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SUMMARY

Multi-disciplinary design optimization (MDO) is a field that has gained traction
in recent years. It can be distinguished as a methodology that promotes a sim-
ultaneous change in design features associated to multiple disciplines in order to
achieve the best possible design of a coupled multi-disciplinary problem. A typical
application in aircraft design is aero-structural design optimization, where the in-
teraction of fluids and structures on load-carrying components is considered. The
recent progress in this field can be largely attributed to the increasing computa-
tional resources and parallel computing in the form of High Performance Comput-
ing Clusters. Nevertheless, the computational bottleneck which persists to this
day in high-fidelity aero-structural design is the gradient computation, which is
a fundamental component in the design of systems with several thousand design
variables and constraints.

There are several methods that address the issue of computing coupled aero-
structural gradients for large-scale problems. The most popular approach is to
formulate functions of interest, which are typically element stresses or strains, as a
single function by constraint aggregation. In doing so, the number of large linear
systems that must be solved to obtain the required gradients can be reduced to
the same amount as the number of constraint aggregation functions. This method
however, albeit straightforward and efficient, can result in inaccurate gradients
and by extension in overly conservative designs.

The aim of this thesis is not to develop a high-fidelity MDO framework, as there
are already several known successful attempts. Such an endeavor would require
much time and add little novelty compared to existing state-of-the-art. How-
ever, the gradient computation of the coupled aero-structural problem has been
identified as an Achilles heel in many existing frameworks and the main effort in
this doctoral thesis is devoted to improving this important facet in high-fidelity
aero-structural design.

A framework is initially designed in the thesis to compute static aeroelastic ana-
lyses of wings in transonic conditions using the finite element method to model
the structure and Euler flow aerodynamics to model the surrounding pressure.
The convergence of the static aeroelastic problem is improved by a vortex lattice
aerodynamic model using a defect-correction strategy. A similar method is de-
veloped to solve the subsequent gradient problem where the vortex lattice model
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features as a preconditioner to accelerate the solution of the linear aero-structural
gradient problem. The method is applied to structural sizing variables and only
the direct method is considered. The proposed method is shown to outperform
conventional methods such as linear block Gauss-Seidel with various types of re-
laxation. The method is successfully demonstrated on coupled aero-structural
gradient computations with Euler and RANS flow aerodynamics.

Computing gradients by solving the linear aero-structural gradient problem one
design variable at a time is not computationally viable when the design problem is
subject to thousands of constraints and design variables. A method is developed
that leverages information from the vortex lattice model to reconstruct the high-
fidelity aero-structural gradients. Singular value decomposition in conjunction
with pseudo-inverting is used to reconstruct the high-fidelity gradients, and it
is shown that the reconstructed gradients are improved when the vector basis
resulting from the vortex lattice model is enriched.

The proposed gradient reconstruction method is demonstrated on static aeroelas-
tic tailoring of a forward-swept wing. The objective is weight minimization, the
constraints are limited to strain and buckling, whereas lamination parameters and
laminate thicknesses are employed as design variables. The gradient reconstruc-
tion method indicates that the design results in a lower structural weight when
compared to an equivalent design procedure where the gradients are constructed
purely by vortex lattice aerodynamics. Moreover, the enrichment of basis vec-
tors in the gradient reconstruction scheme is shown to improve the convergence
behavior of the optimization problem.
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SAMENVATTING

Multidisciplinaire optimalisatie (MDO) is een vakgebied dat recentelijk steeds
meer aandacht krijgt. Het is een methode die ontwerpvariabelen van verschillende
disciplines combineert om aldus het beste ontwerp te creëren voor een multidiscip-
linair probleem. Een typische toepassing in vliegtuigontwerp is aero-structurele
optimalisatie die de interactie beschrijft tussen de stroming en de belastingen
op dragende onderdelen. Dankzij verbeterde hardware van en parallelle reken-
methoden op supercomputers is dit vakgebied met rasse schreden vooruitgegaan.
Desondanks is de beperkende factor voor aero-structurele optimalisatie met hoge
nauwkeurigheid de berekening van de afgeleiden. Deze afgeleiden zijn een essen-
tieel onderdeel voor het ontwerpen van systemen met duizenden ontwerpvariabelen
en randvoorwaarden.

Meerdere methoden zijn in staat om de gekoppelde aero-structurele afgeleiden
van grote optimalisatieproblemen te berekenen. De meest populaire aanpak is
om functies van randvoorwaarden samen te voegen tot één enkele functie door
randvoorwaardencollectie. Op deze manier wordt het aantal lineaire systemen
dat opgelost moet worden gereduceerd tot het aantal randvoorwaardencollectie-
functies. Hoewel dit een eenvoudige en efficiënte methode is, kan deze methode
leiden tot onnauwkeurige afgeleiden en veel te conservatieve ontwerpen.

Het is niet het doel van deze thesis om een MDO-rekenmethode te ontwerpen
met hoge nauwkeurigheid, want er bestaan al talrijke werkende methoden. Dit
zou erg veel tijd kosten en weinig nieuws toevoegen aan de huidige stand van
zaken. Echter, de Achilleshiel van menig rekenmethode is de berekening van de
gekoppelde aero-structurele afgeleiden. Daarom is dan ook het hoofddoel van deze
thesis om deze berekening efficiënter te maken.

Een methode is aanvankelijk ontwikkeld voor een statische aeroelastische analyse
van vleugels in een transsone stroming met behulp van de eindige elementenmeth-
ode voor de structurele berekeningen en Euler aerodynamica voor de stromings-
berekeningen. Een defect-correctiemethode met behulp van een vortexmethode
is aangewend om de convergentie van het statisch aeroelastische probleem te ver-
beteren. Een gelijkaardige methode is ontwikkeld voor de berekening van de
bijbehorende afgeleiden. In dat geval wordt de vortexmethode gebruikt als con-
ditionerend element om het oplossen van de lineaire aero-structurele afgeleiden te
versnellen. Deze methode is toegepast op structurele ontwerpvariabelen en enkel
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de directe methode wordt gebruikt. Het is aangetoond dat deze methode beter
werkt dan conventionele methoden zoals daar zijn de lineaire block Gauss-Seidel
methode met verschillende relaxatiemethoden. De methode is succesvol toege-
past op gekoppelde aero-structurele afgeleideberekeningen met Euler en RANS
stromingen.

Het is rekenkundig niet haalbaar om zulk lineair systeem op te lossen voor elke
variabele apart omdat het hele ontwerpprobleem duizenden randvoorwaarden
en ontwerpvariabelen telt. Een methode is ontwikkeld om afgeleiden met hoge
nauwkeurigheid te reconstrueren met behulp van vortexmethoden. Dit is bew-
erkstelligd door het gebruik van de decompositie van de singuliere waarden samen
met pseudo-inverteren om de afgeleiden met hoge nauwkeurigheid te reconstrueren
en het is aangetoond dat de gereconstrueerde afgeleiden verbeteren naar gelang
de vectorbasis, die gebaseerd is op vortexmethoden, verrijkt wordt.

De methode om afgeleiden te reconstrueren is toegepast op het statisch aeroelast-
isch ontwerpen van een voorwaarts gepijlde vleugel. Het doel van de optimalisatie
is gewichtsbesparing en de randvoorwaarden zijn maximale rek en knikbelasting.
De ontwerpvariabelen zijn de laminaatparameters en laminaatdiktes. De meth-
ode voor het reconstrueren van afgeleiden toont aan dat een lager gewicht bereikt
kan worden met deze methode in vergelijking met het gebruik van afgeleiden die
berekend zijn met vortexmethoden. Het verrijken van de vectorbasis verbetert
aantoonbaar de convergentie van de optimalisatie.
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NOMENCLATURE

ABBREVIATIONS

AIC Aerodynamic Influence Coefficient

BPR Bypass Ratio

BWE Backward-Euler

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

CRM Common Research Model

DLM Doublet Lattice Method

DOF Degrees of Freedom

FEM Finite Element Method/Model

FGMRES Flexible Generalized Minimal RESidual

FSI Fluid-Structure Interaction

FSW Forward-Swept Wing

GCMMA Globally Convergent Method of Moving Asymptotes

GMRES Generalized Minimal RESidual

GSE Global Sensitivity Equations

HPC High Performance Computing

ILU Incomplete LU-factorization

IPS Infinite-Plate Spline

KS Kreisselmeier-Steinhauser

LBGS Linear Block Gauss-Seidel

LC Load Case

LE Leading Edge

LU-SSOR Lower-Upper Symmetric Successive OverRelaxation

MAC Mean Aerodynamic Chord

MDO Multidisciplinary Design Optimization

MF Multifidelity
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MUSCL Monotonic Upwind Scheme for Conservation Laws

NLBGS NonLinear Block Gauss-Seidel

OM6 ONERA M6 (wing)

RANS Reynolds-Averaged Navier-Stokes

RBF Radial Basis Function

RPK Revenue Passenger Kilometer

SVD Singular Value Decomposition

TE Trailing Edge

TPS Thin-Plate Spline

VLM Vortex Lattice Method

SYMBOLS

[H] Mesh deformation operator

[T] Load transfer operator

Ra Aerodynamic residual

Rs Structural residual

Γ Vortex strength vector

σ Element stresses

AIC Aerodynamic influence coefficient matrix

K Structural stiffness matrix

Ka Aerodynamic stiffness matrix

p Design variable vector

Q/Qs Structural load vector

Qa Aerodynamic load vector

S Stress-displacement matrix

U Structural degrees of freedom (structural states)

Vb Flow tangency boundary condition vector

V∞ Free-stream velocity vector

Vtot Total velocity vector

W Conservative variables (aerodynamic states)

Xa Aerodynamic grid coordinates

Xp Panel grid coordinates

Xs Structural grid coordinates

J Function of interest

ρ∞ Free-stream density
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1
INTRODUCTION

Civil aviation has come a long way since its infancy in the 1940s. Considered
a luxury in the early days, air travel has today become an indispensable means
of transportation in modern societies. This trend is continuously expanding to
emerging markets where civil aviation has not prospered to the same extent.
Indeed, the two juggernauts of civil aviation, Boeing and Airbus, predict a con-
tinued growth in air travel in the coming years. In its ”Current Market Outlook
2017-2036” [1], Boeing identifies the Asian market as the primary driver for the
growing demand in air travel. According to its market forecast, the Asian jet fleet
is set to expand nearly threefold from currently 6,830 units to 17,520 units in the
next twenty years. Boeing’s main competitor, Airbus, predicts similar trends in
its ”Global Market Forecast 2017-2036” [2]. More importantly, both companies
envision an average annual Revenue Passenger Kilometer (RPK) growth of ≈ 5%
in the next twenty years.

The growing demand in air travel is likely to stimulate economies across the globe.
However, as the air traffic intensifies, it becomes all the more important to curb
global warming by limiting emissions of greenhouse gases such as carbon dioxides
(CO2), but also reducing air pollutants primarily in form of nitrogen oxides (NOx).
To this end, several target goals were established by the European Commission in
agreement with key stakeholders from the aircraft industry in ”ACARE Flightpath
2050” [3]. The primary goals are a 75% reduction in CO2 and a 90% reduction
in NOx emissions per RPK by 2050 compared to new aircraft in 2000. The goals
brought forward were indeed aspirational with the aim of pushing existing, but
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also developing technologies, into reaching the target goals. To better understand
the challenges that lie ahead in fulfilling the aforementioned goals, it is always
beneficial to take a look back and reflect upon past achievements in civil aviation.

In a recent technical report, Kharina and Rutherford [4] analyzed the fuel effi-
ciency of commercial jets during 1968-2014. The average fuel burn per passenger
kilometer during the said period is depicted in Figure 1.1. There are some inter-
esting trends worth highlighting. The sudden drop in the late 1960s, for instance,
can be largely attributed to the introduction of Boeing 747. It was the most fuel
efficient aircraft at its time with the first high Bypass Ratio (BPR) turbofan en-
gines. However, sales of the B747 saturated over time as smaller, less fuel efficient
jets gained ground. Introduced in 1976, the supersonic Concorde for instance,
albeit considered an engineering marvel, had a fuel burn per passenger kilometer
multiple times that of the B747. This, among other factors, caused the fuel burn
to increase and then stagnate in the 1970s. A second period of stagnation can
also be observed in the late 1990s, followed by a fuel burn reduction around 2004.
This can be largely attributed to the soaring oil prices in the early 2000s. It
became less affordable for airline companies to place new orders with increasing
oil prices, which prompted manufacturers to develop more fuel efficient aircraft.
In 2006, Airbus outlined plans for an improved version of their best selling A320
with a target efficiency gain of 4-5%. Boeing followed suit a few years later by
announcing the decision to re-engineer the B737, with similar gains.

Figure 1.1: Average fuel burn for new commercial jet aircraft [4]

In spite of limited periods of marginal or no improvements, the overall trend is
very encouraging with a 45% fuel burn reduction during 1968-2014. A significant
contribution to this trend, in addition to the aforementioned high BPR turbofan
engines, can be owed to the advancements in aerodynamic design. In the early
days, aerodynamic design was predominantly exercised on a trial-and-error basis.
This principle is neatly summed up by a quote from Samuel Beckett: ”Ever tried.
Ever failed. No matter. Try again. Fail again. Fail better”. A lot of time and ef-
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fort was dedicated to building mockups, performing wind tunnel tests and gaining
empirical knowledge. As Computational Fluid Dynamics (CFD) gained traction
throughout the 1960s, an increasing amount of time was reallocated from the wind
tunnel to the work station. Today, CFD has matured into an established tool in
industry for preliminary design. Reynolds-Averaged Navier-Stokes (RANS) mod-
els that were once considered computationally expensive, are fast becoming the
standard in aerodynamic shape optimization primarily due to increased com-
putational resources. An overview of the evolution of CFD, its impact on the
engineering design process and its future potential is provided by Jameson [5].

Another development which carries great potential of improving the fuel burn
efficiency, by reducing the aircraft weight, is the growing prevalence of compos-
ite materials. Possessing a high strength-to-weight ratio, these materials can be
integrated in structural optimization to reduce the weight of the airframe. Com-
posite materials have only recently started being used on a larger scale with the
introduction of the new flagship models Boeing B787 and Airbus A350. Figure
1.2 is a case in point of the dramatic change in material composition in favor
of composites. The key to this change is the technological advancement in the
production line where primary structures, such as the fuselage and the wings, are
now manufactured by sophisticated tape laying machines.

Figure 1.2: Increased use of composites over time [6]

As much as aerodynamic design and structural optimization have advanced in
aircraft industry, they have predominantly done so separated from one another.
Paul Rubbert [7], a former chief aerodynamicist at Boeing, argues that the devel-
opment of cutting edge CFD tools in aerodynamic design has taken precedence
over the ability to make proper cross-functional trades involving disciplines such
as loads, structures, control, noise, manufacturing and so forth. This, in effect,
has rendered the design process to become sequential. For instance, the structural
skeleton of a wing is often sized only after an ideal aerodynamic shape has been
determined. However, aerodynamics and structures are under specific circum-
stances strongly interconnected disciplines. Consider the wing of any commercial
aircraft as an example. Aerodynamic pressure applied on the wing will result in
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a structural deformation. As the wing deforms from its initial configuration, the
pressure will no longer be valid but must be re-evaluated at the deformed state.
With a new pressure field, the structure will deviate from its initial deformation
and so forth. This is a classic example of Fluid-Structure Interaction (FSI) or as
it appears to be more commonly referred to in the aeronautical community: aero-
structural analysis. In a sequential design process, the aerodynamicist will seek to
improve the aerodynamic performance by reducing the drag, typically by increas-
ing the span so as to reduce the induced drag. However, this often contradicts
the objective of the structural engineer who seeks to reduce the aircraft weight.
An elongated wing must be reinforced in order to avoid structural failure, hence
adding more weight. Consequently, there exists a trade-off between aerodynamic
and structural performance which must be carefully considered.

In general, a computational model is only as good as its predictive capability
of the real-life events it is trying to describe. If aero-structural coupling effects
are considerable, as is the case with aircraft wings, and yet neglected by the
model, then any optimized results based on said model are bound to be flawed or
suboptimal at best. To achieve superior designs that can accurately reflect real
physical behavior, three important criteria should be considered:

1. The computational models should be of ”high-fidelity” character, i.e. they
should capture all important physical behavior that might occur at a given
flight condition. This is not to say that ”low-fidelity” models are of less
importance. Rather, the model in question should capture all the necessary
physical features under the given conditions.

2. Any inter-disciplinary coupling effects, if present, should be properly ac-
counted for by the computational model(s).

3. Design optimization including multiple disciplines should be performed sim-
ultaneously, as opposed to sequentially. A global multi-disciplinary objective
should be constructed that applies a carefully considered trade-off on the
individual single-disciplinary objectives in order to maximize the operating
performance based on the flight mission.

The third criterion encapsulates the concept of Multidisciplinary Design Optim-
ization (MDO). It entails the simultaneous improvement of multiple disciplines
(e.g. aerodynamic performance and structural weight) by considering changes
in the design that influence both disciplines. For instance, changes in the outer
aerodynamic shape of the wing must influence the geometry of internal structural
components such as ribs, spars and stiffeners, and vice versa. MDO has come
to be widely regarded in recent years as the next stepping stone in the engineer-
ing design process. It has the potential to facilitate the development of novel,
more fuel efficient concepts that deviate from the standard cylindrical fuselage
configuration of today’s commercial aircraft.
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1.1 MULTI-DISCIPLINARY DESIGN OPTIMIZATION

An early effort to demonstrate the advantages of MDO was made by Grossman
et al. [8]. In this work, a sailplane wing was modeled by lifting line aerodynam-
ics coupled to a beam structural model. The design variables were limited to
planform parameters and element thicknesses. Based on the said configuration,
they successfully showed that the designs obtained by integrated optimization (i.e.
MDO) were superior in terms of both aerodynamic performance and structural
weight, compared to designs obtained by sequential optimization.

In a follow-up paper [9], they extended the modeling complexity to vortex lattice
aerodynamics and implemented a more detailed finite element model including
membrane, shear and rod elements. A forward-swept wing configuration was
considered in this work. Moreover, the inter-disciplinary gradients were computed
more efficiently with an improved optimization algorithm. The structural design
variables considered not only element thicknesses, but also composite materials
by a single ply orientation variable. The geometric design variables were similar
to the previous work.

With increasing computational resources in the 1990s, high-fidelity aerodynamics
started gaining traction. Lifting line theory or models based on linear potential
flow theory were superseded by Euler and Navier-Stokes models. Structural beam
models were replaced by complex wingbox structural models including varying fi-
nite elements types (e.g. shear, shell, bars and so forth). For example, Chattopad-
hyay and Pagaldipti [10] coupled a box beam structural model to a Navier-Stokes
flow model, whereas Baker and Giesing [11] coupled a detailed finite element
structural model to an Euler flow model. The work in both papers was aimed
at investigating MDO of high-speed civil transport aircraft. The improvements
in sensitivity analysis and the optimization algorithms allowed for computational
models of higher complexity and computation cost to be employed. However, the
number of design variables remained relatively low.

Giunta et al. [12] proposed an alternative approach to including high-fidelity
models in MDO. In this work, the design space was restricted to the region of
interest by numerical models of lower complexity. The MDO of the aircraft was
subsequently preformed by response surfaces at the points of interest using nu-
merical models of higher complexity. The proposed approach significantly reduced
the computational cost and mitigated noise present in the original models from
the optimization process.

