
Semantics of Families of Objects

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 26 november 2008 om 10.00 uur

door

Hilderick Anne VAN DER MEIDEN,
informatica ingenieur,
geboren te Zevenaar.



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. F.W. Jansen

co-promotor:
Dr. W.F. Bronsvoort

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. F.W. Jansen, Technische Universiteit Delft, promotor
Dr. W.F. Bronsvoort, Technische Universiteit Delft, co-promotor
Prof. dr. C. Witteveen, Technische Universiteit Delft
Dr. J.S.M. Vergeest, Technische Universiteit Delft
Prof. dr. M.H. Overmars, Universiteit Utrecht
Prof. dr. R. Joan-Arinyo, Universitat Politecnica de Catalunya
Prof. dr. C.M. Hoffmann, Purdue University

This research was sponsored by the Netherlands Organisation for Scientific Re-
search (NWO)



Preface

This thesis is the result of my research at the Computer Graphics and
CAD/CAM group of the Faculty of Electrical Engineering, Mathematics
and Computer Science of Delft University of Technology.

The title, Semantics of Families of Objects, suggests a very broad, al-
most philosophical subject. However, this research was motivated by prac-
tical problems in Computer-Aided Design (CAD); the objects in the title
are objects modelled by CAD systems, e.g. parts of industrial products.
The thesis discusses the problem of modelling families of such objects, and
focusses in particular on the semantics of such families, i.e. properties of
such families that are important to designers and users.

Even though the motivation is a practical one, several fundamental prob-
lems needed to be solved. The main contributions of this thesis are a new
declarative model for families of objects, a new method for solving geomet-
ric constraints, a first-ever method for solving topological constraints, and
methods for computing parameter ranges in such models. Most of the re-
sults presented in this thesis have already been published in various journals
and conference proceedings. These papers can be found in the bibliography
[van der Meiden and Bronsvoort, 2005a, 2005b, 2006a, 2006b, 2007a, 2007b
and 2008].

I have been working in the Computer Graphics and CAD/CAM group
for more than six years, as a Master’s student, as a PhD student and cur-
rently as a Postdoc, which is perhaps a long time by today’s standards, but
it has been such a pleasure to work here, it is simply difficult to leave.

I would like to thank, first of all, Dr. Wim Bronsvoort, for calling me up
a couple of months after my graduation, just before I was about to accept a
boring job, offering me the opportunity to do a PhD, which I readily took,
and for which I am very grateful still. He has been a wonderful supervisor,
open to new ideas, patient, understanding, and I have learned a lot from
him about academic life.

Next, I thank Prof. Erik Jansen, for supporting my work, and, in partic-
ular, for giving me the opportunity to finish my thesis when it was already
supposed to be done a year ago.

I thank the members of the defense committee for their constructive

i



comments on the draft thesis, which have resulted in significant improve-
ments.

I thank my current and former colleagues who have worked on feature
modelling, in particular Dr. Rafael Bidarra for creating the semantic fea-
ture modelling approach, on which my work is based. I thank all my other
colleagues, for interesting discussions and for creating a great working en-
vironment.

I thank my family, Tieme, Aly, Niels en Dolf, who have always been
convinced that I will be a professor one day. Well, not yet, but who knows?

I thank Nicole, my love, for taking my mind of work occasionally to
have some fun and a social life, and for generally keeping things running
smoothly around me whenever I’m lost in thought.

Finally, I kindly thank all friends, relatives and strangers who kept ask-
ing me what my thesis would be about, over and over, so I had to explain
it, again and again, and by doing so, I actually found interesting new per-
spectives on my work, and that motivated me to continue.

Rick van der Meiden
Oktober 13th, 2008

Delft

ii



Contents

1 Introduction 1

1.1 Families of objects . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review 7

2.1 History-based models . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Dual-representation models . . . . . . . . . . . . . . . . . . . 12

2.3 Procedural, rule-based and declarative models . . . . . . . . . 15

2.4 The Semantic Feature Model . . . . . . . . . . . . . . . . . . 18

2.5 Creating and using families of objects . . . . . . . . . . . . . 22

3 The Declarative Family of Objects Model 27

3.1 Overview of the model . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Geometry and topology . . . . . . . . . . . . . . . . . . . . . 29

3.3 Representation of features and families . . . . . . . . . . . . . 32

3.4 Realisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Family membership and subfamilies . . . . . . . . . . . . . . 39

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Geometric constraint solving 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Solving approach . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Incremental algorithm . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Solution selection . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Constraints on 3D primitives . . . . . . . . . . . . . . . . . . 65

5 Topological constraint solving 71

5.1 Mapping topological constraints . . . . . . . . . . . . . . . . . 71

5.2 Boolean constraint solving . . . . . . . . . . . . . . . . . . . . 77

iii



6 Computing geometric parameter ranges 85
6.1 Basic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Degenerate subproblems . . . . . . . . . . . . . . . . . . . . . 89
6.3 Parameter range computation algorithm . . . . . . . . . . . . 92
6.4 Example constraint problem . . . . . . . . . . . . . . . . . . . 96

7 Tracking topological changes 99
7.1 Relating parameters and topology . . . . . . . . . . . . . . . 99
7.2 Computing critical values . . . . . . . . . . . . . . . . . . . . 102
7.3 Degenerate entities . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4 Parameter range computation . . . . . . . . . . . . . . . . . . 110

8 Conclusions and future research 113
8.1 Feasibility and advantages of the approach . . . . . . . . . . . 113
8.2 Implementation and possible applications . . . . . . . . . . . 115
8.3 Limitations and future research . . . . . . . . . . . . . . . . . 116

Appendices:

A Rewrite rules for clusters 119
A.1 2D rewrite rules . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.2 2D/3D rewrite rules . . . . . . . . . . . . . . . . . . . . . . . 121
A.3 3D rewrite rules . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B Selection criteria for the intended solution 125
B.1 Definition of the intended solution . . . . . . . . . . . . . . . 125
B.2 Subproblem analysis . . . . . . . . . . . . . . . . . . . . . . . 127
B.3 Construction analysis . . . . . . . . . . . . . . . . . . . . . . 133

Bibiography 139

Summary 147

Samenvatting (Summary in Dutch) 151

Curriculum Vitae 154

iv



Chapter 1

Introduction

Computer-Aided Design (CAD) is now used in all engineering and design
disciplines, e.g. mechanical engineering, electrical engineering, aerospace en-
gineering, industrial design and architectural design. Within these different
disciplines, CAD systems with different capabilities are being used. In this
thesis we focus on solid modelling systems, which are used to create solid, or
volumetric, models, i.e. models of objects that have volume. These systems
are mostly used for part design in mechanical engineering and industrial
design.

The current generation of solid modelling systems are feature modelling
systems. In such systems, the user builds a model from features. Features
are aspects of the shape of the model that can be individually identified and
manipulated. In most systems, features are parametrised shapes that add
a volume to or remove a volume from the model, e.g. protrusions, holes,
cuts and blends. With such features, a design can be modelled in fewer
steps than with low-level geometric operations, and by changing parame-
ter values, complex modifications can be made easily. Also, features can
contain functional information for use in different phases of the design pro-
cess, e.g. requirements for the conceptual design phase, shape constraints
for the detailed design phase, material properties for the analysis phase, and
tolerances for the manufacturing planning phase.

The main reason for using CAD is that it allows designs to be easily
modified and analysed without building physical prototypes, resulting in
increased productivity and in cost reduction. Another reason that is some-
times cited, is the potential for reuse of CAD models, because they can be
used to model families of objects. However, in current CAD systems, as we
shall see, support for families of objects is very limited.

1
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l=150

bend=0

(a)

l=300

bend=0

(b)

l=300

bend = 90

(c)

l=150

bend = 210

(d)

Figure 1.1: Variants of a CAD model with two parameters, l and bend.

1.1 Families of objects

Usually a single CAD model is interpreted as representing a single object.
However, a feature model, and in general, any parametric model, can also
be thought of as a representation of a family of objects. By varying the
parameters of the features in the model, variants of the model are obtained,
each representing a different but similar object (see Figure 1.1). The (infi-
nite) set of all possible objects that can thus be obtained, is the family of
objects represented by the model. The objects in this set are the members
of the family.

A CAD model of a family of objects is useful in several situations.
Firstly, the model can be used for manufacturing series of similar prod-
ucts, e.g. tools of different sizes, and even customised products. Secondly,
the model can be reused as a part of a larger CAD model, with appropriate
parameter values to fit it. Thus, modelling families of objects can yield
increased design productivity and considerable cost reduction.

However, there is no widely accepted formal definition for families of ob-
jects in CAD [Shapiro and Vossler, 1995; Hoffmann and Joan-Arinyo, 2002].
In general, we can say that a family of objects is a set of similar objects.
But similar in what respect? Depending on the exact definition, the objects
in Figure 1.2 may or may not belong to the same family as those in Figure
1.1. On the one hand, it can be argued that these objects are members of
the same family because they are constructed in the same way, i.e. from the
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Figure 1.2: Objects that may or may not belong to the family in Figure
1.1.

same geometric primitives. Such procedural definitions are mostly used in
practice [Hoffmann and Joan-Arinyo, 2002], but, as we shall see, are often
not satisfactory. On the other hand, it can also be argued that these objects
do not belong to the same family, because their topology is different from
the topology of the objects in Figure 1.1, i.e. the objects cannot be mapped
onto each other by a continuous transformation. Such mathematical defini-
tions are not widely accepted, because the practical implications are not well
understood [Shapiro and Vossler, 1995]. More importantly, these two defini-
tions do not take into account that for different families of objects, different
properties may be important, and it is thus desirable that when modelling
families of objects, the user is able to precisely specify which objects are
family members, and which are not, i.e. the semantics of a family.

For mechanical and industrial design, shape and function of objects are
the most important aspects of family semantics. For example, the seman-
tics of the family of objects in Figure 1.1 may be that members must be
able to function as a connecting rod between two round shafts, and thus
each member must contain two round holes. These aspects are related to
geometric and topological properties of features and feature models. For
modelling families of objects, it should thus be possible to specify geometric
and topological properties, of features and families, in a generic way.

Current CAD systems, although they can be used to model families of
objects, have not been designed for that purpose from the start. This can be
seen, for example, from the fact that the model must at all times during the
modelling process represent a single object; parameters must always have
a value and no degrees of freedom are allowed in sketches. It is therefore
not surprising that current CAD systems are often inadequate for modelling
families of objects. There are two major problems.

Firstly, in current CAD systems, feature semantics cannot be precisely
specified and is not adequately maintained [Bidarra and Bronsvoort, 2000b].
Features are supposed to represent design intent, but the actual semantics
of features in current systems is not always consistent with the user’s in-
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tention. Thus, when parameter values of a model are changed, unexpected
interactions between features may result in undesirable models, i.e. models
with undesirable geometric or topological properties. This means that some
families are difficult to create or impossible to represent in current systems.

Specifying precise semantics for features or families of objects, and ade-
quately maintaining these semantics for all feature instances or family mem-
bers, is not possible with current CAD systems, because these systems work
with history-based models and boundary representations. History-based
models are essentially procedural models, which are not suitable for speci-
fying invariant properties of a family, i.e. properties that hold for all mem-
bers of the family. Also, boundary representations do not contain sufficient
topological information to verify feature semantics.

Secondly, current CAD systems do not provide adequate tools for mod-
elling and exploring families of objects. A family consisting of a potentially
infinite number of objects, is an abstract concept that is difficult to visu-
alise and interact with in a natural way. In particular, when instantiating
members of a family, choosing parameter values that correspond to mem-
bers can be difficult. Also, it is difficult for a user to predict how parameter
values affect the geometric and topological properties of the corresponding
members of the family.

Thus, new representations and tools are needed for modelling families
of objects.

1.2 Research questions

This thesis addresses the question of how families of objects can be mod-
elled properly. There are two different aspects to this, corresponding to the
two problems mentioned above. Firstly, how to model families of objects in
general, i.e. how to represent such families, such that semantics can be spec-
ified and maintained. Secondly, how to model a specific family of objects,
i.e. what kind of tools are needed to create and use a model of a family of
objects. This leads to the following research questions:

Question 1 How to model families of objects, such that semantics of fea-
tures and families in general can be specified and maintained?

More specific questions are:

• How to represent families of objects?

• How to specify and maintain semantics for all members of a family?

• How to instantiate members of the family?

• How to classify objects as members or non-members of a family?
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Question 2 What kind of tools are needed for creating and using families
of objects?

More specifically:

• How to interact, through a modelling system, with models of families
of objects?

• How to explore the set of objects in a family model?

• How to analyse the relations between parameter values and the geo-
metric and topological properties of the corresponding family mem-
bers?

1.3 Outline of the thesis

We propose the following answer to Question 1:

Families of objects should be modelled declaratively, using fea-
tures with geometric and topological constraints.

To defend this proposition, firstly, in Chapter 2 we will argue that current
CAD models cannot properly represent families of objects, because these
models are not suitable for specifying the semantics of features and fami-
lies in general. Various theoretical frameworks and alternative models are
discussed, and we conclude that (1) a declarative model is best suited for
modelling families of objects, and (2) semantics should be represented with
geometric and topological constraints.

Next, in Chapter 3 we will present a model called the Declarative Family
of Objects Model (DFOM), which can represent families of objects using fea-
tures with geometric and topological constraints. Members of a family are
instantiated by solving the system of geometric and topological constraints.
Family membership is defined in terms of DFOMs, such that we can clas-
sify objects as members or non-members of a given family, by comparing
DFOMs.

To instantiate family members and to classify objects with respect to
a given family, we need constraint solving algorithms for geometric and
topological constraints. A new method for geometric constraint solving is
presented in Chapter 4, and a method for topological constraint solving, the
first ever published, is presented in Chapter 5.
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To answer Question 2, we propose the following:

For creating and using models of families of objects, tools are
needed that compute parameter ranges and critical parameter
values.

When creating models of families of objects, specifying geometry and topol-
ogy is most important. Visualisation of the model and direct manipulation
of its elements is needed. Direct visualisation of incompletely specified ge-
ometry found in models of families of objects is probably not feasible, nor
desirable. Instead, members of the family should be visualised and inter-
acted with, and operations on those objects should be mapped to operations
on the family model.

For a given parameter, the parameter range is the set of all values for
which the model satisfies its geometric and topological constraints. Such
parameter ranges help users to instantiate members of a family, and can be
used as a tool for exploring a family of objects. In Chapter 6 and Chapter
7, algorithms are presented for computing the range of any parameter of a
declarative model.

The algorithms developed for this determine so-called critical values.
These are the parameter values for which geometric subproblems degenerate
or for which topological entities degenerate. If for any value in between two
subsequent critical values all constraints in the model are satisfied, then for
all values between these critical values the constraints are satisfied. Thus,
from the critical values we can determine the intervals which constitute the
parameter range.

The critical values are also useful for analysing the behaviour of the
model. While varying a parameter, changes in the topology occur only at
critical values. Thus, critical values can be used to find objects with certain
topological variations that may or may not be desirable members of the
family. We therefore also present these critical values to the user.

In Chapter 8, we present conclusions drawn from this research and ideas
for future research.

Throughout this thesis, the advantages of a declarative approach to mod-
elling families of objects will become clear. It allows us to properly specify
the semantics of features and families of objects in general, and we can
analyse such declaratively specified families of objects, e.g. by computing
parameter ranges and critical parameter values. These results could not
have been obtained with the traditional, procedural modelling approach.



Chapter 2

Literature review

Families of objects can be represented by various types of models, some of
which are used in commercial CAD systems and some of which have been
suggested by academics. In this chapter, we discuss the advantages and
limitations of various types of models for representing families of objects.

First we discuss history-based models, which are created by most cur-
rent commercial CAD systems, in Section 2.1. Next we discuss models for
families of objects more in general, from different perspectives. The first
perspective considers the different representations used in such models. In
general, such models are dual-representation models, which are discussed in
Section 2.2. The second perspective considers the way semantics is speci-
fied in models of families of objects. From this perspective, models can be
classified as procedural, rule-based or declarative, as discussed in Section
2.3. One particular declarative model, the Semantic Feature Model, which
is used as the basis for the work described in this thesis, is described in
Section 2.4. Finally, the different ways in which users can interact with
a system for modelling families of objects, i.e. the operations and queries
available to create and use such models, are discussed in Section 2.5.

2.1 History-based models

Current commercial CAD systems, e.g. Pro/Engineer1, CATIA2, SolidWorks3,
NX4, SolidEdge5, and Inventor 6, are parametric feature modelling systems.
Almost all such systems create models that essentially describe a history of
modelling operations. These operations are typically operations on a bound-
ary representation (B-rep), in particular operations that add features to a

1Pro/Engineer, Parametric Technology Corp., http://www.ptc.com
2CATIA, Dassualt Systèmes, http://www.3ds.com/products/catia
3SolidWorks, Dassualt Systèmes, http://www.3ds.com/products/solidworks
4NX, Siemens, http://www.plm.automation.siemens.com
5SolidEdge, Siemens, http://www.plm.automation.siemens.com
6Inventor, Autodesk, http://www.autodesk.com

7
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B-rep. To remove features, the corresponding operations are removed from
the history. We refer to these systems as history-based modelling systems,
and to models produced by these systems as history-based models.

The procedure for modelling a family of objects with these systems, is
as follows. Initially a single family member is modelled, which is referred
to as the prototype or generic object. Other members of the family are
instances of this prototype with different parameter values. To instantiate
a model for a member of the family, the history of modelling operations,
stored in the prototype, is re-evaluated with a new set of parameter values.
Thus, each modelling operation is executed with the new parameter values,
to create a new model, which is the requested member of the family.

History-based models, even though they are the de-facto standard for
commercial modelling systems, are not really suitable for representing fam-
ilies of objects. In [Bidarra and Bronsvoort, 2000b], several major problems
with the history-based approach are identified, of which the most relevant,
in the context of families of objects, are the persistent naming problem, the
feature ordering problem, and the inability to maintain feature semantics.

The persistent naming problem, essentially, is the problem of identifying
corresponding entities in different members of a family. This identification
is necessary because operations in the modelling history of a CAD model
can contain references to geometric entities that were created by previous
operations in the modelling history, in particular, references to B-rep enti-
ties. Such a reference can be used, for example, for positioning a feature.
However, when evaluating the history for different parameter values, a new
geometric representation is built, and references must now point to the
corresponding entities in this new representation. Therefore, a so-called
persistent naming scheme is needed that can identify corresponding entities
in geometric representations created for different parameter values. One of
the issues that a persistent naming scheme must deal with, is that entities
may disappear or may be split when parameter values are changed.

Developing a persistent naming scheme is very difficult, and it is clear
that current CAD systems use a flawed approach that can result in errors.
For an example, see Figure 2.1. Here, a feature called Boss27 is edited,
and as an unexpected side-effect, a feature named Extrude72 jumps to a
different location, i.e. before the operation, Extrude72 was not adjacent to
Boss27, but afterwards, it is. Obviously, such unpredictable behaviour is
not desirable.

Several schemes have been brought forward to alleviate the persistent
naming problem, so that history re-evaluation can at least be consistently
executed [Kripac, 1995; Chen and Hoffmann, 1995; Capoyleas et al., 1996;
Lequette, 1997; Wu et al., 2001]. See [Marcheix and Pierra, 2002] for a
recent survey, containing several more references. All these schemes use
auxiliary data structures to keep track of how faces and edges evolve, which,
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Extrude72

Boss27

(a) before

Extrude72Boss27

(b) after editing Boss27

Figure 2.1: Error in a commercial modelling system, related to persistent
naming. Feature Extrude72 jumps to a different location when Boss27 is
edited. Source: [Raghothama, 2006]

however, does not really solve the problem. The reason for this is that the
schemes try to keep track of B-rep entities that are not persistent, and this
is impossible in a truly generic way.

A different solution to the persistent naming problem is presented in
[Bidarra et al., 2005b]. Model entities, i.e. entities in the geometric model,
can here be selected and used for attaching and positioning features. How-
ever, the system converts the attach constraints and positioning constraints
to constraints on feature entities, which are persistent. If necessary, the sys-
tem automatically generates datum planes, on which additional constraints
are imposed. Thus, no references to non-persistent model entities are stored
in the model. However, in general, a unique description for model entities
in terms of feature entities and datum planes cannot always be found, thus
some feature placements may still have to be done manually, i.e. by selecting
feature entities and creating additional datums.

In the context of families of objects, the persistent naming problem im-
plies that a family may contain objects that are not desirable, and/or may
not contain all objects that are desirable. Previous research on families of
objects has focussed mainly on the persistent naming problem, by propos-
ing new geometric representations, such that entities in different models,
created from the same features, can be identified, e.g. the Generic Geomet-
ric Complex (GGC) [Rappoport, 1997]. The GGC represents families of
Selective Geometric Complexes (SGCs). A SGC [Rossignac and O’Connor,
1988] represents an object by carriers, which are n-dimensional algebraic or
parametric geometries, and by entities, which are disjoint (non-overlapping)
point sets obtained from intersections of carriers. The GGC represents a
family of SGCs with the same carriers, and a set of entities identified by
a combination of carriers and additional selection criteria, to differentiate
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protrusion

blind
hole

base block

depth

(a) prototype (b) protrusion was created
before blind hole

(c) protrusion was cre-
ated after blind hole

Figure 2.2: Example of the feature ordering problem. When the depth of
the blind hole feature in the prototype (a) is increased, either model (b) or
model (c) may emerge, depending on the modelling history. Source: [Bidarra
and Bronsvoort, 2000b]

multiple intersections. However, this approach does not always work, in par-
ticular when the feature geometry consists of curves and curved surfaces.
Thus feature models with references to entities in the geometric representa-
tion can still be ambiguous.

The second problem with history-based models, the feature ordering
problem, is caused by the fact that features add or remove material from
the model in a fixed order. The order of modelling operations that seemed
appropriate for a particular family member, namely the prototype object,
may not yield the expected result when re-evaluating the history to create
other family members. Consider, for example, Figure 2.2. The prototype
object consists of a base block, a protrusion feature and a blind hole feature,
as shown in Figure 2.2(a). When instantiating a variant object where the
depth of the blind hole is increased beyond the height of the base block,
two results are possible, depending on the order in which the features were
created in the prototype. If the protrusion was created before the blind
hole, the model shown in Figure 2.2(b) emerges. If, however, those features
were created in the reverse order, the model shown in Figure 2.2(c) emerges.

The implication of the feature ordering problem for modelling families
of objects, is that the order of operations must be taken into consideration,
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blind
hole step

base block

(a) prototype (b) edit step feature

Figure 2.3: The semantics of a blind hole requires that the hole has a
bottom face, as in the prototype (a). When the step feature is changed as in
model (b), the blind hole is changed into a through hole. Source: [Bidarra
and Bronsvoort, 2000b]

even though the effect may not be visible in the prototype. Although the
order of features in the modelling history can usually be edited, this compli-
cates design and editing of family models, in particular models with many
interacting features.

The third problem with history-based models is maintaining feature se-
mantics. Users of a CAD system expect features to have certain semantics,
i.e. certain properties that are meaningful for the function or manufactur-
ing of the product being modelled. In particular, topological properties
are relevant for feature semantics. Due to interaction with other features,
however, the topological properties of a feature may change. For example,
Figure 2.3(a) shows a prototype object consisting of a base block, a blind
hole feature and a step feature. The semantics of a blind hole requires that
the hole has a bottom, i.e. that the hole does not cut entirely through the
object. When the step feature is changed as in Figure 2.3(b), the blind hole
feature does cut through the object, thus the semantics of the feature has
changed, from the semantics of a blind hole to the semantics of a through
hole.

By using a limited set of feature types and strict adherence to proven
modelling practice, undesirable situations as described above can sometimes
be avoided. However, this practice has in fact obscured the problems with
history-based models, which will still occur, in unpredictable ways.

To maintain feature semantics, topological properties must be verified,
and if necessary, action must be taken to restore feature semantics, i.e. the
user should be informed. Current CAD systems, however, can only check the
topological properties of a feature during instantiation of the feature into the
model. If, due to interaction with other features, the topological properties
of a feature change at later stages in the evaluation of the modelling history,
this cannot be detected. The reason is that the result of feature operations
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is stored in a B-rep, and the topology of the features cannot be stored in this
representation. As a result, topological properties of the features cannot be
adequately verified.

Specifying and maintaining feature semantics is essential for families
of objects, because feature semantics should determine which objects are
members of a family and which are not. In current modelling systems,
feature semantics is in fact hard-coded in feature operations. For modelling
families of objects, the available feature types and their semantics may not
be sufficient. Feature semantics may be too restrictive or not strict enough
for modelling certain families, i.e. certain objects are incorrectly included or
excluded from the family. In current modelling systems, only the ordering
of and the relations between features can be changed, but for modelling
families of objects, it may be necessary to change the semantics of features
too. Thus, it is desirable that the precise semantics, in particular topological
properties, can be specified for features, and also for families as a whole.
This gives more modelling freedom and results in more reliable models.

2.2 Dual-representation models

To understand the problems with modelling families of objects in a more
general, theoretical context, the concept of dual-representation models has
been introduced [Shapiro and Vossler, 1995]. Such models consist of a para-
metric representation, e.g. a CSG representation, and a geometric represen-
tation, e.g. a B-rep. History-based models are dual-representation models
too, where the parametric representation is the modelling history, and the
geometric representation is the B-rep.

Geometric representations for static, solid objects have been studied ex-
tensively in the past. For an overview of such representations, see [Rossignac,
2007]. Most of these representations, e.g. the B-rep, are cell-complex rep-
resentations. Such representations describe both geometric and topological
aspects of objects. By topology we refer to the connectivity of points sets
in Euclidean space. The topology of an object is represented by relations
between point sets of different dimensions, called entities. For example, in
a B-rep, connectivity relations between faces, edges and vertices are stored.
The geometry of the object is represented by attributes associated with the
entities, e.g. the coefficients of curves and surfaces, and the coordinates of
vertices.

However, for modelling a family of objects, geometry and topology must
be represented in a generic way for all the members of the family. A para-
metric representation characterises a family with a set of parameters. For a
given set of parameter values, the parametric representation can be evalu-
ated, resulting in a geometric representation of a family member. In typical
parametric representations, e.g. in the CSG representation and the history-
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based representation discussed in Section 2.1, the parameters determine the
geometry of the features, which are then combined using Boolean opera-
tions, thus determining the topology of the whole object.

This view has led to considering two types of families: the parameter-
space family and the representation-space family. The parameter-space fam-
ily is the set of all objects that can be obtained by varying the parameters.
The representation-space family corresponds to the set of all objects that can
be obtained by certain operations on the geometric representation. These
two families are related by the procedures used to construct the geometric
representation from the parametric representation, but this relation is not
yet well understood. It is, however, generally agreed upon that the con-
cept of a family is related to a certain notion of continuity in the geometric
representation, and that for maintaining semantics of families of objects,
it is necessary to establish a relation between parametric operations and
continuous geometric transformations.

A specific representation-space family is described by the concept of
boundary representation deformation [Raghothama and Shapiro, 1998]. Ba-
sically, a family of objects is here defined by a prototype B-rep, and contains
all objects that can be created by a continuous deformation of the prototype.
The authors acknowledge that this definition of a family is too restrictive for
practical modelling of families of objects, because the boundary represen-
tation deformation cannot account for splitting and merging of topological
entities.

A more general framework for families of objects has been proposed
in [Raghothama and Shapiro, 2002]. Here, the concept of part families is
described using category theory, a branch of mathematics that deals with
broad classes of mathematical objects, such as the category of sets and the
category of topological spaces. A part family is defined as a sub-category of
the category of cell-complexes, such that there is a mapping between the cell-
complexes in the part family, with certain continuity preserving properties.
While this formulation of a family of objects does allow for some topological
variations, e.g. splitting and merging of topological entities, it does not help
to explicitly relate variations in the parameter space to variations in the
topological space.

In [Raghothama, 2006], representations are classified as constructive or
non-constructive. Parametric representations, e.g. CSG and history-based
representations, are constructive representations, which allow models to be
constructed incrementally using parameterised operations. However, these
models do not explicitly represent topology, and are not suitable for enforc-
ing continuity in Euclidean space. Non-constructive representations, such as
cell-complexes, do explicitly represent topology, but are difficult to parame-
terise. For modelling families of objects, the author proposes a constructive
topological representation (CTR), which can be used as parametric model
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Figure 2.4: Continuous CTR map from CTR (A) to CTR (B). Carriers
are h1 through h5 and h′

1
through h′

5
, atoms are C1 through C11 and C′

1

through C′

11. Source: [Raghothama, 2006]

and also to enforce spatial continuity.

Such a constructive topological representation is derived from a non-
topological constructive representation, e.g. a CSG representation, which
can be described by a boolean combination of carriers, e.g. geometric prim-
itives. A CTR is uniquely described by a set of atoms, which represent all
disjoint subsets of Euclidean space induced by the carriers in the model. It
is topologised by defining a neighbourhood for each atom. The neighbour-
hood of an atom is defined using the Star operator, which is the set of all
atoms in the CTR that are overlapping with it or adjacent to it, including
itself. Consider model (A) in Figure 2.4. The model consists of carriers
h1 . . . h5 and atoms C1 . . . C11. Here Star(C2) = (C1, C2, C3, C4).

If there is a so-called continuous CTR map between two CTRs, then
the two objects are in the same representation space family. A mapping
g from one CTR to another is a continuous CTR map if for each atom,
the mapping applied to the Star of the atom is a subset of the Star of the
mapping applied to the atom, i.e. g(Star(Ci)) ⊂ Star(g(Ci)). A continuous
CTR map is illustrated in Figure 2.4. Every atom Ci in model (A) is
mapped by a function g to a carrier C ′

i in model (B). For example, for atom
C2, we find that g(Star(C2)) = g(C1, C2, C3, C4) = (C ′

1, C
′

2, C
′

3, C
′

4), and
that Star(g(C2)) = Star(C ′

2) = (C ′

1, C
′

2, C
′

3, C
′

4, C
′

10, C
′

11). In this case, and
for all other atoms, we find that the mapping of the Star of the atom is a
subset of the Star of the mapping of the atom, and thus the mapping is a
continuous CTR map, i.e. the models are in the same family.

With the CTR map, it is possible to determine whether models with
different parameter values are in the same representation space family, i.e.
have similar topology. Note that for a correct family definition, the exis-
tence of a CTR map must be an equivalence relation, which is not shown in
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[Raghothama, 2006], but seems plausible. However, a CTR does not explic-
itly represent the relation between parameters and topology, e.g. it is not
possible to explicitly determine the parameter values for which the topology
changes.

The models for families of objects discussed above are mostly concerned
with preserving continuity in the geometric representation, and therefore,
families are defined in terms of continuous transformations or mappings.
However, this definition of a family of objects is rather limited; in practice,
it may be desirable for a family of objects to have members with different
topology. For example, a family of objects with two hole features, may have
some members in which these two holes intersect, whereas in other mem-
bers of that family, these two holes do not intersect. It should be possible to
specify whether this is desirable, i.e. the semantics of the family (See Sec-
tion 1.1), but in the models discussed above, semantics is fixed. Also, other
shortcomings of the history-based approach with respect to modelling fam-
ilies of objects, in particular the feature ordering problem and the problem
of maintaining feature semantics, are not addressed.

2.3 Procedural, rule-based and declarative models

The previous section discussed different representations used in models for
families of objects. In this section, we consider the way in which semantics
can be specified in such models. In particular, we distinguish three classes
of models: procedural models, rule-based models, and declarative models.

For modelling families of objects, the ability to specify invariant proper-
ties, i.e. properties that must hold for all objects in the family, is essential.
In particular, because we are mostly concerned with the shape of objects,
we should be able to specify invariant geometric and topological properties,
e.g. the diameter of a hole feature and that the hole must be a blind hole.
We discuss for each of the three classes of models if and how they can be
used to specify families of objects with such invariant properties.

Procedural models (or imperative models), specify how to construct ob-
jects in the form of a procedure that generates objects for given parameter
values. The history-based model is essentially a procedural model; it speci-
fies a history of modelling operations, which is basically a procedure for gen-
erating geometric representations from parameter values. Each modelling
operation itself is a procedure that determines a new geometric representa-
tion from a previous geometric representation. The geometry and topology
of the new representation depends on the order and the parameters of all
the modelling operations in the history. Creating a history of modelling op-
erations such that a geometric or topological property holds for all members
of the corresponding family, is therefore very hard. In particular, topologi-
cal properties cannot be properly specified and maintained in history-based
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(a) (b) (c)

Figure 2.5: Architectural designs created using a shape grammar. Source:
[Müller et al., 2006]

modelling systems, as we have seen in Section 2.1, and in general, creating
procedural models with specific invariant properties is very difficult.

