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Abstract
In the base phi expansion any natural number is written uniquely as a sum of powers
of the golden mean with digits 0 and 1, where one requires that the product of two
consecutive digits is always 0. In this paper we show that the sum of digits function
modulo 2 of these expansions is a morphic sequence. In particular we prove that —
like for the Thue-Morse sequence — the frequency of 0’s and 1’s in this sequence is
equal to 1/2.

1. Introduction

Base phi representations were introduced by George Bergman in 1957 [1]. Base
phi representations are also known as beta-expansions of the natural numbers, with
� = (1 +

p
5)/2 =: ', the golden mean. A natural number N is written in base phi

if N is represented as

N =
1X

i=�1
di'

i,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed. We write these
expansions as

�(N) = dLdL�1 . . . d1d0 · d�1d�2 . . . dR+1dR.

Ignoring leading and trailing 0’s, the base phi representation of a number N is
unique, as shown by Bergman.

Let for N � 0

s�(N) :=
k=LX

k=R

dk(N)

be the sum of digits function of the base phi expansions. We have

(s�(N)) = 0, 1, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 4, 4, 4, 5, 4, 4, 2, 3, 4, 4, 5, 5, 5, 4, 5, 6, 6, 7, 5, . . . .

In this paper we study the base phi analogue of the Thue-Morse sequence (where
the base equals 2), i.e., the sequence

(x�(N)) := (s�(N) mod 2) = 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, . . .
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Recall that a morphism is a map from the set of infinite words over an alphabet
to itself, respecting the concatenation operation. The Thue Morse sequence is the
fixed point starting with 0 of the morphism 0! 01, 1! 10.

Theorem 1. The sequence x� is a morphic sequence, i.e., the letter-to-letter image
of the fixed point of a morphism.

This theorem permits us to answer a number of natural questions one may ask
about x� , for example: will a word 00000 ever occur? What are the frequencies of
0 and 1?

We end this introduction by mentioning some related work. In [2] asymptotic ex-
pressions for

P
N<x s�(N) as x!1 were obtained. In [7], so-called ↵-irreducibles

were introduced, which might serve as building blocks for s�(N). An ↵-irreducible is
a natural number N , such that if �(N) = �(N 0)+�(N 00) with N 0 < N 00, then N 0 = 0
and N 00 = N . The first twelve ↵-irreducibles are 1,2,3,5,6,7,12,13,14,16,17,18. Grab-
ner and Prodinger give a detailed asymptotic description of the counting function
A, where A(n) is the number of ↵-irreducibles among 1, 2, . . . , n. From their Theo-
rem 1, and Lemma 1 and Lemma 2 in the next section, one can obtain new insights
in A. Let (Ln) be the Lucas numbers. The even Lucas intervals [L2n, L2n+1] will
contain no ↵-irreducibles, with exception of N = L2n. The odd Lucas intervals
[L2n+1 +1, L2n+2�1], with N = L2n+2 added, will contain two shifted copies of the
↵-irreducibles in the previous (extended) odd Lucas interval. Since L2n+1 ⇠ '2n+1,
this directly implies the crude asymptotics of the counting function: A(n) ⇣ n⇢,
with ⇢ = log 2/ log '2.

2. Properties of the Base Phi Representation

The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . ) are defined by

L0 = 2, L1 = 1, Ln = Ln�1 + Ln�2 for n � 2.

The Lucas numbers have a particularly simple base phi representation: from the
well-known formula L2n = '2n +'�2n, and the recursion L2n+1 = L2n +L2n�1, we
have for all n � 1

�(L2n) = 102n · 02n�11, �(L2n+1) = 1(01)n · (01)n.

The properties of base phi expansion of the natural numbers are intrinsically
determined by the Lucas intervals:

⇤2n := [L2n, L2n+1], ⇤2n+1 := [L2n+1 + 1, L2n+2 � 1].