Maute et al. [13] designed an MDO framework based on Euler CFD and a linear
finite element model including spars, ribs, hinges and control surfaces. The two
disciplines were coupled in a three-field formulation, with the mesh deformation
of the aerodynamic grid regarded as the third field. A simplified Computer-
Aided Design (CAD) model was used to parametrize the surface geometry from
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which the computational meshes were derived. The optimization considered sweep
and twist changes as design variables, in addition to structural thicknesses of the
wing. Different strategies for computing the analytical sensitivity derivatives were
presented. It was shown that the strategy with an exact linearization of the flow
problem in the sensitivity analysis outperformed the alternative strategies with
an approximated flux Jacobian in the optimization of the Aeroelastic Research
Wing. The additional computational cost of computing the exact gradients was
compensated for by a reduction in the number of optimization iterations.

Reuther et al. [14] and Martins et al. [15] were amongst the first to implement
adjoint-based aero-structural sensitivity analysis in a high-fidelity model frame-
work consisting of Euler/RANS aerodynamics coupled to a finite element wingbox
model. Ten twist and 180 airfoil shape variables were considered in a drag min-
imization problem for a three dimensional wing. In subsequent work [16], 76
shape variables associated to twist, camber and bump functions were considered
in addition to 10 structural thickness variables for an optimization of a supersonic
business jet. The MDO approach resulted in a 16% structural weight reduction
of the aircraft compared to sequential optimization.

Martins and co-workers further improved their multi-disciplinary design optimiz-
ation framework. Several additional computational improvements were presented
by Kenway et al. [17]. The computational efficiency of the MDO framework was
improved by monolithic solution algorithms and enhanced parallelism. The aim
in their work was to optimize transport aircraft, considering multiple points in
the flight envelope [18]. A detailed structural finite element model was coupled
to an Euler flow solver with a free-form deformation method to parametrize the
geometry. In recent work by Martins and co-workers, efforts have been made to
extend the MDO framework to include composite materials [19], buckling con-
straints [20] and flutter constraints [21].

Much of the recent work on aero-structural optimization is centered on high-
fidelity models (e.g. Euler or RANS CFD) while maintaining a feasible compu-
tational cost by implementing improved algorithms. However, it is also recog-
nized that these high-fidelity optimization frameworks are still computationally
expensive in preliminary design, and much more so in conceptual design, as mul-
tiple different load cases and designs must be considered. Kennedy and Mar-
tins [22], for example, presented a panel method coupled to a Finite Element
Method/Model (FEM) wingbox model, compared various solution methods and
investigated the scaling on multiple processors.

Elham and van Tooren [23] presented a low-fidelity optimization framework con-
sisting of a beam FEM model coupled to a Vortex Lattice Method (VLM) aero-
dynamic model. Six planform and 160 airfoil shape design variables were used
to parametrize the geometry. The structural design variables were limited to siz-
ing and the gradients were computed using constraint aggregation in conjunction
with the adjoint method.

6



1

1.2. SENSITIVITY ANALYSIS

1.2 SENSITIVITY ANALYSIS

The aforementioned literature has shown what appears to be a disposition to use
gradient-based strategies in high-fidelity optimization frameworks. Indeed, the
bulk of the work in the previous section is based on gradient-based methods. The
main reason can be directly associated to the high computational cost incurred
by high-fidelity models. Zeroth-order methods that do not rely on gradients (e.g.
genetic algorithms, neural networks, simulated annealing and so forth) provide
a better option for locating a global optimum, but they generally require signi-
ficantly more function evaluations compared to gradient-based methods. Con-
sequently, to minimize the overall computational cost by virtue of reducing the
amount of function evaluations, gradient-based methods are often the preferred
choice when high-fidelity models are employed. As the name suggests, gradient-
based optimization additionally requires sensitivity analysis to determine the de-
rivatives of various functions of interest (e.g. lift, drag, displacements, stresses
etc.) with respect to the design variables (e.g. shape, planform, element thick-
nesses and stiffnesses etc.). Sensitivity analysis is therefore an integral part of
gradient-based optimization which enables the optimizer to determine a direction
of improvement in the ultimate task of locating an optimum.

Maute et al. [13] computed the gradients of a high-fidelity aero-structural optimiz-
ation framework by a Linear Block Gauss-Seidel (LBGS) method. This approach
is similar to a fixed-point iterative scheme and offers a high level of software
modularity. The gradient solvers of the aerodynamic and structural disciplines, if
available, can be reused for the computation of the aero-structural gradients. It
was later shown in a follow-up paper by Barcelos et al. [24] that the LBGS can
lack in convergence robustness and efficiency for strongly coupled aero-structural
problems. They presented a novel method, described as a Schur-Krylov (SK)
solver, that was shown to improve on the previous shortcomings of the LBGS.

Martins et al. [15] used a lagged-coupled adjoint (LCA) method to obtain the
aero-structural derivatives. This method is similar to the LBGS. Only here the
discipline sensitivities are computed in a parallel fashion, in contrast to the LBGS
which is a sequential method. In fact, the LCA is nothing short of a block Jacobi
method. The advantage of the adjoint formulation of the aero-structural gradient
problem is that the computational cost becomes proportional to the number of
functions and virtually independent of the number of design variables. This is
in direct contrast to the direct method, which was applied by Maute et al. [13],
where the computational cost is proportional to the number of design variables
and nearly independent of the number of functions.

Kenway et al. [17] computed the gradients via the adjoint approach in a closely-
coupled fashion by a Generalized Minimal RESidual (GMRES) method. A block
diagonal preconditioner was applied to enhance robustness and accelerate conver-
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gence. The structural preconditioning block was represented by an exact factoriz-
ation of the structural stiffness matrix, whereas the aerodynamic preconditioning
block was represented by an Incomplete LU-factorization (ILU) of the flux Jac-
obian. They show that this method converges faster compared to the LBGS.
However, the method requires more effort to implement compared to the LBGS
for instance. Moreover, the gradients of an aerodynamic grid perturbation must
be evaluated for each GMRES iteration as opposed to the LBGS which only
requires an aerodynamic grid perturbation during the structural coupling.

The adjoint method is a powerful utility when the number of response func-
tions are few. This makes it ideal in aerodynamic shape optimization where
the response functions are typically limited to lift, drag and moment coefficients.
Structural optimization, on the other hand, requires that the yield stress on each
finite element of the structural model is not exceeded. The direct application of
the adjoint method is therefore not suitable for structural models that have hun-
dreds or thousands of elements. To circumvent this predicament, several authors
have implemented constraint aggregation techniques that lump all the element
stresses into one single constraint function [25, 26]. The benefit of the constraint
aggregation is that the adjoint method becomes applicable and can be used to
compute the sensitivity derivatives with a substantial reduction in computational
time. However, it is widely acknowledged that the constraint aggregation strategy
results in suboptimal designs. The structural response is smoothened by the con-
straint aggregation function and a high level of experience is required to produce
a satisfactory outcome by this approach.

An alternative approach of computing high-fidelity derivatives of structural re-
sponses in aero-structural design was proposed by Giunta [27]. Modal analysis
was employed to reduce the coupling bandwidth between the aerodynamic and
structural disciplines. The approximation of the structural deflections by linear
superposition of mode shapes makes it affordable for the derivatives to be com-
puted using forward step finite differencing. The aerodynamics in this work was
modeled by the Euler equations. However, the choice of the step size is always
a concern with standard finite difference schemes and, if not chosen properly,
might lead to inaccurate gradients. This very problem of finding an optimal step
size was later successfully circumvented by using a complex-step finite difference
scheme, as proposed by Martins [28].

A strategy initially developed by Blondeau et al. [29] employed a linearized aero-
dynamic formulation based on an uncoupled non-intrusive approach. The main
advantage of the method is the independency of the computational cost on the
number of constraints and potentially on the number of structural design para-
meters. Moreover, the approach only requires computations of the linearized
aerodynamic problem. The method was later demonstrated by Achard et al.
[30] on a Common Research Model (CRM) configuration modeled by the RANS
equations coupled to a detailed wingbox finite element model.
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1.3 RESEARCH OBJECTIVE

Developing a high-fidelity aero-structural optimization framework with limited
resources is a massive undertaking and would not add much value or novelty
to the current state-of-the-art. A significant effort would have to be allocated
to software programming and the required time span would stretch beyond the
confines of a doctoral research project. Consequently, the scope of this thesis is
limited to target an important facet in the field of high-fidelity aero-structural
optimization, namely sensitivity analysis. In particular, the focus is narrowed
down to structural response gradients in high-fidelity aero-structural optimization,
i.e. gradients associated to structural displacements, stresses, buckling and so
forth.

To this day, the state-of-the-art of computing structural response gradients in
high-fidelity aero-structural optimization frameworks is via the Kreisselmeier-
Steinhauser (KS) constraint aggregation function [31]:

KS[g(p)] = gmax(p) +
1

ρ
ln

⎡

⎣
m∑

j=1

eρ(gj(p)−gmax(p))

⎤

⎦ (1.1)

where m represents the number of constraint functions g, p is the vector of struc-
tural design variables, gmax is the maximum constraint evaluated at p and ρ is
the KS parameter. This function offers a great amount of flexibility as it can be
applied in conjunction with the adjoint method to compute the gradients at a
very low computational cost. Moreover, the KS function is conservative (i.e. it
represents a lower bound of all the functions used in the lumping process) and can
describe the maximum function in a smooth and differentiable manner. However,
the method has two main shortcomings. Firstly, the method provides a global
approximation of the response functions. Local and sharp changes in the response
derivatives can become difficult to be accurately captured with this method. To
account for strong, local variations in the response, which for instance can occur
at the intersection of various components such as ribs and wing skins, multiple
aggregation functions are often applied on a component basis or on aggregation
domains [32]. However, as the number of aggregation domains increases, so does
the KS functions and by extension the computation time.

Secondly, and perhaps more importantly, the KS function includes a KS parameter
that must be adjusted. Large values (e.g. ρ ≥ 50) will reduce the distance of the
KS envelope to the maximum response value. This typically results in an ill-
conditioned optimization problem due to strong gradient variations which can
lead to difficult convergence of the optimization. Too small values, on the other
hand, condense the design space and result in overly conservative and suboptimal
designs. A rudimentary example of the KS function is illustrated in Figure 1.3.
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It shows how two inequality constraints f1 and f2 change with respect to one
design variable x and how the KS function changes with varying values on the KS
parameter. The example clearly emphasizes the importance of the KS parameter.

Figure 1.3: Variation of the KS parameter

To determine the optimal value of the KS parameter, there is typically a need
for a separate sensitivity study. Alternatively, a value can be assigned based on
experience from similar configurations in other optimization problems. ρ = 50 is
often mentioned as a reasonable value [25, 33].

The limitations described above in the current state-of-the-art has prompted in
the formulation of the following two goals for this doctoral research project:

1. Develop a method and establish a framework for solving direct high-
fidelity aero-structural gradient problems.

2. Develop a method for computing structural response gradients in
high-fidelity aero-structural sensitivity analysis.

The research in this thesis can be considered an extension of the work by Johannes
Dillinger [34], who dedicated his research to develop a sophisticated Nastran-
based static aeroelastic tailoring framework. The aerodynamic loads computed by
the Doublet Lattice Method (DLM) in Nastran were corrected by higher fidelity
Euler CFD. In the current work, the idea was to not only correct aerodynamic
loads, but also investigate the possibility of correcting the corresponding gradients
used by the optimizer.
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A condition that was imposed on the current research was to incorporate a
low/medium-fidelity aerodynamic model in the methodology. Medium-fidelity
aerodynamic methods, such as the VLM, have been developed and perfected for
many decades and are frequently employed in conceptual design. The idea was
to leverage any useful information they might carry in order to accomplish our
defined research objectives.

1.4 THESIS LAYOUT

The thesis is divided into five main chapters. The first chapter is the introduction
and outlines previous work and current state-or-the-art in MDO and sensitivity
analysis. In the second chapter, the first research objective is addressed. A frame-
work is developed for computing structural response gradients in aero-structural
sensitivity analysis. The design variables are restricted to structural sizing, i.e.
element thicknesses. The framework is divided into modules that interact with
one another. It consists of: (i) a low/medium-fidelity aerodynamic solver, (ii)
a high-fidelity aerodynamic solver, (iii) a structural solver and (iv) a coupling
module that facilitates the load transfer/mesh deformation between the struc-
tural and aerodynamic models. A method is presented that extracts information
from the low/medium-fidelity aerodynamic model, in particular an aerodynamic
stiffness contribution, in order to accelerate the high-fidelity aero-structural gradi-
ent computation. The method is demonstrated in a case study with the ONERA
M6 (OM6) wing model and its efficiency is compared to a conventional fixed-point
iterative scheme.

In the third chapter, the second research objective is addressed. A gradient re-
construction method is presented that approximates high-fidelity aero-structural
gradients. The main goal is to be able to compute the gradients of multiple re-
sponse functions w.r.t. multiple design variables without the convenience of the
constraint aggregation approach. A vortex lattice aerodynamic model is used in
conjunction with Singular Value Decomposition (SVD) and a pseudo-inverting
process in order to reconstruct the high-fidelity aero-structural gradients. The
method is demonstrated on the OM6 wing model and a slender Forward-Swept
Wing (FSW) configuration.

In chapter four, a static aeroelastic tailoring study is performed on the same
FSW configuration to investigate the potential of the gradient reconstruction
method described in chapter three. The structural model is parametrized by
an in-house conceptual design tool. The model includes ribs, spars, stringers
and surface patches but only the spars and the surface patches are included as
design variables, whereas ribs and stringers exhibit constant properties throughout
the optimization. Two aerodynamic models are applied: (i) a VLM method
solving the linearized potential flow equations and (ii) an Euler flow solver. Three
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optimization cases are designed to study the convergence behavior when VLM
loads and gradients are corrected by the Euler flow model. The first optimization
case is a standard structural weight minimization where aerodynamic loads and
gradients are computed by the VLM solver. This case is comparable to what was
already carried out in the doctoral thesis by Werter [35]. The second case applies
Euler load corrections and is comparable to the work by Dillinger [34]. The third
case, which is considered a novelty in this thesis, implements not only Euler load
corrections, but also the proposed method in chapter three to reconstruct the
Euler aero-structural gradients.

The thesis is concluded in the fifth chapter, where all the previous chapters are
reviewed and the successfulness of the objectives described in the introduction
chapter is assessed. Moreover, suggestions on future work are provided.
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In this chapter, a method is presented that facilitates the computation of high-
fidelity aero-structural gradients. The main idea is to improve the spectral prop-
erties of complex aero-structural linear systems by constructing a preconditioner
based on vortex lattice aerodynamics. The construction of the preconditioner is
computationally inexpensive, making it easy to store and invert. The proposed
method is tested on an aero-structural gradient computation of the ONERA M6
(OM6) wing. Two high-fidelity aerodynamic models are examined: (i) an inviscid
Euler model and (ii) a viscous RANS model with a Spalart-Allmaras turbulence
model. The Euler and the RANS grids have 1.05 and 3.57 million cells, respect-
ively. The aerodynamic models are coupled to a linear structural finite element
model with 1812 Degrees of Freedom (DOF).

The remainder of this chapter is organized as follows: the computational mod-
ules necessary for the gradient computations are discussed in Section 2.1. The
static aeroelastic analysis, which is a prerequisite for the gradient computation
is discussed in Section 2.2. The aero-structural gradient computation with the
proposed method is discussed in Section 2.3, followed by a case study in Section
2.4. The chapter is concluded by a brief reflection of the results in Section 2.5.
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2.1 COMPUTATIONAL MODULES

It is important to preserve a high level of software modularity in work associated
with multi-disciplinary analysis and optimization. Organizing the work in mod-
ules might increase the overall computation time compared to monolithic codes.
However, a higher level of software modularity is coveted in industry as it en-
ables engineers to choose among off-the-shelf solvers with minimal effort required
for code adaptation. To this end, the work in this thesis is organized by com-
putational modules, with each module performing individual subtasks and being
capable of exchanging information in a systematic fashion. This section provides
an overview of the modules and resources necessary for the aeroelastic analysis
and the subsequent sensitivity analysis.

In the four subsections that follow the following is outlined: in 2.1.1 the aerody-
namic solvers, in 2.1.2 the structural solver, in 2.1.3 the coupling module and in
2.1.4 the VLM aerodynamic stiffness matrix.

2.1.1 AERODYNAMIC SOLVERS

Two aerodynamic solvers are necessary in this thesis: (i) one solving a set of low-
or medium-fidelity equations and (ii) one solving a set of high-fidelity equations.
It is common to associate panel methods that solve the linear potential flow
equations with the medium-fidelity category. Singular elements, such as vortex
rings or doublets, are used to approximate the flow potential. In this thesis, an
in-house VLM code is used as the dedicated medium-fidelity solver [36]. The
two-dimensional panels are distributed on the camber surface of the wing. The
discrete residual of the linear potential flow equations R̃a can be expressed as

R̃a(Γ,Xp) = AICΓ+Vb = 0 (2.1)

where Γ is the unknown vector of vortex strengths, AIC is the dense aerodynamic
influence coefficient matrix and Vb is the flow tangency boundary condition vec-
tor. Both AIC and Vb are functions of the panel coordinates Xp. Terms associ-
ated with the VLM will be denoted by a tilde notation in the remainder of this
thesis. The Aerodynamic Influence Coefficient (AIC) matrix can be assembled
through the application of the Biot-Savart law. Once the linear system in Equa-
tion 2.1 is solved, the aerodynamic loads Q̃a can be obtained in a post-treatment
step by the Kutta-Joukowski theorem

Q̃a = ρ∞Vtot × Γ (2.2)

where ρ∞ is the free-stream density andVtot is the total velocity vector. Moreover,
a Prandtl-Glauert correction is applied to account for compressibility effects in
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high-subsonic flows. The theory and the computational routines for the VLM
solver are in accordance with, and can be further studied in, Katz and Plotkin
[37]. The main purpose of the VLM solver in this chapter is to generate an
aerodynamic stiffness matrix, K̃a. The derivation of this matrix is described in
Subsection 2.1.4 and its purpose will be discussed in Section 2.3.

The main shortcoming of the VLM is its limited application to attached flow
conditions in the low-subsonic to moderately high-subsonic regime. The linear
potential flow methods lack the predictive capability of modeling nonlinearities
in transonic flows. To address this shortcoming, a designated high-fidelity flow
solver is required. The high-fidelity solver throughout this thesis is the multi-block
structured flow solver elsA [38]. It is a state-of-the-art industrial CFD code co-
developed by ONERA, Airbus and Safran, and is used in the current work to solve
the steady-state Euler/RANS equations. In this chapter, the focus is narrowed
down to two high-fidelity models of the OM6 wing: (i) one which is governed by
the inviscid Euler equations and (ii) one which is governed by the viscous RANS
equations depicted in Figures 2.1 and 2.2, respectively. The discrete steady-state
flow problem for both types of equations can be expressed by the aerodynamic
residual Ra as

Ra(W,Xa) = 0 (2.3)

where W is the unknown vector of conservative variables and Xa are the mesh
coordinates. The conservative variables are (ρ, ρu, ρv, ρw, ρE), where ρ is the
density, u, v and w are the Cartesian velocity components and E is the total en-
ergy. The unknown vector results from a concatenation of the continuity, the mo-
mentum and the energy equations. Hence, the Euler equations have five unknown
entries per cell with one or two additional entries for the RANS equations depend-
ing on what turbulence model is considered. An implicit Backward-Euler (BWE)
time integration scheme is used to advance the flow to a steady-state. The upwind
Roe scheme with a Monotonic Upwind Scheme for Conservation Laws (MUSCL)
interpolation associated to a Van Albada limiter is applied for the spatial discret-
ization (see Hirsch [39] for instance). Moreover, a one-equation Spalart-Allmaras
turbulence model is selected for the RANS problem.

