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SUMMARY

The field of epidemiology encompasses a broad class of spreading phenomena, ranging
from the seasonal influenza and the dissemination of fake news on online social me-
dia to the spread of neural activity over a synaptic network. The propagation of viruses,
fake news and neural activity relies on the contact between individuals, social media ac-
counts and brain regions, respectively. The contact patterns of the whole population re-
sult in a network. Due to the complexity of such contact networks, the understanding of
epidemics is still unsatisfactory. In this dissertation, we advance the theory of epidemics
and its applications, with a particular emphasis on the impact of the contact network.

Our first contribution focusses on the analysis of the N -Intertwined Mean-Field Ap-
proximation (NIMFA) of the Susceptible-Infected-Susceptible (SIS) epidemic process on
networks. We propose a geometric approach to clustering for epidemics on networks,
which reduces the number of NIMFA differential equations from the network size N to
the number m < N of clusters (Chapter 2). Specifically, we show that exact clustering is
possible if and only if the contact network has an equitable partition, and we propose
an approximate clustering method for arbitrary networks. Furthermore, for arbitrary
contact networks, we derive the closed-form solution of the nonlinear NIMFA differ-
ential equations around the epidemic threshold (Chapter 3). Our solution reveals that
the topology of the contact network is practically irrelevant for the epidemic outbreak
around the epidemic threshold. Lastly, we study a discrete-time version of the NIMFA
epidemic model (Chapter 4). We derive that the viral state is (almost always) mono-
tonically increasing, the steady state is exponentially stable, and the viral dynamics is
bounded by linear time-invariant systems.

In the second part, we consider the reconstruction of the contact network and the
prediction of epidemic outbreaks. We show that, for the stochastic SIS epidemic process
on an individual level, the exact reconstruction of the contact network is impractical.
Specifically, the maximum-likelihood SIS network reconstruction is NP-hard, and an ac-
curate reconstruction requires a tremendous number of observations of the epidemic
outbreak (Chapter 5). For epidemic models between groups of individuals, we argue
that, in the presence of model errors, accurate long-term predictions of epidemic out-
breaks are not possible, due to a severely ill-conditioned problem (Chapter 6). Nonethe-
less, short-term forecasts of epidemics are valuable, and we propose a prediction method
which is applicable to a plethora of epidemic models on networks (Chapter 7). As an in-
termediate step, our prediction method infers the contact network from observations of
the epidemic outbreak. Our key result is paradoxical: even though an accurate network
reconstruction is impossible, the epidemic outbreak can be predicted accurately. Lastly,
we apply our network-inference-based prediction method to the outbreak of COVID-19
(Chapter 8).

The third part focusses on spreading phenomena in the human brain. We study
the relation between two prominent methods for relating structure and function in the
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brain: the eigenmode approach and the series expansion approach (Chapter 9). More
specifically, we derive closed-form expressions for the optimal coefficients of both ap-
proaches, and we demonstrate that the eigenmode approach is preferable to the series
expansion approach. Furthermore, we study cross-frequency coupling in magnetoen-
cephalography (MEG) brain networks (Chapter 10). By employing a multilayer network
reconstruction method, we show that there are strong one-to-one interactions between
the alpha and beta band, and the theta and gamma band. Furthermore, our results
show that there are many cross-frequency connections between distant brain regions
for theta-gamma coupling.



SAMENVATTING

Het vakgebied van epidemiologie omvat een brede klasse van verspreidingsverschijnse-
len, variërend van de seizoensgriep en de verspreiding van nepnieuws op sociale media
tot de verspreiding van neurale activiteit via een synaptisch netwerk. De verspreiding
van virussen, nepnieuws en neurale activiteit is afhankelijk van het contact tussen indi-
viduen, sociale-media-accounts en hersengebieden. De contacten van alle individuen
samen vormen een netwerk. Vanwege de complexiteit van dergelijke contactnetwerken
is het gedrag van epidemische processen nog steeds niet geheel doorgrond. In dit proef-
schrift dragen wij bij aan de ontwikkeling van de theorie en toepassing van epidemische
processen, waarbij we ons concentreren op het onderliggende contactnetwerk.

Onze eerste bijdrage is gerelateerd aan de N -Intertwined Mean-Field Approximation
(NIMFA) van het Susceptible-Infected-Susceptible (SIS) virusverspreidingsmodel op net-
werken. We stellen een geometrische benadering voor voor het clusteren van individuen
in het contactnetwerk, die het aantal NIMFA-differentiaalvergelijkingen reduceert van
de netwerkgrootte N tot het aantal m < N clusters (Hoofdstuk 2). In het bijzonder laten
we zien dat een exacte clustering mogelijk is dan en slechts dan het contactnetwerk een
gelijkwaardige partitie heeft, en we stellen een benaderende clustermethode voor voor
algemene netwerken. Verder leiden we voor algemene contactnetwerken de gesloten op-
lossing af van de niet-lineaire NIMFA-differentiaalvergelijkingen rond de epidemische
drempelwaarde (Hoofdstuk 3). Onze oplossing laat zien dat de topologie van het con-
tactnetwerk praktisch irrelevant is voor een virusuitbraak rond de epidemische drem-
pelwaarde. Ten slotte bestuderen we een discrete-tijdversie van het NIMFA-epidemisch
model (Hoofdstuk 4). In het bijzonder laten we zien dat de virale toestand (bijna altijd)
monotoon toeneemt, de stabiele toestand exponentieel stabiel is en de het tijdsafhan-
kelijke proces wordt begrensd door lineaire tijdinvariante systemen.

In het tweede deel gaan we in op de reconstructie van het contactnetwerk en de
voorspelling van virusuitbraken. We tonen aan dat de reconstructie van het contact-
netwerk voor het SIS process op individueel niveau praktisch onmogelijk is. In het bij-
zonder is de meest aannemelijke schatter van de SIS-netwerkreconstructie NP-moeilijk,
en een nauwkeurige reconstructie vereist een enorm aantal observaties van de virus-
uitbraak (Hoofdstuk 5). Voor epidemische metapopulatiemodellen stellen we dat, in
de aanwezigheid van modelfouten, nauwkeurige langetermijnvoorspellingen van epi-
demische uitbraken niet mogelijk zijn omdat het probleem slecht geconditioneerd is
(Hoofdstuk 6). Desalniettemin zijn kortetermijnvoorspellingen van epidemische pro-
cessen waardevol, en we stellen een voorspellingsmethode voor die toepasbaar is op een
breed scala aan epidemische modellen op netwerken (Hoofdstuk 7). Als tussenstap leidt
onze voorspellingsmethode het contactnetwerk af op basis van het aantal geobserveerde
zieke personen tijdens de epidemie. Ons belangrijkste resultaat is paradoxaal: hoewel
een nauwkeurige netwerkreconstructie onmogelijk is, kan de virusuitbraak nauwkeurig
worden voorspeld. Ten slotte passen we onze voorspellingsmethode toe op het uitbre-
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ken van COVID-19 (Hoofdstuk 8).
Het derde deel richt zich op het bestuderen van verspreidingsverschijnselen in het

menselijk brein. We bestuderen twee prominente benaderingsmethoden om de struc-
tuur en functie in de hersenen aan elkaar te relateren: de eigenmode-benadering en de
reeksontwikkelingsbenadering (Hoofdstuk 9). We leiden gesloten uitdrukkingen af voor
de optimale coëfficiënten van beide benaderingen, en we tonen aan dat de eigenmode-
benadering de voorkeur geniet boven de reeksontwikkelingsbenadering. Verder bestu-
deren we kruisfrequentieverbindingen in magnetoencephalography (MEG) hersennet-
werken (Hoofdstuk 10). Door een meerlaagse netwerkreconstructiemethode toe te pas-
sen, laten we zien dat er sterke een-op-een interacties zijn tussen de alfa- en bètaband
en de thèta- en gammaband. Bovendien laten onze resultaten zien dat er veel kruisfre-
quentieverbindingen zijn tussen verre hersengebieden voor thèta-gammakoppeling.



1
INTRODUCTION

E PIDEMIOLOGY originates from the study of infectious diseases such as gonorrhoea,
cholera and the flu [1, 2], with seminal works by Bernoulli [3] and Snow [4]. Hu-

man beings do not only transmit infectious diseases from one individual to another, but
also opinions, online social media content and innovations. Furthermore, man-made
structures exhibit epidemic phenomena, such as the propagation of failures in power
networks or the spread of a malicious computer virus via the internet. Modern epidemi-
ology has evolved into the study of general spreading processes [5–7]. The mutual char-
acteristic of spreading processes is that they can be modelled by a viral infection: every
individual is either healthy, or infected with the virus, opinion, social media content;
and the virus spreads from one individual to another, provided that the individuals are
“in contact”, for instance by physical proximity (e.g., closer than 1.5 meters), a friendship
or a connection on an online social media platform.

The spread of a virus is governed by the interplay of two interdependent parts: the
viral dynamics, which characterises the transmission of the virus, given by the infec-
tiousness, the incubation time, and the time to recover from an infection; and the con-
tact network, which specifies the individuals that are in contact. The essential interplay
of function and structure is explicitly taken into account in modern, sophisticated epi-
demic models [5, 6]. In theory, if the contact network and the viral dynamics were accu-
rately known, epidemic models would be capable of providing accurate descriptions of
the evolution of an epidemic. However, the staggering complexity of contact networks
poses a major challenge to the analysis, prediction and control of real-world epidemics:
First, the modern world is densely connected – both digitally and physically, via the inter-
net and an unprecedented mobility of individuals. Thus, most epidemics spread among
large populations, with a corresponding contact network of tremendous size. Second,
the contact patterns between individuals are very diverse, ranging from isolated indi-
viduals, with barely any regular social contacts, to “superspreaders” [8–11]. Hence, the
majority of contact networks are highly heterogeneous. Third, the contact network may
change over time [12–15]. For instance, during the COVID-19 pandemic, the very aim
of lockdown policies is the explicit, time-varying control of contacts among the popula-
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tion [16, 17]. In summary, obtaining an accurate description of the contact network is a
tremendous, and perhaps impossible, challenge. The analysis and prediction of spread-
ing processes, despite the unavailability of the network, lie at the heart of this thesis.

1.1. MODELLING EPIDEMICS ON NETWORKS
In this section, we introduce two epidemic models which are central to this thesis. We
consider a contact network of N nodes, where every node i = 1, ..., N corresponds to an
individual or a group of similar individuals. If the nodes i , j are in contact, then node i
and node j can infect one another with the virus. We denote the N ×N adjacency matrix
by A and its elements by ai j . If there is a link from node j to node i , then ai j = 1, and
ai j = 0 otherwise. Hence, the virus spreads from node j to node i only if ai j = 1.

The vast majority of epidemic models assumes that every individual is in either one
compartment [1, 2, 5, 6]. Every compartment describes another stage of the disease,
such as healthy, infected or deceased. The NIMFA model and the SIR model presented
below are prominent instances of compartmental epidemic models.

1.1.1. THE NIMFA (SIS) EPIDEMIC MODEL
The first epidemic model that we consider has two compartments: every individual is
either susceptible S (healthy) or infectious I . Susceptible individuals can be infected
by a contact to infectious individuals, and infected individuals can cure and become
susceptible again. At any time t ≥ 0, every node i has a viral state vi (t ), whose evolution
is governed by a set of nonlinear differential equations:

Definition 1.1 (Heterogeneous NIMFA epidemic model [18, 19]). For every node i =
1, ..., N , the viral state vi (t ) evolves in continuous time t ≥ 0 as

d vi (t )

d t
=−δi vi (t )+ (1− vi (t ))

N∑
j=1

β̃i j ai j v j (t ), (1.1)

where δi > 0 is the curing rate of node i , and β̃i j > 0 is the infection rate from node j to
node i .

The differential equations (1.1) can be interpreted in two ways. On the one hand, if
the nodes correspond to individuals, then the differential equations (1.1) follow from a
mean-field approximation of the stochastic SIS process [20, 21], and the viral state vi (t )
approximates the expected value E[Xi (t )] of the zero-one state Xi (t ) of the stochastic
Susceptible-Infected-Susceptible (SIS) epidemic process. Thus, the viral state vi (t ) ap-
proximates the probability that individual i is infected at time t . In the remainder of this
thesis, we refer to (1.1) as NIMFA, which is an acronym for “N -Intertwined Mean-Field
Approximation” [20, 21]. On the other hand, if the nodes correspond to groups [18, 22–
25], then the viral state vi (t ) can be interpreted as the fraction of infectious individuals
in group i .

We denote the N ×1 viral state vector by v(t ) = (v1(t ), ..., vN (t ))T . Lajmanovich and
Yorke [18] showed that v(0) ∈ [0,1]N implies that v(t ) ∈ [0,1]N at every time t ≥ 0. Hence,
NIMFA (1.1) is well-defined if the viral state vi (t ) is interpreted as probability or fraction.
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We define the N ×N diagonal matrix S = diag(δ1, ...,δN ) whose diagonal is given by
the curing rates δ1, ..., δN . Then, stacking the differential equations (1.1) yields that

d v(t )

d t
=−Sv(t )+diag(u − v(t ))B v(t ), (1.2)

where the N ×N infection rate matrix B is composed of the elements βi j = β̃i j ai j , and
u = (1, ...,1)T is the N ×1 all-one vector.

In its simplest form [20], NIMFA assumes the same infection rate β and curing rate
δ for all nodes. More precisely, for homogeneous NIMFA the governing equations (1.2)
reduce to

d v(t )

d t
=−δv(t )+βdiag(u − v(t )) Av(t ). (1.3)

For the vast majority of epidemiological, demographical, and ecological models, the
basic reproduction number R0 is an essential quantity [26, 27]. The basic reproduction
number R0 is defined [28] as “The expected number of secondary cases produced, in
a completely susceptible population, by a typical infective individual during its entire
period of infectiousness”. For NIMFA (1.1), the basic reproduction number R0 is given by
[18, 29]

R0 = ρ(S−1B), (1.4)

where ρ(M) denotes the spectral radius of a square matrix M . Lajmanovich and Yorke
[18] showed that there is a bifurcation around the epidemic threshold R0 = 1. If R0 ≤ 1,
then the origin (the all-healthy state) is the only equilibrium of NIMFA (1.1), and it holds
that v(t ) → 0 as t →∞. If R0 > 1, then there is a second equilibrium, the N ×1 steady-
state1 vector v∞, with positive components, and it holds that v(t ) → v∞ as t → ∞ if
v(0) 6= 0. Thus, the steady state v∞ corresponds to the endemic viral state. By setting
(1.2) to zero, we obtain that the steady state v∞ satisfies

(B −S) v∞ = diag(v∞)B v∞. (1.5)

1.1.2. THE SIR EPIDEMIC MODEL

The second fundamental epidemic model is the Susceptible-Infected-Removed (SIR)
model, which assumes that cured individuals are immune to the disease, which is mod-
elled by the compartment removed R. Hence, the key difference between the SIS and
the SIR model is that, after curing from the disease, individuals either can be reinfected
or are immune, respectively. At every time t , the 3×1 SIR viral state of node i is denoted
by νi (t ) = (Si (t ),Ii (t ),Ri (t ))T . If nodes correspond to groups of individuals, then Si (t ),
Ii (t ) and Ri (t ) describe the fraction of susceptible, infected and removed individuals in
group i at time t .

1Strictly speaking, the origin v(t ) = 0 is always a steady state of the NIMFA model (1.2). In this thesis, we only
refer to the non-zero equilibrium v∞ as steady state.
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Definition 1.2 (Heterogeneous SIR epidemic model [30, 31]). For every node i , the SIR
viral state νi (t ) = (Si (t ),Ii (t ),Ri (t ))T evolves in continuous time t as

dIi (t )

d t
=−δiIi (t )+ (1−Ii (t )−Ri (t ))

N∑
j=1

βi jI j (t )

dRi (t )

d t
= δiIi (t ) (1.6)

and the fraction of susceptible individuals follows as Si (t ) = 1−Ii (t )−Ri (t ). Here, βi j

denotes the infection rate from node j to node i , and δi is the curing rate of node i .

Similarly to NIMFA (1.1), if nodes i correspond to individuals, Youssef and Scoglio
[31] derived the differential equations (1.6) as a first-order mean field approximation
of the stochastic SIR epidemic process, where the components of the viral state νi (t )
approximate the probability that individual i is in the respective compartment S , I or
R.

1.2. NOTATION
The following notation is used throughout this thesis. The number of nodes in the con-
tact network is denoted by N . The N × N diagonal matrix with a vector x ∈ RN on its
diagonal is denoted by diag(x). The Frobenius norm of a matrix M is denoted by ‖M‖F .
For a square matrix M , we denote the spectral radius by ρ(M). If the matrix M is sym-
metric, then M can be diagonalised as [32]

M = X diag(λ1, ...,λN ) X T

with the N×N matrix X = (x1, ..., xN ), whereλi denotes the eigenvalue to the N×1 eigen-
vector xi of the matrix M . For two N ×1 vectors y, z, the inequalities y > z and y ≥ z de-
note that yi > zi or yi ≥ zi , respectively, for every element i = 1, ..., N . The N ×N identity
matrix is denoted by I , and, for an arbitrary integer m, Im denotes the m ×m identity
matrix. Similarly, the N ×1 all-one vector is denoted by u, and um denotes the m ×1 all-
one vector. The N ×1 basic vector is denoted by ei , whose entries are given by (ei )i = 1
and (ei ) j = 0 if j 6= i .

1.3. DOCUMENT STRUCTURE
This thesis consists of three parts, which are divided into several chapters.

I. Analysis of Epidemics on Networks The first part consists of three chapters and fo-
cusses on the mathematical analysis of the NIMFA epidemic model (1.1). In Chap-
ter 2, we consider the grouping of nodes to obtain a low-complexity description
of the viral state dynamics. More precisely, we study structural conditions on the
contact network which allow for an exact or approximate description of the viral
dynamics by less than N differential equations. In Chapter 3, we derive the closed-
form solution of the nonlinear NIMFA differential equations (1.1) around the epi-
demic threshold R0 = 1. In Chapter 4, we study the viral dynamics of the NIMFA
epidemic model in discrete time, with a particular focus on stability and speed of
convergence to the steady state.
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II. Network Reconstruction and Prediction of Epidemics The second part consists of
four chapters and deals with the question: Can we predict an epidemic outbreak
without knowing the contact network? In Chapter 5, we propose a Bayesian frame-
work for reconstructing the contact network on individual level from observa-
tions of the stochastic SIS epidemic process. We prove that the SIS network re-
construction problem is NP-hard. Furthermore, based on designing an accurate,
polynomial-time heuristic, we show that a tremendous number of observations is
required for an accurate network reconstruction, which seems infeasible in prac-
tice. Chapter 6 demonstrates that, even under idealised conditions, the accuracy
of predicting epidemics is subject to fundamental limits. For a general class of
epidemic models on group level, Chapter 7 proposes a two-stage method for pre-
dicting epidemic outbreaks. First, the contact network is (partly) reconstructed
from past observations of the epidemic spread. Second, the epidemic outbreak is
predicted with the partly reconstructed network. In Chapter 8, we propose and
evaluate a network-inference based method for predicting the spread of COVID-
19.

III. Spreading in Brain Networks: Relating Function and Structure Beyond the spread
of infectious diseases, the field of epidemics on networks encompasses general
spreading dynamics over networks. The third part of the thesis consists of two
chapters and focusses on the relation of function and structure for spreading in
the brain. In this context, “function” refers to brain activity, such as functional
Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG) data,
and “structure” refers to the anatomical network between brain regions. Chap-
ter 9 considers the relation of function and structure in the brain. In particular,
we compare two prominent methods, the eigenmode approach and the series ex-
pansion approach, both analytically and empirically. In Chapter 10, we propose a
inter-layer connectivity reconstruction method for multilayer brain networks. Ev-
ery layer corresponds to one MEG frequency band (e.g., alpha or beta band), and
an interlayer link between two nodes describes the cross-frequency coupling of
the two respective brain regions.
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2
CLUSTERING FOR EPIDEMICS ON

NETWORKS: A GEOMETRIC

APPROACH

Infectious diseases typically spread over a contact network with millions of individuals,
whose sheer size is a tremendous challenge to analysing and controlling an epidemic out-
break. For some contact networks, it is possible to group individuals into clusters. A high-
level description of the epidemic between a few clusters is considerably simpler than on
an individual level. However, to cluster individuals, most studies rely on equitable par-
titions, a rather restrictive structural property of the contact network. In this chapter, we
focus on Susceptible-Infected-Susceptible (SIS) epidemics, and our contribution is three-
fold. First, we propose a geometric approach to specify all networks for which an epidemic
outbreak simplifies to the interaction of only a few clusters. Second, for the complete graph
and any initial viral state vectors, we derive the closed-form solution of the nonlinear dif-
ferential equations of the N -Intertwined Mean-Field Approximation (NIMFA) of the SIS
process. Third, by relaxing the notion of equitable partitions, we derive low-complexity
approximations and bounds for epidemics on arbitrary contact networks. Our results are
an important step towards understanding and controlling epidemics on large networks.

This chapter is based on B. Prasse, K. Devriendt, and P. Van Mieghem, Clustering for epidemics on networks: a
geometric approach, in preparation.
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2.1. INTRODUCTION
The majority of viruses spread through a population of tremendous size, which renders
individual-based modelling impractical. However, most applications do not require to
model an epidemic on individual level. Instead, a mesoscale description of the epidemic
often is sufficient. For instance, suppose the outbreak of a virus is modelled on the level
of neighbourhoods. Then, sophisticated lockdown measures can be deployed which
constrain neighbourhoods differently, depending on the prevalence of the virus in the
respective neighbourhood. The natural way to obtain a mesoscale description of the
epidemic is clustering (or grouping) of individuals, for instance, by assigning individu-
als with similar age or location to the same cluster. Thus, all individuals in one cluster
are considered indistinguishable and exchangeable. Additionally to the complexity re-
duction, clustering for epidemics on networks has the advantage that, on a mesoscale
description, temporal fluctuations of the individual-based contact network may average
out.

Many papers deal with clustering of individuals into communities [33–35], where in-
dividuals within the same community are densely connected, and there are only few
links between individuals of different communities. Hence, communities are defined by
structural properties of the contact graph. Most results are of the type: if the network
has a certain mesoscale structure, then also the dynamics have some structure [36–38].
In this chapter, we approach clustering from the other direction: we presume structure
in the dynamics and aim to find all contact networks that are compatible with the struc-
tured dynamics. The central analysis tool in our analysis is the Proper Orthogonal De-
composition (POD) [39–41] of the N ×1 viral state vector v(t ), which is given by

v(t ) =
m∑

l=1
cl (t )yl (2.1)

for some m ≤ N . Here, the N ×1 agitation mode vectors y1, ..., ym are orthonormal1, and
the scalar functions cl (t ) ∈R are obtained by projecting the viral state v(t ) onto the vector
yl , cl (t ) = yT

l v(t ). Since any N ×1 vector v(t ) can be written as the linear combination
of N orthonormal vectors, the POD (2.1) is exact for any network if m = N . However,
we are particularly interested in networks, for which the number of agitation modes m
is (much) smaller than the number of nodes N . If (2.1) holds true, then the viral state
vector v(t ) is element of the m-dimensional subspace

V = span{y1, ..., ym} (2.2)

at any time t , where the span (the set of all linear combinations) of the vectors y1, ..., ym

is denoted by

span
{

y1, ..., ym
}={

m∑
l=1

cl yl

∣∣∣cl ∈R
}

.

With the POD (2.1), the viral state v(t ) can be described with less than N differential
equations: denote the right side of the NIMFA (1.2) by fNIMFA (v(t )) ∈ RN . Then, NIMFA

1A set of vectors y1, ..., ym is orthonormal if yT
l yk = 0 for l 6= k and yT

l yk = 1 for l = k.
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(1.2) reads more compactly

d v(t )

d t
= fNIMFA (v(t )) . (2.3)

With the POD (2.1), we obtain that

m∑
l=1

dcl (t )

d t
yl = fNIMFA

(
m∑

l=1
cl (t )yl

)
. (2.4)

Since the vectors y1, ..., ym are orthonormal, we can project (2.4) onto the agitation modes
yl to obtain the differential equations

dcl (t )

d t
= yT

l fNIMFA

(
m∑

l=1
cl (t )yl

)
, l = 1, ...,m. (2.5)

Hence, the POD (2.1) reduces the number of differential equations from the number of
nodes N to the number of agitation modes m. We emphasise that the POD (2.1) is a
hybrid of linear and nonlinear analysis: The viral state v(t ) equals to a linear combina-
tion of the agitation modes yl , which are weighted by possibly nonlinear functions cl (t ).
In this chapter, we study under which conditions the POD (2.1) is exact for the NIMFA
epidemic model (1.2). Furthermore, in Chapter 7, we show that the POD (2.1) holds ap-
proximately almost always, for a diverse class of dynamics on networks.

1

2

3

(a) Path graph.

𝑣 𝑡

𝑒1

𝑒3

𝑦2 = 𝑒2

𝑦1

𝑣 0

(b) Viral state space.

Figure 2.1: Proper orthogonal decomposition for a path graph. (a): A path graph with N = 3 nodes. The top,
middle and bottom nodes are labelled by 1, 2 and 3, respectively. (b): The black curve depicts the trajectory of
the viral state v(t ) in the Euclidean space R3. The shaded area illustrates the viral state set V , which equals to
the span of the vectors y1, y2, given by (2.8). Provided that v(0) ∈V , the viral state v(t ) remains in the subspace
V at every time t .

Example 2.1. Consider homogeneous NIMFA (1.3) on the path graph in Figure 2.1a, for
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which the viral state vector v(t ) evolves as

d v1(t )

d t
=−δv1(t )+β (1− v1(t )) v2(t ), (2.6)

d v2(t )

d t
=−δv2(t )+β (1− v2(t )) (v1(t )+ v3(t )) ,

d v3(t )

d t
=−δv3(t )+β (1− v3(t )) v2(t ).

Suppose that the initial viral states of node 1 and 3 are equal, v1(0) = v3(0). Then, it holds
that v1(t ) = v3(t ) at all times t due to the symmetry of the path graph. Hence, the viral
state vector v(t ) = (v1(t ), v2(t ), v3(t ))T satisfies

v(t ) = c1(t )y1 + c2(t )y2, (2.7)

where the orthonormal vectors y1, y2 are given by

y1 = 1p
2

1
0
1

 , y2 =
0

1
0

 . (2.8)

As illustrated by Figure 2.1b, the viral state v(t ) remains in the m = 2 dimensional sub-
space V = span{y1, y2} at all times t , provided that v(0) ∈ V . On the subspace V , (2.5)
yields that the N = 3 differential equations (2.6) reduce to m = 2 equations

dc1(t )

d t
=−δc1(t )+p

2β

(
1− 1p

2
c1(t )

)
c2(t ),

dc2(t )

d t
=−δc2(t )+2

p
2β (1− c2(t ))c1(t ),

from which the viral state v(t ) is obtained with (2.7).

Two conditions must hold for the set V to reduce NIMFA to m differential equa-
tions. First, the set V must be an m-dimensional subspace, spanned by the basis vectors
y1, ..., ym . Second, if the initial viral state v(0) is element of the set V , then the viral state
v(t ) must remain in the set V at every time t > 0. Hence, the set V must be an invariant
set [42] of NIMFA. Thus, in this chapter, we consider the geometric problem:

Problem 2.2 (Clustering in NIMFA). For a given number of nodes N and a given number
m ≤ N of agitation modes, find all N ×N infection rate matrices B and the correspond-
ing N ×1 agitation modes y1, ..., ym , such that V = span{y1, ..., ym} is an invariant set of
NIMFA (1.2).

In contrast to Example 2.1, for which the agitation modes y1, y2 follow rather straight-
forwardly, Problem 2.2 considers the interdependency of arbitrary graphs and invariant
sets V in full generality.

If m ¿ N , then we expect that the invariant set V , and its basis vectors yl , reflect a
macroscopic structure, or a clustering, of the contact graph. For instance, the agitation
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mode y1 in Example 2.1 indicates that the viral states v1(t ) and v3(t ) evolve equally and
nodes 1 and 3 can be assigned to the same cluster.

Furthermore, the invariant set V allows for sophisticated, low-complexity control
methods for the viral state v(t ), see [6] for a survey of control methods. More specifi-
cally, consider that an affine control method is applied to NIMFA (2.3),

d v(t )

d t
= fNIMFA (v(t ))+

m∑
l=1

gl (t )yl . (2.9)

Here, the scalar function gl (t ) is the control of the l -th agitation mode yl . If the subspace
V = span{y1, ..., ym} is an invariant set of NIMFA (1.2), then V is also an invariant set of
(2.9). Hence, on the subspaceV , the viral state v(t ) can be controlled with only m distinct
control inputs g1(t ), ..., gm(t ). If the agitation mode yl corresponds to a group of nodes,
such as in Example 2.1, then the control gl (t ) is applied to all nodes of that group. For
instance, gl (t ) could be the viral state control of individuals of a certain age group and
location.

2.2. RELATED WORK
Clustering in NIMFA is closely related to equitable partitions [32, 43, 44]. We denote
a general partition of the node set N = {1, ..., N } by2 π = {N1, ...,Nr }. Here, the cells
N1, ...,Nr are disjoint subsets of the node set N , such that N =N1 ∪ ...∪Nr . We adapt
the definition of equitable partitions in [45, 46] as:

Definition 2.3 (Equitable partition). Consider a symmetric N×N infection rate matrix B
and a partition π= {N1, ...,Nr } of the node set N = {1, ..., N }. The partition π is equitable
if, for all cells l , p = 1, ...,r , the infection rates βi k satisfy∑

k∈Nl

βi k = ∑
k∈Nl

β j k ∀i , j ∈Np .

For an equitable partition π, we define the degree from cell Nl to cell Np as

dpl =
∑

k∈Nl

βi k (2.10)

for some node i ∈Np . Definition 2.3 states that, for an equitable partition π, the sum of
the infection rates (2.10) is the same for all nodes i ∈Np . We denote the r × r quotient
matrix by Bπ, whose elements are defined as (Bπ)pl = dpl . Furthermore, we define the
r ×1 all-one vector ur = (1, ...,1)T .

As shown by Bonaccorsi et al. [38] and Ottaviano et al. [46], NIMFA (1.2) can be
reduced to r differential equations, provided that the infection rate matrix B has an eq-
uitable partition π with r cells. For our work, we summarise the results in [38, 46] as:

Theorem 2.4 ([38, 46]). Consider NIMFA (1.2) on an N ×N infection rate matrix B with
an equitable partition π= {N1, ...,Nr }. Assume that δi = δ j and vi (0) = v j (0) for all nodes

2Slightly deviating from common notation, we also refer to π as an (equitable) partition of the infection rate
matrix B .
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i , j in the same cell Nl . Then, it holds that vi (t ) = v j (t ) at every time t > 0 for all nodes
i , j ∈Nl and all l = 1, ...,r . Furthermore, define the r ×1 reduced-size viral state vector

vπ(t ) = (
vi1 (t ) ... vir (t )

)T

and the r × r reduced-size curing rate matrix

Sπ = diag
(
δi1 , ...,δir

)
, (2.11)

where il denotes an arbitrary node in the cell Nl . Then, the reduced-size viral state vector
vπ(t ) evolves as

d vπ(t )

d t
=−Sπvπ(t )+diag

(
ur − vπ(t )

)
Bπvπ(t ). (2.12)

Remarkably, on both microscopic (1.2) and macroscopic (2.12) resolutions, the viral
dynamics follow the same class of governing equation. For the Markovian Susceptible-
Infectious-Susceptible (SIS) process, Simon et al. [47] proposed a lumping approach to
reduce the complexity, which is an approximation and merges states of the SIS Markov
chain, also see the work of Ward et al. [48]. In [49], a generalised mean-field frame-
work for Markovian SIS epidemics has been proposed, which includes NIMFA as a spe-
cial case. Beyond epidemics, analogous results to Theorem 2.4 have been proved for a
diverse set of dynamics3 on networks with equitable partitions [37, 54–57]. As a direct
consequence of Theorem 2.4, equitable partitions are related to the proper orthogonal
decomposition (2.1):

Corollary 2.5. Consider NIMFA (1.2) on an N ×N infection rate matrix B with an equi-
table partition π= {N1, ...,Nr }. Assume that δi = δ j and vi (0) = v j (0) for all nodes i , j in
the same cell Nl . Then, the subspace V = span{y1, ..., ym} with m = r is an invariant set,
where the N ×1 agitation modes yl are given by

(
yl

)
i =


1p
|Nl |

if i ∈Nl ,

0 if i 6∈Nl ,

and the scalar functions equal cl (t ) =√|Nl |vπl (t ).

In other words, Corollary 2.5 states that every equitable partitionπ yields an invariant
set V , whose dimension equals the number of cells r in the partition π. Example 2.6
illustrates Theorem 2.4 and Corollary 2.5:

Example 2.6. Consider NIMFA on a graph with N = 6 nodes, whose curing rate matrix
equals S = diag

(
δ̃1, δ̃1, δ̃1, δ̃2, δ̃2, δ̃3

)
for some curing rates δ̃1, δ̃2, δ̃3. Furthermore, suppose

3Specifically, we believe that Theorem 2.4 can be generalised to the dynamics
d vi (t )

d t = −δi vi (t ) +∑N
j=1βi j g (vi (t ), v j (t )), where the arbitrary function g (vi (t ), v j (t )) describes the “coupling” [50–53] between

node i and j .
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Figure 2.2: Graph with a partition of the node set. A graph with N = 6 nodes and the partition π =
{N1,N2,N3}, whose cells are given by N1 = {1,2,3}, N2 = {4,5} and N3 = {6}. For unit link weights, i.e., βi j = 1
for all nodes i , j , the partition π is not equitable. If the link weights βi j satisfy (2.13), as in Example 2.6, then
the partition π is equitable.

that the infection rate matrix B is symmetric and given by the graph in Figure 2.2 as

B =



β11 0 0 0 β15 β16

0 0 β23 β24 β25 β26

0 β23 0 β34 0 β36

0 β24 β43 0 β45 0
β15 β25 0 β45 0 0
β16 β26 β36 0 0 0

 . (2.13)

Suppose that, for some degrees dpl > 0, the infection rates βi j satisfy: β11 = β23 = d11;
β15 = β34 = d12 and β24 = β25 = d12/2; β16 = β26 = β36 = d13; and β45 = d22. Then, the
infection rate matrix B becomes

B =



d11 0 0 0 d12 d13

0 0 d11 d12/2 d12/2 d13

0 d11 0 d12 0 d13

0 d12/2 d12 0 d22 0
d12 d12/2 0 d22 0 0
d13 d13 d13 0 0 0

 .

Thus, the matrix B has the equitable partitionπ= {N1,N2,N3} with the cells N1 = {1,2,3},
N2 = {4,5} and N3 = {6}. The quotient matrix equals

Bπ =
d11 d12 d13

d12 d22 0
d13 0 0

 .
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For the partition π, the reduced-size state can be chosen4 as vπ(t ) = (v1(t ), v4(t ), v6(t ))T .
Theorem 2.4 states that the vector vπ(t ) = (v1(t ), v4(t ), v6(t ))T evolves as

d vπ(t )

d t
=−Sπvπ(t )+diag

(
u3 − vπ(t )

)
Bπvπ(t ),

with the 3×3 reduced-size curing rate matrix Sπ = diag
(
δ̃1, δ̃2, δ̃3

)
. Furthermore, Corol-

lary 2.5 states that the viral state v(t ) has the proper orthogonal decomposition

v(t ) =p
3vπ1 (t )y1 +

p
2vπ2 (t )y2 + vπ3 (t )y3

with the agitation modes

y1 = 1p
3

(
1 1 1 0 0 0

)T
,

y2 = 1p
2

(
0 0 0 1 1 0

)T
,

y3 =
(
0 0 0 0 0 1

)T
.

2.3. EXACT CLUSTERING
Theorem 2.4 and Corollary 2.5 only give an incomplete answer to Problem 2.2: if the
infection rate matrix B has an equitable partition π, then there exists an invariant set V .
But are there invariant sets V , even if the matrix B does not have an equitable partition
π?

We denote the orthogonal complement of the viral state set V by

V⊥ = {
w ∈RN |wT v = 0, ∀v ∈V}

.

The dimension of the set V equals m. Thus, the dimension of the orthogonal comple-
ment V⊥ equals N −m. Since the orthogonal complement V⊥ is a subspace, there is a
set of N −m orthonormal basis vectors ym+1, ..., yN such that

V⊥ = span{ym+1, ..., yN }. (2.14)

The direct sum of two subspaces S1,S2 ⊆RN is defined as the subspace

S1 ⊕S2 = {s1 + s2|s1 ∈S1, s2 ∈S2} . (2.15)

Thus, the Euclidean space is the direct sum RN =V ⊕V⊥ of the two subspaces V ,V⊥.
We rely on four assumptions to solve Problem 2.2.

Assumption 2.7. For every viral state v ∈V , it holds that diag(δ1, ...,δN ) v ∈V .

Suppose that the curing rates are homogeneous, i.e., δi = δ for all nodes i . Then,
Assumption 2.7 is satisfied, since diag(δ1, ...,δN ) v = δv ∈ V for every viral state v ∈ V .
More generally, Assumption 2.7 states that the viral state setV is an invariant subspace of
the curing rate matrix diag(δ1, ...,δN ). Intuitively speaking, the curing rates δ1, ...,δN are
“set in accordance to” the clustering given by the viral state set V , such as in Example 2.6.

4But, for instance, vπ(t ) = (v2(t ), v5(t ), v6(t ))T is possible as well.
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Assumption 2.8. There is a viral state v ∈ V whose entries satisfy vi > 0 for every node
i = 1, ..., N .

There is a unique steady-state v∞ with positive components v∞,i > 0 if R0 > 1 and
the matrix B is irreducible [18]. Since every viral state v converges to the steady state v∞,
the steady state v∞ is element of the invariant set V . Hence, Assumption 2.8 is always
satisfied if R0 > 1, provided the matrix B is irreducible.

Assumption 2.9. The curing rates are positive and the infection rates are non-negative,
i.e., δi > 0 and βi j ≥ 0 for all nodes i , j .

Assumption 2.9 is rather technical, since only non-negative curing rates and infec-
tion rates have a physical meaning.

Assumption 2.10. The infection rate matrix B is symmetric and irreducible.

Assumption 2.10 holds if and only if the infection rate matrix B corresponds to a
connected undirected graph [58]. Under Assumption 2.10, the matrix B is diagonalisable
[32] as

B = XΛX T . (2.16)

Here, we denote the N ×N diagonal matrix Λ = diag(λ1, ...,λN ) whose diagonal entries
are given by the real eigenvalues λ1 ≥λ2 ≥ ... ≥λN , and the columns of the N ×N matrix
X = (x1, ..., xN ) are given by the corresponding eigenvectors xi .

Lemma 2.11 states that the invariant set V and the orthogonal complement V⊥ are
spanned by eigenvectors of the infection rate matrix B :

Lemma 2.11. Suppose that Assumptions 2.7 and 2.10 hold, and consider an invariant set
V = span{y1, ..., ym} of NIMFA (1.2) and the complement V⊥ = span{ym+1, ..., yN }. Then,
there is some permutation φ : {1, ..., N } → {1, ..., N }, such that V = span{xφ(1), ..., xφ(m)} and
V⊥ = span{xφ(m+1), ..., xφ(N )}, where xφ(1), ..., xφ(N ) denotes an orthonormal set of eigen-
vectors of the infection rate matrix B to the eigenvalues λφ(1), ...,λφ(N ).

Proof. Appendix A.1

We denote the span of the vectors xφ(l ) of the subspace V which correspond to a
non-zero eigenvalue λφ(l ) 6= 0 as V6=0 = span

{
xφ(l )

∣∣l = 1, ...,m,λφ(l ) 6= 0
}
. Let the number

of non-zero eigenvalues be denoted by m1. Without loss of generality, we assume that,
after the permutation φ, the first m1 eigenvalues λφ(1), ...,λφ(m1) are non-zero. Hence,
the subspace V6=0 equals to

V6=0 = span
{

xφ(l )
∣∣l = 1, ...,m1

}
. (2.17)

Analogously to (2.17), we define the span of the vectors xφ(l ) of the subspace V which
correspond to a zero eigenvalue λφ(l ) = 0 as

V0 = span
{

xφ(l )
∣∣l = 1, ...,m,λφ(l ) = 0

}
= span

{
xφ(l )

∣∣l = m1 +1, ...,m
}

.
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Thus, the subspace V equals to the direct sum

V =V6=0 ⊕V0. (2.18)

We emphasise that span
{

y1, ..., ym
}= span

{
xφ(1), ..., xφ(m)

}
does not imply that yl = xφ(k)

for some k, l . An immediate consequence of Lemma 2.11 is that the infection rate matrix
B can be decomposed as:

Lemma 2.12. Suppose that Assumptions 2.7 and 2.10 hold, and consider an invariant set
V = span{y1, ..., ym} of NIMFA (1.2) and the complement V⊥ = span{ym+1, ..., yN }. Then,
the infection rate matrix B is decomposable as B = BV +BV⊥ , where

BV = (
y1 ... ym

)
B̃V

yT
1
...

yT
m

 and BV⊥ = (
ym+1 ... yN

)
B̃V⊥

yT
m+1

...
yT

N


for some m ×m matrix B̃V and (N −m)× (N −m) matrix B̃V⊥ .

Proof. Appendix A.2.

Lemma 2.12 shows that the sets V and V⊥ are invariant subspaces of the matrix B .
In particular, the viral state dynamics on the invariant set V are the same for all infec-
tion rate matrices B (1),B (2) with the same submatrix B (1)

V = B (2)
V but different submatrices

B (1)
V⊥ 6= B (2)

V⊥ .

Example 2.13. Suppose that Assumptions 2.7 and 2.10 hold. For some degrees d11,d12,d22

and some scalar ξ, consider the infection rate matrix

B =
d11 +ξ d11 −ξ d12

d11 −ξ d11 +ξ d12

d12 d12 d22


with the equitable partitionπ= {N1,N2}, where N1 = {1,2} and N2 = {3}, and the quotient
matrix

Bπ =
(
d11 d12

d12 d22

)
.

Corollary 2.5 states that the subspace V = span{y1, y2} is an invariant set of NIMFA (1.2),
where the agitation modes equal to y1 = 1p

2
(1,1,0)T and y2 = (0,0,1)T . The orthogonal

complement follows asV⊥ = span{y3}, where y3 = 1p
2

(1,−1,0)T . Furthermore, Lemma 2.12

states that the infection rate matrix can be decomposed as B = BV +BV⊥ , where

BV = (
y1 y2

)( 2d11
p

2d12p
2d12 d22

)(
yT

1
yT

2

)
=

d11 d11 d12

d11 d11 d12

d12 d12 d22


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and

BV⊥ = 2ξy3 yT
3 =

 ξ −ξ 0
−ξ ξ 0
0 0 0

 .

The eigenvectors xφ(1), xφ(2) equal to a linear combination of the agitation modes y1, y2,
and the third eigenvector equals xφ(3) = y3.

Theorem 2.14 states our main result:

Theorem 2.14. Suppose that Assumptions 2.7 to 2.10 hold. Then, any invariant set V =
span

{
y1, ..., ym

}
of NIMFA (1.2) is equal to the direct sum V = V6=0 ⊕V0 of two subspaces

V6=0,V0. Here, the orthonormal basis vectors y1, ..., ym1 , where m1 ≤ m, of the subspace
V6=0 = span

{
y1, ..., ym1

}
are given by

(yl ) j =


1p
|Nl |

if j ∈Nl ,

0 if j 6∈Nl ,
(2.19)

for some equitable partition π = {N1, ...,Nm1

}
of the infection rate matrix B. If m1 = m,

then the subspaceV0 is empty. Otherwise, if m1 < m, thenV0 = span
{

xφ(l )
∣∣l = m1 +1, ...,m

}
for some eigenvectors xφ(l ) of the infection rate matrix B belonging to the eigenvalue 0.

Proof. Appendix A.3.

The Euclidean space RN is always an invariant set of NIMFA. For V = RN and V0 =
;, the equitable partition π in Theorem 2.14 becomes trivial, i.e., π = {N1, ...,NN } with
exactly one node in every cell Nl . On the other hand, if there is an invariant set V of
dimension m < N , then Theorem 2.14 implies that the matrix B is equitable with m1 ≤ m
cells.

If V0 =;, then Theorem 2.14 essentially reverts Corollary 2.5. Thus, every equitable
partition π corresponds to an invariant set V0, and vice versa. In other words, the macro-
scopic structure of equitable partitions π and the low-rank dynamics of invariant sets V
are two sides of the same coin. If V0 =;, then the dynamics on the invariant set V = V6=0

are given by the reduced-size NIMFA system (2.12) with m = m1 equations.
If V0 6= ;, then Theorem 2.14 is more general than the inversion of Corollary 2.5.

Theorem 2.14 states that an invariant set of NIMFA equals to the direct sum V =V6=0⊕V0,
where the subspace V6=0 corresponds to an equitable partition π of the infection rate
matrix, and the subspace V0 is a subset of the kernel of the matrix B . If V0 6= ;, then
the dynamics on the invariant set V = V6=0 ⊕V0 are described by the m > m1 differential
equations (2.5).

The curing rates δi satisfy Assumption 2.7 if there are some scalars δ̃1, ..., δ̃m1 such
that δi = δ̃l for all nodes i in cell Nl , where l = 1, ...,m1. However, Assumption 2.7
allows for more general curing rates. With Lemma 2.12 and Theorem 2.14, the infec-
tion rate matrix B can be constructed from specifying the agitation modes yl , such that
V = span{y1, ..., ym} is an invariant set of NIMFA (1.2):
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Example 2.15. Consider NIMFA (1.2) on a network of N = 5 nodes and the subspaces
V6=0 = span{y1, y2}, V0 = span{y3}, where the agitation modes equal

y1 = 1p
3

(
1 1 1 0 0

)T
,

y2 = 1p
2

(
0 0 0 1 1

)T
,

y3 = 1p
6

(
1 −2 1 0 0

)T
.

Furthermore, let y4, y5 be two vectors, with yT
4 y5 = 0 and yT

4 y4 = yT
5 y5 = 1, that are orthog-

onal to the agitation modes y1, y2, y3. With Lemma 2.12, define the infection rate matrix
as

B = (
y1 y2

)
B̃V 6=0

(
yT

1
yT

2

)
+ (

y4 y5
)

B̃V⊥

(
yT

4
yT

5

)
,

where the symmetric 2× 2 matrices B̃V 6=0 , B̃V⊥ are chosen such that the matrix B is ir-
reducible and contains only non-negative elements. Furthermore, consider the curing
rate matrix S = diag(δ̃1, δ̃2, δ̃1, δ̃3, δ̃3) for some curing rates δ̃1, δ̃2, δ̃3 > 0. Then, Assump-
tions 2.7 to 2.10 are satisfied, and Theorem 2.14 states that the subspace V = V6=0 ⊕V0

is an invariant set of NIMFA (1.2). (An alternative choice for the curing rate matrix is
S = diag(δ̃1, δ̃1, δ̃1, δ̃2, δ̃2), which also satisfies Assumption 2.7.)

2.3.1. DECOMPOSITION OF THE VIRAL DYNAMICS

Suppose the infection rate matrix B has an equitable partition π and the infection rates
βi j are the same between all nodes i , j in any two cells5. Then, we can decompose the
dynamics of the viral state v(t ) as:

Theorem 2.16. Consider NIMFA (1.2) on a symmetric N ×N infection rate matrix B with
an equitable partition π= {N1, ...,Nr }. Furthermore, suppose that the curing rates δi are
the same for all nodes i in any cell Nl , and that the infection rates βi j are the same for
all nodes i in any cell Nl and all nodes j in any cell Np . Denote the subspace V6=0 =
span{y1, ..., yr }, with the basis vectors yl defined in (2.19), and denote the kernel of the
matrix B by ker(B) = span{yr+1, ..., yN }. At every time t ≥ 0, consider the viral state de-
composition

v(t ) = ṽ(t )+ vker(t ),

where the projection of the viral state v(t ) on the subspace V6=0 equals

ṽ(t ) =
r∑

l=1

(
yT

l v(t )
)

yl ,

5If the matrix B is decomposable as B = BV +BV⊥ as in Lemma 2.12, then the infection rates βi j are the same
between all nodes i , j in any two cells if and only if BV⊥ = 0.
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and the projection of the viral state v(t ) on the kernel ker(B) equals

vker(t ) =
N∑

l=r+1

(
yT

l v(t )
)

yl .

Furthermore, denote the r × 1 reduced-size projection ṽπ(t ) =
(
ṽπi1

(t ), ..., ṽπir
(t )

)T
, where

il denotes an arbitrary node in cell Nl . Then, the reduced-size projection ṽπ(t ) evolves,
independently of the projection vker(t ), as

d ṽπ(t )

d t
=−Sπṽπ(t )+diag

(
ur − ṽπ(t )

)
Bπṽπ(t ) (2.20)

with the quotient matrix Bπ and the matrix Sπ given by (2.11), and the projection vker(t )
obeys

d vker(t )

d t
=−(

S +diag(B ṽ(t ))
)

vker(t ). (2.21)

Proof. Appendix A.4.

In Theorem 2.16, the set V0 is equal to the kernel ker(B), which is equivalent to V⊥ =
; and assuming the same infection rates βi j between all nodes i , j in any two cells. In
contrast to Theorem 2.4, we do not consider that the initial state satisfies vi (0) = v j (0)
for all nodes i , j in the same cell Nl .

With the definition of the agitation mode yl in (2.19), the viral state average in cell Nl

follows from the projection of the viral state v(t ) on the vector yl as

1

|Nl |
∑

i∈Nl

vi (t ) = 1√|Nl |
yT

l v(t )

for every cell l = 1, ...,r . Furthermore, the subspace V6=0 is spanned by the vectors y1, ...,
yr . Hence, the dynamics of the projection ṽ(t ) on the subspace V6=0 describes the evolu-
tion of viral state averages of every cell Nl , which is described by r differential equations
(2.20) on the quotient graph Bπ. Since the steady state v∞,i of every node i in the same
cell Nl is the same [38, 46], it holds that v∞ ∈ V6=0, which implies that vker(t ) → 0 as
t → ∞. Furthermore, from Theorem 2.4 it follows that, if vker(0) = 0, then vker(t ) = 0
at every time t . Thus, the evolution of the projection vker(t ) describes convergence of
the viral states vi (t ) to the respective cell-averages. By (2.20), Theorem 2.16 implies that
the viral state cell-averages evolve independently of the dynamics on the kernel ker(B).
Schaub et al. [56] obtained an analogous result for linear dynamics on networks.

If we can derive the closed-form expression for the projection ṽ(t ) by solving (2.20),
then the dynamics vker(t ) follow by the linear time-varying system (2.21). Furthermore,

the reduced-size steady state vπ∞ =
(
ṽπ∞,i1

, ..., ṽπ∞,ir

)T
is an equilibrium of (2.20). Thus,

if ṽ(t ) = v∞, then the dynamics of the projection vker(t ) obey the linear time-invariant
(LTI) system

d vker(t )

d t
=−(

S +diag(B v∞)
)

vker(t ).
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Thus, the affine subspace
{

v∞+ vker
∣∣vker ∈ ker(B)

}
is an invariant set of NIMFA, on which

the viral dynamics are linear.
Loosely speaking, Theorem 2.16 shows that a crucial challenge for solving NIMFA

on graphs with equitable partitions is the dynamics of the projection ṽ(t ), since solving
the set of nonlinear equations (2.20) seems more difficult than solving the linear time-
varying system (2.21) for a given ṽ(t ). For a complete graph, the solution ṽ(t ) to set of
nonlinear equations (2.20) is one-dimensional and can be stated in closed form [59].
Thus, we obtain the solution of NIMFA on the complete graph, for arbitrary initial viral
states v(0), as:

Theorem 2.17. Consider NIMFA (1.2) on the complete graph, whose infection rates equal
βi j = β> 0 for all nodes i , j = 1, ..., N . Suppose the curing rates satisfy δi = δ for all nodes
i . Then, for any initial viral state v(0) ∈ [0,1]N , the solution of NIMFA (1.2) equals

v(t ) = c1(t )y1 + c2(t )vker(0),

with the agitation mode y1 = u/
p

N , and the N ×1 vector vker(0) given by

vker(0) = (
I − y1 yT

1

)
v(0).

The functions c1(t ) and c2(t ) follow explicitly as:

1. If δ 6=βN , then the scalar function c1(t ) equals

c1(t ) = w

2β
p

N

(
1+ tanh

( w

2
t +Υ1(0)

))
(2.22)

with the viral slope w =βN −δ and the constant

Υ1(0) = arctanh

(
2
β
p

N

w
yT

1 v(0)−1

)
,

and the scalar function c2(t ) equals

c2(t ) =Υ2(0)e−Φt sech
( w

2
t +Υ1(0)

)
(2.23)

with the constantsΦ= w/2+δ and

Υ2(0) = vT
ker(0)v(0)

‖vker(0)‖2
2

cosh(Υ1(0)) . (2.24)

2. If δ=βN , then the scalar function c1(t ) equals

c1(t ) =
p

N

(
δt +

p
N

yT
1 v(0)

)−1

(2.25)

and the scalar function c2(t ) obeys

c2(t ) = Υ̃2(0)e−δt

(
δt +

p
N

yT
1 v(0)

)− βN
δ

,
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where the constant Υ̃2(0) is given by

Υ̃2(0) = vT
ker(0)v(0)

‖vker(0)‖2
2

( p
N

yT
1 v(0)

) βN
δ

.

Proof. Appendix A.5.
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Figure 2.3: Closed-form solution of NIMFA on the complete graph. The solution of NIMFA (1.1) for a com-
plete graph with N = 3 nodes and homogeneous spreading rates. As stated by Theorem 2.16, the viral state
satisfies v(t ) = ṽ(t )+ vker(t ), where ṽ(t ) and vker(t ) denote the projection of the viral state v(t ) on the sub-
space V 6=0 and the kernel ker(B), respectively. (a): The viral state vi (t ) versus time t for every node i . (b): The
projections ṽ(t ) and vker(t ), which follow from Theorem 2.17 as ṽi (t ) = c1(t )v∞,i and vker,i (t ) = c2(t )

(
y2

)
i

for all nodes i , where the scalar functions c1(t ) and c2(t ) are given by the closed-form expressions (2.22) and
(2.23), respectively. Since the steady state v∞,i is the same for every node i in the complete graph, it holds that
ṽi (t ) = ṽ j (t ) for all nodes i , j .

Figure 2.3 illustrates the closed-form solution of NIMFA for complete graphs, as given
by Theorem 2.17. As shown by Figure 2.3, even though the viral state average ṽ(t ) is
monotonically increasing, the viral state v1(t ) = ṽ1(t )+ vker,1(t ) is decreasing until t ≈ 1,
which is due to the dynamics of the projection vker(t ) on the kernel ker(B).
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2.4. APPROXIMATE CLUSTERING
As shown by Theorem 2.14, equitable partitions and low-dimensional viral state dynam-
ics in NIMFA are equivalent. Many networks possess some macroscopic structure, which
may resemble an equitable partition, but which is not precisely an equitable partition. Is
it possible to reduce the number of NIMFA equations, if the network has an “almost” equi-
table partition?

Theorem 2.18 shows that NIMFA (1.2) on any network can be bounded by increasing
or decreasing the spreading rates βi j ,δi :

Theorem 2.18. Consider two NIMFA systems with respective positive curing rates δi and
δ̃i , non-negative infection rates βi j and β̃i j , and viral states vi (t ) and ṽi (t ). Suppose that
the initial viral state vi (0),ṽi (0) are in [0,1] for all nodes i and that the matrices B and B̃,
with elements βi j and β̃i j , respectively, are irreducible. Then, if δ̃i ≤ δi and β̃i j ≥ βi j for
all nodes i , j , ṽ(0) ≥ v(0) implies that ṽ(t ) ≥ v(t ) at every time t .

Proof. Appendix A.6.

We emphasise that Theorem 2.18 does not assume symmetric infection rate matrices
B , B̃ . Building upon Theorem 2.18, we aim to bound the viral state v(t ) of any network at
every time t by the viral state of networks with equitable partitions. In the following, we
consider a partition π= {N1, ...,Nr } of the node set N = {1, ..., N } of an arbitrary network.
We stress thatπ can be any, not necessarily equitable, partition. We define the minimum
dmin,pl of the sum of infection rates from cell Nl to Np as

dmin,pl = min
i∈Np

∑
k∈Nl

βi k (2.26)

and the maximum dmax,pl as

dmax,pl = max
i∈Np

∑
k∈Nl

βi k . (2.27)

Furthermore, we denote the r × r matrices Bmin and Bmax, whose elements are given
by dmin,pl and dmax,pl , respectively. Analogously, we define the minimum δmin,l of the
curing rates in cell Nl as

δmin,l = min
i∈Nl

δi

and the maximum δmax,l as

δmax,l = max
i∈Nl

δi . (2.28)

We combine Theorem 2.4 and Theorem 2.18 to obtain:

Theorem 2.19. Suppose that the Assumptions 2.9 and 2.10 hold. At every time t , consider
the r ×1 reduced-size lower bound vlb,l (t ) and r ×1 upper bound vub,l (t ), which evolve as

d vlb(t )

d t
=−diag

(
δmax,1, ...,δmax,r

)
vlb(t )+diag(ur − vlb(t ))Bminvlb(t ) (2.29)
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and

d vub(t )

d t
=−diag

(
δmin,1, ...,δmin,r

)
vub(t )+diag(ur − vub(t ))Bmaxvub(t ).

Then, if the initial states satisfy vlb,l (0) ≤ vi (0) ≤ vub,l (0) for all nodes i in any cell Nl , the
viral state vi (t ) of all nodes i in any cell Nl is bounded by

vlb,l (t ) ≤ vi (t ) ≤ vub,l (t ) ∀t ≥ 0. (2.30)

Proof. Appendix A.7.

Theorem 2.19 states that the N ×1 viral state v(t ) on any network is bounded by the
r ×1 viral states vlb(t ), vub(t ) on networks with equitable partitions and r cells. Reducing
the N -dimensional viral state dynamics to r -dimensional dynamics comes at the cost of
an approximate description by the bounds in (2.30). If the partition π is equitable, then
it holds that dmin,pl = dmax,pl , and the bounds in Theorem 2.19 can be replaced by the
exact statement in Theorem 2.4.

Similarly to the lower bound and upper bound of the degrees in (2.26) and (2.27),
respectively, we define the average degree from cell Nl to Np for any partition π as

d̄pl =
1∣∣Np

∣∣ ∑
i∈Np

∑
k∈Nl

βi k .

Then, we define the r × r reduced-size infection rate matrix B̄ , which consists of the
elements d̄pl . Furthermore, we define the average curing rate of any cell Nl as

δ̄l =
1∣∣Nl

∣∣ ∑
i∈Nl

δi .

Then, we approximate the viral state by vi (t ) ≈ v̄l (t ) for all nodes i in any cell Nl . Here,
the r ×1 reduced-size viral state vector v̄(t ) evolves as

d v̄(t )

d t
=−diag

(
δ̄1, ..., δ̄r

)
v̄(t )+diag(ur − v̄(t )) B̄ v̄(t ), (2.31)

and, for all cells Nl , the initial state equals

v̄l (0) = 1∣∣Nl
∣∣ ∑

i∈Nl

vl (0).

If the matrix B has an equitable partitionπ and the rates δi ,βi j are the same between
all nodes i , j in any two cells as in Theorem 2.16, then the approximation v̄(t ) coincides
with the projection ṽ(t ) of the viral state v(t ) on the subspace V6=0.

To illustrate the accuracy of the bounds in Theorem 2.19 and the reduced-size viral
state v̄(t ) for networks without equitable partitions, we consider the Stochastic Block-
model (SBM), originally introduced by Holland et al. [60]. We consider a network with
N = 1000 nodes and a partition π with r = 5 cells N1, ..., N5. The cells are of size
|N1| = 400, |N2| = 250, |N3| = 200, |N4| = 100 and |N5| = 50. With a probability of 0.7,
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there are no links between two cells Np , Nl , i.e., βi j = β j i = 0 for all nodes i ∈Np and
j ∈Nl . Otherwise, with a probability of 0.3, we denote the mean of the links between the
cells Np , Nl by β̄pl = β̄l p , which is set to a uniform random number in [0.1,0.2]. Then,
the infection rate βi j = β j i for all nodes i ∈Np and j ∈Nl is set to a random number
[β̄pl , β̄pl (1+σrel)], where we vary the relative variance σrel for different scenarios in the
numerical evaluation. If σrel = 0, then the partition π is equitable. The larger the vari-
ance σrel, the “less equitable” the partition π. For every node i , the curing rate δi is set
to a uniform random number in [1,1+σrel], and the initial viral state vi (0) is set to a
uniform random number in [0.01,0.01(1+σrel)]. Hence, if the variance σrel = 0, then it
holds that vlb,l (t ) = vlb,l (t ) = vi (t ) for every node i in any cell Nl . Lastly, the curing rates
are decreased to δi ← cδi , where the scalar c is chosen such that the basic reproduction
number (1.4) equals R0 = 3. To obtain the viral state v(t ), we discretise NIMFA (1.1) with
a sufficiently small sampling time, see Chapter 4 for a detailed analysis of the resulting
discrete-time NIMFA model.

Figure 2.4 illustrates the accuracy of the bounds vlb,l (t ), vub,l (t ) in Theorem 2.19 and
the approximation accuracy of v̄(t ) in (2.31) for the largest cell N1 and the smallest cell
N5. For both σrel = 0.25 and σrel = 0.5, the approximation v̄l (t ) is close to the exact
average viral state in cell Nl ,

vavg,l (t ) = 1∣∣Nl
∣∣ ∑

i∈Nl

vl (t ).

The accuracy of the bounds vlb,l (t ), vub,l (t ) on any viral state vi (t ) in cell Nl decreases
when the varianceσrel is increased. Nonetheless, the bounds vlb,l (t ), vub,l (t ) are reason-
ably accurate for both σrel = 0.25 and σrel = 0.5.

2.4.1. CLUSTERING FOR EPIDEMICS ON REAL-WORLD NETWORKS
Approximating the viral state dynamics by m < N equations requires the specification
of a partition π of the nodes. In some cases, this partition is given a priori, as in the
experiments in Figure 2.4, where the node partition π was chosen corresponding to the
SBM blocks. In contrast, for real-world networks, it is more challenging to determine
an appropriate clustering and, hence, to obtain an accurate description of the viral state
dynamics by m < N equations.

We consider a two-step approach to reduce NIMFA to m = r < N equations. First, we
obtain a partition π of the nodes by the Bethe spectral clustering algorithm [61], which
makes use of the Bethe Hessian H± = (davg − 1)I ± davgB +D , with the average degree
davg and the degree matrix D = diag(d1, ...,dN ). When the matrix B has an (approxi-
mate) SBM structure, the negative eigenvalues of H± have corresponding eigenvectors
which are (approximately) piecewise constant on the blocks of B . The spectral cluster-
ing algorithm partitions the nodes of B based on a k-means clustering of the negative
eigenvector entries of H±. Second, we evaluate the accuracy of reduced-size viral state
v̄(t ) in (2.31) by the deviation of the prevalence,

εavg =
n∑

k=1

∣∣∣∣∣ 1

N

N∑
i=1

vi (k∆t )− 1

N

r∑
l=1

|Nl | v̄l (k∆t )

∣∣∣∣∣ . (2.32)
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(b) Cell N5 and relative variance σrel = 0.25.
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(c) Cell N1 and relative variance σrel = 0.5.
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(d) Cell N5 and relative variance σrel = 0.5.

Figure 2.4: Low-dimensional approximation of the viral state dynamics. For a stochastic blockmodel network
with N = 1000 nodes and r = 5 cells, the accuracy of the approximation v̄l (t ) and the tightness of the bounds
vlb,l (t ), vlb,l (t ) are depicted. The reduced-size viral states v̄(t ),vlb(t ) and vlb(t ) equal to the linear combination
of m = r = 5 agitation modes yl , each of which corresponds to one cell. The first and second row correspond
to the relative variance σrel = 0.25 and σrel = 0.5, respectively. The left column corresponds to the largest cell
N1, the right column corresponds to the smallest cell N5. The viral state vi (t ) of every node i in the respective
cell Nl is within the shaded grey area.

Here, ∆t denotes the sampling time, k is the discrete time, and the number of observa-
tions n is chosen such that the viral state v(n∆t ) practically converged to the steady state
v∞.

We applied the Bethe clustering algorithm to three real-world networks, which were
accessed through [62]: the American football network [63] with N = 115 nodes and L =
613 links, for which r = 10 clusters were detected; the primary school contact network
(day 1) [64] with N = 236 nodes and L = 5899 links, resulting in r = 8 clusters; and the
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train bombing network [65] with N = 64 nodes, L = 243 links and r = 3 identified clus-
ters. For all networks, we considered homogeneous spreading rates βi j , δi , which were
set such that the basic reproduction number equals R0 = 3. The initial viral state was
set to vi (∆t ) = 1/N for every node i . To evaluate the accuracy of the Bethe clustering
approach, we additionally considered a collection of random partitions, which are ob-
tained by randomly permuting the nodes in the partition π of the Bethe clustering.
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Figure 2.5: Low-dimensional approximation of epidemics on real-world networks. The error εavg of the
reduced-size viral state v̄(t ), in (2.31), for partitions obtained by Bethe clustering and random partitions.

Figure 2.5 shows that, for the football and the school network which have a clear
community structure, the Bethe spectral clustering approach results in significantly more
accurate low-dimensional viral dynamics v̄(t ) than for random partitions. For the train
network, which does not possess a clear community structure, there is a smaller ad-
vantage of Bethe clustering. Thus, our results indicate that if the network has an un-
derlying community structure, then spectral clustering may be used to find an accurate
low-dimensional approximation of the viral state dynamics.

Furthermore, for any partition π of the nodes, there are low-dimensional bounds
vlb,l (t ), vub,l (t ) of the viral state dynamics, as stated by Theorem 2.19. We define the
errors εub and εlb of the bounds vub,l (t ) and vlb,l (t ) analogously to (2.32). Figure 2.6
demonstrates that the partition of the nodes by the Bethe clustering algorithm results
in significantly more accurate lower bounds vlb,l (t ) than those obtained from random
partitions, and somewhat more accurate upper bounds vub,l (t ).

2.5. CONCLUSIONS
In this chapter, we focussed on reducing NIMFA on a network with N nodes to only
m ¿ N differential equations. We believe that the geometric clustering approach out-
lined in this work can be applied to other dynamics on networks, particularly to general
epidemic models, see Chapter 7, and the class of dynamics in [50–53]. Our contribution
is composed of three parts. In the first part, we showed that the viral dynamics evolve on
an m-dimensional subspace V if and only if the contact network has an equitable parti-
tion with m1 ≤ m cells. Thus, low-dimensional viral state dynamics and the macroscopic
structure of equitable partitions are equivalent.

In the second part, we focussed on equitable partitions π with the same spreading
rates βi j and δi for all nodes i , j in the same cell Nl . We considered the decomposi-
tion of the viral state v(t ) = vker(t )+ ṽ(t ) into two parts: the term ṽ(t ) describes the vi-
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Figure 2.6: Low-dimensional bounds of epidemics on real-world networks. The errors of the low-
dimensional bounds vlb,l (t ) and vub,l (t ), stated by Theorem 2.19, for partitions obtained by Bethe clustering
and random partitions. The subplots in the first and second row show the errors εub and εlb of the upper
bound vub,l (t ) and the lower bound vub,l (t ), respectively.

ral state average in every cell Nl ; and the term vker(t ) equals the projection of the viral
state v(t ) onto the kernel of the infection rate matrix B . By showing that the term ṽ(t )
evolves independently from the projection vker(t ) and the projection vker(t ) obeys a lin-
ear time-varying system, we derived the solution of the NIMFA differential equations on
the complete graph for arbitrary initial conditions v(0).

Strictly speaking, most contact networks do not have an equitable partition, and an
exact reduction of the number of NIMFA equations is not possible. In the third part, we
considered arbitrary contact networks with a (not necessarily equitable) partition of the
nodes into m cells. For any partition of the nodes, we derived bounds and approxima-
tions of the NIMFA epidemics with only m differential equations. The “more equitable”
the partition, the more accurate the approximation. Thus, finding (almost) equitable
partitions is crucial for reducing an epidemic outbreak in a large population to the inter-
action of only few groups of individuals.
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3
THE SOLUTION OF NIMFA

AROUND THE EPIDEMIC

THRESHOLD

Most epidemic models are described by non-linear differential equations which do not
have a closed-form solution. Due to the absence of a closed-form solution, the understand-
ing of the precise dynamics of a virus is rather limited. We derive the solution of the NIMFA
differential equations around the epidemic threshold. The solution applies to arbitrarily
large and heterogeneous contact networks and heterogeneous spreading parameters, pro-
vided that the initial viral state vector is small. Numerical simulations demonstrate that
the solution around the epidemic threshold is accurate, also above the epidemic threshold
and for general initial viral states.

This chapter is based on [66].

31



3

32 3. THE SOLUTION OF NIMFA AROUND THE EPIDEMIC THRESHOLD

3.1. INTRODUCTION
For real-world epidemics, the regime around epidemic threshold criterion R0 = 1 is of
particular interest. In practice, the basic reproduction number R0 cannot be arbitrarily
great, since natural immunities and vaccinations lead to significant curing rates δi and
the frequency and intensity of human contacts constrain the infection ratesβi j . Further-
more, the basic reproduction number R0 in (1.4) does take disease counter-measures
(such as lockdown restrictions and quarantining) into account. Hence, if effective dis-
ease counter-measures are deployed, then the basic reproduction number R0 may be
close to 1, also for very contagious diseases. Beyond the spread of infectious diseases,
many real-world systems seem to operate in the critical regime around a phase transi-
tion [67, 68].

The basic reproduction number R0 only provides a coarse description of the dynam-
ics of NIMFA (1.1). In this chapter, we aim to give a detailed, quantitative picture of the
dynamics of the viral state v(t ) around the epidemic threshold R0 = 1. More precisely,
we derive the closed-form expression of the viral state vi (t ) for every node i at every time
t when R0 ↓ 1, given that the initial state v(0) is small or parallel1 to the steady-state vec-
tor v∞. We remark that approximating the stochastic SIS epidemic process by NIMFA is
least accurate around the epidemic threshold [20, 69]. Thus, the solution of NIMFA for
R0 ↓ 1, which is derived in this chapter, might be less accurate for the description of the
probabilistic SIS process.

In [59], NIMFA (1.3) was solved for a special case: If the adjacency matrix A corre-
sponds to a regular graph and the initial state vi (0) is the same2 for every node i , then
NIMFA with time-varying, homogeneous spreading parameters β(t ),δ(t ) has a closed-
form solution. Here, we focus on time-invariant but heterogeneous spreading parame-
tersδi ,βi j , and we solve NIMFA (1.1) for arbitrary large and heterogeneous graphs around
the threshold R0 = 1.

3.2. NOTATIONS AND ASSUMPTIONS
The basic reproduction number R0 = ρ(S−1B) is determined by the infection rate matrix
B and the curing rate matrix S. Thus, the notation R0 ↓ 1 is imprecise, since there are
infinitely many matrices B ,S such that the basic reproduction number R0 equals 1. To be
more precise, we consider a sequence

{(
B (n),S(n)

)}
n∈N of infection rate matrices B (n) and

curing rate matrices S(n) that converges3 to a limit (B∗,S∗), such that ρ
(
(S∗)−1 B∗) = 1

and

ρ
((

S(n))−1
B (n)

)
> 1 ∀n ∈N.

For the ease of exposition, we drop the index n and replace B (n) and S(n) by the notation
B and S, respectively. In particular, we emphasise that the assumptions below apply

1The initial state vector v(0) is parallel to the steady-state vector v∞ if v(0) =αv∞ for some scalar α ∈R.
2The steady-state v∞,i is the same for every node i in a regular graph for homogeneous spreading parameters
β,δ. Hence, the initial state vi (0) is the same for every node i if and only if the initial state v(0) is parallel to
the steady-state vector v∞.

3By convergence of the sequence of tuples
(
B (n),S(n)

)
to the limit (B∗,S∗), we mean that, for all ε > 0, there

exists an n0(ε) ∈N such that both ‖B (n) −B∗‖2 < ε and ‖S(n) −S∗‖2 < ε holds for all n ≥ n0(ε).
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to every element
(
B (n),S(n)

)
of the sequence. In Section 3.3 to Section 3.5, we formally

abbreviated the limit process
(
B (n),S(n)

)→ (B∗,S∗) by the notation R0 ↓ 1. For the proofs
in Appendix B, we use the lengthier but clearer notation (B ,S) → (B∗,S∗). Furthermore,
we use the superscript notation Ξ∗ to denote the limit of any variable Ξ that depends
on the infection rate matrix B and the curing rate matrix S. For instance, δ∗i denotes
the limit of the curing rate δi of node i when (B ,S) → (B∗,S∗). The Landau-notation
f (R0) =O(g (R0)) as R0 ↓ 1 denotes that | f (R0)| ≤σ|g (R0)| for some constant σ as R0 ↓ 1.
For instance, it holds that (R0 −1)2 =O(R0 −1) as R0 ↓ 1.

In the remainder of this chapter, we rely on three assumptions, which we state for
clarity in this section.

Assumption 3.1. For every basic reproduction number R0 > 1, the curing rates are pos-
itive and the infection rates are non-negative, i.e., δi > 0 and βi j ≥ 0 for all nodes i , j .
Furthermore, in the limit R0 ↓ 1, it holds that δi 6→ 0 and δi 6→∞ for all nodes i .

We consider Assumption 3.1 a rather technical assumption, since only non-negative
rates δi and βi j have a physical meaning. Furthermore, if the curing rates δi were zero,
then the differential equations (1.1) would describe a Susceptible-Infected (SI) epidemic
process. In this chapter, we focus on the SIS epidemic process, for which it holds that
δi > 0.

Assumption 3.2. For every basic reproduction number R0 > 1, it holds that vi (0) ≥ 0 and
vi (0) ≤ v∞,i for every node i = 1, ..., N . Furthermore, it holds that vi (0) > 0 for at least one
node i .

For the description of most real-world epidemics, Assumption 3.2 is reasonable for
two reasons. First, the total number of infected individuals often is small in the begin-
ning of an epidemic outbreak. (Sometimes, there is even a single patient zero.) Second,
a group i often contains many individuals. For instance, the viral state vi (t ) could de-
scribe the prevalence of virus in municipality i . Thus, even if there is a considerable total
number of infected individuals in group i , the initial fraction vi (0) would be small.

Assumption 3.3. For every basic reproduction number R0 > 1, the infection rate matrix B
is symmetric and irreducible. Furthermore, in the limit R0 ↓ 1, the infection rate matrix B
converges to a symmetric and irreducible matrix.

Assumption 3.3 holds if and only if the infection rate matrix B (and its limit) corre-
sponds to a connected undirected graph [58].

