedure MinimalCliqueSeparatorDecomposition(G)
2: ∆clique← GetCliqueMinimalSeparators(G)
3: A ← IMCSDRecursive(G, V (G), ∆clique)
4: return (A ,∆clique)
5: end procedure
6: procedure IMCSDRecursive(G, A, ∆)
7: if ∆ = /0 then
8: return {A}
9: end if

10: A ← /0
11: S ∈ ∆ where S is the smallest element in ∆
12: for all C ∈ CG[A](S) do
13: A ← IMCSDRecursive(G, C∪S, {Z | Z ⊆C∪S | Z ∈ ∆})
14: end for
15: return A
16: end procedure

which goes through the vertices V (G) \ {v} that does not pass by S. Therefore, if
S∪{v} is a minimal separator in G then S is a minimal separator in G[V (G)\{v}]

If G[V (G)\{v}] has a minimal clique separator S, there must exist uw∈V (G)\{v}
such that S is a minimal clique uw-separator in G[V (G)\{v}]. S cannot be a minimal
separator in G because G has no minimal clique separator. The only way that S is
not a minimal uw-separator in G is if there is a path between u and w that has the
vertex v. Therefore, S∪{v} must be a minimal almost clique separator in G.

If we apply the preprocessing step introduced in step Chapter 4.2, we are sure
that there are no atoms such that G[A] has a minimal clique separators. Therefore,
given a graph G, the minimal clique separators ∆clique of G and its atoms A after each
step of IMCSD, we know that ∆(G) = ∆clique∪

∪
A∈A ∆(G[A]). Algorithm 6 describes

how to compute all the almost clique minimal separators in ∆(G[A]).

If we combine the minimal clique separators from the preprocessing described
in Algorithm 5 and the minimal almost clique separators from each atom, we get
Algorithm 7 which computes all the minimal almost clique separators of a graph.
Note that all minimal clique separators are also minimal almost clique separators

29

4. Enumeration of Minimal Separators With Special Properties

Algorithm 6 Enumerate All Minimal Almost-Clique Separators in G Atom
Input: Graph G which has no minimal clique separators
Output: Set of All Minimal Almost-Clique Separators in G

1: procedure EnumerateAllAlmostCliqueSeparators(G)
2: ∆← /0
3: for all v ∈V (G) do
4: (∆′,A ′)←MinimalCliqueSeparatorDecomposition(G[V (G)\{v}])
5: for all S ∈ ∆′ do
6: ∆← ∆∪{S∪{v}}
7: end for
8: end for
9: return ∆

10: end procedure

Algorithm 7 Enumerate All Minimal Almost-Clique Separators
Input: Graph G
Output: Set of All Minimal Almost-Clique Separators in G

1: procedure EnumerateAlmostCliqueSeparator(G, A)
2: (∆,A)←MinimalCliqueSeparatorDecomposition(G)
3: for all A ∈ A do
4: ∆← ∆∪EnumerateAllAlmostCliqueSeparators(G[A])
5: end for
6: return ∆
7: end procedure

4.4 Enumeration of Maximal Set of Pairwise Parallel Minimal
Almost Clique Separators

In the previous chapter we described how to enumerate all minimal almost cliques
separators within a graph. Most times though, we are interested in a single minimal
triangulation of minimum treewidth. Therefore, we are interested in only a set
of maximal pairwise parallel minimal almost clique separators. Furthermore, the
completion of a separator into a clique has the possible effect of making, what once
was a minimal non-almost clique separator, into a minimal almost clique separator
which means that similarly to Algorithm 2, multiple queries of minimal almost clique
separators are required.

We will first prove that given a set of minimal almost clique separators S such
that for every S ∈ S , S\{v} is a clique, S must be a set of pairwise parallel minimal
almost clique separators.

Lemma 4.1.2. Given a set of minimal almost clique separators S and a vertex v such
that for every S ∈ S , S\{v} is a clique, S must be a set of pairwise parallel minimal
almost clique separators.

30

4.4. Enumeration of Maximal Set of Pairwise Parallel Minimal Almost Clique
Separators

Proof. Let S,Z ∈ S . There is no uw-separator where uw ∈ S \ {v}, u ̸= v and w ̸= v
because S \ {v} is a clique. Therefore, any crossing separator of S must be a vu-
separator where u∈ S\{v}. Z is not a vu-separator because v∈ Z, therefore S ∥ Z

We can use the property from Lemma 4.1.2 and SMS to ensure that only the set
of pairwise parallel minimal almost clique separators are enumerated and then we use
IMCSD to ensure that the graph does not have any minimal clique separator at any
given time. Our algorithm differently from Algorithm 2 does not explicitly compare
two separators to check whether they are parallel nor it checks whether S∪{v} is a
minimal separator. The algorithm is shown in Algorithm 8. Each repetition at line
4 takes O(n2m). There can be at most n− 1 pairwise parallel minimal separators
because of Lemma 2.9.1 making this algorithm run at O(n3m) runtime complexity.
Neither [9] nor [37] provided a runtime complexity for the enumeration for a maximal
set of pairwise parallel minimal separators and to best of our knowledge, our paper
is the first to provide such runtime complexity.