Families of objects may also be created using knowledge-based engineer-
ing systems and automated design synthesis systems. These systems de-
termine possible design solutions for a given set of requirements, implicitly
specified by a set of rules. The rules can be executed by the system in any
order, to construct a set of objects, representing possible design solutions.
We refer to the models in such systems as rule-based models.

An example of a rule-based model based on a shape grammar is pre-
sented in [Stiny and Gips, 1972]. A shape grammar specifies how shapes
can be formed using elementary replacements in geometric representations.
Typically, a computer system generates alternative shapes, starting from
an initial shape, by applying one or more grammar rules. Some implemen-
tations support only 2D shapes, e.g. [Tapia, 1999], but progress has also
been made with 3D shape grammars, e.g. [Chau et al., 2004]. Such shape
grammars are mostly used in architectural design, e.g. [Müller et al., 2006]
(see also Figure 2.5).

Rule-based models can also be used for topology optimisation. For ex-
ample, in [Shea et al., 1997] a technique called shape annealing is used to
find truss structures, e.g. dome structures, with optimal strength. A large
number of models, each with a different topological structure, is generated
by a shape grammar, and a performance measure is calculated for each
model. A search algorithm similar to simulated annealing is used to find
models with near-optimal performance.

With the rule-based approach, as was the case with the procedural ap-
proach, it is difficult to specify invariant properties, because rules are basi-
cally procedures, and it is difficult to combine different procedures such that
invariant properties are always satisfied. Rule-based systems can be used to
search for particular objects, by testing whether the objects generated by
the rules satisfy certain invariant properties. However, in general, this is not
an efficient way to find all the objects that satisfy the invariant properties,
in particular when the invariant properties are continuous properties, e.g.
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(a) (b) (c)

Figure 2.6: Variations upon the ”A table and 3 chairs” theme, from Mul-
tiformes. Source [Ruchaud and Plemenos, 2002]

geometric properties. In general, these systems are therefore not used for
modelling families of objects, but rather for support of the model creation
process or topology optimisation.

Declarative models explicitly state invariant properties of objects, but
not how to construct those objects. Such a model specifies variables, i.e.
elements that exist in all objects in the family, but whose properties can
vary, and constraints, which state invariant properties by imposing rela-
tions between variables. The model does not specify how to satisfy those
constraints, but rather, a generic constraint solver is used to determine val-
ues for the variables such that all constraints are satisfied, i.e. the solutions
or realisations of the model. In general, there can be many solutions to a
system of constraints, and thus a declarative model can naturally describe
a family of objects.

Constraints have been used in several declarative scene modelling sys-
tems, e.g. WordEye [Coyne and Sproat, 2001], DEM2ONS [Kwaiter et al.,
1997] and Multiformes [Ruchaud and Plemenos, 2002]. Typically, the model
in such a system consist of several objects that are placed in 3D space to sat-
isfy topographical constraints, specifying, for example, that object A must
be to the left of object B. The modelling system determines various config-
urations of the objects in the scene, and presents these scenes to the user
(see Figure 2.6). In this way, these systems support the creative process.

However, our focus is not on modelling scenes and supporting the cre-
ative process, but on modelling families of objects. To specify a family of
objects in a completely declarative way, we must be able to specify all sorts
of invariant geometric and topological properties. The topographical con-
straints used in declarative scene modelling systems cannot be used for this.
Instead, geometric and topological constraints are needed.

Geometric constraints have long been used in CAD systems for speci-
fying geometric relationships in sketches, e.g. Sutherland’s 1963 Sketchpad
system [Sutherland, 2003]. Current history-based feature modelling sys-
tems use essentially the same sketching approach for what are generally
called sketched features. Geometric constraints are imposed on 2D geo-
metric primitives such as lines and circles, to constrain the dimensions of
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those objects (lengths, radii), their relative position and orientation (angles,
distances, parallelism), and other relations (adjacency, tangency).

Topological constraints state invariant topological properties that must
be satisfied by all members of a family. Useful topological constraints state
requirements on the connectivity of specific point sets in a model that are
meaningful to the user, i.e. features or faces of features. For example, a
topological constraint may state that the bottom face of a blind hole fea-
ture must be on the boundary of the model, so that the hole is actually
blind. In this way, topological constraints determine the possible topologi-
cal variations of a model, independently of the geometric constraints. Thus,
whereas geometric constraints are used to parameterise the shape of the
model, topological constraints are used to limit the range of topological
variations of the shape.

Topological constraints cannot, in general, be specified in current CAD
systems, because these systems create history-based models and use a B-
rep for representing the geometry. The topology of the B-rep is determined
by evaluating the modelling history, independently of any topological con-
straints. And although some topological aspects may be implicitly checked
by such systems, in general, topological constraints cannot be verified, be-
cause the B-rep does not contain all topological information needed for this.

One particular declarative modelling approach, the Semantic Feature
Model, discussed in the next section, supports both geometric and topolog-
ical constraints, which can be used to specify the semantics of features and
of families of objects.

2.4 The Semantic Feature Model

The Semantic Feature Model (SFM) [Bidarra, 1999; Bidarra and Bronsvoort,
2000b], is a declarative model that allows feature semantics to be adequately
specified and maintained. Also, the order in which features are added to
the model does not determine the resulting object (at least, in most cases,
see below).

A SFM consists of a set of features and additional constraints between
features. The shape and position of all features is determined by solving the
constraints specified in the features (feature constraints), and the additional
constraints between features (model constraints).

Each feature is instantiated from a feature class. A feature class consists
of shape elements, positioning elements, topological elements, and a user
interface, as shown in Figure 2.7. The user interface of a feature class
contains parameters that control the shape and position of the feature. In
particular, shape parameters determine the shape of the feature, via shape
constraints, which are imposed on shape entities. Positioning parameters are
parameters of positioning constraints, which are imposed on shape entities
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Figure 2.7: Elements of a feature class definition.

and on attach faces and positioning faces, which are faces of other features
in the model or reference geometry, set by the user.

The topological elements of a feature class are its nature attribute,
boundary constraints and interaction constraints.

The nature attribute can be additive or subtractive, indicating whether
the feature adds material to the model or removes material from the model.

A boundary constraint is associated with a feature face, and specifies that
the face must be (partially or completely) on the boundary of the model,
or may not be (partially or completely) on the boundary of the model. A
boundary constraint can be used to specify, for example, that the bottom
face of a blind hole feature must be on the boundary of the model, so that
the hole is always blind.

Interaction constraints are associated with a feature as a whole. Inter-
actions with other features may create specific topological patterns, which
can be disallowed by these constraints. An interaction constraint can be
used to specify, for example, that a feature may not be split into disjoint
parts by other features in the model. Table 2.1 lists interactions commonly
found in feature models that can be constrained in the SFM.

The geometric representation of the SFM is the cellular model (CM), a
cell-complex representation that can be used to store semantic feature in-
formation [Bidarra et al., 1998]. The cellular model consists of topological
entities, i.e. vertices, edges, faces and cells, and all topological relations be-
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tween these entities. Note that in literature on cell-complex representations,
usually all topological entities are called cells, whereas here we use the word
cell only for those entities representing volumes. All cells are quasi-disjoint,
meaning that cells may touch (share a face, edge or vertex), but they cannot
intersect. Each cell represents either a volume filled with material, i.e it is
part of the modelled object, or it represents an empty volume, i.e it is not
part of the object.

The CM is constructed by combining all the feature shapes in the model,
and can be updated efficiently when the feature model is changed [Bidarra
et al., 2005a]. If features intersect, they are split into non-intersecting new
entities, which are then added to the CM. The CM thus contains the geom-
etry of all the features, including the geometry that is not on the boundary
of the model. In contrast, the B-rep of a history-based model loses feature
geometry with each set operation. For each cell, the CM stores a list of
features that overlap with the cell, referred to as the owner list of the cell.

For each cell, it is determined whether it contains material, by depen-
dency analysis. The positioning faces and attach faces specified in the
user interface determine dependency relations among features. If feature
F1 refers to one or more faces of a feature F2, then F1 is said to be directly
dependent on F2. These relations are represented by a dependency graph,
which is a directed graph, where every direct dependency of a feature F1

on a feature F2 is represented by an edge (F1, F2). In general, a feature Fx

is said to be dependent on a feature Fy if there is a path from Fx to Fy

in the dependency graph. Feature precedence is a partial ordering derived
from the feature dependency graph, as follows: if a feature Fx depends on a
feature Fy, then Fx precedes Fy. For each cell in the CM, a precedence order
is determined for the features in the owner list of the cell. The nature of the
feature with the highest precedence determines whether the cell contains
material. If the nature of that feature is additive, the cell contains mate-

Interaction type Description
Splitting Causes the boundary of a feature to be split into two or

more disconnected subsets
Disconnection Causes the volume of an additive feature (or part of it) to

become disconnected from the model
Obstruction Causes (partial) obstruction of the volume of a subtractive

feature
Closure Causes a subtractive feature volume to become (part of)

a closed void inside the model
Absorption Causes a feature to cease completely its contribution to

the model boundary

Table 2.1: A list of interactions in feature models. Adapted from [Bidarra
and Bronsvoort, 2000b].
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blind hole block protrusion

dependsdepends

base block

Figure 2.8: Feature dependencies for the model in Figure 2.2. The blind
hole and the protrusion both depend on the base block, but are independent
of each other.

rial. If the nature of that feature is subtractive, the cell does not contain
material.

When for each cell in the CM it has been determined whether it contains
material, the validity of all features is checked by verifying that all boundary
constraints and interaction constraints are satisfied. If any constraint is not
satisfied, the model is invalid, and the user is guided through a recovery
process, until validity has been restored.

Problems occur when there are features in the owner list of a cell that are
independent and have conflicting natures. For example, Figure 2.8 shows the
feature dependencies of the model in Figure 2.2. The protrusion and blind
hole features are both dependent on the base block, because they refer to it
for positioning, but there are no dependencies between these two features.
Thus no feature precedence can be determined for these two features, and
again either Figure 2.2b or Figure 2.2c emerges, dependent on the order of
feature creation, just like in history-based systems. Interestingly, the SFM
approach can detect that the semantics of the blind hole feature in Figure
2.2c is incorrect, because the bottom of the blind hole in the cellular model
does not correspond to the bottom of the blind hole in the feature definition,
i.e. the boundary constraint on this feature face is not satisfied. However,
this information is not used to determine the correct feature precedence
order.

A model for families of objects, based on the SFM, is the Semantic
Model Family [Bidarra and Bronsvoort, 2000a]. A family consists here of
all models with the same features and constraints, but different parameter
values. Boundary and interaction constraints guarantee that every member
of the family has valid feature semantics.

The main shortcoming of the SFM as a basis for defining families of
objects, is that feature dependency analysis cannot always unambiguously
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decide which cells should contain material, in particular when there are
features in the owner list of a cell that are independent and have conflicting
natures, as discussed above. In general, feature dependency analysis does
not respect the semantics of features as specified by topological constraints.
Topological constraints are only checked after a model has been created,
instead of being used to create a valid model. As a result, a family of
objects defined by a SFM is not complete, i.e. sometimes no object is found
that satisfies the topological constraints, even though such an object exists.

2.5 Creating and using families of objects

In [Rappoport, 1997], a model is defined as a representation with specific
queries and operations. The available queries and operations determine how
we interact with a system to create and use models of families of objects.

In current CAD systems, a family of objects is designed by first mod-
elling a prototype object. The prototype is a fully determined object, and
can thus be visualised and be edited by manipulating a graphical represen-
tation of the geometry and features in the model.

While modelling a prototype object, the designer is forced to make
choices, to satisfy certain requirements. However, as requirements are of-
ten refined or changed during the design process, it may be necessary to
undo previous choices, e.g. by changing parameter values or by removing
features, to satisfy the new requirements. One problem here is that a fea-
ture often cannot be removed from the model without also removing the
features that were added to the model later. Also, it is possible to miss
alternative (perhaps better) solutions because of choices made early in the
modelling process.

For declarative models, the design process can be thought of as a grad-
ual narrowing down of a broad family of objects to a smaller family of
objects, by adding or changing requirements, specified in the model using
constraints. No arbitrary design choices have to be made to create a single
object, until the last moment, e.g. just before analysis or manufacturing.
Thus, no potential solutions are discarded during the design process. Also,
in these systems, features and constraints can be removed without limita-
tions due to a fixed modelling history, and thus design requirements can be
changed and incorporated at any time.

For declarative scene modelling systems, interaction can generally be
described by a three-step model [Gaildrat, 2007], consisting of a descrip-
tion step, a generation step and a lookup step. For the description step,
most declarative systems use a modelling language to specify model entities
and constraints, e.g. [Bonnefoi and Plemenos, 2000]. Alternatively, natu-
ral language is used, and natural statements are converted to constraints,
e.g. [Coyne and Sproat, 2001]. In the generation step, all realisations of the
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model are generated, if any exist at all. For models with an infinite number
of realisations, this is not possible, so a representative set should be gener-
ated. In the lookup step, the realisations, generated in the previous step,
are presented to the user. If the set of objects represented by the model is
large, some means of exploring the set is necessary.

Two modes for interacting with a declarative modelling system are de-
fined in [Bonnefoi et al., 2004]. In exploration mode, all realisations are
generated, and the user can interactively explore the solution space. In so-
lution search mode, only one realisation is generated. The solver will require
the user to specify more details, interactively, during the solving process.

Such declarative modelling systems provide better tools for exploration
of families of objects than current CAD systems. However, the input tech-
niques used in these systems are not particularly suitable for designing part
families for engineering and design. In particular, these systems provide no
graphical interaction with the model.

Preferably, it should be possible to design families of objects through
direct manipulation of a graphical representation. In models of families of
objects, just like in models of single objects, shape aspects, in particular
geometry and topology, are most important. Direct manipulation is much
more intuitive for manipulating shapes than a language-based approach.
Also, this is what designers using current CAD systems are used to.

However, in models of families of objects, geometry and topology may
not be fully determined, and there is no obvious and meaningful way that
these aspects can be visualised and interacted with. Thus, in practice, only
members of the family can be visualised and interacted with, as is done
in current modelling systems. Ideally, a system for modelling families of
objects should allow a family model to be modified by interacting with any
member model. Operations on a member model should be mapped by the
modelling system to operations on the family model.

The most important operations in CAD systems are those for specifying
and modifying shape aspects. In feature-based systems, fine control over
shape is provided by feature parameters. Adding and removing features
provides more global control over shape and semantics.

In industrial design, the type of features and the parameters necessary
for a particular application are referred to as the modelling context. Mod-
elling context may change over time, and feature conversions may be needed
while a product is being modelled. Dynamic Shape Typing [Vergeest et al.,
2002] is a framework for dynamically allocating a computational type, i.e.
a geometric representation, to match the modelling context. In mechanical
design, invariant properties of a model are more important, and features
are more used to capture design intent; thus modelling context is usually
considered static. For models of families of objects, we need to be able
to control the shape and semantics for all members simultaneously. To
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be able to do this, we assume a static modelling context, although feature
conversions are possible in principle, in particular in multiple-view feature
modelling [Bronsvoort and Noort, 2004].

The basic operations that should be supported by a model for families
of objects are addition and removal of features and model constraints, and
setting and unsetting of parameters. Note that setting and unsetting of pa-
rameters is essentially the same as adding and removing value constraints
on variables that represent parameters. Free variables represent shape vari-
ations within a family, and variables with a user-specified value represent
parameters that have the same value for all members of the family.

A system for modelling families of objects should also provide tools
that allow the user to inspect the set of objects in a family. Tools from
declarative scene modelling systems for exploring families of objects are
useful for this, e.g. the possibility to visualise several members at the same
time. However, to explore a family in this way, members of the family have
to be instantiated. This can be problematic, because it is not always clear
which parameter values will result in valid family members. This is, in
particular, the case for complex models, and models that have been created
by a third party.

A useful tool that can help when instantiating members of a family, is one
that computes the range of allowable values for a parameter. Computing
a range for several parameters simultaneously might also be useful, but
only for perhaps two or three parameters, because a higher dimensional
parameter range is difficult to present to the user [Hoffmann and Kim,
2001]. Methods for computing parameter ranges are discussed in Chapter
6 and Chapter 7.

Also, because the set of family members is often infinite, not all members
can be inspected, and it will be difficult to get an overview of the modelled
family. In particular, members with undesirable topological properties may
exist that are hard to find by manually instantiating members. Therefore,
it can be useful to know the parameter values for which topological changes
occur in the model, i.e. the critical parameter values. By identifying topolog-
ical changes, and the corresponding critical values, the designer can explore
the topological variations of a family model. Computing critical values is
discussed in Chapter 7.

To summarise, for modelling families of objects, we need a model in which
the semantics of features and families can be specified and maintained, in-
dependent of the modelling history. In particular, it must be possible to
specify invariant geometric and topological properties. Declarative models
with geometric and topological constraints are most suitable for this. To
unambiguously instantiate family members from such a model, we need to
be able to solve systems of geometric and topological constraints. To ex-
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plore the set of objects in the family, it should be possible to determine
parameter ranges for the family model, and critical parameter values to in-
spect the topological variations between those objects. A new declarative
model for families of objects is presented in the next chapter, and meth-
ods for solving geometric and topological constraints, and for determining
parameter ranges and critical values, are presented in subsequent chapters.
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Chapter 3

The Declarative Family of
Objects Model

In the previous chapter, we have argued that models created by current
commercial CAD systems do not adequately represent families of objects.
Various other types of models have been discussed in that chapter too. Of
these, declarative models seem the most appropriate for modelling families
of objects. We have also seen that such models should include geometric
and topological constraints to specify the semantics of features.

In this chapter, we present a new declarative model for families of ob-
jects, called the Declarative Family of Objects Model (DFOM). It is a gen-
eralisation of the Semantic Feature Model (SFM), presented in Section 2.4.
Like the SFM, the DFOM is a declarative model with features and geomet-
ric and topological constraints. However, unlike the SFM, the geometry and
topology of a DFOM does not have to be fully specified. Thus, a DFOM may
have any number of realisations, and represents a family of objects. Also,
topological constraints are solved to determine realisations, and thus the
ambiguity of the feature dependency analysis used in the SFM is avoided.
This allows us to properly specify families of objects.

In Section 3.1, an overview of the DFOM and the rest of the chapter is
given.

Parts of this chapter have already been published in [van der Meiden
and Bronsvoort, 2006b; van der Meiden and Bronsvoort, 2007a].

3.1 Overview of the model

The notion of a family of objects is often defined differently for various appli-
cations. Thus, a model for families of objects must be as general as possible
and allow families with specific semantics to be defined. In mechanical and
industrial design applications, shape and function are the most important
aspects of objects to be modelled. These aspects are related to geometric
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and topological properties of models.

The basic elements of any declarative model, and thus of the DFOM,
are variables and constraints. All aspects of a family that can vary between
members are represented by variables, e.g. the geometric and topological
aspects of the members of a family are represented by geometric and topo-
logical variables. Constraints are imposed on one or more variables, of the
same type or of different types, to specify invariant properties of features
and the family as a whole, e.g. geometric and topological properties are
specified by geometric and topological constraints.

More in detail, a family of objects is represented by a DFOM with geo-
metric variables, called carriers, and topological variables, called constructs.
Carriers define surfaces that partition space, e.g. a planar carrier defines a
planar surface and two sides of the surface. Constructs basically represents
point sets, i.e. volumes, surfaces, curves and individual points, constructed
by intersections of subspaces defined by carriers. Carriers and constructs are
related via so-called subspace constraints. Geometric properties of a family
can be specified by geometric constraints on carriers, and topological prop-
erties by topological constraints on constructs. This representation allows
us to declaratively specify almost any family of objects. The declarative
representation of geometry and topology is further discussed in Section 3.2.

Variables and constraints that occur together frequently can be com-
bined into features, which thus provide semantics at a higher level abstrac-
tion, closer to the function of a family of objects. We simply define a
feature as a subset of the variables and constraints in a DFOM. Because we
are interested in modelling volumetric objects, every feature must include a
variable representing its volume. This definition is conceptually very sim-
ple, but allows for many different types of features to be specified. The
representation of features and families is further discussed in Section 3.3.

Implicitly, a DFOM defines a set of realisations, i.e. all possible models
of objects that satisfy the constraints in the DFOM, thus representing all
possible family members. The geometric representation of realisations is
the cellular model (CM), the same representation that is used in the SFM
(see Section 2.4). This representation allows us to relate the declaratively
specified geometry and topology of families, including parts of features that
are not on the boundary of the model, to the geometry and topology of
realisations.

To determine realisations, first the geometric constraints are solved, to
determine the shape of the cells of a realisation’s CM, and then the topo-
logical constraints are solved, to determine which cells contain material.
Topological constraint solving replaces the feature dependency analysis of
the SFM, and because it determines all possible realisations, the interpreta-
tion of the DFOM is unambiguous. This interpretation process is discussed
in Section 3.4.
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A DFOM can have zero, one, a finite or a (countable or uncountable)
infinite number of realisations, represented by CMs. These realisations cor-
respond to the members of the family. However, family membership can
better be defined in terms of DFOMs. A member DFOM is defined as
a DFOM with exactly one realisation, created by adding constraints to a
DFOM representing a larger family, e.g. constraints to assign values to vari-
ables. Similarly, we can define a subfamily of a given family as a DFOM
with a superset of the original DFOM’s constraints. Thus, family mem-
bership is a well-defined relationship, which can be tested by comparing
DFOMs. This is much easier than comparing geometric representations of
realisations, which is difficult due to the persistent naming problem. Family
membership is further discussed in Section 3.5.

Finally, the DFOM has been implemented in a prototype feature mod-
elling system called Spiff, developed at Delft University of Technology.
This implementation is discussed in Section 3.6.

3.2 Geometry and topology

To be able to represent the variant shape of a family of objects, and specify
its invariant geometric and topological properties, we use geometric vari-
ables, called carriers, and topological variables, called constructs, related
by subspace constraints. This representation is elaborated here.

Carriers are used in various representations for families of objects, e.g.
in [Rappoport, 1997; Raghothama, 2006]. Although carriers can be defined
in any dimension, here we consider a carrier to be a function that partitions
3D Euclidean space into three subspaces, labelled IN, OUT and ON. The
subspaces that correspond to IN and OUT are each connected, 3D point
sets. The subspace labelled ON is a surface, separating the IN and OUT
subspaces. The three subspaces must partition space, i.e. every point in
space is either IN, ON or OUT. Thus, a carrier can be described by a three-
valued function C : R

3 → {IN,ON,OUT}.
Algebraic surfaces, described by an equation g(p) = 0, can be used to

define carriers, by defining C(p) as follows:

C(p) = IN ⇐⇒ g(p) < 0
C(p) = ON ⇐⇒ g(p) = 0
C(p) = OUT ⇐⇒ g(p) > 0

Examples of carriers based on simple algebraic surfaces are shown in Figure
3.1.

A carrier in a DFOM is a geometric variable, i.e. the geometry of a
carrier by itself is not determined. For carriers based on algebraic surfaces,
this means that the coefficients of the algebraic function that defines the
surface, may also be variables. These variables can be assigned a value
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(a) spherical carrier (b) planar carrier (c) cylindrical carrier

Figure 3.1: Carriers corresponding to simple algebraic surfaces

by a value constraint, or related by algebraic constraints. Primitives such
as planes and spheres, used to define carriers, can be related by geometric
constraints. For example, a planar carrier P can be constrained tangent
with a spherical carrier S, by a constraint tangent(P, S).

Note that in many modelling applications, parametric surfaces such as
NURBS are used, which cannot easily be used to define carriers. Also, geo-
metric constraints on such carriers cannot easily be solved. In this thesis, we
limit carriers to planes, spheres and cylinders, with variable radii, positions
and orientations. For these primitives, we can efficiently solve geometric
constraints (see Chapter 4).

The topological variables of a DFOM are called constructs. A construct
is a variable that represents a point set, corresponding to a subspace of R

3.
The actual point set represented by a construct, i.e. its value in a specific
realisation, is determined by the subspace constraints and the topological
constraints imposed on it.

Subspace constraints specify that a construct is a subset of the IN, ON or
OUT subspace of a carrier. For example, the subspace constraint IN(X,Ci),
where X is a construct and Ci is a carrier, specifies that X ⊆ Si where
subspace Si = {p ∈ R

3|Ci(p) = IN}. The subspace constraints ON(X,Ci)
and OUT (X,Ci) are defined similarly. Subspace constraints determine the
maximal point set that can be represented by a construct. Thus, a construct
X that is constrained by n subspace constraints to n subspaces S1, . . . , Sn

(of n carriers C1, . . . , Cn), represents a subset of the intersection of the
subspaces, i.e. X ⊆ S1 ∩ . . . ∩ Sn. The exact point set represented by a
construct is determined by solving the topological constraints in the model.

A construct that is not constrained to any carrier represents the space
R

3, and is generally not used in a DFOM. A construct that is constrained
ON a single carrier generally represents a surface. A construct that is con-
strained ON two carriers generally represents one or more curves. A con-
struct that is constrained ON three carriers generally represents a finite set
of points. Finally, a construct may also be constrained IN or OUT with
respect to several carriers, resulting in a point set that is bounded by the
surfaces of those carriers. For example, a construct constrained IN a planar
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(a) half-sphere (b) disk (c) circle (d) 2 points

Figure 3.2: Constructs built from a spherical carrier and one or two planar
carriers.

Figure 3.2 construct sphere plane 1 plane 2

(a) half-sphere IN IN
(b) disk IN ON
(c) circle ON ON
(d) 2 points ON ON ON

Table 3.1: Constructs from Figure 3.2 and the constraints relating them
to carriers.

carrier and IN a spherical carrier generally represents a half-sphere volume.
A construct constrained ON a planar carrier and IN a spherical carrier gen-
erally represents a disk. Some examples of systems of constructs and carriers
are shown in Figure 3.2 and Table 3.1.

Note that the intersection of carrier subspaces that defines the maximal
point set of a construct, is not the regularised intersection commonly used
in CSG representations. The maximal point set may thus be open or closed,
and bounded or unbounded. However, realisations of a DFOM are repre-
sented by a CM, which contains all maximal point sets of the constructs in
the DFOM, as well as the closure of any of those point sets that are open
(see Section 3.4). The represented object is the regularised union of those
volume cells in the CM that contain material, as determined by solving
the topological constraints in the model. Thus, even though subspace con-
straints may define constructs with an open topology, realisations always
have a closed topology.

Constructs are determined by carriers of which the geometry can vary,
and thus the point set represented by a construct can degenerate. For exam-
ple, a construct defined ON a sphere and ON a plane generally represents a
circle. However, for some values of the carriers, it may represent a point (if
the plane is tangent to the sphere) or an empty set (if the plane does not in-
tersect the sphere). Degenerate constructs are allowed in the model, but by
imposing topological constraints, such degenerate cases can be disallowed
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in realisations.

Topological constraints specify topological properties of constructs in
relation to each other or in relation to the whole model. Thus, topolog-
ical constraints determine whether a construct is completely, partially, or
not at all part of a realisation. For example, a CompletelyOnBound-
ary constraint specifies that a surface construct must be completely on the
boundary of the model. Thus, a point set will be assigned to the construct,
if possible, such that this point set is completely on the boundary of the
model. Solving topological constraints is further discussed in Chapter 5.

3.3 Representation of features and families

A DFOM can be schematically represented by a constraint graph. This
is a bi-partite graph, of which nodes are either variables or constraints,
and edges only run between variable nodes and constraint nodes. An edge
between a particular constraint and variable indicates that the constraint is
imposed on that variable.

The constraint graph of an example DFOM, representing a family of
blocks, is shown in Figure 3.3. In this figure, rectangles represent variables
and rhombuses represent constraints. Note that the roles (or order) of
variables in constraints are not indicated. In most cases, constraints are
either symmetrical, or the role of constraint variables can be inferred from
their type. The example model defines several planar carriers, e.g. bottom
and top, related by geometric constraints, e.g. the distance between bottom

and top is equal to a real number variable height. A volume construct
called block is related with IN constraints to the six carriers.

For modelling more complex families of objects, it should be possible to
create a DFOM using features, which capture semantics at a higher level of
abstraction. A more or less accepted definition of a feature is that it is a
representation of shape aspects of a product that are mappable to a generic
shape and functionally significant for some product life-cycle phase [Shah
and Mantyla, 1995]. In many feature models, for example [Hoffmann and
Joan-Arinyo, 1998] and [van den Berg et al., 2003], features are implemented
as feature classes, from which feature instances can be generated, which are
then added to the model.

In a pure declarative model, there is essentially no difference between
feature classes, i.e. definitions of features, and feature instances, i.e. features
in a model. Because a declarative model may have several realisations, a
feature instance in such a model may also have several realisations. In
fact, a feature in a model may even have exactly the same (infinite) set of
realisations as the feature class from which it was instantiated. However, a
feature in a model typically has fewer realisations, or just one realisation,
because of other constraints in the model.
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Figure 3.3: Constraint graph of a DFOM that defines a family of blocks.
Rectangles represent variables and rhombuses represent constraints.

Figure 3.4: Constraint graph of a DFOM that defines a cylindrical protru-
sion feature.
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A feature can thus also be considered a family of objects, although by
itself it may not represent a family of solid objects. For example, a solid
block is often used as a base feature, and is also a family of solid objects
by itself. On the other hand, a cylindrical blind hole, for example, is not a
solid object. It is, however, normally attached, via constraints, to another
feature, e.g. a solid block, from which it removes material, and together
they form a family of solid objects.

We simply define a feature as a specific subset of the variables and
constraints in a DFOM. The definition of a cylindrical protrusion feature is
shown in Figure 3.4. Here, variables and constraints inside the cylindrical
protrusion rectangle are part of the feature. To instantiate such a feature
in another DFOM, we copy the feature definition, i.e. the specified subset
of the variables and constraints, into that DFOM. The variables and con-
straints in the feature definition are thus added to the target model when
the feature is added to it, and removed from it when the feature is removed.

A feature should represent a volumetric shape, and should therefore
contain at least one variable representing a volume construct. For some
feature shapes, it may be necessary to define several volume constructs.
Additional, non-volumetric constructs may also be needed, e.g. constructs
representing the boundary of the feature. Carriers and constructs are used
to represent the canonical shape of features, i.e. the shape of a feature
without considering its interaction with other features. The actual geometry
and topology of a feature in realisations depends on the geometric and
topological constraints imposed on the carriers and constructs of the feature.

Typically, a feature definition contains constraints of which one or more
variables are not included in the definition. This set of variables and con-
straints is called the interface of the feature. When instantiating a feature,
the interface variables are not copied to the target model (since they are not
in the set that defines the feature), but instead variables from the target
model, specified by the user, are used in their place, such that the interface
constraints of the feature are imposed on those variables.

The feature interface can be used to specify how a feature will be at-
tached to other features in the model. For example, consider the DFOM
shown in Figure 3.4, representing a cylindrical protrusion feature. This
feature requires that its bottom face is coincident with an existing face in
the model. Thus, the feature contains a co-planar constraint, between the
bottom face and a face outside the feature, i.e. the attach face. When the
feature is instantiated in a model, the user must specify which face in the
model is used as the attach face. The feature interface in the example also
specifies two positioning faces, which are used to constrain the position of
the axis of the cylindrical protrusion feature.

A DFOM is basically a system of variables and constraints, plus a col-
lection of disjoint subsets of those variables and constraints, representing
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Figure 3.5: Schematic representation of DFOM, showing several features,
feature constraints and variables, interface constraints and variables, model
constraints and variables, and a parameter.

features. A schematic representation of a DFOM with several features is
shown in Figure 3.5. Constraints and variables can be classified as model
constraints and variables, feature constraints and variables, and interface
constraints and variables. Model constraints and variables are those which
are not in any feature. Feature constraints and variables are part of a
feature. Feature constraints that have variables outside the feature are in-
terface constraints, and the latter variables are interface variables.

A parameter is an aggregation of a variable and a value constraint, rep-
resented in Figure 3.5 by a combination of a rectangle and a rhombus. The
user can introduce new parameters, e.g. to replace interface variables when
instantiating a feature, or create a parameter by adding a value constraint
to a variable. The value of a parameter can only be changed by the user,
not by the modelling system.

The subsets that define features in a model must be disjoint, i.e. no
variable or constraint may be in more than one feature. This ensures that
features can be safely removed from a model without affecting the seman-
tics of other features. A model may, however, also contain variables or
constraints that are not part of any feature, i.e. model variables and con-
straints. This allows the user to add construction geometry, e.g. datum
planes, and additional constraints between features.

New feature types can be defined by simply creating a new model, from
carriers, constructs, and geometric and topological constraints, and then
specifying which variables and constraints are inside the new feature. Also,
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it is possible to edit features in a model, or to re-use parts of models as
features.

The representation of a DFOM can be summarised by the following
grammar:

model = set of variables + set of constraints + set of features
feature = set of variables + set of constraints
variable = carrier | construct | real (etc.)
constraint = geometric | subspace | topological (etc.)
carrier = plane | sphere | cylinder (etc.)
construct = volume | surface | curve | point
geometric = distance | angle | coincident (etc.)
subspace = IN | OUT | ON
topological = nature | boundary | interaction (etc.)