2.1.2 STRUCTURAL SOLVER

The structural solver is the finite element analysis program Nastran. Its main
task is to generate the global structural stiffness matrixK to be used externally for
the aeroelastic analysis and the sensitivity analysis. If the static deformations are
small, the structure can be considered to exhibit linear-elastic behavior. Hence,
the resulting stiffness matrix needs only to be generated once for the initial finite
element model and stored in memory. In the event of large structural deformations
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Figure 2.1: OM6 Euler surface grid
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Figure 2.2: OM6 RANS surface grid

the assumption of linear elasticity no longer holds and the stiffness matrix must
be updated based on the deformations. In this thesis, only linear elasticity is
considered. The static equations can be expressed by the structural residual Rs:

Rs(U,Xs) = KU−Q = 0 (2.4)

where U is the vector of structural DOF, Xs are the structural grid coordinates
and Q is the applied load vector. In addition to the stiffness matrix, pseudo-
loads are required for the sensitivity analysis. The pseudo-loads can be derived
by differentiating Equation 2.4 with respect to each design variable

dRs

dpi
= K

dU

dpi
+

∂K

∂pi
U−

dQ

dpi︸ ︷︷ ︸
pseudo-loads

= 0 (2.5)

where the subscript i designates the ith design variable. This equation is derived,
and the computation of the terms is explained, in the ”Nastran Design Sensitivity
and Optimization User’s Guide” [40]. What is of interest prior to the sensitivity
analysis, and considered a pre-processing step, are gradient terms with a direct
dependence to structural sizing variables. The only term in Equation 2.5 that
satisfies this is the partial derivative of the stiffness matrix with respect to the
design variables

∂Rs

∂pi
=

∂K

∂pi
U (2.6)

which is obtained by a finite difference scheme. The two remaining terms in Equa-
tion 2.5 are implicit functions of the residual, i.e. they can only be obtained by
solving the partial differential equations of the linearized aero-structural problem.
The term in Equation 2.6, as will be discovered later in Section 2.3, constitutes

16



2

2.1. COMPUTATIONAL MODULES

the right-hand side in the aero-structural gradient computation and is of size
nfdof × np, where nfdof is the number of unconstrained structural DOF and
np is the number of structural design variables. Consequently, the number of
right-hand sides is equal to the number of design variables.

The stiffness matrix and the pseudo-loads can be accessed by adding Direct Mat-
rix Abstraction Program (DMAP) [41] alters in the case control section of the
Nastran bulk data files. To extract the stiffness matrix a SOL 101 static ana-
lysis solution sequence is required, whereas the pseudo-load requires a SOL 200

sensitivity analysis solution sequence. The DMAP alters force the extraction of the
matrices during the execution of Nastran. The exported files in op4 format are
converted to convenient sparse matrix triplet format by external Fortran scripts.

2.1.3 COUPLING MODULE

The purpose of the coupling module is twofold: (i) to determine the aerodynamic
grid motion subject to given structural displacements and (ii) to determine the
aerodynamic loads acting on the structural mesh points. As the aerodynamic
and the structural grids are nonconforming throughout this thesis, there exists a
necessity for a robust and efficient mesh deformation algorithm. To this end, an
algebraic interpolation routine based on Radial Basis Function (RBF) is applied.
The basic principle is to formulate a coupling matrix [H] that translates structural
deformations into aerodynamic grid deformations:

δXa = [H] δXs (2.7)

where δXa and δXs are aerodynamic and structural grid perturbations, respect-
ively. The coupling matrix in this work is derived in accordance with the methodo-
logy in Beckert and Wendland [42]. A globally supported Thin-Plate Spline (TPS)
function is employed for the Euler and RANS grids which results in a dense in-
terpolation matrix. To reduce the memory usage, the coupling matrix is only
formulated as a matrix-vector product. Moreover, the mesh deformation is ex-
ecuted in parallel mode on multiple processors. As the RBF approach does not
require any connectivity information, parallelizing the code becomes a trivial task.

A simple test case is conducted to examine the parallel computing scalability.
Mesh deformation is performed on the 1.05 million cell OM6 Euler model. The
computations are performed on 2.60GHz Intel Xeon E5-2660 v3 Processors. The
wall time is clocked for 2, 4, 8 and 16 processors. The results in Figure 2.3 indicate
very good scalability up to 16 processors. The wall time for one mesh deformation
on a 1.05 million cell model can be reduced from 56 seconds on 2 processors to 9
seconds on 16 processors, which is more than a sixfold improvement.

Another method of reducing the computation time, in addition to code parallel-
ism, is to limit the number of surface points in the formulation of the coupling
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matrix. There are numerous data point reduction algorithms that can be used to
condense the size of the coupling matrix without significantly affecting the quality
of the deformation [43, 44]. In this chapter, due to the structured mesh, a subset
of every 9th surface grid point is used in the formulation of the coupling matrix,
treating the remaining grid points as unknowns. This subset has been found to
yield a favorable trade-off between mesh deformation accuracy and computation
time. The selected surface points for the Euler grid are depicted in Figure 2.4.

Figure 2.3: Parallel computing scalability Figure 2.4: Selected surface points for
mesh deformation

In previous work [45], the equivalence of virtual work [42] was relied upon, which
allows for the transposed coupling matrix to be used as a load transfer operator

Q = [H]T Qa (2.8)

whereQa are loads acting on the aerodynamic surface grid andQ are the transfered
loads on the structure. However, this is not always a favorable option. Based on
our experience, this operator can result in unrealistic oscillatory loads on the struc-
tural grid for certain configurations. We therefore resort to a simple, yet highly
effective and robust, nearest-neighbor scheme for multivariate interpolation [46].
In this thesis, the load transfer operator is denoted by [T], such that

Q = [T]Qa (2.9)

The load transfer operator is constructed by looping through the aerodynamic
surface grid points and assigning the loads to the nearest structural point. The
moments [Mx,My,Mz]T on the structural points are evaluated by multiplying
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the load with Euclidean distance between the points as:

Mx = Qz
ady −Qy

adz

My = Qx
adz −Qz

adx

Mz = Qy
adx−Qx

ady

(2.10)

2.1.4 VLM AERODYNAMIC STIFFNESS MATRIX

As emphasized in Subsection 2.1.1, the aerodynamic stiffness matrix K̃a needs
to be provided by the VLM solver. Its derivation is covered in this subsection,
whereas its purpose will be explained in Section 2.3. In essence, the VLM aero-
dynamic stiffness matrix describes how the aerodynamic loads applied on the
structural model change due to perturbations of the structural DOF. It can be
derived by formulating the static aeroelastic problem, given by:

(
R̃a(Γ,U)
Rs(U,Γ)

)

= 0 (2.11)

where Xp and Xs have been omitted for the sake of brevity. If the aeroelastic
residual is linearized with respect to the unknown variables Γ andU, the following
linear system is obtained:

[
∂R̃a

∂Γ
∂R̃a

∂U
∂Rs

∂Γ
∂Rs

∂U

](
∆Γ

∆U

)
= −

(
R̃a

Rs

)

(2.12)

where the increments of the vortex strengths and the structural deformations are
the Newton corrections. This in fact amounts to Newton’s method for solving
the static aeroelastic problem given that the partial derivatives in the coefficient
matrix are exact and the linear system is solved exactly. The diagonal blocks of the
coefficient matrix are single-disciplinary and are therefore determined individually
by their respective solvers. The off-diagonal blocks include coupling matrices that
require information from both solvers as well as the coupling module. The linear
system given by Equation 2.12 can be expressed in Schur complement form by
eliminating the aerodynamic degrees of freedom

(
∂Rs

∂U
−

∂Rs

∂Γ

[
∂R̃a

∂Γ

]−1
∂R̃a

∂U
︸ ︷︷ ︸

K̃a

)

∆U = −Rs (2.13)

where the coefficient matrix is the Schur complement and K̃a is the aerodynamic
stiffness matrix. This matrix is typically explicitly constructed in VLM codes.
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The three blocks required to construct the aerodynamic stiffness matrix are ex-
plained next:

− ∂Rs/∂Γ describes how the structural residual changes with respect to the
vortex strength perturbations. This matrix can be conveniently decomposed
as: (∂Rs/∂Q̃a)(∂Q̃a/∂Γ). The first term is the load transfer operator
[T] that interpolates loads from the aerodynamic panels on the structural
nodes. The second term can be easily obtained by differentiating the Kutta-
Joukowski theorem, given by Equation 2.2.

− ∂R̃a/∂Γ describes how the aerodynamic residuals change with respect to
the vortex strength perturbations. This is the dense AIC matrix which is
already available in Equation 2.1. This term can be assembled in a straight-
forward manner by the VLM solver, inverted and stored in memory.

− ∂R̃a/∂U describes the linearization of the aerodynamic residuals with re-

spect to the structural DOF. It can be expressed as: (∂R̃a/∂Xp)(dXp/dU).
The first term requires a linearization of the aerodynamic residual 2.1 with
respect to the panel coordinates. Both the AIC matrix and the flow tangency
boundary condition vector are direct functions of Xp. This term is some-
what cumbersome to obtain and can result in large computational overheads
for aerodynamic models that require fine panel grids. To partially overcome
this shortcoming, a parallel approach with analytically obtained gradients
is implemented. The second term in the decomposition is a displacement
interpolation operator which is readily available from the coupling module.
For the VLM code, an Infinite-Plate Spline (IPS) [47] method is applied to
adjust the panels with respect to the structural displacements.

2.2 AEROELASTIC ANALYSIS

The state of equilibrium for a wing aero-structural configuration is determined
by a static aeroelastic analysis. This part is crucial in design optimization as
it allows for important quantities of interest, also known as responses, to be
evaluated. Lift, drag and moment coefficients are typically of main interest in
aerodynamic optimization. In the context of structural optimization, quantities
such as strains/stresses, displacements and weight are generally of interest. Any
of these quantities J , aerodynamic or structural, may be expressed as a function
of a design variable pi in the form

J = J (pi,W(pi),U(pi)) (2.14)

The function of interest can either represent an objective or a constraint. The
design variable pi can impose an explicit influence on the function through geo-
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metric shape variations, as well as an implicit influence through the solution of
the underlying governing equations. To obtain the function value for a given set
of design variables, the nonlinear static aeroelastic problem must be solved. It can
be formulated by concatenating the flow problem 2.3 and the structural problem
2.4 such that

(
Ra (W,U)
Rs (U,W)

)
= 0 (2.15)

The design variables are omitted here for the sake of brevity as they are constant
throughout the analysis. In practice, the concatenated residuals are not reduced
to exactly zero. Rather, the coupled nonlinear problem is considered to be solved
when there is a sufficient drop in the Euclidean norm of the respective residuals
between two consecutive iterations. There are numerous methods for solving the
nonlinear problem described by Equation 2.15 [13, 24, 22, 17]. Throughout this
thesis, a defect-correction approach is applied with the basic principles outlined
by a flow chart in Figure 2.5.

Static aeroelastic analysis Aeroload correction

(K−K̃a)∆U = Q̃−KU(k)+∆Q

U(k+1) = U(k) + ∆U

Converged? Coupling module

Update Q̃, K̃a CFD module

Converged?

U, K̃a,W,XaInitiate, ∆Q → 0

Yes

Xa

∆Q

No

No

Yes

Figure 2.5: The defect-correction approach

A key feature of the method is to apply a defect aeroload, which is defined as the
difference between the aerodynamic loads from an Euler/RANS model and those
from a VLM model for a given deflection: ∆Q = Q− Q̃. The method is initiated
by setting the defect aeroload vector to zero and then solving the static aeroelastic
problem by Newton’s method. After the solution has converged (typically after 3-
4 iterations), an external aeroload correction module is activated. First the CFD
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mesh is deformed based on the structural deflection, before the nonlinear steady-
state flow problem is approximately solved and the defect aeroload is estimated. A
residual drop of 1-2 order of magnitude is typically sufficient here. It is important
to mention that for the subsequent aeroload corrections, the flow is restarted from
the previously converged flow solution. As the defect aeroload is continuously
updated, it becomes clear that the VLM aeroload in Newton’s equation will be
canceled out by the VLM term in the defect aeroload. Hence, upon convergence,
the static aeroelastic solution will be solely determined by the CFD loads. The
feasibility of the static aeroelastic solution is estimated by two criteria and is
monitored in the aeroload correction module: (i) a sufficient overall drop of the
flow residual and (ii) a sufficient drop in the norm of the difference between two
consecutive aeroload corrections. In this chapter, a minimum drop of six orders
of magnitude is required for both criteria.

2.3 SENSITIVITY ANALYSIS

Sensitivity analysis plays an important role in gradient-based optimization. The
gradients obtained by the sensitivity analysis enable the optimizer to determine a
direction of improvement in the ultimate task of finding an optimum. The main
goal here is to evaluate the variation of one or several functions of interest due
to a perturbation of the ith design variable dJ /dpi. There are several methods
for obtaining the total gradient as is discussed by Peter and Dwight [48]. The
simplest method to implement is finite difference approximation. For instance,
the total gradient can be obtained by the forward finite difference formula:

dJ

dpi
≈

J (pi +∆pi,W(pi +∆pi),U(pi +∆pi))− J (pi,W(pi),U(pi))

∆pi
(2.16)

where ∆pi is the finite design variable perturbation. A major advantage of this
method is that it does not require any modification to the primary solvers. How-
ever, it is computationally expensive for large scale problems with many design
variables. Forward differencing requires (np + 1) function evaluations. Moreover,
the gradients can be very sensitive to the magnitude of the perturbation. Too
large perturbations result in inaccurate gradients, whereas too small perturba-
tions result in subtractive cancellation. Another method of obtaining the total
gradient, which will be the focus in this work, is based on analytical differentiation
of the function of interest. Applying the chain rule to Equation 2.14 yields

dJ

dpi
=

∂J

∂W

dW

dpi
+

∂J

∂U

dU

dpi
(2.17)

In this chapter, the scope is reduced to structural sizing variables. Hence, par-
tial derivatives of the structural or aerodynamic grid with respect to the design
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variables (∂Xs/∂pi and ∂Xa/∂pi) are equal to zero, e.g. a change in the thick-
ness of a structural member does not have an explicit impact on the wing shape.
The partial derivatives of the function of interest with respect to the state vari-
ables, ∂J /∂W and ∂J /∂U, are generally straightforward to evaluate, at least
for quantities related to the wall pressure field (lift coefficient or pressure drag
coefficient), and can be provided externally by a pre-processing step. However, to
obtain the total gradients of the state variables, dW/dpi and dU/dpi the discrete
static aeroelastic problem 2.15 must be differentiated with respect to the design
variable pi:

(
dRa

dpi

dRs

dpi

)

=

(
∂Ra

∂pi

∂Rs

∂pi

)

+

[
∂Ra

∂W
∂Ra

∂U
∂Rs

∂W
∂Rs

∂U

](
dW
dpi

dU
dpi

)

= 0 (2.18)

Note that the total gradient of the residuals is zero. This is consistent with the
assumption of a zero residual in Equation 2.15, and is a prerequisite for accurate
gradients. If the solution vector (dW/dpi dU/dpi)

T is solved for and subsequently
substituted in Equation 2.17, the total gradient of the function of interest can be
expressed conceptually as

dJ

dpi
= −

(
∂J
∂W

∂J
∂U

)
[
∂Ra

∂W
∂Ra

∂U
∂Rs

∂W
∂Rs

∂U

]−1(
∂Ra

∂pi

∂Rs

∂pi

)

(2.19)

There are in principle two approaches for computing the total gradient. The first,
and probably more intuitive approach, is to solve the linear system as presented in
Equation 2.18 and then multiply the total derivatives of the conservative variables
and structural deformations by the functional response partial derivatives. This
approach is known as the direct approach. Since the bulk of the computation
time is consumed by the solution of the linear system, it is easy to anticipate a
computation time that scales linearly with the number of right-hand sides which
in this instance is the number of design variables. The alternative approach is to
solve the left linear system in Equation 2.19 to obtain the aero-structural adjoint
vector

[
∂Ra

∂W
∂Ra

∂U
∂Rs

∂W
∂Rs

∂U

]T (
λa

λs

)
=
(

∂J
∂W

∂J
∂U

)T
(2.20)

where λa and λs are the aerodynamic and structural adjoint vectors, respectively.
The total gradient can then be obtained in a straightforward manner by the
matrix-vector multiplication

dJ

dpi
= −

(
λa λs

)
(

∂Ra

∂pi

∂Rs

∂pi

)

(2.21)
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This approach is known as the adjoint approach. Contrary to the direct approach,
the computation time of the adjoint approach scales linearly with the number
of functions. It can be concluded that the adjoint approach is a more efficient
method when the number of design variables exceed the number of functions, and
conversely the direct approach is a more efficient method when the number of
functions exceed the number of design variables.

Before any solution methods of the linear systems are discussed, it is important to
understand the partial derivatives in the coefficient matrix in Equation 2.19 and
what implications they might bring about. They are outlined in the following:

− ∂Ra/∂W describes how the flux residuals change with respect to flow vari-
ables. It is commonly referred to as a flux Jacobian and can be obtained
by linearizing the discrete residual in Equation 2.3 with respect to the con-
servative variables. For the Euler equations, this term represents an exact
linearization of the explicit residual. However, because of the complexity
in achieving an accurate linearization for the RANS equations, and also in
order to significantly reduce the required level of effort, it is common to
consider simplifying assumptions such as the ”frozen” turbulence model ap-
proach. In addition, the exact linearization of the turbulence model leads to
high condition number of the flux Jacobian matrix which essentially makes
the linear system difficult to solve.

When the ”frozen-µt” assumption is applied, only the first five residual
equations are linearized with respect to the mean-flow variables. The eddy
viscosity µt is simply treated as a constant. It should be mentioned that the
accuracy of the obtained gradients are directly dependent on the accuracy
of the linearization of this term. Nevertheless, a limited number of authors
have considered turbulence model linearization and discussed its benefit in
terms of accuracy [49, 50, 51].

− ∂R̂a/∂W is not explicitly stated in the coefficient matrix. However, due to
its importance, it is worth mentioning. The exact Jacobian matrix (or its
transpose) appearing in Equations 2.19 and 2.20 has to be inverted in some
way. To avoid this complex task, those equations are put in an incremental
iterative form and typically solved by an implicit method (BWE scheme).
∂R̂a/∂W represents an accurate approximation of the flux Jacobian that
appears on the left-hand side (the implicit stage) and the solution increment
is obtained by approximately solving the linear system using few steps of
a Lower-Upper Symmetric Successive OverRelaxation (LU-SSOR) scheme
[52].