Algorithm 8 Enumerate Pairwise Parallel Minimal Almost-Clique Separators in G
Input: Graph G which has no minimal clique separators
Output: Set of Pairwise Parallel Minimal Almost-Clique Separators in G

1: procedure EnumeratePairParallelAlmostCliqueSeparators(G)
2: ∆← /0
3: A ←{V (G)}
4: repeat
5: for all v ∈V (G) do
6: for all A ∈ A where v ∈ A do
7: (A ′,∆′)←MinimalCliqueSeparatorDecomposition(G[A\{v}])
8: for all S ∈ ∆′ do
9: ∆← ∆∪{S∪{v}}

10: G← G+ clique(S∪{v})
11: end for
12: A ← A \{A}
13: for all A′ ∈ A ′ do
14: A ← A ∪{A′∪{v}}
15: end for
16: end for
17: end for
18: until ∆ is unchanged
19: return ∆
20: end procedure

31

4. Enumeration of Minimal Separators With Special Properties

4.5 Enumerate of Minimal Separators with Condition
Many minimal separators that are interesting in the field of minimal triangulation
which are characterized by a condition, satisfies said conditions for an arbitrary
subset of the separator, some examples being:

1. Any subset of an almost clique separator is also almost clique.

2. Any subset of a minimal separator of size at most k is also of size at most k.

3. Any subset of a minimal meta separator is also meta.

In this section we will demonstrate how we can use edge addition to enumerate
such minimal separators.

4.5.1 Enumeration by Edge Addition
With Theorem 3.0.1 we demonstrated that ∆(G+ edge(v,u)) can be obtained from
∆(G) by operation of union among two separator S,Z ∈ ∆(G) or by operation of
union of a minimal separator S ∈ ∆(G) with either {v} or {u}. The enumeration of
minimal separators of ∆(G) therefore can be done inductively starting with a graph
G0 where V (G0) =V (G) and E(G0) = /0 and obtaining ∆(Gi) from ∆(Gi−1) where Gi =
Gi−1+edge(v,u) where {v,u} ∈ E(G)\E(Gi−1). Our implementation of edge addition
take O(m∆(Gi−1)

2) per edge addition. For the enumeration of minimal separators
which satisfy a certain condition, namely almost clique separator, separators of size
at most k and minimal meta separators, we filter for separators S ∈ ∆(Gi) if said
condition is not satisfied for G[S].

The order at which the edges are added greatly affects the runtime of the algo-
rithm. We empirically observed that adding edges adjacent to a specific vertex at
a time in the order of the reverse elimination ordering of the MCS-M works best.
The intuition behind the reverse MCS-M elimination ordering is that if the graph
happens to be a chordal graph, all the intermediate graphs Gi are also chordal,
bounding the number of minimal separators to n−1 because of Lemma 2.9. While
this rationale only works for a narrow family of graphs, we observed that empirically
it works relatively well for any graph.

32

Chapter 5

Experimental Results

5.1 Implementation, Hardware and Instances

We implemented all algorithms in rust, with the rust standard library data struc-
tures. The code runs in a single thread. The code has been published in https://
www.github.com/Andful/adagraph. All experiments were carried out on a 2.6GHz
12 core laptop with 16GB of RAM running Ubuntu 20.04.3 LTS.

The experiments were conducted on the PACE 2017 [14] treewidth exact track
instances.

5.2 Enumeration of All Minimal Almost Clique Separators

We have presented so far 3 algorithms for the enumeration of all minimal almost
clique separators. We presented Tamaki’s method as Algorithm 1, we presented
the combination of IMCSD and SMS for the enumeration of minimal almost clique
separators as Algorithm 7 and we presented the Edge Addition algorithm for the
enumeration of minimal separators with special characteristics in section 4.5.1.

For Tamaki’s method while we would have preferred to use Tamaki’s implementa-
tion of the algorithm, his implementation present in https://github.com/twalgor/tw
seems to have a bug documented (by us) in https://github.com/twalgor/tw/issues
/2. Therefore, Tamaki’s method is based on our implementation of his method
recreated to the most fidelity to the best of our abilities.

In Figure 5.1 is displayed Tamaki’s method and Algorithm 7 for the enumeration
of minimal almost clique separators. We can observe that vast majority of times our
method is faster for the enumeration of minimal almost clique separators.