3.3. THE STEADY-STATE AROUND THE EPIDEMIC THRESHOLD
We define the N ×N effective infection rate matrix W as

W = S−1B. (3.1)

In this section, we state an essential property that we apply to solve the NIMFA equa-
tions (1.1) when the basic reproduction number R0 is close to 1: The steady-state vector
v∞ converges to a scaled version of the principal eigenvector x1(W ) of the effective infec-
tion rate matrix W when R0 ↓ 1.



3

34 3. THE SOLUTION OF NIMFA AROUND THE EPIDEMIC THRESHOLD

Under Assumptions 3.1 and 3.3, the effective infection rate matrix W is non-negative
and irreducible. Hence, the Perron-Frobenius Theorem [58] implies that the matrix W
has a unique eigenvalueλ1(W ) which equals the spectral radius ρ(W ). As we show in the
beginning of Appendix B.2, the eigenvalues of the effective infection rate matrix W are
real and satisfy λ1(W ) = ρ(W ) > λ2(W ) ≥ ... ≥ λN (W ). In particular, under Assumptions
3.1 and 3.3, the largest eigenvalue λ1(W ), the spectral radius ρ(W ) and the basic repro-
duction number R0 are the same quantity, i.e., R0 = ρ(W ) = λ1(W ). In this chapter and
in Appendix B, we shorten the notation xk (W ) and λk (W ) by xk and λk , respectively.

In [70, Lemma 4] it was shown that, for homogeneous NIMFA (1.3), the steady-state
vector v∞ converges to a scaled version of the principal eigenvector of the adjacency
matrix A when R0 ↓ 1. We generalise the results of [70] to heterogeneous NIMFA (1.1):

Theorem 3.4. Under Assumptions 3.1 and 3.3, the steady-state vector v∞ obeys

v∞ = γx1 +η, (3.2)

where the scalar γ equals

γ= (R0 −1)

∑N
l=1δl (x1)2

l∑N
l=1δl (x1)3

l

, (3.3)

and the N ×1 vector η satisfies ‖η‖2 ≤O (
(R0 −1)2

)
when the basic reproduction number

R0 approaches 1 from above.

Proof. Appendix B.2.

3.4. THE VIRAL DYNAMICS AROUND THE EPIDEMIC THRESH-
OLD

In Subsection 3.4.1, we give an intuitive motivation of our solution approach for the
NIMFA equations (1.1) when R0 ↓ 1. In Subsection 3.4.2, we state our main result.

3.4.1. MOTIVATION OF THE SOLUTION APPROACH
For simplicity, this subsection is confined to the homogeneous NIMFA equations (1.3).
In numerical simulations, we observed that the proper orthogonal decomposition (2.1)
yields an accurate approximation the viral state v(t ) for only m ¿ N agitation modes
y1, ..., ym . Hence, it holds that v(t ) ≈ c1(t )y1 + ...+ cm(t )ym at every time t . We consider
the most extreme case and represent the viral state v(t ) by a scaled version of only m = 1
vector y1, which corresponds to v(t ) ≈ c(t )y1 for a scalar function c(t ). (For simplicity,
we replace the notation c1(t ) by c(t ) in this chapter.) The viral state v(t ) converges to the
steady-state vector v∞ as t → ∞. Hence, a natural choice for the vector y1 is y1 = v∞,
which implies that c(t ) → 1 as t → ∞. If R0 ≈ 1 and v(0) ≈ 0, then the approximation
v(t ) ≈ c(t )v∞ is accurate at all times t ≥ 0 due to two intuitive reasons.

1. If v(t ) ≈ 0 when t ≈ 0, then NIMFA (1.3) is approximated by the linearisation around
zero. Hence, it holds that

d v(t )

d t
≈ (

βA−δI
)

v(t ) (3.4)
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when t ≈ 0. The state v(t ) of the linear system (3.4) converges rapidly to a scaled
version of the principal eigenvector x1 of the matrix

(
βA−δI

)
. Furthermore, The-

orem 3.4 states that v∞ ≈ γx1 when R0 ≈ 1. Thus, the viral state v(t ) rapidly con-
verges to a scaled version of the steady-state v∞.

2. Suppose that the viral state v(t ) approximately equals to a scaled version of the
steady-state vector v∞. (In other words, the viral state v(t ) is “almost parallel” to
the vector v∞.) Then, it holds that

v(t ) ≈ c(t )v∞ (3.5)

for some scalar c(t ). We insert (3.5) into the NIMFA equations (1.3), which yields
that

dc(t )

d t
v∞ ≈ c(t )

(
βA−δI

)
v∞−βc2(t )diag(v∞)Av∞. (3.6)

For homogeneous NIMFA (1.3), the steady-state equation (1.5) becomes(
βA−δI

)
v∞ =βdiag(v∞) Av∞. (3.7)

We substitute (3.7) in (3.6) and obtain that

dc(t )

d t
v∞ ≈ (

c(t )− c2(t )
)(
βA−δI

)
v∞. (3.8)

Since v∞ ≈ γx1 around the epidemic threshold, it holds that Av∞ ≈ ρ(A)v∞. Hence,
we obtain that

dc(t )

d t
v∞ ≈ (

c(t )− c2(t )
)(
βρ(A)−δ)

v∞. (3.9)

Left-multiplying (3.9) by vT∞ and dividing by vT∞v∞ yields that

dc(t )

d t
≈ (

c(t )− c2(t )
)(
βρ(A)−δ)

. (3.10)

The logistic differential equation (3.10) has been introduced by [71] as a population
growth model and has a closed-form solution.

Due to the two intuitive steps above, NIMFA (1.3) reduces around the threshold R0 ≈ 1 to
the one-dimension differential equation (3.10). Solving (3.10) for the function c(t ) gives
an approximation of the viral state v(t ) by (3.5). The solution approach is also applicable
to other dynamics on networks, see for instance [57].

However, the reasoning above is not rigorous for two reasons. First, the viral state
vector v(t ) is not exactly parallel to the steady state v∞. To be more specific, instead of
(3.5) it holds that

v(t ) = c(t )v∞+ξ(t ) (3.11)

for some N × 1 error vector ξ(t ) which is orthogonal to the steady-state vector v∞. In
Subsection 3.4.2, we use (3.11) as an ansatz for solving NIMFA (1.1).

Second, the steady-state vector v∞ is not exactly parallel to the principal eigenvector
x1. More precisely, we must consider the vector η in (3.2). Since η 6= 0, the step from (3.8)
to (3.9) is affected by an error.
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3.4.2. THE SOLUTION AROUND THE EPIDEMIC THRESHOLD
Based on the motivation in Subsection 3.4.1, we aim to solve the NIMFA differential
equations (1.1) around the epidemic threshold criterion R0 = 1. The ansatz (3.11) forms
the basis for our solution approach. From the orthogonality of the error vector ξ(t ) and
the steady-state vector v∞, it follows that the function c(t ) at time t equals

c(t ) = 1

‖v∞‖2
2

vT
∞v(t ). (3.12)

The error vector ξ(t ) at time t follows from (3.11) and (3.12) as

ξ(t ) =
(

I − 1

‖v∞‖2
2

v∞vT
∞

)
v(t ). (3.13)

Our solution approach is based on two steps. First, we show that4 the error term ξ(t ) sat-
isfies ξ(t ) =O((R0−1)2) at every time t when R0 ↓ 1. Hence, the error term ξ(t ) converges
to zero uniformly in time t . Second, we find the solution of the scalar function c(t ) at the
limit R0 ↓ 1.

Assumption 3.2 implies that the viral state v(t ) does not overshoot the steady-state
v∞:

Lemma 3.5. Under Assumptions 3.1 to 3.3, it holds that vi (t ) ≤ v∞,i for all nodes i at
every time t ≥ 0. Furthermore, it holds that 0 ≤ c(t ) ≤ 1 at every time t ≥ 0.

Proof. Appendix B.3.

Theorem 3.6 states that the error term ξ(t ) converges to zero in the order of (R0 −1)2

uniformly in time t when R0 ↓ 1.

Theorem 3.6. Under Assumptions 3.1 to 3.3, there exist constants σ1,σ2 > 0 such that the
error term ξ(t ) at any time t ≥ 0 is bounded by

‖ξ(t )‖2 ≤ ‖ξ(0)‖2e−σ1t +σ2(R0 −1)2

when the basic reproduction number R0 approaches 1 from above.

Proof. Appendix B.4.

We define the constantΥ(0), which depends on the initial viral state v(0), as

Υ(0) = artanh

(
2

vT∞v(0)

‖v∞‖2
2

−1

)
. (3.14)

Furthermore, we define the viral slope $, which determines the speed of convergence to
the steady-state v∞, as

$= (R0 −1)
N∑

l=1
δl (x1)2

l .

Then, building on Theorems 3.4 and 3.6, we obtain our main result:

4Theorem 3.4 implies that the steady-state v∞ satisfies ‖v∞‖2 = O (R0 −1) when R0 ↓ 1. Thus, also
‖c(t )v∞‖2 = O (R0 −1) at every time t . Thus, a linear convergence of the error term ξ(t ) to zero, i.e.,
‖ξ(t )‖2 =O (R0 −1), would not be sufficient to show that the viral state v(t ) converges to c(t )v∞ when R0 ↓ 1.
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Theorem 3.7. Suppose that Assumptions 3.1 to 3.3 hold and that, for some constant p > 1,
‖ξ(0)‖2 =O ((R0 −1)p ) when R0 ↓ 1. Furthermore, define

vapx(t ) = 1

2

(
1+ tanh

($
2

t +Υ(0)
))

v∞. (3.15)

Then, there exists some constant σ> 0 such that

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ(R0 −1)s−1 ∀t ≥ 0, (3.16)

where s = min{p,2}, when the basic reproduction number R0 approaches 1 from above.

Proof. Appendix B.5.

We emphasise that Theorem 3.7 holds for any connected graph corresponding to
the infection rate matrix B . Theorem 3.7 is in agreement with the universality of the
SIS prevalence [72]. The bound (3.16) states a convergence of the viral state v(t ) to the
approximation vapx(t ) which is uniform in time t . Furthermore, since both the viral state
v(t ) and the approximation vapx(t ) converge to the steady-state v∞, it holds that ‖v(t )−
vapx(t )‖2 → 0 when t →∞. At time t = 0, we obtain from Theorem 3.7 and (3.13) that

‖v(0)− vapx(0)‖2 = ‖ξ(0)‖2.

Since ‖ξ(0)‖2 =O ((R0 −1)p ) and, by Theorem 3.4, ‖v∞‖2 =O (R0 −1), we obtain that

‖v(0)− vapx(0)‖2

‖v∞‖2
=O (

(R0 −1)p−1) .

Hence, for general t ≥ 0 the approximation error ‖v(t )− vapx(t )‖2/‖v∞‖2 does not con-
verge to zero faster than O (

(R0 −1)p−1
)
, and the bound (3.16) is best possible (up to the

constant σ) when p ≤ 2. With (3.13), the term ‖ξ(0)‖2 in Theorem 3.6 can be expressed
explicitly with respect to the initial viral state v(0) and the steady-state v∞.

The vectors ξ(t ) and v∞ are orthogonal. Thus, it holds that ‖v(t )‖2 = ‖c(t )v∞‖2 +
‖ξ(t )‖2, which implies that ‖ξ(0)‖2 ≤ ‖v(0)‖2. Hence, if ‖v(0)‖2 ≤ σ̃(R0 − 1)2 for some
constant σ̃, then the condition ‖ξ(0)‖2 =O ((R0 −1)p ) in Theorem 3.7 is satisfied for p =
2. Figure 3.1 illustrates the uniform convergence result in Theorem 3.7.

Furthermore, if the initial viral state v(0) is parallel to the steady-state vector v∞, then
it holds that ξ(0) = 0. Thus, if the initial viral state v(0) is small or parallel to the steady-
state vector v∞, then we obtain that ξ(0) = 0, and the bound (3.16) on the approximation
error vector becomes

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ(R0 −1) ∀t ≥ 0. (3.17)

The solution to NIMFA (1.1) at the epidemic threshold criterion R0 = 1 depends solely
on the viral slope $, the steady-state vector v∞ and the initial viral state v(0). The viral
slope $ converges to zero as R0 ↓ 1. Thus, Theorem 3.7 implies that the convergence
time to the steady-state v∞ goes to infinity when R0 ↓ 1, even though the steady-state v∞
converges to zero. More precisely, it holds:
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𝑣 𝑡 𝑣∞
𝑣apx 𝑡

width ≤ 𝜎 𝑅0 − 1
2

radius ≤ 𝜎 𝑅0 − 1
2

𝑣 0

𝑒1

𝑒2

Figure 3.1: Viral dynamics around the epidemic threshold R0 = 1. An illustration of the uniform convergence
of Theorem 3.7 for a network with N = 2 nodes. The black curve shows the trajectory of the 2× 1 viral state
vector v(t ) as time t evolves. The blue line shows the steady state v∞, which satisfies v∞ = O (R0 −1) as
R0 ↓ 1. The red curve depicts the trajectory closed-form approximation vapx(t ) = c(t )v∞, which is parallel to
the steady state v∞ at every time t . Theorem 3.7 yields: if the initial viral state v(0) is positive and in the disk of
radius σ̃ (R0 −1)2 for some constant σ̃, then the approximation error ‖v(t )−vapx(t )‖2 is bounded byσ (R0 −1)2

for some constant σ at every time t as R0 ↓ 1.

Corollary 3.8. Suppose that Assumptions 3.1 and 3.3 hold and that the initial viral state
v(0) equals v(0) = r0v∞ for some scalar r0 ∈ (0,1). Then, for any scalar r1 ∈ [r0,1), the
largest time t01 at which the viral state satisfies vi (t01) ≤ r1v∞,i for every node i converges
to

t01 = 1

$
log

(
r1

r0

1− r0

1− r1

)
when the basic reproduction number R0 approaches 1 from above.

Proof. Appendix B.6.

We combine Theorem 3.4 and Theorem 3.7 to obtain Corollary 3.9.

Corollary 3.9. Suppose that Assumptions 3.1 to 3.3 hold and that, for some constant p >
1, ‖ξ(0)‖2 =O ((R0 −1)p ) when R0 ↓ 1. Furthermore, define

ṽapx(t ) =
(
1+ tanh

($
2

t +Υ(0)
)) γ

2
x1. (3.18)

Then, there exists some constant σ> 0 such that

‖v(t )− ṽapx(t )‖2

‖v∞‖2
≤σ(R0 −1)s−1 ∀t ≥ 0,

where s = min{p,2}, when the basic reproduction number R0 approaches 1 from above.
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In contrast to Theorem 3.7, the approximation error ‖v(t )− ṽapx(t )‖2 in Corollary 3.9
does not converge to zero when t → ∞, since we replaced the steady-state v∞ by the
first-order approximation of Theorem 3.4. Corollary 3.9 implies that

vi (t )

v j (t )
→ ṽapx,i (t )

ṽapx, j (t )
= (x1)i

(x1) j
(3.19)

at every time t when R0 ↓ 1, provided that the initial viral state v(0) is small or parallel to
the steady-state vector v∞. From (3.19) it follows that, around the epidemic threshold
criterion R0 = 1, the eigenvector centrality [32] fully determines the “dynamical impor-
tance” of node i versus node j .

For homogeneous NIMFA (1.3), the infection rate matrix B and the curing rate matrix
S reduce to B = βA and S = δI , respectively. Hence, the effective infection rate matrix

becomes W = β
δ A, and the principal eigenvector x1 of the effective infection rate matrix

W equals the principal eigenvector of the adjacency matrix A. Furthermore, the limit

process R0 ↓ 1 reduces to τ ↓ τc , with the effective infection rate τ = β
δ and the epidemic

threshold τc = 1/ρ(A). For homogeneous NIMFA (1.3), Theorem 3.7 reduces to:

Corollary 3.10. Suppose that Assumptions 3.1 to 3.3 hold and consider the viral state v(t )
of homogeneous NIMFA (1.3). Furthermore, suppose that ‖ξ(0)‖2 =O ((τ−τc )p ) for some
constant p > 1 when τ ↓ τc and define

vapx(t ) = 1

2

(
1+ tanh

(
(τ−τc )δ

2τc
t +Υ(0)

))
v∞. (3.20)

Then, there exists some constant σ> 0 such that

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ(τ−τc )s−1 ∀t ≥ 0,

where s = min{p,2}, when the effective infection rate τ approaches the epidemic threshold
τc from above.

Proof. Appendix B.7.

From Corollary 3.10, we can obtain the analogue to Corollary 3.9 for NIMFA (1.3)
with homogeneous spreading parameters β,δ. Furthermore, the approximation vapx(t )
defined by (3.20) equals the exact solution [59] of homogeneous NIMFA (1.3) on a regular
graph, provided that the initial state vi (0) is the same for every node i . In particular, the
net dose %(t ), a crucial quantity in [59, 73], is related to the viral slope $ via %(t ) = w t .

As illustrated by Figure 3.1, the viral state v(t ) converges to the one-dimensional dy-
namics vapx(t ) as R0 ↓ 1. Are there networks for which the approximation vapx(t ) is exact,
for any basic reproduction number R0 > 1? The infection rate matrix B is regular if

N∑
k=1

βi k =
N∑

k=1
β j k (3.21)

for all nodes i , j . From Theorem 2.14, we obtain:
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Corollary 3.11. Suppose that Assumption 2.7 and Assumptions 3.1 to 3.3 hold and con-
sider some fixed basic reproduction number R0 > 1. Then, there is an m = 1 dimensional
invariant set V = span{y1} of NIMFA (1.2) if and only if V0 =;, the agitation mode equals
either y1 = v∞/‖v∞‖2 or y1 =−v∞/‖v∞‖2 and the infection rate matrix B is regular. Fur-
thermore, the approximation vapx(t ) is exact if and only if the matrix B is regular and
v(0) = c(0)v∞ for some scalar c(0).

Proof. Appendix B.8

Theorem 3.7 and Corollary 3.10 suggest that, around the epidemic threshold crite-
rion R0 = 1, the dynamics of heterogeneous NIMFA (1.1) closely resembles the dynamics
of homogeneous NIMFA (1.3). In particular, we pose the question: Can heterogeneous
NIMFA (1.1) be reduced to homogeneous NIMFA (1.3) around the epidemic threshold cri-
terion R0 = 1 by choosing the homogeneous spreading parameters β,δ and the adjacency
matrix A accordingly?

Theorem 3.12. Consider heterogeneous NIMFA (1.1) with given spreading parameters
βi j ,δi . Suppose that Assumptions 3.1 to 3.3 hold and that, for some constant p > 1,
‖ξ(0)‖2 =O ((R0 −1)p ) when the basic reproduction number R0 approaches 1 from above.
Define the homogeneous NIMFA system

d vi ,hom(t )

d t
=−δhomvi ,hom(t )+βi i ,hom

(
1− vi ,hom(t )

)
vi ,hom(t ) (3.22)

+ (
1− vi ,hom(t )

)
βhom

N∑
j=1, j 6=i

v j ,hom(t ),

where the homogeneous curing rate δhom equals

δhom =
∑N

l=1δl (x1)3
l∑N

l=1 (x1)3
l

, (3.23)

the homogeneous infection rate βhom equals

βhom = δhom∑N
l=1 (x1)l

(
1+γ

N∑
l=1

(x1)3
l

)
min

l=1,...,N
(x1)l (3.24)

with the variable γ defined by (3.3), and the self-infection rates βi i ,hom equal

βi i ,hom =βhom

 1

min
l=1,...,N

(x1)l
− 1

(x1)i

 N∑
j=1

(x1) j +βhom.

Then, if vhom(0) = v(0), there exists some constant σ> 0 such that

‖v(t )− vhom(t )‖2

‖v∞‖2
≤σ(R0 −1)s−1 ∀t ≥ 0,

where s = min{p,2}, when the basic reproduction number R0 approaches 1 from above.
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Proof. Appendix B.9.

In other words, when R0 ↓ 1, for any contact network and any spreading parameters
δi ,βi j , heterogeneous NIMFA (1.1) can be reduced to homogeneous NIMFA (1.3) on a
complete graph plus self-infection rates βi i ,hom. We emphasise that the sole influence of
the topology on the viral spread is given by the self-infection rates βi i ,hom. Thus, under
Assumptions 3.1 to 3.3, the network topology has a surprisingly small impact on the viral
spread around the epidemic threshold.

3.5. NUMERICAL EVALUATION
We are interested in evaluating the accuracy of the closed-form expression vapx(t ), given
by (3.15), when the basic reproduction number R0 is close, but not equal, to one. We
generate an adjacency matrix A according to different random graph models. If ai j = 1,
then we set the infection rates βi j to a uniformly distributed random number in [0.4,0.6]

and, if ai j = 0, then we set βi j = 0. We set the initial curing rates δ(0)
l to a uniformly

distributed random number in [0.4,0.6]. To set the basic reproduction number R0, we
set the curing rates δl to a multiple of the initial curing rates δ(0)

l , i.e. δl =σδ(0)
l for every

node l and some scalar σ such that ρ(W ) = R0. Thus, we realise the limit process R0 ↓ 1
by changing the scalarσ. Only in Subsection 3.5.2, we consider homogeneous spreading
parameters by setting βi j = 0.5 and δ(0)

i = 0.5 for all nodes i , j . Numerically, we obtain
the “exact” NIMFA viral state sequence v(t ) by Euler’s method for discretisation, i.e.,

d vi (t )

d t

∣∣∣∣
t=k∆t

≈ vi (k∆t )− vi ((k −1)∆t )

∆t
(3.25)

for a small sampling time ∆t and a discrete time slot k ∈ N. In Chapter 4, we derive
an upper bound ∆tmax on the sampling time ∆t which ensures that the discretisation
(3.25) of NIMFA (1.1) converges to the steady-state v∞. We set the sampling time to
∆t =∆tmax/100. Except for Subsection 3.5.3, we set the initial viral state to v(0) = 0.01v∞.
We define the convergence time tconv as the smallest time t at which∣∣vi (tconv)− v∞,i

∣∣≤ 0.01

holds for every node i . Thus, at the convergence time tconv the viral state v(tconv) has
practically converged to the steady-state v∞. We evaluate Theorem 3.7 with respect to
the approximation error εV , which we define as

εV = 1

N tconv

N∑
i=1

∫ tconv

0

∣∣vi
(
t̃
)− vapx,i

(
t̃
)∣∣

v∞,i
d t̃ .

All results are averaged over 100 randomly generated networks.

3.5.1. APPROXIMATION ACCURACY AROUND THE EPIDEMIC THRESHOLD
We generate a Barabási-Albert random graph [8] with N = 500 nodes and the parameters
m0 = 5, mBA = 2. Figure 3.2 gives an impression of the accuracy of the approximation of
Theorem 3.7 around the epidemic threshold criterion R0 = 1. For a basic reproduction
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Figure 3.2: Closed-form solution around the epidemic threshold. For a Barabási-Albert random graph with
N = 500 nodes, the approximation accuracy of Theorem 3.7 is depicted. Each of the sub-plots shows the viral
state traces vi (t ) of seven different nodes i , including the node i with the greatest steady-state v∞,i .

number R0 ≤ 1.1, the difference of the closed-form expression of Theorem 3.7 to the
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(a) Erdős-Rényi random graphs.
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(b) Barabási-Albert random graphs.

Figure 3.3: Accuracy of closed-form approximation versus the basic reproduction number R0. The approx-
imation error εV of the NIMFA solution versus the basic reproduction number R0 for different network sizes
N .

exact NIMFA viral state trace is negligible.

We aim for a better understanding of the accuracy of the closed-form expression
of Theorem 3.7 when the basic reproduction number R0 converges to one. We gener-
ate Barabási-Albert and Erdős-Rényi connected random graphs with N = 100, ...,1000
nodes. The link probability of the Erdős-Rényi graphs [74] is set to pER = 0.05. Figure
3.3 illustrates the convergence of the approximation of Theorem 3.7 to the exact solu-
tion of NIMFA (1.1). Around the threshold criterion R0 = 1, the approximation error εV

converges linearly to zero with respect to the basic reproduction number R0, which is in
agreement with Theorem 3.7. The greater the network size N , the greater is the approxi-
mation error εV for Barabási-Albert networks. The greater the network size N , the lower
is the approximation error εV for Erdős-Rényi graphs.
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Figure 3.4: Approximation accuracy versus degree heterogeneity. The approximation error εV versus the link
rewiring probability pWS for Watts-Strogatz random graphs with N = 100 nodes and homogeneous spreading
parameters β,δ.

3.5.2. IMPACT OF DEGREE HETEROGENEITY ON THE APPROXIMATION AC-
CURACY

For NIMFA (1.3) with homogeneous spreading parametersβ,δ, the approximation vapx(t )
defined by (1.3) is exact if the contact network is a regular graph. We are interested how
the approximation accuracy changes with respect to the heterogeneity of the node de-
grees. We generate Watts-Strogatz [75] random graphs with N = 100 nodes and an av-
erage node degree of 4. We vary the link rewiring probability pWS from pWS = 0, which
correspond to a regular graph, to pWS = 1, which corresponds to a “completely random”
graph. Figure 3.4 depicts the approximation error εV versus the rewiring probability
pWS for homogeneous spreading parameters β,δ. Interestingly, the approximation er-
ror reaches a maximum and improves when the adjacency matrix A is more random.

3.5.3. GENERAL INITIAL VIRAL STATES

Theorem 3.7 required that the initial error ξ(0) converges to zero, which means that the
initial viral state v(0) must be parallel to the steady-state v∞ or, since ‖ξ(0)‖2 ≤ ‖v(0)‖2,
converge to zero. For general initial viral states v(0) with ξ(0) 6= 0, it holds that vapx(0) 6=
v(0) since the approximation vapx(0) is parallel to the steady-state vector v∞. Hence, the
approximation vapx(t ) cannot converge point-wise to the viral state v(t ) when R0 ↓ 1.

To investigate whether the approximation of Theorem 3.7 is accurate also when the
initial error ξ(0) does not converge to zero, we set the initial viral state vi (0) of every node
i to a uniformly distributed random number in (0,r0v∞,i ] for some scalar r0 ∈ (0,1]. By
increasing the scalar r0, the initial viral state v(0) is “more random”. Figure 3.5 shows
that the approximation error εV is almost unaffected by an initial viral state v(0) that is
neither parallel to the steady-state v∞ nor small. Figure 3.6 shows that the viral state v(t )
converges rapidly to the approximation vapx(t ) as time t increases.
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Figure 3.5: Approximation accuracy versus variance of the initial viral state v(0). The approximation error εV
versus the scalar r0, which controls the variance of the randomly generated initial viral state v(0), for Barabási-
Albert networks with N = 250 nodes.

3.5.4. DIRECTED INFECTION RATE MATRICES

The proof of Theorem 3.7 relies on a symmetric infection rate matrix B as stated by As-
sumption 3.3. We perform the same numerical evaluation as shown in Figure 3.3 in
Subsection 3.5.1 with the only difference that we generate strongly connected directed
Erdős-Rényi random graphs. Figure 3.7 demonstrates the accuracy of the approxima-
tion vapx(t ) for a directed infection rate matrix B , which leads us to:

Conjecture 3.13. Suppose that Assumptions 3.1 and 3.2 hold and that the infection rate
matrix B is irreducible but, in contrast to Assumption 3.3, not necessarily symmetric.
Then, the viral state v(t ) is “accurately described” by the approximation vapx(t ) when the
basic reproduction number R0 approaches 1 from above.

3.5.5. ACCURACY OF THE CONVERGENCE TIME APPROXIMATION

Corollary 3.8 gives the expression of the convergence time t01 from the initial viral state
v(0) = r0v∞ to the viral state v(t01) ≤ r1v∞ for any scalars 0 < r0 ≤ r1 < 1 around the
epidemic threshold R0 = 1. We set the scalars to r0 = 0.01 and r1 = 0.9 and define the
approximation error

εt =
∣∣t̂01 − t01

∣∣
t01

,

where t01 denotes the exact convergence time and t̂01 denotes the approximate expres-
sion of Corollary 3.8.

We generate Barabási-Albert and Erdős-Rényi random graphs with N = 100, ...,1000
nodes. Figure 3.8 shows that Corollary 3.8 gives an accurate approximation of the con-
vergence time t01 when the basic reproduction number R0 is reasonably close to one.
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(a) Viral state v(t ) until time t = 120.
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(b) Viral state v(t ) until time t = 6.

Figure 3.6: Closed-form approximation for general initial viral states v(0). For a Barabási-Albert random
graph with N = 500 nodes, a basic reproduction number R0 = 1.01 and a randomly generated initial viral state
v(0), the approximation accuracy of Theorem 3.7 is depicted. The viral state traces vi (t ) of seven different
nodes i are depicted.

3.5.6. REDUCTION TO A COMPLETE GRAPH WITH HOMOGENEOUS SPREAD-
ING PARAMETERS

Theorem 3.12 states that, around the epidemic threshold, heterogeneous NIMFA (1.1) on
any graph can be reduced to homogeneous NIMFA (1.3) on a complete graph. Figure 3.9
and Figure 3.10 show the approximation accuracy of Theorem 3.12 for Erdős-Rényi and
Barabási-Albert random graphs, respectively. To accurately approximate heterogeneous
NIMFA on Barabási-Albert graphs by homogeneous NIMFA on a complete graph, the
basic reproduction number R0 must be closer to 1 than for Erdős-Rényi graphs.
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Figure 3.7: Approximation accuracy for directed networks. The approximation error εV of the NIMFA so-
lution versus the basic reproduction number R0 for directed Erdős-Rényi graphs for different network sizes
N .
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(a) Erdős-Rényi random graphs.
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(b) Barabási-Albert random graphs.

Figure 3.8: Closed-form approximation of the convergence time. The approximation error εt of the conver-
gence time t01 versus the basic reproduction number R0 for different network sizes N .
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(a) Erdős-Rényi random graph and R0 = 1.01.
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(b) Erdős-Rényi random graph and R0 = 1.001.

Figure 3.9: Reducing heterogeneous NIMFA on Erdős-Rényi graphs to NIMFA on a complete graph. The
approximation accuracy of Theorem 3.12 on a Erdős-Rényi random graph with N = 100 nodes. Each of the
sub-plots shows the viral state traces vi (t ) of seven different nodes i , including the node i with the greatest
steady-state v∞,i .

3.6. CONCLUSIONS
We solved the NIMFA governing equations (1.1) with heterogeneous spreading parame-
ters around the epidemic threshold when the initial viral state v(0) is small or parallel to
the steady-state v∞, provided that the infection rates are symmetric (βi j =β j i ). Numer-
ical simulations demonstrate the accuracy of the solution when the basic reproduction
number R0 is close, but not equal, to one. Furthermore, the solution serves as an accu-
rate approximation also when the initial viral state v(0) is neither small nor parallel to
the steady-state v∞. We observe four important implications of the solution of NIMFA
around the epidemic threshold.

First, the viral state v(t ) is almost parallel to the steady-state v∞ for every time t ≥ 0.
On the one hand, since the viral dynamics approximately remain in a one-dimensional
subspace of RN , an accurate network reconstruction around the epidemic threshold is
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(a) Barabási-Albert random graph and R0 = 1.01.
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(b) Barabási-Albert random graph and R0 = 1.001.

Figure 3.10: Reducing heterogeneous NIMFA on Barabási-Albert graphs to NIMFA on a complete graph. The
approximation accuracy of Theorem 3.12 on a Barabási-Albert random graph with N = 100 nodes. Each of the
sub-plots shows the viral state traces vi (t ) of seven different nodes i , including the node i with the greatest
steady-state v∞,i

numerically not viable around the epidemic threshold, see Chapter 7. Furthermore,
when the basic reproduction number R0 is large, then the viral state v(t ) rapidly con-
verges to the steady-state v∞, which, again, prevents an accurate network reconstruc-
tion. On the other hand, only the principal eigenvector x1 of the effective infection rate
matrix W and the viral slope$ are required to predict the viral state dynamics around the
epidemic threshold. Thus, around the epidemic threshold, the prediction of an epidemic
does not require an accurate network reconstruction.

Second, the eigenvector centrality (with respect to the principal eigenvector x1 of the
effective infection rate matrix W ) gives a complete description of the dynamical impor-
tance of a node i around the epidemic threshold. In particular, the ratio vi (t )/v j (t ) of
the viral states of two nodes i , j does not change over time t .

Third, around the epidemic threshold, we gave an expression of the convergence
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time t01 to approach the steady-state v∞. The viral state v(t ) converges to the steady-
state v∞ exponentially fast. However, as the basic reproduction number R0 approaches
one, the convergence time t01 goes to infinity.

Fourth, around the epidemic threshold, NIMFA with heterogeneous spreading pa-
rameter on any graph can be reduced to NIMFA with homogeneous spreading parame-
ters on the complete graph plus self-infection rates.

Potential generalisations of the solution of NIMFA to non-symmetric infection rate
matrices B or time-dependent spreading parameters βi j (t ),δl (t ) stand on the agenda of
future research.
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4
THE DYNAMICS OF

DISCRETE-TIME NIMFA

The majority of epidemic models are formulated in continuous time. However, processing
real-world epidemic data and simulating epidemics is done digitally. Hence, continuous-
time epidemic models are usually approximated in discrete time. The time-discretisation
must be done carefully, since there is no guarantee that properties of continuous-time epi-
demic models, such as the stability of equilibria, also hold for the respective discrete-time
approximation. In this chapter, we analyse NIMFA in discrete time for general, directed
networks with heterogeneous spreading parameters. In particular, we show that the viral
state is increasing and does not overshoot the steady-state, the steady-state is exponen-
tially stable, and we provide linear systems that bound the viral state evolution. Thus, the
discrete-time NIMFA model succeeds to capture the qualitative behaviour of a viral spread
and provides a powerful means to study real-world epidemics.

This chapter is based on [76].
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4.1. INTRODUCTION
Describing the evolution of an epidemic in discrete time k ∈ N is advantageous for two
reasons. First, for the simulation of a viral spread, an implicit discretisation is performed
for the majority of continuous-time epidemic models due to the absence of closed-form
solutions. Hence, a more accurate approach is to directly study the epidemic model
in discrete time. Second, data on real-world epidemics is often collected periodically.
Thus, discrete-time models circumvent the challenge of incomplete knowledge of the
viral state of time spans between two measurements. In Chapter 8, we use discrete-time
epidemic models to predict the spread of COVID-19. Since the number of SARS-CoV-2
infections is reported daily, a natural choice is that the discrete time k corresponds to
days.

The discrete-time NIMFA epidemic model is obtained from continuous-time NIMFA
(1.1) by applying Euler’s method [77], with a “sufficiently small” sampling time1 ∆t >
0, and the discrete-time curing and infection probabilities follow as δ∆t ,i = δi∆t and
β∆t ,i j =βi j∆t , respectively.

Definition 4.1 (Discrete-Time NIMFA Model [25, 78]). The viral state vi [k] of the discrete-
time NIMFA model evolves in discrete time k = 1,2, ... as

vi [k +1] = (1−δ∆t ,i )vi [k]+ (1− vi [k])
N∑

j=1
β∆t ,i j v j [k] (4.1)

for every group i = 1, ..., N . Here, δ∆t ,i > 0 is the discrete-time curing probability, and
β∆t ,i j ≥ 0 is the discrete-time infection probability from group j to group i .

As vector equations, (4.1) reads

v[k +1] = diag(u −δ∆t )v[k]+diag(u − v[k])B∆t v[k], (4.2)

where the viral state vector at discrete time k equals v[k] = (v1[k], ..., vN [k])T , the curing
probability vector equals δ∆t = (δ∆t ,1, ...,δ∆t ,N )T , and the N×N infection probability ma-
trix B∆t is composed of the elementsβ∆t ,i j . The steady-state vector v∞ = (v∞,1, ..., v∞,N )T

is, if existent, the non-zero equilibrium of the discrete-time NIMFA model (4.1), which
satisfies v[k +1] = v[k] = v∞, and hence,

N∑
j=1

β∆t ,i j v∞, j = δ∆t ,i
v∞,i

1− v∞,i
, i = 1, ..., N . (4.3)

For any sampling time ∆t , the steady state of discrete-time NIMFA (4.1) coincides with
the steady state of continuous-time NIMFA (1.1) given by the solution to (1.5).

In this chapter, we focus on four research questions:

1. Under which conditions does the viral state v[k] approach the endemic viral state
v∞? To the best of our knowledge, the convergence of the viral state v(t ) to the
steady-state v∞ has only been shown [18, 79] for the continuous-time NIMFA model
(1.1). In fact, Ahn and Hassibi [78] gave a counterexample for which the steady-
state v∞ of the discrete-time NIMFA (4.1) is unstable.

1We make the condition “sufficiently small” more precise by Assumption 4.3.
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2. There does not seem to be a general closed-form solution of the NIMFA difference
equation (4.1). But, is there an approximate and simpler description of the viral
state evolution? Of particular interest is a worst-case scenario of the viral spread,
i.e. an upper bound of the viral state vi [k] for any node i at any time k.

3. In practice, the viral state vi [k] often refers to a cumulative and increasing quan-
tity. For instance [25], the viral state vi [k] of node i may refer to the fraction of
deaths by cholera of group i up to time k. Under which conditions is the viral state
vi [k] increasing?

4. How quickly does the virus spread? More specifically, how fast does the viral state
v[k] approach the steady-state v∞?

4.2. NOTATIONS AND ASSUMPTIONS
We define the N ×N matrix R as

R = I −diag(δ∆t )+B∆t . (4.4)

Furthermore, in this chapter and in Appendix C, we shorten the eigenvector and eigen-
value notation xk (R), λk (R) by xk , λk , respectively.

Assumption 4.2. The curing rates are positive and the infection rates are non-negative,
i.e., δ∆t ,i > 0 and β∆t ,i j ≥ 0 for all nodes i , j .

Assumption 4.3. For every node i = 1, ..., N , the sampling time ∆t > 0 satisfies

∆t ≤∆tmax = 1

δi +∑N
j=1βi j

. (4.5)

The results of this chapter which rely on Assumption 4.3 hold true if the sampling
time is sufficiently small, which we consider a rather technical assumption. The particu-
lar choice of the bound (4.5) is due to Lemma 4.11 in Section 4.3. Furthermore, we make
the following assumption on the initial viral state vi [1].

Assumption 4.4. For every node i = 1, ..., N , it holds that 0 ≤ vi [1] ≤ v∞,i .

Assumption 4.4 is reasonable since the initial viral state v[1] of many real-world epi-
demics is almost disease-free. For instance, at the beginning of the periodic outbreak of
the flu, every geographical region is almost healthy. As another example, consider the
spread of content (e.g., a novel tweet or a post) on online social media. The beginning
of the epidemic outbreak (at time k = 1) would correspond to the first appearance of the
online content. Hence, the viral state vi [1], where node i refers to a group of users, is
close to 0.

Assumption 4.5. The infection probability matrix B∆t is irreducible.

Assumption 4.5 holds if and only if the infection probability matrix B∆t corresponds
to a strongly connected graph2. Finally, as shown in [25], Assumption 4.6 avoids the
trivial viral dynamics in which the virus dies out.

Assumption 4.6. The spectral radius ρ (R) of the matrix R is strictly greater than one.
2In a strongly connected graph, there is a path from every node i to any other node j .
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4.3. VIRAL DYNAMICS CLOSE TO THE STEADY-STATE
Paré et al. [25] showed that there is either one stable equilibrium, the healthy state v[k] =
0, or there are two equilibria, the healthy state and the steady-state v∞ with positive
components. For completeness, we recapitulate the results in [25] on the equilibria and
the stability of the healthy state3.

Theorem 4.7 ([25]). Under Assumptions 4.2, 4.3 and 4.5, the following two statements
hold true:

1. If ρ (R) ≤ 1, then the healthy state v[k] = 0 is the only equilibrium of the discrete-
time NIMFA model (4.2). Furthermore, v[k] → 0 when k →∞ for any initial viral
state v[1] with 0 ≤ vi [1] ≤ 1 for every node i .

2. If ρ (R) > 1, then there are two equilibria of the discrete-time NIMFA model (4.2):
The healthy state v[k] = 0 and a steady-state v∞ with v∞,i > 0 for every node i .

Many results in this chapter are based on the non-negativity of the matrix R in (4.4):

Lemma 4.8. Suppose that Assumptions 4.2, 4.3 and 4.5 hold. Then, the matrix R is irre-
ducible and non-negative.

Proof. Appendix C.1.

With the Perron-Frobenius Theorem [32], Lemma 4.8 implies that, under Assump-
tions 4.2, 4.3 and 4.5, there is a real eigenvalue λ1 of the matrix R which equals the
spectral radius ρ(R) and that the principal eigenvector x1 is positive. We generalise the
bounds from [19, 20] for the steady-state vector v∞ to the NIMFA model (4.1) with het-
erogeneous spreading parameters:

Lemma 4.9. Suppose that Assumptions 4.2, 4.3, 4.5 and 4.6 hold. Then, the steady state
v∞,i of any node i is bounded by

1− δ∆t ,i∑N
j=1β∆t ,i j

≤ v∞,i ≤ 1− δ∆t ,i

δ∆t ,i +∑N
j=1β∆t ,i j

.

Proof. Appendix C.2.

When replacing the probabilities β∆t ,i j and δ∆t ,i by the rates βi j and δi , Lemma 4.9
also holds for continuous-time NIMFA (1.1), which has the same steady state v∞ as
discrete-time NIMFA (4.1). We denote the difference of the viral state v[k] to the steady
state v∞ by∆v[k] = v[k]−v∞. By considering the difference∆v[k] = v[k]−v∞, we obtain
an equivalent representation of the discrete-time NIMFA equations (4.1).

Proposition 4.10 (NIMFA Equations as Difference to the Steady-State). Suppose that As-
sumptions 4.2, 4.3, 4.5 and 4.6 hold. Then, the difference ∆v[k] = v[k]−v∞ from the viral
state v[k] to the steady state v∞ of the discrete-time NIMFA model (4.2) evolves as

∆v[k +1] = F∆v[k]−diag(∆v[k])B∆t∆v[k], (4.6)

3Theorem 4.7 follows immediately from merging [25, Theorems 1-2 and Proposition 2].
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where the N ×N matrix F is given by

F = I +diag

(
δ∆t ,1

v∞,1 −1
, ...,

δ∆t ,N

v∞,N −1

)
+diag(u − v∞)B∆t . (4.7)

Proof. Appendix C.3.

For a sufficiently small sampling time ∆t , Lemma 4.11 states that every element of
matrix F is non-negative.

Lemma 4.11. Suppose that Assumptions 4.2, 4.3, 4.5 and 4.6 hold. Then, the N×N matrix
F defined by (4.7) is non-negative, i.e. (F )i j ≥ 0 for every i , j = 1, ..., N .

Proof. Appendix C.4.

Furthermore, Proposition 4.10 leads to:

Corollary 4.12. Suppose that Assumption 4.2–4.6 hold. Then, it holds that vi [k] ≤ v∞,i

for every node i at every time k ≥ 1.

Proof. Appendix C.5.

In other words, Corollary 4.12 states that the set {v |0 ≤ vi ≤ v∞,i , ∀i = 1, ..., N } is an
invariant set of NIMFA (4.1), see the explanation above Problem 2.2. We emphasise that
Corollary 4.12 does not imply that the viral state v[k] increases monotonically.

To provide a graphical illustration of Corollary 4.12, we generate a random network
with N = 10 nodes by creating a directed link ai j = 1 from any node j to any node i
with link probability pER = 0.25 and we repeat this network generation if the resulting
network is not strongly connected. If ai j = 1, then we set the infection probability β∆t ,i j

to a uniformly distributed random number in [0,1] and, if ai j = 0, then we set β∆t ,i j =
0. The curing probability δ∆t ,i for every node i is set to a uniform random number in
[0.95σ,1.05σ], where the constant σ is initially set to σ= 10. If the spectral radius ρ(R) ≤
1+10−3, then we set the constantσ to σ/1.1 and generate new curing probabilities δ∆t ,i .
We repeat this generation of curing probabilities δ∆t ,i until ρ(R) > 1+10−3. The sampling
time ∆t is set to ∆t = ∆tmax/10, given by (4.5). For every node i , the initial viral state
vi [1] is set to a uniform random number in [0,0.01v∞,i ]. Figure 4.1 depicts the resulting
viral state traces vi [k] for every node i . As stated by Corollary 4.12, the viral state v[k]
approaches the steady state v∞ from below without overshooting, but the viral state v[k]
is not strictly increasing. The absence of overshoot is not evident. For instance, in a
Markovian SIS process overshoot is possible [72].

For applications in which the initial viral state v[1] is close to zero, the NIMFA equa-
tions (4.8) can be replaced by linear time-invariant (LTI) systems in two different regimes:
On the one hand, it holds for small times k that v[k] ≈ 0. Hence, the representation (4.2)
can be linearised around the origin v[k] = 0, which yields

v[k +1] ≈ Rv[k], (4.8)
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Figure 4.1: Viral state dynamics of NIMFA. The upper sub-plot depicts the viral state traces vi [k], for a directed
network with N = 10 nodes and heterogeneous spreading parameters δ∆t ,i ,B∆t until discrete time k = 3000.
The viral states of only five nodes are depicted to avoid strongly overlapping curves. The lower sub-plot depicts
the same viral state traces vi [k], i = 1, ..., N , but only the initial phase until discrete time k = 200.

for small times k. On the other hand, if the viral state v[k] is close to the steady-state
v∞, which implies ∆v[k] ≈ 0, then the representation (4.6) can be linearised around the
origin ∆v[k] = 0, which gives

∆v[k +1] ≈ F∆v[k]. (4.9)

Furthermore, we obtain that the steady-state v∞ is asymptotically stable4.

Theorem 4.13 (Asymptotic Stability of the Steady-State). Under Assumptions 4.2, 4.3,
4.5 and 4.6, the steady-state v∞ of the discrete-time NIMFA system (4.2) is asymptotically
stable.

Proof. Appendix C.6.

4The steady-state v∞ is asymptotically stable if there exists an ε > 0 such that ‖v[1]− v∞‖ < ε implies that
v[k] → v∞ when k →∞.



4.4. MONOTONICITY OF THE VIRAL DYNAMICS

4

57

Ahn and Hassibi [78] gave a counterexample for which the steady-state v∞ of the
discrete-time NIMFA system (4.2) is unstable. However, their counterexample does not
satisfy Assumption 4.3. Hence, a sufficiently small sampling time ∆t is decisive for the
stability of the discrete-time NIMFA model (4.2). (Paré et al. [25] observed that the coun-
terexample in [78] violates the third assumption in [25], which is closely related to As-
sumption 4.3.)

4.4. MONOTONICITY OF THE VIRAL DYNAMICS
In this section, we show that the viral state v[k] is monotonically increasing, provided
that the initial viral state v[1] is small.

Definition 4.14 (Strictly increasing viral dynamics). The viral state v[k] is strictly increas-
ing at time k if v[k +1] > v[k]. The viral state v[k] is globally strictly increasing if v[k] is
strictly increasing at every time k ≥ 1.

Lemma 4.15 states an inductive property of the monotonicity.

Lemma 4.15. Under Assumptions 4.2–4.6, the viral state v[k] is strictly increasing at time
k if the viral state v[k −1] is strictly increasing at time k −1.

Proof. Appendix C.7.

For any vector y = (y1, ..., yN )T we define y l = (y l
1, ..., y l

N )T . Theorem 4.16 states equiv-
alent conditions to a globally strictly increasing viral state evolution.

Theorem 4.16 (Monotonicity of the Viral State Evolution). Suppose that Assumptions
4.2–4.6 hold. Then, the viral state v[k] is globally strictly increasing if and only if one of
the following two (equivalent) statements holds:

1. The initial viral state v[1] satisfies

(
B∆t −diag(δ∆t )

)
v[1] > diag(δ∆t )

∞∑
l=2

v l [1]. (4.10)

2. It holds that(
diag(u − v∞)B∆t diag(u − v∞)−diag(δ∆t )

)
z > diag(δ∆t )

∞∑
l=2

z l ,

where the N ×1 vector z is given by

zi =
vi [1]− v∞,i

1− v∞,i
, i = 1, ..., N .

Proof. Appendix C.8.

For any scalar y with |y | < 1, the geometric series
∑∞

l=2 y l = y2

1−y gives an alternative
form of the right-hand sides of statement 1 and 2 of Theorem 4.16. From Theorem 4.16,
we obtain a corollary which states sufficient conditions for a globally strictly increasing
viral state.
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Corollary 4.17. Suppose Assumptions 4.2–4.6 hold and that the initial viral state v[1]
equals either

v[1] = εx1 +η (4.11)

or

v[1] = (1−ε)v∞+η

for some small ε > 0 and an N × 1 vector η whose norm ‖η‖2 = O(εp ) for some scalar
p > 1 which is independent of ε. Then, there exists an ε> 0 such that the viral state v[k] is
globally strictly increasing.

Proof. Appendix C.9.

Numerical simulations show that if the initial viral state v[1] approaches zero from
an arbitrary direction, which differs from (4.11), then the viral state v[k] is in general not
globally strictly increasing. However, the simulations also indicate that, if the initial viral
state v[1] is small, then the viral state seems “almost” globally strictly increasing, which
is illustrated by Figure 4.1 and motivates us to state Definition 4.18.

Definition 4.18 (Quasi-increasing viral dynamics). Define S− as the set of times k ≥ 1 at
which the viral state v[k] is not strictly increasing:

S− = {
k ∈N ∣∣ ∃i : vi [k +1] ≤ vi [k]

}
.

Then, the viral state v[k] is quasi-increasing with stringency ε, if the set S− is finite and
‖v[k +1]− v[k]‖2 ≤ ε for every time k in S−.

Thus, a quasi-increasing viral state v[k] is strictly increasing at every time k not in the
set S−, and at the times k in the finite set S− the viral state v[k] is decreasing only within
an ε-stringency. For the viral state trace v[k] depicted in Figure 4.1, the set S− equals
S− = {1,2, ...,165}. Theorem 4.19 states that the viral state v[k] is quasi-increasing with
an arbitrarily small stringency ε, provided that the initial viral state v[1] is sufficiently
small.

Theorem 4.19. Suppose that Assumptions 4.2–4.6 hold and that v[1] 6= 0. Then, for any
ε > 0 there is a ϑ(ε) such that ‖v[1]‖2 ≤ ϑ(ε) implies that the viral state v[k] is quasi-
increasing with stringency ε.

Proof. Appendix C.10.

4.5. BOUNDS ON THE VIRAL DYNAMICS
Due to the non-linearity of the NIMFA equations (4.2), an analysis of the exact viral state
evolution is challenging. However, it is possible to bound the viral state v[k] by LTI sys-
tems, which allows for an approximate analysis of the viral state evolution. As stated by
Proposition 4.20, the linearisation (4.8) of the NIMFA model around zero directly yields
an upper bound on the viral state v[k].
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Proposition 4.20. Suppose that Assumptions 4.2–4.4 hold and define the LTI system

v (1)
ub [k +1] = Rv (1)

ub [k], k ≥ 1, (4.12)

where the matrix R is given by (4.4). If v (1)
ub [1] ≥ v[1], then it holds that v (1)

ub [k] ≥ v[k] at
every time k ≥ 1. If ρ (R) ≥ 1, then the LTI system (4.12) is unstable. If ρ (R) < 1, then the
LTI system (4.12) is asymptotically stable.

Proof. Appendix C.11.

In addition the upper bound in Proposition 4.20, the linearisation (4.9) of the NIMFA
model around the steady-state v∞ yields another upper bound on the viral state v[k], as
stated by Proposition 4.21.

Proposition 4.21. Under Assumptions 4.2–4.6, denote an upper bound of the difference
of the viral state v[k] to the steady-state v∞ at time k by ∆vub[k]. Furthermore, define the
LTI system

∆vub[k +1] = F∆vub[k], k ≥ 1, (4.13)

where the N ×N matrix F is given by (4.7). Then, the following statements hold true:

1. If ∆vub[1] ≥∆v[1], then it holds that ∆vub[k] ≥∆v[k] at every time k ≥ 1.

2. If ∆vub[1] ≤ 0, then it holds that ∆vub[k] ≤ 0 at every time k.

Proof. Appendix C.12.

Hence, the LTI system (4.13) yields the upper bound

v (2)
ub [k] :=∆vub[k]+ v∞ ≥ v[k]

on the viral state v[k] at every time k. If Assumption 4.4 holds and ∆vub[1] =∆v[1], then
it holds that 0 ≥ ∆vub[k] ≥ ∆v[k] for every time k. Thus, the convergence of ∆v[k] to 0
implies the convergence of ∆vub[k] to 0. The upper bound of Proposition 4.20 is tight
when the viral state v[k] is small, and the upper bound of Proposition 4.21 is tight when
the viral state v[k] is close to the steady-state v∞. We combine Propositions 4.20 and
4.21 to obtain a tighter upper bound, for every node i , as

vub,i [k] := min{v (1)
ub,i [k], v (2)

ub,i [k]}. (4.14)

Finally, Proposition 4.22 provides a lower bound on the viral state v[k].

Proposition 4.22. Suppose that Assumptions 4.2–4.6 hold and let there be an N ×1 vec-
tor vmin > 0 such that v[k] ≥ vmin holds at every time k ≥ 1. Furthermore, consider that
∆vlb[1] =∆v[1], and define the LTI system

∆vlb[k +1] = Flb∆vlb[k], k ≥ 1, (4.15)

where the N ×N matrix Flb is given by

Flb = I +diag

(
δ∆t ,1

v∞,1 −1
, ...,

δ∆t ,N

v∞,N −1

)
+diag(u − vmin)B∆t .

Then, the following statements hold true:
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1. It holds that ∆vlb[k] ≤∆v[k] ≤ 0 at every time k ≥ 1.

2. Denote γ= min
i=1,...,N

vmin,i and δ∆t ,min = min
i=1,...,N

δ∆t ,i . Then, it holds that

∆vlb[k] ≥−
(
1−δ∆t ,min

γ

1−γ
)k−1

v∞.

Hence, ∆vlb[k] → 0 when k →∞.

Proof. Appendix C.13.

Hence, the LTI system (4.15) yields the lower bound

vlb[k] :=∆vlb[k]+ v∞ ≤ v[k] (4.16)

on the viral state v[k] at every time k. In particular, if the viral state v[k] is globally strictly
increasing, as discussed in Section 4.4, then the vector vmin can be chosen as vmin = v[1].
Lemma 4.23 ensures the existence of a vector vmin > 0 for every initial viral state v[1] 6= 0,
which can be applied to Proposition 4.22.

Lemma 4.23. Suppose that Assumptions 4.2–4.6 hold. Then, for any initial viral state
v[1] > 0, there exists an N × 1 vector vmin > 0 such that v[k] ≥ vmin holds at every time
k ≥ 1. Furthermore, for any initial viral state v[1] 6= 0, there exists an N ×1 vector vmin > 0
such that v[k] ≥ vmin holds at every time k ≥ N −1.

Proof. Appendix C.14.

Proposition 4.22 and Lemma 4.23 guarantee the existence of an LTI system (4.15) that
lower-bounds the viral state v[k]. Thus, the viral state v[k] converges to the steady-state
v∞ exponentially fast:

Corollary 4.24 (Steady-State is Exponentially Stable). Suppose that Assumptions 4.2–4.6
hold. Then, for any initial viral state v[1] 6= 0 there exist constants α < 1 and k∗ ≤ N −1
such that

‖v[k]− v∞‖2 ≤ ‖v∞‖2α
k−1 ∀k ≥ k∗. (4.17)

If the initial viral state v[1] > 0, then the constant k∗ can be set to k∗ = 1. Furthermore,
if the viral state v[k] is globally strictly increasing (cf. Theorem 4.16) and v[1] > 0, then
(4.17) is satisfied for

α= 1−δ∆t ,min
γ

1−γ ,

where γ= min
i=1,...,N

vmin,i and δ∆t ,min = min
i=1,...,N

δ∆t ,i .

Proof. Appendix C.15.
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It is an open problem whether the steady-state v∞ is exponentially stable for initial
viral states v[1] that do not satisfy Assumption 4.4. In the SIS epidemic process [5, 80],
the hitting time THn is the first time when the SIS process reaches a state with n infected
nodes. As argued in [81], the average hitting time E[THn ] scales exponentially with re-
spect to the number n of infected nodes, which is in agreement with the exponential
convergence to the steady state v∞ for the NIMFA epidemic model5.

We provide a numerical evaluation of the upper bound vub[k], given by (4.14), and
the lower bound vlb[k], given by (4.16). We generate a directed Erdős-Rényi random
graph with N = 500 nodes by creating a directed link ai j = 1 from any node j to any node
i with link probability pER = 0.05. We generate another graph if the resulting graph is not
strongly connected. If ai j = 1, then we set the infection probability β∆t ,i j to a uniformly
distributed random number in [0,1] and, if ai j = 0, then we set β∆t ,i j = 0. The curing
probability δ∆t ,i for every node i is set to a uniform random number in [0.95σ,1.05σ],
where the constant σ is initially set to σ= 10. If the spectral radius ρ(R) ≤ 1+10−5, then
we set the constant σ to σ/1.005 and generate new curing probabilities δ∆t . We repeat
this generation of curing probabilities δ∆t ,i until ρ(R) > 1+10−5. The sampling time ∆t
is set to ∆t = ∆tmax/20, given by (4.5). For every node i , the initial viral state vi [1] is set
to a uniform random number [0,0.1v∞,i ]. We initialise the bounds vub[k] and vlb[k] on
the viral state v[k] at different bound-initialisation times k0 ≥ 1, i.e., vlb[k0] = v[k0] =
vub[k0]. To obtain the lower bound vlb[k], we set the vector vmin of Proposition 4.22 to

vmin,i = min
k≥k0

vi [k], i = 1, ..., N .

We emphasise that if vi [k0] > vi [k0 −1] holds for every node i , then the vector vmin be-
comes vmin = v[k0] due to Lemma 4.15. Figure 4.2 illustrates that, for a small bound-
initialisation time k0, the upper bound vub[k] results in a reasonable fit, whereas the
lower bound vlb[k] does not perform well. If the bound-initialisation time k0 is greater,
then both bounds vlb[k] and vub[k] give a tight fit to the exact viral state v[k].

4.6. CONCLUSIONS
In this chapter, we analysed the discrete-time NIMFA epidemic model with heteroge-
neous spreading parameters on directed graphs. Our contribution is threefold. First,
we proved that the steady-state v∞ is asymptotically stable, and we showed that the vi-
ral state v[k] approaches the steady-state v∞ without overshooting. Second, provided
that the initial viral state v[1] is sufficiently small, we showed that the viral state v[k] is
increasing. Third, we derived linear systems that give upper and lower bounds on the
viral state v[k], and we proved that the viral state v[k] converges to the steady-state v∞
exponentially fast.

In conclusion, we showed that the discrete-time NIMFA epidemic model captures
the qualitative behaviour of real-world epidemics. Furthermore, since the spreading pa-
rameters are heterogeneous and the underlying contact network is directed, the NIMFA

5For an SIS process, the spreading time [82] is another measure for the time of convergence to the metastable
state. For the spreading time, the convergence to the metastable state is defined differently for every realisa-
tion of the same SIS epidemic process. Hence, the spreading time is subject to random fluctuations, which
approximately follow a lognormal distribution [81], contrary to the deterministic NIMFA model (4.1) and the
average hitting time E[THn ] of an SIS process.
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(b) Bounds initialised at time k0 = 500.
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(c) Bounds initialised at time k0 = 750.

Figure 4.2: Linear bounds of the viral state dynamics. For a directed Erdős-Rényi random graph with N = 500
nodes and heterogeneous spreading parameters δ∆t ,i ,B∆t , the fit of the lower bound vlb[k] and the upper
bound vub[k] on the viral state v[k] is depicted. The viral states vi [k] and the corresponding bounds vlb,i [k],
vub,i [k] of the two nodes with the maximal and minimal steady-state v∞,i are shown. The sub-plots corre-
spond to an initialisation of the bounds vlb[k0] = v[k0] = vub[k0] at different times k0.

model has a vast parameter space and can be fitted to various real-world epidemic data,
which allows for quantitative predictions of the viral state evolution.
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5
EXACT SIS NETWORK

RECONSTRUCTION SEEMS

INFEASIBLE

The knowledge of the network topology is imperative to precisely describing the viral dy-
namics of the stochastic Susceptible-Infected-Susceptible (SIS) epidemic process between
individuals. In scenarios for which the network topology is unknown, one resorts to re-
constructing the network from observing the viral state trace. Our contribution is three-
fold. First, we formulate the SIS network reconstruction as a Bayesian estimation prob-
lem, based on the sampled-time Markov chain of the SIS epidemic process. The resulting
estimation problem is given by a mixed-integer optimisation problem. Second, we pro-
pose a novel method of constructing a specific class of viral state traces from which the
inference of the presence or absence of links is either easy or difficult. In particular, we
use this construction to prove that the maximum-likelihood SIS network reconstruction
is NP-hard. The NP-hardness holds for any connected contact graph. Third, we intro-
duce an accurate, polynomial-time heuristic for the NP-hard SIS network reconstruction
problem. With our heuristic, the network topology can almost always be exactly recon-
structed. Notwithstanding, reconstructing the network with a reasonably high accuracy
requires that the number of observations n grows with log10(n) ≈ Nα+b, where b is some
constant,α≈ 0.56, and N denotes the number of nodes. Such long observation periods are
hardly realistic, which justifies the claim in the title.

This chapter is based on [83] and [84].
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5.1. INTRODUCTION
We consider the Markovian Susceptible-Infected-Susceptible (SIS) epidemic model [5,
58], where every node corresponds to an individual. The contact network is charac-
terised by the symmetric N ×N adjacency matrix A with elements ai j , where N denotes
the number of individuals. If ai j = 1, then there is a link between individual i and j ,
and otherwise ai j = 0. Every node i has an SIS viral state xi (t ), which is a Bernoulli ran-
dom variable, xi (t ) ∈ {0,1}. At every continuous time t ≥ 0, a node i is either susceptible
(healthy) or infected, which is denoted by xi (t ) = 0 and xi (t ) = 1, respectively. Thus,
there are two possible viral state transitions for every node, from susceptible to infected
and vice versa. The Markovian SIS epidemic model assumes that the curing process per
node i is a Poisson process with curing rate δ > 0 and that the infection rate per link is
a Poisson process with infection rate β> 0. The more general ε-SIS epidemic model ad-
ditionally considers that a susceptible node may suffer from self-infections [85, 86]. The
self-infection of a node i is a Poisson process with self-infection rate ε, which is indepen-
dent of the infectious neighbours of node i . If ε = 0, then the ε-SIS process reduces to
the SIS-process.

The knowledge of the contact network A and the spreading parameters β,δ,ε is deci-
sive for the prediction of an SIS epidemic outbreak and for the design of epidemic control
strategies. However, in most applications, neither the contact network nor the spreading
parameters are known. In this chapter, we consider the inverse problem of estimating
both the adjacency matrix A and the spreading parameters β,δ, ε from observations of
the SIS viral states xi (t ) of all nodes i = 1, ..., N . Our approach is based on the sampled-
time ε-SIS Markov chain, which is introduced in Section 5.3.

5.2. RELATED WORK
Vajdi and Scoglio [87] formulate the network reconstruction for the continuous-time SIS
model in a Bayesian sense and propose a Gibbs sampling approach. For a discrete-time
SIS process, Shen et al. [88] propose a network reconstruction method which is based on
compressed sensing. Peixoto [89] proposes a Bayesian framework for joint SIS network
reconstruction and community detection and employs a Markov Chain Monte Carlo ap-
proach. In this chapter, we propose a convex optimisation approach to reconstruct the
network, based on the sampled-time Markov chain of the SIS process. Furthermore, we
put an emphasis of the fundamental network reconstruction limits, by studying the com-
putational complexity and the number of observations that are required for an accurate
network reconstruction.

5.3. SAMPLED-TIME SIS EPIDEMIC PROCESS
The inverse problem of the reconstruction of the network topology and the estimation
of the spreading parameters, given a number of measurements, is best described in
discrete-time. For epidemic processes on computer systems, such as the spread of opin-
ions on social media, the dynamics are inherently in discrete-time due to the digital de-
sign of hardware and software. For other epidemic processes, such as the spread of a
disease, it is reasonable to assume that there is a limit to the temporal resolution of the
empirical measurements.
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We denote the transition probability of the continuous-time Markov chain of the SIS
process from state i at time τ to state j at time t +τ by Pi j (t ). The sampled-time Markov
chain with sampling time ∆t is a discrete-time Markov chain [58], where the transition
probabilities Pi j from state i to state j are given by the first-order Taylor expansion of
Pi j (t ),

Pi j = P ′
i j (0)∆t ,

and the transition probabilities from state i to state i are given by

Pi i = 1−
N∑

l=1
Pi l .

The transition probabilities Pi j depend on the adjacency matrix A and the spreading
parameters β, δ, ε. We assume that the sampling time ∆t of the sampled-time Markov
chain of the SIS process is sufficiently small. More precisely, we make two assumptions
on the sampling time∆t . First, each viral state transition is observed, i.e., there is at most
one transition in the interval [kT, (k+1)∆t ], where k ∈N denotes the discrete time of the
sampled-time Markov chain. Second, we assume that the higher-order terms of the Tay-
lor expansion of the continuous-time SIS transition probabilities Pi j (t ) are negligible.

We denote the N ×1 viral state vector of the sampled-time Markov chain at discrete
time k by x[k], and it holds that x[k] ≈ x(k∆t ) if the sampling time ∆t is small. There
are three possible transitions from discrete time k to k +1 in the sampled-time Markov
chain of the ε-SIS process:

1. Curing of a node A single node i changes from the infected state xi [k] = 1 at discrete
time k to the susceptible state xi [k +1] = 0 at discrete time k +1. The probability
of this transition is

Pr
[

xi [k +1] = 0
∣∣∣xi [k] = 1, x[k], A

]
= δ∆t , (5.1)

where the curing probability δ∆t follows as δ∆t = δ∆t .

2. Infection of a node A single node i changes from the susceptible state xi [k] = 0 at
discrete time k to the infected state xi [k +1] = 1 at time k +1 with the probability

Pr
[

xi [k +1] = 1
∣∣∣xi [k] = 0, x[k], A

]
= ε∆t +β∆t Ni (A,k), (5.2)

where Ni (A,k) is the number of infected nodes adjacent to node i in A at time
k. The infection probability equals β∆t = β∆t , and the self-infection probability
equals ε∆t = ε∆t . The number of infected nodes Ni (A,k) adjacent to node i at
time k equals

Ni (A,k) =
N∑

j=1
ai j x j [k].

3. No change No node changes its viral state from time k to k +1. This constant transi-
tion occurs when neither a curing nor an infection takes place, and hence

Pr
[

x[k +1] = x[k]
∣∣∣x[k], A

]
= 1−Pr

[
A node cures at k +1

∣∣∣x[k], A
]

−Pr
[

A node gets infected at k +1
∣∣∣x[k], A

]
, (5.3)
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where the probabilities on the right-hand side follow from the transitions (5.1) and
(5.2).

To ensure that (5.1), (5.2) and (5.3) are feasible expressions for probabilities, they have
to be in [0,1] for all viral states x[k]. Lemma 5.1 states an upper bound on the sampling
time ∆t , such that (5.1), (5.2) and (5.3) are in the interval [0,1].

Lemma 5.1. If the sampling time ∆t satisfies

∆t ≤ 4

N 2β+4N max{ε,δ}
, (5.4)

then (5.1), (5.2) and (5.3) are in [0,1] for all adjacency matrices A and all viral states x[k].

Proof. Appendix D.1

In the following, we assume that the sampling time ∆t satisfies the bound (5.4).

5.4. ASSUMPTIONS
For formulating the SIS network reconstruction in a Bayesian sense in Section 5.5 and
for the heuristic in Section 5.7, we rely on four assumptions.

Assumption 5.2. There are known upper bounds βmax ≥ β, δmax ≥ δ and εmax ≥ ε on the
spreading parameters. Furthermore, a non-zero lower bound βmin < β of the infection
rate β is known.

Assumption 5.3. A priori, the adjacency matrix A, the spreading rates β,δ, ε and the
initial viral state observation x[1] are stochastically independent.

Assumption 5.4. The logarithm log(Pr[A]) of the prior distribution Pr[A] of the adjacency
matrix A is concave when the range of elements of A is extended from ai j ∈ {0,1} to ai j ∈
[0,1].

Every nonnegative concave function is logarithmically concave, but not the other
way around [90].

Assumption 5.5. The spreading rates β,δ and ε are a priori uniformly distributed in the
intervals [βmin,βmax], [0,δmax] and [0,εmax], respectively.

Assumptions 5.3 to 5.5 are required for the Bayesian (maximum a posteriori) network
reconstruction approach in Section 5.5 and in Section 5.7. However, we emphasise that
Assumptions 5.3 to 5.5 could be omitted, if the network reconstruction is formulated as
a maximum-likelihood estimation problem.

5.5. BAYESIAN FORMULATION OF THE NETWORK RECONSTRUC-
TION PROBLEM

In this section, we approach the SIS network reconstruction as a Bayesian estimation
problem. We denote the tuple θ = (A,β,δ,ε), which consists of the parameters that must
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be estimated. We denote all observations until the observation time n by the N×n matrix
X [n] = (x[n], x[n−1], ..., x[1]). Furthermore, fΘ|X [n](θ) denotes the conditional probabil-
ity density function of the realisation θ of the parameters given the observations X [n].
We aim to find the parameters θMAP which maximise the posterior:

θMAP = arg max
θ∈Sθ

fΘ|X [n](θ), (5.5)

where Sθ denotes the set of feasible solutions for the parameter tuple θ,

Sθ =A× [βmin,βmax]× [0,δmax]× [0,εmax].

Here, the set of all unweighted N ×N adjacency matrices A is denoted by A, and S1 ×S2

is the Cartesian product of two sets S1,S2.
Under mild conditions, there are two crucial accuracy properties of Bayesian, or

Maximum A Posteriori (MAP), estimation of continuous parameters. First, the Bayesian
estimator is unbiased, which means that the expectation of the Bayesian estimator equals
the true parameters [91, Theorem 4.16]. Second, the Bayesian estimator is efficient,
which means that the Bayesian estimator satisfies the Cramér-Rao inequality [91–93]
with equality. The Cramér-Rao inequality is a fundamental bound for the best possible
accuracy of any estimator. If an unbiased efficient estimator exists, then the estimator
coincides with the MAP estimator. The Cramér-Rao bound requires the parameters θ to
be continuous. For the ε-SIS process in this chapter, the parameters in θ are not con-
tinuous due to the adjacency matrix A with zero-one elements. Nonetheless, based on
the strength of the MAP estimator for continuous parameters, the vast majority of net-
work reconstruction methods rely on maximum-likelihood or MAP estimation methods
[94–99].

We translate (5.5) into a mixed-integer programme. Bayes’ theorem gives

fΘ|X [n](θ) = Pr[X [n]|θ] fΘ(θ)

Pr[X [n]]
,

where fΘ(θ) denotes the prior distribution of the parameters θ. From the Markovianity
of the SIS process [58], we obtain that

fΘ|X [n](θ) = Pr[x[1]|θ]

Pr[X [n]]
fΘ(θ)

n∏
k=2

Pr[x[k]|x[k −1],θ] (5.6)

The term Pr[X [n]] is not a function of θ. Furthermore, it holds that Pr[x[1]|θ] = Pr[x[1]],
since θ and x[1] are stochastically independent by Assumption 5.3. Hence, we can omit
the first factor in (5.6), which yields that

θMAP = arg max
θ∈Sθ

fΘ(θ)
n∏

k=2
Pr[x[k]|x[k −1],θ] .

We denote the prior distributions of the parameters A, β, δ and ε by Pr[A], fbeta(β),
fdelta(δ) and fepsilon(ε), respectively. Then, since the parameters A,β, δ and ε are stochas-
tically independent under Assumption 5.3, we obtain that

θMAP = arg max
θ∈Sθ

Pr[A] fbeta(β) fdelta(δ) fepsilon(ε)
n∏

k=2
Pr[x[k]|x[k −1],θ] .
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The spreading parameters β, δ and ε are uniformly distributed under Assumption 5.5.
Thus, the terms fbeta(β), fdelta(δ) and fepsilon(ε) are constant and can be omitted in the
estimation. Then, by taking the logarithm (preserving the same optimum), we obtain
that

θMAP = arg max
θ∈Sθ

log(Pr[A])+
n∑

k=2
log(Pr[x[k]|x[k −1],θ]) . (5.7)

We denote the set of the time instants of the infections of node i by

H01[i ] = {k ∈Nn |xi [k +1] = 1∧xi [k] = 0},

where Nn = {1,2, ...,n} denotes the set of natural numbers not greater than the observa-
tion length n. Furthermore, we denote the set of time instants which correspond to the
curing of a node and to a constant transition as

H10 = {k ∈Nn |∃i ∈NN : xi [k +1] = 0∧xi [k] = 1}

and

Hconst = {k ∈Nn |∀i ∈NN : xi [k +1] = xi [k]},

respectively. Every addend of the optimisation problem (5.7) corresponds to some time
k which is element of either H01[i ], H10 or Hconst. We rewrite (5.7) as

θMAP = arg min
θ∈Θ

fobj(θ),

where the objective function fobj(θ) follows from the expressions for the transition prob-
abilities as

fobj(θ) =− log(Pr[A])− ∑
k∈H10

log(δ∆t )−
N∑

i=1

∑
k∈H01[i ]

log

(
ε∆t +β∆t

N∑
j=1

x j [k]ai j

)
(5.8)

− ∑
k∈Hconst

log

(
1−Nε∆t + (ε∆t −δ∆t )uT x[k]+β∆t

∑
i , j

x j [k](xi [k]−1)ai j

)
.

By formulating θ ∈ Sθ as constraints, the MAP estimation is given by the following mixed-
integer programming optimisation problem

minimise
θ

fobj(θ)

subject to ai j ∈ {0,1} ∀i , j

∆tβmin ≤β∆t ≤∆tβmax

0 ≤ δ∆t ≤ δmax∆t

0 ≤ ε∆t ≤ εmax∆t

(5.9)

The solution to the above optimisation problem (5.9) is denoted by θMAP. If the consid-
ered graph is undirected and without self-loops, we add the constraints ai j = a j i and
ai i = 0 to the optimisation problem.
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5.6. MAXIMUM-LIKELIHOOD SIS NETWORK RECONSTRUCTION

IS NP-HARD
The optimum θMAP of problem (5.9) can be found by a brute-force algorithm, where the
minimum of the optimisation problem (5.9) is computed for every possible N × N ad-
jacency matrix A1, A2, ... ∈A. For a fixed A = Am , where m = 1, ...,2N (N−1)/2, the optimi-
sation is performed with respect to the three spreading parameters β∆t ,δ∆t ,ε∆t , and the
objective function (5.8) is convex, since the objective function is a sum of composition
of negative logarithms and linear functions. The brute-force approach yields 2N (N−1)/2

feasible points θm , one for each adjacency matrix candidate Am , and the solution θMAP

to the optimisation problem (5.9) is given by the feasible point which results in the min-
imal objective value. However, the computational complexity of O(2N (N−1)/2) renders
the brute-force approach infeasible for large N . But perhaps the brute-force approach
is too simple, and we wonder: what is the computational complexity of the SIS network
reconstruction (5.9)?