The approximate Jacobian is usually a standard first-order upwind approx-
imation of the differential of the flux balance which is preferred for better
numerical conditioning. In contrast to the flux Jacobian, the accuracy of
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the obtained gradients are not dependent on the accuracy of this term. This
term only affects the convergence rate of the gradient computation.

− ∂Ra/∂U describes how the flow residual changes due to perturbations on
the structural DOF. This term can be expressed as a product of two differ-
entials: (∂Ra/∂Xa)(dXa/dU). The second term is the mesh deformation
operator [H] which was covered in Subsection 2.1.3. The first term is a geo-
metric sensitivity of the explicit residual. In contrast to the flux Jacobian,
this term is linearized by fixing the flow variables, while perturbing the aero-
dynamic grid. Due to the limitations of the elsA version that is used in
this thesis, this particular term is obtained as a matrix-vector product by
central differencing. Nevertheless, finite difference approximations of this
particular term are known to be robust [53]. The matrix-vector product is
computed by:

∂Ra

∂Xa

dXa

dpi
≈

Ra

(
W(pi),Xa(pi) +∆pi

dXa

dpi

)
−Ra

(
W(pi),Xa(pi)−∆pi

dXa

dpi

)

2∆pi
(2.22)

where dXa/dpi = [H](dU/dpi) is provided as in input to the solver. Note
that the conservative variables are kept constant when the residual is re-
calculated for the perturbed grid. The finite perturbation magnitude ∆pi
is set to 1e−3.

− ∂Rs/∂W describes how the structural residual in Equation 2.4 changes due
to flow variable perturbations. The only term that is directly influenced by
the conservative variables are the aerodynamic loads on the structural grid.
The term can be decomposed as the following product of three differentials:
(∂Q/∂Qa)(∂Qa/∂Wb)(∂Wb/∂W) where Wb are boundary flow variables
that satisfy the physical boundary conditions. The first term is the load
transfer operator [T] that translates loads and moments from the aerody-
namic boundary to the structural DOF. The second term is obtained by
linearizing the surface load pressure integration scheme with respect to the
wall flow variables. Only cells adjacent to the surface affect this term. The
third term extrapolates the flow variables based on the numerical scheme
from the adjacent cell centers to the boundary were the loads are calculated.

− ∂Rs/∂U describes how the structural residual in Equation 2.4 changes due
to the structural DOF. This term includes the global structural stiffness
matrix K and the geometric aerodynamic load gradient ∂Q/∂U. The first
term was already covered in Subsection 2.1.2. The second term can be de-
composed as a product of three differentials: (∂Q/∂Qa)(∂Qa/∂Xa)(dXa/dU).
The first and the third term are the load transfer operator [T] and mesh
deformation operator [H], respectively. The second term describes how the
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loads on the boundary change due to perturbations on the grid coordin-
ates. It can be obtained by linearizing the surface load pressure integration
scheme with respect to the surface normals.

An interesting prospect is to solve the linear problem in Equation 2.19, either by
adjoint or direct mode, in a closely coupled fashion using a Krylov-based solver.
Kenway et al. [17] solve the aero-structural gradient problem in adjoint mode
using GMRES and the solution method was referred to as a Coupled-Krylov
solver. They show that this method exhibits faster convergence rates compared
to more conventional methods. However, solving this coupled linear system is not
a trivial task and presents a number of challenges. Firstly, the scaling between
the unknowns from the different disciplines must be accounted for. If this is not
the case, the norm of the residual which is used to determine the acquired level of
convergence will not be representative for both disciplines and the desired level of
accuracy might not be obtained as discussed by Wathen [54]. Secondly, the cross-
coupling term ∂Ra/∂U ≡ (∂Ra/∂Xa)[H] in Equation 2.19 implies that a mesh
deformation computation is required for each GMRES iteration. This results in
a total gradient solution time that is highly dependent on the efficiency of the
mesh deformation module. For RANS problems, high-quality mesh deformation
methods may be required at times to preserve boundary layer orthogonality [55]
and ensure properly converged flow solutions. In such cases, the total gradient
computation time may even become dominated by the mesh deformation gradient.
Finally, it should be mentioned that a closely coupled or monolithic solution
procedure, albeit efficient and robust, requires higher implementation costs which
can diminish the software modularity.

Alternatively, Equation 2.19 can be solved by separating the coupled problem
into two subproblems and solving for each subproblem sequentially. This results
in the following formulation for the direct approach:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂Ra

∂W

dW

dpi

(k+1)

= −
∂Ra

∂pi
−

∂Ra

∂U

dU

dpi

(k)

∂Rs

∂U

dU

dpi

(k+1)

= −
∂Rs

∂pi
−

∂Rs

∂W

dW

dpi

(k+1)

(2.23a)

(2.23b)

The flow subproblem in Equation 2.23a is approximately solved before the struc-
tural subproblem in Equation 2.23b is solved with a right-hand side that includes
the latest update of the aerodynamic unknowns. Hence, this method can be re-
garded as a LBGS method and follows the same line of reasoning as in Maute
et al. [13]. It is a sequential method since only one subproblem can be solved
at a time. The total solution is obtained when a significant drop in the resid-
ual norm of the two subproblems is observed. The LBGS problem above can be
reformulated with the terms described previously in this work as follows:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Ra

∂W

dW

dpi

(k+1)

= −
∂Ra

∂Xa
[H]

dU

dpi

(k)

K
dU

dpi

(k+1)

= −
∂K

∂pi
U+ [T]

(
∂Qa

∂W

dW

dpi

(k+1)

+
∂Qa

∂Xa
[H]

dU

dpi

(k)
)

(2.24a)

(2.24b)

Note that ∂Ra/∂pi is dropped from the flow subproblem since only structural
sizing is considered in this work. An advantage of the LBGS method is that the
gradient computation routines for the flow and structural solver, if existent, can
be reused. Only the right-hand sides must be modified accordingly. The disad-
vantage is that the approach lacks robustness and efficiency for strongly coupled
FSI problems as highlighted by Barcelos et al. [24]. These types of problems typ-
ically occur when the aerodynamic loads are large compared to the counteracting
internal stiffness, which in turn result in large structural deformations.

A different approach can be taken by reformulating the linear system in Equation
2.18 using a Schur complement reduction, effectively eliminating the aerodynamic
unknowns dW/dpi such that

[K−Ka]
dU

dpi
= −

∂K

∂pi
U (2.25)

where the coefficient matrix [K−Ka] is the Schur complement of the block
∂Ra/∂W and Ka is the high-fidelity aerodynamic stiffness matrix. This mat-
rix can conceptually be constructed by the following sequence of differentials

Ka = [T]

(

−
∂Qa

∂W

[
∂Ra

∂W

]−1 ∂Ra

∂Xa
+

∂Qa

∂Xa

)

[H] (2.26)

It becomes obvious that the aerodynamic stiffness matrix can not be explicitly
formulated for realistic problems since it requires the exact inverse of the flux
Jacobian ∂Ra/∂W. This would result in excessive amounts of computational
resources and is consequently not a viable option. In practice, an iterative solution
method is applied to Equation 2.25 where only a matrix-vector product of the
aerodynamic stiffness matrix is required. For the sake of clarity, the linear problem
can be expressed as

Ax = b (2.27)

where

A = [K−Ka] , x =
dU

dpi
, b = −

∂K

∂pi
U (2.28)
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The idea is to apply an iterative scheme by adopting a standard fixed-point for-
mulation

Mx(k+1) = Nx(k) + b (2.29)

where the system matrix A is decomposed as A = M − N and the current
iteration is k. Here, M is a preconditioner that is typically an approximation of
the coefficient matrix A. The assumption is that the preconditioner is easy to
invert compared to the coefficient matrix. It can be shown that the convergence
characteristics of Equation 2.29 depend on the spectral radius of the iteration
matrix G [56]:

G = I−M−1A (2.30)

where I is the identity matrix. This highlights the importance of a quality precon-
ditioner to improve the convergence behavior. In extension, this implies that the
robustness and efficiency of an aero-structural gradient solution scheme is highly
influenced by the choice of the preconditioner. The typical procedure is to use
an exact factorization of the global structural stiffness matrix, such that M ≡ K.
Equation 2.25 can then be expressed in fixed-point form as

K

(
dU

dpi

(k+1)

−
dU

dpi

(k)
)

= − [K−Ka]
dU

dpi

(k)

−
∂K

∂pi
U (2.31)

The solution converges when the right-hand side goes to zero. Note that this
formulation is identical to the LBGS method. It is evident that the preconditioner,
or the coefficient matrix in Equation 2.31, does not account for the aerodynamic
portion of the stiffness. The proposal in this work is to improve the spectral
properties of the preconditioned linear system using the vortex lattice model.
Our preconditioning matrix can then be expressed as M ≡ [K − K̃a], where K̃a

is the contribution from the vortex lattice model. Equation 2.31 can then be
replaced by

[K− K̃a]

(
dU

dpi

(k+1)

−
dU

dpi

(k)
)

= − [K−Ka]
dU

dpi

(k)

−
∂K

∂pi
U (2.32)

The contribution from the vortex lattice model is expected to improve the sta-
bility and convergence rate when the Schur complement on the right-hand side
is ill-conditioned. On the other hand, when the structural stiffness matrix has
a dominating influence, for instance when the aeroelastic effect is negligible, the
addition of K̃a is not expected to have any notable impact. It should be added
that, as stated above, the idea is to improve the spectral properties of the linear
problem. However, this can not be quantified by computing the eigenvalues of
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the Schur complement since this matrix is never explicitly formulated. This as-
sumption can only be evaluated implicitly by comparing convergence results with
and without the addition of K̃a. The solution procedure of the proposed method
is outlined in detail in Table 2.1.

Table 2.1: Proposed method

1. Evaluate ∂K
∂pi

U after the static aeroelastic analysis has converged.

2. Obtain an initial guess of the solution vector dU
dpi

(0)
by solving the medium-fidelity

problem:

[K− K̃a] dUdpi
(0)

= −

∂K
∂pi

U

3. Start the iteration with k = 0.

4. Formulate the right-hand side vector rhsa of the flow subproblem in Equation 2.24a:

rhs(k)a = −

∂Ra
∂Xa

[H] dU
dpi

(k)

5. Approximately solve the flow subproblem:
∂Ra
∂W

dW
dpi

(k+1)
= rhs(k)a

This linear system is solved by GMRES and the process is terminated when the
residual norm drops one order of magnitude.

6. Formulate the right-hand side vector rhss of the structural subproblem in Equation
2.32:
rhs(k)s = −K dU

dpi

(k)
+ [T]

(
∂Qa
∂W

dW
dpi

(k+1)
+ ∂Qa

∂Xa
[H] dU

dpi

(k)
)
−

∂K
∂pi

U

7. Exactly solve the structural subproblem:

[K− K̃a]
(

dU
dpi

(k+1)
−

dU
dpi

(k)
)
= rhs

(k)
s .

8. Monitor the convergence for the flow subproblem:∥∥∥∂Ra
∂W

dW
dpi

(k+1)
− rhs(k)a

∥∥∥
2
< ϵa

∥∥rhs(0)a

∥∥
2
where ϵa = 1e−6

9. Monitor the convergence for the structural subproblem:∥∥∥[K− K̃a]
(

dU
dpi

(k+1)
−

dU
dpi

(k)
)∥∥∥

2
< ϵs

∥∥rhs(0)s

∥∥
2
where ϵs = 1e−6

10. Break the iteration only if both convergence criteria are met, else restart from 4.

The proposed method in Table 2.1 can be reduced to the LBGS method by a
simple omission of K̃a. It must be clarified that, upon convergence, both meth-
ods result in the same gradient as the original linear system in Equation 2.18.
The pertinent question, which is addressed in the following section, is whether
the inclusion of K̃a has a positive influence on the convergence rate. Hence, the
question is related to convergence rate, not accuracy. It should also be men-
tioned that there are additional means of improving the convergence rate. For
instance, the convergence tolerance of the flow subproblem in step 5 can be ad-
justed. Typically, when the flow subproblem is required to converge to a higher
level of accuracy, the number of structural subiterations in step 7 is reduced, and
conversely, a lower level of accuracy for the flow subproblem generally results in
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additional structural subiterations. This implies a trade-off in computation time
between the total number of flow subiterations and the number of mesh deform-
ation computations, since the solution time of the structural subproblem in this
work is negligible compared to the mesh deformation problem. Another possib-
ility applicable only to the LBGS, which can have a substantial impact on the
computation time, is to relax the structural response dU/dpi following step 7 by
applying an under-relaxation parameter β such as:

dU

dpi

(k+1)

=
dU

dpi

(k)

+ β∆
dŨ

dpi

(k+1)

(2.33)

where ∆ dŨ
dpi

(k+1)
is the sensitivity increment and the solution vector in step 7

in Table 2.1. The range of the relaxation parameter is limited to 0 < β ≤ 1,
where β = 1 corresponds to the LBGS method with no relaxation applied to
the solution. The relaxation parameter can be set to a predetermined value that
remains constant (static) throughout the gradient computation. Alternatively, it
can be allowed to adapt during the gradient computation in compliance with a
dynamic relaxation strategy. A very common dynamic relaxation strategy that
determines the parameter based on the iteration history is Aitken’s acceleration
scheme [57]. The relaxation parameter is computed based on previous increments
in accordance with Barcelos et al. [24]:

β(k+1) = β(k)

⎛

⎜⎜⎜⎝
1−

(
∆ dŨ

dpi

(k+1)
−∆ dŨ

dpi

(k)
)T

∆ dŨ
dpi

(k+1)

(
∆ dŨ

dpi

(k+1)
−∆ dŨ

dpi

(k)
)T (

∆ dŨ
dpi

(k+1)
−∆ dŨ

dpi

(k)
)

⎞

⎟⎟⎟⎠
(2.34)

Regardless of the static or dynamic relaxation strategy, an initial value for the
parameter β(0) must be applied. This initial value is typically assigned based on
experience and has a significant influence on the convergence rate. Applying a
relaxation to the structural response, as much as it can be considered an advantage
by adding stability to the convergence, is also a disadvantage. Each problem is
subject to a different geometry, flight condition and structural configuration for
instance and finding an ideal initial parameter beforehand can be a very difficult
task. One parameter that results in very good convergence rates for a specific
configuration and flight condition can suddenly become a very poor parameter by
adjusting one of the aforementioned features.
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2.4 CASE STUDY

A case study is designed to investigate the convergence characteristics of the
proposed method in the previous section and to compare the results with the
more conventional LBGS method. The case description (including aerodynamic
models, structural model, design variable, computational resources and so forth)
is outlined in detail in the following subsection, whereas the results are presented
in Subsection 2.4.2.

2.4.1 SETUP

The ONERA M6 wing is used for this case study with 1.05 and 3.57 million cells
for the Euler and the RANS problem, respectively. The Euler mesh is split into 8
blocks and executed in parallel mode on 8 processors, whereas the RANS mesh is
split into 42 blocks and executed in parallel mode on 16 processors. All the com-
putations in this work are performed on a High Performance Computing (HPC)
cluster with 2.60GHz Intel Xeon E5-2660 v3 Processors. The Mach number is
fixed at 0.84 with an incidence angle of 3.06◦. Hence, the aeroelastic solution is
not trimmed in this particular case study. Three subcases with different dynamic
pressures are examined: (i) 28.9 kPa, (ii) 57.9 kPa and (iii) 86.9 kPa. The purpose
here is to investigate the performance of the proposed method when the wing is
subject to a strong aeroelastic effect. This is typically the case when the aerody-
namic stiffness matrix is of comparable size to the structural stiffness matrix. The
Reynolds numbers based on the Mean Aerodynamic Chord (MAC), are 7.42×106,
14.8× 106 and 22.3× 106, respectively.

The vortex lattice model is subject to the same input parameters as its high-
fidelity counterpart. It is discretized by 648 panels in total: 18 in the chordwise
direction and 36 in the spanwise direction. The computation time of K̃a amounts
to 10− 20 seconds and is negligible compared to the total wall time of the aero-
structural gradient computation. It is therefore omitted in the results section.

The structural model is a classic wingbox layout with 1812 DOF depicted in
Figure 2.6. Thicknesses and sections of structural elements have been designed in
a pre-processing optimization step. Small adjustments have been applied to the
original model in Blondeau et al. [29] to accommodate for the interfacing with
the vortex lattice model. Rigid body elements are attached to the ribs with load
transfer nodes at z = 0 as can be seen in Figure 2.7. This allows the interpolated
loads from the panel method to maintain a smooth and realistic distribution.
Moreover, not every rib is modified for the said reason. There are three coupling
nodes per rib. The first one is located in the middle between the wing surface
leading edge and the wingbox front spar. The second one is aligned with the mid
spar and the third one is located in the middle between the wing surface trailing
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edge and the wingbox rear spar. The structural design variable pi, that is used
for the construction of ∂K/∂pi in this case study, is the thickness variation of the
highlighted design region in Figure 2.6. This region contains four shell elements.

Figure 2.6: Shell thicknesses of original
model

Figure 2.7: Modified model with rigid ele-
ments

In addition to comparing the proposed method, which for the sake of convenience
is denoted the Multifidelity (MF) method in the remainder of this chapter, to the
LBGS method, it is also benchmarked towards a pure rigid aerodynamic gradient
computation at the static aeroelastic equilibrium. This corresponds to solving
steps 1-5 in Table 2.1 and adjusting the convergence tolerance in step 5 to six
orders of magnitude. The aero-structural gradient computation should ideally be
as efficient as the rigid aerodynamic gradient computation, and this comparison
will give an indication of how well the MF method is performing. Moreover, both
static and dynamic under-relaxations are applied to the structural response in
the LBGS method in an attempt to stabilize and accelerate the convergence. For
the static relaxation strategy β = 0.5, 0.7, 0.9 and 1.0 are considered, where β =
1.0 corresponds to no relaxation. These values are kept constant throughout the
gradient computation. For Aitken’s adaptive strategy an initial parameter of β(0)

= 0.5 is applied. During the subsequent iterations, the value is adapted according
to Equation 2.34.

2.4.2 RESULTS

Before the solution methods are compared, the gradients for the six subcases
described in the previous subsection (three for the Euler aero-structural gradient
problem and three for the RANS aero-structural gradient problem) are verified. It
is important to highlight that matrix-vector products including the partial deriv-
atives ∂Ra/∂Xa and ∂K/∂pi are computed by a finite difference scheme, whereas
the remaining partial derivatives are obtained analytically by hand differentiating
the code. Hence, the aero-structural gradients are classified as semi-analytical in
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the remainder of this work. The reference aero-structural gradients in this work
are obtained by forward differencing with the perturbation size ∆pi = 1e−6. The
perturbation size was obtained by a separate convergence study. The quantities of
interest are the lift coefficient CL and the pressure drag coefficient CDp

. The three
dynamic pressures produce a static aeroelastic tip deflection of 6.8%, 12% and 15%
of the semi-span. As can be seen in Table 2.2, the Euler semi-analytical approach
generates gradients that are closely matching the finite difference results. The
relative difference is less than 0.0024% for all three subcases. The RANS semi-
analytical approach on the other hand shows larger discrepancies when compared
to the finite difference results. The relative error ranges from 3.1% to 7.0% for
CL and 2.9% to 10.6% for CDp

. There are multiple sources that can be attributed
to this outcome. One source of error is the frozen-turbulence assumption applied
to the flux Jacobian ∂Ra/∂W. It has been shown, for instance, by Nielsen and
Anderson [49] that the lift coefficient gradient can deviate for specific settings as
much as 53.8% compared to a full-turbulence linearization. The comparison of
linearizations in their paper was mainly performed on a 91k tetrahedra grid of the
ONERA M6 wing with a Mach number of 0.3 and a Reynolds number of 5× 106

based on the mean aerodynamic chord. In Luy et al. [51], they compare gradients
obtained by the frozen-turbulence assumption and the full-turbulence lineariza-
tion to a complex-step finite difference method. They show that the gradients
obtained by full-turbulence linearization are as much as five orders of magnitude
more accurate compared to the gradients obtained by the frozen-turbulence lin-
earization. These two references suggest that the frozen-turbulence assumption is
a likely source of error. Moreover, the perturbation size of the central difference
scheme involving ∂Ra/∂Xa can greatly affect the outcome. A convergence study
for this parameter was not conducted.