In Figure 5.2 is displayed the runtime of Algorithm 7 against the Edge Addition
method. We can observer that Edge Addition runs much faster than Algorithm 7.

In Figure 5.3 we add the prepossessing step described in section 4.2. We can
observe that while a minor improvement might be present, the preprocessing does
not seem to distinctly improve the runtime of Edge Addition.

33

https://www.github.com/Andful/adagraph
https://www.github.com/Andful/adagraph
https://github.com/twalgor/tw
https://github.com/twalgor/tw/issues/2
https://github.com/twalgor/tw/issues/2

5. Experimental Results

Figure 5.1: A comparison between Tamaki’s method of enumeration ofs all minimal
almost clique separators in a graph with ours. The red line represents the instances
for which the two methods would run at equal runtime.

5.3 Enumeration Pairwise Parallel Minimal Almost Clique
Separators

In this paper we studied two algorithms for the enumeration of pairwise parallel
minimal almost clique separators. One of them is Tamaki’s method showcased as
Algorithm 3 and the one developed by us and showcased as Algorithm 8. In Figure
5.4 we can observe that the transformation introduce a great speed up on the runtime
of the algorithm.

5.4 Treewidth Lowerbound Comparison

The cardinality of minimal clique separators, minimal almost-clique separators and
minimal meta separators are all lowerbounds for treewidth. In this chapter we will
compare the quality of these lowerbounds

We enumerated all minimal clique separators with the method developed by
Leimer in [26], we enumerated all the minimal meta separators of the graph G
with the Edge Addition algorithm, we enumerated all the almost clique minimal
separators with the Algorithm 7 and we enumerated a pairwise parallel minimal
almost clique separators with the Algorithm 8. We represented the lowerbound
obtained by minimal clique separators by ”clb”, the lowerbound obtained by all

34

5.4. Treewidth Lowerbound Comparison

Figure 5.2: Comparison of the methods of enumeration of all minimal between the
use of ICMSD and SMS or enumeration of edge addition without preprocessing.

minimal meta separators by ”mlb”, the lower bound obtained by all the minimal
almost clique separators by ”alb” and the lowerbound obtained by a maximal set
of pairwise parallel set of minimal almost clique separators by ”plb”. The various
lowerbounds per graph are compiled toghether with their treewidth on Table 5.4.

As we can see from Table 5.4 minimal clique separator already give in 35 out of
200 cases the best lowerbound and further enumeration of minimal separators did not
increase the lowerbound. Only on 8 instances out of 200, minimal meta separators
gave better result than the enumeration of all minimal almost clique separators and
the enumeration of pairwise parallel minimal almost clique separators. All almost
clique separators give a better lower bound than a pairwise parallel minimal almost
clique separators only once in the graph 74. Pairwise parallel minimal almost clique
separators gave overall 26 better lower bound than minimal meta separators and all
almost clique minimal separators.

From the result from Table 5.4 using a set of pairwise parallel minimal almost
clique separators seems to be nearly dominating the lowerbound obtained by the set
of all almost clique minimal separators.