Here, we consider a simpler problem than (5.9). Specifically, we assume that the
spreading parameters β and δ are known and that ε = 0. Furthermore, we focus on the
maximum-likelihood (ML) network reconstruction, which follows from (5.9) if the prior
distribution Pr[A] is constant for all A ∈A. In this section, we make a distinction between
the three variables A, Â and AML: in contrast to the true adjacency matrix A, which gen-
erated the viral states x[k], the optimisation variable in the ML estimation problem is
denoted as Â. The solution to the ML estimation problem, i.e., the adjacency matrix Â
which maximises the likelihood, is denoted by AML. Then, the ML network reconstruc-
tion is stated as:

Definition 5.6 (Maximum-likelihood SIS network reconstruction). Given the viral state
observations x[k] ∈ {0,1}N from time k = 1 to k = n which originate from a sampled-
time SIS process on an unknown adjacency matrix A ∈A, find the adjacency matrix AML

which maximises the log-likelihood:

AML = arg max
Â

log
(
Pr

[
x[1], ..., x[n]

∣∣∣Â
])

s.t. âi j ∈ {0,1}, i , j = 1, ..., N

âi j = â j i , i , j = 1, ..., N

âi i = 0, i = 1, ..., N

(5.10)

We emphasise that the problem (5.10) is easier than the problem (5.9), since the
spreading parameters are assumed to be known. An instance of the optimisation prob-
lem (5.10) is fully specified by the viral state observations x[1], ..., x[n].

We prove that the ML estimation (5.10) is NP-hard with respect to the number of
nodes N for any connected adjacency matrix A ∈A. The idea of the proof is as follows:
We aim to show that there is a polynomial-time reduction from the maximum-cut prob-
lem to the ML estimation for the sampled-time SIS process (5.10). Since the maximum
cut problem is NP-complete [100], this polynomial-time reduction proves that the ML
estimation (5.10) is NP-hard. As introduced in Subsection 5.6.1, the maximum cut prob-
lem can be stated as zero-one unconstrained quadratic programme (UQP). By compari-
son, we make the observation that the zero-one UQP which results from the maximum
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cut problem resembles the ML estimation (5.10). We show that for every graph G of the
maximum cut problem, there is an SIS viral state sequence x[1], ..., x[n] such that solv-
ing the ML estimation (5.10) is equivalent to solving the maximum cut problem on the
graph G . The polynomial-time reduction is presented in Subsection 5.6.2.

5.6.1. MAXIMUM CUT
We consider an undirected and unweighted graph G = (N ,L), where N = {1, ..., N } is the
set of nodes and L is the set of L links.

Definition 5.7 (Cut set [101, 102]). For a non-empty node subset V ⊂N of a graph and
its complement V̄ =N \V , the cut-set ∂V is the set of all links that connect nodes in V to
nodes in V̄ :

∂V = {
(i , j ) ∈L∣∣i ∈V , j ∈ V̄}

.

The cut size of a cut-set ∂V equals the number of links in the cut-set and is denoted as
|∂V |. The maximum cut problem and the corresponding decision problem are as follows.

Definition 5.8 (Maximum cut problem). Given a graph G , find a cut ∂V of maximal cut
size |∂V |.
Definition 5.9 (Maximum cut decision problem). Given a natural number κ and a graph
G , is there a cut ∂V such that its cut size |∂V | is at least κ?

The maximum cut decision problem is NP-complete, as shown by Garey et al. [103].
Hence, the maximum cut problem is NP-hard [104]. The maximum cut problem can be
equivalently stated as zero-one unconstrained quadratic programming (UQP) [105]

maximise
y1,...,yN

N∑
i=1

N∑
j=i+1

ai j (yi (1− y j )+ y j (1− yi ))

subject to yi ∈ {0,1}, i = 1, ..., N .

(5.11)

The binary variable yi equals 1 if node i is in the node set V , and yi = 0 if node i is in the
node set V̄ . The optimisation problem (5.11) is equivalent to

maximise
y1,...,yN

N∑
i=1

N∑
j=i+1

bi j yi y j +
N∑

l=1
bl yl

subject to yi ∈ {0,1}, i = 1, ..., N .

(5.12)

The coefficients of the objective function of (5.12) are given by

bi j =−2ai j (5.13)

and the degree of node l

bl =
N∑

j=1
al j . (5.14)



5.6. MAXIMUM-LIKELIHOOD SIS NETWORK RECONSTRUCTION IS NP-HARD

5

75

Since the elements ai j of the adjacency matrix A are either zero or one, the coefficients
are in the sets

bi j ∈ {−2,0} (5.15)

and

bl ∈ {0,1, ..., N −1}. (5.16)

The objective function f of the optimisation problem (5.12) is a quadratic function which
maps N binary variables to a non-negative integer, f : {0,1}N 7→N0. Hence, the optimisa-
tion problem (5.12) is a special case of pseudo-Boolean optimisation [106], in which the
objective function f maps N binary variables to a real number, f : {0,1}N 7→ R. Rosen-
berg [107] showed that the optimisation of any pseudo-Boolean function can always be
reduced in polynomial time to the optimisation of a quadratic pseudo-Boolean func-
tion. The general optimisation of a quadratic pseudo-Boolean function is of the form
(5.12) with the difference that the coefficients bi j and bl may attain any value in R - not
only the integer values in (5.15) and (5.16) - and is NP-hard [108]. If the coefficients bi j

are non-negative real numbers, then the zero-one UQP (5.12) is polynomially solvable
[109]. There are other special cases for the range of values of the coefficients bi j and bl

for which the zero-one UQP (5.12) is solvable in polynomial time [110, 111].

5.6.2. REDUCTION OF MAXIMUM CUT TO SIS NETWORK RECONSTRUCTION
We aim to show that any instance of the zero-one UQP (5.12) with coefficients bi j and
bl in the sets (5.15) and (5.16), and thus any instance of the maximum cut problem,
can be translated to an SIS network reconstruction problem (5.10) in polynomial time.
Hence, the SIS network reconstruction (5.10) is NP-hard. Since the zero-one UQP (5.12)
is not NP-hard for certain ranges [109–111] of values of the coefficients bi j and bl , we
emphasise that the conditions (5.15) and (5.16) are crucial (at least sufficient) for the
NP-hardness of the zero-one UQP (5.12). Thus, our aim is to show that the SIS network
reconstruction problem (5.10) can be translated to a zero-one UQP (5.12) with any1 co-
efficients bi j and bl in the sets given by (5.15) and (5.16). Since the SIS network recon-
struction problem (5.10) is fully specified by the viral state observations x[1], ..., x[n], we
aim to find viral state transitions x[1], ..., x[n] such that solving the SIS network recon-
struction problem (5.10) is equivalent to solving the zero-one UQP (5.12). The proof of
the NP-hardness of the SIS network reconstruction problem (5.10) is based on four lem-
mas, which are stated below and whose proofs are given in the Appendices D.2 to D.6.

Since a graph G given by an adjacency matrix A in A is connected, there is a node l
such that the graph G remains connected if node l is removed: Indeed, in any connected
graph, there exists a spanning tree that connects all the nodes. In any tree, there exists a
node l with degree one (a leaf node), whose removal does not disconnect the spanning
tree and hence neither the graph. Without loss of generality, we label this node l as
node 1.

1More precisely, the coefficients bi j and bl do not attain any values in {−2,0} and {0,1, ..., N −1} independently.

Due to (5.13) and (5.14), it holds bl = − 1
2

∑N
j=1 bl j . We show the stronger statement that, independently of

the coefficients bi j , the coefficients bl may attain any value in {0,1, ..., N −1}.
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Our approach is based on stating a reduced-size version of the ML estimation (5.10),
namely only with respect to the links a1i which are incident to node 1. Since the graph
given by an adjacency matrix A in A is connected, node 1 has at least one neighbour.
Without loss of generality, we label this neighbour as node 2. Furthermore, we consider
that a12 = 1 is known. In the following, we abbreviate

Pr
[

x[1], ..., x[n]
∣∣∣â13, ..., â1N , â12 = a12, âi j = ai j ∀i , j ≥ 2

]
,

i.e., the likelihood when the elements â12 and âi j for i , j ≥ 2 are fixed to the true values,
formally by

Pr
[

x[1], ..., x[n]
∣∣∣â13, ..., â1N

]
,

and we introduce the following reduced-size SIS network estimation problem:

Definition 5.10 (Reduced-size SIS network reconstruction). Given the links a12 = 1 and
ai j , where i ≥ 2 and j ≥ 2, of the matrix A ∈ A and the viral state observations x[k] ∈
{0,1}N from time k = 1 to time k = n, which resulted from a sampled-time SIS process
with the adjacency matrix A, find the links (AML)13, ..., (AML)1N which maximise the log-
likelihood:

((AML)13, ..., (AML)1N ) = arg max
â13,...,â1N

log
(
Pr

[
x[1], ..., x[n]

∣∣∣â13, ..., â1N

])
s.t. â1i ∈ {0,1}, i = 3, ..., N .

(5.17)

Lemma 5.11 states that solving the reduced-size SIS network reconstruction (5.17) is
equivalent to solving a zero-one UQP with particular coefficients:

Lemma 5.11 (Reduced-size SIS network reconstruction as zero-one UQP). For some nat-
ural numbers m0, m1l , m2l ∈N, l ∈ {3, ..., N }, define the coefficients

ci j ∈ {−2,0}, i , j = 3, ..., N , (5.18)

cl =
m1l

m0
λ++ m2l

m0
λ−+ηl , l = 3, ..., N , (5.19)

where λ+ > 0, λ− < 0 and ηl ≥ 0 are constant and are given by (D.26), (D.27) and (D.28),
respectively. For any coefficients ci j and cl given by (5.18) and (5.19) and for any connected
adjacency matrix A ∈A, there is a viral state sequence x[k] from time k = 1 to a finite time
k = n such that the reduced-size SIS network reconstruction problem (5.17) becomes:

max
â13,...,â1N

N∑
i=3

N∑
j=i+1

ci j â1i â1 j +
N∑

l=3
cl â1l

s.t. â1i ∈ {0,1}, i = 3, ..., N

(5.20)

Proof. Appendix D.2.
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Comparing the objective function of (5.20) to the objective function in the zero-one
UQP (5.12) shows that they are of the same form2: the binary variables y j in (5.12) corre-
spond to â1 j , and the coefficients bi j and bl in (5.12) are replaced by ci j and cl in (5.20),
respectively.

As stated in the beginning of Section 5.6.2, a crucial condition for the NP-hardness
of the zero-one UQP (5.12) is that its coefficients are in the sets bi j ∈ {−2,0} and bl ∈
{0,1, ..., N−1}. To show the NP-hardness of the zero-one UQP (5.20), we have to show that
also the coefficients ci j and cl attain any value in {−2,0} and {0,1, ..., N −1}, respectively.
As stated by (5.18), the coefficients ci j may attain either value in {−2,0}. The remaining
condition that the coefficients cl , given by (5.19), may attain any value in {0,1, ..., N −1}
exactly does generally not hold. Nevertheless, the coefficients cl may approach any bl ∈
{0,1, ..., N −1} arbitrarily close, as stated by Lemma 5.12.

Lemma 5.12 (Coefficients approach any number). The coefficients cl of the optimisation
problem (5.20), given by (5.19), may approach any numbers bl ∈R, l = 3, ..., N , arbitrarily
close for suitably chosen natural numbers m0,m1l ,m2l ∈N:

∀εth,l ∈R+, l ∈ {3, ..., N }, zl ∈R : ∃m0,m1l ,m2l ∈N such that |cl −bl | ≤ εth,l (5.21)

Proof. Appendix D.3.

If the deviation (cl −bl ) is positive and not greater than a threshold εth,l = 1
N , then

we can solve any instance of the maximum-cut problem by solving an instance of the
reduced-size SIS network reconstruction (5.17):

Lemma 5.13 (Sufficiently small errors on the UQP coefficients). If cl ≥ bl and cl −bl <
1
N for all l ∈ {3, ..., N }, then the solution to the reduced-size SIS network reconstruction
problem (5.20) is also a solution to the zero-one UQP (5.12).

Proof. Appendix D.4.

Lemma 5.11, Lemma 5.12 and Lemma 5.13 prove the NP-hardness of the reduced-
size SIS network reconstruction (5.17). Lemma 5.14 states how to obtain the reduced-
size SIS network reconstruction (5.12) from the original, full-size SIS network reconstruc-
tion problem (5.10).

Lemma 5.14 (From full-size to reduced-size SIS network reconstruction). For all con-
nected adjacency matrices A ∈A and all viral state sequence x[1], ..., x[n1], there is a viral
state sequence x[1], ..., x[n2] with n2 > n1, such that the solution AML to the full-size SIS
network reconstruction (5.10) satisfies:

1. The following elements of AML equal the elements of the true adjacency matrix A:

(AML)12 = a12 = 1 and (AML)i j = ai j for all i , j ≥ 2

2The reduced-size SIS network reconstruction (5.17) for a graph with N nodes results in a zero-one UQP (5.12)
with N − 2 optimisation variables â13, ..., â1N . Strictly speaking, to obtain the zero-one UQP (5.12) with N
optimisation variables, one has to consider the reduced-size SIS network reconstruction (5.17) for graphs
with N +2 nodes. For ease of exposition, we omit the detail of the deviation of the number of optimisation
variables of the two optimisation problems (5.12) and (5.17).
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2. The other elements of AML are the solution to the reduced-size SIS network recon-
struction problem (5.17) whose objective function is changed by an additive term:

((AML)13, ..., (AML)1N ) = arg max
â13,...,â1N

log
(
Pr

[
x[1], ..., x[n1]

∣∣∣â13, ..., â1N

])
+

N∑
l=2

κl log
(
1−δ∆t −β∆t dl (A)−β∆t â1l

)
s.t. â1l ∈ {0,1}, l = 3, ..., N .

(5.22)

Here, dl (A) = ∑N
m=2 aml denotes the degree of node l when node 1 is removed from

the graph given by the adjacency matrix A, and κl is a natural number which is
independent of the optimisation variables â13, ..., â1N .

Proof. Appendix D.5.

The optimisation problem (5.22) resembles the reduced-size SIS network reconstruc-
tion (5.17), but the objective functions differ by the additive term

N∑
l=2

κl log
(
1−δ∆t −β∆t dl (A)−β∆t â1l

)
.

We show in Appendix D.6 that the additive term does not have an impact on the diffi-
culty: The NP-hardness of the reduced-size SIS network reconstruction (5.17) implies
the NP-hardness of the optimisation problem (5.22). Since solving the full-size SIS net-
work reconstruction problem (5.10) with the viral state sequence x[1], ..., x[n2] as input
implies solving the NP-hard optimisation problem (5.22).

Theorem 5.15 (SIS network reconstruction is NP-hard). For all connected adjacency ma-
trices A ∈A, the SIS network reconstruction problem (5.10) is NP-hard.

Proof. Appendix D.6.

We emphasise that the NP-hardness holds for any class of connected adjacency ma-
trices A ∈A, also for simple topologies such as paths or star graphs.

5.7. HEURISTIC NETWORK RECONSTRUCTION
Since the SIS network reconstruction is NP-hard, we resort to designing a heuristic for
(5.9). A commonly employed heuristic for solving mixed integer programming problems
is based on the solution of a convex optimisation problem which results from relaxing
the integer constraint [90], i.e., replacing ai j ∈ {0,1} by ai j ∈ [0,1]. However, the objective
function fobj given by (5.8) contains the terms βai j which render fobj non-convex also
when applying the convex relaxation of the integer constraint.

The intuitive approach of introducing a new variable ãi j = β∆t ai j and relaxing the
binary constraint ãi j ∈ {0,β∆t } to ãi j ∈ [0,β∆t ] cannot be straightforwardly employed.
First, there is no guarantee that expressing log(p[A]) by ãi j (and possibly by β∆t ) re-
sults in a convex function. Second, even if A is assumed to be uniformly distributed
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and the term log(p[A]) can hence be omitted, replacing β∆t ai j by ãi j would erase β∆t

in the objective fobj, and β∆t would only appear in the constraints ãi j ∈ [0,β∆t ] and
∆tβmin ≤ β∆t ≤ ∆tβmax. Thus, setting β∆t = ∆tβmax would always be a solution to the
corresponding convex optimisation problem since the constraint [0,∆tβmax] is the least
restrictive interval for ãi j . It is not obvious how to infer an estimate β∆t which does
not equal ∆tβmax, and furthermore, how to deduce ai j = 0 or ai j = 1 from a solution
0 < ãi j <∆tβmax.

We propose a heuristic by translating the non-convex optimisation problem (5.9)
into w separate convex optimisation problems with the solutions θ̃cvx,l for l = 1, ..., w .
The translation is achieved by a transformation of the optimisation variables, i.e., θ̃ =
h(θ) for a bijective function h, a piecewise-linear approximation of non-convex terms of
the objective function with w line segments and a convex relaxation of the binary con-
straint ai j ∈ {0,1}. The greater the number of line segments w , the more accurate is the
piecewise-linear approximation. We refer the reader to Appendix D.7 for details of the
heuristic.

The solutions θ̃cvx,l = (Acvx,l , β̃cvx,l , δ̃cvx,l , ε̃cvx,l ), l = 1..., w , correspond to non-binary
link estimates. More specifically, (Acvx,l )i , j may not be element of {0,1}. Since the link
weights ai j must be either zero or one, we employ a heuristic to find an estimate that
approximates the exact solution θMAP of the original optimisation problem (5.9). For
each θ̃cvx,l , we perform two steps.

1. The solution θ̃cvx,l of the optimisation problem (D.55) corresponds to a non-binary
valued adjacency matrix Acvx,l . To obtain a binary-valued solution, we round the
elements of Acvx,l to the nearest integer, which results in the heuristic estimate
denoted by

(
Aheur,l

)
i j =

{
1 if

(
Acvx,l

)
i j ≥ 1

2 ,

0 if
(

Acvx,l
)

i j < 1
2 .

(5.23)

2. The binary-valued heuristic estimates for the adjacency matrix Aheur,l , together
with the estimates β̃cvx,l , δ̃cvx,l , ε̃cvx,l for the spreading parameters obtained by the
convex problems (D.55), do realise a feasible point to the original optimisation
(5.9). However, we obtain a better estimation of the three rates, for the given
Aheur,l , as follows.

When A is fixed to Aheur,l , the objective of the original problem (5.9) becomes a
function of the three rates,

fobj,l (β∆t ,δ∆t ,ε∆t ) = fobj(Aheur,l ,β∆t ,δ∆t ,ε∆t ). (5.24)

The function fobj,l (β∆t ,δ∆t ,ε∆t ) is convex with respect to β∆t ,δ∆t ,ε∆t . Hence, the
function fobj,l (β∆t ,δ∆t ,ε∆t ) can be efficiently minimised with respect to these three
variables, whereby the constraints of the original optimisation problem (5.9) have
to be considered (the constraints are also convex with respect to β∆t ,δ∆t ,ε∆t ). The
reduced-size optimisation problem is also called convex restriction [112] of the
original optimisation problem at the point Aheur,l .
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The refinement of the spreading parameters by convex optimisation results in a
heuristic estimate, which is denoted by θheur,l = (Aheur,l ,βheur,l ,δheur,l ,εheur,l ). The
heuristic is performed for every line segment l = 1, ..., w . Thus, we obtain w solu-
tion candidates θheur,l .

The final estimate of the presented heuristic estimation approach is denoted by θheur

and is given by the candidate θheur,l which results in the minimal value of the objective
function (5.8),

θheur = arg min
{

fobj
(
θheur,l

)∣∣∣l = 1, ..., w
}

.

We denote the corresponding value of the objective function by fheur = fobj(θheur).
In pseudocode, the approach for determining a heuristic estimate θheur is given by

Algorithm 5.1. The presented algorithm allows for parallelisation in a straightforward
manner since θheur,l can be obtained independently for the different line segments l .

Algorithm 5.1 Heuristic SIS network reconstruction

1: Input: SIS observations X [n]
2: Output: Heuristic for MAP estimate θheur

3: fheur ←∞
4: for l = 1, ..., w do
5: Obtain θ̃cvx,l = (Acvx,l , β̃cvx,l , δ̃cvx,l , ε̃cvx,l ) by solving (D.55)
6: Obtain binary Aheur,l from non-binary Acvx,l by rounding (5.23)
7: Obtain

(
βheur,l ,δheur,l ,εheur,l

)
by minimising fobj,l (β∆t ,δ∆t ,ε∆t ) in (5.24)

8: if fobj
(

Aheur,l ,βheur,l ,δheur,l ,εheur,l
)< fheur then

9: θheur ←
(

Aheur,l ,βheur,l ,δheur,l ,εheur,l
)

10: fheur ← fobj(θheur)
11: end if
12: end for

5.8. NUMERICAL EVALUATION
We perform numerical evaluations for both the heuristic estimation approach and the
brute-force approach. We generate multiple Erdős-Rényi graphs and, for each of these
graphs, generate the nodal infection state matrix X [n] by a random number generator,
according to the transition probabilities of the sampled-time ε-SIS process. Then, we
give the nodal states X [n] as input to the estimation procedures. We obtain a solution to
the optimisation problems (D.55) by the Matlab command fmincon.

We choose the link probability pER of the Erdős-Rényi model such that the gener-
ated random graphs are connected with a high probability, which holds if pER is sig-
nificantly greater than the threshold log(N )/N . By setting pER = 0.7, we ensure pER >
2log(N )/N for all networks considered in the numerical evaluation, which are of size
N = 4 or greater. For Erdős-Rényi random graphs, the logarithm of the prior distribution
of the adjacency matrix A is given by

log(Pr[A]) =1

2
N (N −1)log

(
1−pER

)+ log

(
pER

1−pER

) N∑
i=1

N∑
j=1

ai j .
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Only the second addend depends on A and has to be considered for the optimisation.
Alternatively, prior information on the link density could be considered by replacing
log(Pr[A]) by ρ

∑
i j ai j , where ρ is the sparsity parameter [97].

We compare the brute-force and the heuristic estimation of Section 5.7 for small
networks, with N = 4,5,6 nodes, and for observation lengths ranging from n = 100 to
n = 5000. Furthermore, the heuristic estimation approach is numerically evaluated for
larger networks up to N = 24 nodes and observation lengths ranging from n = 103 to
n = 106. For each pair of number of nodes N and observation length n, we generate 103

Erdős-Rényi random graphs with p = 0.7 – except for the comparison of brute-force and
heuristic in Subsection 5.8.1, where 2 ·103 networks are created.

The spreading parameters are set to β = 2/3, δ = 1 and ε = 0.01. The upper bounds
on the parameters are set to βmax = 1, δmax = 1 and εmax = 1. The lower bound on the
infection rate is set toβmin = 0.1β= 2/30. The sampling time∆t is set as large as possible,
considering the upper bound (5.4). Every node is set initially to the infected state, i.e.,
x[1] = u. For the heuristic approach presented in Section 5.7, we set the number of line
segments to w = 10.

We compare the accuracy of the resulting estimates as follows. For the spreading
parameters β,δ and ε, the error of the estimates is defined as the relative deviation (β−
β̂)/β, where β̂ is the estimate and β the true value. The errors of the rates δ and ε are
defined analogously. For the adjacency matrix A, we define the error as

εA = 1

L

N∑
i=1

N∑
j=1

∣∣âi j −ai j
∣∣ ,

where âi j and ai j are the elements of the estimated and true adjacency matrix, respec-
tively, and L = (N −1)N /2 is the number of possible links.

5.8.1. EVALUATION OF THE HEURISTIC ESTIMATION METHOD
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Figure 5.1: Accuracy of the heuristic. Fraction Rdiff of 2,000 randomly generated graphs for which the results
of the heuristic and the exact brute-force methods do not coincide.

Figure 5.1 shows that for almost every randomly generated graph the heuristic and
the brute-force estimates are identical. Figure 5.2 demonstrates the difference in com-
putation time of the heuristic and exact brute-force approach.
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Figure 5.2: Computation time of the heuristic. Comparison of computation time of heuristic (heur) and brute-
force (bf) approach in dependency of the number of nodes N .

5.8.2. ACCURACY OF ESTIMATION DEPENDING ON OBSERVATION LENGTH
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Figure 5.3: Network reconstruction accuracy versus observation length. The accuracy of the reconstructed
network and estimated parameters in dependency of the observation length n. Discontinued graphs in the top
left plot refer to zero errors of the estimate of A.

Figure 5.3 shows the accuracy of the estimate θheur versus the observation length
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n. For a large observation length n, the adjacency matrix A is almost always exactly
reconstructed. Furthermore, the network size N does not have a considerable impact on
the estimation accuracy of the curing rate δ. In contrast, the estimation accuracy of the
rates β and ε does depend significantly on the network size N . For a small observation
length n, for which the adjacency matrix A is reconstructed poorly, the accuracy of the
estimate of the self-infection rate ε is not monotonically increasing.

103 104 105 106
10−4

10−2

Observation Length n

E
rr
or

A

Karate Club (N = 34)

Windsurfers (N = 43)

Figure 5.4: Network reconstruction for real-world networks. The accuracy of the reconstructed network and
estimated parameters in dependency of the observation length n, for two real-world networks.

We evaluate our network reconstruction method for two real-world networks, the
Zachary karate club [113] with N = 34 nodes and the network of windsurfers [114] with
N = 43 nodes. Both networks were accessed via the Konect network collection [62].

For the two networks, 100 different SIS viral state sequences x[1], ..., x[n] were cre-
ated. Since the prior distribution Pr[A] is not available, we perform an ML estimation by
omitting the term log(Pr[A]) in the objective function (5.7). Figure 5.4 shows the network
reconstruction accuracy, averaged over the 100 different SIS viral state traces, in depen-
dency of the observation length n. For both networks, a reasonable estimation accuracy
requires a large number of observations n.

5.8.3. REQUIRED OBSERVATION LENGTH AND COMPUTATION TIME
Figure 5.5 and Figure 5.6 show the observation length n and the computation time Tcomp,
respectively, versus the network size N , to attain a given network reconstruction accu-
racy. Since none of the data points in Figure 5.3 coincides exactly with either of the de-
sired error on the estimate of A, we perform linear interpolation to obtain Figure 5.5 and
Figure 5.6. Both the observation length n and the computation time grow nearly expo-
nentially with respect to the number of nodes N . Indeed, the number of observations n
approximately grows as log10(n) ≈ Nα+b. Similarly, we find that the computation time
Tcomp approximately obeys log10(Tcomp) ≈ mN +d . The parameters α,b,m and d are
given by Table 5.1.

For the Zachary karate club network [113] of size N = 34, Algorithm 5.1 took approxi-
mately 75 minutes on a 2.5GHz Intel® Xeon® Processor E5-2670 v2 for a reasonable net-
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Figure 5.5: Observation length versus network size. The required observation length n to attain a given link
error εA of the estimate of A versus the number of nodes N . The points are obtained by interpolation and the
fitted dependencies are given by the dashed graphs.
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Figure 5.6: Computation time versus network size. The required computation time Tcomp to attain a given
link error εA of the estimate of A versus the number of nodes N . The points are obtained by interpolation and
the fitted dependencies are given by the dashed graphs.

work reconstruction accuracy (an average fraction of erroneous links εA ≈ 10−4). As il-
lustrated by Figure 5.6, the computation time for a desired average fraction of erroneous
links εA grows nearly exponentially with the network size N , which poses a severe practi-
cal constraint, even if the large number of observations n given by Figure 5.5 is available.

5.9. CONCLUSIONS
We propose a Bayesian formulation for the SIS network reconstruction from viral state
observations, based on the sampled-time SIS process. Our contribution is twofold. First,
we considers the computational complexity of finding the maximum-likelihood esti-
mate of the network topology. Instead of reconstructing a network for a given viral state
sequence, we considered the reverse problem of designing a viral state sequence such
that estimating the presence or absence of links either becomes computationally diffi-
cult (Lemma 5.11) or easy (first statement of Lemma 5.14). Specifically, we showed that
the maximum-likelihood network reconstruction for SIS processes is NP-hard.
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Table 5.1: Fitted parameters for the observation length and the computation time versus the number of
nodes. Parameters obtained by fitting the number of observations n and the computation time Tcomp in de-
pendency of the number of nodes N , respectively.

Error A 0.2 0.15 0.1 0.05
α 0.5548 0.5596 0.5566 0.5549
b -0.2259 0.0097 0.2985 0.5621
m 0.1380 0.1459 0.1551 0.1712
d -1.5966 -1.5138 -1.4777 -1.5518

Second, we proposed an efficient, polynomial-time heuristic for the Bayesian SIS
network reconstruction problem. Numerical evaluations indicate that our heuristic per-
forms almost optimally for small networks. Thus, our heuristic is a good candidate for
reconstructing larger networks, whose size render the solution of the optimal, NP-hard
network reconstruction problem computationally infeasible. For sufficiently many ob-
servations n, our heuristic reconstructs the contact network and the spreading rates ac-
curately. However, to attain a given network reconstruction accuracy, the number of
observations n grows rapidly with respect to the network size N . In particular, we found
the approximate relation log10(n) ≈ Nα + b, where α ≈ 0.56. In practical applications,
the underlying network is only available in exceptional cases, and an accurate network
reconstruction seems infeasible due to the tremendous observation lengths n.
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6
ON THE ACCURACY OF PREDICTING

EPIDEMIC OUTBREAKS

During an epidemic outbreak, perhaps the greatest concern is the future evolution: How
many people will be infected and which regions will be affected the most? The accurate
prediction of an epidemic enables targeted disease counter-measures (e.g., allocating med-
ical staff and quarantining). But, when can we trust the prediction of an epidemic to
be accurate? The contribution of this chapter is twofold. First, we demonstrate the ill-
conditioning of predicting the logistic function, which is central to epidemic models. In
particular, an epidemic can be predicted reliably only in the short term, or once the num-
ber of infections has passed the peak value. Second, we show that it is possible to compare
the accuracy of predictions performed at two different observation times, without knowing
the future number of infections.

This chapter is based on [115].
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6.1. INTRODUCTION
Predictions of the epidemic outbreaks are a decisive tool for policy makes: if the future
course of an epidemic is known, then appropriate disease counter-measures, such as
societal lockdowns, can be deployed. A great body of research proposed various meth-
ods for predicting epidemic outbreaks. Predictions are valuable only if the prediction
accuracy is known. Here, our focus are the fundamental limits of predicting epidemic
outbreaks, which apply to any prediction method.

In this chapter, we focus on a homogeneous population, whose individuals are in-
terchangeable. We consider two epidemic models. First, the SIS epidemic model, which
assumes that infected individuals can cure and become susceptible again:

Definition 6.1 (SIS model in a homogeneous population [1, 116]). Consider a population
of individuals, which are either susceptible S or infected I at every time t ≥ 0. Denote
the infection rate by β > 0 and the curing rate by δ > 0. Then, the fraction of infected
individuals I(t ) evolves according to

dI(t )

d t
=βS(t )I(t )−δI(t ), (6.1)

and the fraction of susceptible individuals follows as S(t ) = 1−I(t ).

The SIS epidemic model for a homogeneous population (6.1) is a special case of the
NIMFA epidemic model on networks in Definition 1.1. More specifically, by setting1 N =
1, βi i =β and δi = δ, the NIMFA equations (1.1) reduce to (6.1). From the fraction of the
infected individuals I(t ), the number of infected individuals follows as NpopI(t ), where
Npop denotes the number of all individuals in the population.

Second, we consider the SIR epidemic model in a homogeneous population. The SIR
model assumes that cured individuals are immune to the disease, which is modelled by
the compartment removed R.

Definition 6.2 (SIR model in a homogeneous population [30]). Consider a population of
individuals, which are either susceptible S , infected I or removed R at every time t ≥ 0.
Denote the infection rate by β > 0 and the curing rate by δ > 0. Then, the fraction of
infected individuals I(t ) evolves according to

dI(t )

d t
=βS(t )I(t )−δI(t ),

the fraction of removed individuals R(t ) evolves according to

dR(t )

d t
= δI(t ), (6.2)

and the fraction of susceptible individuals follows as S(t ) = 1−I(t )−R(t ).

Analogously to the SIS model (6.1), the SIR epidemic model for a homogeneous pop-
ulation in Definition 6.1 is a special case of the SIR epidemic model on networks in Defi-
nition 1.2.
1More generally, the SIS model in a homogeneous population (6.1) describes NIMFA (1.1) on a regular infection

rate matrix B , see Corollary 3.11.
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The prediction of an epidemic translates to estimating the value of the compart-
ments S(t ), I(t ), R(t ) at future times t . For both the SIS and SIR model in homoge-
neous populations, we argue that the prediction of an epidemic is inherently difficult,
independently of the particular prediction algorithm.

6.2. RELATED WORK
Several studies approach the prediction limits of epidemic outbreaks from different an-
gles. Cirillo and Taleb [117] demonstrate that the number of fatalities of various past
epidemics is strongly fat-tailed, which renders long-term predictions of epidemics out-
breaks impossible. Castro et al. [118] and Paggi [119] study extensions of the SIR model
and show that, even though the respective model accurately fits the past epidemic out-
break, a reliable prediction is not possible. The same conclusion is drawn by Alberti and
Faranda [120], who directly fit a logistic function to the number of infections. In this
chapter, we aim to quantify the predictability of an epidemic. We show that the pre-
dictability is limited by the initial exponential growth of the epidemic, and we propose a
metric to quantify exponential growth. Based on the growth metric, it is indeed possible
to obtain quantitative statements on the predictability of an epidemic.

6.3. THE LOGISTIC FUNCTION IN EPIDEMIC MODELS
At the heart of both the SIS and the SIR epidemic model lies the logistic function f (t ),
which has been introduced by Verhulst [71] as

f (t ) = y∞
1+e−K (t−t0)

. (6.3)

Here, we denote the steady-state fraction of infections (also called the prevalence) by
y∞ > 0, the inflection point (peak of the number of new infections) by t0 and the logistic
growth rate by K > 0. For both the SIS and the SIR epidemic model, we denote the effec-
tive infection rate by τ= β/δ. Proposition 6.3 states that the solution of the SIS model is
given by a logistic function. Proposition 6.3 is not a novel contribution but is included
for completeness.

Proposition 6.3. Consider the SIS epidemic model and assume that β > δ and I(0) > 0.
Then, the fraction of infected individuals I(t ) is given by a logistic curve

I(t ) = y∞
1+e−K (t−t0)

.

Here, the steady state equals y∞ = 1− 1
τ , the logistic growth rate equals K =β−δ, and the

inflection point equals

t0 = 1

K
log

(
1

I(0)

(
1− 1

τ

)
−1

)
.

Also for the SIS epidemic model on networks, the logistic curve gives an approxima-
tion and bounds for describing the number of infected individuals, see [72] and Chap-
ter 3.
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Similarly to Proposition 6.3, in the SIR epidemic model, the solution for the removed
compartment R(t ) can be approximated by a logistic function, as shown in the seminal
work of Kermack and McKendrick [30].

Proposition 6.4 ([30]). Consider the SIR epidemic model and assume that R(0) = 0 and
I(0) > 0. Then, if R(t ) ¿ δ/β holds true at all times t , the fraction of removed individuals
R(t ) can be approximated by a logistic curve at all times t ≥ 0 as

R(t ) ≈σ1 + σ2 −σ1

1− σ2
σ1

e−
1
2 τ

2(σ2−σ1)δt
.

Here, the constants σ1 and σ2 equal to

σl =


1
s0τ2

(
(s0τ−1)+

√
(s0τ−1)2 +2s0(1− s0)τ2

)
if l = 1,

1
s0τ2

(
(s0τ−1)−

√
(s0τ−1)2 +2s0(1− s0)τ2

)
if l = 2.

Proposition 6.4 states that the removed individualsR(t ) is approximated by a logistic
function plus the offset σ1. By the definition of the SIR model in (6.2), the fraction of
infections I(t ) is proportional to the derivative of the removed individuals R(t ). Thus,
Proposition 6.4 implies that the cumulative number of infections

Ic (t ) =
∫ t

0
NpopI (z)d z, (6.4)

where Npop is the size of the population, is approximated by a logistic function (plus
offset σ1). Then, the peak of the epidemic, i.e., the largest increase of infections, occurs
at the inflection point t0.

In contrast to the deterministic SIS process of Definition 6.1, the logistic function f (t )
is not an accurate description of the stochastic SIS process in some settings [72, 121]. In
particular, the prevalence of the stochastic SIS process can exhibit a local minimum,
before converging to the metastable state. However, the cumulative number of infec-
tions Ic (t ) is non-decreasing, and most real-world epidemics are well described by a
sigmoid curve, without local minima.

6.4. PREDICTING EPIDEMIC OUTBREAKS
Proposition 6.3 and Proposition 6.4, and variations thereof, motivate the application of
the logistic function (6.3) to the prediction of an epidemic outbreak. In particular, the lo-
gistic function has been applied to forecast the Coronavirus Virus Disease 2019 (COVID-
19) outbreak in China [122–126] and Italy [127]. Furthermore, the logistic function has
been applied to predict other phenomena than COVID-19, including tuberculosis [128]
and product sales [129, 130]. We consider the prediction of the cumulative number of
infections Ic (t ), as defined in (6.4). Real-world epidemic data is collected in a periodic
manner, i.e., in discrete time intervals. For instance, the Dutch National Institute for
Public Health and the Environment (RIVM) reports the number of COVID-19 infections
in the Netherlands on a daily basis2. We consider that the number of infections is re-
ported at discrete times t =∆t , 2∆t , ..., n∆t for some sampling time∆t , where n denotes

2See https://www.rivm.nl/coronavirus-covid-19/actueel.
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the number of observations. (Typically, the sampling time ∆t equals one day for report-
ing infections.) For a given sampling time ∆t , we denote the number of infections at
discrete time k = 1, ...,n by Ic [k] = Ic (k∆t ). Furthermore, we denote the observation
time by tobs = n∆t .

In a real-world epidemic, the infections Ic [k] do not exactly follow a logistic function
f (k∆t ). Instead, the infections Ic [k] satisfy

Ic [k] = f (k∆t )+w[k] (6.5)

for some logistic function f (k∆t ) and the unknown model error w[k] at time k. To pre-
dict the number of infections Ic [k] at times k > n, we consider a two-step approach.
First, we obtain parameter estimates ŷ∞, t̂0, K̂ of the logistic function f (t ) by solving the
constrained non-linear least-squares problem

(ŷ∞, t̂0, K̂ ) = argmin
y∞,t0,K

n∑
k=1

(
Ic [k]− y∞

1+e−K (k∆t−t0)

)2

,

s.t. 0 ≤ y∞,i ≤ Npop,

K ≥ 0,

t0 ≥ 0.

(6.6)

We solve the optimisation problem (6.6) by the Matlab command GlobalSearch. As
initial conditions, we provide y (0)∞ = Ic [n], K (0) = 1 and t (0)

0 = tobs.
Second, we predict the number of infections Ic [k] at times k > n by the logistic func-

tion (6.3) as Îc [k] ≈ f̂ (k∆t ), where the estimate of the logistic function f (t ) equals

f̂ (t ) = ŷ∞
1+e−K̂ (t−t̂0)

.

Schultz [131] analysed the impact of errors of the parameters ŷ∞, K̂ , t̂0 on the deviation
of the logistic function f (t ) to its estimate f̂ (t ). The remainder of this section consists of
two parts. First, we focus on the simplified problem of fitting the logistic function f (t )
to three points in Subsection 6.4.1. Second, we argue that the prediction of epidemics is
ill-conditioned in Subsection 6.4.2.

6.4.1. FITTING THE LOGISTIC FUNCTION TO THREE EQUIDISTANT POINTS
As shown below, a central quantity for fitting the logistic function f (t ) is the growth met-
ric Φ

(
y1, y2, y3

)
:

Definition 6.5. For some function g (t ), with g (t ) > 0 at all times t , consider three equidis-
tant points y1 = g (0), y2 = g (tobs/2), y3 = g (tobs). Then, the growth metric is defined by

Φ
(
y1, y2, y3

)= y2

y3
− y1

y2
. (6.7)

The growth metric Φ
(
y1, y2, y3

)
can be interpreted in two ways. First, consider the

sign of the growth metric Φ
(
y1, y2, y3

)
. It holds that Φ

(
y1, y2, y3

) > 0 if and only if 3 to

3Furthermore, y3/y2 = y2/y1 is equivalent to log(y3)− log(y2) = log(y2)− log(y1). Thus,Φ
(
y1, y2, y3

)= 0 if and
only if the three equidistant points y1, y2, y3 lie on a line in a semilogarithmic plot (see also Figure 6.1).
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y3/y2 < y2/y1. In other words, the relative increase y3/y2 from time t = tobs/2 to t =
tobs must be smaller than the relative increase y2/y1 from time t = 0 to t = tobs/2. By
definition of exponential growth, it would hold that y3/y2 = y2/y1 if the three points y1,
y2 and y3 were on an exponential function, i.e., y1 = bt , y2 = bt+tobs/2 and y3 = bt+tobs for
some basis b ≥ 0. Thus, Φ

(
y1, y2, y3

)> 0 and Φ
(
y1, y2, y3

)< 0 indicates that the function
g (t ) grows slower or faster, respectively, than an exponential function from time t = 0 to
time t = tobs.

Second, the growth metric Φ
(
y1, y2, y3

)
is related to the logarithmic derivative of the

function g (t ). Denote the logarithm of the function g (t ) as h(t ) = log
(
g (t )

)
. The first

derivative of h(t ) equals h′(t ) = g ′(t )/g (t ). For small sampling times ∆t , the derivative
h′(t ) is approximated by the difference quotient

h′′(t ) ≈ 1

∆t

(
g ′ (t +∆t )

g (t +∆t )
− g ′(t )

g (t )

)
.

Analogously, both derivatives g ′ (t +∆t ) and g ′(t ) can be approximated by difference
quotients, which yields that

h′′(t ) ≈ 1

∆t 2

(
g (t +∆t )− g (t )

g (t +∆t )
− g (t )− g (t −∆t )

g (t )

)
=− 1

∆t 2

(
g (t )

g (t +∆t )
− g (t −∆t )

g (t )

)
.

Hence, by identifying y1 = g (t −∆t ), y2 = g (t ) and y3 = g (t +∆t ), we obtain that

Φ
(
y1, y2, y3

)≈−∆t 2h′′(t ).

Particular, if Φ
(
y1, y2, y3

) > 0 and the sampling time ∆t is sufficiently small, then the
function g (t ) is strictly logarithmically concave [90].

Pearl and Reed [132] showed that the logistic function f (t ) can be fitted in closed
form to three points y1, y2 and y3 at equidistant time points4 t = 0, t = tobs/2 and t =
tobs. We observe that the results in [132] can be stated in dependency on the growth
metricΦ

(
y1, y2, y3

)
as:

Proposition 6.6. Consider three points y3 > y2 > y1 > 0 and an observation time tobs > 0.
Then, there exists a logistic function f (t ) with f (0) = y1, f (tobs/2) = y2 and f (tobs) = y3 if
and only if

Φ
(
y1, y2, y3

)> 0. (6.8)

Furthermore, the logistic function f (t ) is unique, and the steady-state equals

y∞ = y1 +
(
y1 − y2

)2

y2

1

Φ(y1, y2, y3)
, (6.9)

4Without loss of generality, we assume that the first point y1 corresponds to time t = 0. Otherwise, if the first
point y1 corresponds to some time t̃ > 0, then consider a time shift by formally replacing t with t + t̃ .
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the logistic growth rate equals

K =− 2

tobs
log

(
y1

y2
+ y1

y1 − y2
Φ

(
y1, y2, y3

))
, (6.10)

and the inflection point equals

t0 = 1

K
log

((
y1 − y2

)2

y1 y2

1

Φ(y1, y2, y3)

)
. (6.11)

Proof. Appendix E.1.

We emphasise that condition (6.8) implies that a logistic function f (t ) can only be
fitted exactly to three points y1, y2, y3 whose relative increase is slower than exponen-
tial. Figure 6.1 shows that the growth metricΦ( f (0), f (t/2), f (t )) is close to zero for small
times t . Thus, the logistic function f (t ) is practically indistinguishable5 from an expo-
nential function at small times t . As we argue in Subsection 6.4.2, the strong resemblance
of the logistic function f (t ) and an exponential function is decisive for the prediction
limits of an epidemic outbreak.

6.4.2. ILL-CONDITIONING OF PREDICTING EPIDEMIC OUTBREAKS

If the model errors w(t ) in (6.5) are sufficiently small, then the solution ŷ∞, t̂0, K̂ to the
least-squares problem (6.6) approximately equals to the true parameters y∞, t0,K . How-
ever, it is not clear what “sufficiently small” means. Thus, we face the fundamental ques-
tion: How much do small, but non-zero, model errors w(t ) affect the accuracy of the esti-
mate f̂ (t )?

To quantify the deviation of the estimated logistic function f̂ (t ) to the true function
f (t ), we apply Proposition 6.6, which states that every logistic function can be param-
eterised by specifying three points y1, y2 and y3. We set the three points of the true
logistic function f (t ) in (6.5) to y1 = f (0), y2 = f (tobs/2) and y3 = f (tobs). Analogously,
we denote the corresponding points of the estimate f̂ (t ), obtained by (6.6), as ŷ1 = f̂ (0),
ŷ2 = f̂ (tobs/2) and ŷ3 = f̂ (tobs). The points ŷ1, ŷ2, ŷ3 depend on the unknown model error
w(t ). If the model error w(t ) → 0 at every time t ∈ [0, tobs], then it holds that ŷi → yi for
i = 1,2,3, which implies that f̂ (t ) → f (t ) at every time t .

We consider the best case and assume that, due to non-zero model errors w[k], the
estimate f̂ (t ) differs from the true function f (t ) in only one of the points y1, y2, y3. More
precisely, we consider that ŷ1 = y1, ŷ2 = y2 and ŷ3 = y3 +ε for some small perturbation ε.
Thus, ε→ 0 implies that f̂ (t ) → f (t ) at every time t . For now, we focus on the sensitivity
of estimating the steady state y∞. We define ŷ∞(ε) as the estimate of the steady state y∞,
given the perturbation ŷ3 = y3 +ε. By applying Taylor’s Theorem to (6.9), we obtain for a
small perturbation ε that

ŷ∞(ε) = y∞+εκ1(tobs)+O (
ε2) , (6.12)

5Here, we consider logistic functions f (t ) whose inflection point t0 À 0, such that f (t ) ≈ y∞eK (t−t0) when t is
small.
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Figure 6.1: Growth metric for a logistic function. Upper subplot: The logistic function f (t ) with parameters
K = 0.5, t0 = 15 and y∞ = 1 and the exponential function h(t ) = y∞eK (t−t0) on a semi-logarithmic scale.
Lower subplot: The growth metric Φ(y1, y2, y3) for the points y1 = f (0), y2 = f (t/2), y3 = f (t ) versus time t on
a semi-logarithmic scale.

where we define6 the condition number κ1(tobs) as

κ1(tobs) = ∂

∂y3

(
y1 +

(
y1 − y2

)2

y2

1

Φ(y1, y2, y3)

)
. (6.13)

The condition number κ1(tobs) depends on the observation time tobs, since the three
points are given by y1 = f (0), y2 = f (tobs/2) and y3 = f (tobs). From (6.12) it follows that
the condition numberκ1(tobs) describes the impact, or the amplification, of a small error
ε = ŷ3 − y3 on the estimate ŷ∞(ε). The greater the condition number κ1(tobs), the harder
it is to estimate the steady state y∞. Analogously to the condition number κ1(tobs) for the
estimate of the steady state y∞(ε), we define the condition numbers κ2(tobs) and κ3(tobs)
for the growth rate estimate K̂ (ε) and the inflection point estimate t̂0(ε), respectively.
(See also Appendix E.2.)

6For a matrix A, the most common definition of the condition number is κ(A) =σmax/σmin, where σmax and
σmin denote the greatest and smallest singular value of the matrix A. Analogously to (6.13), the condition
number κ(A) describes the sensitivity the solution x of the linear system Ax = b, when the vector b is per-
turbed [133].
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Proposition 6.7 (Condition numbers of estimating the logistic function parameters).
Consider three points y1 = f (0), y2 = f (tobs/2) and y3 = f (tobs) on the logistic function
f (t ). With respect to a small perturbation ε of the point y3, the condition number of the
steady-state estimate ŷ∞(ε) equals

κ1(tobs) =
(
y1 − y2

)2

y2
3

1

Φ2(y1, y2, y3)
, (6.14)

the condition number of the growth-rate estimate K̂ (ε) equals

κ2(tobs) = 2

tobs

y2
2

y2
3

1

y1 − y2 + y2Φ
(
y1, y2, y3

) , (6.15)

and the condition number of the inflection-point estimate t̂0(ε) equals

κ3(tobs) = 1

K

y2

y2
3

(
1

Φ(y1, y2, y3)
− 2t0 y2

tobs

1

y1 − y2 + y2Φ
(
y1, y2, y3

) )
. (6.16)

Proof. Appendix E.2.

To assess the difficulty of estimating the parameters y∞, K , t0, we consider an ex-
emplary logistic function f (t ) with K = 0.5, t0 = 10 and y∞ = 1. Figure 6.2 shows that
the condition numbers κ1(t ), κ2(t ), and κ3(t ) are very large. For instance, at time t =
5 = t0/2, the magnitude of the condition number |κ1(5)| is greater than 100. Thus, the
steady-state estimate ŷ∞(ε) is distorted by the error ε times a factor of 100. Furthermore,
Figure 6.2 indicates that the estimation of the growth rate parameter K is most robust
against model errors w(t ), since the condition number κ2(t ) is the smallest. We empha-
sise that, for simplicity, Proposition 6.7 considers the best case: the perturbation of only
one point y3. If the points y1 and y2 are also perturbed, then the condition numbers can
become even greater than the expressions in Proposition 6.7.

The condition numbers in Proposition 6.7 are given by rather complicated expres-
sions. To obtain a better understanding of the condition numbers, we derive bounds
as:

Proposition 6.8 (Lower bounds on the condition numbers). Consider three points y1 =
f (0), y2 = f (tobs/2) and y3 = f (tobs) on the logistic function f (t ), whose inflection point
t0 ≥ 0. For every observation time tobs > 0, the condition number of the steady-state esti-
mate ŷ∞(ε) is bounded by κ1(tobs) > κ1,lb(tobs), where

κ1,lb(tobs) = 1+ 4

K 2

1

t 2
obs

e2K (t0−tobs), (6.17)

the condition number of the growth-rate estimate K̂ (ε) is bounded by |κ2(tobs)| > κ2,lb(tobs),
where

κ2,lb(tobs) = y2
2

y2
3

1

y∞
K

1+ 1
2 K tobs

1

Φ
(
y1, y2, y3

) , (6.18)
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Figure 6.2: Condition numbers of estimating the parameters of a logistic function. Upper subplot: The logis-
tic function f (t ) versus time t . Lower subplot: The absolute value of the condition numbers κ1(t ), κ2(t ), and
κ3(t ) versus time t on a semi-logarithmic plot. The dashed lines indicate the inflection point t0 = 15.

and the condition number of the inflection-point estimate t̂0(ε) is bounded by κ3(tobs) >
κ3,lb(tobs), where

κ3,lb(tobs) = 1

K

y2

y2
3

1

Φ
(
y1, y2, y3

) . (6.19)

Proof. Appendix E.3.

Figure 6.3 shows that the lower bounds of Proposition 6.8 are accurate, where we use
the same parameters for the logistic function as in Figure 6.1. From Proposition 6.8, we
obtain two statements on the prediction limits of epidemic outbreaks. First, the lower
bound (6.17) grows exponentially with (t0 − tobs). Thus, only if the epidemic has been
observed until the inflection point tobs ≈ t0 (or longer), the steady state y∞ can be esti-
mated accurately. Second, the lower bounds (6.18) and (6.19) depend on the recipro-
cal of the growth metric Φ

(
y1, y2, y3

)
. The more the epidemic growth from y1 = f (0) to

y3 = f (tobs) resembles an exponential, the smaller the growth metric Φ
(
y1, y2, y3

)
, see

Subsection 6.4.1. But real epidemics grow practically exponentially in the beginning of
the outbreak. Hence, the growth rate K and the inflection point t0 cannot be estimated
accurately at early stages of an epidemic. Or, as a simple rule of thumb: as long as the
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Figure 6.3: Lower bounds on the condition numbers. The absolute value of the condition numbers κi (t ),
where i = 1,2,3, and the respective lower bounds κi ,lb(t ) versus time t on a semi-logarithmic plot. The dashed
line indicates the inflection point t0 = 15.

infections Ic (t ) are on a straight line in a semi-logarithmic plot, the epidemic outbreak
cannot be predicted accurately.
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Figure 6.4: Sensitivity of predicting an epidemic outbreak. The left subplot shows the logistic function (6.5)
with and without Gaussian model errors w[k] with a standard deviation of σ= 10−3. The randomly generated
parameters of the logistic function f (t ) are t0 = 20.5,K = 0.31 and y∞ = 0.43. The right subplot shows the
cumulative number of infectionsIc [k] and the predicted value Îc [k], based on the logistic function plus model
errors w[k].

We perform numerical simulations to illustrate the sensitivity of predicting an epi-
demic outbreak subject to model errors w[k]. We generate the model errors w[k] in (6.5)
as Gaussian random variables with zero mean and standard deviation σ, at all discrete
times k = 1, ...,n. The model errors w[k] and w[k̃] are stochastically independent for all
k 6= k̃. If the cumulative number of infections Ic [k], resulting from (6.5), is negative, then
we set Ic [k] ← |Ic [k]|. Figure 6.4 shows that small model errors w[k] have a severe im-
pact on the accuracy of the estimated number of infections Îc [k]. The prediction of the
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number of infections Ic [k] is accurate only in the short term. We emphasise that, for real
epidemics, the model errors w[k] are significantly larger than in Figure 6.4.

6.4.3. COVID-19 PREDICTION
We consider the prediction of the first wave of COVID-19 in several countries: Belgium,
Italy, the Netherlands and South Africa. We obtain the infection data from the COVID-
19 Dashboard of the Johns Hopkins University [134] and determine the period of the
first wave to be: from March 1 until June 16 (Belgium), from February 16 until June 17
(Italy), from February 22 until July 11 (the Netherlands), from April 30 until October 7
(South Africa). The sampling time ∆t equals one day. In the subsequent plots, the dis-
crete time k = 1 denotes the first day of the respective country. For instance, time k = 1
corresponds to February 22, 2020, for the Netherlands.

Figure 6.5 shows a crucial contrast: the logistic function f (t ) fits the number of in-
fections until observation time tobs. But the logistic function f (t ) does not yield accu-
rate predictions for the number of infections. Only short-term predictions, until day
t ≈ tobs+4, are possible. We emphasise that we chose an observation time tobs before the
peak of the epidemic, i.e., before the inflection point t0. If the observation time tobs À t0,
then the prediction becomes more accurate.

When can we trust the predictions to be accurate? Proposition 6.7 and Proposition 6.8
suggest that the growth metric Φ(y1, y2, y3) is decisive for the prediction accuracy. We
compute the prediction accuracy in three steps. First, by fitting a logistic function to the
number of infections of the complete first wave, we obtain the “exact” steady-state y∞,
growth rate K and inflection point t0. Second, to reduce erratic fluctuations, we apply a
moving average of window length five to the estimates ŷ∞, K̂ , t̂0 and the growth metric
Φ(y1, y2, y3). For instance, we replace the steady-state estimate ŷ∞(tobs) at observation
time tobs by the average of the steady-state estimates ŷ∞(tobs), ŷ∞(tobs−∆t ), ..., ŷ∞(tobs−
4∆t ). Third, we define the absolute error of the steady-state estimate ŷ∞ as ε(y∞, ŷ∞) =∣∣ŷ∞− y∞

∣∣. Analogously, for the growth rate estimate K̂ and the inflection point estimate
t̂0, the respective absolute errors are denoted by ε(K , K̂ ) and ε(t0, t̂0).

Figure 6.6 and Figure 6.7 show that there is a strong correlation between the estima-
tion errors ε(K , K̂ ), ε(t0, t̂0) and inverse growth metric Φ(y1, y2, y3), which is in line with
Proposition 6.8. The red lines in Figures 6.6–6.8 are obtain by robust linear regression
with the Matlab command fitlm. The linear regression is performed without intercept,
i.e., the red lines go through the origin. Here, we define the relative error ∆K of the linear
regression as the average of the absolute deviation of ε(K , K̂ ) to the linear curve, divided
by the maximum value of the error ε(K , K̂ ). The relative error ∆y∞ and ∆t0 are defined
analogously. Furthermore, Figure 6.8 shows7 that the estimation error ε(y∞, ŷ∞) of the
steady state y∞ is reasonably correlated with the inverse growth metric Φ(y1, y2, y3), ex-
cept for South Africa.

We emphasise that the growth metric Φ(y1, y2, y3) is computed solely based on past
data until the observation time tobs. Hence, it is possible to quantify the prediction accu-
racy only based on past data. For instance, suppose that the growth metric Φ(y1, y2, y3)
increases by a factorµ from time tobs to t̃obs > tobs. Then, we can expect that the accuracy

7For clarity, we removed four outliers from Figure 6.8(a), because the axis range would be too large. The linear
regression and the relative error ∆y∞ consider all points, including the outliers.
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Figure 6.5: Difficulty of predicting COVID-19. The blue curves show the cumulative number of the first wave of
confirmed infections with SARS-CoV-2. The red curves shows the logistic curve which is fitted to the infections
from day k = 1 until day n and used for predictions at times k > n.

of the estimates K̂ , t̂0 and ŷ∞ increases by the factor µ.

6.5. CONCLUSIONS
For many epidemic models, the cumulative number of infections resembles a logistic
function, at least approximately. In this chapter, we showed that the prediction of a lo-
gistic function is ill-conditioned. More specifically, a good fit of a logistic function f̂ (t ) to
the epidemic data until some observation time tobs does not imply that the function f̂ (t )
yields accurate predictions at times t > tobs. Hence, even under idealised conditions, the
prediction of an epidemic is inherently difficult, regardless of the particular prediction
algorithm.
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Figure 6.6: Assessing the growth rate estimation accuracy via the growth metricΦ. In blue: the error ε(K , K̂ )
of growth-rate estimate K̂ at different times tobs versus the inverse of the growth metric Φ(y1, y2, y3), where
y1 =Ic (0), y2 =Ic (tobs/2) and y3 =Ic (tobs). In red: curve obtained by linear regression. The relative error∆K
of the linear regression equals: (a) ∆K = 0.11, (b) ∆K = 0.03, (c) ∆K = 0.01, (d) ∆K = 0.15.

Furthermore, we introduced the growth metricΦ(y1, y2, y3), which quantifies the ex-
ponential growth of the epidemic. The more exponential the epidemic growth, the more
difficult the prediction of the epidemic. In particular, the estimation error of the epi-
demic parameters correlates strongly with the inverse of the growth metric Φ(y1, y2, y3),
which enables quantitative statements on the prediction accuracy: Suppose that the epi-
demic is predicted at two different observation time tobs and t̃obs > tobs. Then, the frac-
tion of the respective growth metrics Φ(y1, y2, y3),Φ̃(y1, y2, y3) approximates the change
of the prediction accuracy from time tobs to t̃obs.
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Figure 6.7: Assessing the inflection point estimation accuracy via the growth metric Φ. In blue: the er-
ror ε(t0, t̂0) of inflection-point estimate t̂0 at different times tobs versus the inverse of the growth metric
Φ(y1, y2, y3), where y1 = Ic (0), y2 = Ic (tobs/2) and y3 = Ic (tobs). In red: curve obtained by linear regres-
sion. The relative error ∆t0 of the linear regression equals: (a) ∆t0 = 0.14, (b) ∆t0 = 0.05, (c) ∆t0 = 0.03, (d)
∆t0 = 0.24.
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Figure 6.8: Assessing the steady state estimation accuracy via the growth metric Φ. In blue: the er-
ror ε(y∞, ŷ∞) of steady-state estimate ŷ∞ at different times tobs versus the inverse of the growth metric
Φ(y1, y2, y3), where y1 = Ic (0), y2 = Ic (tobs/2) and y3 = Ic (tobs). In red: curve obtained by linear regres-
sion. The relative error∆y∞ of the linear regression equals: (a)∆y∞ = 0.01, (b)∆y∞ = 0.08, (c)∆y∞ = 2.8·10−4,
(d) ∆y∞ = 0.36.



7
NETWORK RECONSTRUCTION AND

PREDICTION FOR GENERAL

EPIDEMIC MODELS

The underlying core of most epidemic models is the graph that specifies the contacts be-
tween healthy and infected individuals. However, in the majority of applications, the
contact network is unknown. To understand and predict an epidemic outbreak nonethe-
less, network reconstruction methods aim to estimate the contact network from viral state
observations. This chapter considers general compartmental epidemic models (GEMF)
in discrete time, which describe the viral spread between groups of individuals. The re-
construction of the network translates into a set of linear equations that is severely ill-
conditioned. Counterintuitively, the contact network cannot be reconstructed from one
epidemic outbreak with any finite machine precision, although an accurate prediction of
the epidemic outbreak is possible.

This chapter is based on [135] and [53].
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7.1. INTRODUCTION
The contact graph between individuals has a great impact on the spread of the virus
[5, 9]. However, in the study of real-world epidemics, there is often not much known
about the contact graph other than high-level properties such as, for instance, the de-
gree distribution [10]. To obtain a better understanding of the viral spread, network re-
construction methods aim to infer the unknown contact graph from observing the viral
state evolution. If the contact graph can be reconstructed, then the epidemic outbreak
can be predicted. However, as we will show in this chapter, the prediction of epidemic
outbreaks is surprisingly less related to network reconstruction, despite the clear depen-
dence of the dynamic equations of epidemic spread on the contact graph (see equation
(7.4) below). In particular, we show that the network cannot be reconstructed although
the epidemic outbreak can be predicted.

The majority of network reconstruction methods focussed on inferring the contact
network from viral state observations of every single individual [87–89, 97, 99]. Network
reconstruction methods from viral state observations of single individuals are subject to
two fundamental limitations. First, it is hardly practical to determine the viral state of
every individual at every time in real-world epidemics. Second, an accurate network re-
construction requires a tremendous number n of viral state observation, see Chapter 5.
Thus, inferring the contact network between single individuals only seems possible long
after the virus reached the endemic state or, if the virus dies out, by observing multiple
epidemic outbreaks, both of which seems impractical. To overcome the challenges of re-
constructing the contact network of individual-based models, we describe the evolution
of the virus on a coarser level between groups, or communities, of similar individuals.
The prevalence of a virus within a group is accessible by sampling representative indi-
viduals.

In this chapter, we focus on the viral spread over a network with N nodes, where
each node corresponds to a group of individuals such as households or geographical
regions. Hence, we use the words node and group interchangeably. We consider that
the viral spread between groups follows a discrete-time version of the Generalised Epi-
demic Mean-Field (GEMF) model [136] with heterogeneous spreading parameters on
a directed contact network. The GEMF model considers C viral state compartments,
which unifies a myriad of diverse epidemic models. For instance, in SIR model in Def-
inition 1.2 there are C = 3 compartments. The viral state of node i at continuous time

t ≥ 0 is denoted by νi (t ) = (
νi ,1(t ), ...,νi ,C (t )

)T ∈ [0,1]C , where νi ,p (t ) describes the frac-
tion of individuals of group i in compartment p at time t .

7.2. THE DISCRETE-TIME GEMF EPIDEMIC MODEL
Originally, Sahneh et al. [136] derived the GEMF model as a mean-field approximation
of individual-based Markovian spreading processes, where every node i corresponds to
a single individual, whose viral state equals either one of C compartments. Then, the
probability that the viral state of individual i equals the p-th compartment at time t is
approximated by the state νi ,p (t ) of the GEMF model. In contrast, our interpretation
of the viral state νi ,p (t ) as the fraction of individuals of group i in compartment p is in
line with [18, 22, 23, 25]. Ideally, individuals in the same group are interchangeable for
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describing the epidemic outbreak. The number of individuals in different groups i does
not need to be the same.

We generalise the GEMF model [136] to heterogeneous spreading parameters and
directed graphs. We state the GEMF model in discrete time and denote the viral state
of group i at discrete time k ∈ N by νi [k] ∈ [0,1]C . Thus, it holds that νi [k] = νi (∆tk)
for some sampling time ∆t . Since νi ,p [k] denotes the fraction of individuals of group
i in compartment p and each individual is in exactly one compartment, it holds that
νi ,1[k]+ ...+νi ,C [k] = 1 at any time k. For every two compartments p, q = 1, ...,C , we
denote the N×N zero-one adjacency matrix as Apq with elements apq,i j . The adjacency
matrices Apq specify the contact network: If there is a directed link from compartment
q of group j to compartment p of group i , then apq,i j = 1, and apq,i j = 0 otherwise.
For instance, if compartment q denotes individuals that are in quarantine, then it holds
that Apq = 0 for all compartments p 6= q since the quarantine-compartment q is isolated
from all compartments p 6= q . In the GEMF model, there are two kinds of viral state
transitions from time k to k +1:

1. Nodal transitions occur at a node i independently of the viral state ν j [k] of the
other nodes j 6= i . The C ×C nodal transition probability matrix Si specifies the
probabilities of nodal transitions at node i . The probability that, via a nodal tran-
sition, an individual in group i changes from compartment p to compartment q
equals (Si )pq .

2. In contrast, edge-based transitions do depend on the viral state ν j [k] of the neigh-
bours j of node i and, hence, on the contact network. The C ×C edge-based tran-
sition probability matrix Bm,i j specifies the probabilities of edge-based transitions
at node i due to (for instance, an infection from) the individuals of group j in com-
partment m. More precisely, the probability that an individual in group i changes
from compartment p to compartment q due to a fraction ν j ,m[k] of individuals of
group j in compartment m equals

(
Bm,i j

)
pq ν j ,m[k]. We emphasise that the edge-

based transition probability matrix Bm,i i from group i to group i is not necessarily
zero, because the individuals in group i can possibly interact with each other.

Since we consider discrete-time GEMF with sampling time ∆t , the entries of both
matrices Si and Bm,i j correspond to transition probabilities, with respective transition
rates (for the continuous-time limit ∆t ↓ 0) given by the entries of Si /∆t and Bm,i j /∆t .
The edge-based transition probability matrix Bm,i j is related to the adjacency matrices
as Apm , for all compartments p = 1, ...,C , as follows. Since individuals of group j in
compartment m have an impact on individuals of group i in compartment p only if
there is a link from compartment m of group j to compartment p of group i , it holds(

Bm,i j
)

pq = (B̃m,i j )pq apm,i j (7.1)

for some C ×C matrix B̃m,i j . Hence, it holds apm,i j = 1 only if1 there is a compartment q
such that

(
Bm,i j

)
pq > 0. More precisely, we can obtain the entries apm,i j of the adjacency

1Here, we make the technical assumption: if there is a link from compartment m of group j to compartment

p of group i , then the probability
(
Bm,i j

)
pq

is positive for at least one compartment q .
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matrix Apm by

apm,i j =
{

1 if ∃q = 1, ...,C :
(
Bm,i j

)
pq > 0,

0 otherwise.
(7.2)

Any GEMF model can be visualised as in Figure 7.1 by the transition graph, which
we define as follows. All compartments of two (arbitrary) groups i , j are represented by
a node in the transition graph. Regarding the compartments of group i , two nodes in
the transition graph are connected by a directed link if there is a transition between the
respective compartments of group i . (The transitions between the compartments of the
other group j are omitted, since the transitions between the compartments of one group
i suffice to specify the GEMF model.) A node-based transition of group i from compart-
ment p to compartment q is represented by a simple arrow “→” that is labelled with the
transition probability (Si )pq . An edge-based transition of group i from compartment
p to compartment q is represented by an arrow with the multiplier “⊗” in the middle.
If compartment m of group j has an influence on the edge-based transition of group i
from compartments p to compartment q , then there is an arrow from compartment m
of group j to the respective multiplier “⊗”, which is labelled with the transition probabil-
ity

(
Bm,i j

)
pq . We emphasise that, by definition (7.1),

(
Bm,i j

)
pq = 0 if the respective link

apm,i j = 0.

1

2

3

1

2

3

Group j Group i

ϑi

αij

ηij

γij

θij

Figure 7.1: GEMF transition graph. The transition graph for an exemplary GEMF model with C = 3 compart-
ments. The solid lines correspond to possible transitions between the three compartments of group i . The
dashed lines illustrate which compartment of group j influences which edge-based transition between two
compartments of group i .

Figure 7.1 illustrates an exemplary transition graph for a GEMF model with C = 3
compartments. In the following, we show how the transition graph in Figure 7.1 fully
specifies the GEMF model, i.e. the node-based and edge-based transitions. In Figure
7.1, there is exactly one simple arrow from compartment 3 to compartment 1, which is
labelled with the transition probabilityϑi . Hence, the nodal transition probability matrix
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Si equals

Si =
 0 0 0

0 0 0
ϑi 0 0

 . (7.3)

There are two arrows from compartment 1 of group j to the edge-based transitions of
group i : from compartment 2 to compartment 1 (labelled with αi j ), and from compart-
ment 3 to compartment 1 (labelled with ηi j ). Hence, the edge-based transition proba-
bility matrix B1,i j equals

B1,i j =
 0 0 0
αi j 0 0
ηi j 0 0

 .

There is no arrow from compartment 2 of group j to a transition of group i . Hence,
compartment 2 of group j has no influence on the transitions of group i , and it holds
that B2,i j = 0. From the two arrows starting at compartment 3 of group j , we obtain the
edge-based transition probability matrix B3,i j as

B3,i j =
 0 0 0
γi j 0 θi j

0 0 0

 .

The matrices Si and Bm,i j , where m = 1,2,3, for all groups i , j fully specify the transitions
of the GEMF model. Furthermore, the links apm,i j from compartment m of group j to
compartment p of group i can be obtained from Figure 7.1 as follows. The link labelled
withαi j connects compartment 1 of group j to an edge-based transition starting at com-
partment 2 of group i (ending at compartment 1 of group i ), which yields that a21,i j = 1
if αi j > 0. Similarly, the link labelled with ηi j yields that a31,i j = 1 if ηi j > 0. Both of
the links labelled with γi j and θi j connect compartment 3 of group j with edge-based
transitions starting at compartment 2 of group i , which yields that a23,i j = 1 if γi j > 0
or θi j > 0 (or both). For the other compartments p,m, which have not been mentioned
above, it holds that apm,i j = 0.

Definition 7.1 (Discrete-Time GEMF Epidemic Model). The discrete-time GEMF epi-
demic model describes the evolution of the viral state νi [k] ∈ RC for every group i =
1, ..., N as

νi [k +1] =(
IC −QT

i

)
νi [k]−

N∑
j=1

C∑
m=1

ν j ,m[k]QT
m,i jνi [k], (7.4)

where k ∈ N denotes the discrete time slot. Here, the C ×C Laplacian matrices of the
nodal transition probability matrix Si and the edge-based transition probability matrix
Bm,i j are denoted by Qi = diag(Si u)−Si and Qm,i j = diag

(
Bm,i j u

)−Bm,i j .

In Appendix F.1, we derive the discrete-time GEMF model (7.4) from the continuous-
time GEMF model [136] by applying Euler’s method. If the initial viral state νi [1] of every
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node i satisfies νi ,1[1]+ ...+νi ,C [1] = 1, then [136] it holds that νi ,1[k]+ ...+νi ,C [k] = 1 at
any time k ≥ 1. Thus, the GEMF model (7.4) with C N compartments can be reduced to
(C −1)N non-linear difference equations.

Originally, the GEMF model was formulated for multi-layer networks [136]. The
discrete-time GEMF model (7.4) does not explicitly model distinct network layers but
directly sums the influences across all network layers. For instance, consider that in-
fected individuals in group j infect susceptible individuals in group i via a link in the
workplace network (network layer l = 1) with the transition probability β(1)

∆t ,i j or via a

link in the friendship contact network (network layer l = 2) with the transition probabil-
ity β(2)

∆t ,i j . Then, an equivalent GEMF model is obtained by a total transition probability

of β∆t ,i j = β(1)
∆t ,i j +β(2)

∆t ,i j on one network layer. Since the value of the transition proba-

bility β∆t ,i j completely determines the viral state dynamics of the GEMF model (7.4), it
is only possible to estimate the transition probability β∆t ,i j from viral state observations

νi [1],νi [2], ..., but not the distinct addends β(1)
∆t ,i j and β(2)

∆t ,i j of the different layers.

7.2.1. SPECIAL CASES OF THE GEMF EPIDEMIC MODEL
In this chapter, we consider four special cases of the GEMF model (7.4). For the special
cases of GEMF that are mentioned below, we refer to the transition probabilities δi and
βi j as curing probability and infection probability, respectively, to stress their physical
meaning.

SIS (NIMFA) EPIDEMIC MODEL

The discrete-time NIMFA epidemic model in Definition 4.1 is a special case of the GEMF
epidemic model (7.4). In this chapter, we refer to discrete-time NIMFA as SIS epidemic
model for consistency with the other special cases of the GEMF model. Figure 7.2 shows
the transition graph of the SIS epidemic model with the 2×1 viral state2 vector νi [k] =
(Si [k],Ii [k])T .

S

I

S

I

Group j Group i

δ∆t,iβ∆t,ij

Figure 7.2: SIS transition graph. The transition graph for the discrete-time SIS (or NIMFA) epidemic model in
Definition 4.1.

To be concise, we put a particular focus on the SIS model (4.1) in this chapter. How-
ever, the derivations hold for the general GEMF model (7.4) and are presented in Ap-
pendix F.

2In Chapter 4, the fraction of infected individuals Ii [k] was denoted by vi [k]. The fraction of infected individ-
uals follows as Si [k] = 1− vi [k], and the infection probability follows as β∆t ,i j = (B2,i j )12.
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SIR EPIDEMIC MODEL

Applying Euler’s method to the continuous-time SIR model in Definition 1.2 yields the
discrete-time SIR epidemic model. Figure 7.3 shows the transition graph of the SIR epi-
demic model with the 2×1 viral state νi [k] = (Si [k],Ii [k],Ri [k])T .

S

I

R

S

I

R

Group j Group i

δ∆t,i

β∆t,ij

Figure 7.3: SIR transition graph. The transition graph for the discrete-time SIR epidemic model in Defini-
tion 1.2.

Definition 7.2 (Discrete-time SIR epidemic model). For every group i , the viral state of
the discrete-time SIR epidemic model equals vi [k] = (Si [k],Ii [k],Ri [k])T . Here, Si [k],
Ii [k] and Ri [k] denote the fraction of susceptible, infected, and recovered individuals
in group i at time k ∈N, respectively. For every group i , the viral state evolves in discrete
time k according to

Ii [k +1] = (1−δ∆t ,i )Ii [k]+ (1−Ii [k]−Ri [k])
N∑

j=1
β∆t ,i jI j [k]

Ri [k +1] =Ri [k]+δ∆t ,iIi [k] (7.5)

and

Si [k] = 1−Ii [k]−Ri [k] (7.6)

at any time k ∈N. Here, β∆t ,i j denotes the infection probability from group j to group i ,
and δ∆t ,i denotes the curing probability of group i .