When we add ⇤0 := [0, 1], these intervals partition the natural numbers as n =
0, 1, 2 . . . . The partition elements correspond to the lengths of the expansions:
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if �(N) = dLdL�1 . . . d1d0 · d�1d�2 . . . dR+1dR, then the left most index L = L(N)
and the right most index R = R(N) satisfy

L(N) = 2n+ 1, R(N) = �2n if and only if N 2 ⇤2n,

L(N) = 2n+ 2 = �R(N) if and only if N 2 ⇤2n+1.

This is not hard to see from the simple expressions we have for the �-expansions of
the Lucas numbers, see also Theorem 1 in [6].

For two expansions �(N) and �(N 0), we write �(N) + �(N 0) for the digit-wise
addition of these expansions, tacitly assuming that 0’s have been added to the left
and/or right of these expansions to make this well-defined. Since �(L2n) consists
of only 0’s between the exterior 1’s, the following lemma is obvious.

Lemma 1. ([3]) For all n � 1 and k = 0, . . . , L2n�1 one has �(L2n+k) = �(L2n)+
�(k).

This gives a recursive relation for the expansions in the Lucas interval ⇤2n. To
obtain recursive relations for the interval ⇤2n+1, this interval has to be divided into
three subintervals. These three intervals are

In := [L2n+1 + 1, L2n+1 + L2n�2 � 1],
Jn := [L2n+1 + L2n�2, L2n+1 + L2n�1],
Kn := [L2n+1 + L2n�1 + 1, L2n+2 � 1].

To formulate the next lemma, it is notationally convenient to extend the semi-
group of words to the free group of words. For example, one has 110�101�100 = 100.

Lemma 2. ([11], [3])1 For all n � 2 and k = 1, . . . , L2n�2 � 1,

In : �(L2n+1 + k) = 1000(10)�1�(L2n�1 + k)(01)�11001,
Kn : �(L2n+1 + L2n�1 + k) = 1010(10)�1�(L2n�1 + k)(01)�10001.

Moreover, for all n � 2 and k = 0, . . . , L2n�3,

Jn : �(L2n+1 + L2n�2 + k) = 10010(10)�1�(L2n�2 + k)(01)�1001001.

3. The Sequence x� is Morphic

If V = [K,K+ 1, . . . , L] is an interval of natural numbers, then we write

x�(V ) := [x�(K), x�(K+ 1), . . . , x�(L)]
1See [4] for a comprehensive proof of Lemma 2
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for the consecutive sums of digits modulo 2 of these numbers.
Since x�(L2n) = 0 and x�(0) = 0, Lemma 1 implies directly the following lemma.

Lemma 3. (EVEN) For n � 1 one has x�(⇤2n) = x�([0, L2n�1]).

The mirror morphism on {0, 1} is defined by 0 = 1, 1 = 0.

We obtain from Lemma 2 with x�(In) = x�(Kn) = x�(⇤2n�1), and x�(Jn) =
x�(⇤2n�2) the following.

Lemma 4. (ODD) For n � 1 one has x�(⇤2n+1) = x�(⇤2n�1)x�(⇤2n�2)x�(⇤2n�1).

We illustrate the base phi expansions with the following table.

N �(N) x�(N) Lucas interval

0 0 0 ⇤0

1 1 1 ⇤0

2 10 · 01 0 ⇤1

3 100 · 01 0 ⇤2

4 101 · 01 1 ⇤2

5 1000 · 1001 1 ⇤3

6 1010 · 0001 1 ⇤3

7 10000 · 0001 0 ⇤4

8 10001 · 0001 1 ⇤4

9 10010 · 0101 0 ⇤4

10 10100 · 0101 0 ⇤4

11 10101 · 0101 1 ⇤4

12 100000 · 101001 0 ⇤5

Let ⌧ be the morphism on the alphabet A := {1, . . . , 8} defined by

⌧(1) =12, ⌧(2) = 312, ⌧(3) = 47, ⌧(4) = 8312,
⌧(5) =56, ⌧(6) = 756, ⌧(7) = 83, ⌧(8) = 4756.