35

5. Experimental Results

gr clb mlb alb plb tw gr clb mlb alb plb tw gr clb mlb alb plb tw gr clb mlb alb plb tw
001 3 3 4 4 10 051 2 4 3 3 10 101 60 60 60 60 540 151 3 3 3 3 12
002 14 14 14 14 49 052 3 4 9 9 9 102 21 21 26 26 54 152 5 5 6 6 12
003 0 0 6 6 44 053 2 3 3 3 9 103 2 3 3 4 10 153 25 25 25 25 47
004 57 57 57 57 486 054 2 3 3 3 9 104 61 61 61 61 540 154 20 20 20 20 48
005 2 3 3 3 7 055 7 7 8 8 18 105 61 61 61 61 540 155 25 25 25 25 47
006 2 3 3 3 7 056 2 3 3 3 34 106 5 6 5 5 70 156 3 3 4 4 11
007 5 6 6 6 12 057 9 9 9 9 117 107 3 3 4 4 12 157 2 3 3 3 9
008 3 3 4 4 10 058 3 3 3 4 10 108 4 5 5 6 11 158 3 3 4 4 11
009 2 3 3 3 7 059 4 4 6 6 10 109 2 3 3 3 7 159 6 6 8 8 18
010 2 3 3 3 9 060 2 2 3 3 10 110 2 3 3 3 8 160 3 4 8 8 12
011 3 3 4 4 9 061 2 6 5 6 22 111 2 3 3 4 9 161 5 5 6 6 12
012 3 4 4 4 12 062 6 6 8 8 18 112 2 3 3 4 10 162 2 3 3 3 9
013 0 0 0 0 29 063 2 3 3 4 34 113 0 3 4 5 14 163 2 3 3 4 10
014 5 7 8 8 18 064 2 3 3 3 7 114 2 3 3 3 10 164 4 5 5 5 14
015 6 6 6 6 15 065 0 0 0 0 25 115 903 903 903 903 908 165 4 5 5 5 14
016 2 3 3 3 8 066 4 4 5 5 15 116 2 2 3 4 9 166 2 4 3 3 10
017 2 4 3 4 9 067 2 2 3 4 10 117 3 4 4 4 13 167 2 2 3 3 10
018 2 2 3 3 9 068 3 3 4 4 8 118 0 0 0 0 54 168 4 5 5 5 14
019 2 3 4 4 11 069 2 3 3 4 9 119 0 5 5 5 23 169 5 7 6 5 22
020 0 6 6 6 20 070 0 0 0 0 8 120 2 3 3 3 9 170 2 3 3 3 9
021 2 3 3 4 9 071 2 3 3 3 9 121 2 3 4 4 34 171 4 5 5 5 14
022 3 3 10 10 16 072 2 3 3 3 9 122 26 26 26 26 76 172 0 0 0 0 32
023 4 5 5 5 8 073 2 3 3 4 7 123 2 3 3 3 35 173 2 2 3 4 10
024 3 3 10 10 16 074 24 24 26 24 47 124 2 2 3 4 10 174 24 24 24 24 24
025 0 6 6 6 20 075 3 4 4 7 8 125 0 2 2 2 70 175 4 4 8 8 17
026 2 2 3 3 9 076 5 8 8 8 17 126 2 3 3 3 9 176 2 3 3 4 10
027 2 2 3 3 11 077 2 3 4 4 10 127 4 5 5 5 10 177 4 5 5 5 14
028 2 3 3 3 9 078 2 3 3 3 9 128 17 17 28 28 28 178 2 3 3 3 10
029 2 3 3 3 9 079 20 20 20 20 42 129 5 5 6 6 14 179 2 3 3 3 10
030 2 3 3 3 7 080 2 3 3 4 9 130 6 6 9 9 19 180 2 2 2 2 70
031 2 3 3 3 8 081 4 5 5 5 6 131 6 6 8 8 18 181 0 3 6 7 18
032 3 3 5 5 11 082 3 3 6 6 16 132 7 7 8 8 18 182 2 2 3 4 10
033 2 2 3 3 7 083 2 3 3 3 10 133 3 3 4 4 11 183 2 3 3 4 11
034 2 2 3 3 11 084 0 0 0 0 70 134 2 3 3 3 8 184 2 3 3 3 10
035 4 4 5 5 14 085 2 3 3 3 8 135 82 82 82 82 87 185 4 5 5 5 14
036 42 42 42 42 119 086 2 3 3 3 31 136 2 3 3 3 34 186 2 3 3 3 10
037 2 2 3 3 10 087 25 25 25 25 47 137 6 6 8 8 19 187 2 3 3 3 10
038 15 15 26 26 26 088 25 25 25 25 47 138 16 16 26 26 27 188 16 16 26 26 27
039 0 0 0 0 32 089 2 4 3 3 9 139 2 3 3 3 9 189 5 7 5 5 70
040 2 3 3 3 9 090 2 3 4 4 11 140 2 3 3 4 10 190 5 5 6 6 15
041 2 2 3 3 9 091 2 3 3 3 9 141 2 3 3 3 34 191 4 4 5 5 15
042 2 4 3 4 9 092 24 24 24 24 53 142 2 2 4 4 10 192 0 0 0 0 29
043 2 3 3 3 9 093 2 3 3 3 7 143 2 3 4 5 35 193 3 3 4 4 10
044 3 4 4 4 6 094 2 3 3 4 11 144 2 3 3 3 10 194 3 3 4 4 11
045 2 3 3 3 7 095 3 3 4 4 11 145 0 0 0 0 12 195 2 3 3 3 10
046 2 4 3 3 9 096 2 3 9 9 9 146 4 4 5 5 12 196 2 3 3 4 11
047 5 7 5 5 21 097 20 20 20 20 48 147 0 3 5 6 16 197 5 5 6 6 15
048 6 6 6 6 15 098 2 3 3 3 9 148 5 5 6 6 12 198 83 83 83 83 87
049 7 7 7 7 13 099 2 3 3 3 7 149 5 5 6 6 12 199 2 3 3 3 9
050 17 17 28 28 28 100 3 3 4 4 12 150 10 10 10 10 117 200 4 4 5 5 16

Table 5.1: Lower bounds of the treewidth obtained by the cardinality of the maxi-
mum minimal clique separator (clb), maximum minimal meta separator (mlb), maxi-
mum minimal almost clique separator (alb) and the maximum separator from a pair-
wise parallel almost-clique separators (plb). This data is coupled with the treewidth
of the graph (tw). In bold are the graphs where mlb is the largest.