SEIR EPIDEMIC MODEL

The third model that we consider has four compartments: the susceptible compartment
S , the exposed compartment E , the infectious compartment I , and the recovered (or
removed) compartment R. An individual transitions the compartments in the order
S → E → I →R. Individuals in the exposed compartment E have been infected by the
disease but, in contrast to individuals in the infectious compartment I , are not conta-
gious yet. Individuals in the recovered compartment R have had the disease, but are
not susceptible nor infectious any more (for instance, by immunisation or death). In the
SEIR epidemic model, the only edge-based transition occurs from the susceptible com-
partment S to the exposed compartment E , analogously to the S → I transition in the
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SIS epidemic model. Furthermore, there are two nodal transitions in the SEIR epidemic
model. First, the transition from the exposed compartment E to the infectious compart-
ment I , which occurs with the incubation probability γ∆t ,i for an individual in group
i . Second, the transition from the infectious compartment I to the recovered compart-
ment R, which occurs with the curing probability δ∆t ,i for an individual in group i . Both
the transition graph and the systems equation of the SEIR epidemic model are stated in
Appendix F.4.

SISIR EPIDEMIC MODEL

Lastly, we consider a two-staged infection process, with two different diseases and five
compartments: the susceptible compartments Sl , the infectious compartments Il , and
the recovered (or removed) compartment R, where l = 1,2 denotes the disease. In the
SISIR epidemic model, individuals transition the compartments in the order S1 → I1 →
S2 → I2 →R. There are two edge-based transitions in the SISIR model, the infectious
transitions S1 → I1 and S2 → I2, which occur analogously to the S → I transition in the
SIS model, but with infection rates β∆t ,l ,i j that depend on the respective disease l = 1,2.
The two nodal transitions I1 →S2 and I2 →R occur with the curing probabilities δ∆t ,1,i

and δ∆t ,2,i , respectively, for an individual in group i .
Our main motivation for studying the SISIR model is the technical challenge: the two

contact networks corresponding to the two viruses are completely unrelated. Hence, the
fact that node i can infect node j with virus 1 does not imply that node i can infect node
j with virus 2. Thus, effectively a contact network with 2N nodes has to be reconstructed
from the viral state observations of N groups.

An exemplary application of the SISIR model is the description of two viruses, which
spread outside and inside a quarantine. The state S1 corresponds to healthy individu-
als. Individuals that are infected by the first virus are in the state I1 and are moved upon
detection of the infection (with the curing probability δ∆t ,1) to the state S2, which cor-
responds to the quarantine. In the quarantine, the spread of another virus takes place,
which is modelled by an SIR process (the states S2,I2,R). Both the transition graph and
the systems equation of the SISIR epidemic model are stated in Appendix F.5.

7.2.2. CURING PROBABILITY CONTROL
So far, we assumed that the curing rates δ∆t ,i are constant or, equivalently, that the nodal
transition probability matrices Si do not change over time k. However, public health
agencies react to an emerging epidemic outbreak by vaccinations and other disease con-
trol measures that do vary as time k evolves. In the SIS, SIR and SEIR epidemic models,
we consider that the curing rates of every group i are time-dependent, i.e., the curing
probability δ∆t ,i is replaced by

δ̃∆t ,i [k] = δ∆t ,i +δcon,i [k]. (7.7)

Here, the scalar δcon,i [k] ≥ 0 is the known curing probability control at time k (for in-
stance the fraction of vaccinations), see [6, 137]. The constant curing probability term
δ∆t ,i > 0 in (7.7) corresponds to natural immunities and other influences which are un-
known and have to be reconstructed from viral state observations to provide a full un-
derstanding of the viral spread. For the SISIR epidemic model, we consider that the cur-
ing rates of both diseases l = 1,2 are time-dependent and equal to δ̃∆t ,l ,i [k] = δ∆t ,l ,i +
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δcon,l ,i [k] for every group i . For the general GEMF model (7.4), the concept of time-
varying curing rates (7.7) is generalised by replacing the nodal transition probability
matrix Si by the time-dependent C ×C matrix S̃i [k] = Si + Scon,i [k]. Here, the time-
dependent C ×C matrix Scon,i [k] describes the known controlled interventions to the
viral state evolution, and the constant C ×C matrix Si is due to unknown terms of the
nodal transitions. In Section 7.4, we will show that a non-zero curing probability control
δcon,i [k] 6= 0 is beneficial for the task of network reconstruction.

7.3. NETWORK RECONSTRUCTION AS LINEAR EQUATIONS
The focus of this chapter is the inverse problem of estimating the parameters of the
GEMF model (7.4) from viral state observations. More precisely:

Problem 7.3 (GEMF network reconstruction). Assume that the controlled interventions
Scon,i [k] to the viral state evolution are either known or zero at every time k. Estimate the
nodal transition probability matrix Si and the edge-based transition probability matrix
Bm,i j for all nodes i , j and all compartments m from observations of the C ×1 viral state
vector νi [k] of every group i at every discrete time k = 1, ...,n +1, where n ∈ N denotes
the number of observed transitions.

We emphasise that the adjacency matrices Apm can be obtained from the matrices
Bm,i j by (7.2). For any N × N matrix A, we define the N 2 × 1 vector that is obtained
by stacking the columns of A as vec(A) = (a11, ..., aN 1, a12, ..., aN 2, ...)T . The Kronecker
product of a k × l matrix A and a p × q matrix B is denoted by A ⊗B ∈ Rkp×l q . Then,
we obtain that, given the viral state observations νi [1], ...,νi [n +1] of every group i , the
GEMF model (7.4) is linear with respect to the Laplacian matrices Qi and Qm,i j .

Lemma 7.4. Consider the GEMF model (7.4) with a nodal transition matrix S̃i [k] = Si +
Scon,i [k], where the time-varying matrix Scon,i [k] is known (or equals zero). Denote the
C ×C Laplacian matrix of the known control matrix Scon,i [k] by

QT
con,i [k] = diag

(
Scon,i [k]u

)−Scon,i [k].

For any group i , define the C n ×1 vector Vi as

Vi =


νi [2]−νi [1]+QT

con,i [1]νi [1]
...

νi [n +1]−νi [n]+QT
con,i [n]νi [n]

 ,

and define the C n ×C 2 matrices Wi ,Rm,i j as

Wi =−(
IC ⊗νi [1], ..., IC ⊗νi [n]

)T

and

Rm,i j =
(
ν j ,m[1](IC ⊗νi [1]) , ...,ν j ,m[n] (IC ⊗νi [n])

)T
.
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Furthermore, define the C n ×C 2(1+NC ) matrix Fi as

Fi =
(
Wi ,R1,i 1, ...,R1,i N ,R2,i 1, ...,RC ,i N

)
and the C 2(1+NC )×1 GEMF parameter vector θi as

θi =
(
vec(Qi )T ,vec(Q1,i 1)T , ...,vec(Q1,i N )T ,vec(Q2,i 1)T , ...,vec(QC ,i N )T )T

.

Then, the GEMF parameter vector θi satisfies the linear system

Vi = Fiθi . (7.8)

Proof. Appendix F.2.

The entries of the C 2×1 vectors vec(Qi ) and vec(Qm,i j ) are linear combinations of the
entries of the nodal transition probability matrix Si and the edge-based transition prob-
ability matrix Bm,i j . Thus, the GEMF network reconstruction problem results in a set of
equations (7.8) that is linear with respect to the matrices Si and Bm,i j . For every node i ,
the maximum number of unknowns is bounded by the number C 2(1+NC ) of entries of
the GEMF parameter vector θi . However, in most cases, many entries of the matrices Si

and Bm,i j are a priori known to be zero, since some nodal or edge-based transitions can-
not occur. For instance, at most one entry of the matrix Si in (7.3) is non-zero. Further-
more, since the viral state νi [k] of every group i obeys νi ,1[k]+...+νi ,C [k] = 1, there are n
redundant equations in (7.8), and every N -th row of (7.8) can be omitted. Hence, the set
of linear equations (7.8) can be often be expressed more compactly for particular GEMF
models. To give an example, for the discrete-time SIS epidemic model (4.1) the linear
system (7.8) can be expressed compactly as follows.

Lemma 7.5. For any node i , the curing probability δ∆t ,i and the infection probabilities
β∆t ,i 1, ..., β∆t ,i N of the SIS epidemic model (4.1) with time-varying curing rates δ̃∆t ,i [k] =
δcon,i [k]+δ∆t ,i satisfy

VSIS,i = FSIS,i
(
δ∆t ,i ,β∆t ,i 1, ...,β∆t ,i N

)T . (7.9)

Here, the n ×1 vector VSIS,i equals

VSIS,i =

 Ii [2]− (1−δcon,i [1])Ii [1]
...

Ii [n +1]− (1−δcon,i [n])Ii [n]


and the n × (N +1) matrix FSIS,i is given by

FSIS,i =

−Ii [1] Si [1]I1[1] ... Si [1]IN [1]
...

...
. . .

...
−Ii [n] Si [n]I1[n] ... Si [n]IN [n]

 . (7.10)

Analogously to Lemma 7.5, we state the linear system (7.8) more compactly for the
discrete-time SIR, SEIR, and SISIR epidemic models in Appendix F.3, Appendix F.4, and
Appendix F.5, respectively.
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7.4. THE LIMITS OF NETWORK RECONSTRUCTION
On the first sight, it seems straightforward to infer the network from GEMF viral state
observations, since the network reconstruction is equivalent to solving the linear sys-
tem (7.8). However, as we show in the following, the linear system (7.8) is extremely ill-
conditioned, which is a severe limitation to the GEMF network reconstruction problem
itself – regardless of the specific network reconstruction method.

7.4.1. AGITATION OF THE VIRAL STATE DYNAMICS
For ease of exposition, we focus on the SIS epidemic model (4.1) in the following. How-
ever, the results also apply to other GEMF epidemic models. In Chapter 2 and Chapter 3,
particularly below Lemma 2.12 and by Theorem 3.12, we showed that: if the POD (2.1) is
exact, then there are many networks which cause the same SIS dynamics. In the follow-
ing, we use the POD approximately. More precisely, at any time k, we approximate the
SIS viral state vector I[k] = (I1[k], ...,IN [k])T by

I[k] ≈
m∑

l=1
cl [k]yl . (7.11)

Here, the agitation modes y1, ..., ym are some orthogonal vectors, and cl [k] denote some
scalar functions. The greater the number m of agitation modes, the more accurate the
approximation (7.11). If m = N , then the approximation (7.11) is exact, because any N×1
vector I[k] can be written as the linear combination of N orthogonal vectors. Intuitively
speaking, if the POD (7.11) is accurate for m ¿ N modes, then the nodal state vector I[k]
is barely agitated.

To approximate the viral state I[k] by the POD (7.11), we must specify the agitation
modes yl and the scalar functions cl [k]. We obtain the agitation modes yp numerically
from viral state observations I[1], ..., I[n] in two steps [41]. First, we define the N ×n
viral state matrix as

MI = (I[1] ... I[n]
)

.

Second, we obtain the agitation modes y1, ..., ym as the first m left-singular vectors of
the nodal state matrix MI . At any time k, the scalar functions cl [k] follow as the inner
product cl [k] = yT

l I[k].
Figure 7.4 shows that the proper orthogonal decomposition (7.11) is accurate at all

times k. The number of agitation modes yl equals m = 5, which is considerably lower
than the network size N . We emphasise that the agitation modes yl are computed from
the nodal state x[k] only until the observation time k = n. Nevertheless, the POD is accu-
rate also at times k > n. Hence, during the observation interval k = 1, ...,n, the viral state
I[k] quickly locks into only few agitation modes yl , which govern the dynamics also for
future time k > n. We stress that the POD (7.11) cannot be used (directly) to predict the
nodal state I[k]: Additionally to the agitation modes yl , the coefficients cl [k] = yT

l I[k]
at times k > n require the future, unknown nodal state I[k].

Lemma 7.6. Consider the SIS epidemic model (4.1) and suppose that the POD (2.1) is
exact for m agitation modes. Then, the rank of the matrix FSIS,i in (7.10) is bounded by

rank
(
FSIS,i

)≤ 1+m
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Figure 7.4: Agitation of the viral state dynamics. For a Barabási-Albert random graph with N = 300 nodes
and heterogeneous spreading parameters δ∆t ,i , β∆t ,i j and a basic reproduction number R0 = 2, the exact SIS
viral state Ii [k] in blue and the POD approximation (7.11) in red. For readability, the viral state Ii [k] of only
five nodes is depicted. The approximation equals the linear combination of m = 5 agitation modes y1, ..., ym ,
which are computed by observing the viral state vector I[k] until the observation time n = 30.

Proof. Appendix F.6

Lemma 7.6 shows that if the SIS viral state I[k] is not sufficiently agitated, then there
are infinitely many networks that satisfy the linear system (7.9).

7.4.2. RECONSTRUCTION OF LARGE NETWORKS
The set of linear equations (7.8) can, in theory, be solved exactly if the rank of the matrix
Fi equals the number of unknowns. However, any computer works with finite precision
arithmetic, which causes small, but non-zero, round-off errors. In the worst case, even
small round-off errors can accumulate and greatly affect the accuracy of the solution of
the linear system (7.8). To solve the linear system (7.8) in practice, the numerical rank
of the matrix Fi is decisive. The numerical rank of the matrix Fi equals the number of
singular values of the matrix Fi that are greater than a small threshold εrank, which is set
in accordance to the machine precision.

We perform numerical simulations to obtain the average numerical rank of the ma-
trix Fi for the discrete-time SIS, SIR, SEIR and SISIR epidemic models. For the SIS, SIR,
SEIR, and SISIR epidemic models, the adjacency matrices A12, A12, A13, and both A12

and A34, respectively, that correspond to the contact network between infected and sus-
ceptible nodes, are generated according to the Barabási-Albert random graph model [8],
where the initial number of nodes is set to m0 = 3 and the number of links per addition of
a new node is set to m = 3. Furthermore, we set ai i = 1 for every group i of the respective
adjacency matrices, since we consider that individuals in group i can infect one another.
On the one hand, we consider that there is no curing probability control, i.e., δcon,i [k] = 0
for every group i at every time k. On the other hand, we set the curing probability control
term δcon,i [k] to a uniformly distributed random number in [0,δmax,i ] for every group i
at every time k, where the maximum control value equals δmax,i = 0.01δ∆t ,i . Further
details on the simulation parameters are given in Appendix F.8.

Without curing probability control, i.e., δcon,i [k] = 0 for every group i at every time
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Figure 7.5: Numerical rank for large networks. The numerical rank of the matrix Fi versus the number of
nodes N . The dashed and the solid lines depict the results without and with curing probability control, respec-
tively. The results are averaged over 100 Barabási-Albert random graphs.

k, Figure 7.5 shows that the numerical rank of the matrix Fi , computed by the Matlab
command rank, quickly stagnates as the number of groups N grows. Thus, the linear
system (7.8) is very ill-conditioned. For instance, for the discrete-time SIS model (4.1),
the numerical rank stagnates at approximately numrank(Fi ) ≈ 15, and the linear system
(7.9) has practically not more than 15 independent equations. Hence, large networks
cannot be reconstructed from GEMF viral state observations of a single epidemic outbreak
without curing probability control3, which is in agreement with other works [94, 138]
that consider network reconstruction for individual-based epidemic models. For the
SISIR model, the numerical rank of the matrix Fi is approximately twice as high as for
the other epidemic models, which is intuitive since the contact network for the SISIR
model is effectively of size 2N . With curing probability control on the other hand, the
numerical rank of the matrix Fi behaves very differently. In particular, the numerical
rank of the matrix Fi equals the number of unknown parameters for the SIS, SIR, SEIR
and SISIR epidemic model, also for large networks. Hence, a time-varying control of the
curing rates δ∆t ,i [k] is necessary for the reconstruction of large networks.

In theory, we see two alternatives to controlling the curing rates for the reconstruc-
tion of large networks. However, we argue that neither of these two alternatives is appli-
cable to real-world epidemics. First, a greater number of linearly independent equations
(7.8) can be achieved by observing multiple epidemic outbreaks[139] with different ini-
tial viral states ν[1]. Each epidemic outbreak results in a different matrix Fi , which can be
stacked such that the linear system (7.8) has sufficiently many independent equations.
However, the numerical rank of the matrix Fi stagnates when the number of nodes N
increases. Thus, the greater the network size N the more epidemic outbreaks need to be
observed to reconstruct the network. We believe that it is far from practical to observe
multiple outbreaks for real-world epidemics, in particular for novel viruses that demand

3If the contact network is sparse, then compressed sensing [88] could be applied to the underdetermined sys-
tem (7.8). Then, the required number of linearly independent equations for reconstructing a network with
s non-zero elements grows at least proportionally to s log(N /s). However, since the rank of the matrix Fi
stagnates for a growing number of nodes N , also compressed sensing methods fail for large networks.
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rapid intervention.
Second, if some properties of the contact network are known a priori, then less equa-

tions are possibly needed to solve the GEMF network reconstruction problem. For in-
stance, if the maximum in-degree of a node i is bounded by

N∑
j=1

β∆t ,i j ≤ dmax (7.12)

for some upper bound dmax, then (7.12) can be included as a constraint in the linear
system (7.9) of the SIS network reconstruction problem. However, the rank of the matrix
Fi stagnates when the number of nodes N increases. Hence, the greater the network,
the more constraints must be included in the linear system (7.8), which does not seem
viable for a large network size N .

7.4.3. THE IMPACT OF MODEL ERRORS
A real-world virus does not exactly follow the difference equations of the GEMF model
(7.4). Instead, the viral state νi [k] of any group i evolves according to

νi [k +1] = fGEMF,i (ν1[k], ...,νN [k])+wi [k], (7.13)

where fGEMF,i (ν1[k], ...,νN [k]) denotes the right-hand side of (7.4), and the C ×1 vector
wi [k] denotes the model error at group i and time k. To ensure that νi ,1[k]+...+νi ,C [k] =
1 at every time k, we set wi ,l [k] = 0 for exactly one compartment l . For the SIS, SIR,
SEIR, and SISIR models, we choose the remaining compartment l as: Si , Si , Ri , and Ri ,
respectively.

To demonstrate the impact of model errors wi [k] on the network reconstruction
problem, we perform numerical simulations of the SIS epidemic model (4.1) on a small
Erdős-Rényi random graph with N = 20 nodes and link probability pER = 0.1. We set
all parameters to the same values as in Subsection 7.4.2. We consider three cases for
the maximum control value: δmax,i = 0 (no curing probability control), δmax,i = 0.05δi

(small curing probability control), and δmax,i = δi (large curing probability control). On
the one hand, we consider a viral state evolution without model errors, i.e. wi [k] = 0
for all nodes i and all times k. On the other hand, we consider that the SIS epidemic
model (4.1) is subject to independently and identically distributed Gaussian model er-
rors wi ,m[k] ∼ N (0,ς2

i ) with variance ς2
i = (0.05∆t )2.

Figure 7.6 illustrates that the evolution of the viral state νi [k] is virtually unaffected
by the model error wi [k]. If a real-world epidemic evolved with an equally small model
error wi [k] as in Figure 7.6, then the SIS epidemic model (4.1) would be considered an
outstanding fit to the epidemic data. On the first sight, Figure 7.6 suggests that it is pos-
sible to reconstruct the network from GEMF viral state observations νi [k] with a neg-
ligibly small model error wi [k]. However, the GEMF network reconstruction problem
is dramatically sensitive to small perturbations by model errors wi [k]. The upper sub-
plot in Figure 7.7 shows that, without curing probability control, only around five singu-
lar values σ j (FSIS,i ) of the matrix FSIS,i remain largely unaffected by model errors wi [k].
Hence, without curing probability control, even small networks cannot be reconstructed
from GEMF viral state observations, also when the model errors wi [k] seem negligibly
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Figure 7.6: SIS dynamics with small model errors. The viral state I[k] of the discrete-time SIS epidemic
model (4.1) for an Erdős-Rényi random graph with N = 20 groups without curing probability control (δmax,i =
0), with and without model errors wi [k]. The viral state Ii [k] of four of the twenty groups i is depicted.

small4. The lower sub-plot in Figure 7.7 shows that, for a sufficiently great curing prob-
ability control δcon,i [k], the model error wi [k] only slightly perturbs the singular values
σ j (FSIS,i ). Hence, curing probability control is necessary to reconstruct the network in the
presence of model errors wi [k] – but controlling the curing rates is possibly not sufficient,
since we only studied the perturbation of the singular values σ j (FSIS,i ) but not the per-
turbation of the whole matrix FSIS,i .

7.5. NETWORK RECONSTRUCTION ALGORITHM
When the GEMF model (7.4) is subject to model errors wi [k], then the GEMF parameter
vector θi does not satisfy the linear system (7.8) with equality. Thus, we resort to finding
the vector θi as the minimiser of the Euclidean norm ‖Vi −Fiθi‖2

2. More precisely, our
network reconstruction method is based on the constrained LASSO [141]:

θ̂i = arg min
θi

‖Vi −Fiθi‖2
2 +ρi ‖θi‖1

s.t. θi ≥ 0

(θi ) j = 0 ∀ j ∈Ωi

(7.14)

The application of LASSO, and variations thereof, to network reconstruction is an estab-
lished approach [88, 139, 142]. The `1-regularisation term ‖θi‖1 in the objective favours
the estimation of a sparse GEMF parameter vector θi , which is motivated by two rea-
sons. First, the majority of real-world networks are indeed sparse [143]. Second, we
follow the bet on sparsity principle: “Use a procedure that does well in sparse problems,
since no procedure does well in dense problems” [141]. Tuning the regularisation pa-
rameter ρi > 0 in the objective of (7.14) controls the trade-off between a good fit to the
model (first addend) and the sparsity of the GEMF parameter vector θi (second addend).
We set the value of the scalar ρi > 0 by cross-validation [141]. In (7.14), the inequality

4Furthermore, the sensitivity to model errors renders model-free network inference methods [140] not suitable
for the GEMF network reconstruction problem, since model-free methods per definition induce model errors.
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Figure 7.7: Singular values of the linear network reconstruction problem. The singular values σ j
(
FSIS,i

)
of

the matrix FSIS,i of the linear system (7.9), with and without model errors wi [k]. The upper sub-plot refers
to no curing probability control (δmax,i = 0), and the lower sub-plot considers a small and large value for
the maximum value δmax,i of the curing probability control. The results are averaged over 100 Erdős-Rényi
random graphs with N = 20 nodes.

θi ≥ 0 for the GEMF parameter vector θi holds element-wise. The indices j in the set
Ωi ⊂ {1, ...,C 2(1+ NC )} refer to entries (θi ) j that must be zero for the particular GEMF
model. For instance, the 3×3 nodal transition matrix Si in (7.3) has eight zero entries,
which results in the inclusion of eight indices in the set Ωi . To solve (7.14) numerically,
we apply the interior point algorithm provided by the Matlab command quadprog. If
there are no model errors, i.e., wi [k] = 0 for every group i at every time k, then we do
not estimate the GEMF parameter vector θi by the LASSO formulation (7.14). Instead,
we apply the QR-solver provided by the Matlab command mldivide if the matrix Fi is
of full rank, and we apply a basis pursuit approach [144] if the matrix Fi is not of full
rank. For further details on the network reconstruction algorithm, we refer the reader to
Appendix F.9.
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7.5.1. INTERPRETATION AS BAYESIAN ESTIMATION
We show that the LASSO (7.14) can be interpreted as Bayesian estimation problem.

Assumption 7.7. For every node i at every time k, the model error wi [k] in (7.13) follows
the normal distribution N (

0,σ2
w

)
with zero mean and variance σ2

w . Furthermore, the
model errors wi [k] are stochastically independent and identically distributed at all times
k and for all nodes i .

Assuming that the model errors wi [k] follow a Gaussian distributionN (
0,σ2

w

)
allows

for a simple analysis. If the distribution of the model errors wi [k] is not known, then As-
sumption 7.7 is in agreement with the maximum entropy principle [145]: Given a set
of constraints on a probability distribution (e.g., specified mean), assume the “least in-
formative” distribution, i.e., the distribution with maximum entropy that satisfies those
constraint. Among all distributions on R with zero mean and variance σ2

w , the Gaussian
distribution N (

0,σ2
w

)
has the maximum entropy [146].

Assumption 7.8. The parameter vector θi ≥ 0 follows the prior distribution

Pr[θi ] =
{

0 if ∃ j ∈Ωi : (θi ) j 6= 0,

αexp
(−∑

j 6∈Ωi (θi ) j
)

otherwise.

Here, the normalisation constant α is set such that∫
R

C 2(1+NC )
≥0

Pr[θi ]dθi = 1.

Furthermore, the parameter vector θi and the initial viral state νi [1] of all nodes i are
stochastically independent.

Essentially, Assumption 7.8 states an exponential degree distribution of the contact
network and transition probabilities. The Bayesian interpretation of the LASSO (7.14) is
given by Theorem 7.9 below. We emphasise that Theorem 7.9 is not entirely novel, since
it follows standard arguments in parameter estimation, see for instance [147]. Further-
more, Tibshirani elaborated on the Bayesian interpretation of the LASSO in the seminal
paper [148]. Nevertheless, we believe that the presentation of Theorem 7.9, here in the
context of network reconstruction, is valuable to the reader. For every time k, we define
the C ×N matrix ν[k] = (ν1[k], ...,νN [k]).

Theorem 7.9. Suppose that Assumption 7.7 and Assumption 7.8 hold true and that the
viral state νi [k] follows (7.13). Then, provided the regularisation parameter equals ρi =
2σ2

w , the GEMF parameter vector θ̂i , which is obtained by solving LASSO (7.14), coincides
with the Bayesian estimate:

θ̂i = argmax
θi≥0

Pr
[
θi

∣∣∣ν[1], ...,ν[n +1]
]

. (7.15)

Proof. Appendix F.7.
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7.6. NUMERICAL EVALUATION
To evaluate the quality of the network reconstruction, we compute the area under the
receiver-operating-characteristic curve (AUC) [149]. The AUC ranges from 0 to 1, where
an AUC of 1/2 is equivalent to flipping a coin to determine whether a link is presence or
absence. If the estimated network equals the true network, then the AUC equals 1. We
compute the AUC with respect to the estimates of the respective adjacency matrices A12,
A21, and A13 of the SIS, SIR and SEIR model. For the SISIR model, we consider the mean
of the two AUCs with respect to the adjacency matrices A12 and A34. Furthermore, we
define the prediction error εI until the prediction time npred as

εI = 1

N

1

npred −n

npred∑
k=n+1

N∑
i=1

∣∣Ii [k]− Îi [k]
∣∣ .

Here, Îi [k] denotes the predicted fraction of infectious individuals in group i at time k,
which is obtained by iterating GEMF (7.4) without model errors from time k = n to k =
npred with the parameter vector θ̂i that was estimated from the viral state observations
νi [1], ...,νi [n] for every node i . For the SISIR model, we define the prediction error εI as
the sum of the two prediction errors with respect to the two compartments I1 and I2.
Unless stated otherwise, all parameters are set to the same values as in Subsection 7.4.2.

7.6.1. ABSENCE OF MODEL ERRORS
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Figure 7.8: Network reconstruction accuracy versus network size N . The accuracy of the network reconstruc-
tion for four different epidemic models. The solid lines show the accuracy with curing probability control,
δcon,i [k] 6= 0, and the dashed lines show the accuracy without curing probability control, δcon,i [k] = 0. The re-
sults are averaged over 100 Barabási-Albert random graphs, and the number of observations equals n = 10N .

For every group i , we set the maximum control value to δmax,i = 0.05δ∆t ,i and the
observation length to n = 10N . Figure 7.8 shows that, without model errors wi [k], the
network reconstruction is almost always exact – provided that the curing rates are con-
trolled (δmax,i = 0.05δ∆t ,i ). Without curing probability control (δmax,i = 0), the recon-
structed network differs considerably from the true network when the number of nodes
N is large, in agreement with Figure 7.5.



7.6. NUMERICAL EVALUATION

7

121

SIS SIR SEIR SISIR

AUC 0.52 0.52 0.54 0.52

εI 3.72 ·10−4 3.49 ·10−5 4.28 ·10−5 6.25 ·10−5

Table 7.1: Network reconstruction accuracy versus prediction accuracy. The prediction error εI and the AUC
for different epidemic models without curing probability control, where the number of observations equals
n = 100 and the prediction time equals npred = 1000. The results are averaged over 100 Barabási-Albert random
graphs with N = 200 nodes.
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Figure 7.9: Prediction accuracy versus network reconstruction accuracy. For a Barabási-Albert random graph
with N = 300 nodes, heterogeneous spreading parameters δ∆t ,i , β∆t ,i j and a basic reproduction number R0 =
2: (a) shows the the exact SIS viral state Ii [k] in blue and the prediction for time k > n in red, which is obtained
by the LASSO (7.14) from observing the viral state I[k] until the observation time n = 30. For readability, the
viral state Ii [k] of only five nodes is depicted; (b) shows the in-degree distribution of the estimated matrix B̂
in red and the true matrix B in blue.

To evaluate the prediction error εI in the absence of curing probability control, we
reduce the observation length to n = 100 and set the prediction time to npred = 1000.
Table 7.1 shows that the prediction error εI is practically zero, even though the AUC is
very low. Figure 7.9 juxtaposes the stark contrast of accurate prediction and inaccurate
network reconstruction, with respect to the AUC score and the in-degree distribution5.
Thus, without curing probability control, fundamentally different contact networks result
in virtually the same viral state sequence.

7.6.2. PRESENCE OF MODEL ERRORS

As illustrated by Figure 7.7, we cannot expect that an accurate network reconstruction is
possible in the presence of model errors wi [k]. However, Table 7.1 shows that, at least

5The in-degree di of node i equals the number of links that end at node i . The in-degree distribution is given
by Pr[D ≥ d ], where D is the degree of a randomly chosen node in the network.
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in the absence of model errors wi [k], the prediction of the epidemic outbreak is surpris-
ingly less related to an accurate network reconstruction. We consider Barabási-Albert
random graphs with N = 100 nodes. For every group i at every time k, we generate the
model error wi [k] as a Gaussian random variable with standard deviation ςi = 0.1∆t ,
and we set the sampling time to∆t =∆tmax/5, where the maximum sampling time∆tmax

is given in Appendix F.8. Furthermore, we consider curing rate control with δmax,i =
0.05δ∆t ,i .

Figure 7.10 gives an impression on the prediction accuracy for the SIS process (4.1),
when the network is reconstructed from the viral state sequence ν[1], ...,ν[n] until the
observation lengths n = 50 and n = 100, respectively. For an observation length n = 50,
the AUC equals approximately 0.53 and the viral state prediction diverges from the true
viral state ν[k] as time k evolves. However, the viral state prediction is accurate until
discrete time k ≈ 125, which is valuable for medium-term disease control measures. For
an observation length n = 100, the AUC equals approximately 0.54 and the viral state
prediction is relatively accurate at all times k ≥ n – taking the random model errors wi [k]
into account. Hence, also in the presence of model errors wi [k], a prediction of the viral
state ν[k] is generally possible, and the greater the number of observations n the more
accurate the long-term viral state prediction.

To evaluate the prediction accuracy versus the observation length n, we consider
the contact network of the Infectious: Stay Away exhibition [150] with N = 410 nodes,
accessed via the Konect network collection [62]. Every node i corresponds to an individ-
ual, and there is a link between two nodes if the corresponding two individuals had at
least one face-to-face contact for more than 20 seconds. We set the infection probabil-
ity β∆t ,i j proportional to the number of contacts between individual i and j , such that
the infection probability β∆t ,i j of the two individuals i , j that had the most face-to-face
contacts is three times as great as the infection probability of two individuals that only
had a single face-to-face contact. The self-infection probabilities β∆t ,i i are set to zero
for every group i . The curing probabilities δ∆t ,i are set as in Subsection 7.4.2, such that
the basic reproduction number equals R0 = 1.5. Figure 7.11 shows the AUC and the pre-
diction error εpred versus the observation length n with and without model errors wi [k].
In the presence of model errors wi [k], the prediction error εpred converges quickly to a
small value, even though the AUC remains at around 0.5 for all observation lengths n.

7.7. CONCLUSIONS
In this chapter, we considered the reconstruction of the contact network and the predic-
tion of epidemic outbreaks for general discrete-time compartmental epidemic models.
Our contribution is composed of two parts.

In the first part, we proposed the GEMF model in discrete time, which generalises
a plethora of diverse compartmental discrete-time epidemic models. We suggested the
transition graph as an equivalent and compact visual representation of any particular
GEMF model. Furthermore, the GEMF model can take multi-layer contact networks
into consideration. Thus, the GEMF model is a powerful framework to study general
spreading processes.

In the second part, we proposed a prediction framework which consists of two steps.
First, the network is estimated from the viral state observations by the LASSO. Without
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Figure 7.10: Prediction of epidemics on networks. The true and predicted viral state Ii [k] of the SIS model
(4.1) of four nodes of a Barabási-Albert random graph with N = 100 nodes subject to model errors wi [k].

curing rate control, the first step seemingly fails, since the estimated network bears no
topological similarity with the true network. Second, the viral state is predicted by iterat-
ing the dynamical model on the inaccurately estimated network. Counterintuitively, the
prediction is accurate!

The network reconstruction and prediction accuracy do not match, because the viral
state is barely agitated. Furthermore, the modes of agitation are hardly related to the
network topology. Instead of the true topology, the estimated network does capture the
interplay with the agitation modes.

We conclude with three points. First, the agitation modes depend on the initial viral
state dynamics and, particularly, on the initial viral state ν[1]. As a result, the estimated
GEMF parameter vector θ̂i depends on the initial viral state ν[1]. Thus, as confirmed by
numerical simulations, the reconstructed network may be useless for the prediction of
dynamics with a different initial state ν̂[1] 6= ν[1]

Second, if there are no model errors and the curing rates are controlled, then the
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Figure 7.11: Accuracy of network reconstruction and epidemic outbreak prediction. The AUC and the pre-
diction error εpred versus the observation length n of the contact network of the Infectious: Stay Away exhibi-
tion [150] with N = 410 nodes. The solid and dashed lines correspond to the absence and presence of model
errors wi [k], respectively. The results are averaged over 10 realisations of the respective epidemic model with
different initial viral states ν[1].

network can be reconstructed. The viability of appropriate curing rate control for real
epidemics is an open question.

Third, we could observe multiple epidemic outbreaks with different initial viral states
ν[1] on the same network. For sufficiently many outbreaks, we would observe enough
agitation modes to reconstruct the network exactly, by stacking the respective linear sys-
tems (7.8). However, Figure 7.5 shows that the numerical rank of the matrix Fi stagnates
for large networks. Thus, the more nodes, the more time series must be observed to
reconstruct the network.



8
NETWORK-INFERENCE-BASED

PREDICTION OF THE COVID-19
OUTBREAK

At the moment of writing, the future evolution of the COVID-19 pandemic is unclear. Pre-
dictions of the further course of the outbreak are decisive to deploy targeted disease con-
trol measures. We consider a network-based model to describe the COVID-19 outbreak.
The network is composed of geographical regions and their interactions (e.g., traffic flow).
However, the precise interactions between the regions is unknown and must be inferred
from observing the viral spread. We propose the Network-Inference-Based Prediction Al-
gorithm (NIPA) to forecast the future prevalence of the COVID-19 in every region in the
Netherlands and in the Chinese province Hubei. Numerical evaluations of NIPA and other
prediction methods indicate that network-based forecasting is beneficial for an accurate
forecast of the COVID-19 outbreak.

This chapter is based on B. Prasse, M. A. Achterberg, L. Ma, and P. Van Mieghem, Network-inference-based
prediction of the COVID-19 epidemic outbreak in the Chinese province Hubei, Applied Network Science, 5, 1
(2020) and M. A. Achterberg, B. Prasse, L. Ma, S. Trajanovski, M. Kitsak, and P. Van Mieghem, Comparing the
accuracy of several network-based COVID-19 prediction algorithms, International Journal of Forecasting, to
appear.
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8.1. INTRODUCTION
In December 2019, the SARS-CoV-2 virus, which causes the Coronavirus Disease 2019
(COVID-19), emerged in the Chinese province Hubei [151]. The number of SARS-CoV-
2 infections in China rose dramatically to almost 80,000 at the end of February. From
China, COVID-19 quickly spread throughout the world, with almost eighty million cases
at the end of December, 2020. Many countries imposed a nation-wide lockdown to mit-
igate the spread of COVID-19. A reliable forecast of the virus outbreak is key for targeted
disease countermeasures and for the appropriate design of an exit strategy to lift the
lockdown.

Unfortunately, as shown in Chapter 6, the prediction of epidemic outbreaks is sub-
ject to fundamental limits. There are two major sources of error. First, no model of the
COVID-19 outbreak is perfect. Hence, there are model errors which quantify the devia-
tion from the epidemic model to reality. Second, the available data on most epidemic
outbreaks is limited, because epidemic time series are relatively short and carrying out
large-scale and unbiased medical tests is challenging.

Nonetheless, many methods have been developed and applied to forecast the spread
of COVID-19. Perhaps the simplest approach is based on fitting the number of infec-
tions to a sigmoid curve. The logistic function is a sigmoid curve of particular interest,
because the logistic function is the (approximate) solution for the number of infected
cases in the Susceptible-Infected-Susceptible (SIS) epidemic model and the number of
removed cases in the Susceptible-Infected-Removed (SIR) epidemic model, see Chap-
ter 3 and Chapter 6.

A great body of research proposes various prediction methods for COVID-19, includ-
ing: Kalman filtering [152]; Bayesian methods [153]; approaches based on aeroplane
networks, daily commute traffic or cell phone traffic [154]; adaptive neuro-fuzzy infer-
ence system [155]; Long Short-Term Memory (LSTM) [156]; the SIR epidemic model
[156, 157]; and the SEIR epidemic model [158].

In this chapter, we apply a network-based prediction approach, where the network is
composed of geographical regions and the population flow. The population flow clearly
has an impact on the evolution of an epidemic. However, the exact population flow is
unknown, and epidemic prediction methods must account for inaccuracies of popula-
tion flow data. In this chapter, we consider the most extreme case by assuming no prior
knowledge of the population flow. To forecast the COVID-19 outbreak, we design the
Network-Inference-Based Prediction Algorithm (NIPA). NIPA is based on Chapter 7 and
estimates the interactions between regions as an intermediate step.

8.2. THE NIPA PREDICTION ALGORITHM
We denote the discrete time by k ∈N. The difference∆t of time k to k+1 equals one day,
and the number of reported infections is denoted by Nrep,i [k] at every time k for every
region i = 1, ..., N . The reported fraction of infected individuals follows as

Irep,i [k] = Nrep,i [k]

Npop,i
,

where Npop,i is the population size of region i .
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From the observed infections Irep,i [1],..., Irep,i [n], where n denotes the observation
length, the Network-Inference-based Prediction-Algorithm (NIPA) estimates the num-
ber of infections at future times k > n. NIPA is based on the discrete-time SIR model in
Definition 7.2, which assumes that the curing probabilities δ∆t ,i and the infection prob-
abilities β∆t ,i j do not change over time. Hence, we implicitly assume that the lockdown
measures do not change significantly from time k = 1 to k = n. A generalisation of NIPA
to time-varying parameters is a promising direction for future research, as shown by our
initial results in [159]. We emphasise that β∆t ,i i > 0 since individuals within the same
region i do interact with each other. Neither the curing probabilities δ∆t ,i nor the infec-
tion probabilities β∆t ,i j are known for the spread of COVID-19. Potentially, it is possible
to state bounds or estimates for the spreading parameters δ∆t ,i and β∆t ,i j by making use
of the people flow or geographical distances between the respective cities. Nevertheless,
there would remain an uncertainty regarding the precise value of the spreading param-
eters δ∆t ,i and β∆t ,i j . In this chapter, we consider the most extreme case: there is no a
priori knowledge on the curing probabilities δ∆t ,i nor the infection probabilities β∆t ,i j .

Before presenting the NIPA prediction method, we would like to know if the discrete-
time SIR model in Definition 7.2 yields a well-defined viral state vector νi [k]. More pre-
cisely: under which conditions are the quantities Si [k], Ii [k] and Ri [k], which are inter-
preted as fractions, in the interval [0,1] at every time k?

Assumption 8.1. For all nodes i , j , it holds that 0 ≤ δ∆t ,i ≤ 1, β∆t ,i j ≥ 0 and

N∑
j=1

β∆t ,i j ≤ 1.

Under Assumption 8.1, the SIR viral state vectorνi [k] is indeed well-defined, as stated
by Lemma 3.5. Lemma 3.5 and its proof are inspired by [25, Lemma 1].

Lemma 8.2. Suppose that the initial state of the discrete-time SIR model in Definition 7.2
satisfies Ii [1] ≥ 0, Ri [1] ≥ 0 and Si [1] ≥ 0 for all nodes i . Then, under Assumption 8.1, it
holds that Ii [k] ≥ 0, Ri [k] ≥ 0 and Ii [k]+Ri [k] ≤ 1 for all nodes i at every time k ∈N.

Proof. Appendix G.1.

NIPA consists of three steps. First, we preprocess the raw data of reported infections
Irep,i [k] obtain an SIR time series νi [1], ...,νi [n]. Second, we obtain estimates δ̂∆t ,i and
β̂∆t ,i j of the unknown spreading parameters δ∆t ,i and β∆t ,i j with an adaptation of the

network inference method in Section 7.5. Third, the estimates δ̂∆t ,i and β̂∆t ,i j result in an
SIR model (7.5), which we iterate for future times k = n,n +1, ... to predict the evolution
of COVID-19. We give an outline of the first two steps of NIPA below and refer the reader
to Appendix G.3 for further details.

8.2.1. DATA PREPROCESSING
Based on the reported fraction of infections Irep,i [k], our goal is to obtain an SIR viral
state vectorνi [k] = (Si [k],Ii [k],Ri [k])T for every node i at any time k = 1, ...,n. We stress
that, in contrast to Chapter 7, we do not observe every compartment of the viral state
vector νi [k]. The fraction of susceptible individuals follows as Si [k] = 1−Ii [k]−Ri [k] at
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any time k ≥ 1. Thus, it suffices to determine the fraction of infectious individuals Ii [k]
and recovered individuals Ri [k].

We consider the reported fraction of infections Irep,i [k] as an approximation for the
number of infectious individualsIi [k]. In fact, the reported fraction of infectionsIrep,i [k]
is smaller than the true fraction of infected individuals Ii [k] for two reasons. First, not
all infectious individuals are aware that they are infected. Second, the diagnosing capac-
ities are limited, particularly when the number of infections increases rapidly. Hence,
not all infections can be reported timely.

We do not know the fraction of removed individuals Ri [k]. In the beginning of the
outbreak, at time k = 1, it is reasonable to assume that Ri [1] = 0 holds for every node
i . At any time k ≥ 2, the removed individuals Ri [k] could be obtained from (7.5), if
the curing probability δ∆t ,i were known. However, we do not know the curing probabil-
ity δ∆t ,i . Hence, we consider 50 equidistant candidate values for the curing probability
δ∆t ,i , ranging from δmin = 0.01 to δmax = 1. We define the set of candidate values as
Ω= {δmin, ...,δmax}. For every candidate value δ∆t ,i ∈Ω, the fraction of removed individ-
uals Ri [k] follows from (7.5) at all times k ≥ 2. Thus, we obtain 50 potential sequences
Ri [1], ...,Ri [n], each of which corresponding to one candidate value δ∆t ,i ∈ Ω. We es-
timate the curing probability δ∆t ,i , and hence implicitly the sequence Ri [1], ...,Ri [n],
as the element in Ω that resulted in the best fit of the SIR model (7.5) to the reported
number of infections.

The raw time series Irep,i [1], ...,Irep,i [n] exhibits erratic fluctuations. To reduce the
fluctuations, we apply a moving average, provided by the Matlab command smoothdata,
to the time series Irep,i [1], ...,Irep,i [n] of every node i . The preprocessed time series
Ii [1], ...,Ii [n] equals the output of smoothdata.

8.2.2. NETWORK INFERENCE

For every node i , the curing probability estimate δ̂∆t ,i equals to one of the candidate
values in the setΩ, as outlined in Subsection 8.2.1. The remaining task is to estimate the
infection probabilities β∆t ,i j , which we perform analogously to Section 7.5. For every
node i , we pose the optimisation problem:

min
β∆t ,i 1,...,β∆t ,i N

∥∥∥∥∥∥∥∥∥∥
VSIR,i −FSIR,i


δ̂∆t ,i

β∆t ,i 1
...

β∆t ,i N


∥∥∥∥∥∥∥∥∥∥

2

2

+ρi

N∑
j=1, j 6=i

β∆t ,i j ,

s.t. β∆t ,i j ≥ 0, j = 1, ..., N ,

N∑
j=1

β∆t ,i j ≤ 1.

(8.1)

The 2(n−1)×1 vector VSIR,i and the 2(n−1)×(N+1) matrix FSIR,i are defined in Lemma F.1.
We choose to not penalise the probabilities β∆t ,i i , since we expect the infections among
individuals within the same region i to be dominant. The last constraint in (8.1) ensures
that the estimates for β∆t ,i j result in a well-defined SIR model, as stated by Lemma 8.2.

We emphasise that the accurate prediction of an SIR epidemic outbreak does not
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require an accurate network inference, see Appendix G.3. If the observed viral state se-
quence νi [1], ..., νi [n] exactly follows the discrete-time SIR model in Definition 7.2, then
NIPA accurately predicts the infection state Ii [k]. Furthermore, NIPA provides accurate
short-term predictions, also in the presence of model errors wi [k]. We refer the reader to
Appendix G.3 for further details on NIPA.

8.3. EVALUATION OF THE PREDICTION ACCURACY
We denote the cumulative fraction of individuals of node i at time k by

Ic,i [k] =
k∑

l=1
Ii [l ].

NIPA produces an estimate Îc,i [k] for the cumulative number of infected cases at times
k > n. We quantify the prediction error at time k by the symmetric Mean Absolute Per-
centage Error (sMAPE)

e[k] = 2

N

N∑
i=1

∣∣Ic,i [k]− Îc,i [k]
∣∣

Ic,i [k]+ Îc,i [k]
,

which is commonly used in forecasting [160].
We compare the prediction accuracy of NIPA with two other methods:

Logistic function As we argued in Chapter 6, the logistic function is central to epidemic
models. Independently for every region i , we fit the logistic function

yi (t ) = y∞,i

1+e−Ki (t−t0,i )

to the number of infections Ic,i [1],..., Ic,i [n] as described in Section 6.4.

Long Short-Term Memory (LSTM) networks Recurrent neural networks [161] (RNNs)
are a powerful machine learning tool, for a broad spectrum of tasks. For instance,
RNNs have been successfully applied to sequences [162], time series analysis and
forecasting, speech recognition and natural language processing [163]. However,
traditional RNNs do not work well1 for data with long-term dependencies. For
instance, for the prediction of time series, where the input at time k0 influences
the output at time k À k0. Long Short-Term Memory (LSTM) networks [164] are
specific types of RNNs that can deal with long-term dependencies. LSTM net-
works rely on introducing additional input, output and forget gates to the tradi-
tional RNN framework. The additional LSTM gates capture long-term dependen-
cies in the data. For more details on and variations of LSTM networks, we refer
to [165, 166, 166–168]. Here, we utilise one of the most common variations: an
LSTM network with a forget gate. More specifically, we use an LSTM network with
sequence and hidden sizes both equal to four in a single LSTM layer, a learning
rate of 0.1 and Adam optimiser [169], with mean square error loss in 2000 epochs
of training.

1More specifically, training RNNs for data with long-term dependencies can lead to vanishing or exploding
gradients during the neural networks backpropagation.
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8.3.1. HUBEI, CHINA
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Figure 8.1: Map of the cities in Hubei. The 17 cities (prefecture-level divisions) of the Chinese province Hubei.
The darker the city, the more infections per capita on February 14. We do not consider the city Shennongjia in
this work.

We evaluate the prediction accuracy for the Chinese province Hubei. Hubei is di-
vided into 17 cities (more precisely, prefecture-level divisions), as illustrated by Figure 8.1.
We do not consider the city Shennongjia, since the number of infections in Shennongjia
is small. Thus, we consider N = 16 cities. In December 2019, the first cases of COVID-19
were detected in Wuhan, the capital of Hubei. The first case outside Wuhan was re-
ported on January 21. From January 24 onwards, the whole province Hubei was under
lockdown, prohibiting any non-urgent travels. On February 15, the local government in
Hubei changed the diagnosing policy2, causing an erratic increase in the number of re-
ported cases on February 15. Therefore, we restrict ourselves to the period from January
21 (day k = 1) to February 14, 2020. The number of newly reported infections for each
city in Hubei is openly accessible via the website of the Hubei Province Health Commit-
tee3 and stated in detail in Appendix G.2. There is a single outlier in city i = 1 (Wuhan)
at time k = 8 (January 28, 2020), which we replace by Irep,1[8] = (Irep,1[7]+Irep,1[9])/2.

To evaluate the prediction accuracy, we remove the data for a fixed number of days,
say m, prior to February 14. The input to the prediction methods are the observations
from 21 January up to 14−m February, 2020. Then, we predict the course of the dis-
ease up to February 14. The course of the disease and the predictions are illustrated in

2See, for instance, www.nature.com/articles/d41586-020-00154-w.
3Under the link http://www.hubei.gov.cn/.

www.nature.com/articles/d41586-020-00154-w
http://www.hubei.gov.cn/
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(a) Omitted days: m = 3.
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(b) Omitted days: m = 6.

Figure 8.2: Prediction of the COVID-19 outbreak in Hubei. The prediction of the COVID-19 outbreak in Hubei
by NIPA, the logistic function and LSTM. For clarity, only five of the N = 16 cities are depicted. Each subfigure
is obtained by omitting a number m of days prior to February 14, 2020, and subsequently predicting the same
number of days ahead in time. The omitted number of data points is equal to: (a) m = 3 days and (b) m = 6
days. The first prediction data point, for instance February 13 in subfigure (a), coincides with the last day that
has been observed.

Figure 8.2 for the removal of m = 3 and m = 6 days.

Figure 8.3 compares the accuracy of the predictions based on NIPA, LSTM and the
logistic function. As time evolves and a growing amount of data is available, the sMAPE
error in Figure 8.3 tends to decrease. The prediction accuracy decreases rapidly if the
forecast horizon is increased. Especially, none of the considered algorithms accurately
predicts the number of cases for five and six days ahead in time, as illustrated by Fig-
ures 8.3e and 8.3f, respectively. The prediction based on the logistic function are worse
than the predictions of NIPA and LSTM. In agreement with [170], the predictions by
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Figure 8.3: Accuracy of predicting COVID-19 in Hubei versus time. The subplots show the prediction accuracy
for a forecast horizon from m = 1 day to m = 6 days. The initial time k = 1 corresponds to January 30, 2020.

LSTM are particularly inaccurate if the time series used for training is short. Table 8.1
states the average prediction errors of the different prediction methods.

8.3.2. THE NETHERLANDS

As a second case study, we consider the spread of COVID-19 in the Netherlands. On
February 27 (day k = 1), the first individual in the Netherlands was diagnosed with COVID-
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Algorithm Prediction error

NIPA 0.122

Logistic function 0.186

LSTM 0.160

Table 8.1: Average accuracy of predicting COVID-19 in Hubei. The sMAPE prediction error e[k] of NIPA, LSTM
and logistic curve fitting, averaged over all nodes i and forecast horizons from m = 1 to m = 6 days.
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Figure 8.4: Map of the provinces in the Netherlands. The 12 provinces of the Netherlands. The darker the
province, the more infections per capita on May 19.

19. We consider the spread of COVID-19 among the N = 12 provinces in the Netherlands,
which are shown in Figure 8.4. The number of SARS-CoV-2 infections is available from
the Dutch National Institute for Public Health and the Environment4 (Rijksinstituut voor
Volksgezondheid en Milieu in Dutch).

Figure 8.5 shows the prediction accuracy for the Netherlands. Similarly to Subsec-
tion 8.3.1, NIPA outperforms the other prediction methods in most cases, particularly
before April 1. Table 8.2 states the average prediction errors of the different prediction
methods.

4Under the link https://www.rivm.nl/coronavirus-covid-19/actueel.

https://www.rivm.nl/coronavirus-covid-19/actueel
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Figure 8.5: Accuracy of predicting COVID-19 in the Netherlands versus time. The subplots show the predic-
tion accuracy for a forecast horizon from m = 1 day to m = 6 days. The initial time k = 1 corresponds to March
20, 2020.

8.4. CONCLUSIONS
We applied a network-based SIR epidemic model to predict the outbreak of the COVID-
19 virus. The SIR epidemic model allows to explicitly specify the interactions of individu-
als of different geographical regions. However, the precise interactions between regions
is unknown and must be inferred from observing the evolution of the outbreak.

We proposed the NIPA prediction method, which estimates the interactions between
regions as an intermediate step. We applied NIPA to predict the number of SARS-CoV-2
infections for two scenarios: in the Chinese province Hubei and in the Netherlands. Our
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Algorithm Prediction error

NIPA 0.0381

Logistic function 0.0735

LSTM 0.0570

Table 8.2: Average accuracy of predicting COVID-19 in the Netherlands. The sMAPE prediction error e[k] of
NIPA, LSTM and logistic curve fitting, averaged over all nodes i and forecast horizons from m = 1 to m = 6
days.

results indicate that a network-based modelling and prediction approach is beneficial
for accurate predictions of the COVID-19 outbreak.

Building upon the results in this chapter, we believe there are plenty of promising
open research questions. In particular: the incorporation of a priori knowledge of the
traffic flow to obtain more accurate predictions; generalising the NIPA prediction method
from point forecasts to prediction intervals; account for time-varying lockdown mea-
sures; and adapting NIPA to epidemic models more general than the SIR model.
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9
ON THE SERIES EXPANSION AND

THE EIGENMODE APPROACH

Functional brain networks are shaped and constrained by the underlying structural net-
work. However, functional networks are not merely a one-to-one reflection of the struc-
tural network. Several theories have been put forward to understand the relationship be-
tween structural and functional networks, but it remains unclear how these theories can
be unified. Here, we focus on two prominent methods for relating function and structure
in the brain: the eigenmode approach and the series expansion approach. Our contri-
bution is fourfold. First, we show that the eigenmode approach can be written in terms of
the series expansion approach. Second, for both the eigenmode and series expansion ap-
proach, we provide explicit expressions for the coefficients that result in the best fit. Third,
we demonstrate that, regarding the goodness of fit to empirical functional data, the eigen-
mode approach always outperforms the series expansion approach. Fourth, we show that
fitting the series expansion approach to empirical data is severely ill-conditioned. Thus,
we argue that the eigenmode approach should be preferred over the series expansion ap-
proach. Our results provide an important step towards unification of existing theories for
relating structure and function in brain networks.

This chapter is based on P. Tewarie*, B. Prasse*, J. M. Meier, F. A. N. Santos, L. Douw, M. Schoonheim, C. J.
Stam, P. Van Mieghem, and A. Hillebrand, Mapping functional brain networks from the structural connectome:
relating the series expansion and eigenmode approaches, NeuroImage, 216, 116805 (2020). (*P. Tewarie and B.
Prasse contributed equally.)
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9.1. INTRODUCTION
For many years, structural and functional brain networks have been studied indepen-
dently [171, 172], revealing partly overlapping and partly divergent connectivity pat-
terns. The last two decades have brought a wealth of studies that specifically aimed to
elucidate the relationship between the functional and structural brain networks [173–
177]. Structural networks are believed to shape and provide constraints for the dynam-
ics of functional connectivity, which can be measured at different time-scales [178]. It
has been widely acknowledged that, to some extent, functional networks can be pre-
dicted from the underlying structural connectome [179–181]. However, local neuronal
dynamics can impact the emergence of functional connectivity, especially on shorter
time scales [182, 183], rendering a direct mapping between structural and functional
networks limited to the domain where functional connectivity is estimated at greater
time scales.

A crucial observation is that functional networks are not merely a one-to-one map-
pings of the underlying structural network [176], which motivates the search for more
sophisticated mappings of function and structure. Particular properties of the structural
network were identified to shape the functional networks, including: the Euclidean dis-
tance between brain regions [184]; the outer product of the structural degree sequence
[185, 186]; detours along the shortest paths in the structural network [187]; and diffusion
properties of the structural network [188, 189]. Furthermore, approaches that rely on
coupled neural mass models were successfully applied for explaining the emergence of
resting-state functional networks from the underlying structural network. The prevalent
view is that resting-state functional networks appear if the underlying system operates
in a metastable regime [190–192] or in a multistable1 regime [193–195].

Several studies aimed to formalise the mapping between structural and functional
networks [196–200]. Since the seminal work by Robinson [200], several groups have
independently demonstrated that functional connectivity can be represented in terms
of the sum of all possible walks on the underlying structural network [199–205], which
can also be understood in terms of flow equations or propagator theory on the network
[200, 206]. The elegance of this approach is that it also incorporates other concepts, such
as, for example, the importance of shortest paths and detours from these paths [187], as
well as indirect paths of length two [207], for the formation of functional networks. One
of the ways to describe this “mapping” approach between structure and function is to
express the relationship as a series expansion [199].

Recent years have also seen a wealth of explorations by several independent groups
of the eigenmode2 approach, in which eigenvectors of the structural network are be-
lieved to form a basis-set to explain functional networks [208–213]. Several of these
structural eigenmodes have been related to known functional subnetworks [212], and
combinations of eigenmodes were able to explain the occurrence of frequency-specific
functional networks [210]. This approach has also found its way to applications in neu-
roscience and was able to detect alterations in brain states during sleep [214]. Most of
these studies extract the eigenmodes from the Laplacian3 of the structural connectome

1Multistability refers to the co-existence of multiple attractors.
2An eigenmode refers to the eigenvalue and the corresponding eigenvector of a matrix.
3The Laplacian is defined as the diagonal matrix with the degrees on the diagonal minus the adjacency matrix.
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[209, 212], or even from the Laplacian of structural connectivity along the cortical surface
[213, 215], although eigenmodes of the weighted adjacency matrix itself have also been
used [210]. We refer the reader to [216] for a theoretical underpinning of the eigenmode
approach for the Laplacian.

Instead of exploring an abundance of unrelated or complementary theories simul-
taneously, we strive for unification of theories regarding the relationship between struc-
tural and functional brain networks. Given the robustness and generalizability of the se-
ries expansion and eigenmode approaches (which have been applied to different datasets
by independent groups), we aim to understand the theoretical link between the eigen-
mode and series expansion approaches. Recently, Robinson [217] put forward the theo-
retical framework to prove the equivalence between the series expansion and eigenmode
approach. More specifically, Robinson [217] demonstrated that the series approach can
be formulated in terms of the spectral approach, and demonstrated the same mapping
between structural and functional brain networks for the topological and spectral do-
main. Here, we take this notion further by relating the coefficients of the eigenmode and
series expansion approach. Then, we analyse the strength of this relationship in em-
pirical data from Diffusion Tensor Imaging (DTI) and resting-state functional Magnetic
Resonance Imaging (fMRI). We analyse both approaches by comparing their goodness
of fit analytically and numerically for empirical data.

9.2. THEORETICAL LINK BETWEEN THE SERIES EXPANSION AP-
PROACH AND THE EIGENMODE APPROACH

We denote the structural connectivity matrix by A ∈RN×N and the functional connectiv-
ity matrix by W ∈ RN×N . Here, N denotes the number of nodes (brain regions) in both
networks. Both matrices are symmetric with zeros along the diagonal. Here, we consider
the eigenvector matrix X of A, where each column corresponds to one of the eigenvec-
tors of A. In Section 9.7, we consider the eigenvectors of the Laplacian of the structural
network [32]. The eigenmode approach assumes

W ≈ X SX T , (9.1)

where S is a diagonal matrix. The elements si on the diagonal of S, i = 1, ..., N , corre-
spond to the weighting coefficients that can be estimated from empirical data [210] or
can be derived analytically, see Section 9.3. Thus, the eigenmode approach assumes that
the functional network W can be approximated by a weighted linear combination of the
eigenvectors of the structural network A. Previous work has demonstrated that beyond a
linear combination, a non-linear combination of the eigenvectors can significantly im-
prove the prediction of functional networks [210]. However, a linear combination is ex-
planatory for a large part of the explained variance of frequency-specific functional net-
works [210].

In the series approach, the functional connectivity matrix is expressed as a Taylor
series expansion of the structural matrix, with unknown coefficients cm , m = 1, ...,d , and
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can be reduced to [199, equation (4)]

W ≈
d∑

m=1

cm

‖Am‖2
Am . (9.2)

Here, d is the diameter (length of the longest shortest path) of the structural network.
The coefficients cm are divided by the 2-norm ‖·‖2, since powers of A diverge quickly for
increase in m. The series is truncated at m = d , since previous work [199] demonstrated
that the fit with empirical fMRI or magnetoencephalography (MEG) data converges for
m = d . However, the precise underlying phenomenon why the diameter seems a suf-
ficient bound is a graph-theoretical, open question. An alternative normalisation to
‖Am‖2 is m!, see [201], which would transform (9.2) into an expression of communi-
cability if d is changed to infinity [218]. The powers Am for unweighted matrices A cor-
respond to configurations of walks in the structural network with length m. The Taylor
series coefficients cm can be estimated from the empirical data or analytically derived,
see Section 9.3. Since the matrix A is symmetric, we can diagonalise A to obtain its real
eigenvalues λi and eigenvectors xi , where i = 1, ..., N . The eigenvectors are orthogonal,
which implies that Am = X Dm X T . Thus, we can rewrite equation (9.2) as

W ≈
d∑

m=1

cm

‖Am‖2
X Dm X T , (9.3)

where D = diag(λ1, ...,λN ). Thus, the series approach states that for every addend in
equation (9.3), there is a different weighting of the eigenvectors, which is determined by
the powers of the eigenvalues λi and the Taylor coefficients cm . Hence, the series ap-
proach and the eigenmode approach are equivalent (or strongly related) if the weighting
coefficients on the diagonal of S for the eigenmodes are (approximately) equal to the
series coefficients:

S ≈
d∑

m=1

cm

‖Am‖2
Dm . (9.4)

Despite the fact that a relationship between the two approaches can be readily demon-
strated, it is an open question if the coefficients, as estimated from empirical data, are
indeed similar for both approaches.

9.3. FITTING COEFFICIENTS OF THE EIGENMODE AND SERIES

EXPANSION APPROACHES TO EXPERIMENTAL DATA
The fitting error of the eigenmode approach depends on the eigenmode coefficients and
follows from equation (9.1) as

εeigen(S) = ∥∥W −X SX T ∥∥
F , (9.5)

where ‖·‖F denotes the Frobenius matrix norm. The smaller the error εeigen(S), the better
the fit of the eigenmode approach. In other words, a smaller εeigen(S) corresponds to a
higher explanatory power of the eigenmode approach. Hence, to obtain the relationship
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between the structural connectivity matrix A and the functional connectivity matrix W ,
we aim to find the diagonal matrix S that minimises the error εeigen(S). Note that W
refers to the empirical or simulated functional connectivity matrix. Lemma 9.1 gives an
explicit expression for the diagonal matrix S.

Lemma 9.1. The diagonal matrix S that minimises the fitting error εeigen(S) equals

S = diag
(
xT

1 W x1, ..., xT
N W xN

)
. (9.6)

Proof. Appendix H.1.

The fitting error of the series expansion approach depends on the coefficient vector
c and follows from equation (9.3) as

εseries(c) =
∥∥∥∥∥W −

d∑
m=1

cm

‖Am‖2
X Dm X T

∥∥∥∥∥
F

.

Similarly as for the eigenmode approach, the smaller εseries(c), the better the fit and the
higher the explanatory power of the series expansion approach. We aim to find the coef-
ficient vector c that minimises the error εseries(c). Similarly to Lemma 9.1, we can derive
an expression for the coefficient vector c of the series expansion approach:

Lemma 9.2. Determining the coefficient vector c that minimises the fitting error εseries(c)
is equivalent to solving the linear least-squares problem

min
c

∥∥v − cT M
∥∥2

2 . (9.7)

Here, the 1×N vector v equals

v = (
xT

1 W x1, ..., xT
N W xN

)
,

and the d ×N matrix M is a Vandermonde matrix, given by

M =


λ1
λ1

λ2
λ1

... λN
λ1

...
...

. . .
...

λd
1

λd
1

λd
2

λd
1

...
λd

N

λd
1

 .

Proof. Appendix H.2.

Provided that all eigenvalues λ1, ..., λN are distinct, we obtain from equation (9.7)
that the coefficient vector c is given by [219]

c = (
M M T )−1

M vT . (9.8)

To compute the coefficient vector c in practice, there are numerically stable methods,
such as the Matlab command mldivide, that solve the least-squares problem in equa-
tion (9.7) without computing the inverse as in equation (9.8).



9

144 9. ON THE SERIES EXPANSION AND THE EIGENMODE APPROACH

We stress that Lemma 9.1 and Lemma 9.2 follow rather straightforwardly and should
not be considered as novel theoretical results. Here, we present these results within the
context of mappings between structural and functional networks in the field of neu-
roimaging. In addition to εeigen(S) and εseries(c) as a measure for the goodness of fit,
we also use the Pearson correlation coefficient between predicted and actual functional
connectivity matrices.

9.4. ILL-CONDITION OF THE SERIES EXPANSION APPROACH
Suppose the functional connectivity matrix W contains small estimation or measure-
ment errors. Hence, we obtain the perturbed matrix W̃ =W +∆W , for some N ×N error
matrix ∆W . Due to the perturbed matrix W̃ , the coefficients that minimise equation
(9.7) are also perturbed as c̃ = c +∆c, where we denote the d ×1 coefficient error vector
by ∆c = (∆c1, ...,∆cd )T . We are interested in the sensitivity of the series approach to er-
rors∆W . More precisely: How great is the impact of small errors∆W on the error∆c of the
series coefficients? The condition number of the Vandermonde matrix M in Lemma 9.2
equals [133]

κ(M) = σ1

σd
,

where σ1 and σd denote the largest and smallest singular value of the matrix M , respec-
tively. A small error ∆W results in an error ∆c on the series coefficients that scales [133]
with the square of the condition number κ(M) as4

‖∆c‖2

‖c‖2
≈ κ2(M)

‖∆W ‖2

‖W ‖2
+O

(∥∥∆W 2
∥∥

2∥∥W 2
∥∥

2

)
. (9.9)

Hence, the square of the condition number κ(M) determines the sensitivity of the com-
puted series coefficients c to errors∆W . We emphasise that this sensitivity is an inherent
property of the task of computing the coefficients c1, ..., cd and does not depend on the
specific numerical method that is employed to solve equation (9.7).

Vandermonde matrices may have very large condition numbers [220]. The squared
condition numbers κ2(M) for the structural connectivity matrices A used in the datasets
1 to 4, which are specified in Section 9.6, is given by Table 9.1. The value of κ2(M) is large
for all datasets, which indicates that small errors in the functional connectivity matrix
W can have very large impact on the error in c. Similarly, measurement errors ∆A on
the structural connectivity matrix A can have a strong impact on the error of c. Further-
more, we emphasise that the structural and functional connectivity matrices A and W
are digitally stored and processed with finite-precision arithmetic, which can result in
large errors of c when κ2(M) is large - even if the matrices A and W had been measured
with perfect accuracy.

4To be more precise [133], the left-hand side of Equation (9.9) is upper-bounded by some constant multiplied
by the right-hand side of equation (9.9).
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Net. size N Diam. d Cond. numb. κ2(M) R2 series vs. eigenm.

Dataset 1 78 6 1.6 ·105 0.92

Dataset 2 188 5 5.21 ·104 0.79

Dataset 3 264 6 1.68 ·105 0.78

Dataset 4 78 5 5.25 ·104 0.95

Table 9.1: Ill-condition of the series expansion approach. The condition numbers of the Vandermonde matrix
M in Lemma 9.2 and the diameter (longest shortest path) d of the structural network A, whose elements have
been discretised to either zero or one. For details on the datasets, see Section 9.6.

9.5. COMPARING THE EIGENMODE AND SERIES EXPANSION AP-
PROACH

Similarity between the series and eigenmode approaches would entail that the eigen-
mode coefficients s1, ..., sN would be approximately equal to the series coefficients cm

multiplied by the powers of the eigenvalues of A, see (9.4). To quantify this similarity
for empirical and simulated data, we computed the intraclass correlation coefficient be-
tween the diagonal of the left-hand and the diagonal of the right-hand side of Equation
(9.4), i.e., the intraclass correlation between the respective coefficients. The intraclass
correlation coefficient can be considered as a more rigorous method, compared to Pear-
son or Spearman correlations, to quantify whether the methods capture the same under-
lying link between structural and functional brain networks. Additionally, we quantify
the similarity in estimated functional network connectivity between the two approaches
in terms of the R2 value. More precisely, we vectorised the upper triangle of the esti-
mated functional connectivity matrix from both approaches and applied the linear least-
squared regression to quantify the link-wise dependency between approaches, see Ta-
ble 9.1.

The fitting error of the eigenmode approach is always smaller than or equal to the fit
of the series approach:

Lemma 9.3. For every structural connectivity matrix A and every functional connectivity
matrix W , the optimal fit of the eigenmode approach is at least as good as the optimal fit
of the series approach. More precisely, it holds that

min
S

εeigen(S) ≤ min
c

εseries(c). (9.10)

Proof. Appendix H.3.

Furthermore, (9.10) holds true almost always with strict inequality, as shown in Ap-
pendix H.3. In other words, Lemma 9.3 states that the series approach never explains
the experimental data better than the eigenmode approach. Thus, the eigenmode ap-
proach is a more accurate model for relating the structural connectivity matrix A and
the functional connectivity matrix W .
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9.6. APPLICATION OF BOTH APPROACHES TO EMPIRICAL AND

SIMULATED NETWORKS
We used multimodal data (DTI and resting-state fMRI data) from four previously pub-
lished empirical datasets. The first dataset (Dataset 1) consists of a literature-based
structural network for 80 healthy subjects [221], combined with a group-averaged func-
tional network based on fMRI data from 21 healthy adults. The first data set makes use
of the automated anatomical labelling atlas (AAL) [222], with N = 78 nodes. We retrieved
the second and third datasets from the University of California Los Angeles (UCLA) mul-
timodal connectivity database [223]. The second dataset consists of a group-averaged
structural network and a group-averaged resting-state fMRI network from 381 healthy
adults from the Nathan Kline Institute (NKI)/Sample [224]. For the second dataset, we
used the Craddock atlas [225] with N = 188 nodes. The third dataset consists of a group-
averaged structural and the resting state-fMRI network is obtained from 79 typically-
developing children from a UCLA autism dataset [223]. For the third dataset, the Power
atlas [226] was used (N = 264). The fourth data set consists of a group-averaged struc-
tural and resting-state fMRI network (N = 78) from 10 healthy subjects from the human
connectome data [227], using the AAL atlas. Processing pipelines for the structural con-
nectome can be found in [210], and the processing pipeline for the resting-state fMRI
network is given in Appendix H.4. We obtained the functional connectivity matrix W
for all datasets by computing the Pearson correlation coefficient between the fMRI time-
courses.

Figure 9.1 shows the empirical functional connectivity matrix and the estimated func-
tional connectivity matrices using the series expansion and eigenmode approaches for
all four empirical datasets. The estimates are obtained from the analytical expressions
in (9.6) and (9.8), respectively. For every dataset, Figure 9.1 shows a scatter plot of the
magnitude of the eigenmode coefficients si versus the aggregated coefficients for the
series expansion approach, i.e., the sum of the powers of the eigenvalues of the struc-
tural network weighted by cm/‖Am‖2, see (9.4). The number of points in the scatter
plots correspond to the number of nodes N in the structural network. The intraclass
correlation coefficients are shown in each scatter plot. For all datasets, with different
network sizes N , there are strong and significant correlations between the coefficients
from the eigenmode and the series approach. In agreement with Lemma 9.3, it holds
that εeigen(S) < εseries(c) for all datasets.

9.7. EXTENSION TO THE EIGENMODES OF THE LAPLACIAN
So far, we have analysed the eigenmodes of the structural connectivity matrix A in rela-
tion to the series expansion approach. In contrast, other studies focused on the eigen-
modes of the graph Laplacian [209, 212]. The analysis of the graph Laplacian is attrac-
tive due to well-behaved properties, such as the boundedness of its eigenvalues [32].
The graph Laplacian is defined as Q A = K A − A, where K A = diag(Au) refers to the de-
gree matrix. We further normalised the graph Laplacian as Q As = K −1/2

A Q AK −1/2
A to allow

for comparison with [209]. Analogously, we computed the normalised graph Laplacian
QW s of the functional connectivity matrix W . The Laplacian Q As can be diagonalised
as Q As = Z diag(µ1, ...,µN )Z T . Here, the columns zi of the matrix Z are the eigenvec-
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Figure 9.1: Series expansion versus eigenmode approach (weighted adjacency matrix). The first column
depicts the empirical fMRI connectivity for all four independent datasets by the respective Panels A-D. The
second and third column shows the estimated functional connectivity matrices for the series expansion and
eigenmode approach, respectively, including the errors εeigen(S) and εseries(c), and the Pearson correlation
R between estimated and true functional connectivity matrices. The fourth column depicts the estimated
coefficients si for the eigenmode approach and the aggregated series coefficients, which denote the diagonal
elements of the right hand side of (9.4). A strong correlation was found for all datasets.

tors of the Laplacians Q As to the eigenvalues µi . For the Laplacian Q As , we computed
the coefficients of the eigenmode approach in the same way as described in Section 9.3.
Furthermore, we provide a comparison to the approach by Abdelnour et al. [209], which
is based on an exponential relationship between eigenvalues of the structural and func-
tional connectivity matrices.

First, we determine the fitting errors for series expansion and eigenmode approach
when using the graph Laplacian. For the series expansion approach, since A = K A −Q A ,
we can rewrite (9.2) as

W ≈
d∑

m=1

cm

‖Am‖2
(K A −Q A)m . (9.11)
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Since (9.2) and (9.11) are equivalent, the coefficients cm and the fitting error εseries(c)
remain unaltered.

Similarly to (9.1), the eigenmode approach approximates the graph Laplacian QW s

of the functional connectivity matrix W by a linear combination of the eigenvectors X of
the graph Laplacian of the structural network,

QW s ≈ Z P Z T

for some diagonal matrix P . In the same way as for the eigenmode approach for the
structural matrix A, we define the fitting error

εQ (P ) = ∥∥QW s −Z P Z T ∥∥
F . (9.12)

By using the same reasoning as for the error εeigen(S) in Lemma 9.1, the diagonal matrix
P that minimises the error εQ (P ) equals

P = diag
(
zT

1 QW s z1, ..., zT
N QW s zN

)
.