Table 2.2: Accuracy verification of the aero-structural gradients

Subcase 1 Subcase 2 Subcase 3

Euler CL CDp CL CDp CL CDp

forward difference 0.971318 0.074998 1.708273 0.112197 2.122124 0.123306
semi-analytical 0.971331 0.074999 1.708290 0.112199 2.122163 0.123309
relative difference [%] 0.00130 -0.00130 0.00090 0.00180 0.00180 0.00240

RANS CL CDp CL CDp CL CDp

forward difference 0.927958 0.062810 1.660365 0.094373 2.069982 0.100292
semi-analytical 0.899545 0.064642 1.733840 0.103102 2.214498 0.110923
relative difference [%] -3.06190 2.91670 4.42520 9.24950 6.98150 10.6000

The convergence behavior of subcase 1 for the Euler aero-structural gradient can
now be investigated. The Euclidean norm of the flow residual is plotted with
respect to the total number of flow subiterations in Figure 2.8a. The LBGS
(β = 1.0), i.e. the LBGS without relaxation, and the MF method have a similar
rate of convergence which is lower compared to the rigid aerodynamic gradi-
ent. Both methods require the same number of flow subiterations. As the static
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relaxation parameter is reduced, the number of coupling iterations increases sub-
stantially. Even Aitken’s dynamic relaxation strategy, LBGS (β(0) = 0.5), does
not accelerate the convergence in comparison to the conventional LBGS method.
This suggests that there is a strong possibility of a superior initial parameter than
0.5 for this particular case using Aitken’s relaxation strategy.

(a) Flow convergence
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(b) Structural convergence

Figure 2.8: Euler case with dynamic pressure 28.9 kPa

Sharp peaks can be distinguished when the residual norm drops one order of
magnitude in Figure 2.8a. This is due to the fluid-structure coupling effect when
the structural subproblem is solved. In Figure 2.8b, the Euclidean norm of the
structural residual is plotted with respect to the total number of structural subit-
erations. This plot also represents the number of mesh deformation procedures
required, since each structural solution is followed by a mesh deformation. LBGS
(β = 1.0) requires ten coupling iterations compared to eight for the MF method.
Hence, there is only a very small computational gain to be made by the MF
method due to the fewer number of mesh deformations required.

In Table 2.3, the wall time is divided in two categories that overwhelmingly dom-
inate the total wall time: (i) the aero category and (ii) the mesh deformation
category. They are represented in Table 2.1 by steps 5 and 4, respectively. The
computation time of the remaining steps are negligible in comparison and are
therefore omitted in this case study. As can be seen in the table, the MF method
only shows a very modest 4% wall time reduction compared to the LBGS (β = 1.0)
method for subcase 1, with β = 1.0 being the best parameter for this particular
subcase. The small difference indicates that the effect of including the precondi-
tioner K̃a for this subcase, with a modest structural deformation, is negligible.

Subcase 2 for the Euler aero-structural gradient suggests that the difference
between MF and LBGS becomes more pronounced as the dynamic pressure in-
creases according to Figure 2.9a. The number of flow subiterations between MF
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Table 2.3: Comparison of wall time [s]

Subcase 1 Subcase 2 Subcase 3

Euler aero mesh total aero mesh total aero mesh total

LBGS/β = 1.0 670 59 729 841 85 926 1467 157 1624
LBGS/β = 0.9 794 73 867 931 113 1044 1334 169 1503
LBGS/β = 0.7 979 102 1081 1028 116 1144 1044 139 1183
LBGS/β = 0.5 1517 196 1713 1410 161 1571 1381 172 1553
LBGS/β(0) = 0.5 856 101 957 1150 118 1268 1462 183 1645
MF 653 47 700 654 57 711 644 60 704
gain [%] 2.53 20.3 4.00 22.2 32.9 23.2 38.3 56.8 40.5

RANS aero mesh total aero mesh total aero mesh total

LBGS 17840 870 18710 22288 1266 23554 25126 1907 27034
MF 18392 759 19151 18833 878 19711 22151 1007 23158
gain [%] -5.57 12.8 -2.36 15.5 30.6 16.3 11.8 47.2 14.3

and LBGS (β = 1.0) differ by 65. The MF method maintains a rate of conver-
gence similar to the rigid aerodynamic gradient, whereas the rate of convergence
of the LBGS method is markedly degraded. The MF method exhibits 23% faster
convergence in terms of wall time. As with the previous subcase, the reduction
of the relaxation parameter does not accelerate the solution. LBGS (β = 1.0)
and LBGS (β = 0.9) arguably result in the same convergence rate. The remain-
ing relaxation parameters, including Aitken’s adaptive relaxation strategy, result
in increased computation times. Figure 2.9b indicates that the number of mesh
deformation operations can be reduced from 14 to 9 by the MF method.

(a) Flow convergence
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(b) Structural convergence

Figure 2.9: Euler case with dynamic pressure 57.9 kPa

Subcase 3 shows that a 41% wall time reduction can be achieved by the MF
method according to Table 2.3. The convergence rate of the MF method, as
illustrated in Figure 2.10a, is again similar to the rigid aerodynamic gradient
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as opposed to the LBGS method which becomes significantly degraded. It is
interesting to note that a static relaxation parameter of 0.7 results in the fastest
convergence rate for the LBGS method. This is in contradiction to the previous
two subcases. As the dynamic pressure increases, and the structural deformations
become substantial, the reduction of the relaxation parameter accelerates the
solution of the aero-structural gradient. However, excessive relaxation, such as
β = 0.5, increases the robustness of the solution but also the computation time.
Again, LBGS (β(0) = 0.5) results in a high computation time. This supports the
premise that an initial relaxation factor of 0.5 might not be ideal for Aitken’s
relaxation strategy.

(a) Flow convergence

0 5 10 15 20 25 30
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Structural convergence

Figure 2.10: Euler case with dynamic pressure 86.9 kPa

An interesting note to make is that the wall time of the MF method is nearly
identical for all three subcases. Its convergence rate seems to be almost unaffected
by the change in the dynamic pressure. In contrast, the wall time of the LBGS
method increases significantly with the dynamic pressure. Hence, the lack of
robustness and the slow convergence rate that are the main shortcomings of the
LBGS method are effectively mitigated by the MF method for this case.

If we look at the RANS aero-structural gradient, subcase 1 indicates a differ-
ent convergence pattern for the rigid aerodynamic gradient, as well as the aero-
structural gradients, as can be seen in Figure 2.11a. The drop in the aerodynamic
residual is consistent for the Euler problem as opposed to the RANS problem
which appears to change the rate after three orders of magnitude. The residual
drops three orders of magnitude within roughly 250 iterations. It then requires
roughly an additional 1750 iterations to drop the remaining three orders of mag-
nitude. In addition, the convergence rate for the RANS problem is significantly
lower compared to the Euler problem. This suggests that the aerodynamic linear
subproblem for the RANS case has a higher condition number and thus requires
an improved preconditioner for the GMRES solver. In this work, the precon-
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ditioner is built using an approximate inverse (by applying several iterations of
an upper-lower block relaxation) of the physics based approximate flux Jacobian
∂R̂a/∂W. This formulation implies a fixed linear operator for the preconditioner
which leads to a standard GMRES algorithm. This approach was dictated by the
limitations of the elsA version that was used in this study.

Even if the Newton-Krylov method based on restarted GMRES is more efficient
than the standard BWE time marching solution method, the flexible variant of
the GMRES algorithm is much more attractive in practice. A Block Flexible
GMRES with Deflated Restarting [58, 59] has been recently implemented into
the optimization module of the latest elsA version. More specifically, the nested
GMRES approach (i.e. the inverse of the preconditioner is obtained by calling an

internal GMRES preconditioned by the approximate inverse of the ∂R̂a/∂W) is
very promising.

(a) Flow convergence
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(b) Structural convergence

Figure 2.11: RANS case with dynamic pressure 28.9 kPa

Subcase 2 for the RANS aero-structural gradient problem indicates that the num-
ber of flow subiterations can be reduced with the MF method and a wall time
reduction of 16% is obtained compared to the LBGS method. A faster con-
vergence can be observed for the MF method in 2.12b. The total number of
structural subiterations is reduced from 20 to 14. This trend extends to the third
subcase where the structural subiterations are reduced from 30 to 16 using the MF
method. The wall time reduction for subcase 3 is only 14%. It can be concluded
that the structural subiterations are effectively kept at a minimum using the MF
method, whereas the convergence rate of the flow subproblem is dominated by the
dedicated aerodynamic preconditioner ∂R̂a/∂W. For this particular case study
the LU-SSOR preconditioner seems to work well for the Euler problem, but not as
good for the RANS problem. It is possible that an ILU-type preconditioner based
on a more accurate Jacobian approximation would accelerate the convergence.
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(a) Flow convergence
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(b) Structural convergence

Figure 2.12: RANS case with dynamic pressure 57.9 kPa

(a) Flow convergence
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(b) Structural convergence

Figure 2.13: RANS case with dynamic pressure 86.9 kPa
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It should be mentioned that no structural relaxation is applied to LBGS method
for the RANS aero-structural gradient problem. The main reason for this is to
enhance the visibility and avoid clutter in the plots. Moreover, the computa-
tion time for the RANS problem is evidently dominated by the flow subproblem
and the type of aerodynamic preconditioner applied. Hence, a relaxation of the
structural response is not likely to result in a substantial change in the overall
computation time, as opposed to the Euler problem.

2.5 CONCLUSIONS

A preconditioner based on vortex lattice aerodynamics is constructed to develop a
method which stabilizes and accelerates high-fidelity aero-structural gradient com-
putations. The efficiency of the proposed method is demonstrated by a case study
using computational models of the ONERA M6 wing. The method incorporating
the said preconditioner (the MF method) is proven to exhibit higher convergence
rates compared to the LBGS method. The method is highly modular and only
requires an additional aerodynamic stiffness matrix from an external linearized
potential flow solver compared to the LBGS method. The Euler case shows prom-
ising improvements with the proposed method and the gradient computation is
up to 41% more efficient compared to the LBGS method. The convergence rate of
the RANS case, on the other hand, is not equally promising with a 16% reduction
in computation time. The main source for this difference in the outcome of the
Euler and the RANS problem is the limitation to the type of preconditioner used
by the flow solver in this work, elsA. Moreover, the gradient computations in
this work are only applied to the direct approach. The proposed methods com-
patibility with an adjoint approach is something that requires further discussion
and consideration, and is not covered in the scope of this thesis.

39



2

2. GRADIENT COMPUTATION

40



3
GRADIENT RECONSTRUCTION

In this chapter, a method has been developed to reconstruct high-fidelity aero-
structural gradients for numerical optimization. A computationally inexpensive
vortex lattice model provides a good approximation of aerodynamic loads and is
used in conjunction with singular value decomposition and pseudo-inverting to
reconstruct the gradients of a high-fidelity aero-structural model. The proposed
method is examined on two aero-structural configurations: (i) the ONERA M6
(OM6) wing and (ii) a forward-swept wing (FSW). The aerodynamics of the first
configuration is represented by a 1.05 million cell Euler model and the structure
is modeled by a finite element wingbox comprising 1812 degrees of freedom. The
aero-structural configuration of the OM6 was already described in Subsection
2.4.1. The aerodynamics of the second configuration is represented by a 643K cell
Euler model and the structure is modeled by a three-dimensional Timoshenko
beam. The proposed method is shown to be able to reconstruct the gradients of
structural and aerodynamic responses with respect to structural sizing variables.

The remainder of the chapter is organized as follows: a brief overview on aeroelas-
tic analysis, sensitivity analysis and the aerodynamic stiffness matrix is covered
in Section 3.1. The gradient reconstruction method is outlined in full detail in
Section 3.2. Two case studies based on the OM6 wing and a FSW configuration
are examined in Section 3.3 and 3.4, respectively. Conclusions are discussed in
Section 3.5.
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3.1 AEROELASTIC ANALYSIS AND SENSITIVITY ANALYSIS

A crucial element in aero-structural design optimization is the solution of the gov-
erning equations of the computational models. This allows for certain quantities
of interest, such as aerodynamic lift, drag and moment coefficients, as well as
structural deformations and strains or stresses, to be determined. These quant-
ities can be regarded as input variables for the optimizer in search of a better
design. Let the discrete steady-state Euler flow problem be expressed in resid-
ual form as Ra(W,Xa) = 0, where W is the unknown vector of conservative
variables and Xa is the vector of aerodynamic grid coordinates. Moreover, let
Rs(U,Xs) = KU − Q = 0 be the linear structural problem, where K is the
global structural stiffness matrix, Xs are the structural grid coordinates, U is the
vector of structural DOF and Q is the applied load vector. The static aeroelastic
problem can then be defined as a concatenation of the two subproblems

(
Ra(W,U)
Rs(U,W)

)
= 0 (3.1)

where the constant coordinate vectors have been omitted for the sake of brev-
ity and only unknown variables remain. The two sets of equations are coupled
through aerodynamic loads acting on the structure and aerodynamic grid per-
turbations subject to structural deformations. In theory, both residuals should
be reduced to zero to ensure accurate function values for the desired quantities
of interest. In practice, however, this is rarely the case. The equilibrium condi-
tions are typically met when the change in residuals over successive iterations is
within a specified tolerance. Throughout this thesis a defect-correction approach
is applied, which was outlined in full detail in Subsection 2.2. Once the static
aeroelastic problem is considered solved, and the equilibrium deformations are
determined, the stresses σ can be recovered by

σ = SU (3.2)

where S is a stress-displacement matrix [60]. This matrix is assumed to be known.
Theoretically, the routines that evaluate the stresses or strains for a given set of
design variables would suffice for zeroth-order optimization. However, in an effort
to reduce the number of function evaluations, and by extension the computa-
tional effort, the preferred option in the context of high-fidelity aeroelasticity is
gradient-based optimization. As the name suggests, gradient-based optimization
additionally requires sensitivity analysis to determine the total derivatives of the
stresses with respect to structural sizing variables dσ/dpi. To obtain these gradi-
ents, the entire chain of operators for computing the stresses must be linearized.
This implies that the equilibrium Equation 3.1 must be differentiated with respect
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to the design variables

(
dRa

dpi

dRs

dpi

)

=

(
∂Ra

∂pi

∂Rs

∂pi

)

+

[
∂Ra

∂W
∂Ra

∂U
∂Rs

∂W
∂Rs

∂U

](
dW
dpi

dU
dpi

)

= 0 (3.3)

The linear system, which is commonly referred to as the Global Sensitivity Equa-
tions (GSE), was originally conceived by Sobieski [61] as a means of mathemat-
ically expressing the total sensitivity derivatives of a generic multi-disciplinary
system. In this thesis, the disciplines are limited to aerodynamics and structures.
To determine the total stress derivative, Equation 3.2 is differentiated with respect
to the design variables using the chain rule

dσ

dpi
= S

dU

dpi
+

∂S

∂pi
U (3.4)

When the design variable is a material property such as skin thickness, and not
linked to a geometric variation, the partial derivative of the stress-displacement
matrix is equal to zero. Hence, the total derivative can be determined by a direct
multiplication of dU/dpi, obtained in Equation 3.3. To simplify the expression of
the GSE, dW/dpi can be eliminated by Schur complement reduction

[K−Ka]︸ ︷︷ ︸
S

dU

dpi
= −

∂K

∂pi
U (3.5)

where the static pseudo-load (∂K/∂pi)U is equal to ∂Rs/∂pi. This term is tra-
ditionally obtained by finite differencing and was derived in Subsection 2.1.2.
Moreover, ∂Ra/∂pi is equal to zero since the thicknesses of the structural ele-
ments do not have a direct impact on the aerodynamic residual. The coefficient
matrix S of the linear system is the Schur complement of the block ∂Ra/∂W,
whereas Ka is known as the aerodynamic stiffness matrix. This matrix plays a
central part in this work and it describes how the aerodynamic loads change with
respect to the structural DOF. Unlike the structural stiffness matrix, this term
is very impractical to construct for industrially scaled problems since it requires
the exact inverse of ∂Ra/∂W (see Equation 2.26). As a result, the linear system
is often solved by iterative methods, where only matrix-vector products of the
aerodynamic stiffness matrix are necessary. In this thesis, the method of choice
for solving the linear system was described in full detail in Subsection 2.3. In this
chapter, it is only assumed that the linear system can be solved iteratively and
that it must be solved as many times as there are right-hand sides.

It should also be mentioned that the structural stiffness matrix is generally sym-
metric, sparse, positive definite and can be stored and factorized efficiently by
sparse or regular Cholesky decomposition. The aerodynamic stiffness matrix, on
the other hand, does in general not posses any of these properties. It is typically
unsymmetric, dense and ill-conditioned.
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3.2 GRADIENT RECONSTRUCTION

A generic optimization problem of a structural wingbox can contain several thou-
sands of structural design variables and be subject to as many stress constraints
as there are structural elements. Solving Equation 3.5 iteratively for all the design
variables in a high-fidelity model framework is computationally prohibitive and
therefore not a viable option. An alternative, and rather common approach, is to
lump all the stress constraints into a composite function and subsequently solve
the linear gradient problem by the adjoint approach. The constraint lumping can
be achieved by an aggregation strategy, where the KS function [31] is one of the
more popular options and can be expressed as:

KS[g(p)] = gmax(p) +
1

ρ
ln

⎡

⎣
m∑

j=1

eρ(gj(p)−gmax(p))

⎤

⎦ (3.6)

where m represents the number of constraint functions g, p is the vector of struc-
tural design variables, gmax is the maximum value evaluated at p and ρ is the KS
parameter. A major drawback to this approach is the KS parameter, which must
be chosen judiciously. Too high values result in sharp changes in the gradients
which lead to a difficult convergence of the optimization problem, whereas too
small values lead to overly conservative designs. In this chapter, an alternative
approach of calculating the gradients is proposed and it is outlined in the following
subsection.