This grammar does not list all possible types of constraints and variables
that can be used in a DFOM. Other types of geometric variables and con-
straints can be supported by our geometric constraint solver, discussed in
Chapter 4. Topological constraints in the DFOM include boundary con-
straints, interaction constraints or nature constraints. These constraints
are imposed on the constructs of a model, corresponding to volumes (na-
ture and interaction constraints) or surfaces (boundary constraints). These
constraints, and other types of constraints supported by our topological
constraint solver, are discussed in Chapter 5.

Other types of variables and constraints, e.g numerical variables and
algebraic constraints, can also be included in the model. One approach
to solving such systems of mixed types of constraints, is to use different
specialised solvers alternately. In each iteration, from the solutions of one
solver, parameter values may be inferred that can be used by another. This
alternating iteration is continued until a complete solution has been found,
until no more parameter values can be inferred, or until some iteration max-
imum has been reached. In general, however, systems of mixed constraints
cannot be solved efficiently, and are not further considered in this thesis.

3.4 Realisations

A DFOM does not explicitly represent the geometry and topology of its
members. Instead, a number of realisations may be derived from a DFOM
by a process called interpretation. A realisation is represented by a cellular
model (CM), with a value assigned to each volume cell, specifying whether
the cell contains material, i.e. whether it represents a solid part of the object.
The represented object is the regularised union of all the cells that contain
material. From the CM we can also determine all faces, edges and vertices
that are part of the represented object, which may be used for visualisation
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Figure 3.6: The interpretation of a DFOM consists of a geometric solving
step, a CM construction step, and a topological solving step.

and analysis. The interpretation process guarantees that all constraints
specified in the DFOM are satisfied in the realisations it finds, thus these
realisations represent valid family members.

The interpretation of a DFOM starts with solving the geometric con-
straints on the carriers in the DFOM. This yields a number of geometric
solutions. In each geometric solution, the geometry of the carriers has been
be determined. With this carrier geometry, and the subspace constraints
relating carriers and constructs, a CM is constructed. Then, the system of
topological constraints is solved, which yields a number of topological solu-
tions. Each topological solution specifies for each cell in the CM whether it
contains material. This is illustrated in Figure 3.6.

Typically, if a DFOM represents a family of objects, the system of geo-
metric constraints will be underconstrained, i.e. it has one or more degrees of
freedom. This occurs when, for example, some dimensions of some features
have not been specified. A system that is underconstrained has an infinite
number of solutions, and these cannot be represented explicitly. Implicitly,
the model represents all the realisations that would be obtained if we could
generate all the geometric solutions and interpret them further.

Only if the geometric system has a finite number of solutions, then
the geometric solutions can be generated explicitly and interpreted further.
However, the number of solutions can be very large, exponential to the
number of geometric constraints in the system. The number of geometric
constraints for a typical model with just a few features is already so large
that it is not desirable to generate all geometric solutions. Therefore, fea-
tures should be defined in such a way that if the system is well-constrained,
the number of geometric solutions is low, preferably just one. This can be
done using various solution selection mechanisms, described in Section 4.5.

When the geometric constraint system has been solved, the geometry of
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(a) DFOM (b) CM

Figure 3.7: The 2D model in (a) has two features: a box, defined by four
linear carriers l1...l4 and a disk defined by circular carrier c1. The CM in
(b) shows several topological entities: vertices are labelled v∗, edges e∗ and
faces f∗

.

all carriers has been determined. The geometry of all constructs can also be
determined, by evaluating the subspace constraints. Thus the geometry of
a construct can be determined by intersecting carrier geometry. A cellular
model is constructed that contains a cell for every volume construct or
intersection of volume constructs. The boundaries of cells are represented
by faces, edges and vertices. A 2D example DFOM and the corresponding
CM are shown in Figure 3.7.

Unlike constructs, the entities in a cellular model should be connected
point sets. If a construct represents a connected point set, it can be rep-
resented by a single entity, otherwise it should be represented by several
entities. Also, for every entity in the CM that represents an open point
set, the CM must also contain entities that represent the closure of that
point set. Thus, a volume construct, which describes an open point set, is
represented by a cell in the CM, and its boundary is also represented in the
CM, by a number of faces. Finally, the entities in the CM must be disjoint,
i.e. they may not intersect each other.

The CM can be generated efficiently by mapping constructs to entities
and then adding these entities to the CM one at a time [Bidarra et al.,
2005b]. If an added entity intersects with an entity already in the CM, the
entities are split into non-intersecting entities, and new entities are added
that represents the intersection of the entities. For each entity in the CM, a
list of references is kept to the original constructs from which it was derived.
This allows us to relate the topology of realisations to the constraints in the
DFOM. This information is used for solving topological constraints (Chapter
5) and tracking topological changes (Chapter 7).
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Figure 3.8: Specialisation and instantiation. By adding constraints to a
DFOM, subfamilies and members are obtained. The realisations of a sub-
family, and the realisation of a member, are in the set of realisations of the
original family.

3.5 Family membership and subfamilies

The interpretation of the DFOM, as described above, guarantees that re-
alisations satisfy all constraints, and therefore have the semantics specified
by the model. However, because the set of realisations can be infinite, we
cannot, in general, verify family membership by generating and comparing
realisations. Therefore, family membership is defined in terms of DFOMs,
as follows.

A DFOM M represents a member of the family represented by a DFOM F ,
if and only if

• M has the same set of variables as F ,

• M has a superset of the constraints of F , and

• M has exactly one realisation.

In other words, members of a family are instantiated by adding more con-
straints, until the number of realisations is just one. Subfamilies are defined
in a similar way: they are also represented by models with extra constraints,
but can have more than one realisation. Thus, adding constraints to a
DFOM is equivalent to specialisation of a family. Instantiation is essen-
tially the same as specialisation; members are subfamilies with just one
realisation. Models with no realisation at all are invalid.

The relations between DFOMs representing families, subfamilies and
members, and the relations between the realisations of these DFOMs, are
illustrated in Figure 3.8. To better understand these relations, consider
that a subfamily DFOM is defined by a superset of constraints, and because
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more constraints have to be satisfied, the set of realisations of the subfamily
DFOM is a subset of the set of realisations of the family DFOM. A member
DFOM is a subfamily with one realisation, which is thus guaranteed to be
in the set of realisations of the family.

For every possible realisation of a family DFOM, a member DFOM can
always be found, simply by adding constraints. It is easy to see that if any
variable in a DFOM has degrees of freedom, then a value constraint can
be imposed to determine the variable. However, in practice, finding such a
value constraint, or some other constraint, such that there are no conflicts
with other constraints can be difficult (see Chapters 6 and 7).

To verify family membership, we need to compare systems of variables
and constraints, and we need to determine whether a model has zero, one,
or more realisations. The geometric constraint solver used here (see Chap-
ter 4) is able to identify overconstrained and underconstrained situations
corresponding to zero realisations and an infinite number of realisations,
respectively, and can determine any finite number of realisations if needed.
The topological constraint solver (see Chapter 5) can also generate the finite
set of all topological solutions, and thus we can determine the number of
solutions of a DFOM in general.

Sets of features and constraints can easily be compared if features and
constraints are uniquely identified by a name. This is only the case if one
model is directly derived from another. To verify membership for models
from another source, we can only consider the types of variables and con-
straints, and the associations between them. In that case, the membership
test is equivalent to graph matching, for which many algorithms are known,
e.g. [Ullmann, 1976].

3.6 Implementation

Our implementation of the DFOM is based on Spiff, a feature modelling
system developed at Delft University of Technology. Spiff originally im-
plemented the Semantic Feature Model (SFM, see Section 2.4). Because
the DFOM is based on concepts of the SFM, many modules of the mod-
elling system could be re-used, and the same types of features and types of
constraints are supported.

The topological constraints defined by the SFM, i.e. boundary con-
straints and interaction constraints, can also be used in the DFOM. Bound-
ary constraints specify that a surface construct is partially or completely
on the boundary of the model, or is not on the boundary, partially or com-
pletely. Interaction constraints specify that some volumetric interaction
should not occur (see Table 2.1). Such constraints were imposed on fea-
tures in the SFM, but are imposed on volume constructs in the DFOM.
The topological constraints available in our implementation of the DFOM
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constraint name description
Nature(V,additive) V has additive nature
Nature(V,subtractive) V has subtractive nature
CompletelyOnBoundary(S) S is completely on the boundary
PartiallyOnBoundary(S) S is partially on the boundary
CompletelyNotOnBoundary(S) S is completely not on the boundary
PartiallyNotOnBoundary(S) S is partially not on the boundary
NoSplitting(V) V has no disconnected subsets
NoDisconnection(V) V is not disconnected from the model
NoObstruction(V) V is completely free of material
NoClosure(V) V is not a closed void
NoAbsorbtion(V) V is not absorbed

Table 3.2: Topological constraints in the implementation of the DFOM.
Here V represents a volume and S represents a surface.

are listed in Table 3.2. These constraints can be used to specify the topolog-
ical semantics of features, when used as feature constraints, and additional
topological semantics of a family when used as model constraints. More
details about these constraints can be found in Chapter 5.

The nature of features can still be specified, now using nature con-
straints. A constraint Nature (V , additive) or Nature (V , subtrac-
tive) specifies that the nature of a feature volume V is additive or subtrac-
tive, respectively. However, unlike in the SFM, features do not necessarily
have a specific nature, i.e. no nature constraints have to be imposed on a
feature volume.

The most important modification to Spiff concerns the interpretation
process, which determines whether cells in the cellular model contain ma-
terial. Originally, from a partial feature precedence order, determined by
feature dependency analysis, a strict feature precedence order was derived,
by giving precedence to features that were more recently created or edited.
For each cell in the cellular model, whether it contains material was then
determined by the nature of the feature with the highest precedence in the
owner list of that cell. Topological constraints were only verified by the
system after the cellular model had been evaluated.

With the new interpretation, cells values are determined by nature con-
straints only if feature dependency analysis yields a strict ordering for the
features in the owner list of the cell. If this is not the case, then other
topological constraints determine the cell’s material value. To determine
those cell values, the complete system of topological constraints is solved
(see Chapter 5). Because of this, a DFOM may have zero, one or more
realisations, whereas for a SFM, always a single realisation was found. The
modelling system textually displays the total number of realisations of the
model, and graphically displays one of the realisations chosen by the user.
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(a) (b)

Figure 3.9: Two realisations of a single DFOM in Spiff.

In Figure 3.9, two realisations of a DFOM created in Spiff are shown.
The model contains a large blind hole that has a PartiallyOnBoundary
constraint on its bottom face. The user can choose one of the realisations, or
add constraints to reduce the number of realisations. If a NoObstruction
or NoSplitting constraint is added to the blind hole, only realisation (a)
will be found, because in model (b) the boundary of the blind hole is split,
and the volume of the hole is obstructed.

If a model is invalid, i.e. it has no realisations, then the user is informed
which constraints cannot be satisfied, and the affected features are high-
lighted. Note that to visualise such a model, some “nearly satisfied” reali-
sation should be generated. Currently, such a realisation is determined using
only feature precedence, i.e. the model is interpreted as a SFM. From this
realisation, it is determined which constraints are not satisfied and which
features are involved. The user is presented with a dialog that gives options
to restore model validity by changing or removing the features involved.

Altogether, the DFOM described in this section allows families of objects
to be specified with clear semantics. To instantiate members of such a
family, we need geometric and topological constraint solving methods. Such
methods are presented in the next two chapters.



Chapter 4

Geometric constraint
solving

In the DFOM, the geometric properties of a family are specified using geo-
metric constraints. To determine the realisations of a DFOM, and to decide
family membership of DFOMs, such systems of geometric constraints must
be solved. A geometric constraint solver is needed that satisfies the following
requirements:

• it should be able to determine solutions for systems of geometric con-
straints on carriers; in particular, it must solve distance, angle and
coincidence constraints on points, lines, planes, spheres and cylinders

• it should be able to determine whether a system is well-constrained,
underconstrained or overconstrained, and consistent or inconsistent

• it should be able to find all solutions of a well-constrained system, or
any particular, a-priori specified, solution

• it should be fast enough to be used for interactive modelling, and
for parameter range computation (see Chapter 6); in particular, it
must be able to efficiently re-compute the solutions after incremental
changes to a system.

A new geometric constraint solving approach is presented in this chapter
that satisfies these requirements. The approach can also be used to solve
geometric constraints in other applications. It is particularly suitable for
solving problems that cannot be decomposed into rigid subproblems, and
efficient at solving problems many times with incremental changes.

Parts of this chapter have already been published in [van der Meiden
and Bronsvoort, 2008] and [van der Meiden and Bronsvoort, 2005b].
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4.1 Introduction

Geometric constraints are used in current CAD systems to specify dimen-
sions in 2D sketches, and to position parts in 3D assembly modelling. In
some declarative modelling approaches, e.g. semantic feature modelling and
the DFOM, presented in the previous chapter, geometric constraints are
used to define feature classes and families of objects.

Note that geometric constraints in a DFOM may have variables, e.g. dis-
tance and angle variables, on which other types of constraints, e.g. algebraic
constraints, are imposed. Such systems of mixed type constraints cannot be
solved by a specialised geometric constraint solver, such as presented here.
It is assumed that all variables of geometric constraints are geometric vari-
ables. Values of parameters of the geometric constraints, i.e. distances and
angles, must have been determined before the geometric constraint system
is solved.

In principle, geometric constraint problems can be considered as alge-
braic problems. However, generic algebraic solving methods are either too
expensive, or they are incomplete, i.e. they cannot find all solutions for a
given problem. Solving large constraint systems using symbolic algebraic
methods is too expensive. Known methods, e.g. methods based on char-
acteristic sets, such as Wu’s method [Wu, 1986], have exponential running
times, in relation to the number of constraints. Numerical methods, such as
Newton-Raphson iteration, are not useable either, because these methods,
although fast, cannot find all solutions to a given problem. Homotopic con-
tinuation techniques have been used to find all solutions for small problems,
e.g. the octahedral problem [Durand and Hoffmann, 2000]. However, for
larger problems, this technique is also too expensive, because the number
of homotopy paths grows exponentially.

The most successful geometric constraint solvers are so-called construc-
tive solvers, which determine a decomposition of a problem into generically
rigid subproblems, known as clusters. These clusters are solved indepen-
dently, and the solutions of the clusters are used to construct a solution
for the complete problem. The advantages of using constructive solvers in
CAD, and requirements for such solvers, are discussed in [Hoffmann et al.,
2001a].

For 2D problems, generic rigidity is characterised by Laman’s theorem
[Laman, 1970]. This theorem formulates generic rigidity for graphs, where
edges in the graph correspond to distance constraints and vertices corre-
spond to point variables, as follows:

Let a graph G have exactly 2n− 3 edges, where n is the number
of vertices in G. Then G is generically rigid in R

2 if and only
if e′ ≤ 2n′ − 3 for every subgraph of G with n′ vertices and e′

edges.
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In other words, Laman’s rule states that a 2D constraint problem with
n points and e distance constraints is generically rigid, or well-constrained,
if and only if e = 2n − 3, and for every subproblem with n′ points and e′

distance constraints, e′ ≤ 2n′ − 3. If the number of constraints is smaller
than specified by the rule, the system is called underconstrained. If, for
any subproblem, the number of constraints is larger, the system is overcon-
strained. Note that a well-constrained system is not necessarily consistent,
i.e. depending on the actual parameter values of the constraints there may
or may not be any solutions. Also, overconstrained systems are not neces-
sarily inconsistent; for some values of the constraint parameters, the system
may have solutions, and is called consistently overconstrained.

The simplest constructive solving approach is the cluster rewriting ap-
proach, also referred to as the bottom-up approach. In this approach, pat-
terns of geometric constraints that are known to be generically rigid, are
recognised as clusters. Certain patterns of clusters are also recognised and
merged into larger clusters. If the problem is well-constrained, a single
cluster will remain at the end of the rewriting process.

Most 2D solvers use a variant of the cluster rewriting approach with op-
timised data structures for representing systems of clusters, e.g. the graph-
constructive approach used in [Bouma et al., 1995; Hoffmann and Vermeer,
1995]. For some of these algorithms a proof of correctness has been given,
e.g. [Fudos and Hoffmann, 1996; Joan-Arinyo and Soto, 1997], showing that
if a system is reduced to a single cluster, then this cluster represents a
correct solution for the original system.

The cluster rewriting approach is not complete, because no set of rewrite
rules is known that will reduce all well-constrained systems, even if they
consists only of distance constraints, to a single rigid cluster. In practice
this means that some well-constrained systems may not be solved, and may
be classified incorrectly as underconstrained.

Using Laman’s theorem, a complete top-down decomposition algorithm
can be devised for 2D problems, e.g. as suggested in [Hoffmann et al., 2001a;
Joan-Arinyo et al., 2004]. However, such a complete algorithm is expensive,
and cannot deal with consistently overconstrained situations.

Some 3D solvers based on the cluster rewriting approach have been
presented in [Hoffmann and Vermeer, 1995; Durand and Hoffmann, 2000].
However, in 3D, the incompleteness issues of this approach are even more
severe than in 2D. Until recently, there was no 3D equivalent to Laman’s
theorem, but a characterisation of generic rigidity for 3D systems of distance
constraints has now been found [Sitharam, 2006]. This result may lead to
the development of a complete algorithm for solving systems of 3D geometric
constraints. However, at the time of writing, no solving algorithm based on
this result is known.

Most 3D solvers, e.g. [Kramer, 1992; Hoffmann et al., 2001b; Sitharam
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(a) graphical representation

Angle(A,B,C) Angle(A,D,C)
Angle(A,D,E) Angle(A,F,E)
Angle(B,A,C) Angle(C,A,D)
Angle(D,A,E) Angle(E,A,F )
Distance(B,F )

(b) textual representation

Figure 4.1: System of constraints on points [A, . . . , F ]. An angle constraint
is represented graphically by an arc between dashed lines. A distance con-
straint is represented graphically by a two-sided arrow.

et al., 2006; Gao et al., 2006] are based on a technique called degrees-of-
freedom (DOF) analysis. The DOF-based approach creates a top-down
decomposition using heuristic rules to determine the generic rigidity of a
problem and its subproblems. Solving algorithms attempt to find a min-
imal set of rigid subproblems based on the results of the DOF analysis.
In practice, DOF-based rules correctly determine well-constrainedness for
many systems of constraints. However, the DOF-based approach is also not
complete, since current DOF-analysis techniques are based on heuristics for
well-constrainedness in 3D. In particular, DOF-based algorithms sometimes
incorrectly classify overconstrained systems as well-constrained.

To be able to efficiently determine solutions for problems with incre-
mental changes, the cluster rewriting approach is preferable. It is fast and
an incremental algorithm can be easily implemented. However, the clus-
ter rewriting approach can only be used to solve a relatively small class of
problems, in particular, problems that can be decomposed into fairly small
rigid subproblems. The DOF-based approach can solve a larger class of
problems, but is generally more expensive, and no incremental algorithm is
known. In particular when a problem cannot be decomposed into two or
more rigid subproblems, the whole problem must be solved using expensive
symbolic algebraic methods, which are also not incremental.

In general, problems that cannot be decomposed into rigid clusters can-
not be solved incrementally and efficiently with existing approaches. Con-
sider, for example, the 2D constraint problem in Figure 4.1. Here, we have
a number of points (the variables), constrained by several angle constraints,
and one distance constraint. The whole constraint system is rigid, but there
is no subset of variables and constraints that forms a rigid system. A solver
based on the cluster rewriting approach will not be able to solve the system,
because it cannot find any rigid clusters, unless this particular system would
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be explicitly programmed in the solver. Using a DOF-based approach, the
system may be found to be well-constrained, but the system is considered
as a single cluster and must be solved using expensive symbolic algebraic
methods.

We present a new solving approach that identifies not only rigid clusters
(corresponding to generically rigid subproblems), but also so-called scalable
clusters and radial clusters, which correspond to subproblems with particu-
lar internal DOFs. The different types of clusters are introduced in Section
4.2.

Our solving approach, presented in Section 4.3, is based on cluster
rewriting. The basic idea is to exhaustively apply a small set of rewrite
rules to a system of rigid and non-rigid clusters. The set of clusters re-
maining when no more rewrite rules can be applied, represents the generic
solution of the system. With this approach, we can also determine whether
the system is well-constrained, underconstrained or overconstrained.

It is relatively easy to update the solution(s) of a system when changes
are made to it, i.e. when values of constraint parameters are changed, or
when constraints are added to or removed from the system. An efficient
incremental algorithm is presented in Section 4.4.

In general, a geometric constraint problem, even if it is well-constrained,
can have a large number of solutions. Typically, for applications such as
the DFOM, only one or a few specific solutions are needed. In Section
4.5, we present two methods for solution selection that can be used in the
presented solving algorithm: declarative solution selection and prototype-
based solution selection.

The cluster rewriting algorithm can only solve systems of constraints on
points, whereas in a DFOM, and many other applications, constraints are
imposed on 3D primitives, e.g. planes, spheres and cylinders. Our approach
to solving systems of geometric constraints on 3D primitives is discussed
in Section 4.6. Basically, constraints on such primitives are mapped to a
system of distance and angle constraints on point variables. This system is
then mapped to a system of rigid and non-rigid clusters, which is solved.
The solutions of the system of clusters are used to construct the solutions
for the original problem involving 3D primitives.

4.2 Clusters

A cluster basically represents a collection of distance and angle constraints
on a set of points. We define three types of clusters: rigid clusters, scalable
clusters and radial clusters. The type of a cluster determines which distances
and angles are constrained by it. Also, a set of configurations is associated
with a cluster, each of which determines an alternative set of values for the
distances and angles constrained by the cluster.
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The distances δ(p, q) constrained by a cluster are defined as:

δ(p, q) =
√

(q − p) · (q − p)

and the angles ∡(p, q, r) as:

∡(p, q, r) = cos−1(
p − q

δ(p, q)
· r − q

δ(q, r)
)

where p, q, r ∈ R
2 or R

3 are points in the cluster.
By this definition, ∡(p, q, r) ∈ [0, π]. In 3D, only this unsigned angle can

be used. In a 2D variant of the solver, signed angles may be used instead.
A signed angle ∡(p, q, r) ∈ [−π, π] is the angle of rotation to transform a
unit-vector p − q to a unit-vector r − q in R

2.
A configuration is a set of assignments of coordinates to point variables.

For a set of point variables A = [p1, . . . , pn], each point pi is assigned a vector
vi, and for this configuration we write: cA = {p1 = v1, p2 = v2, . . . , pn = vn}.

The actual values of the distances and angles constrained by a cluster
are determined by the configurations associated with the cluster. When
there are no configurations associated with a cluster, the cluster is consid-
ered unsatisfiable, i.e. there are no solutions for this cluster. If there are
several configurations associated with a cluster, then these determine alter-
native values for the distances and angles, i.e. the distance and angle values
determined by one of the configurations must be satisfied.

For a cluster with a given type and set of configurations, the distance
and angle values can be determined as follows. Suppose, the type of the
cluster specifies that the distance δ(p1, p2) is constrained, and associated
with the cluster are two configurations, c1 = {p1 = (0, 0, 0), p2 = (1, 1, 1)}
and c2 = {p1 = (2, 0, 0), p2 = (1, 0, 0)}. Configuration c1 specifies a con-
straint δ(p1, p2) =

√
3. Alternatively, configuration c2 specifies a constraint

δ(p1, p2) = 1. When solving a system containing this cluster, one of these
constraints must be satisfied.

The system of distance and angle constraints represented by a clus-
ter, when considered as independent constraints, is in some cases overcon-
strained. However, the values of these distance and angle constraints are
determined by a configuration, and therefore these constraints are in fact
not independent. Because a configuration assigns a point in R

3 to each
variable in the cluster, the system of constraints is always consistent (see
Section 4.3). Consequently, a cluster with one or more configurations can
be considered a constraint, and, at the same time, a solution for a system
of constraints.

A rigid cluster is a constraint on a set of points [p1, . . . , pn], such that
the relative position of all points is constrained, i.e. all distances and angles
in the set of points are constrained (see Figure 4.2(a)). This type of cluster



4.2. CLUSTERS 49

Figure 4.2: Constraints imposed by different cluster types (a,b,c) and their
graphical representation (d,e,f).

has no internal DOFs, and is invariant to translation and rotation, i.e. the
constraint is satisfied independently of such transformations. The notation
for a rigid cluster on a set of points [p1, . . . , pn] is: Rigid([p1, . . . , pn]).

A scalable cluster is a constraint on a set of points [p1, . . . , pn] such
that for all i, j, k ∈ [1, n], the angles ∡(pi, pj, pk) are constrained (see Fig-
ure 4.2(b)) The constraint has one internal DOF, namely it may be scaled
uniformly, and is invariant to translation and rotation. The notation for a
scalable cluster on this set of points is: Scalable([p1, . . . , pn]).

A radial cluster is a constraint on a set of points [pc, p1, . . . , pn] such
that for all i, j ∈ [1, n], the angles ∡(pi, pc, pj) are constrained (see Figure
4.2(c)). Point pc is called the centre point and points p1, . . . , pn are called
radial points. This constraint is invariant to translation and rotation, and
has n internal DOFs (each point p1, . . . , pn can move along a line through
the centre point). The notation for a radial cluster on these points is:
Radial(pc, [p1, ..., pn]).

We use a graphical notation for clusters, as shown in Figures 4.2(d)-(f).
A point variable is represented by a dot with the name of the corresponding
variable next to it. A rigid cluster is represented by a solid curve enclosing
the set of points constrained by the cluster. A scalable cluster is represented
by a dashed curve enclosing the set of points constrained by the cluster.
Finally, a radial cluster is represented by a circle around the centre point
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(a) graphical representation

Radial(A, [B,C,D,E, F ])
Radial(B, [A,C])
Radial(D, [C,A,E])
Radial(F, [A,E])
Rigid([B,F ])

(b) textual representation

Figure 4.3: The system of clusters corresponding to the problem in Figure
4.1.

and lines connecting the circle to the radial points.
Distance and angle constraints on points are easily mapped to clusters

and configurations, as follows.
A distance constraint between two points is equivalent to a rigid cluster

of two points with one associated configuration. For example, a distance
constraint δ(p1, p2) = 1 can be represented by a cluster Rigid(p1, p2) and
a configuration {p1 = (0, 0), p2 = (1, 0)}. Obviously, the choice of this
particular configuration is somewhat arbitrary: infinitely many different
configurations can be used to set the distance value.

An angle constraint on three points is equivalent to a radial cluster with
one centre point and two radial points, and one associated configuration.
For example, the angle constraint ∡(p1, p2, p3) = 1

2π can be represented by a
cluster Radial(p2, [p1, p3]) and a configuration {p1 = (1, 0), p2 = (0, 0), p3 =
(0, 1)}.

A system of distance and angle constraints on points can thus be mapped
to a system of clusters. Figure 4.3 shows the system of clusters correspond-
ing to the problem in Figure 4.1. Note that some angle constraints (e.g.
∡ADC and ∡ADE) that are initially mapped to overlapping radial clusters
(i.e. Radial(D, [A,C]) respectively Radial(D, [A,E]) have been merged (i.e.
Radial(D, [C,A,E])). In the visual representation, such overlapping radial
clusters cannot be easily distinguished, and because new angles can be in-
ferred in such cases, the clusters are merged. This results in a simpler
representation with more constraint information (see next section and Rule
1 in Appendix A).
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4.3 Solving approach

To solve a system of clusters, we basically try to rewrite the system to a
single rigid cluster, by exhaustively trying to apply a set of rewrite rules.

A rewrite rule specifies a pattern, describing its input clusters, and its
output cluster in a generic way, and it specifies a procedure to determine
the configurations of the output cluster from the configurations of the input
clusters. A rewrite rule can be applied if a set of clusters is found in the
system that matches the input clusters in the pattern. The corresponding
output cluster is added to the system, and the configurations of the output
cluster are determined by the procedure.

A pattern specifies a number of input clusters of a given type and a
number of pattern variables. These pattern variables are matched by the
solving algorithm to the point variables of the clusters in the system, such
that the number of variables and the type of the cluster match. A pattern
may also specify that an input cluster can match any cluster with a superset
of the given variables. If a variable name occurs several times in the pattern,
it must be matched with a single point variable that is constrained by several
clusters in the constraint system.

To determine the configurations of the output cluster of a rewrite rule,
the procedural part of the rule is applied for every combination of input
cluster configurations. Suppose, for example, that two clusters are used as
the input of a rewrite rule, and that each cluster has two configurations
associated with it, then four different configurations for the output cluster
are computed.

A set of rewrite rules for 2D and 3D problems is given in Appendix A.
Of the 14 rules in total, 3 rules are specific for 2D problems, 6 rules are
specific for 3D problems, and 5 more can be used in both 2D and 3D.

In the remainder of this section, we show how these rewrite rules are
used to solve the problem illustrated in Figure 4.3. Consider Rule 7 from
Appendix A.

Rule 7 Derive a scalable cluster from two radial clusters

Pattern: Radial(p1, [p3, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .])
→ Scalable([p1, p2, p3])

Procedure: c1 × c2 → cR

cR(p1) = (0, 0, 0)
cR(p2) = (1, 0, 0)
cR(p3) = intersection

ray from cR(p1) direction ∡(c1(p3), c1(p1), c1(p2))
ray from cR(p2) direction ∡(c2(p1), c2(p2), c2(p3))

This rule can be applied (in 2D or 3D) when two radial clusters (A and
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(a) single application of Rule 7 (b) repeated application of Rule 7

(c) after applying Rule 3 (d) after removing redundant clus-
ters

Figure 4.4: Intermediate results for solving the system in Figure 4.3.

B) share three points, including the centre point of each cluster. When a
match is found, a new scalable cluster (R) is added to the system, and a
configuration (cR) is computed by intersecting two rays (directed half-lines).

This rule can be applied to the problem in Figure 4.3, as follows. We
find the following matches:

Radial(A, [B,C,D,E, F ]) ∪ Radial(B, [A,C]) → Scalable([A,B,C])
Radial(A, [B,C,D,E, F ]) ∪ Radial(D, [C,A,E]) → Scalable([A,C,D])
Radial(A, [B,C,D,E, F ]) ∪ Radial(D, [C,A,E]) → Scalable([A,D,E])
Radial(A, [B,C,D,E, F ]) ∪ Radial(F, [A,E]) → Scalable([A,E,F ])

By applying the rewrite rule to the first match, the system shown in Figure
4.4(a) is obtained. Repeated application of the rule for all the matches listed
above, results in the system shown in Figure 4.4(b).

When a rewrite rule is applied, the input clusters may become redun-
dant and should be removed from the system. A cluster is redundant if
all distances and angles constrained by the cluster are also constrained by
newer clusters. Thus, an input cluster is removed from the system if all the
distances and angles in the cluster are also in the output cluster.
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In the system in Figure 4.4(a), the cluster Radial(B, [A,C]) is redun-
dant and removed, because the angle ∡ABC constrained by this cluster,
is also constrained by the newer cluster Scalable([A,B,C]). The cluster
Radial(A, [B,C,D,E, F ]), however, is not removed, even after repeated
application of the rewrite rule (result shown in Figure 4.4(b)), because it
constrains angles that are not in any of the scalable clusters (e.g. ∡BAF ).

If a rewrite rule is defined such that its output cluster contains all dis-
tances and angles that are in its input clusters, then all input clusters are
removed after the rule has been applied, and we say that the rewrite rule
merges the input clusters. The scalable clusters in Figure 4.4(b) can be
merged using Rule 3 from Appendix A.

Rule 3 Merge two scalable clusters with two shared points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Scalable(B = [p1, p2, . . .])
→ Scalable(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling such that p1 and p2 in c2

are mapped onto p1 and p2 in c1

cR = c1 ∪ T (c2)

This rule basically takes two scalable clusters, and combines their config-
urations by rigidly transforming one of them such that the shared points
between the configurations coincide. New configurations obtained in this
way are associated with a new scalable cluster. The rule can be applied
repeatedly, in the example problem, as follows:

Scalable([A,B,C]) ∪ Scalable([A,C,D]) → Scalable([A,B,C,D])
Scalable([A,D,E]) ∪ Scalable([A,E,F ]) → Scalable([A,D,E,F ])
Scalable([A,B,C,D]) ∪ Scalable([A,D,E,F ]) → Scalable([A, . . . , F ])

Applying these rewrites results in the system shown in Figure 4.4(c). Now
we can remove the clusters Radial(A, [B,C,D,E, F ]) and Radial(D, [C,A,

E]), because all angles in those clusters are also constrained by the newer
cluster Scalable([A,B,C,D,E, F ]), resulting in Figure 4.4(d). Finally the
cluster Scalable([A,B,C,D,E, F ]) can be merged with Rigid([B,F ]), using
the following rule from Appendix A.