By definition, QW = KW −W , the estimated functional connectivity matrix W follows as

W ≈ KW −K
1
2

W Z P Z T K
1
2

W , (9.13)

where KW = diag(W u). If there is a link between the series expansion and Laplacian
eigenmode approaches, we can equate (9.11) and (9.13), which yields that

P ≈ I −
d∑

m=1

cm

‖Am‖2
Z T K

− 1
2

W (K A −Q A)m K
− 1

2
W Z . (9.14)

Unlike equation (9.4), the eigenvector matrix Z cannot be eliminated on the right-hand
side of equation (9.14).

Additionally to (9.13), previous work has expressed the functional connectivity ma-
trix W in terms of an exponential relationship between the eigenvalues of the structural
graph Laplacian and the functional connectivity matrix [209],

W ≈
N∑

i=1
zi zT

i

(
ae−αµi +b

)
, (9.15)

where the coefficients a, α and b are found using a non-linear minimisation method
[209]. The fitting error for this methods equals

εexp(a,α,b) =
∥∥∥∥∥W −

N∑
i=1

zi zT
i

(
ae−αµi +b

)∥∥∥∥∥
F

.

Figure 9.2 shows the actual and estimated functional connectivity matrices using
the Laplacian eigenmode approaches for all four empirical datasets. The second col-
umn shows the estimated functional connectivity matrices based on (9.15), while the
third column shows the estimated functional connectivity matrices based on (9.13). The
Laplacian approaches are able to predict the true functional connectivity matrices. Cor-
relations with the actual functional connectivity based on predictions from (9.13) seem
to be the strongest. The diagonal elements of the right and left-hand side of equation
(9.14) are depicted in the scatter plots in Figure 9.2. These scatter plots show strong cor-
relations between the series expansion and graph Laplacian eigenmode approach.
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Figure 9.2: Series expansion versus eigenmode approach (graph Laplacian). Empirical fMRI connectivity
for all four independent datasets are illustrated (A-D). The estimated functional connectivity matrices for the
graph Laplacian approaches, i.e., based on an exponential mapping between eigenvalues (9.15) and based on
minimising the fitting error (9.12), alongside the errors εexp(a,α,b) and εQ (P ) and the Pearson correlation R
between predicted and actual connectivity matrices. The scatter plot on the right shows the estimated coeffi-
cients pi for the eigenmodes and the diagonal elements of the right hand side of (9.14), here called aggregated
series coefficients. A strong and significant correlation was found for all datasets.

9.8. CONCLUSIONS
Recent years have seen a rise in studies that rely on understanding functional brain net-
works, in parts, in terms of the eigenmodes of the structural network [209–213]. Another
existing theory is that functional networks emerge from the weighted sum of all possi-
ble walks in the structural network [200]. Here, we showed that the weighted sum of all
possible walks corresponds to different weightings of the eigenmodes of the structural
network. Hence, both approaches, the series expansion approach and the eigenmode
approach, are strongly related. Our results apply to eigenmodes of the weighted adja-
cency matrix as well as eigenmodes based on the Laplacian. Furthermore, we derived
expressions for the weighting coefficients for both the eigenmode approach and the se-
ries expansion approach. The theoretical correspondence between the two approaches
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was verified by four independent empirical datasets. Both approaches identified very
similar mappings between structural and functional networks, encouraging future re-
search for unifying theories of structural-functional network relationships. However, we
showed analytically that the fit of the eigenmode approach is always better than the fit
of the series expansion approach. Furthermore, due to an ill-conditioned linear system,
measurement and processing errors lead to large errors for the series approach. In sum-
mary, our findings advocate the use of the eigenmode approach instead of the series
expansion approach.



10
CONNECTIVITY RECONSTRUCTION

FOR MULTILAYER BRAIN

NETWORKS

Large-scale neurophysiological networks are often reconstructed from band-pass filtered
time series derived from magnetoencephalography (MEG) data. Common practice is to
reconstruct, and analyse, these networks separately for different frequency bands. Re-
cent evidence suggests that this separation may be inadequate, as there can be significant
inter-layer coupling between frequency bands. However, the precise inter-layer interac-
tion between frequency bands remains an open question. In this chapter, we propose a
network reconstruction method, based on phase oscillator models, to estimate inter-layer
connectivity from empirical data. We apply our method to empirical resting-state MEG
data from healthy subjects and reconstruct the inter-layer coupling between the alpha
and beta band, and the theta and gamma band. For both alpha-beta coupling and theta-
gamma coupling, our results indicate that one-to-one interactions (multiplex structure)
are dominant. Furthermore, for theta-gamma coupling, there are plenty inter-layer con-
nections between distant brain regions, though weaker than the one-to-one connections.
Our results form a stepping stone towards the identification of interdependencies across
frequency-specific functional brain networks.

This chapter is based on P. Tewarie, B. Prasse, J. M. Meier, Á. Byrne, M. De Domenico, C. J. Stam, M. J. Brookes,
A. Hillebrand, A. Daffertshofer, S. Coombes, and P. Van Mieghem, Interlayer connectivity reconstruction for
multilayer brain networks using phase oscillator models, in preparation.
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10.1. INTRODUCTION

Human brain functioning is widely believed to emerge from neuronal network activ-
ity operating at distinct spatio-temporal scales. At the macroscopic level, these func-
tional brain networks may be derived from functional MRI (fMRI), electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) [171]. The topology of these networks
can be characterised by network science metrics [228], which has been successful for ob-
taining new insights into temporal fluctuations of brain activity in different states (e.g.,
during cognitive tasks) and revealed common patterns in several neurological disorders
[229, 230]. The application of network science to EEG and MEG data requires the re-
construction of several, frequency-specific functional networks. These distinct networks
are usually analysed separately, even though oscillations in different frequency bands
may have mutual neuronal sources and there may be functional interactions [231–234].
Thus, it is more appropriate to study the frequency-specific functional networks jointly
[235, 236].

Several studies demonstrated the advantages of multilayer networks [237–239] in
the context of neuroscience [235, 236, 240–249]. Here, functional networks have been
considered as interconnected networks, where every frequency-specific network cor-
responds to one network layer. However, there is no consensus on the treatment of
the connectivity between different network layers. This lack of consensus is unfortu-
nate since the choice for inter-layer connectivity topology may have a significant im-
pact on the properties of a multilayer network [216, 250]. In the case of encephalog-
raphy, inter-layer connectivity can be regarded as a proxy for cross-frequency coupling
[232, 233, 251–259]. Estimation of cross-frequency coupling with existing metrics re-
mains difficult in practice [254, 260]. Recent studies support the existence of cross-
frequency coupling in resting-state data [252, 256, 261]. In this chapter, we apply a novel
data-driven approach for estimating cross-frequency coupling in a multilayer network
setting. In particular, we consider both intra-layer and inter-layer functional connectiv-
ity within a single framework.

Our approach is based on applying a network reconstruction method to the inter-
layer connectivity structure for empirical multilayer MEG networks. Thus, we do not re-
quire prior information about inter-layer connectivity. Since every network layer corre-
sponds to one frequency band, inter-layer connectivity corresponds to cross-frequency
phase synchronisation, similarly to [262]. Our approach is based on a multilayer phase
oscillator model to describe MEG data.

10.2. INTER-LAYER NETWORK RECONSTRUCTION

We consider a network with M = 2 layers, both of which have N nodes and model re-
spective frequency bands in MEG networks (for instance, the alpha and beta frequency
band). The coupling between nodes within one layer is described by the N ×N anatom-
ical connectivity matrix A with elements ai j , where i , j = 1, ...., N . Analogously, the sym-
metric N × N connectivity matrix B with elements bi j describes the inter-layer (cross-
frequency) coupling of nodes.

The evolution of the phase θL
i (t ) ∈ [0,2π) in layer L ∈ {1,2} of every node i is described
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by a multilayer phase oscillator model as

dθL
i (t )

d t
=ωL

i +
c

N

N∑
j=1

ai j H
(
θL

j (t )−θL
i (t )

)
+

N∑
j=1

bi j H
(

f1θ
L′
j (t )− f2θ

L
i (t )

)
. (10.1)

Here, H denotes to the phase-interaction function between nodes, L′ = 1 if L = 2 and
L′ = 2 if L = 1, the integers f1 and f2 represent the frequency ratio between different
layers, and c denotes the global coupling strength. Thus, we assume that H is the same
for the coupling within and the coupling between layers. We refer the reader to [262]
for an extensive overview of candidates for the phase interaction function H . The two
layers L = 1,2 differ in their mean and standard deviation of the respective distributions
of natural frequencies ωL

i , which we both consider to be Gaussian. For a small sampling
time ∆t , we approximate the derivative in (10.1) by a finite difference, which yields that

∆t
N∑

j=1
bi j H

(
f1θ

L′
j [k]− f2θ

L
i [k]

)
=θL

i [k +1]−θL
i [k]−∆tωL

i (10.2)

− c∆t

N

N∑
j=1

ai j H
(
θL

j [k]−θL
i [k]

)
,

where k denotes the discrete time step and we denote θL
i [k] = θL

i (k∆t ). At every time k,
we define the 1×N vector

ΥL
i [k] =∆t

(
H

(
f1θ

L′
1 [k]− f2θ

L
i [k]

)
, ..., H

(
f1θ

L′
N [k]− f2θ

L
i [k]

))
, (10.3)

and we denote the right side of (10.2) as

αL
i [k] = θL

i [k +1]−θL
i [k]−∆tωL

i −
c∆t

N

N∑
j=1

ai j H
(
θL

j [k]−θL
i [k]

)
.

We denote the number of observations by n and stack (10.3) for different times k to ob-
tain the n ×N matrix

Υi =

Υ
1
i [1]
...

Υ1
i [n]

 .

Furthermore, we define the n ×1 vector αi =
(
α1

i [1], ...,α1
i [n]

)T
. Then, the i -th column

Bi of the inter-layer connectivity matrix B satisfies

Υi Bi =αi . (10.4)

Thus, the inter-layer connectivity matrix B could be estimated based on solving the set
of linear equations (10.4). However, to reduce the impact of model and measurement er-
rors, we do not solve (10.4) directly. Instead, we employ a similar network reconstruction
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approach as in Chapter 7. For every node i , we estimate the column Bi of the inter-layer
connectivity matrix by the LASSO [141, 148]

min
Bi

‖Υi Bi −αi‖2
2 +ρi ‖Bi‖1

s.t. 0 ≤ Bi ≤ u.
(10.5)

We emphasise that (10.5) includes the estimation of the diagonal entries of the inter-
layer connectivity matrix B . Hence, we explicitly take potential one-to-one inter-layer
coupling into account. Algorithm 10.1 describes the network reconstruction method in
pseudocode. For more details, we refer to Chapter 7.

Algorithm 10.1 Network Reconstruction for the multilayer phase oscillator model

1: Input: phases θL
i [1], ...,θL

i [n] for all nodes i and layer L = 1,2; link threshold ε

2: Output: inter-layer matrix estimate B̂
3: for i = 1, ..., N do
4: ρmax,i ←‖2ΥT

i αi‖∞
5: ρmin,i ← 10−6ρmax,i

6: Si ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈ Si do
8: estimate MSE(B̂i (ρi )) by 10-fold cross validation onΥi ,αi

9: end for
10: ρopt ← minimiser of the estimates of MSE(B̂i (ρi ))
11: B̂i ← the solution B̂i (ρopt) to (10.5) on the whole data setΥi ,αi

12: end for
13: B̂ ← (B̂1, ..., B̂N )
14: B̂ ← (B̂ + B̂ T )/2
15: b̂i j ← 0 for all (i , j ) with b̂i j < ε

10.3. EVALUATION ON SYNTHETIC DATA
In the following, we consider a multilayer Kuramoto model [263–266] for the phase in-
teractions (10.1), for which the function H becomes

H(θ) = sin(θ). (10.6)

However, we emphasise that our approach can be adapted to general phase-interaction
functions H .

Figure 10.1 provides an overview of our analysis. We evaluated the inter-layer net-
work reconstruction by providing input from simulations with ground truth for inter-
layer connectivity. We generated phase time series using the network dynamics (10.1)
with the phase interaction function given by (10.6). For all nodes i at every time k, we
added uncorrelated white Gaussian errors wL

i [k]. Thus, we generated the phases θL
i [k]

as

θL
i [k +1] = θL

i [k]+∆t fphase(θL[k],θL′
[k])+wL

i [k]. (10.7)
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Figure 10.1: Overview of the data analysis steps. Panel A illustrates the extraction of inter-layer connectivity
matrix B in simulations of the multilayer phase oscillation model (10.7) with known ground truth for the ma-
trix B . The step “B Algorithm using A”refers to the network reconstruction method, which relies on the known
structural connectivity matrix A. In Panel A, the subscript “sim” emphasises that the matrix Bsi m is generated
by a random graph model. Panel B depicts the network reconstruction of the inter-layer connectivity matrix B
from empirical MEG phase data, where Bsurr is a surrogate inter-layer connectivity matrix. Panel C illustrates
the simulations, which are based on the reconstructed empirical inter-layer connectivity matrix B and com-
pare the simulated intra-layer functional connectivity matrix Wsi m to the empirical functional connectivity
matrix Wemp . Red arrows correspond to final analysis steps in each panel.

where fphase(θL[k],θL′
[k]) denotes the right side of (10.1), and we set the sampling time

to ∆t = 0.01. We generated the natural frequencies ωL
i for all nodes i and layers L by a

Gaussian distribution, with mean ω1
0 = 1 and ω2

0 = 2 for the respective layers.

First, we evaluate the network reconstruction accuracy versus the link sparsity. We
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generate an unweighted and connected structural connectivity matrix A by the Erdős-
Rényi random graph model [74] with link probability pER = 0.2 and N = 78 nodes. We
only considered realisations of the structural connectivity matrix A that were irreducible.
We generated the matrix B by a range-dependent random graph model [267] using the
Contest toolbox for Matlab [268]. The probability of an inter-layer link between two
nodes i and j , i.e., bi j = 1, is given by α0.9|i− j |−1. The parameter α was varied over
the interval [0.5,1.75], resulting in networks with different link densities. Furthermore,
we only considered symmetric inter-layer coupling matrix, by setting B ← (B +B T )/2.
Second, we evaluated the network reconstruction accuracy versus the variance σ2 of the
model errors wL

i [k] in (10.7). We varied the variance σ2 in the interval [0.05,0.5]. The
other parameters were set to: coupling c = 1, frequency ratios f1 = 1 and f2 = 2, sam-
pling time ∆t = 0.01, and the number of observations n = 10N 2.

We quantified the inter-layer network reconstruction accuracy with respect to three
error metrics. First, the false positive rate (FPR), which is given by the fraction of node
pairs (i , j ) for which bi j = 0 but b̂i j > 0. Here, b̂i j denote the elements of the estimated
inter-layer connectivity matrix B̂ . Second, the false negative rate (FNR), which equals to
the fraction of node pairs (i , j ) for which bi j > 0 but b̂i j = 0. We normalised both FPR
and FNR metrics by the link density of the ground-truth inter-layer connectivity matrix
B . Third, the relative true positive deviation (RTPD), which is given by |bi j − b̂i j |/bi j ,

averaged over all node pairs (i , j ) for which both bi j > 0 and b̂i j > 0. Thus, the RTPD
quantifies the estimation accuracy of the reconstructed link weights.

Figure 10.2 shows the impact of link sparsity in the matrix B on the error metrics FPR
and FNR. The greater the link density, the greater the estimation errors FPR, whereas the
link sparsity has little impact on the FNR error. In contrast, the link weight error metric
RTPD remains unaffected as the link density was varied. Furthermore, the FPR error
slightly increases for larger model errors wL

i [k], and the link weight error metric RTPD

remains largely unaffected for larger model errors wL
i [k].

10.4. INTER-LAYER CONNECTIVITY RECONSTRUCTION FOR EM-
PIRICAL MEG DATA

10.4.1. EMPIRICAL MEG AND DIFFUSION WEIGHTED IMAGING DATA
We consider resting-state magnetoencephalography (MEG) data from 89 healthy sub-
jects from the Human Connectome Project [227, 269]. Every subject underwent three
separate recording sessions, which were used as training and validation datasets for sep-
arate analysis steps (see Figure 10.1). The resting-state data for each session and subject
is given as separate input to an atlas-based scalar beamforming approach [270, 271], by
using the automated anatomical labelling atlas (AAL) which results in time courses at
N = 78 cortical regions [222]. We refer to [272] for further details on the pre-processing
steps. To reduce signal leakage, we applied symmetric multivariate orthogonalisation
[273]. The theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and low gamma (30-48 Hz)
frequency bands were obtained by bandpass filtering. We applied the Hilbert trans-
form to obtained the instantaneous phases and concatenated the signals of all subjects
(from session one) to obtain the phase input θL

i [k] to the network reconstruction method
(10.5), see Figure 10.1, Panel B.
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Figure 10.2: Simulations with ground truth inter-layer connectivity. Performance of the inter-layer network
reconstruction algorithm in simulations with ground truth for inter-layer connectivity matrix B . The results
in the first two rows are averaged over 20 realisations. The top left subplot shows the false positive rate (FPR)
and the false negative rate (FNR) for reconstructed networks. The simulations are based on (10.7) with known
ground-truth inter-layer networks B , which were generated by a range dependent random graph model with
varying link density. The top right subplot shows the corresponding relative true positive deviation (RTPD). The
second row shows the effect of increasing levels of model errors on the reconstruction accuracy, with respect
to the error metrics FPR, FPN and RTPD, where the link density of the matrix B equals 0.14. The third row
compares an exemplary ground-truth matrix B , with link density 0.14 and noise level of 0.05, to the estimated
inter-layer network.

Furthermore, we estimated intra-layer phase connectivity by the phase locking value
(PLV), after leakage reduction and band-pass filtering based on data from session two for
the alpha and beta band (Figure 10.1, Panel C). For windows of 13 seconds, the PLV [274]
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between two nodes i , j is given by

PLVi j =
∣∣∣∣∣ 1

U

U∑
k=1

e−i∆θi j [k]

∣∣∣∣∣ .

Here, U corresponds to the window width (in samples), ∆θi j [k] denotes the instanta-
neous phase difference between node i and j at time k, and i is the imaginary unit. The
phase connectivity matrices PLV with elements PLVi j were averaged across windows
(on average 22 windows per subject) and subjects to obtain one N ×N group-averaged
intra-layer connectivity matrix WL,emp for every layer L. We obtained the data on the
structural connectome from the Human Connectome Project, as described in [210].

10.4.2. RECONSTRUCTION OF INTER-LAYER CONNECTIVITY FROM EMPIRI-
CAL DATA

An overview of the analysis in this section is given by Figure 10.1, Panel B. First, we
focussed on the inter-layer connectivity between the alpha and beta band. We recon-
structed the inter-layer connectivity matrix B by the LASSO (10.5), where we used the
concatenated phase data from all subjects from session with the empirical connectome
A as input. The parameters of the model (10.1) were set to c = 1, f1 = 1 and f2 = 2.

Furthermore, we used surrogate phase data to evaluate the network reconstruction
method if there is no genuine underlying phase synchronisation. More specifically, we
generated surrogate time series by adding white Gaussian errors to the phases of every
node i . After obtaining the instantaneous phases, we applied the network reconstruc-
tion method (10.5) to the surrogate data.

Figure 10.3: Reconstructed inter-layer connectivity for two-layered alpha and beta band network. Panel
A shows the reconstructed inter-layer connectivity matrix B based on the multilayer phase oscillation model
(10.1) for empirical data. Panel B shows the reconstructed inter-layer connectivity matrix B for surrogate data.

Figure 10.3 shows the network reconstruction results for both the empirical phase
data and surrogate data. The reconstructed inter-layer connectivity matrix B for em-
pirical phase data is very sparse: predominantly, there are strong one-to-one connec-
tions and only few, weak connections between distant nodes. For the surrogate data, the
reconstructed inter-layer connectivity matrix B is almost zero, in stark contrast to the
reconstructed network for genuine experimental data. The resulting reconstructed net-
work for surrogate data indicates that one-to-one coupling as inter-layer connectivity is
not necessarily the minimal solution of the inter-layer network reconstruction problem.
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Thus, the reconstructed inter-layer connectivity for empirical data could not have been
obtained from a system without any underlying inter-layer connectivity.

10.5. SIMULATIONS ON RECONSTRUCTED NETWORKS

Figure 10.1, Panel C, provides an overview of the analysis steps for this section, where we
focus on the question: How well does the reconstructed inter-layer connectivity network
and the phase oscillator model (10.1) explain the empirical MEG data? Thus, we generate
phases θL

i [k] according to the dynamics (10.1) on the reconstructed inter-layer connec-
tivity B , given in Section 10.4.2, and the empirical connectome A. We considered a range
of values for the coupling c. For every value of the coupling c, we computed: (i) the Ku-

ramoto order parameter for each layer L, rL[k] =
∣∣∣1/N

∑N
i=1 e iθL

i [k]
∣∣∣, averaged over time k;

(ii) the R2 value between simulated functional connectivity WL,si m and empirical func-
tional connectivity WL,emp for every layer L; (iii) the Spearman correlation coefficient
ρ = corr

(
W1,si m ,W2,si m

)
of the upper-triangular part of the symmetric matrices W1,si m ,

W2,si m , to quantify the inter-layer correlation of the functional connectivity.

Figure 10.4: Simulations and fit with empirical data. Panel A shows the Kuramoto order parameter rL for
both layers L = 1,2 for a range of coupling values c. Panel B shows the adjusted R2, which quantifies the
fit of simulated intra-layer functional connectivity WL,si m to the empirical functional connectivity matrices
WL,emp , for a range of coupling values c. Panel C displays the (simulated) inter-layer correlation for a range
of coupling values c. The results were averaged over 20 realisations and subsequently smoothed by a moving
average filter.

Figure 10.4, Panel A, shows that there is a rapid transition for the Kuramoto order
parameter from weak to strong phase synchronisation, without a clear plateau for lower
coupling values c. Figure 10.4, Panel B, shows that the best fit of simulated PLV connec-
tivity matrices with group-averaged empirical PLV connectivity matrices occurs at inter-
mediate coupling values around c = 0.5. An adjusted R2 value of around 0.3-0.4 indi-
cates that, to some extent, the multilayer Kuramoto network model (10.1) is explanatory
for the observed functional connectivity in empirical MEG data. Furthermore, the fit of
the intra-layer network for the alpha band is slightly better than for the beta band. For
empirical data, the inter-layer correlation between alpha and beta band equals ρ = 0.62.
Figure 10.4, Panel C, shows that the best match of simulated and empirical inter-layer
correlation ρ occurs for coupling value around c ≈ 0.5.
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10.6. INTER-LAYER CONNECTIVITY RECONSTRUCTION FOR THE

THETA AND GAMMA BAND

Figure 10.5: Reconstructed inter-layer connectivity for two-layered theta and gamma band network. Panel
A shows the reconstructed inter-layer connectivity matrix B based on the multilayer phase oscillation model
(10.1) for empirical data. Panel B displays the mean inter-layer connectivity matrix B on a template brain
viewed from the top. Panel C shows the reconstructed inter-layer connectivity matrix B for surrogate data.

In Section 10.4, we considered the inter-layer connectivity between the alpha and
beta band. Previous work [252] demonstrated cross-frequency coupling also between
the theta and gamma band. Similar to the results in Figure 10.3, we reconstructed the
inter-layer connectivity matrix B for the theta and gamma band. We used the empiri-
cal data of all subjects from session one and set the parameters c = 1, f1 = 1 and f2 = 6.
Analogously to Section 10.4, we also used surrogate phase data to test the outcome in
the absence of genuine underlying phase synchronisation in the data. Figure 10.5 shows
that the estimated inter-layer connectivity matrix between theta and gamma band shows
many more off-diagonal elements compared to the alpha-beta band, as well as in com-
parison to surrogate data (Figure 10.5, Panel C). The results indicate the presence of long-
range inter-layer connections between brain regions.

10.7. CONCLUSIONS
We proposed a network reconstruction method, which is based on the LASSO, to esti-
mate the inter-layer connectivity for MEG networks. We considered a multilayer Ku-
ramoto phase oscillator model, but our approach is applicable to more general phase
interaction functions H . For simulated phase oscillation data, our method accurately
reconstructs the inter-layer connectivity, also in the presence of the model errors. For
empirical MEG data, we considered the reconstruction of the interconnectivity of two
pairs of frequency bands. First, for the alpha and beta frequency band, our network re-
construction method indicates that the empirical inter-layer connectivity is dominated
by one-to-one connectivity between the two frequency bands. Second, for the theta and
gamma frequency band, our method revealed widespread, long-distance connections
between brain regions.

Thus, our main conclusion is that the topology of inter-layer coupling strongly de-
pends on the combination of frequency bands, which advances the relatively young field
of multilayer functional brain networks [235, 236, 242, 247, 275, 276]. While challenging,
promising directions for future research include the generalisation of our work to: (i)
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multilayer networks with more than two layers; (ii) phase-amplitude coupling [231, 277–
280] and amplitude-amplitude coupling [235, 236]; (iii) different phase interaction func-
tions H .





11
CONCLUSIONS

11.1. ANALYSIS OF EPIDEMICS ON NETWORKS
In the first part of this thesis, we provided an in-depth analysis of the NIMFA epidemic
model (1.1). In particular, we focussed on obtaining a detailed description of the evolu-
tion of the N×1 viral state vector v(t ). The aim of Chapter 2 was to reduce the complexity
of the set of N nonlinear NIMFA differential equations (1.1). More specifically, we gave a
complete characterisation of contact networks for which the viral state v(t ) is governed
by only m ¿ N differential equations. Our main result in Theorem 2.14 reveals a duality
of function and structure: the viral state v(t ) is described by m ¿ N differential equa-
tions if and only if the contact network has an equitable partition with m cells. Thus,
reducing the complexity of the NIMFA (1.1) translates to searching for structures that re-
semble equitable partitions. If the nodes can be clustered into an approximate equitable
partition, then the viral state v(t ) is approximated, and bounded, by m ¿ N differential
equations. Our results are an important step towards understanding epidemic outbreaks
in large populations with a community structure.

In Chapter 3, we derived the closed-form solution of the NIMFA differential equa-
tions (1.1) around the epidemic threshold, i.e., as R0 ↓ 1. The solution approach is based
on a surprising observation: for arbitrarily large and heterogeneous, undirected contact
networks B , the viral dynamics lie (approximately) in a one-dimensional subspace of
RN . Thus, compared to the exact reduction of the viral dynamics to m ¿ N differential
equations in Chapter 2, which is only possible for equitable partitions, an approximate
reduction to m = 1 differential equations is possible for every network, provided that
R0 ≈ 1. As an important consequence, the structure of the contact network B only has a
small impact on the viral dynamics when R0 ≈ 1. More specifically, the viral dynamics on
arbitrary contact graphs can be reduced to the viral spread on a complete graph as R0 ↓ 1.
Thus, our results prove that, even on a complicated contact network, the evolution of an
epidemic outbreak can be astonishingly simple.

In Chapter 4, we study the NIMFA epidemic model (1.1) in discrete time k ∈N. In par-
ticular, for a small initial state v[1], we show that the viral state v[k] is (almost always)

163



11

164 11. CONCLUSIONS

monotonically increasing, the steady state v∞ is exponentially stable. Furthermore, we
provide linear systems that bound the viral state v[k] at every time k. Thus, we provided
the foundation for applying the NIMFA epidemic model to real-world, discrete-time epi-
demic data.

11.2. NETWORK RECONSTRUCTION AND PREDICTION OF EPI-
DEMICS

The second part of this thesis focusses on the prediction of epidemic outbreaks. The
contact network is essential for predicting epidemic outbreaks. However, in most appli-
cations, the contact network is not known. Hence, to predict epidemic outbreaks, one
resorts to reconstructing the network from past observations of the epidemic. In Chap-
ter 5, we consider the network reconstruction for the stochastic SIS process on individ-
ual level, and our contribution is twofold. First, we prove that the maximum-likelihood
SIS network reconstruction problem is NP-hard. The NP-hardness holds for any contact
graph that generated the SIS viral state observations. Hence, there are no efficient al-
gorithms for solving the general maximum-likelihood SIS network reconstruction prob-
lem. Second, we propose an polynomial-time heuristic network reconstruction method.
Numerical simulations on small networks, which allow for solving the SIS network re-
construction problem optimally, show that our heuristic performs almost optimally. By
applying our method to larger networks, we find that a tremendous number of observa-
tions is required for an accurate SIS network reconstruction. Thus, obtaining the contact
network between individuals from SIS viral state observations seems infeasible in prac-
tice, which is a motivation to consider epidemic outbreak on a coarser level, between
groups of individuals.

Before developing prediction methods for epidemic outbreaks between groups of in-
dividuals, it is imperative to be aware of fundamental prediction limits. Thus, we stud-
ied the predictability of epidemic outbreaks in Chapter 6. In particular, we focussed on
the logistic function, which is central to both the SIS and SIR epidemic model (see Theo-
rem 3.7). We showed that predicting a logistic function from past observations is severely
ill-conditioned, regardless of the specific prediction method. Importantly, even under
idealised conditions, an accurate fit of the logistic function to past data of an epidemic
outbreak does not imply an accurate prediction. In summary, an epidemic outbreak can
be predicted accurately only in the short term.

In Chapter 7, we developed a prediction method for a general class of epidemic mod-
els on networks. Our contribution was twofold. First, we proposed the general GEMF
model which unifies a diverse class of models for epidemics on networks. We consid-
ered the GEMF epidemic model in discrete time, which is more amenable to describing
and predicting real epidemics. In particular, the discrete-time NIMFA epidemic model
in Chapter 4 is a special case of the discrete-time GEMF model. Second, based on the
GEMF model, we proposed a prediction method for epidemic outbreaks, which infers
the contact network as an intermediate step. Complementing the results in Chapter 2
and Chapter 3, we found that the viral state for general GEMF models (with high accu-
racy) equals the linear combination of only m ¿ N agitation modes, also when R0 À 1.
Since the viral state is barely agitated, there are infinitely many, greatly diverse contact
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networks that are consistent with past observations of an epidemic outbreak. Thus, it is
not possible to reconstruct the contact network, unless many epidemic outbreaks on the
same network are observed. On the positive side, we made the decisive observation that
an epidemic outbreak can be predicted without the contact network.

In Chapter 8, we adjusted the network-inference based prediction method of Chap-
ter 7 to forecast the spread of COVID-19. Particularly, we focussed on the prediction of
COVID-19 in the Netherlands and in the Chinese province Hubei. The network-inference
based prediction method outperforms several other approaches. Hence, our results in-
dicate that the network-based modelling is a promising approach for predicting epi-
demic outbreaks.

11.3. SPREADING IN BRAIN NETWORKS: RELATING FUNCTION

AND STRUCTURE

A central challenge in neuroscience is the description of how the structural brain net-
work shapes the functional brain network. In Chapter 9, we analyse two prominent ap-
proaches for relating function and structure in the brain: the eigenmode approach, which
describes the functional brain network as the weighted sum of outer products of the
structural eigenvectors; and the series expansion approach, which describes the func-
tional brain network as a polynomial of the structural network. By deriving explicit ex-
pressions for the best-fit coefficients for both approaches, we show that the approaches
are strongly related. Furthermore, we show that the eigenmode approach is more ac-
curate and, in contrast to the series expansion approach, numerically well-conditioned.
Thus, we conclude that the eigenmode approach is preferable over the series expansion
approach. Our results constitute an important step towards a unification of theories that
relate function and structure in the brain.

Most studies analyse different frequency-specific functional brain networks (e.g., al-
pha and beta band) separately, although these networks originate from the same empir-
ical data source. Only recently, cross-frequency dependencies are taken into account.
In Chapter 10, we reconstruct cross-frequency coupling between different brain regions.
Our reconstruction method is based on a multilayer phase oscillator model in which the
layers correspond to different frequency bands. We found that cross-frequency coupling
is dominated by one-to-one interactions between the brain regions. Furthermore, in
contrast to alpha-beta band coupling, there are significant theta-gamma band couplings
between several distinct brain regions. Our findings advance the understanding of func-
tional dependencies between brain regions, beyond the restriction to single frequency
bands.

11.4. DIRECTIONS FOR FUTURE WORK

The proper orthogonal decomposition (POD), given by (2.1), was an overarching method
in this thesis, with applications in Chapters 2 and 3 and Chapters 7 and 8. The POD
(2.1) reveals a stark contrast: the contact network is complicated and large, but the vi-
ral dynamics follow a simple linear combination of only few agitation modes y1, ..., ym .
The POD is a powerful means of complexity reduction, based on which we derived the
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closed-form solution of NIMFA in Chapter 2 and predicted epidemics without the con-
tact network in Chapter 7. To the best of our knowledge, the application of the POD to
dynamics on networks is novel. Thus, the application of the POD to network dynamics
other than epidemics seems to be a promising research direction, as already demon-
strated by [53, 57].

While we have considered the fairly general setting of heterogeneous spreading rates
δi andβi j , we assumed a symmetric infection rate matrix B to derive the results in Chap-
ter 2 and Chapter 3. The generalisation of our results to asymmetric matrices B , i.e.,
directed contact graphs, is an open challenge.

Throughout this thesis, we assumed time-invariant contact networks. However, the
contact network may not be constant, particularly for time-varying lockdown measures.
Initial work [159] suggests that the prediction accuracy of the prediction method in Chap-
ter 7 may significantly improve, when time-varying lockdown measures are considered.
The generalisation of our results to time-varying spreading rates βi j (t ) and δi (t ) stands
on the agenda of future research.
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A
APPENDIX TO CHAPTER 2

A.1. PROOF OF LEMMA 2.11
Let w denote a vector in the orthogonal complement V⊥ of the invariant set V . Hence,
it must hold that wT v(t ) = 0 for every time t ≥ 0 if v(0) ∈ V , which is equivalent to both
wT v(0) = 0 and

d(wT v(t ))

d t
= 0 ∀v(t ) ∈V , w ∈V⊥. (A.1)

We replace the notation v(t ) ∈ V by v ∈ V . Then, we obtain from the NIMFA equations
(1.2) that (A.1) is equivalent to

wT (−Sv +diag(u − v)B v
)= 0 ∀v ∈V , w ∈V⊥.

Under Assumption 2.7, it holds that Sv ∈ V . Hence, the vector w ∈ V⊥ is orthogonal to
the vector Sv , which yields that

wT diag(u − v)B v = 0.

Since diag(u) is the identity matrix, we obtain that

wT B v = wT diag(v)B v. (A.2)

Since the invariant set V is a subspace of RN , v ∈ V implies that σv ∈ V for any scalar
σ ∈R. For the vector σv , where we consider σ> 0, it follows from (A.2) that

σwT B v =σ2wT diag(v)B v,

which is equivalent to

wT B v =σwT diag(v)B v.

169
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Thus, we obtain with (A.2) for every scalar σ> 0 that

wT diag(v)B v =σwT diag(v)B v,

which implies that

wT diag(v)B v = 0. (A.3)

Then, from (A.2), it follows that

wT B v = 0

for all vectors w ∈ V⊥, v ∈ V . The vector B v is orthogonal to all vectors w ∈ V⊥, only
if B v ∈ V . Thus, the set V is an invariant subspace [281] of the infection rate matrix B .
The sets of vectors y1, ..., ym and ym+1, ..., yN span the invariant set V and the orthogonal
complement V⊥, respectively, see (2.2) and (2.14). Thus, we can express the symmetric
matrix B as

B = (
y1 ... yN

)(M1 M12

0 M2

)yT
1
...

yT
N

 (A.4)

for some m ×m symmetric matrix M1 and some (N −m)× (N −m) symmetric matrix
M2. The m × (N −m) matrix M12 describes the mapping from the subspace V⊥ to the
subspace V . Since the matrix B is symmetric, it holds that M12 = 0, and (A.4) becomes

B = (
y1 ... yN

)(M1 0
0 M2

)yT
1
...

yT
N

 .

Furthermore, since the matrix B is diagonalisable as (2.16), the matrices M1 and M2 are
diagonalisable [281, Exercise 24, Section 5.4]. Thus, there is some orthogonal m × m
matrix C1 and some orthogonal (N −m)× (N −m) matrix C2 such that

B = (
y1 ... yN

)(C1 0
0 C2

)(
Λ1 0
0 Λ2

)(
C T

1 0
0 C T

2

)yT
1
...

yT
N

 . (A.5)

where the m×m diagonal matrixΛ1 and the (N−m)×(N−m) diagonal matrixΛ2 contain
the eigenvalues of B . In contrast to the N ×N matrix Λ in (2.16), the diagonal entries of
the matrices Λ1 and Λ2 may not be ordered with respect to their magnitude. Hence,
there is some permutation φ : {1, ..., N } → {1, ..., N } of the eigenvalues λ1, ...,λN such that

Λ1 = diag
(
λφ(1), ...,λφ(m)

)
and

Λ2 = diag
(
λφ(m+1), ...,λφ(N )

)
.
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We define the N ×m matrix EV and the N × (N −m) matrix EV⊥ as

EV = (
y1 ... ym

)
C1

and

EV⊥ = (
yN−m ... yN

)
C2.

Since the matrices C1 and C2 are nonsingular, the columns of the matrices EV and EV⊥
span the subspaces V and V⊥, respectively. We obtain that

B = (
EV EV⊥

)
diag

(
λφ(1), ...,λφ(N )

)( E T
V

E T
V⊥

)
.

Thus, the matrices EV ,EV⊥ equal to

EV = (
xφ(1) ... xφ(m)

)
(A.6)

and

EV⊥ = (
xφ(N−m) ... xφ(N )

)
,

where the columns xφ(1), ..., xφ(N ) are eigenvectors to the eigenvalues λφ(1), ...,λφ(N ) of
the matrix B , which completes the proof.

A.2. PROOF OF LEMMA 2.12
From (A.5), it follows that

B = (
y1 ... ym

)
C1Λ1C T

1

yT
1
...

yT
m

+ (
ym+1 ... yN

)
C2Λ2C T

2

yT
m+1

...
yT

N

 .

We complete the proof by identifying the m ×m matrix B̃V =C1Λ1C T
1 and the (N −m)×

(N −m) matrix B̃V⊥ =C2Λ2C T
2 .

A.3. PROOF OF THEOREM 2.14
The proof of Theorem 2.14 is based on four lemmas. First, Lemma A.1 relates the product
diag(w)v to the subspaces V6=0 and V⊥:

Lemma A.1. For all vectors v ∈V6=0 and w ∈V⊥, it holds that diag(w)v ∈V⊥.

Proof. Since wT diag(v) = (w1v1, ..., wN vN ) = vT diag(w), we obtain from (A.3) that

vT diag(w)B v = 0.

Equivalently, by taking the transpose, it holds that

vT B diag(w)v = 0. (A.7)
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The invariant setV is given by the span of some orthogonal vectors y1, ..., ym . Lemma 2.11
states that V = span{xφ(1), ..., xφ(m)}, where xφ(l ) is an eigenvector of the matrix B to the
eigenvalue λφ(l ) for some permutation φ. Thus, every vector v ∈V can be written as

v = (
xφ(1) ... xφ(m)

)
z (A.8)

for some m ×1 vector z = (z1, ..., zm)T , and the subspace V equals

V = {(
xφ(1) ... xφ(m)

)
z
∣∣z ∈Rm}

.

With (A.8), we can rewrite (A.7) as

zTΛ1


xT
φ(1)
...

xT
φ(m)

diag(w)
(
xφ(1) ... xφ(m)

)
z = 0, (A.9)

with the m × m diagonal matrix Λ1 = diag(λφ(1), ...,λφ(m)). The quadratic form (A.9)
equals zero for all vectors cz ∈Rm if and only if

Λ1


xT
φ(1)
...

xT
φ(m)

diag(w)
(
xφ(1) ... xφ(m)

)= 0,

which implies, with (A.8), that

Λ1


xT
φ(1)
...

xT
φ(m)

diag(w)v = 0

for all vectors v ∈V . Componentwise, we obtain that

λφ(l )xT
φ(l ) diag(w)v = 0 (A.10)

for all rows l = 1, ...,m and all vectors v ∈ V . Equation (A.10) is satisfied if and only if
λφ(l ) = 0 or xT

φ(l ) diag(w)v = 0 for all rows l = 1, ...,m. The subspace V0 contains the vec-

tors xφ(l ) for which λφ(l ) = 0, and the subspace V⊥ contains the vectors xφ(m+1), ..., xφ(N )

which are orthogonal to the vectors xφ(1), ..., xφ(m). Thus, the vector diag(w)v must be
element of the subspaces V0 or V⊥, or the vector diag(w)v must equal to the sum of two
vectors in the subspacesV0 andV . Hence, with the direct sum (2.15), we can reformulate
(A.10) as

diag(w)v ∈V⊥⊕V0 (A.11)

for all vectors v ∈V . We define the N ×m1 matrix EV 6=0 as

EV 6=0 =
(
xφ(1) ... xφ(m1)

)
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and the N × (m −m1) matrix EV0 as

EV0 =
(
xφ(m1+1) ... xφ(m)

)
.

Thus, the definition of the matrix EV in (A.6) implies that EV = (
EV 6=0 EV0

)
, and the

matrix diag(w) can be written as

diag(w) = (
EV 6=0 EV0 EV⊥

)M11 M12 M13

M21 M22 M23

M31 M32 M33


E T

V 6=0

E T
V0

E T
V⊥


for some matrices Mi j , where i , j = 1,2,3, whose dimensions follow from the dimension
of the matrices EV 6=0 , EV0 and EV⊥ . The matrices M11 and M12 describe the mapping
of the matrix diag(w) from the subspaces V6=0 and V0, respectively, to the subspace V6=0.
From (A.11), we obtain that M11 = 0 and M12 = 0. Furthermore, since the matrix diag(w)
is symmetric, it holds that M21 = M T

12 = 0. Hence, to satisfy (A.11), the matrix diag(w)
must equal to

diag(w) = (
EV 6=0 EV0 EV⊥

) 0 0 M13

0 M22 M23

M31 M32 M33


E T

V 6=0

E T
V0

E T
V⊥

 ,

which implies for all vectors v ∈V6=0 that diag(w)v ∈V⊥.

Lemma A.1 states that for all vectors v ∈ V6=0 and w ∈ V⊥, there must be some vec-
tor w̃ ∈V⊥ such that

diag(w)v = w̃ . (A.12)

We aim to find all subspacesV6=0 andV⊥ whose elements v and w, w̃ , respectively, satisfy
(A.12). From Lemma 2.11 it follows that a basis of the N −m dimensional subspace V⊥
is given by the columns of the matrix

EV⊥ =


(
xφ(m+1)

)
1 ...

(
xφ(N )

)
1

...
. . .

...(
xφ(m+1)

)
N ...

(
xφ(N )

)
N

 . (A.13)

For every matrix, the column rank equals the row rank. Since the columns of the ma-
trix EV⊥ are linearly independent, there are N − m linearly independent rows of the
matrix EV⊥ . Without loss of generality1, we assume that the first N − m rows of the
matrix EV⊥ are linearly independent. Hence, the first N −m rows span the Euclidean
space RN−m ,

span



(
xφ(m+1)

)
1

...(
xφ(N )

)
1

 ,


(
xφ(m+1)

)
2

...(
xφ(N )

)
2

 , ...,


(
xφ(m+1)

)
N−m

...(
xφ(N )

)
N−m


=RN−m . (A.14)

1Otherwise, consider a permutation of the rows, which is equivalent to a relabelling of the nodes.
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Thus, for all vectors w ∈ V⊥ and v ∈ V6=0, there is a vector w̃ ∈ V⊥ whose first N −m
entries satisfy (A.12), i.e.,

w̃i = wi vi , i = 1, ..., N −m. (A.15)

The last m entries of the vector w̃ ∈ V⊥ are determined by the first (N −m) entries of
the vector w , as shown by Lemma A.2. (Lemma A.2 is not a novel contribution, but we
include Lemma A.2 for completeness.)

Lemma A.2. Suppose that that the first N −m rows of the matrix EV⊥ are linearly inde-
pendent. Then, there are some (N −m)×1 vectors χN−m , ...,χN such that the last m entries
of any vector w ∈V⊥ follow from the first (N −m) entries as

wi =χT
i

 w1
...

wN−m

 , i = N −m +1, ..., N .

Proof. With the definition of the matrix EV⊥ in (A.13), every vector w ∈V⊥ can be written
as

w = (
xφ(m+1) ... xφ(N )

)zm+1
...

zN

 (A.16)

for some scalars zm+1, ..., zN ∈R. Thus, the first N −m entries of the vector w follow as

 w1
...

wN−m

= M

zm+1
...

zN

 , (A.17)

where the (N −m)× (N −m) matrix M equals to the first N −m rows of the matrix EV⊥ ,

M =


(
xφ(m+1)

)
1 ...

(
xφ(N )

)
1

...
. . .

...(
xφ(m+1)

)
N−m ...

(
xφ(N )

)
N−m

 .

By assumption, the first N −m rows of the matrix EV⊥ are linearly independent. Hence,
the matrix M is nonsingular, and the scalars zm+1, ..., zN follow from (A.17) as

zm+1
...

zN

= M−1

 w1
...

wN−m

 .
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Thus, we obtain the last m entries of the vector w with (A.16) aswN−m+1
...

wN

=


(
xφ(m+1)

)
N−m+1 ...

(
xφ(N )

)
N−m+1

...
. . .

...(
xφ(m+1)

)
N ...

(
xφ(N )

)
N


zm+1

...
zN



=


(
xφ(m+1)

)
N−m+1 ...

(
xφ(N )

)
N−m+1

...
. . .

...(
xφ(m+1)

)
N ...

(
xφ(N )

)
N

M−1

 w1
...

wN−m

 .

To complete the proof, we define the vectors χN−m+1, ...,χN asχ
T
N−m+1

...
χT

N

=


(
xφ(m+1)

)
N−m+1 ...

(
xφ(N )

)
N−m+1

...
. . .

...(
xφ(m+1)

)
N ...

(
xφ(N )

)
N

M−1.

We combine Lemma A.2 and (A.15), which yields for the last (N −m) entries of the
vector w̃ ∈V⊥ that

w̃i =
N−m∑

j=1
χi j w̃ j

=
N−m∑

j=1
χi j w j v j ,

where i = N −m +1, ..., N . Furthermore, (A.12) states that w̃i = vi wi . Thus, it must hold
that

wi vi =
N−m∑

j=1
χi j w j v j

for the entries i = N −m +1, ..., N . Since the vector w is element of the subspace V⊥, we
apply Lemma A.2 again and obtain that(

N−m∑
j=1

χi j w j

)
vi =

N−m∑
j=1

χi j w j v j .

Thus, for all entries i = N −m +1, ..., N , it must hold that

N−m∑
j=1

χi j w j (vi − v j ) = 0 (A.18)

for all vectors w ∈ V⊥ and v ∈ V6=0. Since the first N −m rows of the matrix EV⊥ are
linearly independent, see (A.14), it follows that (A.18) must be satisfied for all scalars w1,
..., wN−m in R. Hence, for all vectors v ∈ V6=0, it must hold that χi j (vi − v j ) = 0 for all
indices j = 1, ..., N −m, which is equivalent to χi j = 0 or v j = vi . Thus, the non-zero
entries of the vectors χi indicate which nodes j have the same viral state as node i .
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Example A.3. Consider a network of N = 5 nodes with an invariant set V of dimension
m = 3. Furthermore, consider that V0 =;, which implies with (2.18) that V = V6=0. Thus,
there are N −m = 2 vectors χ4,χ5. Suppose that the vectors χ4,χ5 equal to χ4 = (χ41,0)T

and χ5 = (0,χ52)T , where χ41,χ52 6= 0. Then, (A.18) implies that v1 = v4 and v2 = v5 for
every viral state v ∈V . Hence, the subspace V = span{y1, y2, y3} is given by the basis vectors

y1 = 1p
2


1
0
0
1
0

 , y2 = 1p
2


0
1
0
0
1

 , y3 =


0
0
1
0
0

 .

For l = 1,2,3, the eigenvector xφ(l ) of the infection rate matrix B equals to a linear combi-
nation of the basis vectors y1, y2, y3.

From (A.18), we can determine disjoint subsets N1,N2, ... of the set of all nodes N =
{1, ..., N } as follows: If two nodes i , j are element of the same subset Nl ⊆ N , then the
viral states are equal, vi = v j , for every viral state v ∈ V6=0. If a subset contains only one
node, Nl = {i }, then the viral state can be arbitrary vi ∈ R, independently of the viral
state v j of other nodes j 6= i . Every subset defines a basis vector yl of the subspace V6=0

as

(
yl

)
i =


1p
|Nl |

if i ∈Nl ,

0 if i 6∈Nl .
(A.19)

Then, the subspace V6=0 equals to the span of the vectors yl of all subsets Nl . Since the
dimension of the subspaceV6=0 is m1, there must be m1 subsetsN1, ...,Nm1 . Every node i
is element of at most one subset Nl . Hence, the vectors yl , y l̃ are orthogonal for l 6= l̃ .

Furthermore, some nodes i might not be element of any subset N1, ...,Nm1 , which
would imply that (yl )i = 0 for all basis vectors yl of V6=0. We define the subset Nm1+1,
whose elements are the nodes i that are not in any other subset N1, ...,Nm1 . As shown by
Lemma A.4, the set Nm1+1 is empty:

Lemma A.4. Under Assumptions 2.7 to 2.10, it holds that Nm1+1 =;.

Proof. Under Assumption 2.8, there is a viral state vector v ∈V with positive entries. The
positive viral state vector v satisfies

v =
m1∑
l=1

zl yl +
m∑

l=m1+1
zl yl (A.20)

for some scalars z1, ..., zm ∈ R. We denote the projection of the viral state v onto the
subspace V0 as

vker =
m∑

l=m1+1
zl yl
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Every basis vector yl of the subspace V6=0 satisfies (yl )i = 0 for all nodes i ∈Nm1+1. Thus,
we obtain with (A.20) that

(vker)i = vi > 0 (A.21)

for all nodes i ∈Nm1+1. Any vector ṽ ∈ V6=0 is orthogonal to the vector vker ∈ V0. Hence,
it holds that

N∑
i=1

(ṽ)i (vker)i = 0.

We split the sum

m1∑
l=1

∑
i∈Nl

(ṽ)i (vker)i +
∑

i∈Nm1+1

(ṽ)i (vker)i = 0.

Since (ṽ)i = 0 for all nodes i ∈Nm1+1, we obtain that

m1∑
l=1

∑
i∈Nl

(ṽ)i (vker)i = 0 ∀ṽ ∈V6=0. (A.22)

Furthermore, we define the N ×1 vector ua with the entries

(ua)i =
{

1 if i 6∈Nm1+1,

0 if i ∈Nm1+1.

From the definition of the basis vectors yl in (A.19), it follows that the vector ua equals

ua =
m1∑
l=1

√
|Nl |yl .

Thus, vector ua is element of V6=0. Since the vector vker is in the kernel of the matrix B , it
holds that B vker = 0, which implies that

uT
a B vker = 0. (A.23)

We decompose the vector vker as vker = vker,a + vker,b , where the first addend equals

(
vker,a

)
i =

{
(vker)i if i 6∈Nm1+1,

0 if i ∈Nm1+1,

and the second addend equals

(
vker,b

)
i =

{
0 if i 6∈Nm1+1

(vker)i if i ∈Nm1+1.
(A.24)

Then, (A.23) becomes

uT
a B vker,a +uT

a B vker,b = 0.
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Since ua ∈V6=0 and V6=0 is an invariant subspace of the matrix B , it holds that Bua ∈V6=0.
Thus, (A.22) implies that uT

a B vker,a = 0, and we obtain that

uT
a B vker,b = 0,

which is equivalent to

m1∑
l=1

∑
i∈Nl

N∑
j=1

βi j
(
vker,b

)
j = 0.

With the definition of the vector vker,b in (A.24), we obtain that

m1∑
l=1

∑
i∈Nl

∑
j∈Nm1+1

βi j (vker) j = 0. (A.25)

As stated by (A.21), the entries (vker) j are positive for all nodes j ∈Nm1+1. Furthermore,
the infection rates βi j are non-negative under Assumption 2.9. Hence, (A.25) is satisfied
only if βi j = 0 for all nodes j ∈ Nm1+1 and i ∈ Nl for all subsets l = 1, ...,m1. In other
words, the nodes in Nm1+1 are not connected to any nodes in N1, ...,Nm1 , which contra-
dicts the irreducibility of the matrix B under Assumption 2.10. Hence, it must hold that
Nm1+1 =;.

Since Nm1+1 = ;, it holds that N1 ∪ ...∪Nm1 = N . Hence, the disjoint subsets N1,
..., Nm1 define a partition of the set of all nodes N = {1, ..., N }. To complete the proof of
Theorem 2.14, we must show that the subsets N1, ..., Nm1 are an equitable partition of
the infection rate matrix B . Hence, we must show that the sum of the infection rates βi j ,

∑
j∈Nl

βi j , (A.26)

is the same for all nodes i ∈Np and all cells l , p = 1, ...,m1. Lemma 2.11 states that

V6=0 = span
{

y1, ..., ym1

}
= span

{
xφ(1), ..., xφ(m1)

}
.

Thus, there must be some nonsingular m1 ×m1 matrix H such that

(
xφ(1) ... xφ(m1)

)= (
y1 ... ym1

)
H . (A.27)

Since the set eigenvectors xi and the set of vectors yl are orthonormal, the matrix H is



A.3. PROOF OF THEOREM 2.14

A

179

orthogonal2. The eigendecomposition of the matrix B reads

B =(
xφ(1) ... xφ(m1)

)
diag

(
λφ(1), ...,λφ(m1)

)
xT
φ(1)
...

xT
φ(m1)



+ (
xφ(m1+1) ... xφ(m)

)
diag

(
λφ(m1+1), ...,λφ(m)

)
xT
φ(m1+1)

...
xT
φ(m)



+ (
xφ(m+1) ... xφ(N )

)
diag

(
λφ(m+1), ...,λφ(N )

)
xT
φ(m+1)

...
xT
φ(N )

 .

With (A.27), and since the eigenvalues λφ(l ) = 0 for l = m1 +1, ...,m, we obtain that

B =(
y1 ... ym1

)
H diag

(
λφ(1), ...,λφ(m1)

)
H T

 yT
1
...

yT
m1

 (A.28)

+ (
xφ(m+1) ... xφ(N )

)
diag

(
λφ(m+1), ...,λφ(N )

)
xT
φ(m+1)

...
xT
φ(N )

 .

Consider two nodes i ∈Np and a subset Nl for some l = 1, ...,m1. Since

(yl ) j =


1p
|Nl |

if j ∈Nl ,

0 if j 6∈Nl ,

we can express the sum (A.26) as∑
j∈Nl

βi j =
√
|Nl |

(
βi 1 ... βi N

)
yl .

Thus, with the N ×1 basic vector ei , it holds that∑
j∈Nl

βi j =
√

|Nl |eT
i B yl .

From the orthogonality of the vectors y1, ..., ym1 and from xT
φ(k) yl = 0 for k = m +1, ..., N ,

we obtain with (A.28) that∑
j∈Nl

βi j =
√

|Nl |eT
i

(
y1 ... ym1

)
H diag

(
λφ(1), ...,λφ(m1)

)
H T em1×1,l , (A.29)

2Since xT
i x j = 1 if i = j and xT

i x j = 0 if i 6= j and analogously for the vectors yi , y j , it follows from xT
i x j =

yT
i HT H y j that the matrix H is orthogonal.
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where the l -th entry of the m1 × 1 vector em1×1,l equals one, and the other entries of
em1×1,l equal zero. Since node i is element of exactly one subset Np , it holds that

eT
i

(
y1 ... ym1

)= 1√
|Np |

ẽT
m1×1,p .

Then, (A.29) becomes ∑
j∈Nl

βi j = di l ,

where

di l =
√|Nl |√
|Np |

eT
m1×1,p H diag

(
λφ(1), ...,λφ(m1)

)
H T em1×1,l

is the same for all nodes i ∈Np , which completes the proof.

A.4. PROOF OF THEOREM 2.16
By assumption, the infection rates βi , j are the same for all nodes i in any cell Nl and all
nodes j in any cell Np . Thus, with the definition of the vectors y1, ..., yr in (2.19), the
symmetric infection rate matrix equals

B = (
y1 ... yr

)
B̃V 6=0

yT
1
...

yT
r

 (A.30)

for some symmetric r × r matrix B̃V 6=0 . Since the kernel ker(B) is the orthogonal com-

plement of the subspace V6=0, it holds that RN = V6=0 ⊕ ker(B). Thus, any viral state
vector v(t ) ∈ [0,1]N can be decomposed as v(t ) = ṽ(t )+ vker(t ), where ṽ(t ) ∈ V6=0 and
vker(t ) ∈ ker(B). With the decomposition v(t ) = ṽ(t )+ vker(t ), NIMFA (1.2) becomes

d v(t )

d t
=−S (ṽ(t )+ vker(t ))+diag(u − ṽ(t )− vker(t ))B (ṽ(t )+ vker(t ))

=−Sṽ(t )−Svker(t )+diag(u − ṽ(t )− vker(t ))B ṽ(t ),

where the second equality follows from B vker(t ) = 0. Further rearrangement yields that

d v(t )

d t
= (B −S) ṽ(t )−diag(ṽ(t ))B ṽ(t )−Svker(t )−diag(vker(t ))B ṽ(t ). (A.31)

We decompose the derivative d v(t )/d t into two addends, by making use of two lem-
mas:

Lemma A.5. Suppose that the assumptions in Theorem 2.16 hold true. Then, if ṽ ∈ V6=0,
the vector

B ṽ −Sṽ −diag(ṽ)B ṽ (A.32)

is element of V6=0.
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Proof. We consider the three addends of the vector (A.32) separately. First, (A.30) shows
that the addend B ṽ is element of V6=0 if ṽ ∈V6=0. Second, we consider the addend Sṽ . By
assumption, the curing rates δi are the same for all nodes i in the same cell Nl . Thus, we
obtain from the definition of the agitation modes yl in (2.19) that

Syl = δi yl (A.33)

for l = 1, ...,r , where i denotes an arbitrary node in cell Nl . Since the agitation modes y1,
..., yr span the subspace V6=0, (A.33) implies that Sṽ if ṽ ∈V6=0.

Third, we consider the addend diag(ṽ)B ṽ . Since ṽ ∈V6=0, it holds that

ṽ =
r∑

l=1

(
yT

l ṽ
)

yl .

Similarly, since B ṽ ∈V6=0, it holds that

B ṽ =
r∑

l=1

(
yT

l B ṽ
)

yl . (A.34)

Thus, we obtain that

diag(ṽ)B ṽ =
r∑

l=1

r∑
p=1

(
yT

l ṽ
)(

yT
p B ṽ

)
diag(yl )yp . (A.35)

From the definition of the vectors yl in (2.19) it follows that

diag
(
yl

)
yp =

{
y2

l if l = p,

0 if l 6= p,

where the N ×1 vector y2
l = (

(yl )2
1, ..., (yl )2

N

)T
denotes Hadamard product of the vector yl

with itself. Thus, (A.35) becomes

diag(ṽ)B ṽ =
r∑

l=1

(
yT

l ṽ
)(

yT
l B ṽ

)
y2

l . (A.36)

With (2.19), the Hadamard product y2
l equals

(yl )2
i =

{
1

|Nl | if i ∈Nl ,

0 if i 6∈Nl ,

which implies that (yl )2 = yl /
√|Nl | and yields with (A.36) that

diag(ṽ)B ṽ =
r∑

l=1

(
yT

l ṽ
)(

yT
l B ṽ

)√|Nl |
yl .

Thus, the vector diag(ṽ)B ṽ is a linear combination of the vectors y1, ..., yr , which implies
that diag(ṽ)B ṽV6=0. Hence, we have shown that all three addends of the vector (A.32) are
in V6=0, which completes the proof.
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Lemma A.6. Suppose that the assumptions in Theorem 2.16 hold true. Then, if ṽ ∈ V6=0

and vker ∈ ker(B), the vector

Svker +diag(vker)B ṽ (A.37)

is element of ker(B).

Proof. The kernel ker(B) is the orthogonal complement of the subspace V6=0. Thus, the
vector (A.37) is element of ker(B) if Svker is orthogonal to every basis vector y1, ..., yr of
the subspace V6=0. We show separately that both addends of the vector (A.37) are orthog-
onal to every vector y1, ..., yr . First, for any l = 1, ...,r , we obtain for the first addend in
(A.37) that

yT
l Svker =

(
Syl

)T vker,

since the matrix S is symmetric. With (A.33), we obtain for an arbitrary node i ∈Nl that

yT
l Svker = δi yT

l vker = 0.

Thus, the addend Svker is element of ker(B).
Second, for any l = 1, ...,r , we obtain for the second addend in (A.37) with (A.34) that

yT
l diag(vker)B ṽ =

r∑
q=1

(
yT

l B ṽ
)

yT
l diag(vker) yq

=
r∑

q=1

(
yT

q B ṽ
)

vT
kerdiag

(
yl

)
yq .

Analogous steps as in the proof of Lemma A.5 yield that

yT
l diag(vker)B ṽ =

(
yT

l B ṽ
)√|Nl |

vT
ker yl .

Thus, by the orthogonality of the vectors vker and yl ,

yT
l diag(vker)B ṽ = 0,

which completes the proof.

With Lemma A.5 and Lemma A.6, we obtain from (A.31) that

d v(t )

d t
= d ṽ(t )

d t
+ d vker(t )

d t
,

where

d ṽ(t )

d t
=−Sṽ(t )+diag(u − ṽ(t ))B ṽ(t )

and

d vker(t )

d t
=−Svker(t )−diag(vker(t ))B ṽ(t ),

which completes the proof, since

diag(vker(t ))B ṽ(t ) = diag(B ṽ(t )) vker(t ).
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A.5. PROOF OF THEOREM 2.17
Since the spreading rates are homogeneous, βi j =β and δi = δ, the infection rate matrix
equals

B =βuuT , (A.38)

and the curing rate matrix equals

S = δI . (A.39)

Thus, with r = 1 cell N1 = {1, ..., N }, Theorem 2.16 yields that the viral state v(t ) can be
decomposed as v(t ) = ṽ(t )+vker(t ). We prove Theorem 2.17 in two steps. First, we show
that the projection ṽ(t ) equals c1(t )v∞ at every time t . Second, we prove that the projec-
tion vker(t ) equals c2(t )y2 at every time t .

A.5.1. PROJECTION ON THE SUBSPACE V6=0
With the reduced-size curing rate matrix Sπ = δ and the quotient matrix Bπ = Nβ, The-
orem 2.4 yields that the projection on the subspace V6=0 satisfies ṽ(t ) = vπ(t )u. The evo-
lution (2.12) of the reduced-size, scalar viral state vπ(t ) becomes

d vπ(t )

d t
=−δvπ(t )+ (

1− vπ(t )
)

Nβvπ(t ). (A.40)

We consider two cases for the value of the spreading parameters β and δ.

1. If δ 6=βN , then the solution of (A.40) equals [59]

vπ(t ) = vπ∞
2

(
1+ tanh

( w

2
t +Υ1(0)

))
with the reduced-size steady state vπ∞ = 1− δ

βN , the viral slope w =βN −δ and the
constant

Υ1(0) = arctanh

(
2

v(0)

vπ∞
−1

)
.

Thus, the projection ṽ(t ) = vπ(t )u is equal to c1(t )y1 at every time t .

2. If δ=βN , then the differential equation (A.40) reduces to

d vπ(t )

d t
=−δ(

vπ(t )
)2 ,

whose solution equals

vπ(t ) =
(
δt + 1

vπ(0)

)−1

.

With vπ(0) = yT
1 v(0)/

p
N , we arrive at the closed-form expression (2.25) for the

function c1(t ).
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A.5.2. PROJECTION ON THE KERNEL ker(B)
With (A.38) and (A.39), Theorem 2.16 yields that the projection vker(t ) obeys

d vker(t )

d t
=−(

δI +βdiag
(
uuT ṽ(t )

))
vker(t ).

Since ṽ(t ) = c1(t )y1 and (y1)i = 1/
p

N for all nodes i , we obtain that

d vker(t )

d t
=−

(
δI +β

p
N c1(t )I

)
vker(t )

=−
(
δ+β

p
N c1(t )

)
vker(t ). (A.41)

For any initial condition vker(0) ∈ ker(B), the right side of (A.41) is in the one-dimensional
subspace span{vker(0)}. Thus, the projection vker(t ) obeys vker(t ) = c2(t )vker(0). We solve
(A.41) in two steps. First, we compute the initial condition vker(0). Since v(0) = vker(0)+
c1(0)y1, the initial condition vker(0) is obtained as

vker(0) = v(0)− c1(0)y1

= v(0)− (
yT

1 v(0)
)

y1.

Hence, it follows that

vker(0) = (
I − y1 yT

1

)
v(0).

Second, using vker(t ) = c2(t )vker(0), we project (A.41) on the initial condition vker(0) to
obtain that the scalar function c2(t ) obeys the linear differential equation

dc2(t )

d t
=−δc2(t )−β

p
N c1(t )c2(t ). (A.42)

Again, we consider two cases for the value of the spreading parameters β and δ.

1. If δ 6=βN , then we obtain with the function c1(t ) given by (2.22) that

dc2(t )

d t
=−δc2(t )− w

2

(
1+ tanh

( w

2
t +Υ1(0)

))
c2(t ).

Hence, with the constantΦ= w/2+δ, it follows that

log(c2(t )) =−
∫ t

0

(
Φ+ w

2
tanh

( w

2
ξ+Υ1(0)

))
dξ.

The integral of the hyperbolic tangent equals to the logarithm of the hyperbolic
cosine [282], ∫

tanh(ξ)dξ= log(cosh(ξ)) ,

which yields that

log(c2(t )) =−Φt − w

2

2

w
log

(
cosh

( w

2
t +Υ1(0)

))
+K (0)

=−Φt − log
(
cosh

( w

2
t +Υ1(0)

))
+K (0)
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for some constant K (0), which is equivalent to

log(c2(t )) =−Φt + log

(
cosh

( w

2
t +Υ1(0)

)−1
)
+K (0).

With the hyperbolic secant sech(x) = cosh(x)−1, we obtain that

c2(t ) =Υ2(0)e−Φt sech
( w

2
t +Υ1(0)

)
, (A.43)

whereΥ2(0) = exp(K (0)). At the initial time t = 0, (A.43) becomes

c2(0) =Υ2(0)sech(Υ1(0)) ,

and it holds that

c2(0) = vT
ker(0)v(0)

‖vker(0)‖2
2

. (A.44)

Thus, with sech(x) = cosh(x)−1, we obtain the constantΥ2(0) as (2.24), which com-
pletes the proof.

2. If δ=βN , then the function c1(t ) is given by (2.25). Thus, the differential equation
(A.42) for the function c2(t ) becomes

dc2(t )

d t
=−δc2(t )−βN

(
δt +

p
N

yT
1 v(0)

)−1

c2(t ).

Thus, it holds that

log(c2(t )) =−
∫ t

0
δ+βN

(
δξ+

p
N

yT
1 v(0)

)−1

dξ.

Since ∫ (
δξ+

p
N

yT
1 v(0)

)−1

dξ= 1

δ
log

(
δξ+

p
N

yT
1 v(0)

)
,

we obtain for some constant K2(0) that

log(c2(t )) =−δt − βN

δ
log

(
δt +

p
N

yT
1 v(0)

)
+K2(0)

=−δt + log

(
δt +

p
N

yT
1 v(0)

)− βN
δ

+K2(0).

Hence, the function c2(t ) equals

c2(t ) = Υ̃2(0)e−δt

(
δt +

p
N

yT
1 v(0)

)− βN
δ

,
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where Υ̃2(0) = eK2(0). At the initial time t = 0, we obtain that

c2(0) = Υ̃2(0)

( p
N

yT
1 v(0)

)− βN
δ

.

Thus, it holds that

Υ̃2(0) = c2(0)

( p
N

yT
1 v(0)

) βN
δ

= vT
ker(0)v(0)

‖vker(0)‖2
2

( p
N

yT
1 v(0)

) βN
δ

,

where the second equality follows from (A.44).

A.6. PROOF OF THEOREM 2.18
The viral state ṽi (t ) evolves as

d ṽi (t )

d t
= f̃NIMFA,i (ṽ(t )),

where we define, for every node i ,

f̃NIMFA,i (ṽ(t )) =−δ̃i ṽi (t )+ (1− ṽi (t ))
N∑

j=1
β̃i j ṽ j (t ). (A.45)

Since β̃i j ≥βi j and δ̃i ≤ δi for all nodes i , we obtain an upper bound on NIMFA (1.1) as

d vi (t )

d t
≤−δ̃i vi (t )+ (1− vi (t ))

N∑
j=1

β̃i j v j (t )

= f̃NIMFA,i (v(t )).

Since d vi (t )/d t ≤ f̃NIMFA,i (v(t )), we can apply the Kamke-Müller condition [283, 284],
see also [7]: If v ≤ ṽ and vi = ṽi implies that f̃NIMFA,i (v) ≤ f̃NIMFA,i (ṽ) for all nodes i , then
v(0) ≤ ṽ(0) implies that v(t ) ≤ ṽ(t ) at every time t ≥ 0.

Thus, it remains to show that v ≤ ṽ and vi = ṽi implies that f̃NIMFA,i (v) ≤ f̃NIMFA,i (ṽ).
From (A.45), we obtain that

f̃NIMFA,i (v)− f̃NIMFA,i (ṽ) =−δ̃i (vi − ṽi )+ (1− vi )
N∑

j=1
β̃i j v j − (1− ṽi )

N∑
j=1

β̃i j ṽ j .

From vi = ṽi , it follows that

f̃NIMFA,i (v)− f̃NIMFA,i (ṽ) = (1− vi )
N∑

j=1
β̃i j v j − (1− vi )

N∑
j=1

β̃i j ṽ j ,
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which yields that

f̃NIMFA,i (v)− f̃NIMFA,i (ṽ) =
N∑

j=1
β̃i j

(
v j − vi v j − ṽ j + vi ṽ j

)
=

N∑
j=1

β̃i j (1− vi )
(
v j − ṽ j

)
.

Since
(
v j − ṽ j

)≤ 0, we obtain that f̃NIMFA,i (v) ≤ f̃NIMFA,i (ṽ), which completes the proof.

A.7. PROOF OF THEOREM 2.19
Here, we prove that vi (t ) ≥ vlb,l (t ) for all nodes i in any cell Nl . The proof of vi (t ) ≤
vub,l (t ) follows analogously. First, we define the curing rates δ̃max,i by

δ̃max,i = δmax,l

for all nodes i in any cell Np . Thus, (2.28) implies that δ̃max,i ≥ δi for all nodes i = 1, ..., N .

Lemma A.7. For all nodes i , j , there are infection rates β̃i j , which satisfy β̃i j ≤βi j and∑
j∈Nl

β̃i j = dmin,pl (A.46)

for all nodes i in any cell Np and all cells Nl .

Proof. With the definition of the lower bound dmin,pl in (2.26), we obtain that (A.46) is
satisfied if ∑

j∈Nl

β̃i j = min
i∈Np

∑
k∈Nl

βi k . (A.47)

Denote the difference of the infection rates by εi j =βi j −β̃i j . Thus, β̃i j ≤βi j and β̃i j ≥ 0
holds if and only if 0 ≤ εi j ≤ βi j . We obtain from (A.47) that the differences εi j must
satisfy ∑

j∈Nl

βi j −
∑

j∈Nl

εi j = min
i∈Np

∑
k∈Nl

βi k ,

which yields that ∑
j∈Nl

εi j =
∑

j∈Nl

βi j − min
i∈Np

∑
k∈Nl

βi k . (A.48)

To complete the proof, we must show that there exist some εi j ∈ [0,βi j ] that solve (A.48).
Since ∑

j∈Nl

βi j ≥ min
i∈Np

∑
k∈Nl

βi k

and βi j ≥ 0, the right side of (A.48) is some value in [0,
∑

j∈Nl
βi j ]. Since the feasible val-

ues of the infection rate differences εi j are in the interval [0,βi j ], the left side of (A.48)
may attain an arbitrary value in [0,

∑
j∈Nl

βi j ]. Thus, there are some infection rate differ-
ences εi j ∈ [0,βi j ] that solve (A.48), which completes the proof.
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Lemma A.7 states the existence of an N ×N matrix B̃min whose elements β̃min,i j sat-
isfy β̃i j ≤ βi j and (A.46). Thus, π is an equitable partition of the matrix B̃min. We define
the N ×1 viral state ṽlb(t ) as

d ṽlb(t )

d t
=−diag

(
δ̃max,1, ..., δ̃max,N

)
ṽlb(t )+diag(u − ṽlb(t )) B̃minṽlb(t ) (A.49)

with the initial viral state

ṽlb,i (0) = min
j∈Np

v j (0)

for all nodes i in any cell Np . Since ṽlb,i (0) ≤ vi (0), δ̃max,i ≥ δi and β̃min,i j ≤ βi j for all
nodes i , j , Theorem 2.18 yields that ṽlb,i (t ) ≤ vi (t ) for every node i at every time t . Fur-
thermore, Theorem 2.4 yields that the N -dimensional dynamics of the viral state ṽlb(t )
in (A.49) can be reduced to the r -dimensional dynamics of the reduced-size viral state
vlb(t ) in (2.29), which completes the proof.
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B.1. NOMENCLATURE
The following nomenclature is confined to the derivations in this appendix. The eigen-
values of the effective infection rate matrix W are denoted, in decreasing order, by |λ1| ≥
... ≥ |λN |. The principal eigenvector of unit length of the matrix W is denoted by x1 and
satisfies W x1 = λ1x1. The largest and smallest curing rate of δ1, ..., δN are denoted by
δmax and δmin, respectively. The numerical radius r (M) for an N ×N matrix M is defined
as [285]

r (M) = max
z∈CN

∣∣∣∣ zH M z

zH z

∣∣∣∣ ,

where zH is the conjugate transpose of a complex N × 1 vector z. For a square matrix
M , we denote the 2-norm by ‖M‖2, which equals the largest singular value of M . In
particular, it holds that the 2-norm of the curing rate matrix S equals ‖S‖2 = δmax.

B.2. PROOF OF THEOREM 3.4
The steady-state v∞ solely depends on the effective infection rate matrix W : By left-
multiplication of (1.5) with the diagonal matrix S−1, we obtain that

(W − I ) v∞ = diag(v∞)W v∞. (B.1)

In general, the effective infection rate matrix W , defined in (3.1) as W = S−1B , is asym-
metric, which prevents a straightforward adaptation of the proof in [70, Lemma 4]. How-
ever, the matrix W is similar to the matrix

W̃ = S− 1
2 BS− 1

2 (B.2)

= S
1
2 W S− 1

2 .