36

5.4. Treewidth Lowerbound Comparison

Figure 5.3: Difference in runtime of the edge addition enumeration method with
and without ICMSD preprocessing.

Figure 5.4: Comparison of the methods between Tamaki’s method and our for the
enumeration of pairwise parallel minimal almost clique separators.

37

Chapter 6

Conclusion

This paper gave a theoretical and historical overview of minimal triangulation and
minimal separators and we further contributed to what is currently state of the art
in the field.

Our contributions in the field of minimal triangulation are:

• The introduction of the idea of transformation and the demonstration of four
transformations, which are, inclusion minimal clique separator decomposition,
saturate minimal separator, edge addition, minimal meta separator decompo-
sition.

• The introduction of the concept of minimal meta separator and the proof that
its presence in a graph can be used to tighten its treewidth and minimum fill-in
lower bounds.

• The proof that any set of pairwise parallel minimal separators of a graph has
at most n−1 elements in Lemma 2.9.1.

• The generalization of the Lemma by Bodlaender in [9] for the identification of
inclusion minimal almost-clique separators to also encompass minimal almost-
clique separators in Lemma 4.1.1. We also have proven that given a set of
minimal almost-clique separators found with such method, they are all pairwise
parallel in Lemma 4.1.2.

• The construction of an algorithm for listing a maximal set of pairwise parallel
almost-clique separators which leverages the concept of transformation and
runs faster than the state of the art algorithms proposed by [37].

• The proof that such algorithm runs at time O(n3m) which is a novel result to
the best of our knowledge and not presented both in [9] and [37].

• We showed that Edge Addition can be used for the enumeration of minimal
almost-clique separators with a competitive runtime.

39

6. Conclusion

We believe that the concept of transformation is a theoretically unexplored aspect
of minimal separators which can be explored in many manners.

We could not check whether if minimal meta separator decomposition could
bring if any speed-ups in the enumeration of minimal separators and we think this
is a interesting topic for future research. Furthermore it would be interesting to
see whether multiple minimal meta separator decomposition can be applied to the
same graph effectively. Also it would be interesting to see whether it is possible to
improve the lowerbound of the minimum fill-in problem provided by the minimal
meta separator as it is currently a very weak lowerbound.

We used Edge Addition for the enumeration of minimal almost-clique separators
which yield a very fast runtime. The enumeration of minimal separators is function-
ally similar to Takata’s recurrance[34] and both enumeration by Edge Addition and
Takata’s recurrance can enumerate minimal separators which any subset satisfies
a specific condition and therefore allow pruning during enumeration. It would be
interesting to see a comparison between the two algorithms for the enumeration of
minimal almost clique separators, minimal separators of size at most k and minimal
meta separators.

A transformation that we did not discuss is edge removal. While in the proof of
Theorem 3.3 we studied the cases of what would happen to a minimal separator if
an edge would have been removed, we could not exhaustively tackle all the cases.
But we believe edge removal can be used to efficiently enumerate minimal separators
for graph with low minimum fill-in, as there are only few edge removals to go from
a chordal graph, which minimal separators are easy to enumerate on, to the target
graph.

Another direction future research can go is in the enumeration of minimal sep-
arators in highly parallel systems for larger graphs. Some of our transformation
allowed the decomposition to multiple atoms which can be processed independently
allowing enumeration of minimal separators in parallel systems.

And another direction, even if very ambitious, is whether there is a connection
between graph transformation a graph minor theory[33]. We demonstrated historical
and theoretical connection between minimal separators and treewidth, it is well
established the connection between treewidth and graph minor theory, and the idea
of edge addition transformation resembles very much edge deletion in graph minor
theory.

40

Bibliography

[1] Andreas Parra Asensio and Andreas Parra Asensio. Structural and algorithmic
aspects of chordal graph embeddings. 1996. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.45.7640.

[2] Anne Berry and Romain Pogorelcnik. A simple algorithm to generate the min-
imal separators and the maximal cliques of a chordal graph. 111(11):508–511.
ISSN 0020-0190. doi: 10.1016/j.ipl.2011.02.013. URL https://www.sciencedir
ect.com/science/article/pii/S0020019011000536.

[3] Anne Berry, Jean R. S. Blair, Pinar Heggernes, and Barry W. Peyton. Max-
imum Cardinality Search for Computing Minimal Triangulations of Graphs.
39(4):287–298, . ISSN 1432-0541. doi: 10.1007/s00453-004-1084-3. URL
https://doi.org/10.1007/s00453-004-1084-3.