3.2.1 METHODOLOGY

An assumption can be made where the aerodynamic stiffness matrix K̃a (see
approach in Subsection 2.1.4) can be inexpensively constructed by the VLM. On
the contrary, the high-fidelity counterpart Ka based on the Euler equations is
assumed to be unavailable. The matrix K̃a can be a very good approximation to
Ka if the flow is subsonic and much less so if the flow is transonic. Regardless,
there is a gradient defect which constitutes the difference between the two matrices

Ka = K̃a +∆Ka (3.7)

where ∆Ka is the unknown defect that is to be approximated. It is well know
that a diagonalizable matrix in general yields real eigenvectors. However, for the
aerodynamic stiffness matrix, this property can not be guaranteed. Consequently,
to avoid complex eigenvectors, the Singular Value Decomposition (SVD) is ap-
plied. The aerodynamic stiffness matrix can then be expressed as a product of
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three matrices

Ka = RΣTT (3.8)

where R and T are square matrices spanned by orthonormal basis vectors. There-
fore, RTR = TTT = I, where I is the identity matrix. In the remainder of this
chapter, R and T will be referred to as the left- and right-singular basis, respect-
ively. The diagonal matrixΣ stores the singular values for the corresponding basis
vectors in decreasing numerical order. Alternatively, the SVD can be considered
as a sum of rank-1 matrices

Ka =
n∑

i=1

σi{ri}{ti}
T (3.9)

where σi is the ith diagonal entry of Σ and {ri} and {ti} are the ith columns of R
and T, respectively. The Euclidean norm of each matrix in the summation is equal
to one. This implies that the first matrices, accompanied by the highest singular
values, will have the largest impact on the aerodynamic stiffness matrix. If an
assumption is made where a subset of k left-singular basis vectors {r1, ..., rk}
and the corresponding singular values σ1, ...,σk are available, then Ka can be
conceptually approximated by first iteratively solving

Ka{t1, ..., tk} = {σ1r1, ...,σkrk} (3.10)

and subsequently multiplying the obtained right-singular basis vectors {t1, ..., tk}
in accordance with Equation 3.9. Unfortunately, Ka is an unknown quantity
and so is {r1, ..., rk}. However, {r̃1, ..., r̃k} can be explicitly constructed from the
approximated matrix K̃a. Instead, the following equation can be solved

Ka{t̂1, ..., t̂k} = {σ̃1r̃1, ..., σ̃kr̃k} (3.11)

were {t̂1, ..., t̂k} is not a subset of the right-singular basis of Ka, nor is it a
subset of the right-singular basis of K̃a. Rather, {t̂1, ..., t̂k} can be considered an
approximation to a subset of the right-singular basis of Ka. If Equation 3.7 is
premultiplied with the obtained basis the following expression can be formulated:

∆Ka{t̂1, ..., t̂k} = {σ̃1r̃1, ..., σ̃kr̃k}− K̃a{t̂1, ..., t̂k} (3.12)

An exact matrix-vector product of the defect matrix is now available. An approx-
imation of the defect matrix can finally be obtained by pseudo-inverting the basis
that was solved for in Equation 3.11

∆Ka ≈
[
{σ̃1r̃1, ..., σ̃kr̃k}− K̃a{t̂1, ..., t̂k}

]
{t̂1, ..., t̂k}

† (3.13)
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whereupon Ka can be reconstructed. What has been derived up to this point
encapsulates the basic concept of the gradient reconstruction method. The two
key features pertinent to the method are: (i) the SVD which provides a ”good”
subset of basis vectors and (ii) the pseudo-inverse which is used to approximate
the defect matrix. However, the main concern is that the method in its current
layout is not very efficient. Firstly, it is not recommended to solve Equation 3.11
to obtain {t̂1, ..., t̂k}, as Ka is generally singular or ill-conditioned at best. A
more tractable approach would be to instead solve

S{t̂1, ..., t̂k} = {σ̃1r̃1, ..., σ̃kr̃k} (3.14)

followed by the reconstruction of the Schur complement defect matrix:

∆S ≈
[
{σ̃1r̃1, ..., σ̃k r̃k}− S̃{t̂1, ..., t̂k}

]
{t̂1, ..., t̂k}

† (3.15)

This minor modification has no influence on the final outcome. Indeed, the struc-
tural stiffness matrix is identical in the Schur complement of the Euler model
as well as the VLM model, such that ∆S ≡ ∆Ka. However, it is important to
mention that the SVD is still applied to the term that is to be corrected, which
is the aerodynamic stiffness matrix.

Another important feature of the method that requires special attention is related
to the construction of the left-singular basis vectors {σ̃1r̃1, ..., σ̃kr̃k} by SVD and
the construction of the pseudo-inverse. Standard routines, in state-of-the-art
numerical libraries such as Lapack [62], are typically designed to compute the
SVD and the pseudo-inverse with respect to the Euclidean norm. However, in
the current context, these numerical operations are applied on three-dimensional
structural DOF, with three displacements and three rotations per node. The
mismatch in scaling between the displacements and rotations is not accounted for
by the Euclidean norm. This limitation can be accounted for if a proper norm is
selected for normalization. To this end, the strain energy norm is applied.

In the following subsection, the construction of the left-singular basis with respect
to the strain energy norm is explained, whereas in Subsection 3.2.3 the construc-
tion of the pseudo-inverse with respect to the strain energy norm is outlined. A
solution procedure for the proposed method is outlined in Subsection 3.2.4.

3.2.2 SVD WITH RESPECT TO THE ENERGY NORM

The strain energy norm can be defined for linear structural deformations as

∥U∥E =
1

2
UTKU (3.16)
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In a similar fashion, the strain energy norm can be expressed in terms of applied
loads by

∥Q∥E =
1

2
QTK−1Q (3.17)

Note that Equation 3.16 can be recovered by replacing Q with KU in the above
equation due to the self-adjoint property of the structural stiffness matrix. The
matrix Ka can be regarded as a mapping operator that maps vectors from one
space to another. The input to the mapping are deformations and the output are
loads. This line of reasoning can be conceptually thought of as

KU = KaU (3.18)

The ratio of the output to the input can be expressed in the form of a generalized
Rayleigh quotient by substituting Q with KaU in Equation 3.17

σ2
(Ka,K;U) = max

U

∥Q∥E
∥U∥E

≡ max
U

(
UTKT

aK
−1KaU

UTKU

)
(3.19)

It has already been established that the structural stiffness matrixK is symmetric,
positive definite and can therefore be replaced by a Cholesky decomposition K =
LLT , where L is a lower triangular matrix. The generalized Rayleigh quotient
can then be reformulated accordingly:

(
UTKT

aK
−1KaU

UTKU

)
→

(UTL)L−1KT
aL

−TL−1KaL
−T (LTU)

(UTL)(LTU)
(3.20)

If V = LTU and Za = L−1KaL
−T are substituted above then

σ2
(Za,V) = max

V

(
VTZT

aZaV

VTV

)
(3.21)

where it is shown that σ(Ka,K) ≡ σZa
and the generalized Rayleigh quotient is

reduced to a standard Rayleigh quotient. Hence, instead of applying SVD directly
to Ka, it is applied to Za which is normalized with respect to the energy norm

Za = RΣTT (3.22)

However, the desire is to generate a left-singular basis for Ka, not Za. This can
be rectified by post-multiplying Za from the left by L and from the right by LT

such that:

Ka = (LR)Σ(LT)T (3.23)
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In conclusion, the left-singular basis that is used for solving Equation 3.14 is
F = LR, where R is the left-singular basis from the singular value decomposition
of Za. It should be mentioned that the singular values have been omitted in F.
In fact, the singular values are only scaling factors the would get canceled out.
This becomes evident from a closer inspection of Equation 3.12.

3.2.3 PSEUDO-INVERSE WITH RESPECT TO THE ENERGY NORM

A generic overdetermined linear system of equations can be formulated as

Ax = b (3.24)

where A is a coefficient matrix of size m × n with m > n, b is of size m × 1
and x is of size n × 1. Since the linear system is composed of more equations
than unknowns, it usually has no solution. That is, b is not in the column space
of A. Fortunately, an approximate solution can be found by the least-square
approximation which is defined as the solution x̂ that minimizes the Euclidean
norm of the residual

r = b−Ax̂ (3.25)

Only instead of minimizing the norm based on the Euclidian distance, a more
proper norm in the current context would be based on the strain energy:

S = min (∥r∥E) (3.26)

where ∥r∥E = rTKr is the strain energy of r and S is the norm. If the residual r
is substituted by b−Ax, the above equation can be expanded as

S = min
(
bTKb− (bTKA)x − xT (ATKb) + xT (ATKA)x

)
(3.27)

In order to find the minimum, the derivate of S with respect to x is equated to
zero

∂S

∂x
= −2(ATK)b+ 2(ATKA)x = 0 (3.28)

By solving for x, the least squares solution x̂ is obtained

x̂ = (ATKA)−1(ATK)
︸ ︷︷ ︸

A†

b (3.29)
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where A† is the pseudo-inverse based on the strain energy norm. This expression
can be further simplified by substituting K with a Cholesky decomposition LLT .
The pseudo-inverse then becomes

A† = (ATLLTA)−1ATLLT (3.30)

which can be further simplified as

A† = (LTA)†LT (3.31)

In conclusion, for any vector or overdetermined coefficient matrix A, its corres-
ponding pseudo-inverse with respect to the strain energy norm will be computed
according to Equation 3.31.

3.2.4 SOLUTION PROCEDURE

The proposed method of reconstructing S is outlined in Table 3.1.

Table 3.1: Proposed method

1. Given K, compute the lower matrix of the Cholesky decomposition: L = chol(K).

2. Given K̃a and L, compute Z̃a = L−1K̃aL−T .

3. Obtain a left-singular basis R̃ by SVD: [R̃, Σ̃, T̃] = svd(Z̃a, n), where n is the desired
number of singular vectors.

4. Compute F̃ = LR̃.

5. Solve the linear systems ST̂ = F̃ by an iterative scheme.

6. Compute the normalized pseudo-inverse of T̂ by T̂† = (LT T̂)†LT .

7. Approximate the Schur complement gradient defect by ∆S = (F̃− S̃T̂)T̂†.

8. Reconstruct the high-fidelity Schur complement: S = S̃ +∆S.

3.3 CASE STUDY I - ONERA M6

In this case study, the OM6 wing is investigated. A 1.05 million cell Euler mesh
split into 8 blocks with perfect load balancing is executed in parallel on 8 pro-
cessors. The surface grid of the structured Euler mesh is depicted in Figure 3.1. A
backward-Euler (BWE) scheme is used to advance the flow solution to a steady-
state and the upwind Roe scheme is selected for the spatial discretization. A
MUSCL interpolation is applied for second-order spatial accuracy augmented by
a Van Albada limiting function (see Hirsch [39] for instance). The Mach number
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is 0.84 with a fixed incidence angle of 3.06◦. Hence, the aeroelastic solution is
not trimmed in this particular case. The dynamic pressure is 86.9kPa, resulting
in a Reynolds number of 22.3× 106 based on the mean aerodynamic chord. The
settings in this case study are identical to the third subcase in Section 2.4.

The VLM model maintains the same flow parameters as the Euler model. It
is discretized by 648 panels in total: 18 in the chordwise direction and 36 in
the spanwise direction. This discretization was found to yield the best trade-off
between accuracy and computational time. The VLM mesh is depicted in Figure
3.2. The panels are distributed across the camber surface.

X
Y

Z

Figure 3.1: OM6 Euler surface grid Figure 3.2: OM6 VLM surface grid

The main purpose of this case study is to examine the accuracy of the recon-
structed gradients by the proposed method as the left-singular basis in step 4
of Table 3.1 is enriched. To this end, exact (reference) gradients for a subset of
design variables are computed as proposed in Table 2.1, which have been verified
by forward differencing. A total of 16 design regions, 8 on the top skin and 8 on
the bottom skin, are selected as can be seen in Figures 3.3 and 3.4, respectively.

The static equilibrium is converged to near machine precision, with a resulting
15% out-of-plane tip deflection relative to the semi-span. The converged aerody-
namic pressure distribution at equilibrium is compared in Figure 3.5. Due to the
differences in discretization of the Euler and VLM models, the closest to a proper
comparison is to compute the pressure difference ∆Cp of the upper and lower sur-
face. Despite the strong aeroelastic deflection, the ”delta” shock is clearly visible.
This type of nonlinearity can not be modeled by the VLM.

For the sake of clarity, the transfered aeroloads are depicted in Figure 3.6. In
general, there does not seems to be much difference for the leading and trailing
coupling nodes, except the leading tip node. This node, along with the center
coupling nodes, exhibits much higher amplitudes for the Euler model. The shock
generates a strong pressure discontinuity at the transition. From a closer inspec-
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Figure 3.3: Design regions 1 to 8 on
the top skin

Figure 3.4: Design regions 9 to 16 on
the bottom skin

Figure 3.5: Pressure difference at camber surface

Figure 3.6: Aerodynamic loads at static aeroelastic equilibrium
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tion of the shock position in Figure 3.5, the results in Figure 3.6 become clear.

As confirmed by Equation 3.9, the basis vectors corresponding to the highest
singular values contribute most in the reconstruction process. The number of
left-singular basis vectors corresponding to non-zero singular values, in step 3 of
Table 3.1, for this particular case equals 35. An interesting feature is that the
number of non-zero singular values that are generated by the SVD is in proportion
to the number of coupling nodes. In comparison to Z̃a, the reduced structural
stiffness matrix K generates 552 non-zero singular values, which is the size of the
matrix itself. The metric that is used to determine the residual norm (i.e. the
error) of the reference gradients and the reconstructed gradients is based on the
strain energy

∥res∥E =
1

2

(
dU

dpi

ref

−
dU

dpi

rec
)T

K

(
dU

dpi

ref

−
dU

dpi

rec
)

(3.32)

where the subscript i specifies the current design region, the superscript ref stands
for the reference gradients and rec stands for reconstructed gradients. As can be
observed in Figure 3.7, the residual norm drops considerably for the entire subset
of design regions as the left-singular basis is enriched. With only 12 basis vectors
applied, it is interesting to note that reconstructed gradients of design regions
10 and 11 have marginally higher residuals than their respective VLM gradients.
Unfortunately, this indicates that the error is not reducing monotonically as the
basis is enriched. Moreover, Figure 3.7 implies that the residual is not fully
attenuated as the basis reaches the limit of 35 left-singular vectors. This makes
sense since the basis vectors generated by the VLM model only approximates the
corresponding inaccessible basis vectors from the Euler model. As the basis limit
is reached the maximum residual drop is measured for design region 8 with 3
orders of magnitude, whereas the minimum drop is measured for design region 2
with roughly 2 orders of magnitude.

Figure 3.7: Residual error

Only structural responses have been considered thus far. However, it should be
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mentioned that gradients of aerodynamic responses with respect to structural
parameters could be computed as well. As a demonstration, the lift coefficient
gradients dCL/dpi are estimated. This can be accomplished in a three-step pro-
cedure:

1. Approximate the aeroload gradients: dQ
dpi

≈ (K̃a +∆Ka)
dU
dpi

rec

2. Compute the lift gradient: dL
dpi

=
∑

m=1

[
dQz

m

dpi
cos(α)− dQx

m

dpi
sin(α)

]
, where

α is the incidence angle and m the coupling node index.

3. Compute the lift coefficient gradient: dCL

dpi
= dL

dpi
/(qS), where q is the dy-

namic pressure and S is the surface area.

The lift coefficient gradients are depicted in Figure 3.8.

Figure 3.8: Lift coefficient gradient

It is interesting to note that the trend of the reference gradients is captured quite
well by the VLM, albeit the absolute values are completely off for most design
regions. The outcome is similar to that of the structural response gradients.
As more basis vectors are stacked up, the defect term ∆Ka improves and this
is reflected by the computed gradients. Figure 3.8 shows a near-perfect match
between the reference gradients and the reconstructed gradients for a vector basis
of 35. It is important to emphasize that there are still very small discrepancies
that can not be fully attenuated, as was highlighted in Figure 3.7. Consequently,
if very accurate gradients of lift or drag coefficients are required, the most suitable
method would be an exact computation of the gradients by the adjoint approach.

3.4 CASE STUDY II - FORWARD SWEPT WING

In this case study, a FSW is investigated. The main geometric characteristics are
displayed in Table 3.2. The wing is equipped with a OALE10 airfoil profile at
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the root which is linearly interpolated to match a supercritical OAT15A airfoil
profile at 25% of the semispan. The remaining span section of the wing keeps a
constant OAT15A airfoil profile. The airfoil profiles are depicted in Figure 3.9.
The Euler finite-volume model is discretized with 643K hexahedra split into 36
blocks, which was delivered by ONERA as part of a collaboration. The analysis
and sensitivity analysis are performed in parallel mode on 20 processors with
a 4.96% load imbalance. The temporal and spatial discretization schemes are
identical to the previous case study.

Table 3.2: Main geometric features of the FSW

Semi-span [m] 19.10

Quarter chord sweep [deg] 18.15

Wing surface [m2] 160

Aspect ratio [-] 9.45

Taper ratio [-] 0.265

Figure 3.9: FSW airfoils. Thicknesses are not proportional to chord lengths.

For this case study, the TU Delft in-house aeroelastic design framework Proteus

[36, 35] is employed as a tool for parameterizing and modeling the structure.
Proteus has a built-in unsteady VLM and performs closely coupled static and
dynamic aeroelastic analysis and fully analytical sensitivity analysis. The stiffness
properties of the wingbox model are described by lamination parameters and are
translated to a geometrically nonlinear 3D Timoshenko beam by a cross-sectional
modeler. The analysis and sensitivity analysis are performed on the beam and the
wingbox panel responses and gradients are retrieved in a post-treatment sequence
by the cross-sectional modeler. The wingbox configuration is depicted in Figure
3.11. It consists of a front spar 15% aft of the leading edge, a rear spar 60%
aft of the leading edge and a total of 25 ribs equally spaced in the span wise
direction. The top and the bottom skins of the wingbox have a total of 24 panels
each: 2 in the chordwise direction and 12 in the spanwise direction. The spars
have 12 panels each in the spanwise direction, whereas the ribs have a constant
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stiffness and thickness. This brings about a total of 72 panels and 648 design
variables (8 lamination parameters and one thickness parameter per panel). The
rib properties remain constant and are thus not considered as design variables.
The beam is located in the center of the wingbox and is modeled by 12 elements
subject to a clamped boundary condition at the root. The VLM model is depicted
in Figure 3.10 with an equally spaced grid of 11 panels in the chordwise direction
and 47 panels in the spanwise direction. This panel distribution was found to
yield the best trade-off between accurate loads and computational time.

Figure 3.10: VLM panels (left) and Euler
surface grid (right)

Figure 3.11: The structural
wingbox

Only thickness design variables on the top and bottom skins are considered. Dir-
ectional stiffness design variables, i.e. lamination parameters, are omitted for the
sake of clarity in the results section. A pre-designed thickness distribution is used
for this case study and is depicted in Figure 3.12. The selected design regions
that are used to compute the reference gradients are highlighted for the top and
bottom skin in Figures 3.12a and 3.12b. A total of 6 regions are studied.

Two significant changes are made in the current case study. Firstly, to gain
a deeper understanding of the applicability of the VLM aerodynamic stiffness
matrix as an approximation, three subcases are constructed with varying Mach
numbers at a fixed dynamic pressure. By fixing the dynamic pressure, the local
variation in static pressure becomes an isolated effect of the Mach number. This
will provide more insight in how susceptible the approximation is, and in exten-
sion how well the method performs, in the presence of shocks of varying strengths.
Secondly, the static aeroelastic Equations 3.1 are extended to account for trim-
ming. In the following subsection a brief overview is provided on the necessary
modifications of the Proteus framework to accommodate for an external CFD
model. The results are then analyzed in Subsection 3.4.2.