Since the infection rate matrix B is symmetric under Assumption 3.3, the matrix W̃ is
symmetric. Hence, the matrix W̃ , and also the effective infection rate matrix W , are

189
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diagonalisable. With (B.2), we write the steady-state (B.1) with respect to the symmetric
matrix W̃ as (

W̃ − I
)

S
1
2 v∞ = diag(v∞)W̃ S

1
2 v∞. (B.3)

We decompose the matrix W̃ as

W̃ =λ1x̃T
1 x̃1 +

N∑
k=2

λk x̃T
k x̃k , (B.4)

where the eigenvalues of W̃ are real and equal to λ1 >λ2 ≥ ... ≥λN with the correspond-
ing normalized eigenvectors denoted by x̃1, ..., x̃N . Then, the steady-state vector v∞ can
be expressed as linear combination

v∞ =
N∑

l=1
ψl x̃l ,

where the coefficients equal ψl = vT∞x̃l . To prove Theorem 3.4, we would like to express
the coefficients ψ1, ...,ψN as a power series around R0 = 1. However, in the limit process
(B ,S) → (B∗,S∗), the eigenvectors x̃1, ..., x̃N of the matrix W̃ are not necessarily constant.
Hence, the coefficients ψl depend on the full matrix W̃ and not only on the basic repro-
duction number R0. To overcome the challenge of non-constant eigenvectors x̃1, ..., x̃N

in the limit process (B ,S) → (B∗,S∗), we define the N ×N symmetric auxiliary matrix

M(z) = zx̃T
1 x̃1 +

N∑
k=2

λk x̃T
k x̃k (B.5)

for a scalar z ≥ 1. Thus, the matrix M(z) is obtained from the matrix W̃ by replacing the
largest eigenvalue λ1 of W̃ by z. In particular, the definition of the matrix M(z) in (B.5)
and (B.4) imply that M(λ1) = W̃ . When the matrix W̃ is formally replaced by the matrix
M(z), the steady-state equation (B.3) becomes

(M(z)− I )S
1
2 ṽ(z) = diag(ṽ(z)) M(z)S

1
2 ṽ(z) (B.6)

where the N ×1 vector ṽ(z) denotes the solution of (B.6). Since M(R0) = W̃ , the solution
of (B.6) at z = R0 and the solution to (B.3) coincide, i.e., ṽ(R0) = v∞. Lemma B.1 expresses
the solution of the equation (B.6) as a power series.

Lemma B.1. Suppose that Assumptions 3.1 and 3.3 hold. If (B ,S) is sufficiently close to
(B∗,S∗), then the N ×1 vector ṽ(z) which satisfies (B.6) equals

ṽ(z) = (z −1)

(
N∑

l=1

1√
δl

(x̃1)3
l

)−1

S− 1
2 x̃1 +φ(z), (B.7)

where the N ×1 vector φ(z) satisfies ‖φ(z)‖2 ≤σ(B ,S)(z −1)2 for some scalar σ(B ,S) when
z approaches 1 from above.
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Proof. The proof is an adaptation of the proof [70, Lemma 4]. We express the solution

ṽ(z) of (B.6) as linear combination of the vectors S− 1
2 x̃1, ...,S− 1

2 x̃N , i.e.,

ṽ(z) =
N∑

k=1
ψk (z)S− 1

2 x̃k . (B.8)

Since the diagonal matrix S− 1
2 is full rank, the vectors

(
S− 1

2 x̃k

)
, where k = 1, ..., N , are

linearly independent. Furthermore, we express the coefficients ψk (z) as a power series

ψk (z) =
∞∑

j=0
g j (k) (z −1) j , (B.9)

where g0(k) = 0 for every k = 1, ..., N , since [18] it holds that ṽ(z) = 0 when z = 1. We
denote the eigenvalues of the matrix M(z) by

λk (z) =
{

z if k = 1,

λk if k ≥ 2.
(B.10)

By substituting (B.8) into (B.6), we obtain that

N∑
k=1

(λk (z)−1)ψk (z)x̃k = diag

(
N∑

l=1
ψl (z)x̃l

)
S− 1

2

N∑
k=1

λk (z)ψk (z)x̃k

and left-multiplying with the eigenvector x̃T
m , for any m = 1, ..., N , yields that

(λm(z)−1)ψm(z) =
N∑

n=1
(x̃m)n

N∑
l=1

ψl (z) (x̃l )n
1√
δn

N∑
k=1

ψk (z)λk (z) (x̃k )n . (B.11)

We define

X (m, l ,k) =
N∑

n=1

1√
δn

(x̃m)n (x̃l )n (x̃k )n .

Then, we rewrite (B.11) as

(λm(z)−1)ψm(z) =
N∑

l=1

N∑
k=1

ψl (z)ψk (z)λk (z)X (m, l ,k). (B.12)

First, we focus on the left-hand side of (B.12), which we denote by

θm(z) = (λm(z)−1)ψm(z).

With the power series (B.9), we obtain that

θm(z) = (λm(z)−1)
∞∑

j=1
g j (m) (z −1) j .
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Further rewriting yields that

θm(z) = (λm(z)− z + z −1)
∞∑

j=1
g j (m) (z −1) j

= (λm(z)− z)
∞∑

j=1
g j (m) (z −1) j +

∞∑
j=1

g j (m) (z −1) j+1

=
∞∑

j=1
(λm(z)− z) g j (m) (z −1) j +

∞∑
j=2

g j−1(m) (z −1) j . (B.13)

Second, we rearrange the right-hand side of (B.12) as

θm(z) =λ1(z)
N∑

l=1
ψl (z)ψ1(z)X (m, l ,1)+

N∑
l=1

N∑
k=2

ψl (z)ψk (z)λk (z)X (m, l ,k).

By the definition of λk (z) in (B.10) it holds that λ1(z) = z, and we obtain that

θm(z) =(z −1)
N∑

l=1
ψl (z)ψ1(z)X (m, l ,1)+

N∑
l=1

N∑
k=1

ψl (z)ψk (z)λ̃k X (m, l ,k), (B.14)

where

λ̃k =
{

1 if k = 1,

λk if k ≥ 2.

Introducing the power series (B.9) into (B.14) and executing the Cauchy product for
ψl (z)ψk (z) yields that

θm(z) =
∞∑

j=1

(
j−1∑
n=1

N∑
l=1

g j−n(1)gn(l )X (m, l ,1)

)
(z −1) j+1

+
∞∑

j=1

(
j−1∑
n=1

N∑
l=1

N∑
k=1

g j−n(l )gn(k)λ̃k X (m, l ,k)

)
(z −1) j .

We shift the index j in the first term and obtain that

θm(z) =
∞∑

j=2

(
j−2∑
n=1

N∑
l=1

g j−1−n(1)gn(l )X (m, l ,1)

)
(z −1) j

+
∞∑

j=1

(
j−1∑
n=1

N∑
l=1

N∑
k=1

g j−n(l )gn(k)λ̃k X (m, l ,k)

)
(z −1) j . (B.15)

Finally, we equate powers in (z −1) j in (B.13) and (B.15), which yields for j = 1 that

(λm(z)− z) g1(m) = 0 (B.16)

for every m = 1, ..., N . The spectral radius of the limit W ∗ of the effective infection rate
matrix W equals 1. Furthermore, the limit W ∗ is a non-negative and irreducible matrix.
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Thus, the eigenvalues of the limit W ∗ obey λ∗
1 = 1 > |λ∗

m | for every m ≥ 2, which implies
that |λm | < 1 for every m ≥ 2 provided that (B ,S) is sufficiently close to (B∗,S∗). With the
definition of λm(z) in (B.10), we obtain from (B.16) that g1(m) = 0 when m ≥ 2 provided
that (B ,S) is sufficiently close to (B∗,S∗), since z ≥ 1.

For j ≥ 2, equating powers in (B.15) yields that

(λm(z)− z) g j (m)+ g j−1(m) =
j−2∑
n=1

N∑
l=1

g j−1−n(1)gn(l )X (m, l ,1) (B.17)

+
j−1∑
n=1

N∑
l=1

N∑
k=1

g j−n(l )gn(k)λ̃k X (m, l ,k).

In particular, for the case j = 2, we obtain that

(λm(z)− z) g2(m)+ g1(m) =
N∑

l=1

N∑
k=1

g1(l )g1(k)λ̃k X (m, l ,k)

= g1(1)g1(1)X (m,1,1), (B.18)

since g1(l ) = 0 for all l ≥ 2 and λ̃1 = 1. Since λ1(z) = z, we obtain for m = 1 from (B.18)
that

g1(1) = g1(1)2X (1,1,1)

and, hence,

g1(1) = 1

X (1,1,1)
=

(
N∑

l=1

1√
δl

(x̃1)3
l

)−1

.

Since g1(m) = 0 for m ≥ 2, we obtain that the power series (B.8) for the solution ṽ(z) of
(B.6) becomes

ṽ(z) = (z −1)g1(1)S− 1
2 x̃1 +φ(z), (B.19)

where the N ×1 vector φ(z) equals

φ(z) =
N∑

k=1

( ∞∑
j=2

g j (k) (z −1) j

)
S− 1

2 x̃k .

Thus, it holds ‖φ(z)‖2 = O (
(z −1)2

)
when z approaches 1 from above, which proves

Lemma B.1.

We believe that, based on (B.17), a recursion for the coefficients g j (k) can be ob-
tained for powers j ≥ 2, similar to the proof of [70, Lemma 4]. The radius of convergence
of the power series (B.19) is an open problem, see also [286]. To express the solution ṽ(z)
in (B.7) in terms of the principal eigenvector x1 of the effective infection rate matrix W ,
we propose Lemma B.2.
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Lemma B.2. Under Assumptions 3.1 and 3.3, it holds that(
N∑

l=1

1√
δl

(x̃1)3
l

)−1

S− 1
2 x̃1 =

∑N
l=1δl (x1)2

l∑N
l=1δl (x1)3

l

x1. (B.20)

Proof. From (B.2), it follows that the principal eigenvector x̃1 of the matrix W̃ and the
principal eigenvector x1 of the effective infection rate matrix W are related via

x̃1 = 1∥∥∥S
1
2 x1

∥∥∥
2

S
1
2 x1,

or, component-wise,

(x̃1)l =
1∥∥∥S

1
2 x1

∥∥∥
2

√
δl (x1)l .

Then, we rewrite the left-hand side of (B.20) as(
N∑

l=1

1√
δl

(x̃1)3
l

)−1

S− 1
2 x̃1 =

(
N∑

l=1
δl (x1)3

l

)−1 ∥∥∥S
1
2 x1

∥∥∥2

2
x1,

which simplifies to (
N∑

l=1

1√
δl

(x̃1)3
l

)−1

S− 1
2 x̃1 =

xT
1 Sx1∑N

l=1δl (x1)3
l

x1.

Writing out the quadratic form in the numerator completes the proof.

The basic reproduction number R0 converges to 1 when (B ,S) → (B∗,S∗). Hence, if
(B ,S) is sufficiently close to (B∗,S∗), then the basic reproduction number R0 is smaller
than the radius of convergence of the power series (B.8). Thus, if (B ,S) is sufficiently
close to (B∗,S∗), then the solution ṽ(R0) to (B.6) at z = R0 follows with Lemma B.1 as

ṽ(R0) = (R0 −1)

(
N∑

l=1

1√
δl

(x̃1)3
l

)−1

S− 1
2 x̃1 +φ(R0)

= γx1 +φ(R0),

where the last equality follows from Lemma B.2 and the definition of the scalar γ in (3.3).
We emphasise that Lemma B.1 implies that γ=O(R0 −1) and, hence, ‖ṽ(R0)‖2 =O(R0 −
1) as (B ,S) → (B∗,S∗). Since M(R0) = W̃ , the solution of (B.6) at z = R0 and the solution
to (B.3) coincide, i.e., ṽ(R0) = v∞. Thus, from the definition of the vector η in (3.2), we
obtain that ∥∥η∥∥

2 =
∥∥v∞−γx1

∥∥
2

= ∥∥φ(R0)
∥∥

2 (B.21)



B.3. PROOF OF LEMMA 3.5

B

195

when (B ,S) → (B∗,S∗). Lemma B.1 states that
∥∥φ(z)

∥∥
2 =O (

(z −1)2
)

as z ↓ 1. Hence, we
obtain from (B.21) that ∥∥η∥∥

2 ≤σ(B ,S)(R0 −1)2 (B.22)

for some scalar σ(B ,S) when (B ,S) → (B∗,S∗).
Furthermore, when (B ,S) converges to the limit (B∗,S∗), the scalar σ(B ,S) converges

to some limit σ(B∗,S∗). Hence, by defining the constant

σ=σ(B∗,S∗)+εσ
for some εσ > 0, it holds that

σ(B ,S) <σ,

for all (B ,S) which are sufficiently close to (B∗,S∗). Finally, we obtain from (B.22) that∥∥η∥∥
2 ≤σ(R0 −1)2

when (B ,S) approaches (B∗,S∗).

B.3. PROOF OF LEMMA 3.5
We divide Lemma 3.5 into two parts. In Subsection B.3.1, we prove that the viral state v(t )
does not overshoot the steady-state v∞. In Subsection B.3.2, we show that the function
c(t ) lies in the interval [0,1].

B.3.1. ABSENCE OF OVERSHOOT
Suppose that at some time t0 it holds vi (t0) = v∞,i for some node i and that v j (t0) ≤ v∞, j

for every node j . Since vi (t0) = v∞,i , the NIMFA equation (1.1) yields that

d vi (t )

d t

∣∣∣∣
t=t0

=−δi v∞,i + (1− v∞,i )
N∑

j=1
βi j v j (t0).

Since v j (t0) ≤ v∞, j for every node j , we obtain that

d vi (t )

d t

∣∣∣∣
t=t0

≤−δi v∞,i + (1− v∞,i )
N∑

j=1
βi j v∞, j = 0,

where the last equality follows from the steady-state equation (1.5). Thus, vi (t0) = v∞,i

implies that d vi (t )
d t

∣∣∣
t=t0

≤ 0, which means that, at time t0, the viral state vi (t0) does not

increase. Hence, the viral state vi (t0) cannot exceed the steady-state v∞,i at any time
t ≥ 0.

B.3.2. BOUNDEDNESS OF THE FUNCTION c(t )
Relation (3.12) indicates that

c(t ) = 1

‖v∞‖2
2

vT
∞v(t ) = 1

‖v∞‖2
2

(
v∞,1v1(t )+ ...+ v∞,N vN (t )

)
(B.23)
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Subsection B.3.1 shows that Assumption 3.2 implies that vi (t ) ≤ v∞,i for all nodes i and
every time t . Thus, we obtain from (B.23) that

c(t ) ≤ 1

‖v∞‖2
2

(
v∞,1v∞,1 + ...+ v∞,N v∞,N

)= 1

Analogously, since vi (t ) ≥ 0 for all nodes i and every time t , we obtain from (B.23) that
c(t ) ≥ 0.

B.4. PROOF OF THEOREM 3.6
By inserting the ansatz (3.11) into the NIMFA equations (1.2), we obtain that

dc(t )

d t
v∞+ dξ(t )

d t
=Λ1(t )+Λ2(t ). (B.24)

Here, the functionΛ1(t ) is given by

Λ1(t ) = (B −S)c(t )v∞− c2(t )diag(v∞)B v∞,

which simplifies, with the steady-state equation (1.5), to

Λ1(t ) = (
c(t )− c2(t )

)
(B −S) v∞. (B.25)

The functionΛ2(t ) is given by

Λ2(t ) = (B −S)ξ(t )− c(t )diag(ξ(t ))B v∞− c(t )diag(v∞)Bξ(t )−diag(ξ(t ))Bξ(t ).

With diag(ξ(t ))B v∞ = diag(B v∞)ξ(t ), we obtain that

Λ2(t ) =(
B −S − c(t )diag(B v∞)− c(t )diag(v∞)B

)
ξ(t )−diag(ξ(t ))Bξ(t ). (B.26)

To show that the error term ξ(t ) converges to zero at every time t when (B ,S) → (B∗,S∗),
we consider the squared Euclidean norm ‖ξ(t )‖2

2. The convergence of the squared norm
‖ξ(t )‖2

2 to zero implies the convergence of the error term ξ(t ) to zero. The derivative of
the squared norm ‖ξ(t )‖2

2 is given by

d‖ξ(t )‖2
2

d t
= 2ξT (t )

dξ(t )

d t
.

Thus, we obtain from (B.24) that

1

2

d‖ξ(t )‖2
2

d t
= ξT (t )Λ1(t )+ξT (t )Λ2(t ), (B.27)

since ξT (t )v∞ = 0 by definition of ξ(t ). We do not know how to solve (B.27) exactly, and
we resort to bounding the two addends on the right-hand side of (B.27) in Subsection
B.4.1 and Subsection B.4.2, respectively. In Subsection B.4.3 we complete the proof of
Theorem 3.6 by deriving an upper bound on the squared norm ‖ξ(t )‖2

2.
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B.4.1. UPPER BOUND ON ξT (t )Λ1(t )
We obtain an upper bound on the projection of the function Λ1(t ) onto the error vector
ξ(t ), which is linear with respect to the norm ‖ξ(t )‖2:

Lemma B.3. Under Assumptions 3.1 to 3.3, it holds at every time t ≥ 0 that

∣∣ξT (t )Λ1(t )
∣∣≤ 1

4
δmax

(
γ(R0 −1)+ (R0 +1)‖η‖2

)‖ξ(t )‖2.

Proof. From (B.25) and the definition of the matrix W in (3.1) it follows that

ξT (t )Λ1(t ) = (
c(t )− c2(t )

)
ξT (t )S (W − I ) v∞.

With Theorem 3.4, we obtain that

ξT (t )Λ1(t ) = (
c(t )− c2(t )

)(
γ(R0 −1)ξT (t )Sx1 +ξT (t )S(W − I )η

)
.

The triangle inequality yields that∣∣ξT (t )Λ1(t )
∣∣≤ ∣∣c(t )− c2(t )

∣∣(|γ(R0 −1)| ∣∣ξT (t )Sx1
∣∣+ ∣∣ξT (t )S(W − I )η

∣∣) . (B.28)

With the Cauchy-Schwarz inequality, the first addend in (B.28) is bounded by∣∣ξT (t )Sx1
∣∣≤ ‖ST ξ(t )‖2‖x1‖2

= ‖Sξ(t )‖2,

since ‖x1‖2 = 1 and the matrix S is symmetric. The matrix 2-norm is sub-multiplicative,
which yields that ∣∣ξT (t )Sx1

∣∣≤ ‖S‖2‖ξ(t )‖2

= δmax‖ξ(t )‖2.

Thus, (B.28) gives that∣∣ξT (t )Λ1(t )
∣∣≤ ∣∣c(t )− c2(t )

∣∣(γ(R0 −1)δmax‖ξ(t )‖2 +
∣∣ξT (t )S(W − I )η

∣∣) , (B.29)

since γ > 0 and R0 > 1. We consider the second addend in (B.29), which we write with
(B.2) as ∣∣ξT (t )S(W − I )η

∣∣= ∣∣∣ξT (t )S
1
2 (W̃ − I )S

1
2 η

∣∣∣ .

From the Cauchy-Schwarz inequality and the sub-multiplicativity of the matrix norm we
obtain that ∣∣ξT (t )S(W − I )η

∣∣≤ ‖ξ(t )‖2‖S
1
2 ‖2‖W̃ − I‖2‖S

1
2 ‖2‖η‖2.

The triangle inequality and the symmetry of the matrix W̃ imply that

‖W̃ − I‖2 ≤ ‖W̃ ‖2 +‖I‖2 = R0 +1.
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Thus, we can bound the second added in (B.29) by∣∣ξT (t )S(W − I )η
∣∣≤ δmax(R0 +1)‖ξ(t )‖2‖η‖2,

since ‖S
1
2 ‖2 =

√
δmax. Hence, (B.29) yields the upper bound∣∣ξT (t )Λ1(t )

∣∣≤ ∣∣c(t )− c2(t )
∣∣δmax

(
γ(R0 −1)+ (R0 +1)‖η‖2

)‖ξ(t )‖2.

Finally, Lemma 3.5 states that 0 ≤ c(t ) ≤ 1, which implies that∣∣c(t )− c2(t )
∣∣≤ 1/4

and completes the proof.

B.4.2. UPPER BOUND ON ξT (t )Λ2(t )
Lemma B.4 states an intermediate result, which we will use to bound the projection of
the functionΛ2(t ) onto the error vector ξ(t ).

Lemma B.4. Suppose that Assumptions 3.1 to 3.3 hold. Then, at every time t ≥ 0, it holds
that

ξT (t )Λ2(t ) ≤−‖S
1
2 ξ(t )‖2

2 +ξT (t )diag(u − c(t )v∞)Bξ(t ).

Proof. From (B.26) it follows that

ξT (t )Λ2(t ) =ξT (t )
(
B −S − c(t )diag(B v∞)− c(t )diag(v∞)B

)
ξ(t )

−ξT (t )diag(ξ(t ))Bξ(t ). (B.30)

To simplify (B.30), we aim to bound the last addend of (B.30) by an expression that is
quadratic in the error vector ξ(t ). The last addend equals

−ξT (t )diag(ξ(t ))Bξ(t ) =
N∑

l=1
ξ2

l (t )
N∑

j=1
βl j

(−ξ j (t )
)

. (B.31)

Since v(t ) = c(t )v∞+ξ(t ) and vi (t ) ≥ 0 for every node i at every time t , it holds that

−ξi (t ) ≤ c(t )v∞,i , i = 1, ..., N . (B.32)

By inserting (B.32) in (B.31), the last addend of (B.30) is bounded by

−ξT (t )diag(ξ(t ))Bξ(t ) ≤
N∑

l=1
ξ2

l (t )
N∑

j=1
βl j c(t )v∞, j ,

which simplifies to

−ξT (t )diag(ξ(t ))Bξ(t ) ≤ c(t )ξT (t )diag(B v∞)ξ(t ). (B.33)

By applying the upper bound (B.33) to (B.30), we obtain that

ξT (t )Λ2(t ) ≤ξT (t )
(
B −S − c(t )diag(v∞)B

)
ξ(t ).

With the definition of the matrix W̃ in (B.2), we obtain that

ξT (t )Λ2(t ) ≤ξT (t )S
1
2
(
W̃ − I − c(t )diag(v∞)W̃

)
S

1
2 ξ(t ),

and further rearranging completes the proof.
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For any scalar ς ∈ [0,1] and any vector υ ∈RN , we define

Θ(ς,υ,B ,S) =
∣∣υT diag(u −ςv∞)Bυ

∣∣
‖S

1
2 υ‖2

2

.

Then, we obtain from Lemma B.4 that

ξT (t )Λ2(t ) ≤ (Θ(c(t ),ξ(t ),B ,S)−1)‖S
1
2 ξ(t )‖2

2. (B.34)

To bound the term Θ(c(t ),ξ(t ),B ,S), we make use of (parts of) the results of Issos [287],
which are analogues of the Perron-Frobenius Theorem for the numerical radius of a non-
negative, irreducible matrix:

Theorem B.5 ([287]). Let M be a real irreducible and non-negative N ×N matrix. Then,
there is a positive vector z ∈RN of length zT z = 1 such that zT M z = r (M). Furthermore, if
z̃T M z̃ = r (M) holds for a vector z̃ ∈RN of length z̃T z̃ = 1, then either z̃ = z or z̃ =−z.

We refer the reader to [287–289] for further results on the numerical radius of non-
negative matrices. We apply Theorem B.5 to obtain:

Lemma B.6. Denote the set of N × 1 vectors with at least one positive and at least one
negative component as

Q= {
υ ∈RN ∣∣∃i , j : υ j > 0 > υi

}
.

Then, it holds thatΘ(ς,υ,B ,S) < R0 for every scalar ς ∈ [0,1] and for every vector υ ∈Q.

Proof. By introducing the N ×1 vector υ̃ = S
1
2 υ and by using (B.2), we rewrite the term

Θ(ς,υ,B ,S) as

Θ(ς,υ,B ,S) =
∣∣υ̃T diag(u −ςv∞)W̃ υ̃

∣∣
‖υ̃‖2

2

. (B.35)

For every scalar ς ∈ [0,1] the matrix (diag(u −ςv∞)W̃ ) is irreducible and non-negative.
Since υ ∈Q and the matrix S is a diagonal matrix with non-negative entries, it holds that
υ̃i < 0 and υ̃ j > 0 for some i , j . Hence, at least two components of the vector υ̃ have
different signs, and Theorem B.5 implies that (B.35) is bounded by

Θ(ς,υ,B ,S) < r
(
diag(u −ςv∞)W̃

)
.

Since the matrix W̃ is irreducible and diag(u−ςv∞)W̃ ≤ W̃ for every ς ∈ [0,1], where the
inequality holds element-wise, it holds [289, Corollary 3.6.] that

Θ(ς,υ,B ,S) < r
(
W̃

)
.

The matrix W̃ is symmetric, and, hence, the numerical radius r
(
W̃

)
equals the spectral

radius ρ
(
W̃

)= R0, which yields that

Θ(ς,υ,B ,S) < R0.
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Finally, we obtain a bound on the projection of the function Λ2(t ) onto the error
vector ξ(t ) as:

Lemma B.7. Under Assumptions 3.1 to 3.3, there is some constant ω> 0 such that

ξT (t )Λ2(t ) ≤−ωδmax‖ξ(t )‖2
2

holds at every time t ≥ 0 when (B ,S) approaches (B∗,S∗).

Proof. We denote the maximum of the function Θ(ς,υ,B ,S) with respect to ς ∈ [0,1] and
υ ∈Q by

Θmax(B ,S) = max
ς∈[0,1],υ∈Q

Θ(ς,υ,B ,S). (B.36)

As a first step, we consider the value of Θmax(B∗,S∗) at the limit (B∗,S∗). Since the
steady-state v∞ equals to zero at the limit (B∗,S∗), we obtain from (B.35) that

Θ(ς,υ,B∗,S∗) = 1

‖υ̃‖2
2

∣∣υ̃T W̃ ∗υ̃
∣∣ , (B.37)

where we denote W̃ ∗ = (S∗)−
1
2 B∗ (S∗)−

1
2 . Since R0 = 1 at the limit (B∗,S∗), Lemma B.6

implies that

Θmax(B∗,S∗) < 1. (B.38)

As a second step, we consider that the infection rate matrix B and the curing rate
matrix S do not equal the respective limit B∗ and S∗. Thus, there are non-zero N × N
matrices ∆B ,∆S and ∆W̃ such that B = B∗+∆B , S = S∗+∆S, and W̃ = W̃ ∗+∆W̃ . Then,
we obtain from (B.35) that

Θ(ς,υ,B ,S) = 1

‖υ̃‖2
2

∣∣υ̃T (
W̃ ∗−ςdiag(v∞)W̃ ∗+diag(u −ςv∞)∆W̃

)
υ̃
∣∣ ,

which is bounded by

Θ(ς,υ,B ,S) ≤ 1

‖υ̃‖2
2

∣∣υ̃T W̃ ∗υ̃
∣∣+ 1

‖υ̃‖2
2

∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃
∣∣ (B.39)

+ 1

‖υ̃‖2
2

∣∣υ̃T diag(u −ςv∞)∆W̃ υ̃
∣∣ .

Maximising every addend in (B.39) independently yields an upper bound on Θmax(B ,S)
as

Θmax(B ,S) ≤ max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T W̃ ∗υ̃
∣∣

+ max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃
∣∣

+ max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T diag(u −ςv∞)∆W̃ υ̃
∣∣ . (B.40)
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In the following, we state upper bounds for each of the three addends in (B.37) separately.
With (B.37), we write the first addend in (B.40) as

max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T W̃ ∗υ̃
∣∣= max

ς∈[0,1],υ∈Q
Θ(ς,υ,B∗,S∗) (B.41)

=Θmax(B∗,S∗),

where the last equality follows from the definition of Θmax(B∗,S∗) in (B.36). Regarding
the second addend in (B.40), it holds that

max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃
∣∣≤ max

ς∈[0,1]
max
υ∈RN

1

‖υ̃‖2
2

∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃
∣∣

= max
ς∈[0,1]

r
(
ςdiag(v∞)W̃ ∗)

,

where the last equality follows from the definition the numerical radius. Hence, the sec-
ond addend in (B.40) is bounded by

max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T ςdiag(v∞)W̃ ∗υ̃
∣∣≤ r

(
ς(1)

optdiag(v∞)W̃ ∗
)

(B.42)

for some ς(1)
opt ∈ [0,1]. Similarly, we obtain an upper bound on the third addend in (B.40)

as

max
ς∈[0,1],υ∈Q

1

‖υ̃‖2
2

∣∣υ̃T diag(u −ςv∞)∆W̃ υ̃
∣∣≤ r

(
diag(u −ς(2)

optv∞)∆W̃
)

(B.43)

for some ς(2)
opt ∈ [0,1]. With (B.41), (B.42) and (B.43), we obtain from (B.40) that

Θmax(B ,S) ≤Θmax(B∗,S∗)+ r
(
ς(1)

optdiag(v∞)W̃ ∗
)
+ r

(
diag(u −ς(2)

optv∞)∆W̃
)

. (B.44)

The numerical radius r (M) is a vector1 norm [285] on the space of N × N matrices M .
Thus, the numerical radius r (M) converges to zero if the matrix M converges to zero.
Since v∞ → 0 and ∆W̃ → 0 as (B ,S) → (B∗,S∗) and ς(1)

opt,ς
(2)
opt are bounded, the last two

addends in (B.44) converge to zero as (B ,S) → (B∗,S∗). Hence, for every scalar ω > 0
there is a ϑ(ω) such that ‖B −B∗‖2 <ϑ(ω) and ‖S −S∗‖2 <ϑ(ω) implies that

Θmax(B ,S) ≤Θmax(B∗,S∗)+ω. (B.45)

We choose the scalar ω= (1−Θmax(B∗,S∗))/2, which is positive due to (B.38). Then, the
right-hand side of (B.45) becomes

Θmax(B∗,S∗)+ω= 1

2
+ 1

2
Θmax(B∗,S∗)

= 1−ω.

1The numerical radius is not a matrix norm, since the numerical radius is not sub-multiplicative.
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Thus, we obtain from (B.45) that

Θmax(B ,S) ≤ 1−ω (B.46)

holds for all (B ,S) which are sufficiently close to the limit (B∗,S∗).
By definition, the error vector ξ(t ) at any time t ≥ 0 is orthogonal to the steady-state

vector v∞. Since the steady-state v∞ is positive, the error vector ξ(t ) has at least one
positive and one negative element, and, hence, it holds that ξ(t ) ∈Q. Thus, we obtain
from the definition of the termΘmax(B ,S) in (B.36) that

Θ(c(t ),ξ(t ),B ,S) ≤Θmax(B ,S).

With (B.46), we obtain from (B.34) that

ξT (t )Λ2(t ) ≤−ω‖S
1
2 ξ(t )‖2

2.

From the sub-multiplicativity of the matrix norm, we obtain that

ξT (t )Λ2(t ) ≤−ω‖S
1
2 ‖2

2‖ξ(t )‖2
2,

which completes the proof, since ‖S
1
2 ‖2

2 = δmax.

B.4.3. BOUND ON THE ERROR VECTOR ξ(t )
With Lemma B.3 and Lemma B.7, we upper-bound (B.27) by

1

2

d‖ξ(t )‖2
2

d t
≤ 1

4
δmax

(
γ(R0 −1)+ (R0 +1)‖η‖2

)‖ξ(t )‖2 −ωδmax‖ξ(t )‖2
2.

From

d‖ξ(t )‖2

d t
= 1

2‖ξ(t )‖2

d‖ξ(t )‖2
2

d t
,

it follows that

d‖ξ(t )‖2

d t
≤ 1

4
δmax

(
γ(R0 −1)+ (R0 +1)‖η‖2

)−ωδmax‖ξ(t )‖2.

We denote

ϕ (B ,S) = 1

4

(
γ(R0 −1)+ (R0 +1)‖η‖2

)
, (B.47)

and we obtain that

d‖ξ(t )‖2

d t
≤ϕ (B ,S)δmax −ωδmax‖ξ(t )‖2. (B.48)

The upper bound (B.48) is a linear first-order ordinary differential inequality, which is
solved by [290]

‖ξ(t )‖2 ≤ e−ωδmaxt
(
‖ξ(0)‖2 +

∫ t

0
ϕ (B ,S)δmaxeωδmax t̃ d t̃

)
,
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which simplifies to

‖ξ(t )‖2 ≤
(
‖ξ(0)‖2 − ϕ (B ,S)

ω

)
e−ωδmaxt + ϕ (B ,S)

ω
.

The triangle inequality yields that

‖ξ(t )‖2 ≤ ‖ξ(0)‖2e−ωδmaxt + ϕ (B ,S)

ω

(
1+e−ωδmaxt

)
. (B.49)

Furthermore, since e−ωδmaxt ≤ 1 at every time t ≥ 0, we obtain from (B.49) that

‖ξ(t )‖2 ≤ ‖ξ(0)‖2e−ωδmaxt +2
ϕ (B ,S)

ω
. (B.50)

The maximum δmax of the curing rates converges to some limit δ∗max when (B ,S) →
(B∗,S∗). Hence, for any ε> 0 it holds thatδ∗max−ε< δmax when (B ,S) approaches (B∗,S∗).
For some ε ∈ (0,δ∗max), we set the constant

σ1 =ω(δ∗max −ε).

Then, it holds that σ1 < ωδmax when (B ,S) approaches (B∗,S∗), and we obtain from
(B.50) that

‖ξ(t )‖2 ≤ ‖ξ(0)‖2e−σ1t +2
ϕ (B ,S)

ω
. (B.51)

Theorem 3.4 states that γ =O(R0 − 1) and ‖η‖2 =O (
(R0 −1)2

)
when (B ,S) approaches

(B∗,S∗). Thus, it follows from the definition of the term ϕ (B ,S) in (B.47) that ϕ (B ,S) =
O (

(R0 −1)2
)
. Hence, there is a constant σ2 > 0 such that (B.51) yields that

‖ξ(t )‖2 ≤ ‖ξ(0)‖2e−σ1t +σ2 (R0 −1)2

when (B ,S) approaches (B∗,S∗).

B.5. PROOF OF THEOREM 3.7
By projecting the differential equation (B.24) onto the steady-state vector v∞, we obtain
that

dc(t )

d t
vT
∞v∞ = vT

∞Λ1(t )+ vT
∞Λ2(t ),

since vT∞ξ(t ) = 0 by definition of the error term ξ(t ). We divide by ‖v∞‖2
2 and obtain with

(B.25) that

dc(t )

d t
= (

c(t )− c2(t )
) vT∞ (B −S) v∞

‖v∞‖2
2

+ vT∞Λ2(t )

‖v∞‖2
2

. (B.52)

The first addend in the differential equation (B.52) can be expressed in a simpler
manner when (B ,S) approaches (B∗,S∗):
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Lemma B.8. Under Assumptions 3.1 and 3.3, it holds that

vT∞ (B −S) v∞
vT∞v∞

= (R0 −1)xT
1 Sx1 +ζ, (B.53)

where ζ=O (
(R0 −1)2

)
when (B ,S) approaches (B∗,S∗).

Proof. With Theorem 3.4 and the definition of the matrix W in (3.1), the numerator of
the left-hand side of (B.53) becomes

vT
∞ (B −S) v∞ = (γx1 +η)T (

S(W − I )γx1 + (B −S)η
)

= (γx1 +η)T (γ(R0 −1)Sx1 + (B −S)η),

where the last equality follows from W x1 = R0x1. Thus, it holds that

vT
∞ (B −S) v∞ =γ2(R0 −1)xT

1 Sx1 +γxT
1 (B −S)η+γ(R0 −1)ηT Sx1 +ηT (B −S)η. (B.54)

Under Assumption 3.3, both matrices B and S are symmetric, which implies that(
xT

1 (B −S)
)T = (B −S)x1

= S(R0 −1)x1.

Hence, we obtain from (B.54) that

vT
∞ (B −S) v∞ =γ2(R0 −1)xT

1 Sx1 +γ(R0 −1)xT
1 Sη+γ(R0 −1)ηT Sx1 +ηT (B −S)η.

Since γ=O(R0 −1) and ‖η‖2 =O (
(R0 −1)2

)
, we finally rewrite the numerator of the left-

hand side of (B.53) as

vT
∞ (B −S) v∞ =γ2(R0 −1)xT

1 Sx1 +O (
(R0 −1)4) . (B.55)

With Theorem 3.4, the denominator of the left-hand side of (B.53) equals

vT
∞v∞ = γ2 +2γηT x1 +‖η‖2

2 (B.56)

= γ2 +O (
(R0 −1)3) .

Combining the approximate expressions for the numerator (B.55) and the denominator
(B.56) completes the proof.

We define the viral slope $ as

$= (R0 −1)xT
1 Sx1 (B.57)

and the function n(t ) as

n(t ) = (
c(t )− c2(t )

)
ζ+ vT∞Λ2(t )

‖v∞‖2
2

. (B.58)
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Then, we obtain from (B.52) that

dc(t )

d t
= (

c(t )− c2(t )
)
$+n(t ). (B.59)

The function n(t ) is complicated and depends on the error vector ξ(t ). Hence, we cannot
solve the differential equation (B.59) for the function c(t ) without knowing the solution
for the error vector ξ(t ). However, as (B ,S) → (B∗,S∗), the function n(t ) converges to
zero uniformly in time t as stated by the bound in Lemma B.9.

Lemma B.9. Under Assumptions 3.1 to 3.3, it holds at every time t ≥ 0 that

|n(t )| ≤σ1‖ξ(0)‖2e−σ2t +σ3(R0 −1)2

for some constants σ1,σ2,σ3 > 0 when (B ,S) approaches (B∗,S∗).

Proof. Regarding the first addend in the definition of the function n(t ) in (B.58), Lemma
3.5 implies that 0 ≤ c(t )−c2(t ) ≤ 1/4 at every time t . Hence, Lemma B.8 yields that there
is a constant σ̃0 such that ∣∣(c(t )− c2(t )

)
ζ
∣∣≤ σ̃0(R0 −1)2

at every time t when (B ,S) approaches (B∗,S∗). Regarding the second addend of the
function n(t ) defined in (B.58), it follows from the definition of the function Λ2(t ) in
(B.26) that

vT∞Λ2(t )

‖v∞‖2
2

= 1

‖v∞‖2
2

vT
∞

(
B −S − c(t )diag(B v∞)−diag(v(t ))B

)
ξ(t ),

since v(t ) = c(t )v∞+ξ(t ). Thus, it holds that

vT∞Λ2(t )

‖v∞‖2
2

= 1

‖v∞‖2
2

vT
∞

(−S +diag(u − v(t ))B − c(t )diag(B v∞)
)
ξ(t ).

With the definition of the matrix W̃ in (B.2), we obtain that

vT∞Λ2(t )

‖v∞‖2
2

= 1

‖v∞‖2
2

vT
∞S

1
2

(
−I +diag(u − v(t ))W̃ − c(t )S− 1

2 diag(B v∞)S− 1
2

)
S

1
2 ξ(t ).

The Cauchy-Schwarz inequality yields an upper bound as∣∣∣∣∣ vT∞Λ2(t )

‖v∞‖2
2

∣∣∣∣∣≤ 1

‖v∞‖2
2

∥∥∥S
1
2 ξ(t )

∥∥∥
2

∥∥∥(
−I +diag(u − v(t ))W̃ − c(t )S− 1

2 diag(B v∞)S− 1
2

)
S

1
2 v∞

∥∥∥
2

.

With
∥∥∥S

1
2 ξ(t )

∥∥∥
2
≤

√
δmax ‖ξ(t )‖2 and the triangle inequality, we obtain that∣∣∣∣∣ vT∞Λ2(t )

‖v∞‖2
2

∣∣∣∣∣≤√
δmax

‖ξ(t )‖2

‖v∞‖2
2

∥∥∥(
W̃ − I

)
S

1
2 v∞

∥∥∥
2

(B.60)

+
√
δmax

‖ξ(t )‖2

‖v∞‖2
2

∥∥diag(v(t ))W̃
∥∥

2

∥∥∥S
1
2 v∞

∥∥∥
2

+
√
δmax

‖ξ(t )‖2

‖v∞‖2
2

∥∥∥c(t )S− 1
2 diag(B v∞)S− 1

2

∥∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2

.
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In the following, we consider the three addends in (B.60) separately. Regarding the first
addend, we obtain with the definition of the matrix W̃ in (B.2) that(

W̃ − I
)

S
1
2 v∞ = S

1
2 (W − I ) v∞

= γ(R0 −1)S
1
2 x1 +S

1
2 (W − I )η,

where the last equality follows from Theorem 3.4. Thus, the triangle inequality yields
that ∥∥∥(

W̃ − I
)

S
1
2 v∞

∥∥∥
2
≤ γ(R0 −1)

∥∥∥S
1
2 x1

∥∥∥
2
+

∥∥∥S
1
2 (W − I )η

∥∥∥
2

.

With the sub-multiplicativity of the matrix 2-norm, we obtain that∥∥∥(
W̃ − I

)
S

1
2 v∞

∥∥∥
2
≤

√
δmax

(
γ(R0 −1)+ (R0 +1)

∥∥η∥∥
2

)
,

since ‖(W − I )‖2 ≤ R0 + 1. Since γ = O(R0 − 1) and
∥∥η∥∥

2 = O((R0 − 1)2) when (B ,S) →
(B∗,S∗), there is a constant σ̃1 such that∥∥∥(

W̃ − I
)

S
1
2 v∞

∥∥∥
2
≤ σ̃1(R0 −1)2 (B.61)

when (B ,S) approaches (B∗,S∗). Regarding the second addend in (B.60), it holds that∥∥diag(v(t ))W̃
∥∥

2 ≤
∥∥diag(v(t ))

∥∥
2

∥∥W̃
∥∥

2

= R0 max
l=1,...,N

v∞,l .

Since ‖v∞‖2 =O(R0−1) when (B ,S) → (B∗,S∗), it follows that there is a constant σ̃2 such
that ∥∥diag(v(t ))W̃

∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2
≤ σ̃2(R0 −1)2 (B.62)

when (B ,S) approaches (B∗,S∗). Regarding the third addend in (B.60), it holds per defi-
nition of the matrix 2-norm that∥∥∥c(t )S− 1

2 diag(B v∞)S− 1
2

∥∥∥
2
= c(t ) max

l=1,...,N

N∑
j=1

β j l

δl
v∞, j

≤ max
l=1,...,N

(W v∞)l ,

where the last inequality follows from c(t ) ≤ 1, as stated by Lemma 3.5, and the definition
of the effective infection rate matrix W in (3.1). Hence, we obtain the upper-bound∥∥∥c(t )S− 1

2 diag(B v∞)S− 1
2

∥∥∥
2

∥∥∥S
1
2 v∞

∥∥∥
2
≤ σ̃3(R0 −1)2 (B.63)

for some constant σ̃3 when (B ,S) approaches (B∗,S∗). We apply the three upper bounds
(B.61), (B.62) and (B.63) to (B.60) and obtain that∣∣∣∣∣ vT∞Λ2(t )

‖v∞‖2
2

∣∣∣∣∣≤√
δmax (σ̃1 + σ̃2 + σ̃3)

(R0 −1)2

‖v∞‖2
2

‖ξ(t )‖2
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when (B ,S) approaches (B∗,S∗). Since ‖v∞‖2
2 =O((R0−1)2) when (B ,S) → (B∗,S∗), there

is a constant σ̃4 such that, as (B ,S) approaches (B∗,S∗), it holds∣∣∣∣∣ vT∞Λ2(t )

‖v∞‖2
2

∣∣∣∣∣≤σ̃4 ‖ξ(t )‖2

at every time t . Thus, we have obtained an upper bound, which is proportional to the
norm of the error vector ξ(t ). Finally, we apply Theorem 3.6 to bound the norm ‖ξ(t )‖2,
which completes the proof.

Lemma B.9 suggests that, since n(t ) → 0 when (B ,S) → (B∗,S∗), the differential equa-
tion (B.59) for the function c(t ) is approximated by the logistic differential equation

dc(t )

d t
≈ (

c(t )− c2(t )
)
$. (B.64)

To make the statement (B.64) precise, we define the function cb(t , x), for any scalar x
with |x| <$, as

cb(t , x) = 1

2
+ 1

2

√
1+ x

$
tanh

(p
$($+x)

2
t +Υ(x)

)
, (B.65)

where the constantΥ(x) is set such that cb(0, x) = c(0), i.e.,

Υ(x) = artanh

(
2wp

$($+x)

(
c(0)− 1

2

))
.

Lemma B.10 states an upper and a lower bound on the function c(t ).

Lemma B.10. Suppose that Assumptions 3.1 to 3.3 hold and that

‖ξ(0)‖2 ≤σ1(R0 −1)p (B.66)

for some constants σ1 > 0 and p > 1 when (B ,S) approaches (B∗,S∗). Then, the function
c(t ) is bounded by

cb(t ,−κ) ≤ c(t ) ≤ cb(t ,κ) ∀ t ≥ 0,

where the scalar κ equals κ= σ2(R0 −1)s with s = min{p,2} and some constant σ2 > 0 as
(B ,S) approaches (B∗,S∗).

Proof. With (B.66), Lemma B.9 implies that it holds that

|n(t )| ≤ σ̃1(R0 −1)p e−σ̃2t + σ̃3(R0 −1)2

for some constants σ̃1, σ̃2, σ̃3 > 0. Since e−σ̃2t ≤ 1, we obtain that |n(t )| ≤ κ at every time
t , where we define the scalar

κ= σ̃4(R0 −1)s
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with the constants s = min{p,2} and σ̃4 = σ̃1 + σ̃3. With |n(t )| ≤ κ, we obtain from the
differential equation (B.59) for the function c(t ) that

(
c(t )− c2(t )

)
$−κ≤ dc(t )

d t
≤ (

c(t )− c2(t )
)
$+κ ∀ t ≥ 0. (B.67)

The upper and lower bound (B.67) give rise to a Riccati differential equation, which can
be solved exactly, and we obtain that the function c(t ) is bounded by

c(t ) ≥ 1

2
+ 1

2

√
1− κ

$
tanh

(p
$($−κ)

2
t +Υ(−κ)

)
and

c(t ) ≤ 1

2
+ 1

2

√
1+ κ

$
tanh

(p
$($+κ)

2
t +Υ(κ)

)
.

at every time t ≥ 0.

When (B ,S) approaches (B∗,S∗), Theorem 3.6 states that the error term ξ(t ) is neg-
ligible and, furthermore, Lemma B.10 states that the function c(t ) converges to cb(t ,0).
Thus, based on the ansatz (3.11), we approximate the viral state v(t ) by

vapx(t ) = cb(t ,0)v∞.

With the definition of the function cb(t , x) in (B.65), it holds that

vapx(t ) = 1

2

(
1+ tanh

($
2
+Υ(0)

))
v∞.

Then, it follows from the ansatz (3.11) that the difference of the exact viral state v(t ) to
the approximation vapx(t ) equals

‖v(t )− vapx(t )‖2 = |c(t )− cb(t ,0)|‖v∞‖2 +‖ξ(t )‖2. (B.68)

The norm ‖ξ(t )‖2 of the error term ξ(t ) is bounded by Theorem 3.6. Thus, it remains to
bound the first addend of (B.68). With Lemma B.10, the difference of the function c(t ) to
cb(t ,0) is bounded by

|c(t )− cb(t ,0)| ≤ cb(t ,κ)− cb(t ,−κ). (B.69)

Furthermore, the scalar κ converges to zero when (B ,S) approaches (B∗,S∗). Hence, if
we show that, as the scalar κ converges to zero, the upper bound cb(t ,κ) converges to
the lower bound cb(t ,−κ) then (B.69) implies that the function c(t ) converges to cb(t ,0).
Furthermore, we must show that the upper bound cb(t ,κ) converges to the lower bound
cb(t ,−κ) uniformly in time t , since the upper bound on the approximation error ‖v(t )−
vapx(t )‖2 in Theorem 3.7 does not depend on time t . From the definition of the function
cb(t , x) in (B.65) we obtain that

|c(t )− cb(t ,0)| ≤1

2

√
1+ κ

$
g (t ,κ)− 1

2

√
1− κ

$
g (t ,−κ), (B.70)
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where we denote

g (t ,κ) = tanh

(p
$ ($+κ)

2
t +Υ (κ)

)
. (B.71)

Lemma B.10 states that κ=O((R0 −1)s ) for some s > 1 when (B ,S) approaches (B∗,S∗).
Furthermore, Lemma B.8 states that $ =O(R0 −1). Hence, it holds that κ/$ =O((R0 −
1)s−1) when (B ,S) approaches (B∗,S∗). For small x, the series expansion of the square
root yields that

1

2

p
1+x = 1

2
+ 1

4
x +O(x2).

Thus, for small values of κ/$, we obtain from (B.70) that

|c(t )− cb(t ,0)| ≤1

2

(
g (t ,κ)− g (t ,−κ)

)+ 1

4$
κ

(
g (t ,κ)+ g (t ,−κ)

)
+ (

g (t ,κ)− g (t ,−κ)
) ·O (

κ2

$2

)
.

Since the magnitude of the hyperbolic tangent is bounded by 1, it follows from the defi-
nition of the function g (t ,κ) in (B.71) that∣∣g (t ,κ)− g (t ,−κ)

∣∣≤ ∣∣g (t ,κ)
∣∣+ ∣∣g (t ,−κ)

∣∣≤ 2,

which yields that

|c(t )− cb(t ,0)| ≤1

2

(
g (t ,κ)− g (t ,−κ)

)+ 1

2$
κ+O (

(R0 −1)2(s−1)) , (B.72)

since κ/$ = O((R0 − 1)s−1). The last two addends of (B.72) are independent of time t .
Thus, it remains to show that first addend, i.e., the difference (g (t ,κ)− g (t ,−κ)), con-
verges to zero uniformly in time t as κ→ 0.

Lemma B.11. Under Assumptions 3.1 to 3.3, there is some constant σ1 > 0 such that∣∣g (t ,κ)− g (t ,−κ)
∣∣≤ 2σ1κ

at every time t ≥ 0 when the scalar κ approaches zero from above.

Proof. The mean value theorem gives that

g (t ,κ) = g (t ,0)+ ∂κg (t ,κ)
∣∣
κ=z(t )κ

for some z(t ) ∈ (0,κ). Thus, it holds that

g (t ,κ)− g (t ,−κ) = ∂κg (t ,κ)
∣∣
κ=z1(t )κ+ ∂κg (t ,κ)

∣∣
κ=z2(t )κ

for some z1(t ) ∈ (0,κ) and z2(t ) ∈ (−κ,0), which yields that∣∣g (t ,κ)− g (t ,−κ)
∣∣= ∣∣∣∂κg (t ,κ)

∣∣
κ=z1(t )

∣∣∣κ+ ∣∣∣∂κg (t ,κ)
∣∣
κ=z2(t )

∣∣∣κ. (B.73)
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To express the derivative of the function g (t ,κ), we write the function g (t , x) as

g (t ,κ) = tanh(h(t ,κ)),

where we define the function h(t ,κ) as

h(t ,κ) =
p
$ ($+κ)

2
t +Υ (κ) .

Then, the derivative of the function g (t ,κ) with respect to the scalar κ is given by

∂κg (t ,κ) = 4(
e−h(t ,κ) +eh(t ,κ)

)2 ∂κh(t ,κ),

which is bounded by ∣∣∂κg (t ,κ)
∣∣≤ 4e−2h(t ,κ) |∂κh(t ,κ)| . (B.74)

With the derivative of the function h(t ,κ), i.e.,

∂κh(t ,κ) = $

4
p
$ ($+κ)

t +∂κΥ (κ) ,

we obtain from (B.74) that

∣∣∂κg (t ,κ)
∣∣≤ 4e−

p
$($+κ)t−2Υ(κ)

∣∣∣∣ $

4
p
$ ($+κ)

t +∂κΥ (κ)

∣∣∣∣ .

The right-hand side of (B.74) is finite at every time t ≥ 0. Furthermore, for every scalar κ,
the right-hand side of (B.74) converges to zero when t →∞. Hence, we can upper-bound
the derivative

∣∣∂κg (t ,κ)
∣∣ by some constant σ1 > 0 for every time t . Thus, we obtain from

(B.73) that ∣∣g (t ,κ)− g (t ,−κ)
∣∣= 2σ1κ ∀ t ≥ 0.

With Lemma B.11, we obtain from (B.72) that there is a constant σ1 > 0 such that

|c(t )− cb(t ,0)| ≤σ1κ+ 1

2

κ

$
+O (

(R0 −1)2(s−1)) ∀ t ≥ 0.

Since κ=O((R0 −1)s ) and $=O(R0 −1) when (B ,S) approaches (B∗,S∗), we obtain that
there exists some constant σ2 > 0 such that

|c(t )− cb(t ,0)| ≤σ2(R0 −1)s−1.

Thus, it follows from (B.68) that

‖v(t )− vapx(t )‖2 ≤σ2(R0 −1)s−1‖v∞‖2 +‖ξ(t )‖2, ∀t ≥ 0.
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Hence, we obtain an upper bound as

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ2(R0 −1)s−1 + ‖ξ(t )‖2

‖v∞‖2
.

Then, the upper bound on the error vector ξ(t ) in Theorem 3.6 implies that there are
constants σ3,σ4 such that

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ2(R0 −1)s−1 + ‖ξ(0)‖2

‖v∞‖2
e−σ3t +σ4

(R0 −1)2

‖v∞‖2
.

By assumption it holds that ‖ξ(0)‖2 =O ((R0 −1)p ) for some constant p > 1, and it holds
that ‖v∞‖2 =O(R0 −1) as stated by Theorem 3.4. Thus, we obtain that

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ2(R0 −1)s−1 +σ5(R0 −1)p−1 +σ6(R0 −1)

for some constants σ5,σ6 > 0, since e−σ3t ≤ 1. By using the definition s = min{p,2} of the
scalar s, we complete the proof.

B.6. PROOF OF COROLLARY 3.8
By assumption, it holds that v(0) = r0v∞, which implies that ξ(0) = 0. Thus, we obtain
from (3.17) that

‖v(t )− vapx(t )‖2

‖v∞‖2
≤σ1(R0 −1) ∀t ≥ 0

when (B ,S) approaches (B∗,S∗). From the definition of the approximation vapx(t ) in
(3.15), we obtain that vapx,i (t01) = r1v∞,i for every node i is equivalent to

tanh
($

2
t01 +Υ(0)

)
= 2r1 −1

With the definition of the termΥ(0) in (3.14), it follows that

$

2
t01 = artanh(2r1 −1)−artanh

(
2

vT∞v(0)

‖v∞‖2
2

−1

)
.

From v(0) = r0v∞, we obtain that

t01 = 2

$
(artanh(2r1 −1)−artanh(2r0 −1)) .

The inverse hyperbolic tangent equals

artanh(x) = 1

2

(
log(1+x)− log(1−x)

)
,

which completes the proof.
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B.7. PROOF OF COROLLARY 3.10
For NIMFA (1.3) with homogeneous spreading parameters β,δ, the effective infection

rate matrix reduces to W = β
δ A. Hence, the basic reproduction number reproduction

becomes

R0 = β

δ
ρ(A) = τ

τc
,

where the last equation follows from the definition of the effective infection rate τ=β/δ
and the epidemic threshold τc = 1/ρ(A). Furthermore, it holds that δl = δ for every
node l and

∑N
l=1(x1)2

l = 1, since the principal eigenvector x1 is of unit length. Thus, the
definition of the approximation vapx(t ) in (3.15) yields that

vapx(t ) = 1

2

(
1+ tanh

(
(τ−τc )δ

2τc
t +Υ(0)

))
v∞.

B.8. PROOF OF COROLLARY 3.11
Since R0 > 1, the viral state v(t ) converges to a positive steady state v∞ as t →∞. Thus,
the steady state v∞ must be element of the m = 1 dimensional invariant setV = span{y1},
which implies that v∞ = c̃ y1 for some scalar c. Hence, the unit-length agitation mode
equals either y1 = v∞/‖v∞‖2 or y1 =−v∞/‖v∞‖2. Without loss of generality assume that
y1 = v∞/‖v∞‖2. Then, under Assumption 3.3, the matrix B is connected, which implies
that B y1 6= 0 since the vector y1 is positive. Thus, the subspace V0 must be empty.

To prove Corollary 3.11, we must show two directions. “If” direction: Suppose the
infection rate matrix B is regular. Then, the viral state v∞,i is the same for all nodes i , and
v(0) ∈V implies that vi (0) = v j (0) for all nodes i , j . Since the matrix B is regular and the
initial viral state vi (0) is the same for every node i , the approximation vapx(t ) = c(t )v∞
is exact. Since v(t ) = c(t )v∞ at every time t , the invariant set V = span{y1} is indeed a
one-dimensional invariant set of NIMFA.

“Only if” direction: Suppose the one-dimensional subspace V = span{y1} is an in-
variant set of NIMFA. Then, Theorem 2.14 yields that the infection rate matrix B has the
equitable partitionπ= {N1}, where the cellN1 = {1, ..., N } contains all nodes. Thus, (2.10)
yields, for some degree d11, that

d11 =
∑

k∈N1

βi k =
N∑

k=1
βi k

for all nodes i . Thus, we obtain with definition (3.21) that the matrix B is regular.

B.9. PROOF OF THEOREM 3.12
We acknowledge the help of Karel Devriendt, who constructed an effective infection rate
matrix of homogeneous NIMFA with a given principal eigenvector x1. The idea of prov-
ing Theorem 3.12 is based on Corollary 3.9: When R0 ↓ 1, the viral state dynamics of
heterogeneous NIMFA (1.1) are determined by the four variables x1,$,γ,Υ(0). Thus, we
aim to show that the corresponding four variables of the homogeneous NIMFA system
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(3.22), which we denote by x1,hom,$hom,γhom andΥhom(0), are the same as the variables
x1,$,γ,Υ(0) of heterogeneous NIMFA (1.1).

Lemma B.12. The homogeneous NIMFA system (3.22) and heterogeneous NIMFA (1.1)
have the same principal eigenvector x1,hom = x1, the variable γhom = γ and viral slope
$hom =$.

Proof. First, we consider the principal eigenvector x1. The effective infection rate matrix
of the homogeneous NIMFA system (3.22) equals

Whom =βhom

δhom
uuT + βhom

δhom

1

min
l=1,...,N

(x1)l

N∑
j=1

(x1) j I (B.75)

− βhom

δhom

N∑
j=1

(x1) j diag

(
1

(x1)1
, ...,

1

(x1)N

)
.

We show that the principal eigenvector x1 of heterogeneous NIMFA (1.1) is also the prin-
cipal eigenvector x1,hom of the matrix Whom. Indeed,

Whomx1 =βhom

δhom

N∑
j=1

(x1) j u + βhom

δhom

1

min
l=1,...,N

(x1)l

N∑
j=1

(x1) j x1 − βhom

δhom

N∑
j=1

(x1) j u

=βhom

δhom

1

min
l=1,...,N

(x1)l

N∑
j=1

(x1) j x1.

Thus, x1 is an eigenvector of the effective infection rate matrix Whom of the homoge-
neous NIMFA system (3.22). The corresponding eigenvalue equals

λ1,hom = βhom

δhom

1

min
l=1,...,N

(x1)l

N∑
j=1

(x1) j . (B.76)

The effective infection rate matrix Whom is non-negative and irreducible, by definition
(B.75). Thus, the Perron-Frobenius Theorem [32] yields that the eigenvalue λ1,hom to the
positive eigenvector x1 equals the spectral radius ρ (Whom) =λ1,hom and that x1,hom = x1.
Second, we consider the variables γ, γhom in Theorem 3.4. By definition (3.3) and since
x1 is a vector of length 1, it holds that

γhom = (
λ1,hom −1

) 1∑N
l=1 (x1)3

l

=
βhom

δhom

1

min
l=1,...,N

(x1)l

N∑
j=1

(x1) j −1

 1∑N
p=1 (x1)3

p

,

where the last equality follows from (B.76). With (3.24), we obtain further that

γhom =
((

1+γ
N∑

l=1
(x1)3

l

)
−1

)
1∑N

p=1 (x1)3
p

= γ.
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Third, we show that the viral slope $hom of the homogeneous NIMFA (3.22) equals the
viral slope$ of heterogeneous NIMFA (1.1). From the definition (B.57), the variable$hom

of the homogeneous NIMFA system (3.22) follows as

$hom = (
λ1,hom −1

)
δhom.

With (B.76), we obtain that

$hom =βhom
1

min
l=1,...,N

(x1)l

N∑
j=1

(x1) j −δhom.

Then, the definition of the infection rate βhom in (3.24) yields that

$hom = δhom

(
1+γ

N∑
l=1

(x1)3
l

)
−δhom

= δhomγ
N∑

l=1
(x1)3

l ,

which simplifies with the definition of δhom in (3.23) to

$hom = γ
N∑

l=1
δl (x1)3

l .

Then, the definition of γ in (3.3) yields that

$hom = (R0 −1)
N∑

l=1
δl (x1)2

l .

Thus, the viral slope $hom of the homogeneous NIMFA system (3.22) equals the viral
slope $ of heterogeneous NIMFA (1.1), which completes the proof.

In contrast to the variables x1,γ,$ in Lemma B.12, the two variables Υhom(0) and
Υ(0), given by definition (3.14), are not necessarily equal, since the steady states v∞ and
v∞,hom might be different. For the homogeneous NIMFA system (3.22) and heteroge-
neous NIMFA (1.1), we denote the viral state approximations of Corollary 3.9 by ṽapx(t )
and ṽapx,hom(t ), respectively. The difference of the viral state vectors v(t ) and vhom(t )
can be written as

v(t )− vhom(t ) = ṽapx(t )− ṽapx,hom(t )+ (
v(t )− ṽapx(t )

)− (
vhom(t )− ṽapx,hom(t )

)
.

With the triangle inequality, we obtain that

‖v(t )− vhom(t )‖2 ≤
∥∥ṽapx(t )− ṽapx,hom(t )

∥∥
2 +

∥∥v(t )− ṽapx(t )
∥∥

2 +
∥∥vhom(t )− ṽapx,hom(t )

∥∥
2 .

(B.77)

Corollary 3.9 states that there is some constant σ, such that, at every time t ≥ 0, it holds
that

‖v(t )− ṽapx(t )‖2 ≤σ‖v∞‖2(R0 −1)s−1 =O (
(R0 −1)s)
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as R0 ↓ 1, since ‖v∞‖2 =O (R0 −1) by Theorem 3.4. Similarly, Corollary 3.9 implies that
‖vhom(t )− ṽapx, hom(t )‖2 =O ((R0 −1)s ) as R0 ↓ 1. Thus, (B.77) yields that

‖v(t )− vhom(t )‖2 ≤
∥∥vapx(t )− vapx,hom(t )

∥∥
2 +O (

(R0 −1)s) . (B.78)

In the following, we bound the first addend on the right side of (B.78). We insert the
expression (3.18) for the approximations vapx(t ) and vapx,hom(t ) to obtain that

vapx(t )− vapx,hom(t ) =
(
1+ tanh

($
2

t +Υ(0)
)) γ

2
x1

−
(
1+ tanh

($hom

2
t +Υhom(0)

)) γhom

2
x1,hom

=
(
tanh

($
2

t +Υ(0)
)
− tanh

($
2

t +Υhom(0)
)) γ

2
x1,

where the second equality follows from Lemma B.12. From [282, 4.5.45], it follows that

vapx(t )− vapx,hom(t ) =sech
($

2
t +Υ(0)

)
sech

($
2

t +Υhom(0)
)

sinh(Υ(0)−Υhom(0))
γ

2
x1.

Since 0 < sech(t ) ≤ 1 for every time t and the eigenvector x1 has length 1, we obtain that∥∥vapx(t )− vapx,hom(t )
∥∥

2 ≤
γ

2
|sinh(Υ(0)−Υhom(0))| .

Thus, the difference of the viral states v(t ) and vhom(t ) in (B.78) is bounded by

‖v(t )− vhom(t )‖2 ≤
γ

2
|sinh(Υ(0)−Υhom(0))|+O (

(R0 −1)s) . (B.79)

To bound the hyperbolic sine on the right side of (B.79), we introduce:

Lemma B.13. Suppose that Assumptions 3.1 to 3.3 hold. Furthermore, assume that the
initial viral states of the homogeneous NIMFA system (3.22) and heterogeneous NIMFA
(1.1) are the same, i.e., v(0) = vhom(0). Then, as R0 ↓ 1, it holds that

|sinh(Υ(0)−Υhom(0))| =O (R0 −1) .

Proof. The series expansion [282, 4.5.62] of the hyperbolic sine yields that

sinh(Υ(0)−Υhom(0)) =Υ(0)−Υhom(0)+O (
(Υ(0)−Υhom(0))3) . (B.80)

In the following, we consider the difference Υ(0)−Υhom(0). Since v(0) = vhom(0) by the
assumption, it follows from the definition of the variableΥ(0) in (3.14) that

Υ(0)−Υhom(0) = artanh

(
2

vT∞v(0)

‖v∞‖2
2

−1

)
−artanh

(
2

vT
∞,homv(0)

‖v∞,hom‖2
2

−1

)
= artanh

(
%
)−artanh

(
%+Θ)

, (B.81)

where we define

%= 2
vT∞v(0)

‖v∞‖2
2

−1 (B.82)
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and

Θ= 2
vT
∞,homv(0)

‖v∞,hom‖2
2

−1−%. (B.83)

The Taylor series of artanh
(
%+Θ)

aroundΘ= 0 reads

artanh
(
%+Θ)= artanh

(
%
)+ 1

1−%2Θ+O (
Θ2) .

Thus, we obtain from (B.81) that

Υ(0)−Υhom(0) = 1

%2 −1
Θ+O (

Θ2) . (B.84)

Hence, to bound the difference Υ(0)−Υhom(0), we aim to bound the variable Θ. The
definition ofΘ in (B.83) yields with (B.82) that

Θ= 2
vT
∞,homv(0)

‖v∞,hom‖2
2

−2
vT∞v(0)

‖v∞‖2
2

= 2

(
vT
∞,hom

‖v∞,hom‖2
2

− vT∞
‖v∞‖2

2

)
v(0).

The Cauchy-Schwarz inequality gives that

|Θ| ≤ 2‖v(0)‖2

∥∥∥∥∥ v∞,hom

‖v∞,hom‖2
2

− v∞
‖v∞‖2

2

∥∥∥∥∥
2

= 2
‖v(0)‖2

‖v∞‖2
2

∥∥∥∥∥ ‖v∞‖2
2

‖v∞,hom‖2
2

v∞,hom − v∞

∥∥∥∥∥
2

.

Under Assumption 3.2, it holds that ‖v(0)‖2 ≤ ‖v∞‖2, and hence

|Θ| ≤ 2
1

‖v∞‖2

∥∥∥∥∥ ‖v∞‖2
2

‖v∞,hom‖2
2

v∞,hom − v∞

∥∥∥∥∥
2

,

which can be rewritten as

|Θ| ≤ 2
1

‖v∞‖2

∥∥∥∥∥v∞,hom − v∞+
(

‖v∞‖2
2

‖v∞,hom‖2
2

−1

)
v∞,hom

∥∥∥∥∥
2

.

The triangle inequality yields that

|Θ| ≤2

∥∥v∞,hom − v∞
∥∥

2

‖v∞‖2
+2

1

‖v∞‖2

∥∥∥∥∥
(

‖v∞‖2
2

‖v∞,hom‖2
2

−1

)
v∞,hom

∥∥∥∥∥
2

,
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which becomes

|Θ| ≤ 2

∥∥v∞,hom − v∞
∥∥

2

‖v∞‖2
+2

∥∥v∞,hom
∥∥

2

‖v∞‖2

∣∣∣∣∣ ‖v∞‖2
2

‖v∞,hom‖2
2

−1

∣∣∣∣∣
= 2

∥∥v∞,hom − v∞
∥∥

2

‖v∞‖2
+2

∣∣‖v∞‖2
2 −‖v∞,hom‖2

2

∣∣
‖v∞‖2

∥∥v∞,hom
∥∥

2

. (B.85)

Since, by Lemma B.12, γhom = γ and x1,hom = x1, Theorem 3.4 implies that

v∞,hom = γx1 +ηhom (B.86)

for some N × 1 vector ηhom that satisfies ‖ηhom‖2 = O (
(R0 −1)2

)
as R0 ↓ 1. Thus, with

(3.2) and (B.86), we obtain from (B.85) that

|Θ| ≤ 2

∥∥η−ηhom
∥∥

2

‖v∞‖2
+2

∣∣2γxT
1

(
η−ηhom

)+‖η‖2
2 −‖ηhom‖2

2

∣∣
‖v∞‖2

∥∥v∞,hom
∥∥

2

.

Finally, it holds that ‖η‖2 =O (
(R0 −1)2

)
, ‖ηhom‖2 =O (

(R0 −1)2
)
, γ=O (R0 −1), ‖v∞‖2 =

O (R0 −1) and ‖v∞,hom‖2 = O (R0 −1). Thus, we obtain that |Θ| = O (R0 −1) as R0 ↓ 1,
which completes the proof in combination with (B.80) and (B.84).

With Lemma B.13 and γ=O(R0 −1), we obtain from (B.79) that

‖v(t )− vhom(t )‖2 =O
(
(R0 −1)2)+O (

(R0 −1)s)
=O (

(R0 −1)s) ,

since, by definition, s = min{p,2} ≤ 2. Since ‖v∞‖2 =O (R0 −1) by Theorem 3.4, it holds
that

‖v(t )− vhom(t )‖2

‖v∞‖2
=O (

(R0 −1)s−1)
as R0 ↓ 1, which completes the proof.
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C.1. PROOF OF LEMMA 4.8
The elements of the matrix R, defined by (4.4), equal

Ri j =
{

1−δ∆t ,i +β∆t ,i i if i = j ,

β∆t ,i j if i 6= j .

Under Assumption 4.2, it holds β∆t ,i j ≥ 0 for all nodes i , j . Thus, the off-diagonal entries
of the matrix R are non-negative. For the diagonal entries of the matrix R, it holds

Ri i = 1−δ∆t ,i +β∆t ,i i ≥ 1−δi∆t ,

since β∆t ,i i ≥ 0 and δ∆t ,i = δi∆t . From Assumption 4.3, we further obtain that

Ri i ≥ 1−δi
1

δi +∑N
j=1βi j

≥ 0.

Hence, the matrix R is non-negative. Furthermore, the matrix R is irreducible, which
follows from the irreducibility of the matrix B∆t under Assumption 4.5.

C.2. PROOF OF LEMMA 4.9
The proof is analogous to the proof in [20, Theorem 5 and Lemma 9]. From the steady-
state equation (4.3), we obtain that

v∞,i

(
δ∆t ,i +

N∑
j=1

β∆t ,i j v∞, j

)
=

N∑
j=1

β∆t ,i j v∞, j .

Hence, it holds that

v∞,i =
∑N

j=1β∆t ,i j v∞, j

δ∆t ,i +∑N
j=1β∆t ,i j v∞, j

,
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which equals

v∞,i = 1− δ∆t ,i

δ∆t ,i +∑N
j=1β∆t ,i j v∞, j

. (C.1)

Since v∞, j ≤ 1 for every node j , we obtain an upper bound on the steady-state v∞,i of
node i as

v∞,i ≤ 1− δ∆t ,i

δ∆t ,i +∑N
j=1β∆t ,i j

.

We denote the minimum of the steady-state vector by

v∞,min = min{v∞,1, ..., v∞,N }.

Theorem 4.7 implies that v∞,min > 0. Assuming that the minimum v∞,min occurs at node
i , we obtain from (C.1) that

v∞,min = 1− δ∆t ,i

δ∆t ,i +∑N
j=1β∆t ,i j v∞, j

≥ 1− δ∆t ,i

δ∆t ,i + v∞,min
∑N

j=1β∆t ,i j
.

Hence, it holds that

v∞,min ≥
v∞,min

∑N
j=1β∆t ,i j

δ∆t ,i + v∞,min
∑N

j=1β∆t ,i j
,

from which we obtain that

v∞,min ≥ 1− δ∆t ,i∑N
j=1β∆t ,i j

.

C.3. PROOF OF PROPOSITION 4.10
Since ∆vi [k +1] = vi [k +1]− v∞,i , the evolution of the difference ∆vi [k] over time k can
be stated with the NIMFA equations (4.1) as

∆vi [k +1] = (1−δ∆t ,i )vi [k]+
N∑

j=1
β∆t ,i j v j [k]− vi [k]

N∑
j=1

β∆t ,i j v j [k]− v∞,i . (C.2)

We would like to express the difference ∆vi [k +1] at the next time k +1 only in depen-
dency of the difference∆v[k] at the current time k and the constant steady state v∞. The
steady state v∞ is given by (4.3) and satisfies

v∞,i = (1−δ∆t ,i )v∞,i + (1− v∞,i )
N∑

j=1
β∆t ,i j v∞, j , (C.3)
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for all nodes i . We insert (C.3) in (C.2) and obtain that

∆vi [k +1] =(1−δ∆t ,i )vi [k]+
N∑

j=1
β∆t ,i j v j [k]− vi [k]

N∑
j=1

β∆t ,i j v j [k]

− (1−δ∆t ,i )v∞,i −
N∑

j=1
β∆t ,i j v∞, j + v∞,i

N∑
j=1

β∆t ,i j v∞, j . (C.4)

Since ∆vi [k] = vi [k]− v∞,i , we can express (C.4) more compactly as

∆vi [k +1] =(1−δ∆t ,i )∆vi [k]+
N∑

j=1
β∆t ,i j∆v j [k] (C.5)

−
N∑

j=1
β∆t ,i j

(
vi [k]v j [k]− v∞,i v∞, j

)
.

The first two terms in (C.5) are already in the desired form: they depend on the difference
∆v[k] but not on the viral state v[k] at time k. To replace the viral state v[k] in the last
term of (C.5) by an expression of the difference ∆v[k], we observe that

vi [k]v j [k]− v∞,i v∞, j =∆vi [k]∆v j [k]+∆vi [k]v∞, j + v∞,i∆v j [k], (C.6)

since vi [k] =∆vi [k]+ v∞,i . Inserting (C.6) in (C.5) yields that

∆vi [k +1] =
(

1−δ∆t ,i −
N∑

j=1
β∆t ,i j v∞, j

)
∆vi [k]

+ (1− v∞,i )
N∑

j=1
β∆t ,i j∆v j [k]−∆vi [k]

N∑
j=1

β∆t ,i j∆v j [k]. (C.7)

The expression (C.7) can be further simplified. The steady-state equation (4.3) is equiv-
alent to

N∑
j=1

β∆t ,i j v∞, j = δ∆t ,i

(
1

1− v∞,i
−1

)
. (C.8)

From (C.8), it follows that (C.7) is equivalent to

∆vi [k +1] =
(
1+ δ∆t ,i

v∞,i −1

)
∆vi [k]+ (1− v∞,i )

N∑
j=1

β∆t ,i j∆v j [k] (C.9)

−∆vi [k]
N∑

j=1
β∆t ,i j∆v j [k].

Stacking equation (C.9) for all nodes i = 1, ..., N completes the proof.
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C.4. PROOF OF LEMMA 4.11
We consider the elements of the matrix F . For i 6= j it holds that

Fi j =
(
1− v∞,i

)
β∆t ,i j ≥ 0,

since v∞,i ≤ 1 and β∆t ,i j ≥ 0. The diagonal elements of the matrix F equal

Fi i = 1+ δ∆t ,i

v∞,i −1
+ (

1− v∞,i
)
β∆t ,i i , i = 1, ..., N .