[4] Anne Berry, Pinar Heggernes, and Geneviève Simonet. The Minimum De-
gree Heuristic and the Minimal Triangulation Process. In Hans L. Bodlaen-
der, editor, Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science, pages 58–70. Springer, . ISBN 9783540398905. doi:
10.1007/978-3-540-39890-5_6.

[5] Anne Berry, Romain Pogorelcnik, and Geneviève Simonet. An Introduction to
Clique Minimal Separator Decomposition. 3(2):197–215, . ISSN 1999-4893. doi:
10.3390/a3020197. URL https://www.mdpi.com/1999-4893/3/2/197.

[6] Jean R. S. Blair, Pinar Heggernes, and Jan Arne Telle. A practical algorithm
for making filled graphs minimal. 250(1):125–141. ISSN 0304-3975. doi: 10.
1016/S0304-3975(99)00126-7. URL https://www.sciencedirect.com/science/ar
ticle/pii/S0304397599001267.

[7] Hans L. Bodlaender. Discovering treewidth. Lecture Notes in Com-
puter Science, 3381:1–16, 2005. ISSN 03029743. doi: 10.1007/
978-3-540-30577-4_1. URL https://link-springer-com.tudelft.idm.oclc.org/ch
apter/10.1007/978-3-540-30577-4_1.

41

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.7640
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.7640
https://www.sciencedirect.com/science/article/pii/S0020019011000536
https://www.sciencedirect.com/science/article/pii/S0020019011000536
https://doi.org/10.1007/s00453-004-1084-3
https://www.mdpi.com/1999-4893/3/2/197
https://www.sciencedirect.com/science/article/pii/S0304397599001267
https://www.sciencedirect.com/science/article/pii/S0304397599001267
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-3-540-30577-4_1
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-3-540-30577-4_1

Bibliography

[8] Hans L. Bodlaender and Fedor V. Fomin. Tree decompositions with small
cost. 145(2):143–154. ISSN 0166-218X. doi: 10.1016/j.dam.2004.01.008. URL
https://www.sciencedirect.com/science/article/pii/S0166218X04002410.

[9] Hans L. Bodlaender and Arie M.C.A. Koster. Safe separators for treewidth.
Discrete Mathematics, 306:337–350, 2 2006. ISSN 0012365X. doi: 10.1016/j.di
sc.2005.12.017.

[10] Magnus Bordewich, Katharina T. Huber, and Charles Semple. Identifying phy-
logenetic trees. 300(1):30–43. ISSN 0012-365X. doi: 10.1016/j.disc.2005.06.015.
URL https://www.sciencedirect.com/science/article/pii/S0012365X05003389.

[11] Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping
the minimal separators. SIAM Journal on Computing, 31:212–232, 7 2001. ISSN
00975397. doi: 10.1137/S0097539799359683. URL https://epubs.siam.org/pag
e/terms.

[12] Nofar Carmeli, Batya Kenig, and Benny Kimelfeld. Efficiently Enumerating
Minimal Triangulations. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS ’17, pages 273–
287. Association for Computing Machinery. ISBN 9781450341981. doi: 10.1145/
3034786.3056109. URL https://doi-org.tudelft.idm.oclc.org/10.1145/3034786.
3056109.

[13] L. Sunil Chandran. A Linear Time Algorithm for Enumerating All the Mini-
mum and Minimal Separators of a Chordal Graph. In Jie Wang, editor, Com-
puting and Combinatorics, Lecture Notes in Computer Science, pages 308–317.
Springer. ISBN 9783540446798. doi: 10.1007/3-540-44679-6_34.

[14] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The
pace 2017 parameterized algorithms and computational experiments challenge:
The second iteration. DROPS-IDN/8558, 89, 2 2018. ISSN 18688969. doi:
10.4230/LIPICS.IPEC.2017.30.

[15] G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg, 25:71–76, 1961. ISSN 18658784.
doi: 10.1007/BF02992776. URL https://link.springer.com/article/10.1007/BF
02992776.

[16] Yon Dourisboure and Cyril Gavoille. Tree-decompositions with bags of small
diameter. 307(16):2008–2029. ISSN 0012-365X. doi: 10.1016/j.disc.2005.12.060.
URL https://www.sciencedirect.com/science/article/pii/S0012365X06007692.

[17] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15:835–855, 1965. ISSN 00308730. doi: 10.2140/pjm.
1965.15.835.