Rule 8 Derive a rigid cluster from a scalable and a rigid cluster with two
shared points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Rigid([p1, p2, . . .]) → Rigid(A)
Procedure: c1 × c2 → cR

T = scale configuration by δ(c2(p2),c2(p1))
δ(c1(p2),c1(p1))

cR = T (c1)
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Figure 4.5: Generic solution for the problem in Figure 4.3. Note that
Scale(. . .) represents a scalable cluster.

This rule basically scales the configuration of the scalable input cluster, such
that the distance between the shared points becomes equal to the distance
specified by the configuration of the rigid input cluster. New configurations
obtained in this way are associated with a new rigid cluster.

The rule can be applied to the example system, resulting in a cluster
Rigid([A,B,C,D,E, F ]), which constrains all the variables of the problem.
No other rewrite rules can be (nor need to be) applied.

The generic solution of a problem is represented by a directed acyclic
graph (DAG) of clusters and rewrite rules. The generic solution of the
problem of Figure 4.3 is shown in Figure 4.5. In this figure, arrows indicate
dependencies between clusters created by rewrite rules (the rules are not
explicitly represented). The clusters in the generic solution can be classified
as problem clusters, i.e. the clusters specified in the original problem, inter-
mediate clusters, and solution clusters, i.e. the clusters that are not used
as input for any rewrite rule. In Figure 4.5, the clusters with no incoming
arrows are problem clusters, and the cluster with no outgoing arrows is the
solution cluster.

The configurations associated with the solution cluster are the particular
solutions of the problem. If there are no configurations associated with the
solution cluster, then the problem is inconsistent. If there are one or more
configurations, then the problem is consistent.

From its generic solution, we can also determine whether a problem is
underconstrained, overconstrained or well-constrained:

• A problem is underconstrained if its generic solution has more than
one solution cluster or a single non-rigid solution cluster.

• A problem is overconstrained if any distance or angle constraint has
more than one source cluster. This is elaborated below.
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• A problem is well-constrained if it is not underconstrained and not
overconstrained. Note that these conditions are not mutually exclu-
sive.

If any distance or angle is constrained in two or more clusters in the generic
solution, then the system may be overconstrained, depending on which clus-
ters these distances and angles occur in.

In particular, if two or more problem clusters, i.e. clusters determined
from constraints specified by the user, constrain the same distance or angle,
then those distances and angles are generally not consistent, and thus the
problem is overconstrained.

However, if some distance or angle is constrained in several intermedi-
ate clusters or solution clusters, then the problem is not necessarily over-
constrained. The values of this distance or angle in different clusters, are
derived by rewrite rules from the original problem clusters, and these values
may in fact be the same in all clusters.

To determine whether a problem is overconstrained, we use the following
procedure. When adding new clusters to the generic solution, we determine,
for each distance or angle in that cluster, its source clusters, i.e. the first
clusters in the generic solution that constrain that distance or angle.

The source cluster of a distance or angle in some cluster can be found
by following dependencies in the generic solution in the reverse direction,
checking for each cluster encountered whether it already constrains that
distance or angle. A cluster that constrains a given distance or angle is
a source cluster if it does not depend on any cluster that constrains that
distance or angle.

If there is exactly one source for each distance or angle, then the sys-
tem is not overconstrained, because each rewrite rule ensures that all dis-
tance/angle constraints in its input clusters are also satisfied in its output
clusters. Otherwise, if there is more than one source for a distance or an-
gle, then there is no guarantee that it will have the same value in different
clusters, and therefore the system is overconstrained.

During the cluster rewriting process, sets of clusters may be created by
the solver that constrain the same distances and angles, but do not result
in an overconstrained system. Consider, for example, the system in Figure
4.4(c). Here, all the angles in the clusters Radial(A, [B,C,D,E, F ]) and
Radial(D, [C,A,E]) are also constrained by the cluster Scalable([A,B,C,

D,E, F ]). However, from the generic solution in Figure 4.5, we can infer
that for each overconstrained angle, there is only one source, in these cases
a single problem cluster. Thus, the system is not overconstrained.

In Figure 4.6(a), an overconstrained problem is shown. The generic
solution for this problem is shown in Figure 4.6(b). Here, the clusters
Rigid([p1, p2, p3]) and Rigid([p1, p3, p4]) both constrain the distance δ(p1, p3).
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(a) problem (b) generic solution

Figure 4.6: An overconstrained 2D problem and its generic solution.

So, this distance is determined twice, by different rewrite rule applica-
tions, using different input clusters that do not constrain this distance.
Thus, there are two source clusters for the distance: Rigid([p1, p2, p3]) and
Rigid([p1, p3, p4]), and therefore the problem is overconstrained.

4.4 Incremental algorithm

The solving algorithm incrementally updates the generic solution of a con-
straint problem whenever changes are made to the problem, i.e. clusters are
added or removed. The generic solution (symbol G in Algorithms 4.1, 4.2
and 4.3) is represented by a bi-partite graph, in which nodes are clusters
or rewrite rules. Directed edges connect clusters and rewrite rules, i.e. if a
cluster is an input cluster of a rewrite rule, then there is an edge from the
cluster to the rewrite rule. If a cluster is the output cluster of a rewrite rule,
then there is an edge from the rewrite rule to the cluster.

The solving algorithm also keeps track of the set of active clusters, i.e. the
clusters that represent the problem after all rewriting steps so far (symbol
A in Algorithms 4.1, 4.2 and 4.3).

The generic solution and the active set are initially empty. When the
user adds a cluster to the problem (method AddCluster, see Algorithm 4.1),
the cluster is added to the generic solution and to the active set. Because it is
not the output of a rewrite rule, the cluster can be identified in the generic
solution as a problem cluster. The algorithm then searches for possible
rewrite applications on that new cluster, i.e. rewrite rule applications where
the cluster is used as input (method SearchRewrites, see Algorithm 4.3).

When a cluster is removed (method RemoveCluster, see Algorithm 4.2),
it is removed from the generic solution and the active set. All depen-
dent clusters are also removed from the generic solution. The dependent
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clusters (function DependentClusters) are all clusters in the generic so-
lution that are directly or indirectly determined by rewrite rules that use
the given cluster as input. The algorithm must then determine a new set
of active clusters. For this purpose, it determines which clusters were re-
moved from the active set when this particular cluster was added (function
DeactivatedClusters). The active set is restored by re-adding those clus-
ters to the active set. It is possible that after restoring the active set,
combinations of clusters can be rewritten (method SearchRewrites, see
Algorithm 4.3).

Searching for possible rewrite rule applications (see Algorithm 4.3) can
be done efficiently because we search only for rewrites on newly added clus-
ters. Since each rewrite rule involves a small number of overlapping clusters
(i.e. clusters sharing one or more point variables), we construct a subset of
the set of active clusters consisting only of the newly added cluster and the
clusters that overlap with it (function OverlappingClusters), and search
in that subset for possible rewrite rule applications. The pattern match-
ing algorithm thus searches only through a small number of clusters and

Algorithm 4.1: Adding a cluster

method AddCluster (G,A,c)

G: generic solution

A: active set

c: cluster

begin
G.add(c)

A.add(c)

SearchRewrites(G,A,c)

end

Algorithm 4.2: Removing a cluster

method RemoveCluster (G,A,c)

G: generic solution

A: active set

c: cluster

begin
A.remove(c)

G.remove(c) (* also removes rewrite rules on c *)

for each x in DependentClusters(G,c)

RemoveCluster(x)

for each y in DeactivatedClusters(G,c)

A.add(y)

SearchRewrites(G,A,y)

end
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variables.

The pattern matching algorithm used in our implementation is basically
a subgraph matching algorithm that finds all subgraph isomorphisms [Ull-
mann, 1976]. The input pattern specified by a rewrite rule is converted
into a graph (function PatternGraph). The subset of the active set in
which we look for rewrite rule applications is also converted to a graph
(function ReferenceGraph). For each subgraph isomorphism returned by
the graph matching algorithm (function SubgraphIsomorphisms), we deter-
mine which point variable is assigned to which pattern variable, and from
that the actual rewrite rule can be instantiated and added to the generic
solution.

For each possible rewrite rule application found, the algorithm first
checks whether the rewrite rule application is progressive (function IsPro-

gressive), and only if it is, the algorithm adds it to the generic solution.
A rewrite rule application is progressive if it either increases the number of
distances and angles constrained by the active set, or reduces the number
of active clusters. This ensures that the algorithm does not add redundant
clusters to the system, except to remove overconstrained clusters.

Generally, when a rewrite rule is added to the generic solution, its output
cluster becomes part of the set of active clusters, and one or more input
clusters may be removed from the active set. A cluster is removed from the
active set if it is redundant, i.e. if all distances and angles constrained by it

Algorithm 4.3: Searching for rewrite rule applications

method SearchRewrites(G,A,c)

G: generic solution

A: active set

c: cluster

begin
subset := c + OverlappingClusters(A,c)

reference := ReferenceGraph(subset)

for each rule in AllRewriteRules

pattern := PatternGraph(rule)

matches := SubgraphIsomorphisms(pattern,reference)

for each match in matches

rewrite := instantiate rule from match

if IsProgressive(rewrite) then
G.add(rewrite) (* also adds output cluster *)

A.add(rewrite.output)

for each i in rewrite.inputs

if IsRedundant(i) then
A.remove(i)

SearchRewrites(rewrite.output)

end
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intersection condition

Rigid(A) ∩ Rigid(B) = Rigid(A ∩ B) |A ∩ B| > 1
Rigid(A) ∩ Scalable(B) = Scalable(A ∩ B) |A ∩ B| > 2
Rigid(A) ∩ Radial(pc, B) = Radial(pc, A ∩ B) pc ∈ A, |A ∩ B| > 2
Scalable(A) ∩ Scalable(B) = Scalable(A ∩ B) |A ∩ B| > 2
Scalable(A) ∩ Radial(pc, B) = Radial(pc, A ∩ B) pc ∈ A, |A ∩ B| > 2
Radial(pc, A) ∩ Radial(pc, B) = Radial(pc, A ∩ B) |A ∩ B| > 2

Table 4.1: Pairwise cluster intersections. If none of the cases listed here
matches, then the intersection is empty, i.e. the intersection contains no
distances or angles.

cluster distances angles

Rigid([p1, . . . , pn])
(

n
2

)

3
(

n
3

)

Scalable([p1, . . . , pn]) 0 3
(

n
3

)

Radial(pc, [p1, . . . , pn]) 0
(

n
2

)

Table 4.2: Number of distance and angles constrained by clusters.

are already constrained by the other clusters in the active set.

To determine whether a cluster is redundant (function IsRedundant),
the algorithm needs to determine whether the set of distances and angles
constrained by the cluster is a subset of the set of distances and angles
constrained by the other clusters in the active set. Determining these sets
explicitly is too expensive. Instead, we determine the number of distances
and angles constrained by the cluster and the number of distances and angles
constrained by each intersection of the cluster with any other overlapping
cluster in the active set.

We define the intersection of two clusters as a cluster that constrains
only those distances and angles that are constrained by both clusters. The
intersection can be determined efficiently using the rules listed in Table 4.1.
For example, given two clusters, Rigid([p1, p2, p3]) and Rigid([p2, p3, p4]),
the intersection is determined by the first rule in the table as Rigid([p2, p3]).
The table shows how the type of the intersection cluster is determined by
the types of the original clusters. The set of point variables constrained by
the intersection cluster is the set of point variables shared by the original
clusters. The set of shared points must satisfy additional conditions to
ensure that the intersection cluster is a valid cluster, e.g. a minimum number
of shared points is needed and the centre point of two radial clusters must
be the same.

The number of distances and angles constrained by a cluster can be
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determined from Table 4.2. Note that the number of distances and angles
constrained by a cluster is larger than the number of constraints typically
needed for a well-constrained system. However, because the allowable com-
binations of values of the distances and angles constrained by a cluster, are
determined by a configuration, these values are always consistent.

If the number of distances and angles constrained by a cluster is larger
than the total number of distances and angles constrained by the intersec-
tions of the cluster with each overlapping cluster in the active set, then the
cluster is not redundant. Otherwise, the number of distances and angles
in the cluster is equal to the total number of distances and angles in the
intersections (it cannot be smaller), and the cluster is redundant.

The generic solution of a problem can be used to determine its particular
solutions, by evaluating the computation part of each rewrite rule in the
generic solution, for each combination of its input clusters’ configurations.
This may also be done in an incremental way. When the set of configurations
associated with a problem cluster is changed, the dependent rewrite rules
can be determined from the generic solution, i.e. the rules which use this
cluster as input cluster. Only these rewrite rules need to be re-evaluated.

Note that the computation of particular solutions is repeated for every
combination of input cluster configurations, and each rewrite rule may in
turn generate several solutions for each such combination. The number
of particular solutions may therefore be very high, and thus expensive to
compute, whereas for most applications not all solutions are required or
desirable. Thus, a solution selection mechanism is needed to reduce the
number of solutions, and thus reduce the computation time.

4.5 Solution selection

In general, a geometric constraint problem can have several solutions. Solu-
tion selection is an important problem in geometric constraint solving, also
known as the multiple-solution problem or the root identification problem.

In [Bettig and Shah, 2003] an overview is given of various solution selec-
tion schemes. The authors argue that declarative solution selectors are the
most flexible and powerful approach. In this approach, the user specifies
additional constraints (solution selectors), that narrow down the number of
solutions until a single intended solution remains. Eleven basic selectors for
various types of geometry have been identified, e.g. to specify that a point
must be on a particular side of a curve.

Declarative solution selection is also supported by the solving algorithm
presented in the previous sections. Selection constraints, like clusters, are
defined on sets of point variables. These constraints, unlike clusters, can
specify an arbitrary relation on those points that should be satisfied. The
only requirement is that, given a configuration of those points, it should
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(a) clockwise (b) counter-clockwise (c) left-handed (d) right-handed

Figure 4.7: Solution selection constraints

be possible to evaluate whether the constraint has been satisfied. However,
these constraints can only be checked if the problem is well-constrained, and
cannot be used to determine any DOF in the system.

In 2D, solutions can be selected based on whether a set of three points
{p1, p2, p3} is oriented clockwise or counter-clockwise, as shown in Figure
4.7(a) and Figure 4.7(b), respectively. In 3D, the handedness of a set of
points is a useful selection criterion. A set of points {p1, p2, p3, p4} can
be classified as left-handed or right-handed, as shown in Figure 4.7(c) and
Figure 4.7(d), respectively.

In general, the orientation of a set of n+1 points in R
n can be determined

by taking one point as a reference, and computing the determinant of the
ordered set of offset vectors for the other points. We define the orientation
of an ordered set of points {p1, ..., pn+1} as:

Orientation(p1, ..., pn+1) = sign(Det[p2 − p1, ..., pn+1 − p1])

The set of points is positively oriented if the determinant is positive, neg-
atively oriented if the determinant is negative, and indeterminate if the
determinant is zero. Note that the points may be represented as either the
rows or the columns of the matrix of which the determinant is computed.

In a standard coordinate system, where the positive X-axis points to
the right, the positive Y-axis points upwards, and the positive Z-axis points
to the viewer, the CounterClockWise and RightHanded constraints are
satisfied for an ordered set of points that is positively oriented, and the
Clockwise and LeftHanded constraints are satisfied for an ordered set of
points that is negatively oriented.

Because the number of solutions of a geometric constraint problem can
be very large, and the computation of all the solutions expensive, solution
selection should take place as soon as possible, i.e. as soon as enough in-
formation is available to evaluate the selection constraint. In general, a
selection constraint can be evaluated as soon as a rigid cluster has been
determined that involves a superset of the variables in the constraint. The
specific 2D and 3D selection constraints discussed above can be evaluated
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for the first determined scalable or rigid cluster on a superset of the variables
in the constraint.

There are two problems with the declarative approach to solution selec-
tion. The first problem is that, in the worst case, all solutions of a geometric
constraint problem have to be generated, before selection constraints can
be evaluated. The number of solutions for geometric constraint problems
is generally exponential to the number of geometric elements. In fact, the
problem of finding all real solutions of a system of geometric constraints
has been shown to be NP-complete [Fudos and Hoffmann, 1997]. Consider-
ing declarative solution selectors during the solving process is very likely to
result in an NP-complete problem also [Bouma et al., 1995].

An alternative method to satisfy selection constraints is presented in
[Joan-Arinyo et al., 2003]. A genetic algorithm selects a solution that satis-
fies a number of additional selection constraints, which determine on which
side of a line a point should be. The drawbacks of this approach are that the
genetic algorithm is not complete, i.e. it may not find the selected solution,
and it is difficult to find optimal settings for the genetic algorithm.

The second problem with the declarative approach is that a large number
of selection constraints generally needs to be specified, in order to determine
a single solution. And this solution, as a function of the parameter of the
problem, is often discontinuous. Discontinuous behaviour is undesirable
for most parametrisations. In [van den Berg et al., 2003], requirements
are identified for freeform feature classes and their instances. For users
of the feature class, who generally have no knowledge of the constraints
used for the parametrisation, discontinuities in the behaviour of the feature
are unexpected and undesirable. Similar requirements hold for models of
families of objects in general.

The most used alternative to the declarative approach is the prototype-
based solution selection approach. A prototype is a configuration of all the
geometric variables in the problem that ‘looks like’ the desired solution.
Typically, the prototype is obtained from a sketch created by the user.
Several solving algorithms use heuristic rules for solution selection based on
the relative position and orientation of the geometry in a prototype, e.g.
[Fudos and Hoffmann, 1997; Bouma et al., 1995; Podgorelec, 2002].

In [Essert-Villard et al., 2000] a formal framework is presented for sketch-
based heuristics, based on homotopy theory. The S-homotopy relation is
defined, which describes homotopic configurations that respect a system S

of geometric constraints. By selecting a root for each triangular subproblem
using local criteria, a solution is obtained that is S-homotopic to the sketch.
In this way, the tree of possible solutions is pruned. Still, several branches
may remain, resulting in different solutions. Some additional selection pro-
cess is thus needed.

Some solving schemes allow the user to explore the tree of solutions
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Figure 4.8: The resemblance relation partitions the configuration space
into a number of equivalence classes Ci. The intended solution (s2) is the
solution that is in the same equivalence class (C2) as the prototype (p).

when the search heuristics do not result in a single solution, e.g. [Bouma
et al., 1995] and [Oung et al., 2001]. However, such a procedure can be
cumbersome for large systems, or when systems are modified and need to
be solved again, which is often the case in interactive modelling systems.

We present a new prototype-based solution selection mechanism that
always determines at most one solution, the so-called intended solution.
The intended solution satisfies the following properties:

• the intended solution is a continuous function of the parameters of the
problem

• the intended solution uniquely resembles a given prototype.

The first property ensures that there is a predictable and intuitive re-
lation between the intended solution and the parameters of the problem.
The second property ensures that there is an intuitive relation between the
intended solution and the prototype, so the user can control the selection
process via the prototype. A unique resemblance between the intended so-
lution and the prototype means that other solutions, found for the same
parameter values, must not resemble the prototype, by some definition of
resemblance. Thus, the intended solution is uniquely determined by the
prototype.

Resemblance is defined by a resemblance relation. This relation is an
equivalence relation, which partitions the configuration space into a number
of equivalence classes. The intended solution is the solution in the same
equivalence class as the prototype. This is illustrated in Figure 4.8.

For some combinations of the parameter and prototype, there may not
be an intended solution, even though a real solution exists. Consider, for
example, the 2D system in Figure 4.9. For any parameter value d ≥ 3,
the solution is a continuous function of d. If, however, we instantiate the
problem with parameter d = 2, there is no solution in the same equivalence
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Figure 4.9: A constraint problem with a prototype (a) and a distance
parameter d. The intended solution exists only for d ≥ 3 (b, c). For d = 2
(d) there is a solution, but there is no intended solution.

class, i.e. there is no solution for d = 2 that can be reached continuously
from the previous solutions.

Note that when using the intended solution in the definition of a family
of objects, i.e. in a DFOM, instead of all the solutions of the geometric
constraint system, a smaller family is obtained. Using the intended solution
implicitly imposes additional constraints, and consequently the DFOM has
fewer realisations. The intended solution guarantees that if the geometric
system is well-constrained, then at most one geometric solution is found,
but several realisations may still be found due to the topological constraints
in the model. Also note that, although the intended solution varies continu-
ously with the parameters of geometric constraints, topological changes may
still be observed in the realisations of the DFOM. Detecting such topological
changes is discussed in Chapter 7.

The intended solution can be found by using the cluster rewriting al-
gorithm presented in the previous sections. Basically, for each subproblem
that is solved, selection constraints are generated, such that a single solution
is selected for each subproblem. The selection constraints that are gener-
ated for a specific subproblem depend on the type of the subproblem, i.e. the
specific rewrite rule, and the prototype. Since at most one solution is found
for each subproblem, and no back-tracking search is needed, computing the
intended solution in this way is inexpensive.

For example, consider the 2D system in Figure 4.9 again. This problem
can be decomposed into three simple triangular problems: ABC, BCD and
ADE. To solve each of these subproblems, the intersection of two circles is
determined, as shown in Figure 4.10. The two solutions can be distinguished
by the orientation of the points in the solution; either the points are counter-
clockwise oriented, i.e. ABC1 or the points are clockwise oriented, i.e. ABC2.
If in the prototype the points ABC are oriented clockwise, then a selection
constraint Clockwise(A,B,C) is added to the system. If, on the other hand,
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Figure 4.10: A simple triangular subproblem, where three distance con-
straints are given. The solution can be found by intersecting two circles.

the points in the prototype are oriented counter-clockwise, then a selection
constraint CounterClockwise(A,B,C) is added. If the orientation of the
prototype points is clockwise nor counter-clockwise, i.e. the prototype points
are on a line, then we must make an arbitrary choice, or warn the user. For
the other subproblems in the example, the same procedure is followed.

In general, for each type of subproblem, selection constraints can be
generated that can distinguish between the possible solutions of the sub-
problem. The particular selection constraint that is satisfied by the proto-
type is added to the problem. For many 2D subproblems, the Clockwise

and Counterclockwise selection constraints can be used, and for many 3D
subproblems the Lefthanded and Righthanded selection constraints. For
some subproblems, inequality constraints on angles are used.

In Appendix B, we show for a somewhat simpler constraint solver, which
only solves triangular and tetrahedral rigid subproblems, that the intended
solution can be found using selection constraints. Basically, we formally
define the properties that the resemblance relation must satisfy, in order
to find the intended solution. For each type of subproblem, the selection
constraints that are used define a resemblance relation. First we show,
for several types of subproblems, that these resemblance relations satisfy
the given properties. Then we show that by combining subproblems, a
resemblance relation results for the whole problem, which also satisfies those
properties. Thus, the solution found in this way is the intended solution. For
the solver discussed in this chapter, which can also solve non-rigid clusters,
we believe that a similar proof can be given.

4.6 Constraints on 3D primitives

So far, in this chapter, we have only considered systems of distance and
angle constraints on points, in particular, systems of clusters. In typical
CAD models, and in the DFOM, however, constraints are imposed on other
types of geometric primitives, e.g. lines, planes, spheres, cylinders, etc.

In this section, we present a mapping from constraint systems on prim-
itives to a system of distance and angle constraints on points. Basically,
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(a) lines with coincident points

(b) mapping

Figure 4.11: Mapping of lines (L1 −L4), with different numbers of coinci-
dent points

a primitive is represented by a small number of points, e.g. a line can be
represented by two points. Constraints on primitives can then be expressed
by distance and angle constraints on points. A system of distance and angle
constraints on points, in turn, can be represented by a system of clusters,
which can be solved with the solving algorithm presented in the previous
sections.

The DOFs of a primitive cannot always be exactly represented by a
set of point variables. For example, a line in 3D has 5 DOFs. It cannot
be represented by a single point variable, which has 3 DOFs, or by two
point variables, which together have 6 DOFs. However, we can correctly
represent the DOFs of a system of primitives and constraints, at least in
many cases where the system is well-constrained. In such cases, the solutions
of a particular system of constraints on points can be used to construct the
solutions of a particular system of constraints on primitives. The key idea
is that the representation of a primitive depends on the number of points
that are constrained to be coincident with it.

Figure 4.11 illustrates the mapping of lines with different numbers of co-
incident points. A line L1, with no constraints imposed on it, is represented
by two points v1 and v2, with an arbitrary distance constraint such that
δ(v1, v2) 6= 0. The represented line is the line through the points v1 and v2.
By itself, this system is well-constrained. If a single point p is constrained
coincident with a line L2, by a constraint Coincident(p, L2), then line L2

is represented by that point p and another point v. Again, this system is
well-constrained. If two points are constrained coincident with a line L3,
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Figure 4.12: Mapping a plane f with four coincident points p1 − p4. An
extra point variable v is introduced, representing the plane normal.

i.e. Coincident(p1, L3) and Coincident(p2, L3), then both points are used
in the representation, i.e. line L3 is represented by p1 and p2. If the system
of points is well-constrained, then the line is also well-constrained. Note
that the distance between the points is not constrained by the mapping, be-
cause if the system is well-constrained, then the distance between the points
is already determined. If more than two points are constrained with a line
L4, i.e. Coincident(pi, L4) for 1 <= i <= n with n > 2, then only the first
two points, p1 and p2 are used in the representation. The other points are
constrained to be coincident with the line, using an angle constraint that
specifies that the angle between points is either 0 or π: ∡(p1, p2, pi) = 0|π
for 3 ≤ i ≤ n. Such constraints with alternative values can be represented
by clusters with several configurations.

The mapping of planes is similar to the mapping of lines. A plane f ,
with no constraints imposed on it, is represented by two point variables, v1

and v2, and a distance constraint δ(v1, v2) 6= 0. The represented plane is the
plane through v1 with normal v2 − v1. The first point that is constrained
coincident with a plane, is used in the representation of the plane, i.e. if
there is a constraint Coincident(p, f) then the plane is represented by p

and a point v, with a non-zero distance constraint between them. Any
other points p∗ constrained coincident with the plane are constrained in
plane by a constraint ∡(v, p, p∗) = 1

2π.

The mapping of a system with four points p1 − p4 that are co-incident
with a plane f , is illustrated in Figure 4.12. Effectively, a new point variable
v is introduced, and some distance and angle constraints that force the
points p1 − p4 to be in the plane.

For a sphere, we have to consider its centre point and its radius, since
these are often constrained in applications. Fixed radius spheres are easily
mapped. The centre of the sphere is represented by a point variable, and any
point constrained coincident with the sphere is constrained with a distance
equal to the given radius.
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primitive constraints mapping (R)

point p1 - R(p1) = v1

point p2 Coincident(p1, p2) R(p2) = R(p1)

line l1 - R(l1) = {v1, v2}
δ(v1, v2) = 1

line l2 Coincident(l2, p) R(l2) = {R(p), v}
δ(R(p), v) = 1

line l3 Coincident(l3, p1) R(l3) = {R(p1),R(p2)}
Coincident(l3, p2)

line l4 Coincident(l4, p1) R(l4) = {R(p1),R(p2)}
Coincident(l4, p2) ∡(R(p1),R(p2),R(p∗)) = 0|π
Coincident(l4, p∗)

plane f1 - R(f1) = {v1, v2}
δ(v1, v2) = 1

plane f2 Coincident(f2, p) R(f2) = {R(p), v}
δ(R(p), v) = 1

plane f3 Coincident(f3, p1) R(f3) = {R(p1), v}
Coincident(f3, p∗) δ(R(p1), v) = 1

∡(v,R(p1),R(p∗)) = 1
2π

sphere s1 Radius(s1) = r R(s1) = v

Coincident(s1, p∗) δ(v,R(p∗)) = r

sphere s2 Radius(s2) = r R(s2) = R(p1)
Center(s2, p1) δ(R(p1),R(p∗)) = r

Coincident(s2, p∗)

cylinder c1 Radius(c1) = r R(c1) = {v1, v2}
Coincident(c1, p∗) δ(v1, v2) = 1.0

δ(v∗,R(p∗)) = r

∡(v1, v∗,R(p∗)) = 1
2π

cylinder c2 Radius(c2) = r R(c2) = R(l)
Axis(c2, l) Coincident(v∗, l)
Coincident(c2, p∗) δ(v∗,R(p∗)) = r

Table 4.3: Mapping of primitives with different incidence constraints.
Points are represented by p∗, lines by l∗, planes by f∗, spheres by s∗ and
cylinders by c∗, where ∗ can be any integer.
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Figure 4.13: Mapping plane and sphere primitives with coincidences to
constraints on points

Variable radius spheres cannot be easily represented, because all points
coincident with the sphere must have an equal, unknown distance from its
centre. Such equalities are not supported by our solver, because distance
constraints must have a fixed parameter value. In some cases, however,
variable radius circles, spheres or cylinders can be supported, by using prop-
agation to solve the equality constraint. If the radius can be determined by
first solving other constraints in the system, then this value can simply be
propagated to those distance constraints that should be equal to the radius.
However, these cases will not be further considered here.

Table 4.3 shows the different representations for primitives depending on
the number of points constrained coincident with it. The function R maps
a primitive to a set of point variables and constraints on those variables,
depending on the constraints imposed on the primitive.

Figure 4.13 shows an example of how a set of primitives with coincidence
constraints can be mapped to a system of constraints on points.

Constraints on primitives are mapped to a set of points, a set of coin-
cidence constraints between the primitives and those points, and a set of
distance and angle constraints between those points. The representation of
the primitive is determined by the points that are constrained coincident
with it.
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Coincident(p1, m1)
Coincident(p2, m2)
Coincident(px, m1)
Coincident(px, m2)
δ(px, p1) = 1.0
δ(px, p2) = 1.0
∠(p1, px, p2) = φ

Figure 4.14: Mapping of an angle between lines, ∠(m1, m2) = φ.

For example, an angle between two lines ∠(m1,m2) = φ, where 0 <

φ < π, is mapped to three new points, p1, p2 and px, and a number of
constraints, as shown in Figure 4.14. The constraint may or may not affect
the representations of the lines, depending on the constraints already present
in the system. If no other constraints are imposed on the lines, m1 is
represented by p1 and px, and m2 is represented by p2 and px. The angle
between two planes can be constrained by constraining the angle between
the normals of those planes, using the same construction.

In general, many useful constraints on primitives can be mapped in this
way, and the resulting constraint systems can be solved using the cluster-
based approach presented in this chapter. From the solutions of the latter
systems, the geometry of the primitives can be completely determined.

In CAD systems, after geometric constraints have been solved, a geometric
representation for the model is constructed that also contains topological
information, e.g. a B-rep. In the case of the DFOM, this is a cellular model
(CM). The CM only encodes the topological relations between the carriers
in a realisation, which are completely determined by solving the geometric
constraints in the model. The complete topology of a realisation is deter-
mined by the topology of the CM and the material values associated with
the cells in the CM. These material values are determined in a subsequent
step by solving the system of topological constraints in the model. A method
for this is presented in the next chapter.



Chapter 5

Topological constraint
solving

Solving topological constraints is a new and relatively unexplored subject.
The closest related research area is topology optimisation. However, in
that area, topology is mostly defined procedurally, e.g. by a shape grammar
[Stiny and Gips, 1972], or defined implicitly, e.g. by a level-set function
[Bendsoe, 1989], but not declaratively, with constraints, as in the DFOM.

In this chapter, we present a novel approach to solving topological con-
straints, which can be used to determine realisations for models with declar-
ative topology, such as the DFOM. We assume here that a cellular model
(CM) is available and that constraints are imposed on volumes and surfaces
that can be represented by combinations of cells in the CM. The topological
solver determines for each cell in a CM whether it contains material or not,
such that these constraints are satisfied. To do this, each cell in a CM is
represented by a Boolean variable, and topological constraints are mapped
to a set of Boolean constraints (see Section 5.1). The system of Boolean
constraints is then solved by a Boolean constraint solver (see Section 5.2).

Parts of this chapter have already been published in [van der Meiden
and Bronsvoort, 2006b; van der Meiden and Bronsvoort, 2007a].

5.1 Mapping topological constraints

In this chapter, we consider topological constraints imposed on any volume
or surface that can be represented by a combination of cells in a given CM.
Topological constraints in a DFOM are imposed on constructs, from which
a CM can be generated, thus we can use the method presented here to solve
the topological constraints in a DFOM.

A solution to a topological constraint problem is a CM with a set of
assignments, specifying for each cell in the CM whether the cell contains
material. Thus a solution is equivalent to a realisation of a DFOM (see
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Section 3.4).

All cells in the CM are mapped to Boolean variables. If a variable is
True, then the corresponding cell contains material; if it is False, the
corresponding cell does not contain material.

Topological constraints are mapped to Boolean constraints. A Boolean
constraint is a predicate on a set of Boolean variables, which may be ex-
pressed by a Boolean function p(v1, v2, . . . , vk), where v1 . . . vk are Boolean
variables. If p evaluates to True, then the constraint is satisfied. If p

evaluates to False, then the constraint is not satisfied.