Since β∆t ,i i ≥ 0, we obtain that

Fi i ≥ 1+ δ∆t ,i

v∞,i −1
. (C.10)

We proceed the proof by showing that the right hand side of (C.10) is non-negative, i.e.,

1+ δ∆t ,i

v∞,i −1
≥ 0,

which is equivalent to

v∞,i ≤ 1−δ∆t ,i . (C.11)

With the upper bound on the viral state v∞,i provided by Lemma 4.9, we obtain that a
sufficient condition for (C.11) is

1− δ∆t ,i

δ∆t ,i +∑N
j=1β∆t ,i j

≤ 1−δ∆t ,i ,

which is equivalent to

δ∆t ,i +
N∑

j=1
β∆t ,i j ≤ 1.

From δ∆t ,i = δi∆t and β∆t ,i j =βi j∆t , we finally obtain that

∆t ≤ 1

δi +∑N
j=1βi j

,

is a sufficient condition for Fi i ≥ 0, which is satisfied under Assumption 4.3.

C.5. PROOF OF COROLLARY 4.12
We rewrite equation (C.7) to obtain that

∆vi [k +1] = gi [k]+hi [k]∆vi [k], (C.12)



C.6. PROOF OF THEOREM 4.13

C

223

where the terms gi [k] and hi [k] are given by

gi [k] = (1− v∞,i )
N∑

j=1
β∆t ,i j∆v j [k] (C.13)

and

hi [k] = 1−δ∆t ,i −
N∑

j=1
β∆t ,i j

(
v∞, j +∆v j [k]

)
for every node i . Since β∆t ,i j ≥ 0 and (1− v∞,i ) ≥ 0, the definition (C.13) of gi [k] shows
that

∆v j [k] ≤ 0 ∀ j = 1, ..., N ⇒ gi [k] ≤ 0.

Furthermore, by the definition of ∆v j [k] = v j [k]− v∞, j and since v j [k] ≤ 1, it holds that

hi [k] = 1−δ∆t ,i −
N∑

j=1
β∆t ,i j v j [k] ≥ 1−δ∆t ,i −

N∑
j=1

β∆t ,i j . (C.14)

Assumption 4.3 states that δ∆t ,i +∑N
j=1β∆t ,i j ≤ 1. Hence, (C.14) implies that hi [k] ≥ 0.

From gi [k] ≤ 0 if ∆vi [k] ≤ 0 for all nodes i , hi [k] ≥ 0 and (C.12) it follows that: ∆vi [k] ≤ 0
for all nodes i implies that ∆vi [k +1] ≤ 0 for all nodes i . Hence, we obtain by induction
that ∆vi [1] ≤ 0 for all nodes i implies ∆vi [k] ≤ 0 for all nodes i at every time k ≥ 1, which
proves Corollary 4.12. (Analogously, we can prove that ∆vi [1] ≥ 0 for all nodes i implies
∆vi [k] ≥ 0 for all nodes i at every time k ≥ 1.)

C.6. PROOF OF THEOREM 4.13
The discrete-time NIMFA system (4.2) is asymptotically stable at the steady-state v∞ if
the linearisation (4.9) at ∆v[k] = 0 is stable [42]. The LTI system (4.9) is stable if the
magnitudes of all the eigenvalues of its N × N system matrix F are smaller than one,
which is equivalent to ρ(F ) < 1 by the definition of the spectral radius. Lemma 4.11
states that the matrix F is non-negative. Hence, the spectral radius ρ(F ) is bounded by
[285, Theorem 8.1.26.]

ρ(F ) ≤ max
i=1,...,N

1

yi

N∑
j=1

Fi j y j

for any N ×1 vector y > 0. It holds v∞ > 0 and by setting y = v∞, we obtain that

ρ(F ) ≤ max
i=1,...,N

1

v∞,i

N∑
j=1

Fi j v∞, j . (C.15)

From the definition of the matrix F in (4.7) it follows that

N∑
j=1

Fi j v∞, j = v∞,i −δ∆t ,i
v∞,i

1− v∞,i
+ (

1− v∞,i
) N∑

j=1
β∆t ,i j v∞, j

= v∞,i −δ∆t ,i
v∞,i

1− v∞,i
+δ∆t ,i v∞,i ,
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where the last equality follows from the steady-state equation (4.3). Thus, the upper
bound (C.15) on the spectral radius ρ(F ) becomes

ρ(F ) ≤ max
i=1,...,N

1−δ∆t ,i
v∞,i

1− v∞,i
< 1,

since δ∆t ,i > 0 and v∞,i > 0 for every node i . From ρ(F ) < 1 it follows that the linearisa-
tion (4.9) is stable. Thus, the discrete-time NIMFA system (4.1) is asymptotically stable
at the steady-state v∞.

C.7. PROOF OF LEMMA 4.15
Since ∆v[k] = v[k]− v∞, the viral state v[k] is strictly increasing at time k if and only if
the difference ∆v[k] is strictly increasing at time k. Thus, it holds that

∆v j [k] >∆v j [k −1], j = 1, ..., N , (C.16)

since the viral state v[k−1] is assumed to be strictly increasing at time k−1. From Propo-
sition 4.10 it follows that

∆vi [k +1]−∆vi [k] =
N∑

j=1
Fi j

(
∆v j [k]−∆v j [k −1]

)
(C.17)

+
N∑

j=1
β∆t ,i j

(
∆vi [k −1]∆v j [k −1]−∆vi [k]∆v j [k]

)
.

As stated by Lemma 4.11, the matrix F is non-negative under Assumption 4.3. Thus,
we obtain from Fi j ≥ 0 and (C.16) that the first sum in (C.17) is positive. Regarding the
second sum in (C.17), we observe that

∆vi [k −1]∆v j [k −1]−∆vi [k]∆v j [k] >∆vi [k −1]∆v j [k −1]−∆vi [k]∆v j [k −1] (C.18)

due to (C.16) and since∆vi [k] ≤ 0 holds for every node i under Assumption 4.4 as stated
by Corollary 4.12. With (C.16) and∆vi [k] ≤ 0 for every node i , we obtain from (C.18) that

∆vi [k −1]∆v j [k −1]−∆vi [k]∆v j [k] > 0.

Hence, since β∆t ,i j ≥ 0 for every nodes i , j , both sums in (C.17) are positive, which im-
plies that ∆vi [k +1] >∆vi [k] for every node i .

C.8. PROOF OF THEOREM 4.16
Lemma 4.15 states that v[k +1] > v[k] implies that v[k +2] > v[k +1] for any time k ≥ 1.
Thus, v[2] > v[1] implies by induction that the viral state v[k] is globally strictly in-
creasing. Furthermore, if the viral state v[k] is globally strictly increasing then it holds
v[2] > v[1] by Definition 4.14. Hence, the viral state v[k] is globally strictly increasing if
and only if v[2] > v[1]. We prove the two statements of Theorem 4.16 in Subsection C.8.1
and Subsection C.8.2, respectively, by stating equivalent conditions to v[2] > v[1].
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C.8.1. FIRST STATEMENT
From the NIMFA equations (4.1), it follows that

vi [2]− vi [1] =−δ∆t ,i vi [1]+ (1− vi [1])
N∑

j=1
β∆t ,i j v j [1].

Lemma 4.9 and Assumption 4.2 imply that v∞,i < 1 for every node i . Thus, it holds that
vi [1] < 1 for every node i under Assumption 4.4. Hence, v[2] > v[1] is equivalent to

N∑
j=1

β∆t ,i j v j [1] > δ∆t ,i
vi [1]

1− vi [1]
, ∀i = 1, ..., N . (C.19)

The geometric series yields that

vi [1]

1− vi [1]
=

∞∑
l=1

v l
i [1],

which converges since vi [1] < 1 for every node i . Thus, (C.19) is equivalent to

N∑
j=1

β∆t ,i j v j [1] > δ∆t ,i

∞∑
l=1

v l
i [1], ∀i = 1, ..., N . (C.20)

We stack (C.20) and obtain that

B∆t v[1] > diag(δ∆t )
∞∑

l=1
v l [1], (C.21)

where we denote v l [1] = (v l
1[1], ..., v l

N [1])T . By subtracting diag(δ∆t )v[1] on both sides of
(C.21), we obtain the first statement of Theorem 4.16. We derived the statement (C.21)
from v[2] > v[1] by equivalent transformations. Hence, v[2] > v[1] holds if and only if
(C.21) holds true.

C.8.2. SECOND STATEMENT
We obtain the second statement of Theorem 4.16 by considering when ∆v[2] > ∆v[1]
holds, which is equivalent to v[2] > v[1]. With Proposition 4.10, it holds for node i that

∆vi [2]−∆vi [1] = δ∆t ,i

v∞,i −1
∆vi [1]+ (1− v∞,i )

N∑
j=1

β∆t ,i j∆v j [1]

−∆vi [1]
N∑

j=1
β∆t ,i j∆v j [1].

Thus, ∆v[2] >∆v[1] holds if and only if, for every node i ,

(1− v∞,i −∆vi [1])
N∑

j=1
β∆t ,i j∆v j [1] > δ∆t ,i

1− v∞,i
∆vi [1]. (C.22)
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Following the arguments before (C.19), it holds that vi [1] < 1 for every node i . Hence, it
holds that ∆vi [1] < 1− v∞,i for every node i . Thus, the inequality (C.22) is equivalent to

N∑
j=1

β∆t ,i j∆v j [1] > δ∆t ,i

1− v∞,i

∆vi [1]

1− v∞,i −∆vi [1]
. (C.23)

We rewrite the right-hand side of (C.23) to obtain the equivalent inequality

N∑
j=1

β∆t ,i j∆v j [1] > δ∆t ,i

1− v∞,i

∆vi [1]

1− v∞,i

1− ∆vi [1]

1− v∞,i

= δ∆t ,i

1− v∞,i

∞∑
l=1

(
∆vi [1]

1− v∞,i

)l

, (C.24)

where the equality follows from the geometric series, which converges since ∆vi [1] <
1− v∞,i for every node i . We introduce zi = ∆vi [1]/

(
1− v∞,i

)
for every node i and we

obtain from (C.24) that v[2] > v[1] is equivalent to

N∑
j=1

β∆t ,i j
(
1− v∞, j

)
z j >

δ∆t ,i

1− v∞,i

∞∑
l=1

z l
i , ∀i = 1, ..., N .

We bring the first-order terms on the left-hand side to obtain the equivalent statement

(
1− v∞,i

) N∑
j=1

β∆t ,i j
(
1− v∞, j

)
z j −δ∆t ,i zi > δ∆t ,i

∞∑
l=2

z l
i (C.25)

for all align i = 1, ..., N . Stacking (C.25) yields that v[2] > v[1] implies that

(
diag(u − v∞)B∆t diag(u − v∞)−diag(δ∆t )

)
z > diag(δ∆t )

∞∑
l=2

z l . (C.26)

We obtained the statement (C.26) from v[2] > v[1] by equivalent transformations. Hence,
v[2] > v[1] holds if and only if (C.26) holds true, which completes the proof of the second
statement of Theorem 4.16.

C.9. PROOF OF COROLLARY 4.17
We prove Corollary 4.17 for the two different initial viral states v[1] in Subsection C.9.1
and Subsection C.9.2, respectively.

C.9.1. FIRST STATEMENT
The initial state is given by v[1] = εx1 +η, where the N ×1 vector η satisfies ‖η‖2 =O(εp )
with p > 1. By the definition of the principal eigenvector x1, we obtain that

Rv[1] = ρ(R)εx1 +Rη.
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Thus, we obtain that

Rv[1] = ρ(R)v[1]+ (
R −ρ(R)I

)
η. (C.27)

We add v[1] on both sides of the inequality of the first statement of Theorem 4.16, which
yields that the viral state v[k] is globally strictly increasing if and only if(

I +B∆t −diag(δ∆t )
)

v[1] > v[1]+diag(δ∆t )
∞∑

l=2
v l [1],

which simplifies to

Rv[1] > v[1]+diag(δ∆t )
∞∑

l=2
v l [1]. (C.28)

With (C.27), we obtain from (C.28) that the viral state v[k] is globally strictly increasing if

ρ(R)v[1]+ (
R −ρ(R)I

)
η> v[1]+diag(δ∆t )

∞∑
l=2

v l [1],

which is equivalent to(
ρ(R)−1

)
v[1] > (

ρ(R)I −R
)
η+diag(δ∆t )

∞∑
l=2

v l [1]. (C.29)

Since ρ(R) > 1 and v[1] > 0, the left-hand side of (C.29) is positive and in O(ε) and the
right-hand side of (C.29) is in O(εp ) with p > 1. Hence, there is an ε> 0 such that (C.29)
holds true.

C.9.2. SECOND STATEMENT
The initial state is given by

v[1] = (1−ε)v∞+η, (C.30)

where the N ×1 vector η satisfies ‖η‖2 =O(εp ) with p > 1. With (C.30), we obtain the i -th
component of the vector z in Theorem 4.16 as

zi =
−εv∞,i +ηi

1− v∞,i
. (C.31)

Then, with (C.31), the inequality in the second statement of Theorem 4.16 becomes

(
1− v∞,i

) N∑
j=1

β∆t ,i j
(−εv∞, j +η j

)−δ∆t ,i
−εv∞,i +ηi

1− v∞,i
> δ∆t ,i

∞∑
l=2

z l
i

for every node i = 1, ..., N . We rearrange and obtain that

−ε(1− v∞,i
) N∑

j=1
β∆t ,i j v∞, j +εδ∆t ,i

v∞,i

1− v∞,i
>− (

1− v∞,i
) N∑

j=1
β∆t ,i jη j (C.32)

+δ∆t ,i
ηi

1− v∞,i
+δ∆t ,i

∞∑
l=2

z l
i ,
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for every node i . We rewrite the sum on the left-hand side of (C.32) by using the steady-
state equation (4.3), which yields that

−εδ∆t ,i v∞,i +εδ∆t ,i
v∞,i

1− v∞,i
>−(

1− v∞,i
) N∑

j=1
β∆t ,i jη j +δ∆t ,i

ηi

1− v∞,i
+δ∆t ,i

∞∑
l=2

z l
i ,

which simplifies to

εδ∆t ,i

v2
∞,i

1− v∞,i
>−(

1− v∞,i
) N∑

j=1
β∆t ,i jη j +δ∆t ,i

ηi

1− v∞,i
+δ∆t ,i

∞∑
l=2

z l
i . (C.33)

The left-hand side of (C.33) is positive and in O(ε) and the right-hand side of (C.33) is in
O(εp ). Hence, there is an ε> 0 such that the inequality (C.33) holds true.

C.10. PROOF OF THEOREM 4.19
Before giving a rigorous proof of the statement of Theorem 4.19, we give an intuitive
explanation:

Intuitive Explanation. If the initial viral state v[1] is close to zero, then the NIMFA model
(4.2) is accurately described by its linearisation (4.8) around the origin. The viral state
v[k] of the LTI system (4.8) converges quickly to the principal eigenvector x1 of the system
matrix R. If the viral state v[k∗] at some time k∗ ≥ 1 is small and almost parallel to the
principal eigenvector x1, then it follows from Corollary 4.17 that v[k] is strictly increasing
at every time k ≥ k∗.

In the following, we give a rigorous proof of Theorem 4.19. If existent, k∗ denotes the
time when the viral state v[k] begins to be strictly increasing, i.e., v[k+1] > v[k] for every
time k ≥ k∗. To find an expression for the time k∗, we obtain from Theorem 4.16 that the
viral state v[k] is increasing at every time k ≥ k∗ if and only if

Rv[k∗] > v[k∗]+diag(δ∆t )
∞∑

l=2
v l [k∗], (C.34)

which follows from adding the viral state v[k∗] at time k∗ on both sides of (4.10). We
obtain an approximation the viral state v[k∗] at time k∗ from the linearisation (4.8) of
the NIMFA model (4.2) around the origin. First, we decompose the matrix R into two
addends

R = ρ(R)x1xT
1 + R̃.

Here, the N ×N matrix R̃ is given by

R̃ = R −ρ(R)x1xT
1 ,

and it holds that R̃x1 = 0. Then, the linearisation (4.8) yields that

v[k +1] ≈ Rv[k] = ρ(R)x1xT
1 v[k]+ R̃v[k]. (C.35)
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After iterating (C.35), the viral state v[k∗] at time k∗ ≥ 1 follows as

v[k∗] = Rk∗−1v[1]+η[k∗], (C.36)

where the linearisation error vector η[k∗] is in ‖η[k∗]‖2 =O (‖v[1]‖2
2

)
for any fixed time

k∗ when v[1] → 0. We rewrite (C.36) as

v[k∗] = ρ(R)k∗−1 (
xT

1 v[1]
)

x1 + R̃k∗−1v[1]+η[k∗]. (C.37)

By inserting (C.37) in (C.34), we obtain that the viral state v[k] is strictly increasing at
every time k ≥ k∗ if

ρ(R)k∗
x1

(
xT

1 v[1]
)+ R̃k∗

v[1] > ρ(R)k∗−1x1
(
xT

1 v[1]
)+ R̃k∗−1v[1]+Υ[k∗]. (C.38)

Here, the N ×1 vectorΥ[k∗] equals

Υ[k∗] = diag(δ∆t )
∞∑

l=2
v l [k∗]+ (I −R)η[k∗].

It holds that ‖Υ[k∗]‖2 =O (‖v[1]‖2
2

)
for any fixed time k∗ when v[1] → 0. We rearrange

(C.38), which yields that

ρ(R)k∗−1 (
ρ(R)−1

)(
xT

1 v[1]
)

x1 > R̃k∗−1 (
I − R̃

)
v[1]+Υ[k∗]. (C.39)

To obtain a bound on the time k∗ from (C.39), we state Lemma C.1 and Lemma C.3,
which bound the left and right side of (C.39), respectively.

Lemma C.1. Suppose that Assumption 4.2–4.6 hold. Then, it holds that(
ρ(R)k∗−1 (

ρ(R)−1
)(

xT
1 v[1]

)
x1

)
i
≥ ρ(R)k∗−1 (

ρ(R)−1
)

x2
1,min‖v[1]‖1

for every i = 1, ..., N , where x1,min = min{(x1)1 , ..., (x1)N }.

Proof. It holds that

xT
1 v[1] ≥ x1,min

N∑
i=1

vi [1] = x1,min‖v[1]‖1,

since v[1] ≥ 0 and x1,min > 0. Then, the i -th component of the left-hand side of (C.39)
becomes(

ρ(R)k∗−1 (
ρ(R)−1

)(
xT

1 v[1]
)

x1

)
i
≥ ρ(R)k∗−1 (

ρ(R)−1
)

x1,min‖v[1]‖1 (x1)i .

since
(
ρ(R)−1

)> 0. We employ the lower bound (x1)i ≥ x1,min to complete the proof.

For completeness, we introduce Lemma C.2, which is from [285, Corollary 5.6.13.]
and applied in the proof of Lemma C.3.
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Lemma C.2 ([285]). Let an N×N matrix M and an ε> 0 be given. Then, there is a constant
c(M ,ε) such that (

M k
)

i j
≤ c(M ,ε)

(
ρ(M)+ε)k

for all k = 1,2, ... and all i , j = 1, ..., N .

For any N ×1 vector z, the maximum vector norm is given by

‖z‖∞ = max{|z1|, ..., |zN |}.

For any N×N matrix M with elements mi j , we denote the matrix norm which is induced
the maximum vector norm by

‖M‖∞ = max
i=1,...,N

N∑
j=1

|mi j |. (C.40)

Lemma C.3. Suppose that Assumption 4.2–4.6 hold and let ε> 0 be given. Then, there is
a constant σ(R̃,ε) such that(

R̃k∗−1 (
I − R̃

)
v[1]

)
i
≤σ(R̃,ε)

(
ρ(R̃)+ε)k∗−1 ∥∥I − R̃

∥∥∞ ‖v[1]‖1

holds for every integer k∗ ≥ 2 and every i = 1, ..., N .

Proof. For any N ×1 vector z and any N ×N matrix M , it holds that

(M z)i =
N∑

j=1
mi j z j ≤

N∑
l=1

|mi l |
N∑

j=1
|z j |.

From (C.40) and ‖z‖1 =∑N
j=1 |z j |, we obtain that

(M z)i ≤ ‖M‖∞ ‖z‖1, i = 1, ..., N , (C.41)

for any vector z and any square matrix M . By setting the matrix M to M =
(
R̃k∗−1

(
I − R̃

))
and the vector z to z = v[1], we obtain from (C.41) that(

R̃k∗−1 (
I − R̃

)
v[1]

)
i
≤

∥∥∥R̃k∗−1 (
I − R̃

)∥∥∥∞ ‖v[1]‖1

for every i = 1, ..., N . Since the matrix norm is sub-multiplicative1, it holds that(
R̃k∗−1 (

I − R̃
)

v[1]
)

i
≤

∥∥∥R̃k∗−1
∥∥∥∞ ∥∥I − R̃

∥∥∞ ‖v[1]‖1. (C.42)

For a given square matrix M and a given ε> 0, there is a constant σ(M ,ε) such that

‖M k‖∞ ≤σ(M ,ε)
(
ρ(M)+ε)k (C.43)

1A matrix norm ‖·‖ is sub-multiplicative if ‖AB‖ ≤ ‖A‖‖B‖ holds for any matrices A,B .



C.10. PROOF OF THEOREM 4.19

C

231

for all integers k ≥ 1, which follows from applying Lemma C.2 to every addend of the
sum

‖M k‖∞ = max
i=1,...,N

N∑
j=1

∣∣∣∣(M k
)

i j

∣∣∣∣ .

We combine (C.43) and (C.42) and obtain that, for any ε > 0, there is a constant σ(R̃,ε)
such that (

R̃k∗−1 (
I − R̃

)
v[1]

)
i
≤σ(R̃,ε)

(
ρ(R̃)+ε)k∗−1 ∥∥I − R̃

∥∥∞ ‖v[1]‖1

holds for every integer k∗ ≥ 2 and every node i = 1, ..., N .

By applying the bounds of Lemma C.1 and Lemma C.3 to (C.39), we obtain that the
viral state v[k] is strictly increasing at every time k ≥ k∗ if

ρ(R)k∗−1 (
ρ(R)−1

)
x2

1,min‖v[1]‖1 >σ(R̃,ε)
(
ρ(R̃)+ε)k∗−1 ∥∥I − R̃

∥∥∞ ‖v[1]‖1 (C.44)

+Υ[k∗].

In the limit v[1] → 0, it holds Υ[k∗] =O(‖v[1]‖2
2) for k∗ fixed and the inequality (C.44)

converges to

ρ(R)k∗−1 (
ρ(R)−1

)
x2

1,min >σ(R̃,ε)
(
ρ(R̃)+ε)k∗−1 ∥∥I − R̃

∥∥∞ .

We take the logarithm and obtain that

log
((
ρ(R)−1

)
x2

1,min

)
> log

(
σ(R̃,ε)

∥∥I − R̃
∥∥∞)+ (

k∗−1
)

log

(
ρ(R̃)+ε
ρ(R)

)
. (C.45)

We choose ε such that ρ(R̃)+ε< ρ(R) and find that (C.45) is satisfied if

k∗ >
log

( (
ρ(R)−1

)
x2

1,min

σ(R̃,ε)
∥∥I − R̃

∥∥∞
)

log
(
ρ(R̃)+ε)− log

(
ρ(R)

) +1. (C.46)

Hence, in the limit v[1] → 0, the viral state v[k] is strictly increasing at every time k ≥ k∗
if k∗ satisfies (C.46) and we emphasise that (C.46) is independent of v[1]. Thus, when
v[1] → 0, the set S− of time instants k, for which the viral state v[k] is not strictly increas-
ing, is a subset of {1, ...,k∗−1}. Hence, the set S− is finite when v[1] → 0, which is the first
requirement for a quasi-increasing viral state evolution by Definition 4.18. It remains to
show that, for any ε-stringency,

‖v[k +1]− v[k]‖2 ≤ ε ∀k ∈ S−, (C.47)

if ‖v[1]‖2 ≤ϑ(ε) for a sufficiently small ϑ(ε). With the triangle inequality it holds that

‖v[k +1]− v[k]‖2 ≤ ‖v[k +1]‖2 +‖v[k]‖2, ∀k ∈ S−.

Since v[1] → 0 implies that v[k] → 0 for every time k ≤ k∗ + 1, we obtain that, for any
ε-stringency, there is a ϑ(ε) such that ‖v[1]‖2 ≤ϑ(ε) implies (C.47).
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C.11. PROOF OF PROPOSITION 4.20
We prove Proposition 4.20 by induction. More precisely, we show that if the base case at
time k = 1 is satisfied, i.e. v (1)

ub [1] ≥ v[1], then it holds v (1)
ub [k] ≥ v[k] at every time k ≥ 1.

For the inductive step from time k ≥ 1 to time k +1, we obtain from (4.1) and (4.12) that

v (1)
ub,i [k +1]− vi [k +1] =(1−δ∆t ,i )

(
v (1)

ub,i [k]− vi [k]
)

(C.48)

+
N∑

j=1
β∆t ,i j

(
v (1)

ub, j [k]− v j [k]
)
+ vi [k]

N∑
j=1

β∆t ,i j v j [k].

Hence, v (1)
ub, j [k] ≥ v j [k] for every node j and (1−δ∆t ,i ) ≥ 0 by Assumption 4.3 implies

that the first term and the first sum of (C.48) are non-negative. Since the second sum in
(C.48) is positive, it follows from (C.48) that v (1)

ub,i [k + 1] > vi [k + 1 ] if v (1)
ub, j [k] ≥ v j [k]

for every node j . Thus, it follows by induction, that the base case at time k = 1, i.e.,
v (1)

ub [1] ≥ v[1], implies that v (1)
ub [k] ≥ v[k] at every time k ≥ 1. The LTI system (4.12) is

asymptotically stable if and only if the spectral radius ρ(R) satisfies ρ(R) < 1.

C.12. PROOF OF PROPOSITION 4.21
C.12.1. FIRST STATEMENT
We prove that ∆vub,i [k], given by (4.13), is an upper bound of ∆vi [k] for all nodes i at
every time k ≥ 1 by induction. For the initial time k = 1, it holds that ∆vub,i [1] ≥ ∆vi [1]
by assumption. In the following, we show that ∆vub,i [k] ≥∆vi [k] for all nodes i implies
that ∆vub,i [k + 1] ≥ ∆vi [k + 1] for all nodes i . From (4.13) and (4.6) it follows that the
difference of the bound ∆vub,i [k + 1] to the true value ∆vi [k + 1] at time k + 1 can be
stated as

∆vub[k +1]−∆v[k +1] = F (∆vub[k]−∆v[k])+diag(∆v[k])B∆t∆v[k]. (C.49)

For the first term it holds that F (∆vub[k]−∆v[k]) ≥ 0, because ∆vub[k]−∆v[k] ≥ 0 and
the matrix F is non-negative by Lemma 4.11. Under Assumption 4.4, Corollary 4.12 im-
plies that ∆vi [k] ≤ 0 for every node i at every time k ≥ 1. Thus, we obtain for the second
term in (C.49) that

N∑
j=1

β∆t ,i j∆v j [k]∆vi [k] ≥ 0, i = 1, ..., N ,

since β∆t ,i j ≥ 0 for every i , j = 1, ..., N under Assumption 4.2. Thus, both addends of
(C.49) are non-negative, which implies that ∆vub[k +1] ≥∆v[k +1].

C.12.2. SECOND STATEMENT
We prove the second statement of Proposition 4.21 by induction. More precisely, we
show that if the base case at time k = 1 is satisfied, i.e. ∆vub[1] ≤ 0, then it holds that
∆vub[k] ≤ 0 at every time k ≥ 1. For the inductive step from time k ≥ 1 to time k +1, we
make use of the fact that, under Assumption 4.3, the matrix F is non-negative as stated
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by Lemma 4.11. Hence, we obtain from

∆vub,i [k +1] =
N∑

j=1
Fi j∆vub, j [k]

that ∆vub,i [k] ≤ 0 for every node i implies ∆vub,i [k + 1] ≤ 0 for every node i . Thus, it
follows by induction, that the base case at time k = 1,∆vub[1] ≤ 0, implies that∆vub[k] ≤
0 at every time k ≥ 1.

C.13. PROOF OF PROPOSITION 4.22
C.13.1. FIRST STATEMENT
Since Flb = F −diag(vmin − v∞)B∆t , we can rewrite the lower bound ∆vlb[k +1] at time
k +1 with (4.15) as

∆vlb[k +1] = F∆vlb[k]−diag(vmin − v∞)B∆t∆vlb[k]. (C.50)

We prove that∆vlb[k] given by (C.50) is indeed a lower bound of∆v[k] at every time k ≥ 1
by induction. At the initial time k = 1, it holds that∆vlb[1] ≤∆v[1] by assumption. In the
following, we show that ∆vlb[k] ≤∆v[k] implies that ∆vlb[k +1] ≤∆v[k +1] for any time
k ≥ 1. We obtain from (4.6) and (C.50) that

∆v[k +1]−∆vlb[k +1] =F (∆v[k]−∆vlb[k])+diag(vmin − v∞)B∆t∆vlb[k] (C.51)

−diag(∆v[k])B∆t∆v[k].

Under Assumption 4.3, Lemma 4.11 implies that the matrix F is non-negative. From
the non-negativity of the matrix F and from ∆v[k] ≥∆vlb[k] it follows that the first term
of (C.51) is non-negative, F (∆v[k]−∆vlb[k]) ≥ 0. We denote the i -th component of the
second and third terms in (C.51) by

ςi =
N∑

j=1
β∆t ,i j

((
vmin,i − v∞,i

)
∆vlb, j [k]−∆vi [k]∆v j [k]

)
.

Under Assumption 4.4 it holds that ∆vi [k] ≤ 0 as stated by Corollary 4.12. Furthermore,
since ∆v j [k] ≥∆vlb, j [k], we obtain that

ςi ≥
N∑

j=1
β∆t ,i j

((
vmin,i − v∞,i

)
∆vlb, j [k]−∆vi [k]∆vlb, j [k]

)
.

Since we assumed that v[k] ≥ vmin holds at every time k, we obtain that ∆v[k] ≥ vmin −
v∞ at every time k. Hence, we can bound the term ςi by

ςi ≥
N∑

j=1
β∆t ,i j (

(
vmin,i − v∞,i

)
∆vlb, j [k]− (

vmin,i − v∞,i
)
∆vlb, j [k]) = 0.

Thus, (C.51) is non-negative, which implies that∆v[k+1] ≥∆vlb[k+1] if∆v[k] ≥∆vlb[k].
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C.13.2. SECOND STATEMENT
Parts of the proof are inspired by the proof of Ahn and Hassibi [78, Theorem 5.1] and
based on two lemmas.

Lemma C.4. For any two vectors z, z̃ with z ≥ z̃ it holds that Flbz ≥ Flb z̃.

Proof. First, we show that the matrix Flb is non-negative. The elements of the matrix Flb

are given by

(Flb)i j =
1+ δ∆t ,i

v∞,i −1
+ (

1− vmin,i
)
β∆t ,i i if i = j ,(

1− vmin,i
)
β∆t ,i j if i 6= j .

(C.52)

For every node i , we have (Flb)i i ≥ Fi i ≥ 0 under Assumption 4.3 as stated by Lemma
4.11. Since vmin,i < 1 and β∆t ,i j ≥ 0 for every nodes i , j , the matrix Flb is non-negative.
Hence, z ≥ z̃ implies that

(Flbz −Flb z̃)i =
N∑

j=1
(Flb)i j

(
z j − z̃ j

)≥ 0, ∀i = 1, ..., N .

Lemma C.5. Define the N × 1 vector z(1) as z(1) = −v∞ and the N × 1 vectors z(k+1) as
z(k+1) = Flbz(k) for all k ≥ 1. Then, the vector z(k) at iteration k is bounded by

z(k) ≥−
(
1−δ∆t ,min

γ

1−γ
)k

v∞. (C.53)

Proof. The right-hand side of (C.53) is proportional to the steady-state vector v∞ and, as
a first step, we consider the product (−Flbv∞). With (C.52), we obtain for every i = 1, ..., N
that

(−Flbv∞)i =−
N∑

j=1
(Flb)i j v∞, j

=−v∞,i +δ∆t ,i
v∞,i

1− v∞,i
− (

1− vmin,i
) N∑

j=1
β∆t ,i j v∞, j .

The steady-state equation (4.3) yields that

−
N∑

j=1
(Flb)i j v∞, j =−v∞,i +δ∆t ,i

v∞,i

1− v∞,i
− (

1− vmin,i
)
δ∆t ,i

v∞,i

1− v∞,i
. (C.54)

We simplify (C.54) and obtain that

−
N∑

j=1
(Flb)i j v∞, j =−v∞,i

(
1−δ∆t ,i

vmin,i

1− v∞,i

)
. (C.55)
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We stack (C.55), which yields that

−Flbv∞ ≥−v∞
(
1−δ∆t ,min

γ

1−γ
)

, (C.56)

since δ∆t ,i ≥ δ∆t ,min and v∞,i ≥ vmin,i ≥ γ for every node i . As a second step, we obtain
the inequality (C.53) from (C.56) by induction. At k = 1, (C.53) holds true with equality.
Consider that (C.53) holds at time k ≥ 1, then we obtain that

z(k+1) = Flbz(k) ≥ Flb

(
−

(
1−δ∆t ,min

γ

1−γ
)k

v∞

)
,

where the inequality follows from Lemma C.4. Finally, with (C.56), we obtain that

z(k+1) ≥−
(
1−δ∆t ,min

γ

1−γ
)k+1

v∞.

Since∆vlb[1] =∆v[1] and∆v[1] = v[1]−v∞, it holds that∆vlb[1] ≥−v∞ = z(1). Hence,
Lemma C.4 and Lemma C.5 yield, by induction, that

∆vlb[k] ≥ z(k) ≥−
(
1−δ∆t ,min

γ

1−γ
)k

v∞

at every time k ≥ 1.

C.14. PROOF OF LEMMA 4.23
In Subsection C.14.1, we consider that the initial viral state v[1] satisfies v[1] > 0. In
Subsection C.14.2, we consider that the initial viral state v[1] satisfies v[1] 6= 0 but not
v[1] > 0.

C.14.1. POSITIVE INITIAL VIRAL STATE
We consider that the initial viral state v[1] satisfies v[1] > 0. The proof consists of three
steps:

1. It follows from the NIMFA equations (4.1) that vi [k] > 0 implies that vi [k +1] > 0
since (1−δ∆t ,i ) > 0 and β∆t ,i j ≥ 0 for all nodes i , j . Hence, it holds that v[k] > 0 at
every time k ≥ 1.

2. The viral state vector v[k] does not approach zero arbitrarily close: Under Assump-
tion 4.6, the origin is an unstable equilibrium of the NIMFA equations (4.2). From
vi [k] > 0 for every node i we obtain that xT

1 v[k] > 0, where x1 > 0 is the eigenvector
to the unstable eigenvalue ρ(R) > 1 of the linearisation (4.8) of the NIMFA model
(4.2) around the origin. Hence, there is an ε> 0 such that ‖v[k]‖2 > ε at every time
k ≥ 1.
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3. The viral state vi [k] of any single node i does not approach zero arbitrarily close.
(This is a stronger statement than the second statement.) Since the viral state vec-
tor v[k] does not approach zero arbitrarily close, there is at least one node i such
that vi [k] ≥ vmin,i for some vmin,i > 0 at every time k ≥ 1. Under Assumption 4.5,
node i has at least one neighbour l 6= i , for which the NIMFA equations (4.1) are
given by

vl [k +1] =
N∑

j=1
β∆t ,l j v j [k]+ vl [k]

(
1−δ∆t ,l −

N∑
j=1

β∆t ,l j v j [k]

)
. (C.57)

With v j [k] ≤ 1 for every node j we obtain that

1−δ∆t ,l −
N∑

j=1
β∆t ,l j v j [k] ≥ 1−δ∆t ,l −

N∑
j=1

β∆t ,l j ≥ 0,

where the last inequality follows from Assumption 4.3. Thus, (C.57) yields that

vl [k +1] ≥
N∑

j=1
β∆t ,l j v j [k] ≥β∆t ,l j vi [k] ≥ vmin,l > 0,

where we define vmin,lβ∆t ,l i vmin,i . Hence, if there is a vmin,i > 0 for some node
i such that vi [k] ≥ vmin,i at every time k ≥ 1, then it holds vl [k] ≥ vmin,l at
every time k ≥ 1 for every node l which is adjacent to node i . By repeating this
argument for every node in the connected graph, we find that there is a positive
vector vmin > 0 such that v[k] ≥ vmin holds at every time k ≥ 1 provided that
v[1] > 0.

C.14.2. NON-ZERO INITIAL VIRAL STATE
We consider that the initial viral state v[1] does not satisfy v[1] > 0, but only v[1] 6= 0.
Since the graph given by the infection probability matrix B∆t is strongly connected, there
is a pair of adjacent nodes i , l such that the initial viral state v[1] satisfies vi [1] > 0 and
vl [1] = 0. It follows from the NIMFA equations (4.1) that node i infects its neighbour l
and, hence, it holds that vl [2] > 0. Furthermore, it holds vi [2] > 0 as argued in the first
point of Subsection C.14.1. The more time k evolves, the more nodes l become infected.
At some time k∗ ≤ N − 1 all nodes are infected, and the viral state satisfies v[k∗] > 0.
We apply the three arguments in Subsection C.14.1 to the viral state v[k∗] at time k∗ to
establish that there is a vector vmin > 0 such that the viral state satisfies v[k] > vmin for
every time k ≥ k∗.

C.15. PROOF OF COROLLARY 4.24
If the initial viral state v[1] satisfies v[1] > 0, then Lemma 4.23 states that there exists
some vector vmin > 0 such that v[k] ≥ vmin at every time k ≥ 1. Since

∆vlb[k] ≤∆v[k] ≤ 0 ⇒‖∆v[k]‖2 ≤ ‖∆vlb[k]‖2,
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Proposition 4.22 yields that

‖∆v[k]‖2 ≤
(
1−δ∆t ,min

γ

1−γ
)k−1

‖v∞‖2 ∀k ≥ 1, (C.58)

where γ= min{vmin,1, ..., vmin,N } > 0. If the initial viral state v[1] satisfies v[1] 6= 0 but not
v[1] > 0, then Lemma 4.23 yields an analogous statement to (C.58) by formally replacing
k ≥ 1 by k ≥ k∗.

If the viral state v[k] is globally strictly increasing and v[1] > 0, then we can set vmin =
v[1], which yields that

‖∆v[k]‖2 ≤αk−1‖v∞‖2 ∀k ≥ 1,

where

α= 1−δ∆t ,min
γ

1−γ
and γ= min{v1[1], ..., vN [1]} > 0.
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D.1. PROOF OF LEMMA 5.1
Section 5.3 states three kind of transitions for the sampled-time ε-SIS process. We prove
that the bound (5.4) on the sampling time ∆t ensures that all three kinds of transitions
are well-defined.

1. A single node i changes from the infected state at discrete time k to the susceptible
state at discrete time k +1. The probability of this transition is

Pr
[

xi [k +1] = 0|xi [k] = 1, x[k],θ
]
= δ∆t ,

which needs to be smaller than one. Thus, the sampling time ∆t must obey

∆t ≤ 1

δ
. (D.1)

2. A single node i changes from the susceptible state at time instant k to the infected
state at time instant k+1 with the probability (5.2). Since the number of infectious
neighbours Ni (A,k) is bounded by the number of nodes, Ni (A,k) ≤ N , we can
bound (5.2) as

Pr
[

xi [k +1] = 1
∣∣∣xi [k] = 0, x[k],θ

]
≤ ε∆t +β∆t N . (D.2)

Since by definition ε∆t = ε∆t and β∆t =β∆t , we obtain that (D.2) is bounded by 1,
if

∆t ≤ 1

ε+Nβ
. (D.3)

3. The state of no node changes from time k to time k + 1. Denote the susceptible
and infected nodes, respectively, at time instant k by

M0[k] = { j ∈NN |x j [k] = 0}

239
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and

M1[k] = { j ∈NN |x j [k] = 1}.

With the N ×1 all-one vector as u = (1, ...,1)T , we obtain that

|M0[k]| = uT (u −x[k]), (D.4)

|M1[k]| = uT x[k]. (D.5)

We rewrite the probability of no change from time k to k +1 as

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
= 1− ∑

j∈M1[k]
δ∆t −

∑
i∈M0[k]

(β∆t Ni (A,k)+ε∆t )

With (D.5), we obtain that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
= 1−δ∆t uT x[k]− ∑

i∈M0[k]

(
ε∆t +β∆t

N∑
j=1

ai j x j [k]

)
.

Furthermore, from (D.4) it follows that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
=1−δ∆t uT x[k]−uT (u −x[k])ε∆t

− ∑
i∈M0[k]

N∑
j=1

β∆t ai j x j [k].

Since

∑
i∈M0[k]

ai j =
N∑

i=1
(1−xi [k])ai j

and uT u = N , it holds that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
=1−Nε∆t + (ε∆t −δ∆t )uT x[k]

−
N∑

j=1
β∆t x j [k]

N∑
i=1

(1−xi [k])ai j . (D.6)

The right side of (D.6) is bounded by

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
≤ 1−Nε∆t + (ε∆t −δ∆t )uT x[k], (D.7)

since the sum in (D.6) is non-negative. If the upper bound (D.7) does not exceed

one, then also the transition probability Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
is bounded by

one. We consider two cases, depending on the values the self-infection rate ε∆t

and the curing rate δ∆t . First, if ε∆t ≥ δ∆t , then we apply uT x[k] ≤ N and obtain
that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
≤ 1−δ∆t N . (D.8)
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Second, if ε∆t < δ∆t , then we obtain that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
≤ 1−Nε∆t , (D.9)

since uT x[k] ≥ 0. The curing rate δ∆t and self-infection rate ε∆t are non-negative.
Thus, both upper bounds (D.8) and (D.9) do not exceed one. Thus, also the transi-

tion probability Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
does not exceed one.

Lastly, we must ensure that the expression for Pr[x[k +1] = x[k]|x[k],θ] is not neg-
ative. We obtain from (D.6) that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
≥1−Nε∆t + (ε∆t −δ∆t )uT x[k]

−β∆t

N∑
j=1

x j [k]
N∑

i=1
(1−xi [k]),

since ai j ≥ 0. Furthermore, it holds that

Pr
[

x[k +1] = x[k]
∣∣∣x[k],θ

]
≥ 1−Nε∆t + (ε∆t −δ∆t )uT x[k]−β∆t

N 2

4
,

which follows after minimisation with respect to ξ = ∑N
j=1 x j [k], where the mini-

mum is attained at ξ= N
2 . Thus, the transition probability Pr

[
x[k+1] = x[k]

∣∣∣x[k],θ
]

is not negative if the sampling time ∆t satisfies

∆t ≤ 4

N 2β+4N max{ε,δ}
. (D.10)

The upper bound on ∆t in (D.10) is smaller than both bounds in (D.1) and (D.3).
Hence, the bound (D.10) is a sufficient condition for all transition probabilities of the
sampled-time Markov chain to lie in the interval [0,1].

D.2. PROOF OF LEMMA 5.11
The objective function of (5.17) equals

fn(â13, ..., â1N ) = log
(
Pr

[
x[1], ..., x[n]

∣∣∣â13, ..., â1N

])
=

n−1∑
k=1

log
(
Pr

[
x[k +1]

∣∣∣x[k], â13, ..., â1N

])
, (D.11)

where the last equality follows from the Markov property of the sampled-time SIS pro-
cess. To reduce the zero-one UQP (5.12) to the reduced-size SIS network reconstruction
problem (5.17), we show below that it is possible to construct a series of viral state tran-
sitions x[k] → x[k +1] for the time points k = 1, ...,n −1 for all adjacency matrices A ∈A,
such that the objective function fn of the latter problem is of the form

fn(â13, ..., â1N ) =
N∑

i=3

N∑
j=i+1

gi j â1i â1 j +
N∑

l=3
gl â1l + gconst, (D.12)
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with the coefficients gi j and gl and an additive term gconst which is constant with respect
to the links â13, ..., â1N and, hence, can be omitted in the optimisation problem (5.17).
We prove Lemma 5.11 in five steps, on which we elaborate in detail in the respective
Subsections D.2.1 to D.2.5.

1. We design a viral state transition Ii j : x[k] → x[k +1] which results in setting the
quadratic costs gi j of (D.12) to a value. In Subsection D.2.5, we show that if the viral
state transition Ii j occurs, then we obtain gi j =−2, and if it does not occur, then
we obtain gi j = 0.

2. We design a viral state transition Il : x[k] → x[k + 1] which results in setting the
linear costs gl of (D.12) to a positive value gl > 0.

3. We design a viral state transition Cl : x[k] → x[k + 1] which results in setting the
linear cost gl of (D.12) to a negative value gl < 0.

4. We show how two transitions of the kind Ii j ,Il and Cl can be connected by con-
structing a suitable transition sequence.

5. We show that it is possible to construct a viral state sequence x[1], ..., x[n] which is
composed of several of the three kinds of viral state transitions Ii j ,Il and Cl . If the
viral state transition Il occurs multiple times, then the value of the coefficient gl

increases. On the other hand, if the viral state transition Cl occurs multiple times,
then the value of the coefficient gl decreases1. By choosing the multiplicity of the
occurrence of viral state transitions Ii j , Il and Cl , we show that the reduced-size
SIS network reconstruction (5.17) becomes a zero-one UQP of the form (5.20).

D.2.1. SETTING THE QUADRATIC COSTS

In order to set the coefficients gi j for i ≥ 3 and j ≥ i + 1, corresponding to the terms
gi j â1i â1 j in the objective function (D.12), we construct the following special case of an
infectious transition (5.2). The links â1i and â1 j appear simultaneously in the probability
for the infectious transition (5.2) if both node i and node j are infected at time k, i.e.
xi [k] = x j [k] = 1, and node 1 becomes infected at time k+1, i.e. x1[k] = 0 → x1[k+1] = 1.
We choose the viral state of node 2 as2 x2[k] = 1 and define the transition

Ii j =
{

x[k +1] = e1 +e2 +ei +e j
∣∣x[k] = e2 +ei +e j

}
.

The elements of the vector ei ∈RN are given by (ei )m = δmi , where δmi is the Kronecker
delta. The transition Ii j is a special case of an infectious transition (5.2) and, since â12 =
a12 = 1 in the reduced-size SIS network reconstruction (5.17), its transition probability is

1In the following Lemma 5.12, we show that the coefficient gl can be set (arbitrarily close) to any value in R by
adjusting the number of occurrences of the transitions Il and Cl .

2If node i and j were the only infected nodes at time k, then the transition probability (D.13) would equal
zero if both elements â1i = 0 and â1 j = 0. In that case, we would not be able to express the logarithm of the
transition probability in the form (D.14) for all values of the elements â1i , â1 j ∈ {0,1}.
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given by

Pr
[
Ii j

∣∣∣â13, ..., â1N

]
=


β∆t if â1i = 0∧ â1 j = 0,

2β∆t if (â1i = 0∧ â1 j = 1)∨ (â1i = 1∧ â1 j = 0),

3β∆t if â1i = 1∧ â1 j = 1.

(D.13)

To compute the objective function fn according to (D.11), we express the logarithm of
the above transition probability (D.13) more compactly as

log
(
Pr

[
Ii j

∣∣∣â13, ..., â1N

])
= (1− â1i )(1− â1 j ) log(β∆t )+ â1i (1− â1 j ) log(2β∆t )

+ (1− â1i )â1 j log(2β∆t )+ â1i â1 j log(3β∆t )

= log(β∆t )+ â1i log(2)+ â1 j log(2)+ â1i â1 j log

(
3

4

)
(D.14)

If solely the transition Ii j occurred once, then it follows from (D.14) that the quadratic
cost of (D.12) would equal gi j = log

( 3
4

) < 0. We emphasise that the transitions Ii j only
need to occur for i ≥ 3 and j ≥ i +1 since the quadratic coefficients gi j in the objective
function (D.12) only occur for those values of i and j .

D.2.2. SETTING THE LINEAR COSTS TO A POSITIVE VALUE
In order to set the coefficients gl , corresponding to the terms gl â1l in the objective func-
tion of (D.12), to a positive value gl > 0, we construct the following special case of an
infectious transition (5.2). The link â1l appears in the probability for the infectious tran-
sition (5.2) if node l is infected at time k, i.e. xl [k] = 1, and node 1 becomes infected at
time k +1, i.e. x1[k] = 0 → x1[k +1] = 1. Analogously to Subsection D.2.1, we choose the
viral state of node 2 as x2[k] = 1 and define the transition

Il =
{

x[k +1] = e1 +e2 +el
∣∣x[k] = e2 +el

}
.

The transition Il is a special case of an infectious transition (5.2). Since â12 = a12 = 1
in the reduced-size SIS network reconstruction (5.17), the transition probability of Il is
given by

Pr
[
Il

∣∣∣â13, ..., â1N

]
=

{
β∆t if â1l = 0,

2β∆t if â1l = 1.
(D.15)

To compute the objective function fn according to (D.11), we obtain the logarithm of the
above transition probability (D.15) as

log
(
Pr

[
Il

∣∣∣â13, ..., â1N

])
= (1− â1l ) log(β∆t )+ â1l log(2β∆t )

= log(β∆t )+ â1l log(2). (D.16)

If solely the transition Il occurred once, then it follows from (D.16) that the linear cost of
(D.12) would equal gl = log(2) > 0.
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D.2.3. SETTING THE LINEAR COSTS TO A NEGATIVE VALUE
In order to set the coefficients gl , corresponding to the terms gl â1l in the objective func-
tion of (D.12), to a negative value gl < 0, we construct the following special case of a
constant transition (5.3). The link â1l appears in the probability for the constant transi-
tion (5.3) if node 1 is susceptible and node l is infected (x1[k] = 0 and xl [k] = 1). Hence,
we define the transition

Cl =
{

x[k +1] = el
∣∣x[k] = el

}
. (D.17)

The transition Cl is a special case of a constant transition (5.3) and its transition prob-
ability can be calculated as follows. From time k to time k + 1, the probability of the
infection of a node m 6= l is

Pr
[

Node m gets infected at k +1
∣∣∣x[k] = el , â13, ..., â1N

]
=β∆t âml

The probability of an infection of a node at the time k +1 is hence

Pr
[

A node gets infected at k +1
∣∣∣x[k] = el , â13, ..., â1N

]
=

N∑
m=1,m 6=l

β∆t âml

=β∆t â1l +β∆t +β∆t

N∑
m=3,m 6=l

âml ,

since â12 = a12 = 1 in the reduced-size SIS network reconstruction (5.17). The probability
of the curing (5.1) of node l equals δ∆t . Thus, the probability for the constant transition
(D.17) becomes

Pr
[
Cl

∣∣∣â13, ..., â1N

]
= 1−δ∆t −β∆t â1l −β∆t −β∆t

N∑
m=3,m 6=l

âml

= ξ−β∆t â1l , (D.18)

where

ξ= 1−δ∆t −β∆t −β∆t

N∑
m=3,m 6=l

âml

is constant with respect to the links â13, ..., â1N and does not have to be considered in

the optimisation problem (5.17). It holds that Pr
[
Cl

∣∣∣â13, ..., â1N

]
is in [0,1] for all link

estimates â13, ..., â1N , which implies that ξ > 0. To compute the objective function fn

according to (D.11), we obtain the logarithm of the transition probability (D.18) as

log
(
Pr

[
Cl

∣∣∣â13, ..., â1N

])
= (1− â1l ) log(ξ)+ â1l log

(
ξ−β∆t

)
= log(ξ)+ â1l log

(
1− β∆t

ξ

)
. (D.19)

If solely the transition Cl occurred once, then it follows from (D.19) that the linear cost

of (D.12) would equal gl = log
(
1− β∆t

ξ

)
< 0.
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D.2.4. CONNECTING VIRAL STATE TRANSITIONS
In order to set the coefficients gl and gi j for more than one node l (or for more than
one pair of nodes i and j ), the transitions Ii j , Il and Cl must occur multiple times in the
viral state sequence x[1], ..., x[n] for different values of l , i and j . Consider that one of the
transitions Ii j , Il or Cl occurs from time k0 to k0 +1 and that another (not necessarily
different) of the transitions Ii j , Il or Cl shall occur from time k0 +∆k to k0 +∆k +1 for
some ∆k ≥ 1. For any connected adjacency matrix A ∈A, there is a viral state sequence
which transform the viral state x[k0 + 1] at the end of one transition to the viral state
x[k0 +∆k] at the beginning of another transition, as we show in the three steps below.

1. If the transition x[k0] → x[k0 +1] is one of the infectious transition Ii j or Il , then
node 1 is infected at time k0 +1. In that case, we consider that node 1 cures from
time k0 +1 to k0 +2. In the two steps below, replace formally time k0 +1 by k0 +2.

2. The expressions (D.14), (D.16) and (D.19) influence the values of the coefficients
gl and gi j in the objective function (D.12). In order to give explicit expressions
for coefficients gl and gi j , we would like to achieve that the viral state transitions
from time k0+1 to k0+∆k do not have an influence on the values of any of the co-
efficients gl and gi j , such that their value is solely determined by the expressions
(D.14), (D.16) and (D.19).

The coefficients gl and gi j correspond to addends in the objective function (D.12),
which include the links â1l , â1i and â1 j , which are incident to node 1. A link â1l ,
which is incident to node 1, appears in the expressions for the probability of a viral
state transition x[k] → x[k + 1] of the sampled-time SIS process for exactly two
cases. Firstly, in the probability of an infectious transition (5.2) from time k to k+1
only if node 1 is infected before or afterwards (x1[k] = 1 or x1[k +1] = 1). Secondly,
the link â1l may appear in the probability of a constant transition (5.3) from time
k to k +1. We thus would like to exclude these two kinds of transitions from time
k0 +1 to k0 +∆k.

Hence, we want to construct the viral state transitions from time k0 +1 to k0 +∆k
such that the first node is constantly susceptible (x1[k] = 0 for k = k0+1, ...,k0+∆k)
and additionally, such that there is no constant transition (5.3) from time k0 +1 to
k0 +∆k. Then, the coefficients gl and gi j in the objective function (D.12) are not
affected by any of the viral state transitions from time k0 + 1 to k0 +∆k and are
solely determined by the expressions (D.14), (D.16) and (D.19).

3. The graph given by an adjacency matrix A ∈A remains connected if node 1 is re-
moved as stated above Definition 5.10. Thus, there exists a time k0 +∆k ≥ k0 +1
and a finite sequence of non-constant transitions of the SIS process which trans-
forms the viral state x[k0 + 1] to any other viral state x[k1] ∈ {0,1}N−1 under the
constraint that node 1 is susceptible x1[k] = 0 for time k = k0 +1 to k1: The sim-
plest of such transition sequences would be successive infections (5.2), resulting
in all nodes 2, ..., N being infected, with a subsequent curing (5.1) of those nodes i
for which xi [k0 +∆k] = 0 shall hold.

For a network of six nodes, Figure D.1 gives an illustration on how two infectious
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transitions, namely I34 and I6, can be connected by the viral state sequence described
in the three steps above.

1 2 3

4 5 6

x[k0]

1 2 3

4 5 6

x[k0 + 1]

1 2 3

4 5 6

x[k0 + 2]

1 2 3

4 5 6

x[k0 + 3]

1 2 3

4 5 6

x[k0 + 4]

1 2 3

4 5 6

x[k0 + 5]

1 2 3

4 5 6

x[k0 + 7]

1 2 3

4 5 6

x[k0 + 8]

(1 + â13 + â14)βT

Transition I34

δT 2βT

βT

δTδ2T

(two curings)

(1 + â16)βT

Transition I6

Figure D.1: An illustration of connecting two viral transitions, namely I34 from time k0 to k0 +1 and I6 from
time k0 + 7 to k0 + 8, for a connected network of six nodes by the procedure described in Subsection D.2.4.
Above the blue arrows, the respective transition probabilities are stated. It holds â12 = a12 = 1 and âi j = ai j
for i , j ≥ 2 in the optimisation problem (5.17), and thus the transition probabilities from time k0+1 to k0+7 can
be stated without the dependency on âi j . On the other hand, both transitions I34 and I6 do depend on the
elements âi j . Since the transition I34 from time k0 to k0 +1 is an infectious transition, we consider that node
1 cures from time k0 +1 to k0 +2 according to step one in Subsection D.2.4. Then, following the description in
step two and three of Subsection D.2.4, every node except node 1 becomes infected from time k0 +1 to k0 +4.
Subsequently, the nodes 3, 4 and 5 cure from time k0 +4 to k0 +7 as required for the first state of the transition
I6. In Subsection D.2.5, the viral state sequence from time k0 +1 to k0 +7 is also denoted by F(x[k0 +1],I6),
and its length is given by τ (F(x[k0 +1],I6)) = 6.

D.2.5. CONSTRUCTING THE COMPLETE VIRAL STATE SEQUENCE
We consider that each of the viral state transitions Ii j , Il and Cl may occur multiple
times, and denote the multiplicities by mi j , m1l and m2l , respectively. By T we de-
note a viral state transition that is of the kind Ii j , Il or Cl . Furthermore, we denote
by F (x[k],T) the viral state sequence which transforms the viral state x[k] at time k to
the first state of the transition T (see also Figure D.1 for an example), following the de-
scription in Subsection D.2.4. The length (number of discrete time steps) of the viral state
sequenceF (x[k],T) is denoted by τ (F (x[k],T)). The construction of the whole viral state
sequence, which includes the viral state transitions Ii j , Il and Cl with the multiplicities
mi j , m1l and m2l , is given in pseudo-code by Algorithm D.1. We emphasise that if a non-
zero multiplicity of a viral state transition is increased, then only the respective for-loop
(e.g. line 18 to line 21 for the transition Il if its multiplicity m1l = c 6= 0 is increased to
m1l = 2c for some c ∈ N) in Algorithm D.1 is run more often. In particular, line 9 is not
executed more often when the multiplicities of the viral state transitions are increased.

In the following, we show how the multiplicities mi j , m1l and m2l of the viral state
transitions can be adjusted such that the reduced-size SIS network reconstruction (5.20)
attains the form (5.17). For the viral state sequence x[1], ..., x[n] given by the output of
Algorithm D.1, the coefficients gi j of the objective function (D.12) follow from the ex-
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Algorithm D.1 Construction of Viral State Sequence for Reduced-Size SIS Network Re-
construction

1: Input: graph G = (N ,L), initial state x[0], multiplicities m1l ,m2l ,mi j

2: Output: viral state sequence x[1], ..., x[n]
3: Q← {

Ii j
∣∣ri j = 1

}∪{
Il

∣∣m1l ≥ 1
}∪{

Cl
∣∣m2l ≥ 1

}
. initialise the queue Q

4: k ← 1
5: while Q 6= ; do
6: T← some element of Q . dequeue a transition T from Q
7: Q←Q\ {T}
8: ∆k ← τ (F (x[k −1],T)) . length of transition from x[k −1] to first state of T
9: (x[k], ..., x [k +∆k −1]) ←F (x[k −1],T)

10: k ← k +∆k
11: if T= Ii j for some (i , j ) then
12: for c = 1, ..., ,mi j do
13: (x[k], x[k +1]) ← (e2 +ei +e j ,e1 +e2 +ei +e j ) . transition Ii j

14: k ← k +2
15: end for
16: end if
17: if T= Il for some l then
18: for c = 1, ..., ,m1l do
19: (x[k], x[k +1]) ← (e2 +el ,e1 +e2 +el ) . transition Il

20: k ← k +2
21: end for
22: end if
23: if T=Cl for some l then
24: for c = 1, ..., ,m2l do
25: x[k] ← el . transition Cl

26: k ← k +1
27: end for
28: end if
29: end while
30: n ← k −1
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pression (D.14) for the probability of the viral state transition Ii j as

gi j = log

(
3

4

)
mi j . (D.20)

Furthermore, the expressions (D.14), (D.16) and (D.19) for the viral state transitions Ii j

(for i ≥ 3 and j ≥ i +1), Il and Cl , respectively, yield the coefficients gl as

gl = log(2)m1l + log

(
1− β∆t

ξ

)
m2l + log(2)

(
l−1∑
i=3

mi l +
N∑

i=l+1
ml i

)
.

From (D.20) follows that

gl = log(2)m1l + log

(
1− β∆t

ξ

)
m2l +

log(2)

log
( 3

4

) (
l−1∑
i=3

gi l +
N∑

i=l+1
gl i

)
. (D.21)

The values of the coefficients gi j of the zero-one UQP (5.20) have to be either −2 or 0,
which we obtain from (D.20) by the two steps below.

1. We choose that the transition Ii j either occurs never or, independently of the
nodes i and j , m0 times. Thus

mi j = m0ri j , (D.22)

where the binary variable ri j denotes whether the transitionIi j occurs either never
(ri j = 0) or m0 times (ri j = 1). Then, the coefficients gi j , given by (D.20), become

gi j = log

(
3

4

)
m0ri j .

2. We multiply the objective function (D.12) with a constant factor µ=−2/log
( 3

4

)> 0
and divide by m0, which yields the new objective function

f̃n(â13, ..., â1N ) = µ

m0
fn(â13, ..., â1N ) (D.23)

=
N∑

i=3

N−1∑
j=i+1

ci j â1i â1 j +
N∑

l=3
cl â1l + cconst,

with the coefficients ci j =µgi j /m0, cl =µgl /m0 and cconst =µgconst/m0. The max-
imisation of fn(â13, ..., â1N ) is equivalent to the maximisation of f̃n(â13, ..., â1N ). As
desired, the coefficients ci j attain the values −2 and 0 for ri j = 1 and ri j = 0, re-
spectively.

From (D.21), (D.22) and (D.23), we obtain the coefficients cl of the new objective function
f̃n(â13, ..., â1N ) as

cl =
µ

m0
log(2)m1l +

µ

m0
m2l log

(
1− β∆t

ξ

)
+ µ

m0

log(2)

log
( 3

4

) (
l−1∑
i=3

gi l +
N∑

i=l+1
gl i

)
. (D.24)
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Since gi l = m0ci l /µ, equation (D.24) is equivalent to

cl =
m1l

m0
µ log(2)+ m2l

m0
µ log

(
1− β∆t

ξ

)
+ log(2)

log
( 3

4

) (
l−1∑
i=3

ci l +
N∑

i=l+1
cl i

)
. (D.25)

By defining

λ+ =µ log(2) > 0 (D.26)

λ− =µ log

(
1− β∆t

ξ

)
< 0 (D.27)

ηl =
log(2)

log
( 3

4

) (
l−1∑
i=3

ci l +
N∑

i=l+1
cl i

)
≥ 0, (D.28)

it follows that (D.25) is equivalent to (5.19). Hence, we have proved Lemma 5.11.

D.3. PROOF OF LEMMA 5.12
Equation (5.19) shows that the coefficients cl are determined by the numbers m0 and
m1l of infectious transitions Ii j and Il and by the number m2l of constant transitions
Cl . The third addend ηl in (5.19) is constant with respect to the number m1l , m2l and
m0 of occurrences of the viral state transitions Ii j , Il and Cl . We consider the two terms
with which the coefficients m1l and m2l in equation (5.19) are multiplied and denote
them by q0 = λ+/m0 and q1 = λ−/m0. It holds that q0 > 0 and q1 < 0. Furthermore, if
m0 grows to infinity, then the absolute value of the two coefficients q0 and q1 becomes
arbitrarily small. Thus, for a sufficiently large number m0 of infectious transitionsIi j , we
can choose the number m1l of infectious transitions Il and the number m2l of constant
transitions Cl , such that the coefficient cl , given by (5.19), is arbitrarily close to any real
number bl ∈R.

D.4. PROOF OF LEMMA 5.13
We define the vector, which is composed of the optimisation variables of the zero-one
UQP (5.12), as

y = (y1, ..., yN ) ∈ {0,1}N .

Furthermore, we denote the objective function of the zero-one UQP (5.12) by

fobj(y) =
N∑

i=1

N∑
j=i+1

bi j yi y j +
N∑

l=1
bl yl . (D.29)

The coefficients cl given by (5.19) do not precisely equal the coefficients bl for any finite
numbers of transitions m0,m1l ,m2l . Instead, we have

cl = bl +εth,l , (D.30)
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with the error εth,l on the l -th coefficient. The statement (5.21) implies that there is a
finite number of transitions m0,m1l ,m2l , such that the error terms εth,l are bounded by
an arbitrarily small εmax ∈R+ and may be chosen to be non-negative:

0 ≤ εth,l ≤ εmax, l = 1, ..., N . (D.31)

Thus, when the coefficients bl in (D.29) are replaced by the distorted coefficients cl in
(D.30), the objective function fobj, given by (D.29), is replaced by

f̃obj(y) =
N∑

i=1

N∑
j=i+1

bi j yi y j +
N∑

l=1
cl yl

=
N∑

i=1

N∑
j=i+1

bi j yi y j +
N∑

l=1
bl yl +

N∑
l=1

εth,l yl .

More compactly, we obtain

f̃obj(y) = fobj(y)+εT y, (D.32)

with the error vector ε= (ε1, ...,εN )T .
Our aim is to show that the solution ỹopt, or one of the solutions, to the zero-one UQP

(5.12), with the objective function f̃obj given by (D.32), is also a solution to the original
zero-one UQP (5.12) with the objective function fobj given by (D.29). Hence, the solution
ỹopt would also be a solution to the maximum cut problem. More precisely, we want to
show that

∃ỹopt ∈ Sopt : f̃obj(ỹopt) > f̃obj(y) ∀y 6∈ Sopt, (D.33)

where the set of solutions to the zero-one UQP (5.12) with the objective function fobj,
given by (D.29), is denoted as Sopt. We denote the value of the objective function fobj,
given by (D.29), evaluated at one of the elements in Sopt as

fopt = fobj(y), y ∈ Sopt. (D.34)

Furthermore, we define the gap from the optimal value fopt to the next largest value, that
the objective function fobj attains, as

∆ f = min
y

fopt − fobj(y)

s.t. y 6∈ Sopt.
(D.35)

It holds ∆ f ≥ 1, since the maximum cuts, given by the elements in Sopt, contain at least
one more link than any suboptimal cut.

With the definitions above, we can show the statement (D.33) as follows. The equa-
tions (D.32) and (D.34) yield, for any ỹopt ∈ Sopt and any y 6∈ Sopt, that

f̃obj(ỹopt)− f̃obj(y) = fopt − fobj(y)+εT (ỹopt − y)

≥∆ f +εT (ỹopt − y),
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where the inequality follows from (D.35). Since the optimisation variables yl are ei-
ther 0 or 1, we have ỹopt − y ≥ −u, where the inequality holds component-wise and
u = (1, ...,1)T ∈ RN denotes the all-one vector. As stated by (D.31), the error terms εth,l

are positive. Hence, we obtain

f̃obj(ỹopt)− f̃obj(y) ≥∆ f −εT u

≥∆ f −Nεmax, (D.36)

where the last inequality follows from (D.31). From the inequality (D.36) we obtain

f̃obj(ỹopt) > f̃obj(y)

if

εmax < 1

N
≤ ∆ f

N
.

D.5. PROOF OF LEMMA 5.14
The objective function of the full-size SIS network reconstruction (5.10) at time n2 > n1

satisfies

fn2 (Â) = log
(
Pr

[
x[1], ..., x[n2]

∣∣Â
])

= log
(
Pr

[
x[1], ..., x[n1]

∣∣Â
])+ n2−1∑

k=n1

log
(
Pr

[
x[k +1]

∣∣x[k], Â
])

, (D.37)

which follows from the Markov property of the SIS process. We adjust the second addend
of (D.37) by constructing the viral state sequence x[n1 +1], ..., x[n2], such that the objec-
tive function fn2 at time n2 attains the form (5.22) in the second statement of Lemma
5.14.

We divide the first statement of Lemma 5.14 into two parts: Firstly, we show in Sub-
section D.5.1 how to construct a viral state sequence x[n1+1], ..., x[n2], such that (AML)i j =
ai j if ai j = 1. Secondly, we show in Subsection D.5.2 how to construct a viral state se-
quence x[n1 + 1], ..., x[n2], such that (AML)i j = ai j if ai j = 0. The second statement of
Lemma 5.14 is proved in Subsection D.5.3.

D.5.1. ENFORCE EXISTENCE OF LINKS
We denote the set of links (i , j ) ∈L in the first statement of Lemma 5.14 by

L̄= {
(i , j ) ∈L∣∣(i , j ) = (1,2)∨ (i ≥ 2∧ j ≥ 2)

}
.

We aim to construct a viral state sequence such that the ML estimate (5.10) satisfies
(AML)i j = ai j if the element of the true adjacency matrix is ai j = 1 for all links (i , j ) ∈ L̄.
We make use of the following transition: If a node j gets infected at time k +1 and only
node i has been infected at time k, then there must be a link between node i and j . We
define the infectious transition, followed by a curing of node i , as

Ei j =
{

x[k +2] = e j , x[k +1] = ei +e j
∣∣x[k] = ei

}
. (D.38)
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The probability of the transition Ei j follows from (5.2) and (5.1) as

Pr
[
Ei j

∣∣Â
]={

β∆tδ∆t if âi j = 1,

0 if âi j = 0.
(D.39)

We construct the viral state sequence x[n1 +1], ..., x[n2] such that it contains Ei j at least
once for all links (i , j ) ∈ L̄. Then, it follows from (D.39) that if the underlying matrix has
the element ai j = 1 but the solution candidate Â contains a zero element âi j = 0 for any
link (i , j ) ∈ L̄, then the objective function of (5.10) becomes zero: Pr

[
x[1], ..., x[n2]

∣∣Â
]= 0.

Thus, the solution AML to the full-size SIS network reconstruction (5.10) with the objec-
tive function (D.37) has to satisfy

(AML)i j = 1 if ai j = 1, ∀(i , j ) ∈ L̄ (D.40)

D.5.2. ENFORCE ABSENCE OF LINKS

We aim to construct a viral state sequence such that the ML estimate (5.10) satisfies
(AML)i j = ai j if the element of the true adjacency matrix is ai j = 0. We observe the
following: If solely a node l is infected at time k and the viral state x[k] does not change
from time k to k+1, then the existence of a link from node l to another node m becomes
less probable, which follows from (5.3). For a node l ≥ 2, we define the constant viral
state transition

Al =
{

x[k +1] = el
∣∣x[k] = el

}
. (D.41)

The probability of the transition above follows from (5.3) as

Pr
[
Al

∣∣Â
]= 1−δ∆t −

N∑
m=1

β∆t âml . (D.42)

We consider that the transition Al successively occurs κl times from some time k0 ∈
{n1 + 1, ...,n2} to time k0 +κl . For ease of exposition and without loss of generality, we
assume that k0 = n1 + 1. Hence, the transition Al multiply occurs from time n1 + 1 to
time n1 +κl + 1. Then, the probability of the transition sequence from time n1 + 1 to
n1 +κl +1 follows from (D.42) as

log
(
Pr

[
x[n1 +κl +1] = x[n1 +κl ] = ... = x[n1 +2] = el

∣∣x[n1 +1] = el , Â
])=

κl log
(
Pr

[
Al

∣∣Â
])

. (D.43)

The objective function of the full-size SIS network reconstruction (5.10) at time n1+κl +1
becomes

fn1+κl+1(Â) = fn1 (Â)+κl log
(
Pr

[
Al

∣∣Â
])

= fn1 (Â)+κl log

(
1−δ∆t −β∆t

N∑
m=1

âml

)
,
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where the last equality follows from (D.42) and (D.43). By defining the degree of node l
minus the element â1l as

dl (Â) =
N∑

m=2
âml , (D.44)

we finally formulate the objective function of the SIS network reconstruction (5.10) at
time n1 +κl +1 as

fn1+κl+1(Â) = fn1 (Â)+κl log
(
1−δ∆t −β∆t dl (Â)−β∆t â1l

)
. (D.45)

Based on the above formulation of the objective function (D.45), we will show that if the
number κl of occurrences of the transition Al is great enough, then the solution AML to
the SIS network reconstruction (5.10) satisfies (AML)ml = aml for all nodes m ≥ 2.

Due to ai j = 1 ⇒ âi j = 1 for i , j ≥ 2 as stated by (D.40), the ML estimate AML has at
least as many links between the nodes i , j ≥ 2 as the true adjacency matrix A. Thus, the
degree dl (A) of node l of the true adjacency matrix A, given by (D.44) when replacing
âml by aml , is upper bounded by

dl (AML) ≥ dl (A). (D.46)

Furthermore, since (AML)i j = ai j for i , j ≥ 2, we obtain

dl (AML) = dl (A) ⇔ (AML)ml = aml ∀m = 2, ..., N . (D.47)

Hence, it is sufficient to show that the ML estimate AML satisfies dl (AML) = dl (A) in order
to prove the second statement of Lemma 5.14.

In the following, we consider two solution candidates to the full-size SIS network re-
construction (5.10): two matrices Â1 and Â2. We assume that the first row (and column)
of the two solution candidates are equal, i.e.

(Â1)1m = (Â2)1m , m = 1, ..., N . (D.48)

From (D.48) follows that the matrices Â1 and Â2 result in the same objective value for
the reduced-size SIS network reconstruction (5.17), since the optimisation is only with
respect to the matrix elements â1m for m = 3, ..., N . We consider that the two matrices Â1

and Â2 differ as follows. On the one hand, the first solution candidate Â1 is a matrix that
satisfies (D.46) with equality:

dl (Â1) = dl (A). (D.49)

On the other hand, the second solution candidate Â2 is a matrix that does not satisfy
(D.46) with equality:

dl (Â2) > dl (A).

To check which of the matrices Â1 and Â2 yields a greater objective value of the full-size
SIS network reconstruction (5.10) at time n1 +κl +1, we compute the difference of the
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objective function (D.45) as

fn1+κl+1(Â1)− fn1+κl+1(Â2) = fn1 (Â1)− fn1 (Â2)+κl log
(
1−δ∆t −β∆t dl (Â1)−β∆t (Â1)1l

)
−κl log

(
1−δ∆t −β∆t dl (Â2)−β∆t (Â2)1l

)
= fn1 (Â1)− fn1 (Â2)+κlγl , (D.50)

where

γl = log

(
1−δ∆t −β∆t dl (Â1)−β∆t (Â1)1l

1−δ∆t −β∆t dl (Â2)−β∆t (Â2)1l

)
.

It holds dl (Â2) > dl (A) = dl (Â1) and, as stated by (D.48), (Â1)1l = (Â2)2l . Thus, it holds
γl > 0. Since the difference fn1 (Â1)− fn1 (Â2) is finite, there is a number κl ∈ N of oc-
currences of the transition Al , such that the right-hand side of (D.50) is positive, which
implies fn1+κl+1(Â1) > fn1+κl+1(Â2). Hence, the matrix Â1 results in a greater objective
value of the optimisation problem (5.10) than the matrix Â2 for a sufficiently large num-
ber of transitions κl , and the matrix Â2 cannot be a solution of (5.10). Thus, if the num-
ber of transitions κl is sufficiently great, then the matrix AML that solves the full-size
SIS network reconstruction (5.10) has to be of the kind Â1 and satisfy equation (D.49):
dl (AML) = dl (A). As stated by (D.47), the equation dl (AML) = dl (A) is equivalent to
(AML)ml = aml for all nodes m ≥ 2.