42

https://www.sciencedirect.com/science/article/pii/S0166218X04002410
https://www.sciencedirect.com/science/article/pii/S0012365X05003389
https://epubs.siam.org/page/terms
https://epubs.siam.org/page/terms
https://doi-org.tudelft.idm.oclc.org/10.1145/3034786.3056109
https://doi-org.tudelft.idm.oclc.org/10.1145/3034786.3056109
https://link.springer.com/article/10.1007/BF02992776
https://link.springer.com/article/10.1007/BF02992776
https://www.sciencedirect.com/science/article/pii/S0012365X06007692

Bibliography

[18] Masanobu Furuse and Koichi Yamazaki. A revisit of the scheme for com-
puting treewidth and minimum fill-in. 531:66–76. ISSN 0304-3975. doi:
10.1016/j.tcs.2014.03.013. URL https://www.sciencedirect.com/science/articl
e/pii/S0304397514002047.

[19] Alan George and Joseph W.H. Liu. The Evolution of the Minimum Degree
Ordering Algorithm. 31(1):1–19. ISSN 0036-1445. doi: 10.1137/1031001. URL
https://epubs.siam.org/doi/abs/10.1137/1031001.

[20] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hyper-
tree decompositions: NP-hardness and tractable variants. 56(6):30:1–30:32.
ISSN 0004-5411. doi: 10.1145/1568318.1568320. URL https://doi.org/10.1145/
1568318.1568320.

[21] Batya Kenig. Enumerating Minimal Separators in Ranked Order. URL http:
//arxiv.org/abs/2111.07647. arXiv: 2111.07647.

[22] Tuukka Korhonen. Listing Small Minimal Separators of a Graph. . URL
http://arxiv.org/abs/2012.09153. arXiv: 2012.09153.

[23] Tuukka Korhonen. PACE Solver Description: SMS. In Yixin Cao and Marcin
Pilipczuk, editors, 15th International Symposium on Parameterized and Exact
Computation (IPEC 2020), volume 180 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 30:1–30:4. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, . ISBN 9783959771726. doi: 10.4230/LIPIcs.IPEC.2020.30. URL
https://drops.dagstuhl.de/opus/volltexte/2020/13333.

[24] Tuukka Korhonen. Finding optimal triangulations parameterized by edge clique
cover. arXiv preprint arXiv:1912.10989, 2019.

[25] Tuukka Korhonen. Finding optimal tree decompositions, 2020. URL http:
//www.cs.helsinki.fi/.

[26] Hanns-Georg Leimer. Optimal decomposition by clique separators. 113(1):
99–123. ISSN 0012-365X. doi: 10.1016/0012-365X(93)90510-Z. URL https:
//www.sciencedirect.com/science/article/pii/0012365X9390510Z.

[27] Dániel Marx. Parameterized graph separation problems. 351(3):394–406. ISSN
0304-3975. doi: 10.1016/j.tcs.2005.10.007. URL https://www.sciencedirect.co
m/science/article/pii/S0304397505006328.

[28] Lukas Moll, Siamak Tazari, and Marc Thurley. Computing hypergraph
width measures exactly. 112(6):238–242. ISSN 0020-0190. doi: 10.
1016/j.ipl.2011.12.002. URL https://www.sciencedirect.com/science/article/pi
i/S0020019011003243.

[29] Hiromu Otsuka, Tomoki Kuida, Takumi Sato, and Hisao Tamaki. Experimental
evaluation of greedy treewidth heuristics on huge graphs.

43

https://www.sciencedirect.com/science/article/pii/S0304397514002047
https://www.sciencedirect.com/science/article/pii/S0304397514002047
https://epubs.siam.org/doi/abs/10.1137/1031001
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1145/1568318.1568320
http://arxiv.org/abs/2111.07647
http://arxiv.org/abs/2111.07647
http://arxiv.org/abs/2012.09153
https://drops.dagstuhl.de/opus/volltexte/2020/13333
http://www.cs.helsinki.fi/
http://www.cs.helsinki.fi/
https://www.sciencedirect.com/science/article/pii/0012365X9390510Z
https://www.sciencedirect.com/science/article/pii/0012365X9390510Z
https://www.sciencedirect.com/science/article/pii/S0304397505006328
https://www.sciencedirect.com/science/article/pii/S0304397505006328
https://www.sciencedirect.com/science/article/pii/S0020019011003243
https://www.sciencedirect.com/science/article/pii/S0020019011003243

Bibliography

[30] Andreas Parra and Petra Scheffler. Characterizations and algorithmic appli-
cations of chordal graph embeddings. 79(1):171–188. ISSN 0166-218X. doi:
10.1016/S0166-218X(97)00041-3. URL https://www.sciencedirect.com/scienc
e/article/pii/S0166218X97000413.

[31] Andreas Parra, Petra Schefl,] Er, and T U Berlin. How to use the minimal
separators of a graph for its chordal triangulation. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 944:123–134, 1995. ISSN 16113349. doi:
10.1007/3-540-60084-1_68. URL https://link.springer.com/chapter/10.1007/
3-540-60084-1_68.