In this section, we present the mappings for the topological constraints in
the DFOM, i.e. the nature constraints, boundary constraints and interaction
constraints listed in Table 3.2 on page 41.

A constraint Nature(M , additive) or Nature(M , subtractive)
specifies that the nature of a volume, represented by a construct M that
is part of a feature, is additive or subtractive, respectively. Basically, an
additive volume determines that cells overlapping with it contain material,
unless some subtractive volume is dependent on it and overlaps with those
cells. Vice versa, a subtractive volume determines that cells overlapping
with it do not contain material, unless some additive volume is dependent
on it and overlaps with those cells.

In the SFM, dependency was defined for features only. We use a very
similar definition to define dependency for volumes. A feature F1 is directly
dependent on a feature F2 if there is a constraint in F1 imposed on a variable
in F2. Thus, dependencies are created via interface constraints. In this way,
we can construct a dependency graph of direct dependencies, and we can
infer indirect dependencies from such a graph. A volume M1 that is defined
in a feature F1, is dependent on a volume M2 in a feature F2, if F1 is
dependent on F2.

Nature constraints are mapped to Boolean constraints as follows. For
each cell c in the CM, we determine the set of volumes M that overlap
with it. The dependencies between these volumes are analysed to find the
set D of dominant volumes, which is the set of volumes on which no other
volumes in M are dependent. The nature constraints of these volumes are
dominant over the nature constraints of other volumes. Let N be the set of
nature constraint values (Additive or Subtractive) associated with the
volumes in D. If N contains only additive, then the cell should contain
material. This is mapped to a constraint c = True. If N contains only
subtractive, then the cell should not contain material. This is mapped
to a constraint c = False. If N contains no value, or both values, then no
constraint is imposed on c.

Figure 5.1(a) shows a 2D model that is similar to a slice through the
3D model in Figure 2.2 on page 10, which illustrates the feature ordering
problem. In this model, a blind hole feature cuts through a base block, into
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protrusion

hole
baseblock

(a) DFOM

+ −

+

+

?

(b) CM

+ −

+

+

on−boundary −

(c) CM

Figure 5.1: A 2D model corresponding to Figure 2.2 on page 10. In (b)
cell values have been determined by nature constraints, and in (c) cell values
have been determined by nature and boundary constraints.

a protrusion feature. The blind hole has subtractive nature, whereas the
block and the protrusion feature have additive nature.

Figure 5.1(b) shows the CM of the model, where the cell values are been
determined by mapping nature constraints. In this figure, cells marked
with ’+’ contain material, cells marked with ’-’ do not contain material,
and the nature of one cell, marked with ’?’, has not been decided. The cell
with the ’?’ corresponds to the intersection of the hole and the protrusion,
which are independent of each other and have a different nature constraint.
Therefore, the value of the cell can only be determined by solving other
topological constraints. In the case of a blind hole, the bottom face of the
hole should be on the boundary of the model. This can be expressed by
a CompletelyOnBoundary constraint (see below), and satisfying this
constraint results in the CM shown in Figure 5.1(c).

In this example, and also in general, most cell values are determined
by nature constraints. Usually, only a relatively small number of cells is
involved in feature interactions, such that their material value cannot be
determined by nature constraints. Only for those cells, the other topological
constraints in the model have to be solved.

Boundary constraints are imposed on surfaces, represented by constructs
in a DFOM. Surfaces are constructs that are constrained ON one carrier,
which determines the geometry of the surface, and IN or OUT several other
carriers, which determine the extent of the surface. In the CM, faces overlap
with the surfaces on which boundary constraints are be imposed. However,
because the topological solver determines only which cells in the CM contain
material, boundary constraints must be expressed in terms of the material
values of cells.

A CompletelyOnBoundary(S) constraint specifies that the surface
S must be completely on the boundary of the model. This constraint is
mapped as follows. We first determine the set of cell faces f1, ..., fk in the
CM that are coincident with S. Each cell face fi has two adjacent cells, ca

i
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(a) on-boundary (b) on-boundary (c) not on-boundary (d) not on-boundary

Figure 5.2: Representing on-boundary and not on-boundary cell faces in
terms of cell values.

and cb
i . A cell face fi is on the boundary of the model if and only if exactly

one adjacent cell contains material. This is illustrated in Figure 5.2.

To satisfy the constraint, all cell faces must be on the boundary. Thus,
the constraint is expressed as follows:

CompletelyOnBoundary(S) =
∧

i=1...k

((ca
i ∨ cb

i) ∧ ¬(ca
i ∧ cb

i))

Note that this Boolean expression concerns the material values of the
cells, not the geometry of the cells.

The mappings of the other boundary constraints, i.e. the Complete-
lyNotOnBoundary, PartiallyOnBoundary and PartiallyNotOn-
Boundary constraints, are similar to the mapping above:

CompletelyNotOnBoundary(S) =
∧

i=1...k

¬((ca
i ∨ cb

i ) ∧ ¬(ca
i ∧ cb

i ))

PartiallyOnBoundary(S) =
∨

i=1...k

((ca
i ∨ cb

i ) ∧ ¬(ca
i ∧ cb

i ))

PartiallyNotOnBoundary(S) =
∨

i=1...k

¬((ca
i ∨ cb

i ) ∧ ¬(ca
i ∧ cb

i ))

Interaction constraints are imposed on volumes. In some cases, the
mapping to Boolean constraints involves only constraints on the cells that
overlap with the volume. This is the case for the obstruction interaction and
absorption interaction constraints. The splitting, disconnection and closure
interaction constraints require that the connectedness of the whole CM is
considered.

An obstruction interaction is defined as causing partial obstruction of
the volume of a subtractive volume. An obstruction interaction constraint
disallows this interaction. In other words: to satisfy an obstruction interac-
tion constraint on a volume M , all cells c1, ...ck that have M in their owner
list, may not contain material:
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Figure 5.3: In each of the figures above, variables are represented by
squares and adjacency information is represented by edges. Variables that
are True are indicated by gray squares. From left to right, marks are prop-
agated to adjacent variables that are also True.

NoObstruction(M) =
∧

i=1...k

(¬ci)

An absorption interaction is defined as causing a volume to cease com-
pletely its contribution to the model. In that case, the volume does not
contribute to the boundary of the model. An absorption interaction con-
straint disallows this interaction. Thus, an absorption interaction constraint
on a volume M is satisfied if any of the bounding surfaces S1...Sk of M is
at least partially on the boundary of the model:

NoAbsorption(M) =
∨

i=1...k

PartiallyOnBoundary(Si)

The splitting, disconnection and closure interaction constraints require
that the connectedness of the CM can be expressed as a Boolean constraint.
We formulate an expression TrueConnected(G) of a graph G = (V,E),
where V = {v1, ..., vn} is a set of Boolean variables and E is a set of edges,
representing adjacency of variables. This expression evaluates to True if
and only if all variables with the value True are connected via edges of the
graph.

The TrueConnected expression is based on a simple propagation algo-
rithm: first, a single variable that is True is marked, and the mark is prop-
agated to the adjacent variables that are True. When no more marks can
be propagated, either all True variables have been marked, in which case
the system is TrueConnected (see Figure 5.3), or some True variables
have not been marked, in which case the system is not TrueConnected.

Representing the propagation of marks in an expression requires that
we model each mark in each iteration as a variable. For each vi ∈ V , we
define mark-variables mi,t, where t is the iteration number. If and only if
mi,t is True, then variable vi has been marked for iteration t. We know



76 CHAPTER 5. TOPOLOGICAL CONSTRAINT SOLVING

that the maximum number of iterations for spreading marks is equal to the
number of variables in the adjacency graph, thus we need |V |2 variables to
represent the state of the propagation algorithm. For each node, and for
each iteration, we must specify an expression representing the propagation
of marks from the previous iteration:

mi,t = vi ∧
∨

{mj,t−1|vj ∈ Star(vi)}

Here, Star(vi) is the set of variables adjacent to vi, i.e. all variables vj

for which there is an edge (vi, vj) in the adjacency graph G, plus vi itself.
To begin propagation, a single node that evaluates to True must be

marked. However, when the expression is constructed, we cannot know
which variables will evaluate to True. We therefore order the variables and
add constraints such that only the first node in the ordering that evaluates
to True is marked:

mi,0 =
∧

{¬vj |j < i}
The TrueConnected constraint is formulated as an expression that

tests whether all variables vi that are True have been marked after the last
iteration:

TrueConnected(G) =
∧

i=1...n

{vi = mi,T} T = |V | − 1

Because this formulation of connectedness requires quadratic memory
space, it should not be used to formulate connectedness for the whole model.
It is currently only used for parts of the model determined by volumes with
a splitting interaction or disconnection interaction constraint.

Splitting interaction is defined as an interaction that causes the bound-
ary of a volume to be split into two or more disconnected subsets. A splitting
interaction constraint disallows this interaction. To satisfy the constraint
for a volume M , all cell faces that correspond to a face of M and that are on
the boundary of the model, must be connected. For each cell face f1...fk of
each cell that overlaps with M , we define a variable vi = OnBoundary(fi),
i = 1...k. A graph Gob = (V,E) is constructed, where V = {v1, ..., vk} and
the edges E represent the adjacency between the corresponding cell faces.
Then the spitting interaction constraint is simply:

NoSplitting(M) = TrueConnected(Gob)

Disconnection interaction is defined as an interaction that causes the
volume of an additive volume, or part of it, to become disconnected from
the model. A disconnection interaction constraint disallows this interaction.
In other words: all cells of a volume M that contain material, must be
connected to the rest of the model. We construct a graph Gadj containing
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variables VM for all cells that overlap with M , plus variables Vadj for the
cells that are adjacent to M . There is an edge in the graph for each pair
of adjacent cells, i.e. cells that share a cell face. The rest of the model is
represented by a single variable vmodel, and there is an edge in the graph
between vmodel and each v ∈ Vadj . To test for disconnection interaction, we
impose a TrueConnected constraint on this graph:

NoDisconnect(M) = TrueConnected(Gadj)

A closure interaction is defined as causing some subtractive volume to
become (part of) a closed void in the model. Combinations of subtractive
volumes may form closed voids, whereas the volumes separately are not
closed voids. A closed void is a set of empty cells which is surrounded
by non-empty cells. A NoClosure constraint is satisfied if every empty
cell, overlapping with the constrained volume, is connected to the space
outside the model. Since we do not know before solving which cells contain
material, the NoClosure constraint potentially affects all cells of the CM.
It is possible to map this constraint to a Boolean expression, using the
TrueConnected expression, but the size of the expression is quadratic
with respect to the size of the model, and it is thus expensive to do this
mapping. Therefore, we do not map this constraint, but simply verify it for
each solution.

In general, if mapping a constraint is very expensive, it is probably
cheaper to not map the constraint but to verify it for each solution, and
selecting those solutions for which it is satisfied. As a rule, constraints
involving global properties, e.g. connectedness of the whole model, are not
mapped. The number of realisations for which such constraints must be
verified is expected to be small, i.e. we expect most cells in the CM to be
determined by solving other topological constraints.

5.2 Boolean constraint solving

The Boolean constraint problem to be solved is the following: given a set of
n Boolean variables V = {v1, v2, . . . , vn} and a set of m Boolean constraints
C = {c1, c2, . . . , cm}, find an assignment vi := xi, where xi ∈ {True, False}
for every vi ∈ V , such that every constraint cj ∈ C is satisfied. This problem
is known as the Boolean satisfiability problem, or SAT problem, which is an
NP-hard problem [Papadimitriou, 1995]. The SAT problem has been well
studied, and search algorithms exist that can find solutions efficiently for
many instances. State-of-the-art solvers learn from earlier ’mistakes’ and
avoid search paths that are unlikely to lead to a solution.

The solver that we have used in our implementation is the MINISAT
solver [Een and Sörensson, 2004], which is based on a solving technique
called conflict-driven learning [Silva and Sakalla, 1996; Zhang et al., 2001].
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The MINISAT solver, like most SAT solvers, is specialised to problems
formulated in conjunctive normal form (CNF), represented by clauses. A
clause is a set of literals, where a literal is a variable vi ∈ V or the negation
of a variable, v̄i. A clause (l1, l2, . . . , lj) is interpreted as l1 ∨ l2 ∨ . . . ∨ lj. A
set of clauses {c1, c2, . . . , ck} is interpreted as c1 ∧ c2 ∧ . . . ∧ ck.

Some topological constraints can perhaps be formulated in CNF man-
ually, but this is cumbersome for all but the most trivial constraints. It
is, however, feasible to formulate topological constraints as expressions us-
ing the common Boolean operators, AND, OR, and NOT, as done in the
previous section. Such expressions are represented in our system as trees.
Each node of the tree represents either an operator or a variable. Operator
nodes point to other nodes, which are used as inputs. Since creating small
expressions for generic constraints can be difficult, large expressions should
be expected. We use some simple reduction strategies to reduce the size
of expressions: if an expression contains several sub-expressions that are
lexically equivalent, they are represented by a single node that is referenced
multiple times. Also, during construction of an expression, some local sim-
plification rules are applied to reduce the number of nodes, e.g. removing
double negations and evaluating expressions containing constants.

The Boolean expressions are converted to CNF clauses, using a method
called Tseitin encoding [Tseitin, 1968]. This method replaces each subex-
pression with a new variable. The meaning of the operators between subex-
pressions, is expressed by CNF clauses on the new variables. For example,
the expression a∨ (b∧ c) is expanded as follows. The subexpression b∧ c is
substituted by a new variable x. Now the expression becomes a ∨ x, which
is already a CNF expression. We also represent the expression x = b ∧ c in
CNF, which becomes:

(b ∨ c ∨ x̄) ∧ (b ∨ c̄ ∨ x̄) ∧ (b̄ ∨ c ∨ x̄) ∧ (b̄ ∨ c̄ ∨ x)

The complete expression thus corresponds to the following set of clauses:

(a, x), (b, c, x̄), (b, c̄, x̄), (b̄, c, x̄), (b̄, c̄, x)

The system of CNF clauses is solved with the MINISAT solver. The
standard implementation of this solver finds only one solution for a given
system (enough to determine satisfiability). For applications such as the
DFOM, we need to find all the solutions. Therefore, we have implemented
an algorithm that can be used to finds all solutions, by systematically adding
extra constraints to the system, forcing the solver to find different solution.

Our algorithm for finding all solutions (Algorithm 5.1) assumes that a
solution has already been found by the MINISAT solver, and is given as an
argument to the algorithm, along with the solver state, and a third argument
representing the number of fixed variables (which should be zero initially
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and will be incremented recursively). The algorithm attempts to fix the
first free variable in the system to the complementary value of the value in
the given solution. It does this by adding a unit-clause to the system, i.e.
a clause with one literal. If this results in an unsatisfiable problem, then
instead the variable is fixed to the value found in the solution. As long as
no new solution is found, the next free variable in the system is fixed, until
no free variables remain. If a complementary unit-clause was successfully
added, then a new solution has been found, and more solutions may be
found by recursively applying the algorithm with the incremented number
of fixed variables. If no complementary unit-clause could be added to any
variable, then the algorithm quits, and backtracks if it was called recursively.
For correct functioning of the recursive algorithm, all unit-clauses added
by the algorithm must be removed before returning the solutions. Thus,
potentially all possible combinations of additional unit-clauses are tried, but
unsatisfiable combinations are pruned early, because the MINISAT solver
determines which additional constraints result in conflict.

To gain insight in the feasibility of solving topological constraints, we
have experimented with solving several models that generate a large num-
bers of cells and topological constraints.

The first model, shown in 2D in Figure 5.4, contains a base block with
a slot. On the base block, n protrusions are stacked. To the slot, m blind

Algorithm 5.1: Determine all subsequent solutions for a CNF problem (using
MINISAT solver)

function NextSolutions(solution,solver,nfixed[=0])

solution: list of Booleans

solver: MINISAT solver instance

nfixed: number of fixed variables

begin
newsolutions := empty list

i := nfixed

while i < length(solver.variables)

solver.AddClause(solver.variables[i]=not(solution[i]))

next := solver.Solve()

if next != unsatisfiable then
newsolutions.add(next + NextSolutions(next, solver, i+1))

solver.RemoveClause(solver.variables[i]=not(solution[i]))

solver.AddClause(solver.variables[i]=(solution[i])

i := i + 1

while i > nfixed

solver.RemoveClause(solver.variables[i]=previous[i])

i := i - 1

return newsolutions

end
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slot

base block

n protrusions

m holes

Figure 5.4: 2D model with n = 3 protrusion features and m = 3 hole
features.

holes are attached, such that the holes intersect with the protrusions. This
model has been solved for different values of m and n, to determine the
solving times for increasing numbers of feature interactions. The hole fea-
tures and the protrusion features are all dependent on the base block, but
are independent of each other. Thus, the values of the intersection cells of
the holes and the protrusions cannot be determined by feature dependency
analysis. However, each hole has a topological constraint that it may not
be split. The model has exactly one solution for any given number of holes
and protrusions.

Table 5.1 shows, for different values of m +n, the number of cells in the
CM, the number of variables and clauses in the constraint system, and the
solving time in milliseconds. The number of cells in the model is roughly
quadratic to the number of features in the model, because the model is de-
signed to have a large number of feature interactions. The number of clauses
is linear with respect to the number of variables and the number of cells in
the model. Each solving time in the table is the sampled mean over 50
experiments. The standard deviation for the solving times is approximately
10% of the mean.

Figure 5.5 shows a plot of the solving times against the number of cells
in the model. The latter quantity is representative for the complexity of the
model, because it depends on the number of feature interactions. The plot
suggests that solving time grows somewhat faster than linear with respect
to the number of cells in the model, but solving times are fairly low, even
for problems with a large number of variables and clauses.

We have also run the experiment on a model with more complex feature
intersections, shown in 3D in Figure 5.6. This model, like the model in
Figure 5.4, has a unique solution for each tested instance, but has a larger
number of topological constraints per cell. A plot of the solving times
against the number of cells for this model is shown in Figure 5.7. This plot
again shows a somewhat more than linear increase of the solving time with
the number of cells, but as before, solving times are fairly low given the size
of the problems.
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m + n cells variables clauses time(ms)
10+10 259 672 2252 3.9
16+16 601 1446 4616 8.1
21+21 996 2311 7191 11.9
25+25 1384 3147 9647 17.4
28+28 1717 3858 1172 23.1
31+31 2086 4641 13991 28.7
34+34 2491 5496 16460 39.4
37+37 2932 6423 19127 41.3
39+39 3246 7081 21015 50.7
41+41 3576 7771 22991 52.6
44+44 4101 8866 26120 64.1
46+46 4471 9636 28316 82.1
48+48 4857 10438 30600 77.5
49+49 5056 10851 31775 80.6
51+51 5466 11701 34191 96.4
53+53 5892 12583 36695 91.0
55+55 6334 13497 39287 122.0
56+56 6561 13966 40616 117.3
58+58 7027 14928 43340 151.4
59+59 7266 15421 44735 144.0

Table 5.1: Solving statistics for the model in Figure 5.4.

Figure 5.5: Plot of solving times against the number of cells for the model
in Figure 5.4.
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Figure 5.6: 3D model with n + n intersecting blocks and n + n through
holes, shown for n = 2.

Figure 5.7: Plot of solving times against the number of cells for the model
in Figure 5.6.
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From the fast solving times in the benchmarks presented here, it would
seem that the SAT problems generated from the example models are easy
to solve. The number of clauses per variable is often cited in SAT literature
as an indication for the difficulty of problems. For randomly created k-
SAT problems (i.e. problems with k variables per clause), lower and upper
bounds have been found for the number of clauses per variable, between
which problems are generally considered hard to solve. Below the lower
bound, problems have a high probability of being satisfiable, and above
the upper bound, problems have a high probability of being unsatisfiable.
Such problems are generally easy to solve with modern SAT solvers. Our
topological solver maps constraints to 3-SAT clauses, and the tightest known
lower and upper bounds for hard 3-SAT problems are currently 3.42 and
4.51, respectively [Achlioptas and Peres, 2003]. For the models in Figure
5.4 and Figure 5.6, the clauses per variable ratio is approximately 3.0, for
all generated 3-SAT problem instances, which is below the lower bound for
hard problems, and thus it is not surprising that these problems are easy to
solve.

It should be noted that, in the models discussed above, the number
of cells grows quadratically with the number of features, and the number
of clauses quickly gets very large. This is because the example models
were intentionally designed to maximise the number of feature interactions.
In realistic models, the number of feature interactions will likely be much
smaller, resulting in fewer cells and fewer clauses, and thus even better
solving times can be expected.

We have not systematically tested the performance of the topological
constraint solver for models with no realisations and for models with several
realisations, however, tests with small models with these properties have not
shown any performance problems.

For larger models with no realisations, no performance problems are
expected, because the types of constraints used in our models so far have
resulted in easy SAT problems, but this still needs to be verified experimen-
tally.

For models with more than one solution, we expect performance to de-
pend strongly on the number of solutions generated. For many applications,
not all solutions have to be generated, e.g. for deciding DFOM membership,
it is enough to know whether there are zero, one or more than one solutions.
We expect that the difficulty of finding a first solution for problems with
more than one solution, i.e. solving satisfiability for such problems, will in
fact be easier than for problems with a unique solution, because the first
problems typically have fewer clauses per variable, and are thus more likely
to fall below the threshold for hard SAT problems.

The real cost of finding all solutions of a topological constraint problem,
with respect to the size of the problem, is difficult to determine. At least in
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the examples we have tried, which we believe represent typical models, the
cost of finding a unique solution does not seem to grow exponentially with
the number of cells in the problem, and this is confirmed by the analysis of
the number of clauses per variable in the corresponding SAT problems. Let
us assume for simplicity that for different models with the same number of
cells, the algorithmic complexity is of the same order. We write O(i(n)) for
the algorithmic complexity of finding the initial solution of a system with n

cells, and O(p(n)) for the algorithmic complexity of incremental solving, i.e.
finding a new solution, or a conflict, after adding or removing a unit-clause.
We expect O(p(n)) to be smaller than O(i(n)), because of the incremental
nature of the MINISAT solver, and because the solver remembers conflicts
found while searching for earlier solutions.

Finding one additional solution for a problem, involves trying to add unit
clauses to the system without causing the system to become unsatisfiable.
In the worst case, we need to try and fix every variable and incrementally
solve the system, before a new solution is found. However, we can optimise
the algorithm by only fixing variables corresponding to cells in the model,
since only these are relevant for constructing realisations. Thus, finding one
additional solution takes O(np(n)) operations.

Finding all solutions, i.e. exhaustively searching for additional solutions,
is generally expensive. In the worst case, the number of solutions, and there-
fore the cost, is exponential with respect to the number of variables in the
problem. In the best case, the number of solutions is small and no back-
tracking is needed to find all solutions. In such cases, the algorithm needs
O(np(n)) operations per additional solution, so for k solutions, we find a
total algorithmic complexity of O(i(n) + knp(n)). To determine the actual
complexity of our method, i(n) and p(n) should be determined experimen-
tally, for a wide range of topological problems.

The topological constraint solving method presented here may also be
usable for other applications than the DFOM, i.e. to determine realisations
for other models with a declarative topology. Mappings were given only
for the topological constraints currently defined in the DFOM, but many
other topological constraints can be mapped to Boolean constraints, and
thus solved with this method.

With the geometric constraint solver presented in the previous chapter
and the topological constraint solver presented this chapter, we can deter-
mine realisations and decide family membership for declarative models such
as the DFOM. However, for creating and using models of families of ob-
jects, we also need to be able to determine parameter ranges for which the
constraints in such a model are satisfied, and critical values corresponding
to topological changes. To to this, we must first determine the parameter
ranges for systems with only geometric constraints. A method for this is
presented in the next chapter.



Chapter 6

Computing geometric
parameter ranges

To instantiate members of a family, e.g. when exploring a family of objects
(see Section 2.5), parameter values have to be specified. For some parameter
values, no members exist, because it is not possible to satisfy the constraints
in the model. In general, a user of a CAD system does not know exactly for
which parameter values members exist, and for which values no members
exist. In current systems, the user is informed that the constraints could
not be satisfied only after regenerating the model with the new parameter
values. Specifying parameter values thus becomes a trial-and-error process.

It would be very helpful if the range of parameter values for which
members exist, could be calculated and presented to the user beforehand.

In this chapter, we present a method to compute parameter ranges for a
system of geometric constraints. Parameter ranges for which both geometric
and topological constraints are satisfied, are considered in Chapter 7.

Parts of this chapter have already been published in [van der Meiden
and Bronsvoort, 2005a; van der Meiden and Bronsvoort, 2006a].

6.1 Basic approach

Prior work concerning parameter ranges in geometric constraint systems is
scarce.

A solving approach for interval-based geometric constraints is presented
in [Joan-Arinyo and Mata, 2001]. This approach can be used to find bounds
for a parameter of a system of constraints such that a solution is feasible.
However, it cannot deal with parameter ranges that consist of several dis-
joint intervals, and, because it is based on sampling, it cannot determine
the exact intervals.

We present a method to determine the exact range of a parameter,
represented by a set of intervals. The method computes the range for a
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single parameter, referred to as the variant parameter. We assume the
range to be computed is the range such that the intended solution of the
system exists (see Section 4.5), although with the presented method we can
also compute the parameter range for which some other solution, indicated
by selection constraints, exists, or for which any solution exists. We do not
consider the case where several parameters are varied simultaneously (see
Section 2.5).

The considered constraint problems are systems of distance and angle
constraints on points in 2D or 3D that are well-constrained. It is assumed
that a geometric constraint solver is available that can find a decomposi-
tion of the system into subproblems, and the intended solutions for each
subproblem and the system as a whole. The solver presented in Chapter
4 satisfies these criteria, because it determines a generic solution consisting
of clusters, which represent subproblems, and for each cluster the intended
solution can be specified by selection constraints.

Basically, our method first determines all critical values of the variant
parameter. A critical value of a parameter is defined as any value c for
which there is an arbitrarily small value ǫ, with |ǫ| > 0, such that for c

and c + ǫ the system has a different number of solutions. The idea behind
this approach is that the constructibility of the system can only change at
critical values, and not between two subsequent critical values. However, we
cannot completely determine constructibility, because no complete solving
method is currently known for 3D geometric constraint systems (see Chapter
4). Instead, we determine the solvability of the system, i.e. whether we can
find solutions using our solver, which is indicative of constructibility. Our
method determines the solvability of the system, for each interval between
two subsequent critical values, by picking a value in each interval and solving
the system with that parameter value. The parameter range is the set of
intervals for which solutions can be found for the system.

Critical parameter values are related to degenerate subproblems. A
subproblem is degenerate, for some parameter value, if for some arbitrarily
close value it has a different number of solutions. In general, the solutions
of a subproblem form a continuous class, i.e. a connected subset of the
solution space. For parameter values for which the subproblem degenerates,
solutions are found on the boundary of this class.

Only subproblems that are dependent on the variant parameter can de-
generate. A subproblem is directly dependent on the variant parameter
if the variant parameter is the parameter of one of the constraints in the
subproblem. A subproblem is indirectly dependent on the variant param-
eter if it is dependent on another subproblem that is directly or indirectly
dependent on the variant parameter.

The dependent subproblems can be found by analysing the generic solu-
tion of a problem. Consider the constraint problem in Figure 6.1(a) and the
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(a) constraint problem (b) generic solution

Figure 6.1: A 2D constraint problem and its generic solution. Distance
δ(A, B) is the variant parameter. The corresponding problem cluster (AB)
and dependent clusters are shown in gray.
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Figure 6.2: Degenerate cases for subproblem ABC with a single variant
parameter δ(A, B), and δ(A, C) = 4 and δ(B, C) = 3.

generic solution for this system in Figure 6.1(b). Each cluster in the generic
solution that is determined by a rewrite rule corresponds to a subproblem.
In this case, all subproblems solutions are rigid clusters (see Section 4.2),
so the point variables of a cluster are sufficient to identify a subproblem.
From the generic solution we can infer that to solve this system, first the
subproblems ABC and ACD are solved, independently, and merged into
subproblem ABCD. When subproblem ABCD has been solved, subprob-
lem BDE can be solved and then merged with ABCD into the final solution,
represented by cluster ABCDE. If we consider the distance δ(A,B), con-
strained by cluster AB, to be the variant parameter, then subproblem ABC

depends directly on the variant parameter, and subproblems ABCD, BDE

and ABCDE indirectly. Subproblem ACD does not depend on the variant
parameter.

For each subproblem that is dependent on the variant parameter, sev-
eral degenerate cases may exist, i.e. there can be several ways in which
the subproblem degenerates. The degenerate cases of subproblem ABC

are illustrated in Figure 6.2. The triangle ABC exists only if the triangle
inequality is satisfied, i.e. if

δ(A,C) + δ(B,C) ≥ δ(A,B) ≥ |(δ(A,C) − δ(B,C)|
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(a) modified constraint problem (b) new generic solution

Figure 6.3: The problem of Figure 6.1 after removing the constraint on
δ(A, B) and adding a constraint on δ(B, D). Clusters shown in gray are
dependent on the new constraint.

If the distance δ(A,B) is the variant parameter, and δ(A,C) = 4 and
δ(B,C) = 3, then there are two critical values, δ(A,B) = 1 and δ(A,B) = 7.
For these values, ABC degenerates to a configuration of three points on a
line (see Figure 6.2(b) and Figure 6.2(c)). In general, for each distance
δ(A,B), δ(A,C) or δ(B,C) we can determine the critical values if the two
other distance values are known.

Subproblem BDE in figure 6.1(b) is similar to the triangular subprob-
lem ABC discussed above. However, the variant parameter, δ(A,B), is not
in subproblem BDE and therefore the degenerate cases of this subprob-
lem do not directly correspond to critical parameter values. Instead, we
can determine the values of δ(B,D) for each degenerate case, and add a
corresponding distance constraint to the system.

By removing the constraint on δ(A,B), the variant parameter, and
adding a constraint on δ(B,D) that corresponds to a degenerate solution of
BDE, we obtain the constraint problem in Figure 6.3(a). The generic solu-
tion for this system is shown in Figure 6.3(b). As can be seen, subproblem
ABC has disappeared, subproblems ACD and BDE have remained, and a
new subproblem BCD has appeared. From the solutions of this system, we
can determine the critical parameter values, by measuring δ(A,B) in each
solution.

In general, finding critical values is achieved by first removing the con-
straint corresponding to the variant parameter. Then, for each degenerate
case of each dependent subproblem, constraints are added such that the
subproblem degenerates, resulting in a new system of constraints for each
case. Each such system is solved, and the critical values are the values of
the variant parameter, measured in the solutions of each system.

Next, in Section 6.2, we describe a general approach to represent the
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degenerate cases of different types of subproblems, using constraints. In
Appendix A, the degenerate cases are listed for all rewrite rules used by
the constraint solver described in Chapter 4, i.e. the degenerate cases are
given for all types of subproblems supported by this solver. The details of
the algorithm for computing parameter ranges are discussed in Section 6.3.
The application of the algorithm to an example 3D constraint problem is
demonstrated in Section 6.4.

6.2 Degenerate subproblems

The term degenerate typically refers to limiting cases where a class of math-
ematical objects changes its nature to become another, usually simpler class
[Weisstein, 2008a]. For example, a configuration of three points generally
forms a triangle, but it can degenerate to a configuration of three points on
a line, or to a configuration with one or more coincident points, as in Figure
6.2.

Subproblems that depend on the variant parameter have one or more
degrees of freedom, i.e. infinitely many solutions. In general, the solutions of
a subproblem with one or more degrees of freedom form a continuous class,
i.e. a connected subset of the solution space. We use the term degenerate
case to refer to a set of solutions on the boundary of such a class, i.e. a set
of degenerate solutions.

For each type of subproblem, several degenerate cases may be distin-
guished. These degenerate cases can be represented by geometric con-
straints. If the subproblem under consideration has only one degree of
freedom, as was the case for subproblems ABC and BDE in Figure 6.1(b),
then it has a finite number of degenerate solutions. We can first deter-
mine these degenerate solutions, and then, for each solution, add a single
constraint to the underconstrained system. This constraint may be any dis-
tance or angle constraint that is not in the original system, and the distance
or angle value can be calculated from the degenerate solution.

The above approach fails if a subproblem has more than one degree of
freedom, because it will then have an infinite number of degenerate solu-
tions, so we cannot generate them one by one. This situation may occur if
a subproblem depends indirectly on the variant parameter via two or more
independent subproblems. In other words, the variant parameter induces
more than one degree of freedom in the subproblem, via several paths in
the generic solution.