In order to complete the proof of the first statement of Lemma 5.14, it needs to hold
(AML)ml = aml for all nodes m ≥ 2 and additionally for all nodes l ≥ 2. We achieve
(AML)ml = aml for all nodes m, l ≥ 2 as follows. We design the viral state sequence
x[n1 +1], ..., x[n2] such that it solely consists of two kind of viral transitions: Firstly, the
transitions Ei j given by (D.38) for all links (i , j ) ∈ L̄. Secondly, the transitions Al given by
(D.41), which occur κl times for all nodes l ≥ 2.

Finding a shortest3 walk which traverses every link in a graph is known as the Chi-
nese Postman Problem (CPP) or route intersection problem [291]. The CPP is solvable in
polynomial time. Since every link (i , j ) ∈ L̄ has to be traversed by an infection, we define
the graph Ḡ = (N ,L̄) and denote the solution to the CPP as(

(i1, j1), ..., (ir , jr )
)= CPP

(
Ḡ

)
,

where i1, ..., ir and j1, ..., jr denote the successive nodes of the walk, where il+1 = jl , and
(il , jl ) ∈ L̄ denote the traversed links. Algorithm D.2 illustrates in pseudo-code how the
required viral state sequence x[n1 +1], ..., x[n2] can be constructed.

With the construction of the viral state sequence x[n1 + 1], ..., x[n2] as described by
Algorithm D.2, the objective function (D.37) at time n2 becomes

fn2 (Â) = fn1 (Â)+
N∑

l=2
κl log

(
1−δ∆t −β∆t dl (Â)−β∆t â1l

)+ζ, (D.51)

where ζ is finite and depends on the transition probabilities Pr
[
Ei j

∣∣Â
] = β∆tδ∆t âi j ,

given by (D.39), for the links (i , j ) ∈ L̄.

3There is no necessity to use the shortest walk here, as long as the walk visits every link (i , j ) ∈ L̄.
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Algorithm D.2 Construction of Viral State Sequence for Full-Size SIS Network Recon-
struction

1: Input: graph Ḡ = (N ,L̄), multiplicities κ2, ...,κN

2: Output: viral state sequence x[n1 +1], ..., x[n2]
3:

(
(i1, j1), ..., (ir , jr )

)← CPP
(
Ḡ

)
4: D←; . set of visited nodes
5: k ← 1
6: for l = 1, ...,r do
7: p ← il , q ← jl

8: x[k] ← ep

9: k ← k +1
10: if p 6∈D∧p 6= 1 then
11: (x[k], x[k +1], ..., x[k +κp −1]) ← (ep ,ep , ...,ep ) . κp times constant transition

Ap

12: k ← k +κp

13: D←D∪ {p}
14: end if
15: x[k] ← ep +eq . essential part of transition Epq (infection from node p to q)
16: k ← k +1
17: end for
18: x[k] ← eq

19: k ← k +1

By choosing the number of transitions κl sufficiently great for all nodes l ≥ 2, we
finally obtain that the matrix AML that solves the full-size SIS network reconstruction
(5.10) at time n2 with the objective function (D.51) has to satisfy (AML)i j = ai j for all
links (i , j ) ∈ L̄.

D.5.3. SECOND STATEMENT OF LEMMA 5.14
As given by the first statement of Lemma 5.14, the solution ÂML to the full-size SIS net-
work reconstruction (5.10) with the objective function (D.51) has to satisfy (ÂML)i j = ai j

for (i , j ) ∈ L̄. Hence, the full-size SIS network reconstruction problem (5.10) at time n2

becomes

ÂML = arg max
Â

fn1 (Â)+
N∑

l=2
κl log

(
1−δ∆t −β∆t dl (Â)−β∆t â1l

)+ζ
s.t. âi j ∈ {0,1}, i , j = 1, ..., N ,

âi j = â j i , i , j = 1, ..., N ,

âi i = 0, i = 1, ..., N ,

âi j = ai j , ∀(i , j ) ∈ L̄,

(D.52)

where the objective function follows from (D.37) and (D.51). Since the optimisation vari-
ables âi j in (D.52) are fixed to ai j for (i , j ) ∈ L̄, the optimisation takes place only with
respect to the elements â13, ..., â1N . Furthermore, the term ζ does not depend on the
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links â13, ..., â1N and can be omitted in (D.52). By the formal replacement

Pr
[

x[1], ..., x[n1]
∣∣∣â13, ..., â1N

]
= fn1 (Â) ifâi j = ai j ∀(i , j ) ∈ L̄,

we obtain the second statement of Lemma 5.14.

D.6. PROOF OF THEOREM 5.15
To show that the optimisation problem (5.22) is NP-hard, we consider the addends in the
sum of its objective function, which equal

κl log
(
1−δ∆t −β∆t dl (Â)−β∆t â1l

)=κl log
(
1−δ∆t −β∆t dl (A)

)
(D.53)

+ â1lκl log

(
1−δ∆t −β∆t dl (A)−β∆t

1−δ∆t −β∆t dl (A)

)
,

where we used the fact that dl (A) = dl (Â) as stated Subsection D.5.2. The first addend
in (D.53) is constant with respect to the links â1m for all nodes m and thus the term has
not to be considered in the optimisation problem (5.22). However, the second addend
in (D.53) given by â1lχl , where

χl = κl log

(
1−δ∆t −β∆t dl (A)−β∆t

1−δ∆t −β∆t dl (A)

)
,

is not constant with respect to the elements â1m and has to be considered in the optimi-
sation problem (5.22). Hence, the optimisation problem (5.22) is of the form (5.20) when
the coefficients cl in (5.20) are replaced by cl +χl , and the optimisation problem (5.22)
becomes

max
â13,...,â1N

N∑
i=3

N∑
j=i+1

ci j â1i â1 j +
N∑

l=3
(cl +χl )â1l

s.t. â1i ∈ {0,1}, i = 3, ..., N .

(D.54)

Since the term χl is constant with respect to the elements â1m , it follows from Lemma
5.12 that the coefficient cl can be set such that the coefficient (cl +χl ) approaches any
real number arbitrarily close. If the coefficients ci j in (D.54) equal the coefficients bi j

in the zero-one UQP (5.12) and the difference of the coefficients (cl +χl ) in (D.54) to the
coefficients bl in (5.12) is positive and smaller than 1/N , then it follows from Lemma 5.13
that the solution to (D.54) is also a solution to (5.12). Hence, solving the optimisation
problem (D.54), which resulted from the full-size SIS network reconstruction (5.10) as
stated by Lemma 5.14, implies solving the NP-hard zero-one UQP (5.12).
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D.7. NETWORK RECONSTRUCTION AS CONVEX OPTIMISATION

PROBLEM
To overcome the challenge of the non-convexity of the optimisation problem (5.9), we
consider the following reformulation of the objective function

fobj(θ) =− log(Pr[A])− ∑
k∈H10

(
log

(
β∆t

)+ log

(
δ∆t

β∆t

))

−
N∑

i=1

∑
k∈H01[i ]

log
(
β∆t

)+ log

(
ε∆t

β∆t
+

N∑
j=1

x j [k]ai j

)

− ∑
k∈Hconst

log
(
β∆t

)+ log

(
1−Nε∆t

β∆t
+ ε∆t −δ∆t

β∆t
uT x[k]+∑

j ,i
x j [k](xi [k]−1)ai j

)

We transform the parameters θ according to

h(θ) = (A,β−1
∆t ,

δ∆t

β∆t
,
ε∆t

β∆t
),

and denote the transformed parameters by

θ̃ = (A, β̃, δ̃, ε̃) = h(θ).

Expressing the objective in terms of the transformed parameters θ̃ gives, since n = |H10|+
|Hconst|+∑

i |H01[i ]|,

fobj(θ̃) =n log
(
β̃
)− log(Pr[A])−|H10| log

(
δ̃
)− N∑

i=1

∑
k∈H01[i ]

log

(
ε̃+

N∑
j=1

x j [k]ai j

)

− ∑
k∈Hconst

log

(
β̃−N ε̃+ (ε̃− δ̃)uT x[k]+∑

j ,i
x j [k](xi [k]−1)ai j

)
=n log

(
β̃
)+ g

(
θ̃
)

,

where g (θ̃) = fobj(θ) − n log(β̃). Given the convex relaxation of the integer constraint
ai j ∈ [0,1], the function g (θ̃) is convex as the function g (θ̃) is a sum of composition
of negative logarithms and linear functions of θ̃ and since log(Pr[A]) is concave by as-
sumption, but the remaining term log(β̃) is not convex. Based on the above form of
the objective function fobj, a convex approximation is stated in the following. We con-
sider a piecewise-linear (or, more accurately, piecewise-affine) approximation of the
non-convex term log(β̃). We denote the number of segments of the piecewise-linear
approximation by w , the more line segments, the more accurate the resulting approxi-
mation.

Given the range of β, it holds that

β̃= (β∆t )−1 ∈ [(∆tβmax)−1, (∆tβmin)−1].
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Hence, the image of the non-convex term log(β̃) is given by [− log(∆tβmax),− log(∆tβmin)].
For stating a piecewise-linear approximation, we divide the image of log(β̃) into w sub-
intervals of equal size. These intervals are denoted by [log(tl ), log(tl+1)], l = 1, ..., w ,
where (log(tl+1)−log(tl )) is constant with respect to l . Furthermore, it holds that log(t1) =
− log(∆tβmax) and log(tw+1) = − log(∆tβmin). The piecewise-linear approximation is
then given by the line segments connecting the points (tl , log(tl )) of the intervals:

log
(
β̃
)≈ hl (β̃) := cl β̃+dl , for β̃ ∈ [tl , tl+1],

where

cl =
log(tl+1)− log(tl )

tl+1 − tl

and

dl =
tl log(tl+1)− tl+1 log(tl )

tl − tl+1

Each line segment l of the piecewise-linear approximation gives rise to a convex optimi-
sation problem when the integer constraint on A is relaxed to ai j ∈ [0,1]. Considering
the feasible regions for β̃, δ̃ and ε̃ as constraints in the optimisation problem, we obtain
for each line segment l

minimise
θ̃

g (θ̃)+nhl (β̃)

subject to ai j ∈ [0,1] ∀i , j

tl ≤ β̃≤ tl+1

0 ≤ δ̃≤ δmax∆t β̃

0 ≤ ε̃≤ εmax∆t β̃

(D.55)

We denote the solution to the convex optimisation problem (D.55) by

θ̃cvx,l = (Acvx,l , β̃cvx,l , δ̃cvx,l , ε̃cvx,l ).
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E.1. PROOF OF PROPOSITION 6.6
Proposition 6.6 states there exists a logistic function f (t ) with f (0) = y1, f (tobs/2) = y2

and f (tobs) = y3 if and only if Φ
(
y1, y2, y3

) > 0. Subsection E.1.1 shows the “only if” di-
rection: if the three points y1, y2, y3 satisfy f (0) = y1, f (tobs/2) = y2 and f (tobs) = y3 for
some logistic function f (t ), then it holds that Φ

(
y1, y2, y3

) > 0. In Subsection E.1.2, we
prove the “if” direction: for any three points y1, y2, y3 that satisfy Φ

(
y1, y2, y3

) > 0, we
construct a logistic function f (t ) with f (0) = y1, f (tobs/2) = y2 and f (tobs) = y3.

E.1.1. FIRST PART
Lemma E.1. For some observation time tobs > 0, consider three points y1 = f (0), y2 =
f (tobs/2) and y3 = f (tobs) on a logistic function f (t ). Then, the growth metricΦ

(
y1, y2, y3

)
defined in (6.7) equals

Φ
(
y1, y2, y3

)= eK t0

1+eK t0

(
1−e−K tobs/2

)2

1+e−K (tobs/2−t0)
, (E.1)

which implies that 0 <Φ(
y1, y2, y3

)< 1.

Proof. Since y1 = f (0), y2 = f (tobs/2) and y3 = f (tobs), we obtain from the definition of
the logistic function f (t ) in (6.3) that

y1 = y∞
1+eK t0

,

y2 = y∞
1+e−K (tobs/2−t0)

and

y3 = y∞
1+e−K (tobs−t0)

. (E.2)
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We define the two constants α and c as

α= eK t0 (E.3)

and

c = e−K tobs/2. (E.4)

Thus, we can write the three points y1, y2 and y3 more compactly as

y1 = y∞
1+α , (E.5)

y2 = y∞
1+αc

(E.6)

and

y3 = y∞
1+αc2 .

From the definition of the growth metricΦ
(
y1, y2, y3

)
in (6.7), we obtain that

Φ
(
y1, y2, y3

)= 1+αc2

1+αc
− 1+αc

1+α
=

(
1+αc2

)
(1+α)− (1+αc)2

(1+αc) (1+α)
.

Hence, it holds that

Φ
(
y1, y2, y3

)= 1+α+αc2 +α2c2 −1−2αc −α2c2

(1+αc) (1+α)
,

which simplifies to

Φ
(
y1, y2, y3

)= α

1+α
1

1+αc
(1− c)2 . (E.7)

Since α> 0 and c > 0, we obtain that Φ
(
y1, y2, y3

)> 0. Furthermore, tobs > 0 implies that
c < 1. Thus, we obtain from (E.7) that Φ

(
y1, y2, y3

)< 1. To finish the proof, we substitute
α, c in (E.7) and arrive at (E.1).

E.1.2. SECOND PART
For i = 1,2,3, the point yi is on the logistic function (6.3) if and only if

yi + yi e−K ((i−1)tobs/2−t0) − y∞ = 0.

Dividing by yi yields that

e−K ((i−1)tobs/2−t0) − 1

yi
y∞+1 = 0.
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Thus, we arrive at a set of three non-linear equations

eK t0 e−K (i−1)tobs/2 − 1

yi
y∞+1 = 0, i = 1,2,3. (E.8)

With (E.3) and (E.4), we can express the second exponential in (E.8) as

e−K (i−1)tobs/2 =


1 if i = 1,

c if i = 2,

c2 if i = 3.

Then, we obtain from (E.8) a set of non-linear equations for the three unknownsα, c and
y∞ as

α− 1

y1
y∞+1 = 0, (E.9)

αc − 1

y2
y∞+1 = 0, (E.10)

αc2 − 1

y3
y∞+1 = 0. (E.11)

The first equation (E.9) yields that

y∞ = y1 (α+1) . (E.12)

Combining (E.12) with the second equation (E.10) gives that

αc − y1

y2
(α+1)+1 = 0,

from which we obtain that

c = 1

α

(
y1

y2
(α+1)−1

)
.

Hence, it holds that

c = 1

α

(
y1

y2
−1

)
+ y1

y2
. (E.13)

Combining the expressions for y∞ and c in (E.12) and (E.13), respectively, with the third
equation (E.11) yields that

α

(
1

α

(
y1

y2
−1

)
+ y1

y2

)2

− y1

y3
(α+1)+1 = 0,

which is equivalent to

1

α

(
y1

y2
−1

)2

+2

(
y1

y2
−1

)
y1

y2
+α y2

1

y2
2

− y1

y3
(α+1)+1 = 0.
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Multiplication with α and rearranging gives that

α2

(
y2

1

y2
2

− y1

y3

)
+α

(
2

y1

y2

(
y1

y2
−1

)
− y1

y3
+1

)
+

(
y1

y2
−1

)2

= 0. (E.14)

The quadratic equation (E.14) has two solutions. The first solution is α = −1 leads to a
contradiction, since α, defined in (E.3), is positive. The second solution of (E.14) is

α=−
(

1
y2

− 1
y1

)2

1
y2

2
− 1

y1 y3

,

which is equivalent to

α=
(
y1 − y2

)2

y1 y2

1
y2
y3

− y1
y2

.

Thus, we obtain with the definition of the growth metricΦ(y1, y2, y3) in (6.7) that

α=
(
y1 − y2

)2

y1 y2

1

Φ(y1, y2, y3)
. (E.15)

Since y1 > 0 and y2 > 0, the expression (E.15) for α is positive only if

Φ(y1, y2, y3) > 0.

Hence, if and only if (6.8) holds true, there is a solution for the unknown α, and, hence,
for the logistic growth rate K and the inflection point t0. From (E.15) and (E.12), we
obtain the steady-state y∞ as

y∞ = y1 +
(
y1 − y2

)2

y2

1

Φ(y1, y2, y3)
.

From (E.13) and (E.15), it follows that the unknown c equals

c = y1

y2
+

(
y1

y2
−1

)
y1 y2(

y1 − y2
)2Φ

(
y1, y2, y3

)
,

which simplifies to

c = y1

y2
+ y1

y1 − y2
Φ

(
y1, y2, y3

)
. (E.16)

The definition of c in (E.4) implies that

K =− 2

tobs
log(c) ,
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which yields with (E.16) that

K =− 2

tobs
log

(
y1

y2
+ y1

y1 − y2
Φ

(
y1, y2, y3

))
.

Finally, we obtain the inflection point t0 from (E.3) as

t0 = 1

K
log(α)

= 1

K
log

((
y1 − y2

)2

y1 y2

1

Φ(y1, y2, y3)

)
,

where the last equality follows from (E.15).

E.2. PROOF OF PROPOSITION 6.7
E.2.1. CONDITION NUMBER OF ESTIMATING THE STEADY STATE
From the definition of the condition number κ1(tobs) in (6.13), we obtain that

κ1(tobs) =−
(
y1 − y2

)2

y2

1

Φ2(y1, y2, y3)

∂Φ(y1, y2, y3)

∂y3
.

The definition of the growth metricΦ(y1, y2, y3) in (6.7) yields that

∂Φ(y1, y2, y3)

∂y3
=− y2

y2
3

. (E.17)

Thus, the condition number κ1(tobs) follows as

κ1(tobs) =
(
y1 − y2

)2

y2
3

1

Φ2(y1, y2, y3)
.

E.2.2. CONDITION NUMBER OF ESTIMATING THE LOGISTIC GROWTH RATE
With (6.10), we define the condition number κ2(tobs) with respect to the growth rate es-
timate K̂ (tobs) as

κ2(tobs) = ∂

∂y3

(
− 2

tobs
log

(
y1

y2
+ y1

y1 − y2
Φ

(
y1, y2, y3

)))
.

Hence, it holds that

κ2(tobs) =− 2

tobs

1
y1
y2

+ y1
y1−y2

Φ
(
y1, y2, y3

) y1

y1 − y2

∂

∂y3
Φ

(
y1, y2, y3

)
.

Thus, we obtain with (E.17) that

κ2(tobs) = 2

tobs

1
y1
y2

−1+Φ(
y1, y2, y3

) y2

y2
3

,

which simplifies to

κ2(tobs) = 2

tobs

y2
2

y2
3

1

y1 − y2 + y2Φ
(
y1, y2, y3

) . (E.18)
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E.2.3. CONDITION NUMBER OF ESTIMATING THE INFLECTION POINT

With (6.11), we define the condition number κ3(tobs) with respect to the inflection point
estimate t̂0(tobs) as

κ3(tobs) = ∂

∂y3

(
1

K
log

((
y1 − y2

)2

y1 y2

1

Φ(y1, y2, y3)

))
,

which becomes

κ3(tobs) =− 1

K 2 log

((
y1 − y2

)2

y1 y2

1

Φ(y1, y2, y3)

)
∂K

∂y3

− 1

K

1

(y1−y2)2

y1 y2

1
Φ(y1,y2,y3)

(
y1 − y2

)2

y1 y2

1

Φ2(y1, y2, y3)

∂

∂y3
Φ(y1, y2, y3).

Thus, it holds that

κ3(tobs) =− 1

K 2 log

((
y1 − y2

)2

y1 y2

1

Φ(y1, y2, y3)

)
∂K

∂y3

− 1

K

1

Φ(y1, y2, y3)

∂

∂y3
Φ(y1, y2, y3).

With (6.11), (E.17) and (E.18), we obtain that

κ3(tobs) =− 1

K
t0

1

tobs

y2
2

y2
3

1

y1 − y2 + y2Φ
(
y1, y2, y3

)
+ 1

K

1

Φ(y1, y2, y3)

y2

y2
3

,

which simplifies to

κ3(tobs) = 1

K

y2

y2
3

(
1

Φ(y1, y2, y3)
− t0 y2

tobs

1

y1 − y2 + y2Φ
(
y1, y2, y3

) )
.

The expression (6.16) for the condition number κ3(tobs) follows from tobs = tobs/2.

E.3. PROOF OF PROPOSITION 6.8
E.3.1. AUXILIARY LEMMAS

Lemma E.2. For some observation time tobs > 0, consider three points y1 = f (0), y2 =
f (tobs/2) and y3 = f (tobs) on a logistic function f (t ). Then, the difference of the points y2

and y1 equals

y2 − y1 = y∞
1−e−

1
2 K tobs

Φ
(
y1, y2, y3

)
.
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Proof. From (E.5) and (E.6), we obtain that

y2 − y1 = y∞
(

1

1+αc
− 1

1+α
)

,

where α and c are defined by (E.3) and (E.4). We simplify and obtain that

y2 − y1 = y∞
α

1+α
1− c

1+αc
.

Comparing with (E.7) yields that

y2 − y1 = y∞
1− c

Φ
(
y1, y2, y3

)
.

E.3.2. LOWER BOUND FOR THE CONDITION NUMBER OF ESTIMATING THE

STEADY STATE
From Lemma E.2, we obtain that the condition number κ1(tobs) in (6.14) equals to

κ1(tobs) = y2∞
y2

3

1(
1−e−

1
2 K tobs

)2 .

From the expression for y3 in (E.2) and 2tobs = tobs, it follows that

κ1(tobs) =
(

1+e−K (tobs−t0)

1−e−
1
2 K tobs

)2

.

Hence, we obtain that

κ1(tobs) ≥
(

1

1−e−
1
2 K tobs

)2

+
(

e−K (tobs−t0)

1−e−
1
2 K tobs

)2

≥ 1+
(

e−K (tobs−t0)

1−e−
1
2 K tobs

)2

. (E.19)

A basic inequality [282] for the exponential function is e−x ≥ 1− x for all x ∈ R. Hence,
the denominator in (E.19) is bounded by

1−e−
1
2 K tobs ≤ 1−

(
1− 1

2
K tobs

)
= 1

2
K tobs,

which finally implies that

κ1(tobs) ≥ 1+ 4

K 2t 2
obs

e−2K (tobs−t0).
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E.3.3. LOWER BOUND FOR THE CONDITION NUMBER OF ESTIMATING THE

LOGISTIC GROWTH RATE
We consider the denominator of the last factor in (6.15), which equals

y1 − y2 + y2Φ
(
y1, y2, y3

)=−(
y2 − y1

)(
1− y2

y2 − y1
Φ

(
y1, y2, y3

))
.

With Lemma E.2 we obtain that

y1 − y2 + y2Φ
(
y1, y2, y3

)=−(
y2 − y1

)(
1− y2

y∞

(
1−e−

1
2 K tobs

))
.

Since y2 > y1, y∞ > y2 and tobs > 0, it holds that

y1 − y2 + y2Φ
(
y1, y2, y3

)< 0.

Thus, it follows from (6.15) that

|κ2(tobs)| = −κ2(tobs)

= 2

tobs

y2
2

y2
3

1

y2 − y1 − y2Φ
(
y1, y2, y3

) .

With Lemma E.2

|κ2(tobs)| = 2

tobs

y2
2

y2
3

(
y∞

1−e−
1
2 K tobs

− y2

)−1 1

Φ
(
y1, y2, y3

)
= 2

tobs

y2
2

y2
3

1−e−
1
2 K tobs

y∞− y2

(
1−e−

1
2 K tobs

) 1

Φ
(
y1, y2, y3

) .

Since

y2

(
1−e−

1
2 K tobs

)
> 0,

it holds that

|κ2(tobs)| > 2

tobs

y2
2

y2
3

1

y∞

(
1−e−

1
2 K tobs

) 1

Φ
(
y1, y2, y3

) . (E.20)

To further bound (E.20), we consider the term

2

tobs

(
1−e−

1
2 K tobs

)
= K

1−e−ξ

ξ
, (E.21)

where ξ= 1
2 K tobs. Since ξ>−1, we obtain that

K
1−e−ξ

ξ
> K

1

1+ξ
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Thus, with (E.21) and the definition of ξ, we obtain that

2

tobs

(
1−e−

1
2 K tobs

)
≥ K

1

1+ 1
2 K tobs

.

Finally, (E.20) yields that

|κ2(tobs)| > y2
2

y2
3

1

y∞
K

1+ 1
2 K tobs

1

Φ
(
y1, y2, y3

) .

E.3.4. LOWER BOUND FOR THE CONDITION NUMBER OF ESTIMATING THE

INFLECTION POINT
With (6.15), the expression for the condition number κ3(tobs) in (6.16) is equivalent to

κ3(tobs) = 1

K

y2

y2
3

(
1

Φ(y1, y2, y3)
− t0 y2

3

y2
κ2(tobs)

)
.

Since κ2(tobs) < 0, we obtain a lower bound as

κ3(tobs) > 1

K

y2

y2
3

1

Φ(y1, y2, y3)
.
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F.1. DERIVATION OF THE DISCRETE-TIME GEMF MODEL
In Subsection F.1.1, we give a brief description the continuous-time GEMF model [136]
for completeness. In Subsection F.1.2, we extend the continuous-time GEMF model to
heterogeneous spreading parameters. In Subsection F.1.3, we show that applying Eu-
ler’s method to the continuous-time GEMF model of Sahneh et al. [136] results in the
discrete-time model (7.4).

F.1.1. CONTINUOUS-TIME GEMF WITH HOMOGENEOUS PARAMETERS
There are two kinds of transition in the GEMF model. First, there are nodal transitions.
Node i changes from compartment p to compartment q with the transition rate δpq .
The C ×C nodal transition rate matrix Aδ is defined as

(Aδ)pq = δpq , 1 ≤ p, q ≤C .

The second kind of transitions in the GEMF model are edge-based transitions. The GEMF
model is formulated for multi-layer networks. The layers are denoted by l = 1, ...,L,
where L denotes the number of layers. For every layer l , there is an N × N adjacency
matrix Al with elements al ,i j for every pair of nodes i , j . If there is a directed link on
layer l from node j to node i , then it holds al ,i j = 1. If there is no link on layer l from
node j to node i , then it holds al ,i j = 0. To every network layer l , there is exactly one
influencer compartment cl ∈ {1, ...,C }. If a node i has neighbours j on graph layer l , i.e.
al ,i j = 1, which are in compartment cl , then node i changes from compartment p to
compartment q with the transition rate βl ,pq . For every layer l , the C ×C edge-based
transition rate matrix Aβl

is defined as(
Aβl

)
pq =βl ,pq , 1 ≤ p, q ≤C .

The matrices Aδ and Aβl
are adjacency matrices and define the nodal transition rate

graph and, for every layer l , an edge-based transition rate graph. The Laplacian matrix

269
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of the nodal transition rate graph and the edge-based transition rate graphs, respectively,
are denoted by

Qδ = diag(Aδu)− Aδ

and

Qβ,l = diag
(

Aβl
u

)− Aβl
.

Finally, the GEMF model in continuous time describes the evolution of the C × 1 viral
state vector νi (t ) as

dνi (t )

d t
=−QT

δ νi (t )−
L∑

l=1

(
N∑

j=1
al ,i jν j ,cl (t )

)
QT
β,lνi (t ) (F.1)

for every node i . We refer the reader to [136] for further details of the GEMF model.

F.1.2. CONTINUOUS-TIME GEMF WITH HETEROGENEOUS PARAMETERS
In real-world epidemics, heterogeneous spreading parameters are more likely than ho-
mogeneous spreading parameters. For instance, in an SIS epidemic process, an elderly
individual is more susceptible to getting infected than younger individuals. Hence, ifβ1 j

and β2 j denote the infection rates from an individual j to an elderly individual 1 and a
younger individual 2, respectively, then it holds that β1 j > β2 j . Similarly, the curing rate
δ1 of an elderly individual 1 is lower than the curing rate δ2 of a younger individual 2.

To consider heterogeneous spreading parameters, we replace the nodal transition
rates δpq from compartment p to compartment q by the rates δpq,i , which depend on
the node i . Hence, the C ×C nodal transition rate matrix Aδ is replaced by the C ×C
matrix Aδ,i whose elements are given by(

Aδ,i
)

pq = δpq,i , 1 ≤ p, q ≤C ,

for every node i . Analogously, we replace the edge-based transition rates βl ,pq from
compartment p to compartment q on layer l by the rates βl ,pq,i j , which depend on the
nodes i , j . Hence, the C ×C adjacency matrix Aβl

of the edge-based transition rates on
layer l is replaced by the C ×C adjacency matrix Aβl ,i j whose elements are defined by(

Aβl ,i j
)

pq =βl ,pq,i j , 1 ≤ p, q ≤C .

With heterogeneous spreading parameters, the GEMF model (F.1) becomes

dνi (t )

d t
=−QT

δ,iνi (t )−
L∑

l=1

N∑
j=1

ν j ,cl (t )al ,i j QT
β,l ,i jνi (t ), (F.2)

Here, the Laplacian matrix of the nodal transition rate graph and the edge-based tran-
sition rate graphs, respectively, with heterogeneous spreading parameters are denoted
by

Qδ,i = diag
(

Aδ,i u
)− Aδ,i

and

Qβ,l ,i j = diag
(

Aβ,l ,i j u
)− Aβ,l ,i j .
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F.1.3. DISCRETE-TIME GEMF WITH HETEROGENEOUS PARAMETERS
Before formulating the GEMF model in discrete time, we rewrite the differential equation
(F.2). We define the set of layers l whose influence compartment cl equals m as

Lm = {l = 1, ...,L|cl = m} .

Then, we can rewrite (F.2) as

dνi (t )

d t
=−QT

δ,iνi (t )−
N∑

j=1

C∑
m=1

∑
l∈Lm

ν j ,m(t )al ,i j QT
β,l ,i jνi (t ),

which is equivalent to

dνi (t )

d t
=−QT

δ,iνi (t )−
N∑

j=1

C∑
m=1

ν j ,m(t )

( ∑
l∈Lm

al ,i j QT
β,l ,i j

)
νi (t ). (F.3)

Euler’s method approximates the derivative as

dνi (t )

d t

∣∣∣∣
t=k∆t

≈ νi ((k +1)∆t )−νi (k∆t ))

∆t
(F.4)

for a small sampling time ∆t and a discrete time slot k ∈ N. We denote νi [k] = νi (k∆t )
and, using Euler’s method (F.4) with equality, obtain from (F.3) that

νi [k +1] =νi [k]−∆tQT
δ,iνi [k]−

N∑
j=1

C∑
m=1

ν j ,m[k]

(
∆t

∑
l∈Lm

al ,i j QT
β,l ,i j

)
νi [k].

Finally, we identify the Laplacian matrices of the discrete-time GEMF model (7.4) as

Qi =∆tQδ,i

and

Qm,i j =∆t
∑

l∈Lm

al ,i j Qβ,l ,i j .

Thus, the nodal transition probability matrix Si and the edge-based transition probabil-
ity matrix Bm,i j of the discrete-time GEMF model (7.4) are related to the matrices Aδ,i ,
Aβ,l ,i j of the continuous-time GEMF model (F.2) via

Si =∆t Aδ,i

and

Bm,i j =∆t
∑

l∈Lm

al ,i j Aβ,l ,i j . (F.5)

From (F.5) follows that the edge-based transition probability matrix Bm,i j describes the
influence of individuals of group j in compartment m on node i , summed over all layers
l that are in the set Lm .
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F.2. PROOF OF LEMMA 7.4
The GEMF model (7.4) model with a time-varying nodal transition matrix S̃i [k] = Si +
Scon,i [k] is given by

νi [k +1] =
(
IC −QT

i −QT
con,i [k]

)
νi [k]−

N∑
j=1

C∑
m=1

ν j ,m[k]QT
m,i jνi [k]

for every group i = 1, ..., N . Here, the C ×C Laplacian matrix of the known control matrix
Scon,i [k] equals

QT
con,i [k] = diag

(
Scon,i [k]u

)−Scon,i [k].

For any C ×C matrix A and any C ×1 vector x, it holds that

Ax = (
IC ⊗xT )

vec(AT ),

which follows from the definition of the matrix vectorisation and the Kronecker product.
Hence, we can rewrite the GEMF equations (7.4) as

νi [k +1]−νi [k]+QT
con,i [k]νi [k] =− (

IC ⊗νT
i [k]

)
vec(Qi )

−
N∑

j=1

C∑
m=1

ν j ,m[k]
(
IC ⊗νT

i [k]
)

vec(Qm,i j ). (F.6)

To complete the proof, we stack (F.6) for the observation times k = 1, ...,n and obtain that
νi [2]−νi [1]+QT

con,i [1]νi [1]
...

νi [n +1]−νi [n]+QT
con,i [n]νi [n]

=−

 IC ⊗νT
i [1]

...
IC ⊗νT

i [n]

vec(Qi )

−
N∑

j=1

C∑
m=1

ν j ,m[1]
(
IC ⊗νT

i [1]
)

...
ν j ,m[n]

(
IC ⊗νT

i [n]
)
vec(Qm,i j ).

F.3. SIR EPIDEMIC MODEL
Stacking the SIR equations (7.5) for Ii [k + 1] and Ri [k + 1] for the observation times
k = 1, ...,n yields with (7.6) Lemma F.1.

Lemma F.1. For any node i , the curing probability constant δ∆t ,i and the infection prob-
abilities β∆t ,i 1, ...,β∆t ,i N of the discrete-time SIR epidemic model (7.5) with time-varying
curing rates δ̃∆t ,i [k] = δ∆t ,i +δcon,i [k] satisfy

VSIR,i = FSIR,i
(
δ∆t ,i ,β∆t ,i 1, ...,β∆t ,i N

)T .

Here, the 2n ×1 vector VSIR,i equals

VSIR,i =
(
V T

SIR,i [1], ...,V T
SIR,i [n]

)T
,
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with the 2×1 vectors

VSIR,i [k] =
( Ii [k +1]− (1−δcon,i [k])Ii [k]
Ri [k +1]− (1+δcon,i [k])Ri [k]

)
.

Furthermore, the 2n × (N +1) matrix FSIR,i equals

FSIR,i =
(
F T

SIR,i [1] ... F T
SIR,i [n]

)T

with the 2× (N +1) matrices

FSIR,i [k] =
(−Ii [k] Si [k]I1[k] ... Si [k]IN [k]
Ii [k] 0 ... 0

)
.

F.4. SEIR EPIDEMIC MODEL
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Figure F.1: SEIR transition graph. The transition graph for the discrete-time SEIR epidemic model in Defini-
tion F.2.

From Figure F.1, we obtain the nodal-based transition matrix Si and the edge-based
transition matrices B3,i j of the SEIR model as

Si =


0 0 0 0
0 0 γ∆t ,i 0
0 0 0 δ∆t ,i

0 0 0 0

 ,

and

B3,i j =


0 β∆t ,i j 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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For the compartments m = 1,2,4, the edge-based transition matrices equal B1,i j = B2,i j =
B4,i j = 0. Thus, the Laplacian matrices equal

Qi =


0 0 0 0
0 γ∆t ,i −γ∆t ,i 0
0 0 δ∆t ,i −δ∆t ,i

0 0 0 0

 , (F.7)

and

Q3,i j =


β∆t ,i j −β∆t ,i j 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 . (F.8)

For the compartments m = 1,2,4, the Laplacian matrices equal Q1,i j =Q2,i j =Q4,i j =
0. With (F.7) and (F.8), the SEIR model specified by Figure F.1 follows with (7.4) as:

Definition F.2 (Discrete-time SEIR epidemic model). For every group i , the viral state of
the SEIR epidemic model equals νi [k] = (Si [k],Ei [k],Ii [k],Ri [k])T . Here, Si [k], Ei [k],
Ii [k] and Ri [k] denote the fraction of susceptible, exposed, infectious, and recovered
individuals in group i at time k ∈N, respectively. For every group i , the viral state evolves
in discrete time k according to

Si [k +1] =Si [k]−Si [k]
N∑

j=1
β∆t ,i jI j [k] (F.9)

Ei [k +1] = (1−γ∆t ,i )Ei [k]+Si [k]
N∑

j=1
β∆t ,i jIi [k]

Ii [k +1] = (1−δ∆t ,i )Ii [k]+γ∆t ,iEi [k]

and the fraction of recovered individuals follows as

Ri [k] = 1−Si [k]−Ei [k]−Ii [k]

at any time k ∈N. Here, β∆t ,i j denotes the infection probability from group j to group i ,
γ∆t ,i denotes the incubation probability of group i , and δ∆t ,i denotes the curing proba-
bility of group i .

Stacking the SEIR equations (F.9) for Si [k +1], Ei [k +1] and Ii [k +1] for the observa-
tion times k = 1, ...,n yields Lemma F.3.

Lemma F.3. For any node i , the incubation probability γ∆t ,i , the curing probability con-
stant δ∆t ,i and the infection probabilities β∆t ,i 1, ...,β∆t ,i N of the discrete-time SIR epi-
demic model (F.9) with time-varying curing rates δ̃∆t ,i [k] = δ∆t ,i +δcon,i [k] satisfy

VSEIR,i = FSEIR,i
(
γ∆t ,i ,δ∆t ,i ,β∆t ,i 1, ...,β∆t ,i N

)T .



F.5. SISIR EPIDEMIC MODEL

F

275

Here, the 3n ×1 vector VSEIR,i equals

VSEIR,i =
(
V T

SEIR,i [1] ... V T
SEIR,i [n]

)T
,

with the 3×1 vectors

VSEIR,i [k] =
 Si [k +1]−Si [k]

Ei [k +1]−Ei [k]
Ii [k +1]− (1−δcon,i [k])Ii [k]

 .

Furthermore, the 3n × (N +2) matrix FSEIR,i equals

FSEIR,i =
(
F T

SEIR,i [1] ... F T
SEIR,i [n]

)T

with the 3× (N +2) matrices

FSEIR,i [k] =
 0 0 −Si [k]I1[k] ... −Si [k]IN [k]
−Ei [k] 0 Si [k]I1[k] ... Si [k]IN [k]
Ei [k] −Ii [k] 0 ... 0

 .

F.5. SISIR EPIDEMIC MODEL
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Figure F.2: SISIR transition graph. The transition graph for the discrete-time SISIR epidemic model in Defini-
tion F.4.

From Figure F.2, we obtain the nodal-based transition matrix Si and the edge-based
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transition matrices B2,i j and B4,i j of the SISIR model as

Si =


0 0 0 0 0
0 0 δ∆t ,1,i 0 0
0 0 0 0 0
0 0 0 0 δ∆t ,2,i

0 0 0 0 0


and

B2,i j =


0 β∆t ,1,i j 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and

B4,i j =


0 0 0 0 0
0 0 0 0 0
0 0 0 β∆t ,2,i j 0
0 0 0 0 0
0 0 0 0 0

 .

For the compartments m = 1,3,5, the edge-based transition matrices and their Lapla-
cians equal B1,i j = B3,i j = B5,i j = 0 and Q1,i j = Q3,i j = Q5,i j = 0. The other Laplacian
matrices equal

Qi =


0 0 0 0 0
0 δ∆t ,1,i −δ∆t ,1,i 0 0
0 0 0 0 0
0 0 0 δ∆t ,2,i −δ∆t ,2,i

0 0 0 0 0


and

Q2,i j =


β∆t ,1,i j −β∆t ,1,i j 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and

Q4,i j =


0 0 0 0 0
0 0 0 0 0
0 0 β∆t ,2,i j −β∆t ,2,i j 0
0 0 0 0 0
0 0 0 0 0

 .

Thus, the SISIR specified by Figure F.2 follows with (7.4) as:
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Definition F.4 (Discrete-time SISIR epidemic model). For every group i , the viral state
of the SISIR epidemic model equals νi [k] = (S1,i [k],I1,i [k],S2,i [k],I2,i [k],Ri [k])T . Here,
Sl ,i [k] and Il ,i [k] denote the fraction of individuals in group i at time k ∈ N that are
susceptible to and infected by disease l = 1,2, respectively. At time k ∈N, Ri [k] denotes
the fraction of recovered individuals in group i . For every group i , the viral state evolves
in discrete time k according to

S1,i [k +1] =S1,i [k]−S1,i [k]
N∑

j=1
β∆t ,1,i jI1, j [k] (F.10)

I1,i [k +1] = (1−δ∆t ,1,i )I1,i [k]+S1,i [k]
N∑

j=1
β∆t ,1,i jI1, j [k]

S2,i [k +1] =S2,i [k]+δ∆t ,1,iI1,i [k]−S2,i [k]
N∑

j=1
β∆t ,2,i jI2, j [k]

I2,i [k +1] = (1−δ∆t ,2,i )I2,i [k]+S2,i [k]
N∑

j=1
β∆t ,2,i jI2, j [k]

and the fraction of recovered individuals follows as

Ri [k] = 1−S1,i [k]−I1,i [k]−S2,i [k]−I2,i [k]

at any time k ∈N. Here, for the disease l = 1,2, β∆t ,l ,i j denotes the infection probability
from group j to group i , and δ∆t ,l ,i denotes the curing probability of group i .

Stacking the SISIR equations (F.10) for Sl ,i [k +1] and Il ,i [k +1], where l = 1,2, for the
observation times k = 1, ...,n yields Lemma F.5.

Lemma F.5. For any node i , the curing probability constants δ∆t ,l ,i and the infection
probabilitiesβ∆t ,l ,1i , ..., βl ,i N , for both diseases l = 1,2, of the discrete-time SISIR epidemic
model (F.10) with time-varying curing rates δ̃∆t ,l ,i [k] = δ∆t ,l ,i +δcon,l ,i [k] satisfy

VSISIR,i = FSISIR,i
(
δ∆t ,1,i ,δ∆t ,2,i ,β∆t ,1,i 1, ...,β∆t ,1,i N ,β∆t ,2,i 1, ...,β∆t ,2,i N

)T .

Here, the 4n ×1 vector VSISIR,i equals

VSISIR,i =
(
V T

SISIR,i [1] ... V T
SISIR,i [n]

)T
,

with the 4×1 vectors

VSISIR,i [k] =


S1,i [k +1]−S1,i [k]

I1,i [k +1]− (1−δcon,1,i [k])I1,i [k]
S2,i [k +1]−S2,i [k]−δcon,1,iI1,i [k]
I2,i [k +1]− (1−δcon,2,i [k])I2,i [k]


for any time k = 1, ...,n. Furthermore, the 4n × (2N +2) matrix FSISIR,i equals

FSISIR,i =
(
F T

SISIR,i [1] ... F T
SISIR,i [n]

)T
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where the 4× (2N +2) matrices FSISIR,i [k] are given by

FSISIR,i [k] =


0 0 −F (1)

SISIR,i [k] 0

−I1,i [k] 0 F (1)
SISIR,i [k] 0

I1,i [k] 0 0 −F (2)
SISIR,i [k]

0 −I2,i [k] 0 F (2)
SISIR,i [k]


for any time k = 1, ...,n, and the 1×N vectors F (l )

SISIR,i [k] equal

F (l )
SISIR,i [k] = (Sl ,i [k]Il ,1[k] ... Sl ,i [k]Il ,N [k]

)
.

F.6. PROOF OF LEMMA 7.6
From the definition of the matrix FSIS,i in (7.10), it follows that

rank
(
FSIS,i

)≤ 1+ rank
(
F̃SIS,i

)
, (F.11)

where the n ×N matrix F̃SIS,i equals

F̃SIS,i =

Si [1]I1[1] ... Si [1]IN [1]
...

. . .
...

Si [n]I1[n] ... Si [n]IN [n]

 .

The bound (F.11) holds with equality if the first column of the matrix FSIS,i does not equal
to a linear combination of the columns of the matrix F̃SIS,i . The k-th row of the matrix
F̃SIS,i is given by

rk =Si [k]IT [k]

=
m∑

l=1
(Si [k]cl [k]) yT

l , (F.12)

where the second equality follows from the POD (2.1). From (F.12), we obtain that every
row rk of the matrix F̃SIS,i equals to the linear combination of m vectors y1, ..., ym . Thus,
the row rank of F̃SIS,i equals m, which completes the proof with (F.11).

F.7. PROOF OF THEOREM 7.9
Analogous steps to the derivations in Chapter 5 yield that (7.15) is equivalent to

θ̂i = argmax
θi≥0

log(Pr[θi ])+
n∑

k=1
log

(
Pr

[
νi [k +1]

∣∣ν[k],θi
])

(F.13)

The probability Pr
[
νi [k +1]

∣∣ν[k],θi
]

is determined by the distribution of the error wi [k].
Similar steps as in Appendix F.2 yield for GEMF with model errors (7.13) thatwi [1]

...
wi [n]

=Vi −Fiθi .
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Hence, under Assumption 7.8 on the prior Pr[θi ], the optimisation problem (F.13) be-
comes

θ̂i = argmax
θi

log(α)−
∑

j 6∈Ωi

(θi ) j

+
n∑

k=1
log

(
Pr

[
wi [k] = (Vi )k −

N∑
j=1

(Fi )k j (θi ) j

])
s.t. θi ≥ 0,

(θi ) j = 0, ∀ j ∈Ωi .

The term log(α) is constant with respect to the parameter vector θi and can be omitted,
which yields that

max
θi

n∑
k=1

log

(
Pr

[
wi [k] = (Vi )k −

N∑
j=1

(Fi )k j (θi ) j

])
− ∑

j 6∈Ωi

(θi ) j

s.t. θi ≥ 0,

(θi ) j = 0, ∀ j ∈Ωi .

Under Assumption 7.7, the errors wi [k] follow a Gaussian distribution, which results in
the minimisation problem

min
θi

n∑
k=1

log
(p

2πσw

)
+ 1

2σ2
w

(
(Vi )k −

N∑
j=1

(Fi )k j (θi ) j

)2

+ ∑
j 6∈Ωi

(θi ) j

s.t. θi ≥ 0,

(θi ) j = 0, ∀ j ∈Ωi .

Omitting the constant term log(
p

2πσw ) and multiplying with 2σ2
w gives

min
θi

n∑
k=1

(
(Vi )k −

N∑
j=1

(Fi )k j (θi ) j

)2

+2σ2
w

∑
j 6∈Ωi

(θi ) j

s.t. θi ≥ 0,

(θi ) j = 0 ∀ j ∈Ωi .

By identifying ρi = 2σ2
w , we obtain the LASSO (7.14), which completes the proof.

F.8. SIMULATION PARAMETERS
We describe the precise setting of the simulation parameters for Subsection 7.4.2. In
[76], an upper bound ∆tmax on the sampling time ∆t of Euler’s method was derived that
ensures the stability of the steady-state I∞ of the discrete-time SIS1 epidemic model
(4.1). We set the sampling time to ∆t =∆tmax/100. (Then, for the Barabási-Albert graph
of Figure 3, the resulting sampling time ∆t ranges from 5.4 ·10−4 to 1.2 ·10−3.) If there

1The stability of the equilibria of the general discrete-time GEMF model (7.4) is an open question.
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is a link between node i and j , then we set the infection probabilities β∆t ,i j and β∆t , j i

(respectively, β∆t ,l ,i j and β∆t ,l , j i for the SISIR model) to a uniform random number in
[0.5∆t ,0.6∆t ]. Hence, β∆t ,i j 6=β∆t , j i in general, and β∆t ,i i > 0 due to infections between
individuals in the same group i . If there is no link between node i and j , then we set the
infection rates to β∆t ,i j = 0 and β∆t , j i = 0. We set the “initial curing probabilities” δ(0)

i to
a uniformly distributed random number in [0.5∆t ,0.6∆t ]. Then, we set the curing prob-
abilities δ∆t ,i to a multiple of the initial curing rates δ(0)

i , i.e., δ∆t ,i =σδ(0)
i for every node

i and some scalar σ such that the basic reproduction number equals R0 = 1.5. For every
group i of the SIS, SIR and SEIR epidemic models, the initial fraction of infected individu-
als Ii [1] is set to a uniformly distributed random number in [0,1], and the initial fraction
of susceptible individuals Si [1] is set to Si [1] = 1−Ii [1]. For the SEIR epidemic model,
the incubation probability γ∆t ,i is set to a uniform random number in [0.5∆t ,0.6∆t ] For
every group i and both diseases l = 1,2 in the SISIR epidemic model, the initial fractions
of infected individuals Il ,i [1] is set to a uniformly distributed random number in [0,0.5],
and the initial fraction of susceptible individuals is set to Sl ,i [1] = (1−I1,i [1]−I2,i [1])/2
for l = 1,2. Hence, the initial fraction of recovered individuals in the SIR, SEIR and SISIR
model and the initial fraction of exposed individuals in the SEIR model are Ri [1] = 0 and
Ei [1] = 0, respectively. The observation length is set to n = 1000.

F.9. DETAILS OF THE NETWORK RECONSTRUCTION ALGORITHM

In Subsection F.9.1, we provide the details of the network reconstruction algorithm in
the presence of model errors wi [k]. Subsection F.9.2 gives the network reconstruction
algorithm in case of no model errors wi [k].

F.9.1. NETWORK RECONSTRUCTION IN THE PRESENCE OF MODEL ERRORS

To determine the regularisation parameter ρi > 0 in the LASSO (7.14), we consider 20
candidate values, specified by the set Θi = {ρmin,i , ...,ρmax,i }. If ρi > 2‖F T

i Vi‖∞, then
[292] the solution to the LASSO (7.14) equals θi = 0. We set the maximum value to
ρmax,i = 2‖F T

i Vi‖∞ ·10−4 and the minimum value to ρmin,i = 10−4ρmax,i . For every value

of the regularisation parameterρi ∈Θi , we compute the mean squared error MSE
(
θ̂i (ρi )

)
by 5-fold cross-validation [141]. For every fold, the rows of the matrix Fi and the vector
Vi are divided into a training set Ftrain,i , Vtrain,i and a validation set Fval,i , Vval,i . We com-
pute the solution θi to the LASSO (7.14) on the training set Ftrain,i , Vtrain,i of every fold.
Then, the mean squared error MSE

(
θ̂i (ρi )

)
is computed with the validation set as

MSE
(
θ̂i (ρi )

)= ∥∥Vval,i −Fval,iθi
∥∥2

2 ,

averaged over all folds. Finally, we set the regularisation parameter ρi to the minimiser
of the mean square error MSE

(
θ̂i (ρi )

)
. The final estimate θi is obtained by solving the

LASSO (7.14) on the whole matrix Fi and vector Vi . To solve the LASSO (7.14) numer-
ically, we make use of the Matlab command quadprog. Our network reconstruction
method is given in pseudo-code by Algorithm F.1.
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Algorithm F.1 GEMF network reconstruction

1: Input: viral states νi [1], ..., νi [n +1] and Scon,i [1], ..., Scon,i [n] for all nodes i
2: Output: estimate for the GEMF parameter vector θ̂i for all nodes i
3: for i = 1, ..., N do
4: ρmax,i ← 2‖F T

i Vi‖∞ ·10−4

5: ρmin,i ← 10−4ρmax,i

6: Θi ← 20 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈Θi do
8: estimate MSE

(
θ̂i (ρi )

)
by 5-fold cross validation on Fi ,Vi and solving (7.14) on

the respective training set
9: end for

10: ρopt,i ← minimiser of the estimates of MSE
(
θ̂i (ρi )

)
11: θ̂i ← the solution θ̂i (ρopt,i ) to (7.14) on the whole data set Fi ,Vi

12: end for

F.9.2. NETWORK RECONSTRUCTION IN THE ABSENCE OF MODEL ERRORS
If there are no model errors, i.e., wi [k] = 0 at every time k for every group i , then the
linear system (7.8) is satisfied with equality. Depending on the (numerical) rank of the
matrix Fi , we employ two methods to estimate the parameter vector θi . First, if the rank
of the matrix Fi equals the number of unknown components of the parameter vector
θi , then we solve the linear system Fiθi = Vi with the QR-solver provided by the Matlab
command mldivide. Second, if the rank of the matrix Fi is lower than the number of
unknown components of the parameter vector θi , then we estimate the parameter vector
θi by basis pursuit [144]:

θ̂i = arg min
θi

‖θi‖1

s.t. Fiθi =Vi

θi ≥ 0

(θi ) j = 0 ∀ j ∈Ωi

(F.14)

To solve the linear programme (F.14) numerically, we apply the dual simplex algorithm
provided by the Matlab command linprog.
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G.1. PROOF OF LEMMA 8.2
We prove Lemma 8.2 by induction with respect to time k. The base case at the initial time
k = 1, i.e., Ii [1] ≥ 0, Ri [1] ≥ 0 and Si [1] ≥ 0, is satisfied by assumption. For the inductive
step from time k ≥ 1 to k+1, suppose that Ii [k] ≥ 0, Ri [k] ≥ 0 and Si [k] ≥ 0 for all nodes
i . Since Si [k] = 1−Ii [k]−Ri [k], we obtain that

Ii [k]+Ri [k] ≤ 1. (G.1)

Under Assumption 8.1 it holds that 0 ≤ δ∆t ,i ≤ 1 and β∆t ,i j ≥ 0. Thus, (G.1) and the
SIR equations (7.5) yield that both Ii [k+1] and Ri [k+1] equal to a sum of non-negative
addends, which implies thatIi [k+1] ≥ 0 andRi [k+1] ≥ 0 for all nodes i . Thus, it remains
to show that Si [k +1] ≥ 0 for all nodes i . From (7.5), we obtain that

Ii [k +1]+Ri [k +1] = Ii [k]+Ri [k]+ (1−Ii [k]−Ri [k])
N∑

j=1
β∆t ,i jI j [k]. (G.2)

From Ii [k] ≥ 0, Ri [k] ≥ 0 and (G.1), it follows that

Ii [k]+Ri [k] ∈ [0,1], (G.3)

which implies that Ii [k] ≤ 1 for all nodes i . Thus, it holds that

N∑
j=1

β∆t ,i jI j [k] ≤
N∑

j=1
β∆t ,i j ≤ 1

under Assumption 8.1. With (G.3), it follows that the right side of (G.2) is a convex com-
bination of 1 and

∑N
j=1β∆t ,i jI j [k] ∈ [0,1]. Thus, it holds that Ii [k +1]+Ri [k +1] ≤ 1 for

all nodes i , which implies that Si [k +1] ≥ 0.
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Identifier i City Population Npop,i

1 Wuhan 10,607,700
2 Huanggang 6,291,000
3 Jingzhou 5,705,900
4 Xiangyang 5,614,000
5 Xiaogan 4,878,000
6 Xiantao 1,155,000
7 Yichang 4,115,000
8 Shiyan 3,383,000
9 Enshi (autonomous prefecture) 3,327,000
10 Jingmen 2,896,300
11 Xianning 2,507,000
12 Huangshi 2,458,000
13 Suizhou 2,190,800
14 Ezhou 1,059,500
15 Tianmen 1,292,000
16 Qianjiang 958,000

Table G.1: Cities (prefecture-level divisions) in the province Hubei. Here, we do not consider the city Shen-
nongjia, since the number of SARS-CoV-2 infections in Shennongjia is very small.

G.2. DATA OF THE COVID-19 OUTBREAK IN HUBEI
Table G.1 shows the cities of the province Hubei and the respective population size Npop,i

for every city i , which is obtained from the Hubei Statistical Yearbook [293]. The time
series of the reported number of infections Nrep,i [k] is stated in Table G.2.

G.3. DETAILS OF NIPA
Algorithm G.1 describes the NIPA prediction method in pseudo-code. In line 4, the Mat-
lab command smoothdata is called to remove erratic fluctuations of the raw dataIrep,i [k].
We denote the N ×1 infection state vector by I[k] = (I1[k], ...,IN [k])T at any time k. The
loop starting in line 7 iterates over all candidate values of the curing probability δ∆t ,i

in the set Ω. Algorithm G.1 calls the Network inference method, which is stated in
pseudo-code by Algorithm G.2. For a fixed curing probability δ∆t ,i , the network infer-
ence in line 11 returns an estimate for the infection probabilities β∆t ,i j

(
δ∆t ,i

)
for all j =

1, ..., N . Furthermore, the network inference returns the mean squared error MSE
(
δ∆t ,i

)
,

which corresponds to the first term in the objective of (8.1). The smaller the mean
squared error MSE

(
δ∆t ,i

)
, the better the fit of the SIR model (7.5) to the dataIi [1], ...,Ii [n].

In line 13, the final estimate δ̂∆t ,i for the curing probability is obtained as the min-
imiser of the mean squared error MSE

(
δ∆t ,i

)
. The estimate δ̂∆t ,i determines the final

estimates β̂∆t ,i 1, ..., β̂∆t ,i N for the infection probabilities in line 14. From line 16 to
line 26, the SIR model (7.5) is iterated, which results in the predicted fraction of infec-
tions Îi [n +1], ..., Îi [n +npred] for all nodes i .
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Algorithm G.1 Network-Inference-based Prediction Algorithm (NIPA)

1: Input: reported fraction of infections Irep,i [1], ...,Irep,i [n] for all nodes i ; prediction
time npred

2: Output: predicted fraction of infections Îi [n +1], ..., Îi [n +npred] for all nodes i

Step 1 – Data preprocessing

3: Ii [1], ...,Ii [n] ← smoothdata(Irep,i [1], ...,Irep,i [n]) for all nodes i
4: I[k] ← (I1[k], ...,IN [k])T for all k = 1, ...,n

Step 2 – Network inference

5: for i = 1, ..., N do
6: Ri [1] ← 0
7: for δ∆t ,i ∈Ω do
8: Ri [k] ←Ri [k −1]+δ∆t ,iIi [k −1] for all k = 2, ...,n
9: Si [k] ← 1−Ii [k]−Ri [k] for all k = 1, ...,n

10: νi [k] ← (Si [k],Ii [k],Ri [k])T for all k = 1, ...,n
11:

(
β∆t ,i 1(δ∆t ,i ), ...,β∆t ,i N (δ∆t ,i ),MSE(δ∆t ,i )

)← Network inference
(
δ∆t ,i ,

νi [1], ...,νi [n],I[1], ...,I[n]
)

12: end for
13: δ̂∆t ,i ← argmin

δ∆t ,i∈Ω
MSE

(
δ∆t ,i

)
14: (β̂∆t ,i 1, ..., β̂∆t ,i N ) ←β∆t ,i 1

(
δ̂∆t ,i

)
, ...,β∆t ,i N

(
δ̂∆t ,i

)
15: end for

Step 3 – Iterating SIR model

16: for i = 1, ..., N do
17: Îi [n] ← Ii [n]
18: R̂i [1] ← 0
19: R̂i [k] ← R̂i [k −1]+ δ̂∆t ,iIi [k −1] for all k = 2, ...,n
20: end for
21: for k = n +1, ...,n +npred do
22: for i = 1, ..., N do
23: Îi [k] ← (

1− δ̂∆t ,i
) Îi [k −1]+ (

1− Îi [k −1]−R̂i [k −1]
)∑N

j=1 β̂∆t ,i j Î j [k −1]

24: R̂i [k] ← R̂i [k −1]+ δ̂∆t ,i Îi [k −1]
25: end for
26: end for
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The pseudo-code of Network inference is given by Algorithm G.2, which is a direct
adaptation of Algorithm F.1. We refer to Chapter 7 for more details.

Algorithm G.2 Network inference

1: Input: curing probability δ∆t ,i ; viral state νi [k] for k = 1, ...,n; infection state vector
I[k] for k = 1, ...,n

2: Output: infection probability estimates β∆t ,i 1(δ∆t ,i ), ...,β∆t ,i N (δ∆t ,i ); mean squared
error MSE(δ∆t ,i )

3: Compute VSIR,i and FSIR,i by Lemma F.1
4: ρmax,i ← 2‖F T

SIR,i VSIR,i‖∞
5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈Θi do
8: estimate MSE(δ∆t ,i ,ρi ) by 3-fold cross-validation on FSIR,i VSIR,i and solving (8.1)

on the respective training set
9: end for

10: ρopt,i ← argmin
ρi∈Θi

MSE
(
δ∆t ,i ,ρi

)
11: (β∆t ,i 1(δ∆t ,i ), ...,β∆t ,i N (δ∆t ,i )) ← the solution to (8.1) on the whole data set

FSIR,i ,VSIR,i for ρi = ρopt,i

12: MSE(δ∆t ,i ) ← MSE(δ∆t ,i ,ρopt,i )
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H.1. PROOF OF LEMMA 9.1
We derive the matrix S that minimises the error εeigen(S). The Frobenius norm of an
N ×N matrix M is defined as [32]

‖M‖F =
√√√√ N∑

i=1

N∑
j=1

(M)2
i j . (H.1)

For a symmetric matrix M , the Frobenius norm can be expressed in terms of the eigen-
values λi (M) of the matrix M as

‖M‖F =
√√√√ N∑

i=1
λ2

i (M).

Thus, the Frobenius norm of a symmetric matrix M is completely determined by the
eigenvalues of M . For any orthogonal matrix B and any symmetric matrix M , the matrix
M̃ = B MB T is symmetric and has the same set of eigenvalues as the matrix M . Hence,
the Frobenius norm of the matrices M and M̃ is equal, i.e.,

‖M‖F = ∥∥B MB T ∥∥
F

for any symmetric matrix M and any orthogonal matrix B .
In particular, by identifying M = (W −X SX T ) and B = X T , the definition of the error

εeigen(S) in (9.5) is equivalent to

εeigen(S) = ∥∥(W −X SX T )
∥∥

F

= ∥∥X T (W −X SX T )X
∥∥

F

= ∥∥X T W X −X T X SX T X
∥∥

F

= ∥∥X T W X −S
∥∥

F ,
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where the last equality follows from the orthogonality of the matrix X . Minimising the
non-negative error εeigen(S) is equivalent to minimising its square ε2

eigen(S). With the
definition of the Frobenius norm in (H.1), we obtain that

ε2
eigen(S) =

N∑
i=1

N∑
j=1

(X T W X −S)2
i j (H.2)

=
N∑

i=1

((
(X T W X )i i − si

)2 +
N∑

j=1, j 6=i
(X T W X )2

i j

)
,

where the last equality follows from the fact that the matrix S is diagonal. The second
addend in (H.2) does not depend on the matrix S. Hence, minimising the error εeigen(S)
is equivalent to minimising

ε̃eigen(S) =
N∑

i=1

(
(X T W X )i i − si

)2

=
N∑

i=1

(
xT

i W xi − si
)2

,

which is minimal if xT
i W xi = si for all nodes i = 1, ..., N , where xi denotes the i -th col-

umn of the matrix X . Thus, the matrix S that results in the best fit of the eigenmode
approach equals

S = diag
(
xT

1 W x1, ..., xT
N W xN

)
.

H.2. PROOF OF LEMMA 9.2
We derive the coefficients cm that minimise the error εseries(c). The coefficients cm can
be obtained by minimising the difference of the left-hand side to the right-hand side in
(9.3). Since the matrix A is symmetric, it holds that∥∥Am∥∥

2 =λm
1 . (H.3)

A similar calculation as in Appendix H.1 yields that minimising the error

εseries(c) =
∥∥∥∥∥W −

d∑
m=1

cm

‖Am‖2
X Dm X T

∥∥∥∥∥
F

(H.4)

is equivalent to minimising

ε̃series(c) =
N∑

i=1

(
xT

i W xi −
d∑

m=1
cm

λm
i

λm
1

)2

. (H.5)

Rewriting equation (H.5) in terms of the vector v and the matrix M completes the proof
of Lemma 9.2.
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H.3. PROOF OF LEMMA 9.3
We prove Lemma 9.3 by two steps. As the first step, we rewrite the error εseries(c) of the
series approach. From (H.3) and (H.4), we obtain that the error εseries(c) of the series
approach can be expressed, for any coefficient vector c, as

εseries(c) = ∥∥W −X Y X T ∥∥
F , (H.6)

where the N ×N matrix Y equals

Y = diag

(
d∑

m=1
cm

λm
1

λm
1

, ...,
d∑

m=1
cm

λm
N

λm
1

)
.

The expression (H.6) of the error εseries(c) closely resembles the error εeigen(S) of the
eigenmode approach (9.5). Particularly, as the second step of the proof, we notice that
by choosing the eigenmode coefficients si as

si =
d∑

m=1
cm

λm
i

λm
1

, i = 1, ..., N , (H.7)

the diagonal matrix S = diag(s1, ..., sN ) equals S = Y . Hence, for any matrix Y , we obtain
from (9.5), by choosing S = Y , that

εeigen(Y ) = ∥∥W −X Y X T ∥∥
F

= εseries(c),

where the last equality follows from (H.6). Thus, for any coefficients c, the choice (H.7)
for the eigenmode coefficients s1, ..., sN results in εeigen(Y ) = εseries(c). Hence, we obtain
that

min
S

εeigen(S) ≤ εeigen(Y ) = min
c

εseries(c), (H.8)

which proves Lemma 9.3. Please note that the argument used is analogous to the classi-
cal linear algebra idea used to compute the remainder term (and the associated error) of
a Taylor polynomial of a matrix function [294]. We emphasise that (H.8) almost always
holds true with strict inequality, i.e.,

min
S

εeigen(S) < min
c

εseries(c). (H.9)

To arrive at (H.9), we stack (H.7) and obtain a linear system for the coefficients c1, ..., cd

as 
λ1
λ1

...
λd

1

λd
1

...
. . .

...
λN
λ1

...
λd

N

λd
1


c1

...
cd

=

 s1
...

sN

 .
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With Lemma 9.1, we obtain that (H.8) holds with equality if and only if
λ1
λ1

...
λd

1

λd
1

...
. . .

...
λN
λ1

...
λd

N

λd
1


c1

...
cd

=

 xT
1 W x1

...
xT

N W xN

 . (H.10)

The linear system (H.10) is overdetermined since there are N equations but only d un-
knowns c1, ..., cd . More specifically, the linear system (H.10) can be solved for the coeffi-
cients c1, ..., cd only if the N ×1 vector  xT

1 W x1
...

xT
N W xN

 (H.11)

is element of the image (or range) of the N ×d matrix
λ1
λ1

...
λd

1

λd
1

...
. . .

...
λN
λ1

...
λd

N

λd
1

 . (H.12)

Thus, (H.8) holds with equality only if the vector (H.11) is in the image of (H.12). Since
the image of the matrix (H.12) is a subspace of RN with dimension not greater than d ,
this is a highly restrictive condition.

H.4. PROCESSING PIPELINE FOR DATASET 4
The HCP 100 unrelated subjects resting state fMRI dataset (REST1) was included for this
project, which was already pre-processed using the optimized HCP minimal processing
pipeline before downloading, including normalization, motion correction and intensity
normalization [295]. Subsequently, the data were motion-corrected again using ICA-
AROMA (v0.4-beta 2017, Nijmegen, the Netherlands), which identifies which ICA-based
components are strongly correlated with already available motion parameters, and re-
moved these components from the data. All subsequent processing was performed us-
ing1 FSL 5.09. 3D T1-weighted data from the dataset was processed using SIENAX, to
create grey matter (GM) and white matter (WM) as well as cerebrospinal fluid (CSF)
masks, which were registered to the functional images using inverted boundary-based
registration (BBR) parameters. WM and CSF masks were used to regress out average sig-
nals within these masks on the ICA-AROMA processed data. The automated anatomical
labelling atlas (AAL) was registered to T1-weighted images using inverted FNIRT param-
eters [222], after which SIENAX-derived GM masks were used to mask the cortical atlas
in T1-space. Subsequently, this modified atlas was transferred to the fMRI images, again
using inverted BBR parameters. Finally, mean time series were calculated for each region
within the atlas.
1See https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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[137] A. Khanafer and T. Başar, On the optimal control of virus spread in networks, in
2014 7th International Conference on Network Games, Control and Optimization
(NetGCoop) (IEEE, 2014) pp. 166–172.



302

[138] M. Gomez-Rodriguez, L. Song, H. Daneshmand, and B. Schölkopf, Estimating dif-
fusion networks: Recovery conditions, sample complexity & soft-thresholding algo-
rithm, The Journal of Machine Learning Research 17, 3092 (2016).

[139] M. Timme and J. Casadiego, Revealing networks from dynamics: an introduction,
Journal of Physics A: Mathematical and Theoretical 47, 343001 (2014).

[140] J. Casadiego, M. Nitzan, S. Hallerberg, and M. Timme, Model-free inference of di-
rect network interactions from nonlinear collective dynamics, Nature Communica-
tions 8, 2192 (2017).

[141] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity: the
lasso and generalizations (CRC press, 2015).

[142] W.-X. Wang, Y.-C. Lai, and C. Grebogi, Data based identification and prediction of
nonlinear and complex dynamical systems, Physics Reports 644, 1 (2016).

[143] A.-L. Barabási, Network Science (Cambridge University Press, 2016).

[144] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pur-
suit, SIAM review 43, 129 (2001).

[145] E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620
(1957).

[146] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes
(Tata McGraw-Hill Education, 2002).

[147] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter estimation and inverse prob-
lems (Elsevier, 2018).

[148] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society. Series B (Methodological) , 267 (1996).

[149] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27, 861
(2006).

[150] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den Broeck, What’s
in a crowd? Analysis of face-to-face behavioral networks, Journal of Theoretical
Biology 271, 166 (2011).

[151] V. J. Munster, M. Koopmans, N. van Doremalen, D. van Riel, and E. de Wit, A novel
coronavirus emerging in China — key questions for impact assessment, New Eng-
land Journal of Medicine (2020).

[152] Q. Yang, C. Yi, A. Vajdi, L. W. Cohnstaedt, H. Wu, X. Guo, and C. M. Scoglio, Short-
term forecasts and long-term mitigation evaluations for the COVID-19 epidemic in
Hubei Province, China, medRxiv (2020).



303

[153] L. Lorch, W. Trouleau, S. Tsirtsis, A. Szanto, B. Schölkopf, and M. Gomez-
Rodriguez, A spatiotemporal epidemic model to quantify the effects of contact trac-
ing, testing, and containment, arXiv preprint arXiv:2004.07641 (2020).

[154] S. Y. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, and
J. Leskovec, Mobility network modeling explains higher SARS-CoV-2 infection rates
among disadvantaged groups and informs reopening strategies, medRxiv (2020).

[155] M. Al-qaness, A. Ewees, H. Fan, and M. Abd El Aziz, Optimization Method for Fore-
casting Confirmed Cases of COVID-19 in China, J. Clin. Med. 9, 674 (2020).

[156] Z. Yang, Z. Zeng, K. Wang, S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao,
Z. Mai, J. Liang, X. Liu, S. Li, Y. Li, F. Ye, W. Guan, Y. Yang, F. Li, S. Luo, Y. Xie, B. Liu,
Z. Wang, S. Zhang, Y. Wang, N. Zhong, and J. He, Modified SEIR and AI prediction
of the epidemics trend of COVID-19 in China under public health interventions,
Journal of Thoracic Disease 12 (2020).

[157] A. Kergassner, C. Burkhardt, D. Lippold, S. Nistler, M. Kergassner, P. Steinmann,
D. Budday, and S. Budday, Meso-scale modeling of COVID-19 spatio-temporal out-
break dynamics in Germany, medRxiv (2020).

[158] S. He, Y. Peng, and K. Sun, SEIR modeling of the COVID-19 and its dynamics, Non-
linear Dynamics (2020).

[159] C. Pizzuti, A. Socievole, B. Prasse, and P. Van Mieghem, Network-based prediction
of COVID-19 epidemic spreading in Italy, Applied Network Science 5, 1 (2020).

[160] R. J. Hyndman and A. B. Koehler, Another look at measures of forecast accuracy,
International Journal of Forecasting 22, 679 (2006).

[161] J. L. Elman, Finding Structure in Time, Cognitive Science 14, 179 (1990).

[162] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

[163] T. Young, D. Hazarika, S. Poria, and E. Cambria, Recent Trends in Deep Learning
Based Natural Language Processing [Review Article], IEEE Computational Intelli-
gence Magazine 13, 55 (2018).

[164] S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation
9, 1735 (1997).

[165] F. A. Gers and J. Schmidhuber, LSTM recurrent networks learn simple context-free
and context-sensitive languages, IEEE Transactions on Neural Networks 12 6, 1333
(2001).

[166] F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to Forget: Continual Predic-
tion with LSTM, Neural Computation 12, 2451 (2000).



304

[167] R. Jozefowicz, W. Zaremba, and I. Sutskever, An Empirical Exploration of Recurrent
Network Architectures, in In Proc. of ICML (32nd International Conference on Ma-
chine Learning), PMLR, Vol. 37, edited by F. Bach and D. Blei (Lille, France, 2015)
pp. 2342–2350.

[168] Y. Yu, X. Si, C. Hu, and J. Zhang, A Review of Recurrent Neural Networks: LSTM Cells
and Network Architectures, Neural Computation 31, 1235 (2019), pMID: 31113301.

[169] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, In Proc of
ICLR (International Conference for Learning Representations), San Diego, 2015
abs/1412.6980 (2015).

[170] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, The M4 Competition: 100,000
time series and 61 forecasting methods, International Journal of Forecasting 36, 54
(2020), m4 Competition.

[171] E. Bullmore and O. Sporns, The economy of brain network organization, Nature
Reviews Neuroscience 13, 336 (2012).

[172] S. N. Sotiropoulos, S. Jbabdi, J. Xu, J. L. Andersson, S. Moeller, E. J. Auerbach, M. F.
Glasser, M. Hernandez, G. Sapiro, M. Jenkinson, et al., Advances in diffusion MRI
acquisition and processing in the Human Connectome Project, NeuroImage 80, 125
(2013).

[173] Z. Wang, Z. Dai, G. Gong, C. Zhou, and Y. He, Understanding structural-functional
relationships in the human brain: a large-scale network perspective, The Neurosci-
entist 21, 290 (2015).

[174] A. M. Fjell, M. H. Sneve, H. Grydeland, A. B. Storsve, I. K. Amlien, A. Yendiki, and
K. B. Walhovd, Relationship between structural and functional connectivity change
across the adult lifespan: a longitudinal investigation, Human Brain Mapping 38,
561 (2017).

[175] A. Avena-Koenigsberger, B. Misic, and O. Sporns, Communication dynamics in
complex brain networks, Nature Reviews Neuroscience 19, 17 (2018).

[176] C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J.-P. Thiran, R. Meuli, and P. Hag-
mann, Predicting human resting-state functional connectivity from structural con-
nectivity, Proceedings of the National Academy of Sciences 106, 2035 (2009).

[177] M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, Resting-state functional
connectivity reflects structural connectivity in the default mode network, Cerebral
Cortex 19, 72 (2009).

[178] G. C. O’Neill, P. Tewarie, D. Vidaurre, L. Liuzzi, M. W. Woolrich, and M. J. Brookes,
Dynamics of large-scale electrophysiological networks: A technical review, Neu-
roImage 180, 559 (2018).



305

[179] G. Rosenthal, F. Váša, A. Griffa, P. Hagmann, E. Amico, J. Goñi, G. Avidan, and
O. Sporns, Mapping higher-order relations between brain structure and function
with embedded vector representations of connectomes, Nature Communications 9,
1 (2018).
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