3.4.1 EXTENSION TO TRIM ANALYSIS AND SENSITIVITY ANALYSIS

In general, the static aeroelastic equilibrium is not solved for a fixed incidence
angle, but by trimming the aircraft for a certain flight condition, resulting in
an additional equilibrium equation where the total lift equals the aircraft weight
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(a) Design regions 1-3 on the top
skin

(b) Design regions 4-6 on the bot-
tom skin

Figure 3.12: Skin thicknesses of the structural wingbox. Flow direction is in positive x-
direction.

and an additional degree of freedom in the incidence angle. The governing equa-
tions of a trimmed static aeroelastic solution in Proteus can be expressed as a
concatenation of a structural residual Rs and a trim residual Rt:

(
Rs = Qs − Q̃a −Qext

Rt = W − L̃

)

= 0 (3.33)

whereQs is the internal structural load vector, Q̃a is the aerodynamic load vector,
Qext is an external load vector associated to gravity, W is the total weight of the
aircraft and L̃ is the aerodynamic lift. The tilde notation is used to distinguish
terms that are obtained by the VLM. Linearizing the coupled Equations 3.33 with
respect to the structural DOF and the incidence angle yields

[
K−Kext − K̃a −

(
Q̃a

∂α + Qext

∂α

)

− ∂L̃
∂U

−∂L̃
∂α

](
∆U

∆α

)
= −

(
Rs

Rt

)
(3.34)

where ∆U and ∆α are the incremental structural DOF and the incidence angle,
respectively. The sensitivity analysis is commenced when the solution has con-
verged to a state of equilibrium. The coupled Equations 3.33 are linearized with
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respect to the Timoshenko beam cross-sectional stiffness matrix C

[
K−Kext − K̃a −

(
Q̃a

∂α
+ Qext

∂α

)

− ∂L̃
∂U

−∂L̃
∂α

](
dU
dC
dα
dC

)

= −

(
∂Rs

∂C
∂Rt

∂C

)

(3.35)

and the thicknesses t of the design regions which are also associated to the gravity
loads

[
K−Kext − K̃a −

(
Q̃a

∂α
+ Qext

∂α

)

− ∂L̃
∂U −∂L̃

∂α

](
dU
dt
dα
dt

)

= −

(
∂Rs

∂t
∂Rt

∂t

)

(3.36)

The solution vectors of Equations 3.35 and 3.36 are post-processed by the cross-
sectional modeler in order to evaluate the total panel derivatives of various re-
sponses, such as strength or buckling, with respect to the design variables. It
is important to note that while the formulation of the coefficient matrix is con-
sistent for both analysis and sensitivity analysis, the right-hand sides are not.
The pseudo-loads, i.e. the right-hand sides of Equations 3.35 and 3.36, are not
influenced by the VLM when the problem is limited to structural sizing and are
provided analytically in a post-analysis procedure.

The first challenge to successfully integrating an Euler flow model in the Pro-

teus framework, is to ensure that the structural response is consistent with aero-
dynamic loads generated by the Euler model. To this end, a defect-correction
approach is employed, where the loads Q̃a and the lift L̃ on the right-hand side of
Equation 3.34 are corrected by their corresponding defects: ∆Qa and ∆L. The
defects constitute the difference in aerodynamic loads between the Euler model
and the VLM. Necessary inputs for the Euler flow analysis are: (i) the incidence
angle, (ii) the structural DOF which are used for the mesh deformation, (iii) the
Mach number and (iv) the dynamic pressure. As the solution eventually con-
verges to the equilibrium state, it will no longer be governed by the VLM model,
but by the Euler model. It is important to note that the coefficient matrix only
influences the convergence rate and not the converged state. It can therefore
be computationally beneficial to only compute the coefficient matrix for the first
Newton iteration and keep it fixed for the subsequent iterations.

The second challenge is to rectify the solution gradients in Equations 3.35 and
3.36, such that they are consistent with the Euler model. Since the gradient prob-
lem is linear, in contrast to the static aeroelastic analysis which is geometrically
nonlinear, the coefficient matrix must include the corresponding Euler flow partial
derivatives. That is, the four partial derivatives distinguished by the tilde nota-
tion must be updated accordingly. The incidence angle derivative in Equation

57



3

3. GRADIENT RECONSTRUCTION

3.35 can be eliminated by a Schur complement reduction:

(K−Kext −Ka −Kt)︸ ︷︷ ︸
S

dU

dC
= −

∂Rs

∂C
+

(
Qa

∂α
+

Qext

∂α

)(
−
∂L

∂α

)−1(
−
∂Rt

∂C

)

(3.37)

where S is the Schur complement of the lower diagonal block in the coefficient
matrix and Kt is an additional stiffness term associated to the trim residual Rt:

Kt ≡ −

(
Qa

∂α
+

Qext

∂α

)(
−
∂L

∂α

)−1(
−
∂L

∂U

)
(3.38)

The Schur complement formulation in Equation 3.37 also holds for Equation 3.36,
but is omitted here for the sake of brevity. The procedure to obtain the matrix-
vector product of the aerodynamic stiffness matrix Ka was discussed in detail in
Section 2.3 and is not repeated here. The partial derivatives ∂Qa/∂α and ∂L/∂α
are straightforward to evaluate by forward differencing. A small perturbation ∆α
is applied to the trim angle, whereby the flow solution is restarted and converged
to at least the same level of accuracy as the previously converged state. ∆α =
1e−3 was found to yield accurate gradients for this particular case. These partial
derivatives require only one additional flow solution and are thus inexpensive
to evaluate. The fourth partial derivative ∂L/∂U, or rather the matrix-vector
product (∂L/∂U)(dU/dC), can be obtained directly from the construction of the
matrix-vector product of Ka. The procedure is identical to the construction of
the lift gradient explained in the previous case study. Alternatively, ∂L/∂U could
be constructed explicitly and efficiently by the adjoint method. In extension, this
would allow for an explicit construction of Kt, i.e. Kt would be constructed
as a matrix and not a matrix-vector product. However, this approach would
incur additional computational costs and is therefore not implemented. Once
the routines for the partial derivatives are established and the iterative scheme
has converged to a solution dU/dC in Equation 3.37, the total incidence angle
gradient dα/dC can, if needed, be recovered by:

dα

dC
=

(
−
∂L

∂α

)−1(
−
∂Rt

∂C
+

∂L

∂U

dU

dC

)
(3.39)

It should be mentioned that the detailed procedure explained above to obtain
dU/dC and dα/dC must be replicated for the thickness variable t to acquire
dU/dt and dα/dt. It is only omitted here for the sake of brevity.
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3.4.2 RESULTS

The Mach numbers of the three subcases are 0.72, 0.81 and 0.87, respectively.
The dynamic pressure is kept constant at 22.7 kPa and the Reynolds numbers
of the three subcases are 33.6 × 106, 39.0 × 106 and 43.6 × 106 with respect to
the mean aerodynamic chord. The total aircraft weight W includes (i) structural
masses, (ii) non-structural masses, (iii) fuel masses and (iv) remaining masses
such as fuselage and empennage masses. For this particular case, the weight is
estimated to 49,500kg. The static aeroelastic solutions for the three subcases are
converged to near-machine precision and are depicted in a ∆Cp plot in Figure
3.13. A comparison is made between the VLM on the left and the Euler flow on
the right. It can be seen that the VLM pressure for the first subcase is capturing
the general features of the Euler flow pressure very well. The Euler flow solution
for the second subcase seems to generate a moderate shock at roughly 75% aft of
the leading edge. As the figure shows, no shock is present in the VLM solution
and it can therefore not be fully relied upon in transonic flow. At Mach 0.87, the
shock intensifies in strength and translates much closer to the trailing edge.

Figure 3.13: ∆Cp plot comparing VLM (left) to Euler (right) for subcase 1 (top) to subcase
3 (bottom). Flow direction is in positive x-direction.

To keep the computational cost at a minimum, a linear beam model was selected
for this case study. The number of relevant singular values of Z̃a is 61. Singu-
lar values above 61 drop below 10−15, as can be seen in Figure 3.14, rendering
the basis vectors of these singular values irrelevant. All the beam nodes in this
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case study are applied as coupling nodes for the load and displacement transfer.
Moreover, it must be stressed that the approximation matrix, used to generate
Z̃a, is no longer simply K̃a. A closer look at Equation 3.37 indicates that the
proper matrix to be used for approximating the left-singular basis is (K̃a + K̃t)
since K̃t is directly linked to the aerodynamics. Apart from step 2 in Table 3.1,
the remaining steps remain exactly the same.

Figure 3.14: Singular values for both case studies

Subcase 1, with no shock present, indicates a very good gradient reconstruction
for the selected subset of design regions according to Figure 3.15. The initial
residual norm, i.e. without a gradient reconstruction, indicates the difference
between the Euler gradients and the VLM gradients. The largest initial residual
norm is roughly three orders of magnitude for design regions one and three and
the smallest is two orders of magnitude for design region five. The largest final
residual norm (i.e. when the left-singular basis is fully enriched), is roughly two
orders of magnitude for design region one and the smallest is 0.4 corresponding
to design region six. The design region with the best improvement over the entire
span of basis vectors is design region three, which showed a residual reduction of
three orders of magnitude and the least improvement is two orders of magnitude
observed for design region five. It is evident, more so than the previous case
study, that all the design regions are subject to strong variations and are not
reducing monotonically. Nevertheless, the overall trend is clear and the residuals
are reducing as the left-singular basis is enriched.

Subcase 2, where a moderate shock is present, indicates a higher initial residual
for design regions 3 and 6 for instance, compared to the first subcase as can be
seen in Figure 3.16. There seems to be a strong initial residual reduction for
design regions 1, 3, 4 and 6. However, after roughly 20 basis vectors, the residual
reduction is almost leveled out and the remaining improvement is marginal. The
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Figure 3.15: Gradient reconstruction for subcase 1 at Mach 0.72

maximum residual reduction over the entire span of basis vectors is somewhat
less than 3 orders of magnitude for design region 3 and the smallest reduction is
less than 1 order of magnitude for design regions 2 and 5. However, it should be
mentioned that the design regions 2 and 5 start with relatively small residuals to
begin with.

Figure 3.16: Gradient reconstruction for subcase 2 at Mach 0.81

The residuals of subcase 3, where a strong shock is present, have somewhat similar
features to the previous subcase. There is a very strong initial reduction for the
first 15 basis vectors as indicated by Figure 3.17. Only here, the initial residuals
are much higher. The highest initial residual is 105 for design region 3 and the
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smallest is design region 5 with 3 × 102. The high initial residuals indicate that
the VLM gradients are significantly degraded as the Mach number is increased
to emulate transonic flow. Moreover, the application of the VLM in the gradient
reconstruction method appears to be somewhat impeded by the presence of the
recompression shock. Subcases 2 and 3 registered higher residual values with
depleted basis vectors compared to subcase 1.

Figure 3.17: Gradient reconstruction for subcase 3 at Mach 0.87

3.5 CONCLUSIONS

A method was presented for approximating high-fidelity gradients of structural
responses with respect to structural sizing variables. The method employs a vor-
tex lattice aerodynamic model in conjunction with SVD and pseudo-inverting to
reconstruct high-fidelity aero-structural Euler gradients in the transonic regime.
The two case studies, of the ONERA M6 wing and the forward-swept wing, in-
dicate that the method is capable of reconstructing the gradients as the force
basis is increased. It was found that the residual between reconstructed gradients
and exact (reference) gradients is not reducing monotonically. The application
of the method was also extended to trimmed static sensitivity analysis for the
forward-swept wing. The optimum number of basis vectors trading off computa-
tional efficiency and accuracy is case-dependent and needs to be determined once
before initiating the optimization.
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STATIC AEROELASTIC TAILORING OF

A FORWARD-SWEPT WING

Forward-swept wing (FSW) aircraft have been around for a considerable time.
Early, and most notable, prototypes include the Russian Belyayev DB-LK, the
American Cornelius XFG-1, and the iconic German Junkers Ju 287, all developed
in the early half of the 1940s. The benefits of the FSW were recognized at an
early stage. The airflow over a FSW tends to migrate inward towards the root
rather than outward towards the tip. This increases the prospect of attached
flow at the outboard section of the wing and promotes aileron controllability at
high incidence angles. Perhaps more importantly, FSWs tend to generate wash-in
upon bending which further augments aileron effectiveness. As a result, FSW
aircraft are generally more maneuverable, as they can cope with much higher in-
cidence angles at high velocities, compared to conventional backward-swept wing
configurations. Moreover, research in recent publications by Airbus [63] and the
German Aerospace Center (DLR) [64] suggest that wings with low or negative
sweep angles can delay the laminar-turbulent transition resulting in substantial
drag reductions.

The main shortcoming of a negative sweep angle is the increasing susceptibility
to structural failure by divergence. As the wing deflects during flight, the angle of
attack increases spanwise towards the tip. This inflates the total lift on the wing,
which in turn increases the tip deflection and the angle of attack until the external
aerodynamic loads overcome the opposing internal forces of the structural wing-
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box and the wing breaks. Early attempts to address this detrimental aeroelastic
phenomenon was to enhance the rigidity of the wing, but this also resulted in
considerable weight penalties which rendered any FSW design unfeasible.

In the early 1980s, with the reinvigorated surge of composite materials, efforts
were made to leverage the high strength-to-weight ratio of composites to improve
the structural efficiency of FSW aircraft. Krone [65] was one of the first to explore
aeroelastic tailoring as an application of increasing the divergence speed of a FSW,
while maintaining a low structural weight. His research laid the foundation for
the X-29 program, which culminated in two experimental FSW airplanes built by
Northrop Grumman. Designated the Grumman X-29, it started flying in 1984
and was the first FSW aircraft to break the sound barrier. Aeroelastic tailoring
was a fundamental component in the design process as it enabled the divergence
speed to surpass the speed of sound.

Weisshaar [66, 67] advanced the research on FSW configurations and investigated
the divergence problem, bending-torsion coupling, the spanwise pressure center
and aileron effectiveness using aerodynamic strip theory to predict the loads and
a laminated box beam to model the structure. Librescu et al. [68, 69, 70] inves-
tigated aeroelastic tailoring using thin-walled anisotropic composite beams, and
more recently Dillinger [34] investigated the effects of aeroelastic constraints such
as divergence velocity, aileron effectiveness and wing twist on static aeroelastic
tailoring of a FSW configuration.

The main purpose of this chapter is to monitor the effects of employing recon-
structed high-fidelity aero-structural gradients in static aeroelastic tailoring of a
FSW configuration. The two pertinent questions are: (i) can reconstructed gradi-
ents drive the design to an improved optimum and (ii) will the design converge
faster? In an attempt to answer these questions, a design study is performed
with the aeroelastic conceptual design tool Proteus. Load and gradient correc-
tions are facilitated by the CFD solver elsA. The wing configuration is the FSW
introduced in Subsection 3.4.

The remainder of this chapter is organized as follows. The structural features of
the wingbox, including detailed data on the mass model, are outlined in Section
4.1. Section 4.2 covers the load cases in Subsection 4.2.1, the design variables,
the constraints and the objective function in Subsection 4.2.2, and the optimizer
and the starting design in Subsection 4.2.3. Moreover, three optimization cases
are defined in Subsection 4.2.4 to study the effects of the aerodynamic load and
gradient corrections. In Section 4.3, the optimization results are analyzed and
differences between the optimization cases are considered and reflected upon. A
brief conclusion of this chapter is given in Section 4.4.
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4.1 MODEL DESCRIPTION

The outer shape features of the FSW were described in Section 3.4 and are not re-
peated here. In order to reconstruct a somewhat realistic structural configuration
for the purpose of static aeroelastic tailoring, a reference structural model was
required. To this end, disclosed material and mass data from the FSW structural
model in Dillinger [34] were used, complemented by material strength data from
Werter [35]. The FSW configuration in Dillinger [34], which in turn was inspired
by the DLR project LamAiR [71], differs only marginally in geometry compared
to the FSW in the previous chapter. This allowed for a representable optimization
case to be constructed.

The beam reference axis is located at 38% chord with a clamped boundary con-
dition at the wing root. The wing is not subject to twist nor dihedral, i.e. the
z-coordinates of the leading and trailing edge are consistent along the span. The
aircraft mass, excluding the wing structural and non-structural masses, totals
49,500kg. The weight of the various structural components are listed below in
Table 4.1.

Table 4.1: FSW aircraft mass excluding the wing (Source: Dillinger [34])

Mass

Fuselage, Empennage, Engines 31,550 kg
Passengers 14,250 kg
Artificial Center Wing Tank (ACWT) 3700 kg

Total 49,500 kg

Apart from structural masses inherent in the finite element model, non-structural
masses are accounted for as well. These comprise of structural components that
are not accounted for by the wingbox finite element model and remain constant
throughout the optimization, i.e. leading and trailing edge structures such as
flaps, ailerons, slats, spoilers and associated actuators. These are approximated
as point masses distributed in the spanwise direction along the leading and trailing
edge, according to Figure 4.1. The Leading Edge (LE) and Trailing Edge (TE)
mass distributions are available in Figures 4.2 and 4.3, respectively. The total
sum of the LE and TE non-structural masses amount to 374.8 kg and 421.5 kg,
respectively.

The wing is subject to 25 equally spaced ribs, including the ones at the root
and the tip. They are aligned parallel to the free-stream and consequently to
the global x-axis. The rib mass distribution is given in Figure 4.4. The top and
bottom skins are reinforced in the spanwise direction by stringers. The stringers
are isotropic and are subject to a constant 3% pitch with respect to the root chord.
The cross-sectional area is 5 · 10−4m2 and the longitudinal stiffness is 68.95GPa.
The density is set to 2795kg/m3.
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Figure 4.1: Planform view of non-structural mass locations

The ply material properties, or more specifically the elastic moduli are scaled by
a factor of 0.65 in the current work. The main reason for this is to increase the
flexibility of the wing and enhance the aeroelastic effects during the optimization.
In contrast to the failure envelope that is constructed using strain (i) tension,
(ii) compression and (iii) shear allowables for the ply, Proteus implements a
different type of failure model based on the Tsai-Wu failure criterion. To this end,
the material strength of the uni-directional AS4/3501-6 were directly extracted
from Werter[35]. The material properties are available in Table 4.2.

Table 4.2: Material properties

(Source: Dillinger [34])

Longitudinal Modulus (E11) 53.95GPa
Transverse Modulus (E22) 5.525GPa
Shear Modulus (G12) 2.73GPa
Poissons Ratio (ν12) 0.35
Density (ρ) 1425 kg/m3

UD Carbon/Epoxy (AS4/3501-6) (Source: Werter [35])

Longitudinal Tensile Strength (Xt) 948.5MPa∗

Longitudinal Compressive Strength (Xc) 717.6MPa∗

Transverse Tensile Strength (Yt) 23.7MPa∗

Transverse Compressive Strength (Yc) 94.8MPa∗

Shear Strength (S) 31.6MPa∗

∗ Including knockdown factors for environmental effects (0.8),
barely visible impact damage (0.65), and material scatter ef-
fects (0.8).