Therefore, we represent the degenerate cases of any subproblem, regard-
less of whether it is directly or indirectly dependent on the variant parameter
and whether it has one or more degrees of freedom, in the same way. Each
degenerate case is represented by a constraint that is independent of the
original constraints in the subproblem, in particular, independent of the
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(a) ∡(p3, p1, p2) = π (b) ∡(p1, p2, p3) = π (c) ∡(p2, p3, p1) = π

Figure 6.4: Constraints corresponding to degenerate case
colinear(p1, p2, p3) for a triangular subproblem.

distance and angle values of constraints in the subproblem. A degenerate
case can thus represent a finite or an infinite set of degenerate solutions.

The degenerate cases of the basic triangular subproblem with three
known distances, e.g. ABC in Figure 6.2, can be represented by constraints
as follows. In general, the solutions of this subproblem are configurations
of the points A, B, and C such that ABC is a triangle. The solution can
degenerate to a set of points on a line. If δ(A,B) is variable, then there
are two such degenerate cases, one where the order of the points on the
line is ACB (Figure 6.2(b)) and one where the order of the points on the
line is ABC (Figure 6.2(c)). The first case can be enforced by a constraint
∡(A,C,B) = π, such that point C is between point A and point B. The
second case can be enforced by a constraint ∡(A,B,C) = π, such that point
B is between point A and point C.

More in general, the degenerate cases of a triangular subproblem oc-
cur when its points are co-linear. The constraint colinear(p1, p2, p3) is
satisfied if one of the following constraints is satisfied: ∡(p3, p1, p2) = π,
∡(p1, p2, p3) = π or ∡(p2, p3, p1) = π. All three constraints should be tried
separately to solve the degenerate case. This is illustrated in Figure 6.4.

Alternatively, the co-linear constraint can be simply implemented by
introducing a line L and constraints coincident(L, p1), coincident(L, p2)
and coincident(L, p3). The mapping algorithm for geometric primitives
discussed in Section 4.6 will effectively introduce the same angle constraints
as presented above.

The basic triangular subproblem discussed above also degenerates if any
two points in the problem are coincident. In that case, the problem has
solutions only if the other distances in the triangle are of equal value. These
degenerate cases can be enforced by constraining each of the distances to
zero. For example, for the system in Figure 6.4, the extra degenerate cases
are: coindicent(p1, p2), coincident(p1, p3) and coincident(p2, p3). In total
there are six degenerate cases for the basic triangular subproblem. These
degenerate cases are listed for the corresponding rewrite rule, Rule 4, in
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(a) coplanar(p1, p2, p3, p4) (b) colinear(p1, p2, p4) (c) coincident(p1, p4)

Figure 6.5: Degenerate cases for a tetrahedral subproblem
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Figure 6.6: Degenerate cases of a tetrahedral problem.

Appendix A.

The basic 3D subproblem is the tetrahedral problem with six distance
constraints. The solution of this subproblem, in general, is a configura-
tion of four points that form a tetrahedron with a non-zero volume. The
subproblem degenerates if the points are co-planar, as illustrated in Figure
6.5(a), if any three points are co-linear (Figure 6.5(b)), or if any two points
are coincident (Figure 6.5(c)). If permutations of the point variables are
considered, then in total there are 11 degenerate cases. These degenerate
cases are listed for the corresponding rewrite rule, Rule 12, in Appendix A.

An example tetrahedral problem is shown in Figure 6.6. Suppose that
the distance δ(A,B) is the variant parameter. With five known distances,
the problem is underconstrained in 3D. However, in 2D the problem is
well-constrained and has two solutions, corresponding to δ(A,B) = 4 and
δ(A,B) = 2

√
13, shown in Figures 6.6(a) and 6.6(b) respectively. These

solutions correspond to the co-planar degenerate case of the tetrahedral
problem.
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To solve the degenerate case coplanar(p1, p2, p3, p4), a new plane P is
introduced and the constraints coincident(P, pi), 1 ≤ i ≤ 4. As with the
co-linear degenerate case, these constraints are mapped using the methods
described in Section 4.6 to angle constraints on points.

A subproblem that merges two rigid clusters with shared points can also
degenerate, when the clusters cannot be rotated and translated such that
the shared points in one cluster are mapped onto the shared points in the
other cluster. In 2D, two rigid clusters with two shared points, p1 and p2,
can be rigidly merged, unless the points are coincident in the configuration of
one or both clusters, i.e. if the subproblem is incidentally underconstrained.
So, for the corresponding rewrite rule (Rule 1 in Appendix A), there is one
degenerate case: coincident(p1, p2).

In 3D, two rigid clusters with three shared points, p1, p2 and p3, can
be rigidly merged, unless two or three points are coincident, or the three
points are co-linear. For the corresponding rewrite rule (Rule 9 in Appendix
A), there are four degenerate cases: coincident(p1, p2), coincident(p1, p3),
coincident(p2, p3) and colinear(p1, p2, p3).

If the distance between the shared points is not equal in the config-
urations to be merged, then the problem is overconstrained. However,
since we require that the original system of constraints is structurally well-
constrained, this distance must always have the same value (see Section 4.3),
and this degenerate case does not have to be considered when searching for
critical values.

The subproblems considered, so far, are only a subset of the subproblems
solved by the rewrite rules used by the geometric constraint solver discussed
in Chapter 4. In Appendix A, for each rewrite rule the degenerate cases are
listed and expressed by constraints.

6.3 Parameter range computation algorithm

In this section, we discuss the details of our approach to parameter range
computation.

A pseudo-code algorithm for parameter range computation is presented
in Algorithm 6.1. The algorithm takes two input arguments, a geometric
constraint problem (argument GCP), and a variant parameter (argument
VP). The variant parameter is mapped to a geometric constraint when a
value is set for it (method SetParameter). If the value is cleared (method
FreeParameter), then the geometric constraint is removed. Geometric con-
straints can be added to (method AddConstraint) and removed from the
GCP (method RemoveConstraint). We assume that the generic solution
(function GenericSolution) is automatically updated by the GCP, result-
ing in an efficient algorithm, but this is not strictly required (see Section
4.4 for an incremental solving algorithm).
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The algorithm returns a set of intervals (R) that represents the param-
eter range. The set may contain open intervals (e.g. (y1, y2)), half-open
intervals (e.g. [y1, y2)) and closed intervals (e.g. [y1, y2]). When intervals
are added to the set, overlapping intervals are automatically combined, e.g.
(0, 1) + [1, 2] → (0, 2].

To start, the algorithm asserts that the GCP is well-constrained, other-
wise the result found by the algorithm is not a correct parameter range. It
then determines the generic solution of the problem, and from the generic
solution it determines which subproblems are dependent on the variant pa-
rameter. The algorithm then modifies the system of constraints by removing
the constraint corresponding to the variant parameter. Now the GCP is un-
derconstrained.

For each degenerate case of each subproblem that is dependent on the
variant parameter, we add constraints to the GCP that correspond to the
degenerate case, and we determine the generic solution of the modified sys-

Algorithm 6.1: Geometric parameter range computation

function GeometricParameterRange (GCP,VP)

GCP: geometric constraint problem

VP: variant parameter

begin
assert WellConstrained(GCP)

generic := GenericSolution(GCP)

dependent := DependentSubproblems(generic,VP)

FreeParameter(VP, GCP)

Y := empty set of critical values

R := empty set of intervals

for each subproblem in dependent

cases := DegenerateCases(subproblem)

for each case in cases

AddConstraints(case, GCP)

newgeneric := GenericSolution(GCP)

cluster := find Rigid in newgeneric containing VP and case

for each configuration in cluster

y := calculate VP from configuration

add y to Y

add [y,y] to R

RemoveConstraints(case, GCP)

for each subsequent interval (y1,y2) in Y

x := (y1+y2)/2

SetParameter(VP=x,GCP)

if WellConstrained(GCP) then add (y1,y2) to R

return R

end
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Figure 6.7: System with underconstrained degenerate cases.

tem (preferably by an incremental solving method). The subproblems that
depend on the variant parameter will have disappeared in the new generic
solution, and new subproblems that depend on the newly added constraints
will have appeared.

If the modified constraint system is well-constrained, then the particular
solutions of the system are found as configurations of the solution cluster
of the generic solution. In general, the particular solutions are determined
from the cluster that contains the variant parameter and the constraints
imposed by the degenerate case. For each particular solution of the system,
we determine a critical parameter value (y), which is stored in a set (Y),
such that any value can occur in the set only once. We also add this value
as a closed interval ([y,y]) to the parameter range (R).

If the modified system is structurally or incidentally overconstrained,
then no solutions are found and the current degenerate case cannot occur
for any value of the parameter.

If the modified system is structurally or incidentally underconstrained,
then it may still be possible to find a critical value for the variant parameter,
depending on which subproblems are underconstrained. If a rigid cluster
exists in the generic solution that contains the constraints corresponding
to the variant parameter and the constraints corresponding to the current
degenerate case, then from the configurations of that cluster, the values
of the variant parameter are determined, and stored as critical parameter
values. If no such cluster exists, then no value is determined for the variant
parameter, and thus no critical values are found.

For example, consider the system of Figure 6.7, where δ(A,B) is the
variant parameter. Given that δ(B,E) = δ(D,E), then for the degenerate
case of triangle BDE we find δ(B,D) = 0. By propagating this value, we
can solve subsystem ABCD, and calculate the critical value for δ(A,B).
When applying this critical value to the original system, we find that points
B and D are again coincident, such that merging ABCD and BDE results
in an incidentally underconstrained situation. So this critical value should
not be part of the parameter range, and the intervals adjacent to it are half
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open intervals.
After all critical values have been determined, the parameter range is

determined by repeatedly solving the original constraint system (which has
been restored after computing critical values). For each interval (y1, y2)
between two subsequent critical parameter values, y1 and y2, a value in
the middle of the interval is chosen, and assigned to the variant parameter
(SetParameter). If the system is well-constrained, then the open interval is
added to the parameter range (R). If the new interval is adjacent to any
interval(s) already in the parameter range, then these intervals are merged
into a new, open, half-open or closed interval. This is the result returned
by the algorithm.

From the discussion above, it is clear that geometric parameter range
computation is more expensive than merely solving a given geometric con-
straint problem. To compute the parameter ranges for a problem, several
constraint problems of similar complexity, representing degenerate cases,
have to be solved. Also, when solving the original problem, we can use
selection constraints to find the intended solution of the problem quickly
(see Section 4.5). However, when the problem is modified to represent de-
generate cases, subproblems need to be solved that are not in the original
problem. For these new subproblems, we cannot generate solution selection
constraints, since these extra constraints do not occur in the original prob-
lem. If we would do this, then some critical values might be missed. This
means that for these subproblems, all solutions must be generated.

In a worst case scenario, all the subproblems solved to find a particu-
lar degenerate case are new, i.e. they do not occur in the original problem.
Then the number of solutions generated in the parameter range computa-
tion is exponential with respect to the number of constraints in the problem.
However, it seems unlikely that such worst cases will occur in practice, in
particular for typical CAD models. Such models are often composed of fea-
tures of which the shapes are determined independently by shape parame-
ters. The decomposition of the corresponding geometric constraint problem
typically yields a decomposition with rigid subproblems that correspond to
these features. Changing a parameter value of one feature typically effects
only the relative position and orientation of a few other features, and mod-
ifying the system of constraints to find critical values will result in only few
new subproblems. So, we expect that for typical CAD problems, we can
use the intended solution to reduce the cost of constraint solving during
parameter range computation. However, the feasibility of our method for
large CAD models used in practice must still be verified experimentally.
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Figure 6.8: 3D example problem

6.4 Example constraint problem

The example 3D constraint problem considered in this section is shown
in Figure 6.8(a), and its generic solution is shown in Figure 6.8(b). The
distance between point B and point C is chosen to be the variant param-
eter, i.e. the parameter for which the range is to be computed. From the
generic solution, we infer that the following subproblems are dependent on
δ(B,C): ABC, BCD, BCF , ABCD, BCDF and ABCDF , ACEF , and
ABCDEF . For these subproblems, we must find the degenerate solutions
and the corresponding critical values of the variant parameter.

Subproblem ABC is the simplest type of triangular subproblem, and
degenerates for δ(B,C) = 1 and δ(B,C) = 7. Subproblem BCF is similar
and degenerates for δ(B,C) = 1 and and δ(B,C) = 9. However, for these
values, the complete system is overconstrained, thus no critical values are
recorded.

Subproblem BCD degenerates for δ(B,C) = 0. Again, for this value,
the complete system is overconstrained, thus no critical values are recorded.

Subproblem ABCD is shown in Figure 6.9. This subproblem degener-
ates for δ(B,C) ≈ 1.01 and δ(B,C) ≈ 6.97. Once again, for these values, the
complete system is overconstrained, and no critical values are recorded. Sub-
problem BCDF is similar to ABCD, and no critical values are found for this
subproblem either. These clusters are merged into subproblem ABCDF ,
for which also no critical values are found.

Subproblem ACEF has two degenerate cases, which correspond to a
constraint δ(A,F ) = 4 and δ(A,F ) = 2

√
13. This subproblem depends

indirectly on the variant parameter, therefore we modify the system of con-
straints by removing the constraint on δ(B,C), and adding a constraint
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Figure 6.9: Subproblem ABCD.
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Figure 6.10: Modified constraint problem corresponding to the degenerate
solutions of subproblem ACEF .

δ(A,F ) = 4 or δ(A,F ) = 2
√

13. The modified constraint problem is shown
in Figure 6.10(a), and the new generic solution for this problem in Figure
6.10(b). This generic solution is used to find the critical parameter values
for both degenerate cases of the subproblem. In the generic solution, there is
a new subproblem ABDF , for which no intended solution has been defined.
For each of the two degenerate cases, this subproblem has two solutions,
resulting in four critical values for δ(B,C): c1 ≈ 1.49, c2 ≈ 1.90, c3 ≈ 2.50
and c4 ≈ 6.76.

For subproblem ABCDEF , again no critical values are found. No other
subproblems need to be tested for degenerate cases.

Now that we have determined all critical values for δ(B,C), we test
the solvability of the system by picking a parameter value in each interval
between two subsequent critical values, and solving the system. We find that
the intended solution for this problem exists for δ(B,C) ∈ [c1, c2] ∪ [c3, c4].

To determine this parameter range, the problem was solved for a rel-
atively small number of degenerate cases and intervals. In comparison, a
naive sampling approach, i.e. an algorithm that simply tries to solve the
system for different values, would need to solve the problem a very large
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number of times to achieve any reasonable accuracy. Also, a sampling ap-
proach may not find all intervals in the parameter range, since the minimum
and maximum parameter values and the minimum sampling resolution are
not known.

The method presented in this chapter can compute parameter ranges for
systems of geometric constraints only. There are many useful applications
for such a method. However, for many CAD applications, in particular the
design of families of objects, we also need to consider the topology of the
model and the topological constraints in the model. This is discussed in the
next chapter.



Chapter 7

Tracking topological
changes

When instantiating members of a family, e.g. when exploring a family of
objects, being able to relate the parameters with the topology of a model is
important (see Section 2.5). In particular, we want to determine for which
specific parameter values the topology of the model changes, i.e. the critical
parameter values corresponding to topological changes. Also, we want to
determine the parameter ranges for which the topological constraints in a
model are satisfied.

The method presented in this chapter tracks topological changes in a
parametric model, such that the critical parameter values and parameter
ranges can be determined. It can be used for parametric or feature-based
models, e.g. the DFOM, as long as (1) geometry is specified declaratively,
using geometric primitives and constraints, and (2) every topological entity
in the model is determined by an intersection of geometric primitives.

Parts of this chapter have already been published in [van der Meiden
and Bronsvoort, 2007b].

7.1 Relating parameters and topology

The relation between parametric representations and geometric representa-
tions has been studied by Shapiro et al., e.g. [Shapiro and Vossler, 1995;
Raghothama and Shapiro, 1998; Raghothama and Shapiro, 2000]. They
focus on finding a mapping between the parameter-space family of a model,
representing the objects that can be obtained by modifying parameters, and
the representation-space family of the model, representing the objects that
can be obtained by continuity-preserving operations on the geometric rep-
resentation. However, no method is given that explicitly represents such
mappings, such that it can be determined for which parameter values the
topology of the geometric representation changes.

99
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In [Hoffmann and Kim, 2001], the parameter range problem is consid-
ered for a 2D polygon with only horizontal and vertical line segments and
distance constraints between them. They determine the range for a single
distance parameter such that the topology of the polygon does not change.
The considered constraint system is very simple, but the authors do make
some useful observations concerning the problem in general. In particular,
they observe that a system of geometric constraints in general has a large
number of solutions, exponential with respect to the number of constraints
in the problem, and that a different parameter range may be found for each
solution. Also, they suggest that only one parameter at a time should be
considered, because the combined parameter range for n parameters is a
subset of n-dimensional space which will be very difficult to determine and
to present to the user.

To be able to relate parameters and topology, we must consider the
relation with feature geometry also, because the topology of a model is
determined by the geometry of the features, which in turn are determined
by the parameter values. If the geometry of the features in the model
is determined procedurally, as in most CAD systems, e.g. by creating 3D
extrusions from 2D sketches, then it will be difficult, in general, to relate
changes in the topology of model, via the geometry of the features, back
to the parameters. The method we present here therefore requires that all
feature geometry is specified declaratively, using geometric variables and
constraints. Such systems can be analysed and solved with the methods
presented in Chapter 4.

The topology of a model is typically represented by a cell-complex rep-
resentation, e.g. a B-rep or a cellular model. The models contain topological
entities (simply referred to as entities), e.g. vertices, edges, faces and vol-
ume cells, and topological relations between entities, e.g. which faces are on
the boundary of a volume cell. These representations are often constructed
from feature shapes by means of regularised Boolean operations, i.e. the
regularised union, difference and intersection operations. Typically, these
operations are implemented by fairly complex procedures, but topological
entities are always determined by intersecting feature geometry. In partic-
ular, every entity is a subset of the intersection of the feature geometry
from which it was determined. Not every entity can be uniquely described
by an intersection of feature geometry, because the entity may be a real
subset of the intersection, and thus other entities with the same description
may exist [Rappoport, 1997]. However, we can state that if the intersection
disappears, the entity must also disappear from the model.

For tracking topological changes, we thus need to generically represent
topological entities as intersections of feature geometry, with the under-
standing that the representation is not unique. Examples of such generic
representations of topology can be found in the Generic Geometric Complex
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(a) (b)

Figure 7.1: Constraint graphs relating (a) parameters and carriers, (b)
carriers and entities. White boxes represent carriers and gray boxes represent
entities. Edges in the graphs represent constraints, labelled with the name
of a parameter or the type of the constraint.

(see Section 2.1 and [Rappoport, 1997]), the Constructive Topological Rep-
resentation (see Section 2.2 and [Raghothama, 2006]) and the DFOM (see
Section 3.2). Most CAD systems do not create such generic topological rep-
resentations, but this can be done for most geometric representations, e.g.
for the B-rep or the cellular model, by generating each entity procedurally
and then relating it to the original features that determined it.

In the description of our method, we assume that there is a parametric
model (PM) with geometric constraints between parameters and carriers,
that realisations can be generated and represented by a cellular model (CM),
and that each entity in the CM can be related to the carriers in the PM with
subspace constraints (see Section 3.2). The relations between parameters,
carriers and topological entities can be represented by two constraint graphs,
such as shown in Figure 7.1, which corresponds to the DFOM model shown
in Figure 3.7 on page 38.

The parametric model is represented by the constraint graph in Figure
7.1(a). The parametric model defines four linear carriers, l1...l4, and one
circular carrier, c1. The carriers are related by geometric constraints to the
parameters h, w, x, y and d.

A CM, corresponding to a realisation that can be generated from the
PM, is represented by the constraint graph in Figure 7.1(b). This constraint
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(a) (b) (c)

Figure 7.2: Critical parameter values for an example model. Arrows indi-
cate where features are touching.

graph contains subspace constraints that relate CM entities to carriers. The
geometry of entities is determined by intersections of subspaces of carriers,
just like constructs in the DFOM (see Section 3.2). For example, edge e1 is
determined by the intersection of the circular carrier c1 with the half-spaces
induced by the carriers l3 and l4. Vertices v1 and v2 are determined by
intersections of carrier c1 with carriers l3 and l4 respectively. Face f1 is
determined by the intersection of the half-spaces induced by the carriers c1,
l1, l2, l3 and l4.

Note that in a DFOM, relations between parameters, carriers and con-
structs are represented, but not the relations between these and CM entities.
The latter relations can only be determined after a CM has been generated
from a geometrically well-constrained DFOM (see Section 3.4).

7.2 Computing critical values

A critical value of the variant parameter is here defined as any value c for
which there is an arbitrarily small value ǫ, with |ǫ| > 0, such that for c and
c + ǫ the realisations of the model have different topologies. Critical values
thus correspond to changes in the topology of the realisations of a model,
when a parameter is varied continuously.

Critical values often correspond to features that are touching or tan-
gent, as shown in Figure 7.2. The figure shows the realisations of a model
for different critical parameter values. For each such critical value, model
topology is different compared to the model topology for values around it.

The topology of a realisation is represented by a CM. However, we do
not explicitly compare CMs to detect topological changes, because the en-
tities in one realisation’s CM cannot be easily mapped onto the entities of
another realisation’s CM. Instead, topological changes are associated with
degenerate entities.

Degenerate entities are entities that should not occur in the geometric
representation of a model, i.e. the CM. Examples of degenerate entities are
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edges of length 0, faces with area 0, and cells with volume 0. Such entities
should be represented by lower-dimensional entities instead. Entities that
represent disjoint point sets, or point sets that can be decomposed into point
sets of different dimension, should be split into several entities (see Section
3.4), and are therefore also degenerate.

Although degenerate entities should never occur in geometric represen-
tation, we can impose constraints on the carriers that determine an entity,
such that the entity degenerates if the constraints are satisfied. For each
entity in the geometric representation, one or more degenerate cases can be
formulated in terms of geometric constraints. For example, a vertex, deter-
mined by the intersection of two lines, degenerates when the intersection of
the two lines no longer exists. This corresponds to a constraint specifying
that the lines should be parallel. Degenerate cases of entities are further
discussed in Section 7.3.

The basic approach for computing critical values is as follows. First
we remove the constraint corresponding to the variant parameter, i.e. it is
considered to be a variable without a fixed value. Effectively, a constraint
will be removed from the geometric constraint system. We then determine
which entities were dependent on the variant parameter and may therefore
degenerate. For each degenerate case of each entity, we add specific con-
straints to the system. By solving the modified system, we obtain values of
the variant parameter for which an entity degenerates, and thus the topol-
ogy of the model must change, i.e. critical parameter values. By repeating
this process for every entity that is dependent on the variant parameter, we
can obtain all critical values.

To be able to track all topological changes, it is essential that the entities
of the CM partition the complete Euclidean space into volumetric cells.
Because space is then covered by cells, any topological change corresponds to
a degenerate cell or a degenerate lower-dimensional entity on the boundary
of a cell. Thus, the CM must also represent space outside the object with
one or more cells. This may be accomplished by considering the empty
space in the initial CM as an entity. When entities are added to the CM,
this initial entity is split. Another possibility is to add a volume entity to
the CM corresponding to a bounding box or the convex hull of all entities.

Note that we assume here that all features in the model are represented
in the initial CM by at least one entity. If some feature is not represented
by any entity in the CM, then the feature’s geometry cannot be related
to the topology of the model, and it cannot be guaranteed that all critical
parameter values will be found.

As stated earlier, only entities that are dependent on the variant pa-
rameter can degenerate, i.e. entities of which the geometry changes when
the value of the variant parameter is changed. To determine whether an
entity is dependent on the variant parameter, we inspect the decomposition
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of the system of geometric constraints into its rigid subsystems, i.e. rigid
clusters (see Section 4.2). If we remove the constraint corresponding to the
variant parameter from the PM, then the system of constraints defined by
the PM becomes underconstrained. In the decomposition, the carriers that
have relative degrees freedom will be in different clusters. Entities that are
determined by carriers in different clusters are dependent on the variant
parameter. A pseudo-code algorithm to determine dependent entities is
presented as Algorithm 7.1.

Figure 7.3 shows the decomposition of the system of constraints on car-
riers from Figure 7.1(a), given that parameter x is the variant parameter,
combined with the entities from Figure 7.1(b). Here, c1 is a cluster, and l1,
l2, l3, and l4 form a cluster. Entities v12, v23, v34 and v14 are dependent on
only one cluster. Entities v1, v2, e1 and f1 are dependent on both clusters,
and therefore these entities are dependent on the variant parameter.

The CM, when generated for different parameter values, may contain
different entities, and therefore, different critical values may be found. Thus,
to obtain all critical values, the CM must be regenerated for several values
of the variant parameter, such that degenerate cases can be solved for all
possible entities.

The algorithm therefore tracks topological changes as follows. For some
value of the variant parameter, the current parameter value, it generates the
CM and the system of constraints, relating entities to parameters. Next, it
determines which entities are dependent on the variant parameter, and it
solves all degenerate cases for these entities. The algorithm then determines
the interval for which the topology of the current CM does not change, called
a stable interval. This is the interval between the largest of the critical
values smaller than the current parameter value, and the smallest critical
value larger than the current parameter value (see Figure 7.4).

Algorithm 7.1: Determine the dependent entities for a given parameter

function DetermineDependentEntities(p, G)

p: parameter

G: constraint graph

begin
E := empty set of entities

R := empty set of clusters

remove p from G

R = RootClusters(G)

for each entity e in G

if e constrained to carriers in more than one cluster in R then
add e to E

return E

end



7.2. COMPUTING CRITICAL VALUES 105

Figure 7.3: Root clusters, shown by the gray areas, for the constraint
system from Figure 7.1 with variant parameter x.

Figure 7.4: Stable interval for a model with a box and a circle, with a
variant parameter p. The current parameter value is p0. Four degenerate
cases are found, resulting in four critical parameter values: p1...p4. The
stable interval is [p2, p3].
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After a stable interval has been determined, the tracking algorithm picks
a new current parameter value arbitrarily, but outside any previously deter-
mined stable interval (not just outside the last determined stable interval).
A new CM is generated for this parameter value, and critical values are
determined as before. This process is repeated until the domain of the vari-
ant parameter is completely covered by stable intervals. By definition, new
critical values are never found in any previously determined stable interval.
Thus, when the whole parameter domain is covered by stable intervals, all
critical values have been found.

Algorithm 7.2 determines the stable interval for a model and the current
parameter value, and Algorithm 7.3 the critical values for a given PM and
variant parameter.

The computational complexity of this method is very high, since in the
worst-case scenario, we must solve degenerate cases for every combination
of the carriers in the model. However, we believe that such worst cases will
not occur in practice, because parameters will typically affect the geometry
and topology of the model only locally, and consequently only for dependent
entities do we have to solve degenerate cases. The efficiency of the method
is improved by using an incremental constraint solving method, as discussed

Algorithm 7.2: Determine stable interval for a given parameter value

function ComputeStableInterval(PM, p, x)

PM: parametric model

p: variant parameter

x: current value of p

begin
V := empty set of parameter values

CM := regenerate CM from PM

G := ConstraintGraph(PM) + Constraintgraph(CM)

E := DetermineDependentEntities(p, G)

V := [-∞, ∞]

for each entity e in E

C := DegenerateCases(e)

for each case c in C

add constraints of c to G

solve G

for each solution s of G

v := compute value of p from s

add v to V

remove constraints in c from G

c1 = max(v in V | v < x)

c2 = min(v in V | v > x)

return [c1, c2]
end
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in Section 4.4. Also, the cellular model can be updated efficiently, because
for each new parameter value, the cellular model only needs to be updated
locally [Bidarra et al., 2005a]. Finally, in Algorithm 7.3, stable intervals
are computed for arbitrarily chosen values of the variant parameter. It
may be possible to make a better choice for these values, so that fewer
degenerate cases have to be considered, but such optimisations have not yet
been considered.

Algorithm 7.3: Determine critical values for a given parameter

function FindCriticalValues(PM, p)

PM: parametric model

p: parameter

begin
v := current value of p

I := empty set of intervals

C := empty set of critical values

do
[c1,c2] := ComputeStableInterval(PM, p, v)

add c1 to C; add c2 to C

add [c1,c2] to I

v := arbitrary value not in I, or None

until v = None

return C

end

7.3 Degenerate entities

An entity of a particular type, i.e. vertex, edge, face or cell, degenerates
when its generic representation no longer represents a point set that is valid
for that type of entity. For example, a face that is ON a carrier and IN
one or more other carriers, degenerates when the geometry of the carriers
is changed such that the combination of those carriers represents a curve,
a point or an empty set. For any entity that is dependent on the variant
parameter, one or more degenerate cases can be formulated and enforced
via constraints on its carriers.

Figure 7.5 shows an example of a degenerate case. An edge is determined
by the intersection of a circular carrier and a half-plane defined by a linear
carrier. In general, the intersection is a curve, or does not exist. The
intersection cannot be a point, because the entity is constrained IN and not
ON the linear carrier. If we add constraints to the system such that the
carriers are tangent, then the entity is degenerate.

The carriers on which constraints are imposed are determined from the
decomposition of the system of constraints in the model. For each pair
of carriers in different root clusters, i.e. each pair of carriers with relative
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(a) generic case (b) degenerate case

Figure 7.5: (a) shows an edge e determined by the intersection of a circular
carrier c and a half-plane defined by a linear carrier l. (b) shows that the
edge degenerates when the carriers are tangent.

degrees of freedom, we add constraints such that, if the new system is well-
constrained, then the entity is degenerate, i.e. the combination of the carriers
no longer represents a point set that is valid for the given type of the entity.

Table 7.1 lists all possible topologically different intersections of two car-
riers, where a carrier is either a plane, sphere or cylinder. Each intersection
in the table can be enforced by imposing the given constraints on the carri-
ers. The same can be done for combinations of other geometric primitives,
e.g. cones and tori. With more carrier types, however, enumerating all com-
binations would be rather elaborate, and a more generic approach to finding
degenerate intersections would be preferable. This will not be considered
here further.

For each pair of carriers in a dependent cluster, we first determine the
type of the intersection of the carriers by verifying the constraints in the
table. Next, for all other intersections listed in the table, we add the given
constraints to the system of constraints in the model, and determine whether
the new system is well-constrained.

Consider, for example, a curve that is constrained ON a spherical car-
rier and ON a cylindrical carrier (known as Viviani’s curve, see [Weisstein,
2008b]). The variant parameter, d, is the distance of the centre of the
sphere to the axis of the cylinder. Given are the radius of the cylinder,
rc, and the radius of the sphere, rs, and in this example rc < rs. Suppose
that in the current configuration, the intersection of the carriers is a closed
curve, represented by a single edge in the CM. From Table 7.1 we can infer
the constraints to force the carriers into different configurations. We find
that the curve degenerates to a point for d = rs + rc and to a ’figure 8’ for
d = rs − rc. For these configurations, adding the corresponding constraints
results in a well-constrained system. For the other configurations of the
sphere-cylinder intersection listed in Table 4.1, the system of constraints is
either under- or overconstrained.

An entity that is constrained IN or OUT with respect to some carriers
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intersection constraints
plane-plane
none parallel, d 6= 0
line not parallel
coincident parallel, d = 0
plane-sphere
none d > r2

point d = r2

circle d < r2

plane-cylinder
none parallel, d > r2

line parallel, d = r2

ellipse not parallel
two lines parallel, d < r2

sphere-sphere
none d > r1 + r2

point d = r1 + r2

circle d < r1 + r2

coincident d = 0, r1 = r2

sphere-cylinder
none d > r1 + r2

point d = r1 + r2

closed curve rmax − rmin < d < r1 + r2

’figure 8’ d = r1 − r2, r1 > r2

2× closed curve d < r1 − r2, r1 > r2

point d = r2 − r1, r2 > r1

none d < r2 − r1, r2 > r1

cylinder-cylinder
none parallel, d < rmax − rmin

line parallel, d = rmax − rmin

two lines parallel, rmax − rmin < d < r1 + r2

line parallel, d = r1 + r2

coincident parallel, d = 0, r1 = r2

none d > r1 + r2

point d = r1 + r2

closed curve rmax − rmin < d < r1 + r2

’figure 8’ d = rmax − rmin

2× closed curve d < rmax − rmin

2× ’figure 8’ d = 0, r1 = r2

Table 7.1: Intersections of pairs of carriers and corresponding constraints.
Legend: r1 = the radius of carrier 1, if it is a sphere or cylinder. r2 = the
radius of carrier 2, if it is a sphere or cylinder. rmin = min(r1, r2). rmax

= max(r1, r2). d = distance between any two of: a plane, the centre of a
sphere or the axis of a cylinder.
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(a) (b) (c) (d) (e)

Figure 7.6: Five different configurations of a half-plane and a circle, cor-
responding to three different intersections of the corresponding carriers, i.e.
the carriers have either zero, one or two intersection points.

does not always degenerate when the intersection of the carriers changes.
For example, the entity that we have seen illustrated in Figure 7.5, is con-
strained ON with respect to a circular carrier and IN with respect to a linear
carrier. Figure 7.6 shows the topological variants of a circle, defined by a
circular carrier, and a half-plane, defined by a linear carrier. In this exam-
ple, there are five different topological configurations, corresponding to only
three different intersections of the carriers, such that the carriers intersect
in zero, one or two points. The entity defined above degenerates if the car-
riers are constrained tangent, such that there is only one intersection point.
This corresponds to two different topological configurations, i.e. the circle
is either outside or inside the linear half-plane. In the first configuration,
the entity is degenerate, in the second configuration, it is not.