Define the mirroring morphism µ on A by

µ : 1! 5, 2! 6, 3! 7, 4! 8, 5! 1, 6! 2, 7! 3, 8! 4.

Then ⌧ is mirror invariant: ⌧µ = µ⌧ .

Theorem 2. Let x� be the sum of digits function of the base phi expansions of the
natural numbers. Let � : A⇤ ! {0, 1} be the letter-to-letter morphism given by

�(1) = �(3) = �(6) = �(8) = 0, and �(2) = �(4) = �(5) = �(7) = 1.
Then x� = �(t), where t = 1231247123 . . . is the fixed point of ⌧ starting with 1.
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Theorem 2 is a direct consequence of the following result. Note that �⌧ = �⌧µ.

Proposition 1. For n = 1, 2 . . . one has x�(⇤2n) = �(⌧n(1)), and x�(⇤2n+1) =
�(⌧n(3)).

Proof. By induction. For n = 1 one has x�(⇤2) = 01 = �(12) = �(⌧(1)), and
x�(⇤3) = 11 = �(47) = �(⌧(3)). From Lemma 3 and the induction hypothesis we
have

x�(⇤2n+2) = x�([0, L2n�1])x�([L2n�1 + 1, L2n � 1])x�([L2n, L2n+2])
= �(⌧n(1))�(⌧n�1(3))�(⌧n(1))
= �(⌧n�1(12312)) = �(⌧n+1(1)).

From Lemma 4 and the induction hypothesis we have
x�(⇤2n+3) = x�(⇤2n+1)x�(⇤2n)x�(⇤2n+1)

= �(⌧n(3)�(⌧n(1))(�(⌧n(3))
= �(⌧n(7))�(⌧n(1))�(⌧n(7))
= �(⌧n(717)) = �(⌧n(47)) = �(⌧n+1(3)).

Since ⌧ is mirror invariant, the letters a and µ(a) have the same frequency for
a 2 A. As � = �µ, this implies the following.

Proposition 2. The letters 0 and 1 have frequency 1
2 in x�.

It is well-known that the words of length 2 in the Thue-Morse sequence have
frequencies 1

6 for 00 and 11, and 1
3 for 01 and 10. Here is the corresponding result

for the golden mean sum of digits function.

Proposition 3. In x� the words 00 and 11 have frequency 1
10

p
5, and the words

01 and 10 have frequency 1
2 �

1
10

p
5.

Proof. As in [10] we compute the frequencies ⌫[ab] of the words ab of length 2
occurring in the fixed point t of the morphism ⌧ by using the 2-block substitution
⌧ [2]. The words of length 2 occurring in the fixed point t of the morphism ⌧ are

12, 23, 24, 28, 31, 35, 47, 56, 64, 67, 68, 71, 75, 83.

When we code the 14 words of length 2 by `1, . . . , `14, in the order given above,
then ⌧ [2] is given for the letters `1, . . . `7 by

`1 ! `1`2, `2 ! `5`13, `3 ! `5`14, `4 ! `5`13, `5 ! `7`12, `6 ! `7`13, `7 ! `14`5`14.

The ⌧ [2]-images of `8, . . . , `14 follow from this by mirror-symmetry. The first 7
components of the normalized eigenvector of the incidence matrix of the morphism
⌧ [2] are given by

h
1
4 �

1
20

p
5, 1

2 �
1
5

p
5, 3

20 �
1
20

p
5, 1

5

p
5� 2

5 , 1
10 , 3

20 �
1
20

p
5, 3

20

p
5� 1

4

i
.
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This means that, e.g., ⌫[12] = 1
4 �

1
20

p
5, and ⌫[31] = 1

10 . The frequency of 00
equals µ[00] = ⌫[13] + ⌫[68] + ⌫[83] = 1

10

p
5.

Remark. Christian Mauduit with Michael Drmota and Joël Rivat proved that the
Thue-Morse sequence is normal along squares (see [5]). We conjecture that this
also holds for the sum of digits function modulo 2 of the basis phi expansion of the
natural numbers, i.e., for (x�(n2)).
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