[32] S. Parter. The use of linear graphs in gauss elimination. 3(2):119–130. doi:
10.1137/1003021. URL https://doi.org/10.1137/1003021.

[33] Neil Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of
tree-width. Journal of Algorithms, 7:309–322, 9 1986. ISSN 01966774. doi:
10.1016/0196-6774(86)90023-4.

[34] Ken Takata. Space-optimal, backtracking algorithms to list the minimal
vertex separators of a graph. 158(15):1660–1667. ISSN 0166-218X. doi:
10.1016/j.dam.2010.05.013. URL https://www.sciencedirect.com/science/arti
cle/pii/S0166218X10001824.

[35] Hisao Tamaki. Computing treewidth via exact and heuristic lists of mini-
mal separators. volume 11544 LNCS, pages 219–236. Springer, 6 2019. ISBN
9783030340285. doi: 10.1007/978-3-030-34029-2_15. URL https://doi.org/10.
1007/978-3-030-34029-2_15.

[36] Hisao Tamaki. Positive-instance driven dynamic programming for treewidth.
Journal of Combinatorial Optimization, 37:1283–1311, 5 2019. ISSN 15732886.
doi: 10.1007/S10878-018-0353-Z/TABLES/6. URL https://link.springer.com/
article/10.1007/s10878-018-0353-z.

[37] Hisao Tamaki. A heuristic for listing almost-clique minimal separators of a
graph. 2021.

[38] Robert E. Tarjan. Decomposition by clique separators. Discrete Mathematics,
55:221–232, 7 1985. ISSN 0012-365X. doi: 10.1016/0012-365X(85)90051-2.

[39] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. 13(3):566–579. doi: 10.1137/0213035. URL https://doi.
org/10.1137/0213035.

[40] Zijian Xu and Vorapong Suppakitpaisarn. On the Size of Minimal Separators
for Treedepth Decomposition. Technical report, arXiv. URL http://arxiv.org/
abs/2008.09822. arXiv:2008.09822 [cs] type: article.

44

https://www.sciencedirect.com/science/article/pii/S0166218X97000413
https://www.sciencedirect.com/science/article/pii/S0166218X97000413
https://link.springer.com/chapter/10.1007/3-540-60084-1_68
https://link.springer.com/chapter/10.1007/3-540-60084-1_68
https://doi.org/10.1137/1003021
https://www.sciencedirect.com/science/article/pii/S0166218X10001824
https://www.sciencedirect.com/science/article/pii/S0166218X10001824
https://doi.org/10.1007/978-3-030-34029-2_15
https://doi.org/10.1007/978-3-030-34029-2_15
https://link.springer.com/article/10.1007/s10878-018-0353-z
https://link.springer.com/article/10.1007/s10878-018-0353-z
https://doi.org/10.1137/0213035
https://doi.org/10.1137/0213035
http://arxiv.org/abs/2008.09822
http://arxiv.org/abs/2008.09822

Bibliography

[41] Zijian Xu, Dejun Mao, and Vorapong Suppakitpaisarn. PACE Solver Descrip-
tion: Computing Exact Treedepth via Minimal Separators. In Yixin Cao and
Marcin Pilipczuk, editors, 15th International Symposium on Parameterized and
Exact Computation (IPEC 2020), volume 180 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 31:1–31:4. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. ISBN 9783959771726. doi: 10.4230/LIPIcs.IPEC.
2020.31. URL https://drops.dagstuhl.de/opus/volltexte/2020/13334.

[42] Mihalis Yannakakis. Computing the minimum fill-in is np-complete. 2(1):77–79.
doi: 10.1137/0602010. URL https://doi.org/10.1137/0602010.

45

https://drops.dagstuhl.de/opus/volltexte/2020/13334
https://doi.org/10.1137/0602010

	Preface
	Contents
	Introduction
	Preliminary
	Notation
	Minimal Separators
	Minimal Separators With Special Properties
	Triangulation

	Transformation
	Inclusion Minimal Clique Separator Decomposition (IMCSD)
	Saturate Minimal Separator (SMS)
	Edge Addition
	Minimal Meta Separator Decomposition (MMSD)

	Enumeration of Minimal Separators With Special Properties
	Number of Atoms After Decomposition By A Set of Pairwise Parallel Separators
	Minimal Separator Enumeration Preprocessing
	Enumeration of All Minimal Almost Clique Separators
	Enumeration of Maximal Set of Pairwise Parallel Minimal Almost Clique Separators
	Enumerate of Minimal Separators with Condition

	Experimental Results
	Implementation, Hardware and Instances
	Enumeration of All Minimal Almost Clique Separators
	Enumeration Pairwise Parallel Minimal Almost Clique Separators
	Treewidth Lowerbound Comparison

	Conclusion
	Bibliography