Thus, depending on the subspaces of the carriers to which an entity is
constrained, it may or may not degenerate when the configuration of those
carriers changes. Therefore, we regenerate the entity from the carriers after
solving the modified system of constraints, and we verify whether or not
the resulting entity is of the same type as the original entity. If it is of a
different type, then the entity degenerates for the given constraints, and the
value of the variant parameter is a critical value.

For solving the systems of constraints corresponding to degenerate cases,
a 3D constraint solver is needed that supports the constraints listed in Table
7.1, i.e. distances and angles on planes, cylinders and spheres. Inequalities
do not have to be solved but should be used to select solutions. The geomet-
ric constraints solver presented in Chapter 4 satisfies these requirements.

7.4 Parameter range computation

The range of a given parameter is the set of values corresponding to valid
models. One possible definition for the set of valid models is the set of mod-
els with the same topology as a given prototype [Shapiro and Vossler, 1995],
corresponding to a representation-space family. The corresponding param-
eter range is equivalent to the stable interval, computed for the parameter
value in the prototype.
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However, assuming that only a single representation-space family is of
interest, is rather limiting from a designer’s perspective. A designer is not in-
terested in one topological variant of the model per se, but rather wants the
topology of the model to correspond with his or her design intent. Topolog-
ical aspects of the design intent can be expressed by topological constraints.
We define the parameter range as the set of parameter values for which all
constraints in the model are satisfied, including geometric and topological
constraints.

For a given variant parameter, the parameter range can be determined
using Algorithm 7.4. The algorithm first determines the geometric parame-
ter range, as discussed in Chapter 6. Then we determine all critical param-
eter values corresponding to topological changes, as discussed in Section
7.2. Because we have first computed the geometric parameter range, we
can reduce the number of times the topological tracking algorithm needs
to compute the stable interval for different parameter values, by discarding
those parameter values for which the system has no geometric solutions.

When all critical values have thus been determined, then for each interval
between two subsequent critical values, we pick a parameter value in that
interval and we generate the CM for that value. For this CM we test whether
the topological constraints in the model can be satisfied. If so, then the
whole interval is part of the parameter range, because all objects in the
interval have the same topology, and thus satisfy the topological constraints.
Each interval between two subsequent critical values can thus be marked as
part of the parameter range, or not part of the parameter range. For the

Algorithm 7.4: Determine the parameter range for a given parametric model and
parameter

function FindParameterRange(PM, p)

PM: parametric model

p: parameter

begin
R := empty set of intervals

G := GeometricParameterRange(PM, p)

C := FindCriticalValues(PM, p)

for each subsequent pair c1,c2 in G+C

if TopologicalConstraintsSatisfied(PM, p, c1) then
add [c1] to R

if TopologicalConstraintsSatisfied(PM, p, c2) then
add [c2] to R

if TopologicalConstraintsSatisfied(PM, p, (c1+c2)/2) then
add (c1, c2) to R

return R

end
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critical values we can also determine whether the topological constraints in
the model are satisfied. Thus, we have determined exactly for which values
and intervals the topological constraints are satisfied.

Knowing the parameter range can help a designer to maintain model
validity while changing a parameter of the model. This can be very helpful
when fine-tuning a model or when exploring a family of objects. Also, pre-
senting critical parameter values to the designer, may help to understand
the family model better, in terms of the different objects that it represents.
Although the relation between several parameters cannot be explicitly rep-
resented, the effect of one parameter on the range and critical values of
another parameter can be explored, by computing these for different values
for the first parameter.

Parameter ranges and critical values are therefore very useful tools for
modelling families of objects.



Chapter 8

Conclusions and future
research

This thesis addresses the question of how to model families of objects. Cur-
rent CAD systems are not adequate for modelling families of objects, be-
cause they create history-based models, which cannot be used to fully specify
and maintain feature semantics, and they offer insufficient support for ex-
ploring families of objects. To overcome the limitations of current systems,
we have proposed that (1) families of objects should be modelled declar-
atively, using features with geometric and topological constraints, and (2)
for creating and using models of families of objects, methods for computing
parameter ranges and critical values are needed.

To demonstrate the feasibility and advantages of a declarative model for
families of objects, we have presented such a model, the DFOM. We have
also presented methods for solving systems of geometric and topological
constraints, which are needed to determine family membership and to find
realisations of such models. Finally, we have presented methods that can
compute parameter ranges and critical values. These methods can be used
for the DFOM, but also for other models, as long as geometry and topology
can be related to parameters via constraints.

In this final chapter, we first discuss the feasibility and advantages of our
solution. Then we discuss our implementation and other possible applica-
tions. Finally, we discuss the limitations of our solution and some directions
for future research.

8.1 Feasibility and advantages of the approach

The DFOM does not have the main problems associated with history-based
models. In particular, it can correctly maintain feature semantics, and is
not affected by the feature ordering problem. The model is based on the
Semantic Feature Model, but does not suffer from the ambiguity of feature

113
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dependency analysis, which always determines a single realisation. This
realisation may not satisfy the topological constraints in the model, even
though other realisations exists that do. Instead, we find all possible realisa-
tions that satisfy the topological constraints, using a topological constraint
solver.

The DFOM allows a large variety of new features and topological con-
straints to be defined, which results in the required flexibility to model many
useful families of objects.

For solving geometric constraints, we have introduced a new method
based on rewriting systems of rigid and non-rigid clusters. With non-rigid
clusters, we can solve a larger class of problems than is possible with only
rigid clusters. Additional advantages of this approach over other solving
approaches, such as DOF-based decomposition, are that we can solve large
problems efficiently, and that an incremental solving algorithm is easy to
implement.

Systems of constraints on primitives such as lines, planes, blocks, cylin-
ders and spheres, which are typically found in CAD models and models of
families of objects, including the DFOM, can be solved by first mapping
them to systems of constraints on points, and solving the latter systems
with the cluster rewriting approach.

We have also presented a mechanism to select a single solution for a
system of geometric constraints on points, using a prototype configuration.
The use of a prototype has been given a theoretical basis by introducing
a formal resemblance relation. This allows us to select a solution in a
meaningful way, i.e. the selected solution is really the intended one. The
intended solution can be found by generating selection constraints for the
subproblems solved by the constraint solver. With this approach, we can
find the intended solution in polynomial time, making it suitable for large
systems of constraints.

To solve systems of topological constraints, we map them to instances
of the boolean satisfiability problem. The boolean satisfiability or SAT
problem is NP-hard. Our experiments with the MINISAT solver, however,
show that the types of SAT problems generated from DFOMs, even large
DFOMs with many feature interactions, are easy to solve. It should be
noted that for models with no realisations and models with more than one
realisation, performance has not been systematically tested. However, at
least for models with unique solutions, solving topological constraints is
feasible.

Furthermore, a method has been presented to calculate the range of
allowable values for a single parameter of a geometric constraint system.
The method uses the decomposition of the constraint system to find the
critical parameter values for which subproblems degenerate, and computes
the range from these values. By solving for the intended solution, defined
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by a prototype, the number of solutions generated and the complexity of
the parameter range computation is reduced. The worst-case complexity
of the method is, nevertheless, still exponential. However, we believe that
such worst cases will not occur in practice, because parameters will typically
affect the constraint system only locally.

Finally, we have presented a method to compute the critical values,
for which the topology of the model changes, when a single parameter of
a feature model is varied. The method can also be used to compute the
parameter range corresponding to all valid models, i.e. the models for which
all geometric and topological constraints in the model are satisfied. The
computational complexity of the method is high, but we believe that the
worst cases are not likely to occur in practice.

To summarise, declarative models for families of objects are feasible
and desirable. Feasible because we have shown that solving systems of
constraints in such models is possible. Desirable because such models can be
used to specify feature semantics and create verifiable models of families of
objects. Furthermore, for declarative models it is feasible to compute critical
values corresponding to topological changes, and to compute parameter
ranges corresponding to valid models. Knowing these properties can be very
helpful when exploring the members of a family and analysing its behaviour.

8.2 Implementation and possible applications

The DFOM has been implemented in the prototype feature modelling sys-
tem Spiff, developed at Delft University of Technology. This system orig-
inally implemented the Semantic Feature Model. Features and constraints
defined by the system have been re-implemented so they can be used in the
DFOM. Originally, a single realisation of the model was determined by fea-
ture dependency analysis. With the implementation of the DFOM, instead,
a set of realisations is determined by solving the topological constraints in
the model.

The geometric and topological solving methods have been implemented
in independent modules, which are used by the implementation of the
DFOM. The implementation of the method for geometric parameter range
computation is based on the implementation of the geometric constraint
solver. Methods for tracking topological changes have been implemented
separately for simplified models, and are currently being implemented for
the DFOM implementation in Spiff.

These methods can be applied to a broad range of applications that in-
volve geometry and/or topology. The geometric constraint solver that we
have presented is particularly useful in CAD, but systems of geometric con-
straints are found in many other applications, and we believe that here too
our method may have significant advantages over other geometric constraint
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solving methods.

Our topological constraint solving approach allows for a wide variety of
topological constraints to be specified and solved, and may also be applicable
in other modelling areas, e.g. in VLSI electronic circuit design, to specify
which components should interact and which should not interact.

Calculating geometric parameter ranges may also be useful in other ap-
plications where geometric constraints are used to parameterise a model.
Changing a parameter is a common operation in such applications, and
knowing the allowable range of a parameter beforehand can prevent this
from becoming a trial-and-error process.

The presented methods for tracking topological changes, i.e. the method
to compute critical values for which the topology of a model changes and the
method to compute the parameter range such that topological constraints
are satisfied, were motivated by important problems in CAD, but may also
be useful in other applications where topology matters, e.g. computed-aided
manufacturing and robot motion planning. The methods do, however, re-
quire that geometry is specified declaratively, using geometric primitives and
constraints, and that topological entities are determined by intersections of
primitives.

8.3 Limitations and future research

In the DFOM, in our geometric constraint solving method and in the method
for tracking topological changes, the carrier geometry considered is currently
limited to planes, cylinders and spheres. For many real modelling applica-
tions, more general algebraic geometry and parametric geometry, such as
NURBS, should also be considered.

The set of rewrite rules for 3D problems presented in Appendix A is not
complete; there are known well-constrained geometric constructions that
cannot be solved with the current rule set, e.g. the octahedral problem
[Durand and Hoffmann, 2000]. It is not even known whether there exists a
complete set of rewrite rules that can be used to solve every 3D system of
rigid, scalable and radial clusters. This is related to the more fundamental
problem whether a generic, combinatorial description can be given of rigidity
in 3D [Sitharam, 2006].

It may be difficult to extend our prototype-based solution selection ap-
proach to general geometric constraint systems. In particular, rules for
larger subproblems, e.g. the octahedral subproblem, should be found.

Currently, we have not yet done any extensive comparison of our solver
to other solving algorithms. It would be interesting to see how it compares in
terms of the class of problems that can be solved and in terms of algorithmic
complexity.

The boolean constraint systems derived from systems of topological con-
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straints can be very large. Although these systems are easy to solve for the
MINISAT solver, generating these problems is expensive. A more efficient
algorithm for mapping and solving topological constraints, would therefore
be very useful. The MINISAT solver can be extended with new types of
constraints, but the effectiveness of the solver’s optimisation strategy for
such constraints is unknown.

Some improvements on the performance of the geometric parameter
range computation algorithm may be possible. For example, it may not
be necessary to compute all geometric solutions for all degenerate cases,
because not all critical values contribute to the actual intervals of the pa-
rameter range. For complex models, it would therefore be useful to look for
optimisation strategies.

We believe that the basic approach to geometric parameter range com-
putation, i.e. finding critical values by introducing degenerate cases of sub-
problems in the constraint system, can be applied to any decomposable
system, but more general methods would be needed to determine degener-
ate cases for a wider range of subproblems.

The methods for geometric and topological parameter range computa-
tion consider only one variant parameter. The parameter space correspond-
ing to valid models when two parameters, or perhaps three parameters, are
varied simultaneously, may also be useful for a designer, since this range
can be presented to a user graphically. Considering even more parameters
simultaneously may be useful for automated model adjustment [Noort and
Bronsvoort, 2001] and model optimisation algorithms though. Our method
cannot be easily generalised to solve problems with several simultaneously
varying parameters, but it may be useful to help reduce the search space of
such problems.

The declarative modelling approach plays a central role in this thesis. We
believe that declarative models, in particular models with both geometric
and topological constraints, can be useful in many areas where complex
design problems are found. Requirements can be directly specified in such
models, and no arbitrary or implicit choices have to be made that are diffi-
cult to undo. Thus, semantics can be specified in declarative models, which
makes it easy to verify, maintain and reuse such models. Finally, global
properties of declarative models, e.g. parameter ranges and critical param-
eter values, can be derived to help users with complex modelling tasks.

Whether the declarative approach to modelling families of objects will be
used in future commercial CAD systems, depends on whether CAD vendors,
and users, are willing to move away from history-based models. One of the
challenges for future CAD research is therefore to show that declarative
modelling systems can be used to do everything that can be done with
current, history-based modelling systems, and much more.
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Appendix A

Rewrite rules for clusters

A collection of rewrite rules for clusters is presented here, which can be used
for solving systems of geometric constraints, as discussed in Chapter 4.

Each rewrite rule consists of a pattern and a procedure. The pattern is
of the form: C1 ∪ C2 ∪ . . . ∪ Cn−1 → Cn. Here C1 to Cn−1 represent input
clusters and Cn represents the output cluster. Each cluster in the pattern
specifies a type, i.e. Rigid, Scalable or Radial, and a set of variables. A
cluster with a fixed number of variables may be specified, e.g. Rigid([p1, p2])
or a cluster with an unknown number of variables, using an ellipsis, e.g.
Rigid([p1, p2, . . .]). A radial cluster specifies one center variable and a set of
radial variables, e.g. Radial(p1, [p2, p3]). A set of variables of input clusters
may also be given a name, e.g. Rigid(A = [p1, p2, . . .]). Such named sets of
variables may be combined in the specification of the output cluster, e.g.
Rigid(A) ∪ Rigid(B) → Rigid(A ∪ B).

The procedure specified by a rule is a function c1 × c2 × . . .× cn−1 → cn.
Here c1 to cn−1 represent input configurations and cn represents the ouput
configuration. The number of configurations in the procedure is always
equal to the number of clusters specified in the pattern. In a procedure,
the union of two configurations, represented as c1 ∪ c2, is a configuration
containing all the point variables in c1 and c2. Point variables shared by c1

and c2 take the value specified by c1.

We present a set of rules applicable only in 2D (Section A.1), a set of
rules applicable in 2D and 3D (Section A.2), and a set of rules applicable
only in 3D (Section A.3).
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A.1 2D rewrite rules

Rule 1 Merge two rigid clusters with two shared points

Pattern: Rigid(A = [p1, p2, . . .]) ∪ Rigid(B = [p1, p2, . . .])
→ Rigid(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation and translation such that p1 and p2 in c2

are mapped onto p1 and p2 in c1

cR = c1 ∪ T (c2)
Degenerate cases:

coincident(p1, p2)

Rule 2 Merge two radial clusters with two shared points

Pattern: Radial(px, A = [p1, . . .]) ∪ Radial(px, B = [p1, . . .])]
→ Radial(px, A ∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling, such that px and p1 in c2

are mapped onto px and p1 in c1

cR = c1 ∪ T (c2)
Degenerate cases: none

Rule 3 Merge two scalable clusters with two shared points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Scalable(B : [p1, p2, . . .])
→ Scalable(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation, translation and scaling such that p1 and p2 in c2

are mapped onto p1 and p2 in c1

cR = c1 ∪ T (c2)
Degenerate cases: none
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A.2 2D/3D rewrite rules

Rule 4 Derive a triangle from three distances

Pattern: Rigid([p1, p2, . . .]) ∪ Rigid([p1, p3, . . .]) ∪ Rigid([p2, p3, . . .])
→ Rigid([p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = intersection

circle centre cR(p1) radius δ(c2(p3), c2(p1))
circle centre cR(p2) radius δ(c3(p3), c3(p2))

Degenerate cases:
colinear(p1, p2, p3)
coincident(p1, p2)
coincident(p1, p3)
coincident(p2, p3)

Rule 5 Derive a triangle from two distances and an angle (by rotation)

Pattern: Rigid([p1, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .]) ∪ Rigid([p2, p3, . . .])
→ Rigid([p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

φ = ∡(c2(p1), c2(p2), c2(p3))
cR(p1) = (δ(c1[p1], c1[p2]), 0)
cR(p2) = (0, 0)
cR(p3) = δ(c3[p3], c3[p2])(cos(φ), sin(φ))

Degenerate cases: none

Rule 6 Derive a triangle from two distances and an angle (by intersection)

Pattern: Rigid([p1, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .]) ∪ Rigid([p1, p3, . . .])
→ Rigid([p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = intersection

circle centre c1(p1) radius δ(c3(p3), c3(p1))
ray from c1(p2) direction ∡(c2(p1), c2(p2), c2(p3))

Degenerate cases:
∡(p2, p3, p1) = 1

2π
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Rule 7 Derive a scalable cluster from two radial clusters

Pattern: Radial(p1, [p3, p2, . . .]) ∪ Radial(p2, [p1, p3, . . .])
→ Scalable([p1, p2, p3])

Procedure: c1 × c2 → cR

cR(p1) = (0, 0, 0)
cR(p2) = (1, 0, 0)
cR(p3) = intersection

ray from cR(p1) direction ∡(c1(p3), c1(p1), c1(p2))
ray from cR(p2) direction π − ∡(c2(p1), c2(p2), c2(p3))

Degenerate cases:
∡(p3, p1, p2) = π − ∡(p1, p2, p3)

Rule 8 Derive a rigid cluster from a scalable and a rigid cluster with two
shared points

Pattern: Scalable(A = [p1, p2, . . .]) ∪ Rigid([p1, p2, . . .]) → Rigid(A)
Procedure: c1 × c2 → cR

T = scale configuration by δ(c2(p2),c2(p1))
δ(c1(p2),c1(p1))

cR = T (c1)
Degenerate cases: none

A.3 3D rewrite rules

Rule 9 Merge two rigid clusters with three shared points

Pattern: Rigid(A = [p1, p2, p3, . . .]) ∪ Rigid(B = [p1, p2, p3, . . .])
→ Rigid(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation-translation such that p1, p2 and p3 in c2

are mapped onto p1, p2 and p3 in c1

cR = c1 ∪ T (c2)
Degenerate cases:

colinear(p1, p2, p3)
coincident(p1, p2)
coincident(p1, p3)
coincident(p2, p3)
coincident(p1, p2, p3)



A.3. 3D REWRITE RULES 123

Rule 10 Merge two scalable clusters with three shared points

Pattern: Scalable(A = [p1, p2, p3, . . .]) ∪ Scalable(B = [p1, p2, p3, . . .])
→ Scalable(A ∪ B)

Procedure: c1 × c2 → cR

T = rotation-translation-scaling such that p1, p2 and p3 in c2

are mapped onto p1, p2 and p3 in c1

cR = c1 ∪ T (c2)
Degenerate cases:

colinear(p1, p2, p3)

Rule 11 Merge two radial clusters with three shared points

Pattern: Radial(px, A = [p1, p2, . . .]) ∪ Radial(px, B = [p1, p2, . . .])
→ Radial(px, A ∪ B)

Procedure: c1 × c2 → cR

T = rotation-translation-scaling such that px, p1 and p2 in c2

are mapped onto px, p1 and p2 in c1

cR = c1 ∪ T (c2)
Degenerate cases:

colinear(p1, p2, p3)

Rule 12 Derive a tetrahedron from three rigid clusters

Pattern: Rigid([p1, p2, p3, . . .]) ∪ Rigid([p1, p2, p4, . . .]) ∪ Rigid([p3, p4, . . .])
→ Rigid([p1, p2, p3, p4])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = c1(p3)
cR(p4) = intersection

sphere centre cR(p1) radius δ(c2(p4), c2(p1))
sphere centre cR(p2) radius δ(c2(p4), c2(p2))
sphere centre cR(p3) radius δ(c3(p4), c3(p3))

Degenerate cases:
coincident(p1, p2) coplanar(p1, p2, p3, p4)
coincident(p1, p3) colinear(p1, p2, p3)
coincident(p1, p4) colinear(p1, p2, p4)
coincident(p2, p3) colinear(p1, p3, p4)
coincident(p2, p4) colinear(p2, p3, p4)
coincident(p3, p4)
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Rule 13 Derive a radial cluster from three angles

Pattern: Radial(px, [p1, p2, . . .]) ∪ Radial(px, [p1, p3, . . .])
∪Radial(px, [p2, p3, . . .]) → Radial(px, [p1, p2, p3])

Procedure: c1 × c2 × c3 → cR

cR(px) = c1(px)
cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = intersection

cone apex cR(px) axis cR(p1) − cR(px) angle ∡(c2(p1), c2(px), c2(p3))
cone apex cR(px) axis cR(p2) − cR(px) angle ∡(c3(p2), c3(px), c3(p3))
sphere centre cR(px) radius 1

Degenerate cases:
colinear(p1, p2, px)
colinear(p1, p3, px)
colinear(p2, p3, px)
coplanar(p1, p2, p3, px)

Rule 14 Derive a rigid cluster from two rigid clusters with two shared
points and an angle

Pattern: Rigid([p1, p2, p3, p4, . . .]) ∪ Rigid([p3, p4, p5, . . .])
∪Radial(p1, [p2, p5, . . .]) → Rigid([p1, p2, p3, p4, p5])

Procedure: c1 × c2 × c3 → cR

cR(p1) = c1(p1)
cR(p2) = c1(p2)
cR(p3) = c1(p3)
cR(p4) = c1(p4)
cR(p5) = intersection

cone apex cR(p1) axis cR(p2) − cR(p1) angle ∡(c3(p5), c3(p1), c3(p2))
cylinder axis cR(p4) − cR(p3) radius distance(c2(p5), line(c2(p4), c2(p3)))
plane normal cR(p4) − cR(p3)

through cR(p3) + (c2(p5) − c2(p3)) · (c2(p4) − c2(p3))
Degenerate cases:

parallel(line(p1, p5), line(p3, p4))
colinear(p1, p2, p5)
colinear(p3, p4, p5)
coincident(p1, p2)
coincident(p3, p4)



Appendix B

Selection criteria for the
intended solution

In this appendix, we will show that the intended solution of a geometric
constraint problem, as discussed in Section 4.5, can be found by generating
appropriate selection criteria for its subproblems.

The constraint problem considered here is a system of distance and angle
constraints on points in 3D, similar to the problem considered in Chapter
4. However, the solving approach used here is a simpler one, which does
not determine non-rigid clusters, but only rigid clusters, corresponding to
triangular and tetrahedral subproblems.

First, in Section B.1, we formally define the intended solution. Next, in
Section B.2, we show that for any triangular or tetrahedral subproblem, we
can select the intended solution using simple selection criteria. Finally, we
show in Section B.3 that by combining intended solutions of subproblems,
we find the intended solution for the whole problem.

Parts of this appendix have already been published, see [van der Meiden
and Bronsvoort, 2005b].

B.1 Definition of the intended solution

We consider a geometric constraint problem with distance constraints and
angle constraints on points in 3-dimensional Euclidean space.

Definition 1 A geometric constraint problem G(V,C, x) consists of n point
variables V = {v1 . . . vn} and m constraints C = {c1 . . . cm}. A constraint
ci ∈ C is either a distance constraint or an angle constraint with parameter
xi ∈ R, x = (x1, ...xm).

The parameters of the problem are represented by the parameter vector
x = (x1, ...xm) ∈ X, where X = R

m is referred to as the parameter space of
the problem.
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A solution for the problem is a configuration of points, i.e. a vector y =
(y1, ..., yn), yi ∈ R

3. The space Y = R
n×3 is referred to as the configuration

space of the problem.

Definition 2 The generic solution S(x) for a geometric constraint problem
G(V,C, x) is a set of solutions as a function of the parameters of the prob-
lem, such that S(x) = {y; y ∴ G(V,C, x)}. Here y ∴ G(V,C, x) means that
y satisfies the constraints in G(V,C, x).

Definition 3 The intended solution for a problem G(V,C, x) and a proto-
type p is a function s : X × Y → Y such that: (1) s(x, p) ∈ S(x) and (2)
s(x, p) ≡G p, where ≡G ⊆ Y × Y is called the resemblance relation for G.

The resemblance relation defines when a solution resembles a given pro-
totype configuration, and is thus the intended solution. The resemblance
relation is an equivalence relation, which partitions the configuration space
into a number of equivalence classes. The intended solution is then, by
Definition 3, the solution in the same equivalence class as the prototype.
The equivalence relation must be defined such that the following properties
hold:

Property 1 x → s(x, p) is a continuous mapping from X ′ to Y , for any
p ∈ Y , where X ′ = {x∗ ∈ X : s(x∗, p) exists }.

Property 2 Different solutions for the same parameter value do not re-
semble each other, i.e. they are in different equivalence classes. Formally:
∀x ∈ X,∀s1, s2 ∈ S(x) : s1 6= s2 ⇒ s1 6≡G s2.

Property 3 Every equivalence class is a connected set, i.e. for any two
configurations y1, y2 ∈ Y such that y1 ≡G y2, there exists a continuous
function f : [0, 1] → Y such that f(0) = y1, f(1) = y2 and ∀φ ∈ (0, 1) :
f(φ) ≡G y1 (and f(φ) ≡G y2).

In words, Property 1 states that there is a continuous relation between the
parameters of the constraints and the intended solution. Property 2 ensures
that a solution can be selected unambiguously; given any combination of a
prototype and a parameter vector, there is at most one solution. Property
3 states that all configurations in an equivalence class are connected; con-
figurations that resemble each other are geometrically ’close’ to each other.
We believe this to be a reasonable interpretation of the intuitive meaning
of resemblance.
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Figure B.1: Triangular subproblems

B.2 Subproblem analysis

In this section, we consider how the intended solution can be determined for
basic triangular and tetrahedral subproblems. In Section B.3 we consider
the construction of the solutions of the whole problem by cluster merging.

There are five well-constrained triangular subproblems to consider, il-
lustrated in Figure B.1. Each case is identified by a 3-letter code, where ’d’
stands for a known distance, and ’a’ stands for a known angle. The order of
these letters indicates the configuration of the known distances and angles.
Because three points are always in a plane, these problems are solved in 2D.

Case ’ddd’: three distances are known, see Figure B.1(a).
constraints: d(A,B) = d1, d(A,C) = d2, d(B,C) = d3

solution: A = (0, 0), B = (d1, 0), C = (x, y)

x = (d2)2−(d3)2+(d1)2

2d1
, y = ±

√

(d2)2 − x2

Case ’dad’: two distances and the enclosed angle are known, see Figure
B.1(b).
constraints: d(A,B) = d1, a(B,A,C) = α, d(A,C) = d2

solution: A = (0, 0), B = (d1, 0), C = (x, y)
x = d2 · cos(α), y = ±d2 · sin(α)
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Case ’dda’ (= ’add’): two distances and one adjacent angle are known, see
Figure B.1(c).
constraints: d(A,B) = d1, d(B,C) = d2, a(B,A,C) = α

solution: A = (0, 0), B = (d1, 0), C = (x, y)
x = t · cos(α), y = ±t · sin(α)
t = q ±

√

4q2 − 4r, t ≥ 0
q = d1 · cos(α), r = (d1)

2 − (d2)
2

Case ’ada’: one distance and two adjacent angles are known, see Figure
B.1(d).
constraints: a(C,A,B) = α, d(A,B) = d1, a(A,B,C) = β

solution: A = (0, 0), B = (d1, 0), C = (x, y)
x = t · cos(α), y = ±t · sin(α)

t = d1·cos(β)
sin(α)·cos(β)+sin(β)·cos(α)

Case ’daa’ (= ’aad’): one distance, one adjacent angle and the opposite
angle are known, see Figure B.1(e).
constraints: a(C,A,B) = α, a(B,C,A) = γ, d(A,B) = d1

solution: A = (0, 0), B = (d1, 0), C = (x, y)
x = t · cos(α), y = ±t · sin(α)

t = d1·cos(β)
sin(α)·cos(β)+sin(β)·cos(α) , β = π − |α| − |γ|

For each subproblem, the intended solution is represented by a function
s(x, p), where x is the parameter vector containing only the parameters of
the constraints in the subproblem, and p is the subconfiguration of the pro-
totype for the point variables involved in the subproblem. The prototype
is used as a solution selector in this function, i.e. depending on p, a partic-
ular solution is returned. The selected solution should have a resemblance
relation with the prototype (see Definition 3), so that it is the intended
solution.

For each subproblem case, a specific resemblance relation will be de-
fined in this section. For the ’ddd’, ’dad’, ’ada’ and ’daa’ cases, the same
resemblance relation is used, denoted by ≡∗. For the ’dda’ case, the resem-
blance relation is denoted by ≡dda, and for the tetrahedral subproblem by
≡tet. The implementation of the different functions s(x, p) is trivial given
these resemblance relations. For our analysis it is sufficient to note that,
depending on the specific subproblem case, s(x, p) ≡∗ p, s(x, p) ≡dda p or
s(x, p) ≡tet p.

The intended solution and resemblance relation for each subproblem
must satisfy the properties defined in Section B.1. In the following, we will
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define the resemblance relations and prove the required properties in each
case.

First note that for each of the triangle cases described above, there are
mirror-symmetrical solutions, i.e. solutions for y > 0 and y < 0.

Lemma 1 Mirror-symmetrical solutions in 2D are congruent in 3D.

Proof: The plane in which these solutions are constructed is arbitrary. In
3D, the solutions may be rotated 180◦ about the symmetry axis, so they
are congruent.

Lemma 2 For the ’ddd’, ’dad’, ’ada’ and ’daa’ cases, x → s(x, p) is a
continuous mapping, satisfying Property 1.

Proof: For each case, there are only two solutions, which are congruent in
3D (Lemma 1). In the solution formulas given above, the sign of y may be
chosen arbitrarily. In each case, the solution is a continuous function of the
constraint parameters, and thus satisfies Property 1.
Due to Lemma 1, for all the trianguluar cases except the ’dda’ case, there is
only one solution. The definition of the resemblance relation for these cases
is therefore trivial:

Definition 4 For the ’ddd’, ’dad’, ’ada’ and ’daa’ cases, the resemblance
relation ≡∗⊆ Y × Y is defined by:

y1 ≡∗ y2 ⇐⇒ y1, y2 ∈ Y

This relation is obviously reflexive (a ≡∗ a), symmetrical (a ≡∗ b ⇐⇒ b ≡∗

a) and transitive (a ≡∗ b and b ≡∗ c ⇒ a ≡∗ c). Thus it is an equivalence
relation.

Lemma 3 The resemblance relation ≡∗ satisfies Properties 2 and 3.

Proof: For any given parameter value, there is at most one solution, thus
Property 2 is satisfied. The ≡∗ relation defines only one equivalence class,
equal to Y = R

3n, which is connected. Thus Property 3 is also satisfied.

In the ’dda’ case, there may be up to four solutions in 2D. One pair of solu-
tions may be discarded due to symmetry (Lemma 1). From the remaining
pair, one solution is selected using the prototype configuration. Given a
’dda’ problem on a triangle ABC, as shown in Figure B.1(c), and a proto-
type p = (Ap, Bp, Cp), then the solution s = (As, Bs, Cs) is selected such
that angle ∠BpCpAp and angle ∠BsCsAs are either both acute or both
non-acute. The acuteness Γ of an angle ∠Q is defined as:

Γ(∠Q) =

{

acute ⇐⇒ 0 ≤ ∠Q < π
2

non-acute ⇐⇒ π
2 ≤ ∠Q ≤ π
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Definition 5 For the ’dda’ case, the resemblance relation ≡dda ⊆ Y × Y is
defined by:

ABC ≡dda A′B′C ′ ⇐⇒ Γ(∠BCA) = Γ(∠B′C ′A′)

Because equality is an equivalence relation, ≡dda is also an equivalence re-
lation.

Lemma 4 For the ’dda’ case, x → s(x, p) is a continuous mapping, satis-
fying Property 1.

Proof: The sign of the term t = q ±
√

4q2 − 4r in the general ’dda’ so-
lution, presented at the beginning of this section, is determined only by
the prototype p. Both solutions are continuous and real for 4q2 > 4r. By
substitutions for q and r, we obtain:

cos2(α) > 1 − (
d2

d1
)2

By substituting cos2(α) + sin2(α) = 1, we obtain:

sin2(α) < (
d2

d1
)2

The parameter domain corresponds to:

(|α| < sin−1(
d2

d1
) ∩ d1 ≥ d2) ∪ (d1 < d2)

For any parameter vector in this domain, Property 1 is satisfied.

Lemma 5 The resemblance relation ≡dda satisfies Property 2.

Proof: There are two distinct solutions of the ’dda’ case, for the same pa-
rameter values, corresponding to t = q−

√

4q2 − 4r and t = q +
√

4q2 − 4r.
Given that ABC is a solution corresponding to 0 ≤ t ≤ q, then ‖AC‖ =
t ≤ q = d1cos(α) and ∠BCA ≥ π

2 . Note that if t = q, then ‖AC‖ = t =
q = d1cos(α), and thus ∠BCA = π

2 . In this case there is only one solution,
and no selection is needed.

The other solution, corresponding to t > q is a triangle A′B′C ′, where
∠B′C ′A′ < π

2 . Angle ∠B′C ′A′ is always acute, whereas ∠BCA is always
non-acute, i.e. ABC 6≡dda A′B′C ′. Thus, Property 2 is satisfied.

Lemma 6 The resemblance relation ≡dda satisfies Property 3.
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Figure B.2: A continuous acuteness-preserving transformation

Proof: Given a configuration ABC (Figure B.2a) such that ∠BCA is acute
and a configuration A′B′C ′ (Figure B.2d) such that ∠B′C ′A′ is also acute.
Then there is a continuous function f , such that f(0) = ABC, f(1) =
A′B′C ′, and ∀φ ∈ (0, 1): f(φ) = A∗B∗C∗ such that ∠B∗C∗A∗ is acute.

This function may be constructed as follows. From φ = 0 to φ = 1
3 ,

the edges A∗C∗ and B∗C∗ are scaled continuously from ‖AC‖ to ‖A′C ′‖
and from ‖BC‖ to ‖B′C ′‖. The angle ∠B∗C∗A∗ remains constant (Fig-
ure B.2b). Then, angle ∠B∗C∗A∗ is scaled continuously from ∠BCA at
φ = 1

3 to ∠B′C ′A′ at φ = 2
3 . The edges A∗C∗ and B∗C∗ remain of constant

length, but the edge A∗B∗ is now scaled (Figure B.2c). ∠B∗C∗A∗ remains
acute during this transformation, because ∠BCA < π

2 and ∠B′C ′A′ < π
2 .

A∗B∗C∗ is now congruent with A′B′C ′. From 2
3 < φ < 1, the triangle

A∗B∗C∗ undergoes a rigid motion such that at φ = 1 it is equal to A′B′C ′

(Figure B.2d). ∠B∗C∗A∗ remains constant during this motion. Thus for
any φ ∈ [0, 1]: ∠B∗C∗A∗ is acute. The equivalence class corresponding to
an acute angle is thus connected, satisfying Property 3. For ∠BCA and
∠B′C ′A′ being non-acute, a similar proof can be constructed.

The basic 3D subproblem is the tetrahedral subproblem. This problem
involves four points. Only the case where six distances between these points
are known needs to be considered. Angle constraints are solved in triangular
subproblems.

A tetrahedron ABCD is constructed using six known distances: dAB ,
dAC , dAD, dBC , dBD and dCD. First, a triangle ABC is constructed. Point
D is determined by the intersection of three spheres, centred in A, B and
C, with radii dAD, dBD and dCD respectively.

There may be zero, one or two solutions for the intersection. If there are
two solutions, then these are symmetrical, mirrored in the plane through
ABC (see Figure B.3). To distinguish these solutions, we determine the
handedness Θ of the corresponding tetrahedra. For a tetrahedron PQRS

this is defined as:

Θ(PQRS) =

{

right ⇐⇒ (
−−→
PQ ×−→

PR) · −→PS ≥ 0

left ⇐⇒ (
−−→
PQ ×−→

PR) · −→PS < 0
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Figure B.3: Lefthanded and righthanded solutions ABCD1 and ABCD2,
given dAB , dAC , dBC , dAD, dBD and dCD.

Definition 6 For the tetrahedral subproblem, the resemblance relation ≡tet

⊆ Y × Y is defined by:

ABCD ≡tet A′B′C ′D′ ⇐⇒ Θ(ABCD) = Θ(A′B′C ′D′)

Because equality is an equivalence relation, ≡tet is also an equivalence rela-
tion.

Lemma 7 For tetrahedral subproblems, x → s(x, p) is a continuous map-
ping, satisfying Property 1.

Proof: For any combination of the parameters, there are two symmetrical
solutions, there are no solutions, or there is one degenerate solution. In the
latter two cases, no solution selection is needed. If there are two solutions,
then one solution is lefthanded and the other is righthanded, due to symme-
try. The solution of which the handedness is equal to the handedness of the
prototype, is the intended solution. Thus, the parameter domain for which
the intended solution is continuous, is equal to the parameter domain for
which a solution exists.

This domain can be characterised as follows. For each triangle in the
tetrahedron, a solution must exist, which is expressed by the triangle in-
equality. Each parameter corresponds to an edge in two triangles, thus for
each parameter two inequalities can be formulated:

dpq < dpr + dqr

dpq < dps + dqs

where p, q, r and s should be replaced by any combination of A, B, C and D,
resulting in a total of twelve inequalities. Each of these inequalities can be
described geometrically as a half-space Xi ∈ X, i = 1 . . . 12, where X is the
parameter space of the problem. The domain of the parameters for which
a solution exists is X ′ =

⋂

Xi. It can easily be shown, using elementary
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calculus, that this is a continuous domain. Thus, for any parameter vector
x ∈ X ′, the solution is a continuous mapping, satisfying Property 1.

Lemma 8 The resemblance relation ≡tet satisfies Property 2.

Proof: The two solutions for a tetrahedron ABCD are mirror-symmetrical.
If the triangle ABC is first constructed in the plane z = 0, then the solutions
D1 and D2 for point D are mirror images on different sides of this plane.
Suppose ABCD1 is righthanded, then (

−−→
AB × −→

AC) · −−→AD1 > 0, and (
−−→
AB ×−→

AC) · −−→AD2 < 0, and thus ABCD2 is lefthanded. If ABCD1 is lefthanded,
then vice versa. In both cases Θ(ABCD1) 6= Θ(ABCD2) and ABCD1 6≡tet

ABCD2, thus Property 2 is satisfied.

Lemma 9 The resemblance relation ≡tet satisfies Property 3.

Proof: Each equivalence class in ≡tet should be a connected set, i.e. all
righthanded tetrahedra should be connected and all lefthanded tetrahedra
should be connected. Given two righthanded configurations ABCD and
A′B′C ′D′. Then there is a function f such that f(0) = ABCD, f(1) =
A′B′C ′D′, and ∀φ ∈ (0, 1): f(φ) = A∗B∗C∗D∗, such that A∗B∗C∗D∗ is
righthanded. Such a function may be constructed as follows. At φ = 0,
the edges of A∗B∗C∗D∗ are equal to the corresponding edges in ABCD.
The edges are then scaled continuously such that they have the same length
as the corresponding edges in A′B′C ′D′ at φ = 1

2 . To scale each edge, a
scaling/shearing transformation is applied to the tetrahedron, which never
scales an edge negatively, and thus the handedness of the tetrahedron does
not change. From φ = 1

2 to φ = 1, a rigid rotation/translation transforms
A∗B∗C∗D∗ such that it exactly matches A′B′C ′D′. This also does not
change the handedness of the tetrahedron. Thus, we have shown that all
righthanded tetrahedra are connected. For lefthanded tetrahedra, the same
function may be used to proof the lemma.

B.3 Construction analysis

The intended solution for a problem G(V,C, x) is obtained by solving a
sequence of subproblems H = {H1, . . . Hk}, and merging the intended solu-
tions of the subproblem.

For each Hi ∈ H we have Hi = (Vi, Ci), where Vi ⊂ V , and the con-
straints in Ci either are in C, or result from previously solved subproblems.
The parameter vector of a subproblem Hi is denoted xi and consists of the
parameters of the constraints Ci. The prototype pi is a subconfiguration of
the prototype p, corresponding to the variables in Vi. The intended solution
for each subproblem Hi is represented by a vector si.

Subproblems are solved in a specific order, such that for i < j, Hi is
independent of Hj. If Hj depends on Hi, then they share two point variables,
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of which the relative position is determined by Hi, and the distance between
these points is needed to solve Hj.

Lemma 10 Given is that Hi = (Ci, Vi) and Hj = (Cj, Vj) such that Vi ∩
Vj = {va, vb}. Also given is that in Vi we find |va−vb| = dab and in Cj there
is a constraint d(va, vb, dab). If xi → si satisfies Property 1 and xj → sj

satisfies Property 1, then xi → sj satisfies Property 1.

Proof: If xi → si is continuous, then xi → dab is also continuous. Since
dab ∈ xj and xj → sj is continuous, xi → sj is a composition of continuous
functions, and thus also a continuous function.

Given a subproblem Hi = (Vi, Ci) and a solution si, where Vi = {vi1, . . . , vik}
and si = (si1, . . . , sik), then a cluster Ki = {(vil, sil); l = 1 . . . k} can be
constructed. The cluster represents a collection of (variable, value) pairs,
corresponding to assignments that satisfy the constraints in the problem.

A pair of clusters Ki and Kj can be merged if Vi ∩ Vj = {va, vb, vc},
and the configuration of these points in both clusters is the same. If the
three points are on a line or in a single point, then the problem is under-
constrained. Otherwise, a new cluster Km = Ki ⊗ Kj is obtained. Here
Km = {(v, s∗); v ∈ Vi ∪ Vj , s

∗ ∈ si ∪ T (sj)}. For each pair (v, s) ∈ Ki,
there is a corresponding pair (v, s) ∈ Km. For each pair (v, s) ∈ Kj and
(v, s) 6∈ Ki, there is a pair (v, T (s)) ∈ Km. The transformation T is a rota-
tion/translation such that the configuration of va, vb and vc in Kj is mapped
onto the configuration of these variables in Ki. Thus, if (va, sia), (vb, sib),
(vc, sic) ∈ Ki and (va, sja), (vb, sjb), (vc, sjc) ∈ Kj, then T (sja) = sia,
T (sjb) = sib and T (sjc) = sic.

Lemma 11 Let Km = Ki ⊗ Kj. If xi → si and xj → sj are continuous,
then xi → sm and xj → sm are also continuous.

Proof: For each pair (v, s) ∈ Ki, there is a corresponding pair (v, s) ∈ Km.
Since xi → si is continuous, xi → sm is also continuous. For each pair
(v, s) ∈ Kj and (v, s) 6∈ Ki, there is a pair (v, T (s)) ∈ Km. Since xj →
sj is continuous, and T is a continuous transformation, xj → sm is also
continuous.

Theorem 1 The intended solution s(x, p) satisfies Property 1.

Proof: s(x, p) is obtained by solving a sequence of subproblems, by prop-
agating distances, and by merging clusters. From Lemmas 2, 4 and 7, we
infer that all subproblem solutions satisfy Property 1. Using Lemma 10 and
Lemma 11, we infer that the final solution also satisfies Property 1.
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Figure B.4: Relations between subproblems and clusters used in proof of
Theorem 2.

Definition 3 states that s(x, p) ≡G p, where s(x, p) is the intended solution
for a problem G. We can now define the resemblance relation ≡G in terms
of the resemblance relations ≡i of the subproblems Hi that are solved to
solve G.

Definition 7 Given a problem G and a set of subproblems H = {H1, ...,Hk}
then ≡G is defined as:

y ≡G z ⇐⇒ ∀i ∈ 1 . . . k : yi ≡i zi

Here, yi and zi are the subconfigurations of y and z, for the point variables
Vi of each subproblem Hi ∈ H, and each relation ≡i is appropriately chosen
as ≡∗, ≡dda or ≡tet, defined in Definitions 4, 5 and 6 respectively.

Theorem 2 The resemblance relation ≡G is uniquely defined by G.

Proof: First, consider problems with no angle constraints. A problem Gn

consisting of n points and k = 3n−6 distance constraints is well-constrained
and can be solved by decomposing it into t = n−3 tetrahedral subproblems
(to see this, consider that for four points, six distances are needed to solve
one tetrahedron, and that for each extra point, three more constraints and
one more tetrahedron are needed).

We construct the proof by induction. First, if n = 4, then k = 6 and
t = 1, and the theorem obviously holds: G4 is the tetrahedral subproblem.
Next, assume that for any 4 ≤ m < n the set Hm of subproblems used for
solving Gm is uniquely determined by Gm.

Suppose the Gn problem contains s independent tetrahedral subprob-
lems G4

i ⊂ Gn, where 1 ≤ i ≤ s and s ≤ t. Two subproblems are inde-
pendent if they can be solved in any order. The independent subproblems
are completely determined by the system of constraints in Gn. Suppose
also that the solutions of the G4 subproblems can be merged into c rigid
clusters C1 . . . Cc. Figure B.4 shows the relations between subproblems and
clusters used in this proof. Because the problem is well constrained, s ≥ 1
and c ≥ 1. If s = t, then all tetrahedral solutions can be merged into one
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cluster, and the problem is solved. If s < t, then c > 1, and we construct
a new problem that shares three points with each cluster, so all clusters
can be merged into a single cluster after this new problem has been solved.
This problem is constructed as follows. Every constraint that is not in any
of the G4

i subproblems, and the points those constraint are imposed on, are
included in the new problem. Any distance, between a pair of points in
the new problem that is determined by one of the clusters, is added as a
constraint to the new problem. The new problem is thus completely de-
termined by Gn. Each G4

i subproblem fixes one point relative to the new
problem, because it shares three points with it, or because it shares three
points with a cluster that shares three points with the new problem. The
new subproblem thus contains m = n−s points, and because s > 0, m < n.

Because the Gn problem is well-constrained, the new problem is a well-
constrained Gm problem, with m < n, for which we have assumed that Hm

is uniquely determined by Gm. As already stated above, the independent G4

subproblems are also uniquely determined by Gn, thus Hn = Hm+{G4
i ; 1 ≤

i ≤ s} is uniquely determined by Gn.
Now consider angle constraints; these are solved in triangular subprob-

lems. The distances determined by these subproblems are then used to
solve tetrahedral subproblems. The configuration of angle constraints in
the problem G determines which triangular patterns (i.e. dda, dad, daa or
ada) are used. A triangular subproblem can be solved directly using the
constraints in G, or a triangular subproblem can be solved using distances
determined by merging clusters. In both cases, the configuration of the
angles in the problem determines the pattern used.

We therefore conclude that H is uniquely determined by the constraints
in G. From Definition 7 it is clear that the resemblance relation ≡G de-
pends only on the set of subproblems in H, and not on the order in which
subproblems are solved, so ≡G is uniquely determined by G.

Lemma 12 The resemblance relation ≡G is an equivalence relation.

Proof: For two configurations y and z, if y = z, then for each subproblem
Hi, yi = zi. From Definitions 4, 5 and 6, we infer that each ≡i is a resem-
blance relation, and therefore yi ≡i zi. From Definition 7 follows y ≡G z,
thus ≡G is reflexive. Also, for each subproblem, if yi ≡i zi then zi ≡i yi,
therefore, if y ≡G z then z ≡G y. Thus, ≡G is symmetrical. Given three
configurations y, z and r such that y ≡G z and z ≡G r, then, for every
subproblem, yi ≡i zi and zi ≡i ri. Because each ≡i is transitive, we also
have yi ≡i ri. From Definition 7 follows y ≡G r, thus the relation ≡G is
transitive. The relation ≡G is thus reflexive, symmetrical and transitive,
i.e. an equivalence relation.

Theorem 3 The resemblance relation ≡G satisfies Property 2.
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Proof: Given two solutions s ∴ G and t ∴ G, for the same parameter vector,
and a decomposition H of G. The first solution, s, is constructed by merging
solutions si ∴ Hi, and t is constructed by merging solutions ti ∴ Hi. If s 6= t

then there must be a subproblem Hi for which si 6= ti, because merging
clusters involves a rotation/translation transformation, which preserves the
relative positions of the points in each cluster. From Lemmas 3, 5 or 8, we
obtain si 6≡i ti. From Definition 7, we obtain s 6≡G t, and thus ≡G satisfies
Property 2.

Theorem 4 The resemblance relation ≡G satisfies Property 3.

Proof: Given two configurations y, z ∈ Y , y ≡G z, then by Definition 7,
for every subproblem Hi ∈ H, yi ≡i zi. According to Lemmas 3, 6 and 9,
all ≡i satisfy Property 3, i.e. the equivalence classes in these relations are
connected, and thus each pair yi, zi is connected. Then y and z are also
connected. Thus the relation ≡G satisfies Property 3.

The solution found thus satisfies all three properties given in Section B.1,
and is therefore the intended solution.



138



Bibliography

Achlioptas, D. and Peres, Y. (2003). The threshold for random k-sat is 2k
(ln 2 - o(k)). In STOC ’03: Proceedings of the Thirty-fifth Annual
ACM Symposium on Theory of Computing, June 9–11, San Diego,
California, pages 223–231. ACM Press, New York, NY, USA.

Bendsoe, M. P. (1989). Optimal shape design as a material distribution
problem. Structural Optimization, 1(1):193–202.

Bettig, B. and Shah, J. (2003). Solution selectors: a user-oriented answer
to the multiple solution problem in constraint solving. Journal of Me-
chanical Design, 125(3):443–451.

Bidarra, R. (1999). Validity Maintenance in Semantic Feature Modeling.
PhD thesis, Delft University of Technology.

Bidarra, R. and Bronsvoort, W. F. (2000a). On families of objects and
their semantics. In Proceedings Geometric Modeling and Processing
Conference, April 10–12, Hong Kong, China, pages 101–111. IEEE
Press, USA.

Bidarra, R. and Bronsvoort, W. F. (2000b). Semantic feature modelling.
Computer-Aided Design, 32(3):201–225.

Bidarra, R., de Kraker, K. J., and Bronsvoort, W. F. (1998). Representation
and management of feature information in a cellular model. Computer-
Aided Design, 30(4):301–313.

Bidarra, R., Madeira, J., Neels, W., and Bronsvoort, W. F. (2005a). Ef-
ficiency of boundary evaluation for a cellular model. Computer-Aided
Design, 37(12):1266–1284.

Bidarra, R., Nyirenda, P. J., and Bronsvoort, W. F. (2005b). A feature-
based solution to the persistent naming problem. Computer-Aided De-
sign and Applications, 2(1):517–526.

139



140 BIBLIOGRAPHY

Bonnefoi, P.-F. and Plemenos, D. (2000). Constraint satisfaction techniques
for declarative scene modelling by hierarchical decomposition. In Pro-
ceedings 3IA’2000, International Conference on Computer Graphics
and Aritifical Intelligence, May 3–4, Limoges, France. Pergamon Press,
Elmsford, NY, USA.

Bonnefoi, P.-F., Plemenos, D., and Ruchard, W. (2004). Declarative mod-
elling in computer graphics,: current results and future issues. In
Bubak, M., editor, Proceedings ICCS 2004, International Conference
on Computational Science, June 6–9, Krakow, Poland, volume 3039
of Lecture Notes in Computer Science, pages 80–89. Springer, Berlin,
Germany.

Bouma, W., Fudos, I., Hoffmann, C., Cai, J., and Paige, R. (1995). A
geometric constraint solver. Computer-Aided Design, 27(6):487–501.

Bronsvoort, W. F. and Noort, A. (2004). Multiple-view feature modelling
for integral product development. Computer-Aided Design, 36(10):929–
946.

Capoyleas, V., Chen, X., and Hoffmann, C. (1996). Generic naming in
generative, constraint-based design. Computer-Aided Design, 28(1):17–
26.

Chau, H., Chen, X., McKay, A., and De Pennington, A. (2004). Evalua-
tion of a 3D shape grammar implementation. In Gero, J. S., editor,
Design Computing and Cognition ’04, July 19–21, MIT, Cambridge,
USA, pages 357–376. Elsevier Science, The Netherlands.

Chen, X. and Hoffmann, C. M. (1995). On editability of feature-based
design. Computer-Aided Design, 27(12):905–914.

Coyne, B. and Sproat, R. (2001). Wordseye: An automatic text-to-scene
conversion system. In Proceedings SIGGRAPH 2001, 28th annual con-
ference on Computer graphics and interactive techniques, August 12–
17, Los Angeles, California, USA, pages 487–496. ACM Press, New
York, NY, USA.

Durand, C. and Hoffmann, C. M. (2000). A systematic framework for solving
geometric constraints analytically. Journal of Symbolic Computation,
30(5):493–519.
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Summary

Semantics of Families of Objects
PhD. Thesis

H.A. van der Meiden

Design disciplines nowadays heavily depend on Computer-Aided Design
(CAD) systems. Most current CAD systems are so-called feature mod-
elling systems. In these systems, a model is built from features, which are
parametrised shapes that add or remove material from the model, e.g. pro-
trusions, holes and slots. The exact shape and relative position of features
is determined by the parameters of the features.

Traditionally, a CAD model is interpreted as representing a single (phys-
ical) object. However, a parameterised model, e.g. a feature model, can also
be interpreted as representing a family of objects. The members of the
family are all objects that can be obtained by varying the values of the
parameters of the model.

A CAD model of a family of objects is useful in several situations. First,
the model can be used for manufacturing series of similar products, e.g. tools
of different sizes, and even customised products. Secondly, the model can be
reused as a part of a larger CAD model, with appropriate parameter values
to fit it. Thus, modelling families of objects can yield increased design
productivity and considerable cost reduction.

However, there are several major obstacles when using current CAD
systems for modelling families of objects.

When instantiating a member of a family, by specifying parameter val-
ues, it is necessary to verify that the model satisfies particular design re-
quirements, i.e. that the model is a valid member of the family. Verifying
large models by hand is costly, and with current systems, this cannot be
done automatically. Important functional requirements for features, in par-
ticular those related to the topology of a model, cannot be specified, let
alone verified automatically.

Previous research on Semantic Feature Modelling has resulted in meth-
ods to specify and verify such functional requirements (semantics) for fea-
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tures. This research builds on those methods, and extends the results to
families of objects.

Another problem is that in current systems, the realization of a model,
i.e. its geometric representation, is generated procedurally from a modelling
history. In particular, the features add or remove material from the model in
a fixed order, typically the order in which features were added to the model.
Such a procedure, however, may conflict with the functional requirements
specified in the model, in particular, topological constraints. Because of this,
some realisations, even though they satisfy all given requirements, may not
be found by the procedure. As a result, some members of a modelled family
may be missed.

Therefore, we present a new, declarative model for families of objects,
where shape and function of features, and the model as a whole, are specified
by geometric and topological constraints, and realisations are determined by
first solving the geometric and then the topological constraints. By solving
the constraints, we can find all possible realisations, and in this way, a family
of objects is completely specified by the constraints in the model, and not
dependent on procedural details of how the geometry is generated.

The new model requires that systems of geometric constraints can be
solved in 3D, whereas current CAD systems usually only solve constraints
in 2D. Also, the solver must be able to find all solutions, which solvers used
in current CAD systems cannot, and it should be able to select solutions
efficiently using various selection criteria. Finally, the solver must efficiently
handle incremental changes to the constraint system, so that it can be used
for computing parameter ranges (see below). A completely new geometric
constraint solving algorithm has been developed that satisfies these require-
ments.

Solving topological constraints is a new area in which very little work has
been done previously. Topological constraints are here imposed on features
or on topological entities that are defined by a feature in the model, e.g. a
face of a feature may be constrained to be on the boundary of the model.
However, each feature entity can be split into several topological entities in
the realization of the model. Therefore, topological constraints on feature
entities are mapped to topological constraints on model entities, which in
turn are mapped to a system of Boolean constraints. The Boolean constraint
system is solved by a Boolean SAT solver, and from the solutions that are
found, the realisations are constructed.

A third problem is the complex relation between the parameters of a
model and the members of the corresponding family. Only certain combi-
nations of parameter values result in objects that satisfy all constraints in
the model. Finding such a combination of parameter values can be diffi-
cult for an end-user of the model, i.e. someone who wants to instantiate a
particular family member from the model. Also, the designer of a family
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should be able to verify that the family behaves as intended, i.e. he should
be able to examine how parameter values affect the geometric and topologi-
cal properties of the corresponding members of the family. Current systems
do not provide sufficient support for finding members of, and analysing the
behaviour of, families of objects.

We present a method to determine the range of values that can be as-
signed to a parameter, such that the model satisfies all geometric and topo-
logical constraints, i.e. the parameter range corresponding to valid members
of the family. This can help end-users with instantiating members of the
family. The method first determines so-called critical values; the values for
which geometric subproblems degenerate or for which topological entities
degenerate. Then, for each interval between subsequent critical values, it
is determined whether the interval belongs to the parameter range. The
critical values can also be used to determine at which parameter values
changes occur in the topology of a model. The latter can help designers
with analysing the behaviour of the model.

The presented model for families of objects, and the methods for deter-
mining realisations of such models, i.e. the geometric and topological solvers,
have been implemented in a prototype feature modelling system that has
been developed at Delft University of Technology. Methods for determining
parameter ranges are currently being implemented separately for simplified
models.

The declarative approach to modelling families of objects is significantly
different from the currently used history-based approach, and therefore can-
not be directly implemented in most existing CAD systems. However, the
geometric and topological solvers, and the methods for parameter range
computation, are independent of this model, and can be applied to a broad
range of applications that involve geometry and/or topology.
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Samenvatting
Summary in Dutch

Semantiek van families van objecten
Proefschrift

H.A. van der Meiden

Ontwerpdisciplines maken tegenwoordig intensief gebruik van Computer-
Aided Design (CAD) systemen. De meeste huidige CAD systemen zijn zgn.
feature modelling systemen. In dergelijke systemen worden modellen op-
gebouwd uit features, d.w.z. parametrische vormen die materiaal aan het
model toevoegen of uit het model verwijderen, zoals gaten, ribben en uit-
sparingen. De exacte vorm en relatieve positie van features worden bepaald
door waarden voor de parameters op te geven.

Traditioneel wordt een CAD model gëınterpreteerd als een representatie
van een enkel (fysiek) object. Een parametrisch model kan echter ook wor-
den gëınterpreteerd als een representatie van een familie van objecten. De
leden van de familie zijn alle objecten die kunnen worden verkregen door de
waarden van de parameters van het model te variëren.

Een model voor een familie van objecten kan voor verschillende doelein-
den worden gebruikt. Ten eerste kan het model worden gebruikt om een
serie van gelijksoortige producten te fabriceren, en zelfs op maat gemaakte
producten. Daarnaast kan een dergelijk model worden hergebruikt als deel
van een groter model, door passende parameterwaarden te kiezen. Dus, het
modelleren van families van objecten kan de productiviteit van ontwerpers
verhogen en daardoor kostenbesparingen opleveren.

Er zijn echter nog aanzienlijke obstakels bij het gebruik van de huidige
CAD systemen voor het modelleren van families van objecten.

Wanneer een lid van een familie wordt gëınstantieerd, door parame-
terwaarden te specificeren, moet gecontroleerd worden of het model aan
de ontwerpeisen voldoet, d.w.z. of het model een geldig lid van de familie
voorstelt. Grote modellen met de hand controleren is kostbaar, en met de
huidige modelleersystemen kan dit niet automatisch. Belangrijke functio-
nele eisen voor features, met name die met topologische eigenschappen te
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maken hebben, kunnen niet worden gespecificeerd, laat staan automatisch
gecontroleerd.

Voorgaand onderzoek op het gebied van Semantic Feature Modelling
heeft geresulteerd in methoden voor het specificeren en controleren van der-
gelijke functionele eisen (semantiek) voor features. Dit onderzoek bouwt
voort op de resultaten van dat onderzoek, toegepast op families van objec-
ten.

Een ander probleem is dat in huidige systemen de realisatie van een
model, d.w.z. een geometrische representatie, op procedurele wijze wordt
bepaald op basis van een ’modelling history’. Features voegen materiaal
toe, of verwijderen materiaal, in een vaste volgorde, meestal de volgorde
waarin de features aan het model zijn toegevoegd. Een dergelijke procedure
kan conflicteren met de functionele eisen die in het model gespecificeerd zijn,
met name topologische eisen. Daardoor is het mogelijk dat er realisaties van
het model zijn die wel aan alle eisen voldoen, maar die niet door de procedure
worden bepaald. Het gevolg is dat er leden van de familie kunnen ontbreken.

Om deze reden stellen wij een declaratief model voor families van ob-
jecten voor, waarbij vorm en functie van features, en het model als geheel,
worden bepaald door geometrische en topologische constraints. Realisaties
worden gevonden door eerst de geometrische en dan de topologische con-
straints op te lossen. Met deze aanpak worden alle mogelijke realisaties
gevonden, zodat een familie van objecten volledig is gespecificeerd door de
constraints in het model, en niet afhankelijk is van procedurele details van
de manier waarop de geometrie wordt gegenereerd.

Voor het nieuwe model is een solver vereist die stelsels geometrische
constraints in 3D kan oplossen, terwijl huidige CAD systemen meestal alleen
constraints in 2D oplossen. Ook moet de solver alle oplossingen kunnen
vinden, iets wat huidige CAD systemen niet kunnen, en moet deze efficiënt
oplossingen kunnen selecteren aan de hand van verschillende selectiecriteria.
Tot slot moet de solver ook efficiënt omgaan met incrementele verandering-
en in het stelsel, zodat deze kan worden gebruikt voor het berekenen van
het bereik van parameters (zie verderop). Hiervoor is een compleet nieuw
algoritme voor het oplossen van geometrische constraints ontwikkeld.

Het oplossen van topologische constraints is een nieuw gebied waarop nog
weinig onderzoek is verricht. Topologische constraints worden hier opgelegd
aan features of topologische elementen van features, b.v. dat een zijvlak van
een feature op de begrenzing van het model moet liggen. In de realisatie van
het model kan elk feature-element zijn opgesplitst in verschillende model-
elementen, zodat constraints op feature-elementen worden afgebeeld op een
stelsel constraints op model-elementen. Deze laatste constraints worden op
hun beurt afgebeeld op een stelsel Booleaanse constraints. Dit stelsel wordt
opgelost door een SAT solver, en van de gevonden oplossingen worden de
realisaties van het model geconstrueerd.
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Een derde probleem is de complexe relatie tussen de parameters van een
model en de leden van de overeenkomstige familie. Alleen bepaalde combi-
naties van parameterwaarden resulteren in objecten die aan alle constraints
in het model voldoen. Het vinden van een dergelijke combinatie van para-
meterwaarden kan moeilijk zijn voor de eindgebruiker van het model, d.w.z.
degene die een bepaald lid van de familie wil instantiëren. Bovendien, de
ontwerper van een familie moet kunnen controleren of het model zich ge-
draagt zoals bedoeld, d.w.z., hij moet kunnen onderzoeken hoe parameter
waarden de geometrische en topologische eigenschappen van de overeenkom-
stige leden bëınvloeden. De huidige systemen bieden weinig ondersteuning
voor het vinden van leden van, en het analyseren van het gedrag van families
van objecten.

Wij presenteren een methode om het bereik van een parameter te be-
palen waarvoor het model aan alle constraints voldoet, oftewel, het para-
meterbereik dat overeenkomt met geldige leden van de familie. Dit kan
eindgebruikers helpen bij het instantiëren van leden van de familie. De
methode bepaalt eerst de zogenaamde kritieke waarden, d.w.z. de waarden
waarvoor geometrische deelproblemen degenereren of waarvoor topologische
elementen degenereren. Vervolgens wordt voor elk interval tussen opeenvol-
gende kritieke waarden bepaald of het wel of niet bij het parameterbereik
behoort. De kritieke waarden kunnen ook worden gebruikt om te bepalen
voor welke waarden de topologie van het model verandert. Dit laatste kan
ontwerpers helpen bij het analyseren van het gedrag van het model.

Het voorgestelde model voor families van objecten, en de methoden om
realisaties van dergelijke modellen te vinden, zijn gëımplementeerd in een
prototype feature modelling systeem dat is ontwikkeld aan de Technische
Universiteit Delft. Methoden voor het bepalen van parameterbereik en kri-
tieke waarden worden momenteel los gëımplementeerd voor vereenvoudigde
modellen.

De declaratieve aanpak voor het modelleren van families van objecten
is significant anders dan de gebruikelijke history-gebaseerde benadering, en
kan daarom ook niet direct in de huidige CAD systemen worden gëımple-
menteerd. De geometrische en topologische solvers, en de methodes voor
het bepalen van het bereik en de kritieke waarden van parameters, kunnen
echter los van dat model worden ingezet voor veel andere toepassingen die
met geometrie en topologie te maken hebben.
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