It must be mentioned that the material properties chosen from Dillinger [34] with
the applied scaling factor are not in compliance with the material strength of
AS4/3501-6 which is used to construct the failure criterion. This, however, was
considered to be of less importance in the current conceptual design study.
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Figure 4.2: LE mass distribution (Source: Dillinger [34])

Figure 4.3: TE mass distribution (Source: Dillinger [34])

Figure 4.4: Rib mass distribution
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4.2 OPTIMIZATION SETUP

In this section, the most important aspects and parameters of the optimization are
described. Load cases are described in Subsection 4.2.1, while in Subsection 4.2.2
the objective function, the constraints and the design variables are outlined. The
optimizer and the initial design are discussed in Subsection 4.2.3. In Subsection
4.2.4, three optimization cases are defined to investigate the influence of load
corrections and gradient corrections.

4.2.1 LOAD CASES

The sizing of the wingbox, or the load carrying structure, is a process that must
account for critical load cases that an aircraft might encounter during its time
in service. The load cases in this thesis are limited to static manoeuvers. Dy-
namic manoeuvers, ground manoeuvers (taxiing or landing) and gust/turbulence
encounters are consequently not considered in the optimization. The main goal in
this chapter is to distinguish and examine features of the optimized results that
can be attributed to higher order aerodynamics, such as recompression shocks
for instance. It would therefore be superfluous to include subsonic load cases,
where the aerodynamic loads of an Euler flow model are very similar to those
of a VLM model. This was demonstrated on the FSW in Subsection 3.4.2 by
varying the Mach number while keeping the dynamic pressure constant. It was
also acknowledged in an extensive analysis by Dillinger [34] that the differences in
pressure distribution between an Euler flow model and a DLM model for subsonic
load cases are very small. Admittedly, subsonic load cases, if active during the
optimization, will certainly affect the sizing in some regard. However, they will
not contribute to the desired goal of isolating the effects between two flow models
with notably different loads and gradients.

The FSW described in Sections 3.4 and 4.1 shares similar features to the FSW
in the doctoral thesis by Dillinger [34]. As a consequence, the load cases in said
thesis are reused in this optimization study. Subsonic sizing load cases, however,
are omitted due to the aforementioned premise. In addition, a cruise load case
is also omitted as it does not contribute to the structural sizing. This load case
is generally included to enforce a predefined wing twist distribution at cruise
condition such that maximum aerodynamic performance can be achieved. The
load cases used for the current optimization study are listed in Table 4.3.

Table 4.3: Load cases

ID Description EAS Altitude Mach nz

1 Symm. pull up 192.5m/s 6700m 0.87 2.5
2 Symm. push down 192.5m/s 6700m 0.87 -1.0
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Both load cases are subject to transonic Mach numbers. Moreover, the computa-
tion time in the current study is substantially reduced by limiting the optimiza-
tion to two load cases, especially during the gradient reconstruction which is the
most arduous task computationally. Introducing additional load cases would only
become computationally viable if the load cases were parallelized, a feature the
current Proteus version was not equipped with. The dynamic pressure for both
load cases is equivalent to 22.7 kPa at the specified altitude and velocity. It should
be mentioned that all analyses in the optimization are trimmed with gravitational
effects included. This implies that the lift generated by the aerodynamic model
equals half the aircraft weight multiplied by the load factor nz.

4.2.2 OBJECTIVE, DESIGN VARIABLES AND CONSTRAINTS

The objective function of the optimization is weight minimization. The top and
bottom skins of the wingbox, as well as the front and rear spars, are divided in 72
equally spaced design regions (see Figure 4.5). The top and bottom skins comprise
of 24 design regions each, with 12 design regions in the spanwise direction and
two in the chordwise direction. The front and rear spar comprise of 12 design
regions each. The stiffness properties of the ribs and stringers are kept constant
throughout the optimization and are thus not included as design variables. Each
design region is subject to nine design variables: eight lamination parameters
describing the in-plane and out-of-plane characteristics of composite laminates
and one thickness design variable. This results in 72× 9 = 648 design variables.

Figure 4.5: Exploded view of the design regions on the structural wingbox

The laminate thickness variation is limited to an upper and lower bound of 50mm
and 1mm, respectively. The lamination parameters, on the other hand, are
subject to a six equation feasibility constraint per design region, which totals
72 × 6 = 432 lamination parameter feasibility constraints over the entire design
space.

Strain and buckling constraints are standard features in Proteus. A detailed
description on these two types of structural constraints and their implementation
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Table 4.4: Number of optimization constraints per load case.

Type Number

Lamination parameter feasibility 432
Tsai-Wu strain factor 576 per loadcase
Buckling factor 5184 per loadcase

Total 432 + 5760 per loadcase

in Proteus can be found in Werter [35]. Here, it suffices to mention that the
strain criterion is based on a Tsai-Wu strain factor where an index value above
one results in structural failure, whereas the buckling constraint is based on a
buckling model derived in Dillinger [34]. A buckling coefficient lower than one
indicates a buckling-free design. The total number of optimization constraints
per load case is listed in Table 4.4.

In addition to the aforementioned constraints, Proteus is capable of modeling
other types of constraints such as aileron effectiveness, 1G wing twist, and dy-
namic (flutter) and static (divergence) aeroelastic instabilities. These types of
constraints, however, were inactive in the current optimization study. The gradi-
ent reconstruction scheme was only successfully implemented and verified for the
strain and buckling constraints. The remaining types of constraints, which are
either aerodynamic or aeroelastic, were inactive as this would require additional
and extensive code modifications to the Proteus code.

4.2.3 OPTIMIZER AND INITIAL DESIGN

The Globally Convergent Method of Moving Asymptotes (GCMMA) developed
by Svanberg [72] was used as a gradient-based optimizer. Since the number of
constraints significantly exceeds that of the design variables, the direct method for
computing gradients was applied. A feature of the GCMMA worth highlighting
is that it consists of ”inner” and ”outer” iterations. During the latter, both the
function values and associated gradients are computed. During the former, on
the other hand, only the function values are evaluated. In the remainder of the
thesis, if not stated otherwise, the term ”optimization iteration” will refer to the
outer iteration.

The initial thicknesses of the top and bottom skins, including the spars, vary
linearly in the spanwise direction from 15mm at the root to 7mm at the tip, as is
depicted in Figure 4.6. A quasi-isotropic symmetric layup [025%/±4550%/9025%]s
is applied to the skins and spars, and is visualized using stiffness rosettes [36] in
Figure 4.7. Moreover, the initial design is feasible, i.e. no constraints are violated.
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Figure 4.6: Initial thicknesses Figure 4.7: Initial stiffnesses

4.2.4 OPTIMIZATION CASES

The main interest in this chapter is to implement not only aerodynamic load
corrections in static aeroelastic tailoring, but also corrected sensitivities via the
gradient reconstruction scheme proposed in Chapter 3. In order to successfully
study and differentiate the effects of applying aerodynamic load corrections and
gradient corrections by a higher order CFD solver, three optimization cases are
formulated and outlined as follows:

1. The aerodynamic loads, including the gradients, are computed by the built-
in aerodynamic model in Proteus based on vortex lattice aerodynamics.
This case is consequently denoted VLM/VLM. It does not require any code
modification to Proteus.

2. The VLM aerodynamic loads are continuously corrected throughout the op-
timization by a higher order Euler flow model, whereas the gradients are
computed by the VLM model at the static aeroelastic equilibrium determ-
ined by the Euler flow model. This case is denoted Euler/VLM. The meth-
odology is similar to the CFD correction strategy presented in Dillinger [34].
The main difference is that the aerodynamic loads in the current study are
corrected for each function evaluation. In Dillinger [34], the CFD correc-
tions are only renewed every five to ten iterations and are kept constant in
between iterations. The code modification effort to Proteus is moderate,
as only load corrections are involved. The principal features of the load
correction module were already outlined in Section 2.2 and in particular by
Figure 2.5.
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3. The third case implements the gradient reconstruction strategy outlined
in Chapter 3. Here, both the aerodynamic loads and the corresponding
gradients are corrected by the Euler flow model. This case is consequently
denoted Euler/Euler. Three subsets of 15, 20 and 25 basis vectors are con-
sidered to reconstruct the Euler aero-structural gradients. The three differ-
ent subsets allow for a comparison of the efficiency when the vector basis
is enriched. Presumably, the enrichment of the vector basis should improve
the convergence rate of the optimization at the expense of an increased com-
putational cost per optimization iteration. It demands an additional set of
code modifications to Proteus compared to the second case in order to
account for the corrected gradients.

4.3 OPTIMIZATION RESULTS

A first remark on the V LM/V LM optimized design can be made by observing
the thickness distribution in Figure 4.8. It becomes clear that the design regions
near the front spar, with the exception of the first two regions from the root, were
subject to higher thicknesses. This common feature in aeroelastic tailoring shifts
the elastic axis forward in order to generate wash-out (i.e. a reduced incidence
angle from root to tip) upon bending. In doing so, the spanwise pressure center can
be shifted inboard to produce a lower root bending moment with reduced outboard
loads which results in a weight reduction. The wash-out can be visualized in
Figure 4.10 for Load Case (LC)1.

Figure 4.8: Converged thicknesses Figure 4.9: Converged stiffnesses

A second feature which stimulates weight minimization, by alleviating the root
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bending moment, is the stiffness direction of the design regions. The stiffness
distribution is governed by the lamination parameters and can be visualized in
Figure 4.9. The regions close to the root (see top skin) are designed with a
high in-plane stiffness in the spanwise direction, while the dominant in-plane
stiffness close to the tip is gradually tilted towards the flow direction. This stiffness
configuration promotes a negative bend-twist coupling [34, 73], i.e. as the wing
bends upwards the tip will twist nose down. This results in an enhanced wash-out
effect, amplifying the effect due to the forward shift of the elastic axis, moving
the spanwise center of pressure inboard.

Figure 4.10: 3D visualization of the wash-out

Figure 4.11: Strain LC1 Figure 4.12: Strain LC2

All the constraints described in Subsection 4.2.2 were active during the current
optimization, i.e. the failure index was equal to, or very close to, one on at least
one of the 72 design regions. The strain constraint appeared to be more active for
LC2 on the top skin compared to LC1 on the bottom skin (see Figures 4.11-4.12).

The buckling constraint was clearly more dominant for LC2 in the region close to
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Figure 4.13: Buckling LC1 Figure 4.14: Buckling LC2

the root on the bottom skin, as can be seen in Figure 4.14. Moreover, the spars,
front and rear, noticeably hit the buckling constraint limit for both load cases.
However, the buckling constraint did not appear to be very active on the top skin
for LC1 (see Figure 4.13).

The fact that LC2 appears to trigger more design constraints for both failure and
buckling compared to LC1 indicates that the vertical tip deflection is larger for
LC2. Indeed, LC1 and LC2 resulted in a 0.90m and a −2.87m vertical tip deflec-
tion, respectively. That is, LC2 produced more than a threefold larger absolute
vertical tip deflection compared to LC1. It was anticipated that the reduced stiff-
nesses in Table 4.2 would trigger large deformations (in fact this was the desired
outcome). However, the substantially larger deformations, and the correspond-
ing strain and buckling responses, for LC2 compared to LC1 were unforeseen.
As such, to better comprehend the characteristics of the current optimization,
and in particular the influence of the airfoil shape, additional optimizations were
necessary. This is discussed in detail in the following subsection.

4.3.1 AIRFOIL INFLUENCE

To investigate the impact of the airfoil shape on the optimized results, two
additional optimization cases were performed. The first was identical to the
VLM/VLM, only with a supercritical OAT15A airfoil (see Figure 3.9) along the
entire span. This case was denoted OAT15A and the intention here was to shed
some light on the peculiar characteristics of the airfoil shape close to the root,
as is depicted in Figure 4.8. The second optimization, denoted NACA0012, had
a symmetric NACA0012 airfoil adopted along the entire wingspan, whereas all
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remaining parameters were kept identical to the VLM/VLM case. The intention
of the second optimization was to investigate the influence of the airfoil shape
on the vertical tip deflection. It should be mentioned that the NACA0012 airfoil
was selected because of its generic character and absence of camber. Any other
symmetric airfoil would have been equally sufficient as the vortex ring elements
in Proteus would have been modeled in the same manner, i.e. by distributing
them on the camber surface which in the case of a symmetric airfoil overlaps with
the symmetric surface.

Figure 4.15: OAT15A thicknesses Figure 4.16: OAT15A stiffnesses

In the first case, it became evident that the airfoil shape has a substantial impact
on the optimization and the converged thickness distribution, as can be seen by
comparing Figures 4.8 and 4.15. By applying a OAT15A airfoil along the entire
span, the design region thicknesses at the wing root are increased more towards
the front spar. This contradicts the previous results in Section 4.3, where the
OALE10 airfoil at the root triggered a shift of increasing thickness towards the
rear spar. It can therefore be derived that the main source of this spanwise shift
in thickness distribution can be attributed to the change in the airfoil shape.
In contrast to the thickness distribution, there does not seem to be an equally
significant change in the stiffnesses when comparing Figures 4.9 and 4.16. The
strain and buckling responses for the OAT15A optimization were not selected for
presentation due to the similarities with the VLM/VLM.

In the second case, the NACA0012 optimization indicated a similar thickness dis-
tribution pattern to that of the OAT15A, i.e. a increasing thickness at the front
spar for the entire wing span (see Figure 4.17). What is of greater interest here
is that LC1 and LC2 converged to a 2.60m and a −1.05m vertical tip deflection,
respectively. This opposes the previous results in Section 4.3, where LC2 resul-
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ted in a significantly higher absolute tip deflection compared to LC1. Moreover,
an additional +1G load case was included in the NACA0012 optimization which
resulted in an identical absolute tip deflection as LC2. This validated the optim-
ization because the response has to be symmetric in case of a symmetric airfoil.
However, the +1G load case did not affect the structural sizing process since the
strain and buckling responses generated by LC1 supersede those generated by the
+1G load case. Based on the results, it can be concluded that the particular
airfoil shape was the primary source for the large negative tip deflection of LC2
in the VLM/VLM case, which in turn triggered the response illustrated in Fig-
ures 4.12 and 4.14. An additional feature of influence that merely amplified the
difference in tip deflection between LC1 and LC2 is the reduced stiffness values
in Table 4.2, which were judiciously selected to augment the aeroelastic response.

Figure 4.17: NACA0012 thicknesses Figure 4.18: NACA0012 stiffnesses

Compared to the VLM/VLM case, and in agreement with the converged vertical
tip deflections, the strain and buckling response for the NACA0012 optimization
were most prominent for LC1 on the bottom skin and top skin, respectively. The
results are illustrated in Figures 4.19-4.22.

Before concluding the current subsection, a comparison of the spanwise lift and
moment distributions was made. Figures 4.23 and 4.24 depict the initial and op-
timized trimmed aeroelastic solutions for LC1 and LC2, respectively. The lift was
computed by summing up the chordwise contributions on each of the 47 spanwise
panel sections, hence the 47 markers in the aforementioned figures. The aero-
dynamic moment was computed about the local quarter chord of each spanwise
panel section.

It became clear that the OAT15A case generated more lift close to the root com-
pared to the VLM/VLM, but that the chordwise center of pressure was located
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Figure 4.19: Strain LC1 (NACA0012 ) Figure 4.20: Strain LC2 (NACA0012 )

Figure 4.21: Buckling LC1 (NACA0012 ) Figure 4.22: Buckling LC2 (NACA0012 )
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closer to the trailing edge, subsequently prompting a much larger negative torsion
moment. This is the reason why the thickness distribution is different between
VLM/VLM and OAT15A in the root region. Another interesting note to make is
that the spanwise pressure center, distinguished in the figures by a filled marker,
was shifted closer to the root for all three cases. This can be directly associated
to the objective function which is to minimize the weight by reducing the root
bending moment. It is quite remarkable that the reduction in root bending mo-
ment not only triggered a shift of the spanwise pressure center towards the root
by increasing the lift in the said region, but also by generating negative lift at the
tip. This can be seen in Figure 4.23 for the VLM/VLM and OAT15A. Notice how
the lift decreases almost linearly from the root to the tip, whereas the optimized
designs resemble a reversed S-shaped lift distribution.

Regarding the NACA0012 case, a nearly zero quarter chord pitching moment can
be observed for both initial as well as optimized designs. This was an expected out-
come since an uncambered flat plate does not generate pitching moment around
the quarter chord, even when the angle of attack and lift vary [74]. Moreover,
although the initial spanwise pressure center for LC2 is at 15m, the correspond-
ing optimized pressure center is located at 7m. This can be compared with the
two remaining cases where the pressure center of the initial designs are at roughly
14−15m and the optimized designs are at 12−13m. This observation underscores
why the negative tip deflection of the NACA0012 case was not as substantial as
the remaining two cases.

Figure 4.23: Spanwise lift and y-moment for LC1 at initial and optimized trimmed solution
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Figure 4.24: Spanwise lift and y-moment for LC2 at initial and optimized trimmed solution

4.3.2 EULER LOAD AND GRADIENT CORRECTIONS

In Section 3.4, the gradient reconstruction method was evaluated for Mach =
0.72, 0.81 and 0.87 at fixed dynamic pressure. Indeed, it was shown that the first
subcase of Mach = 0.72 did not produce a recompression shock, whereas Mach
= 0.87 generated a strong shock near the trailing edge (see Figure 3.13). To
verify this, and to better comprehend the limitations of linearized potential flow
methods, a simple case was constructed. The FSW was analyzed at its initial
configuration (i.e. without any deformation to the structure) at five degrees angle
of attack. The dynamic pressure was kept constant at 22.7 kPa (the same as
the optimization) and a steady computation was performed by the VLM and the
Euler flow solver at Mach = 0.60 and 0.87. Here, we chose a slightly lower Mach
number for the subsonic case, merely to increase the contrast between subsonic
and transonic flow. The cross-sectional pressure difference at various spanwise
stations can be observed in Figures 4.25 and 4.26.

The ∆Cp at Mach = 0.60 indicated a good agreement between the two aerody-
namic methods. There was a small offset on the VLM results as it appeared to
underpredict the aerodynamic pressure. This is in agreement with the results
obtained by Dillinger [34] and can be attributed to the thin-plate approximation
which is employed by Proteus (i.e. the vortex elements are distributed on the
camber surface and not on the actual wing surface). Moreover, the VLM results
lacked in resolution at the LE and TE and could be improved by increasing the
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Figure 4.25: Cross-sectional ∆Cp at Mach = 0.60 and five degrees incidence angle

chordwise panel density. Unfortunately, increasing the number of panels resul-
ted in prohibitively high computation time, in particular when the vortex lattice
aerodynamic stiffness matrix K̃a was assembled. Hence, the number of panels in
the chordwise direction was limited to eleven in this study.

Figure 4.26: Cross-sectional ∆Cp at Mach = 0.87 and five degrees incidence angle

The aerodynamic methods display a different behavior in transonic flow, as can
be seen in Figure 4.26. The pressure difference of the Euler flow changed signi-
ficantly and a strong shock was manifested in the form of a pressure peak near
the trailing edge. The VLM results, on the contrary, were much smoother and
resembled the VLM results from the subsonic case, save the high pressure peak at
the leading edge. The said pressure peak was not due to a recompression shock,
as it was already highlighted that linearized potential flow methods lack this pre-
dictive capability, but due to the Prandtl-Glauert correction mentioned briefly in
Subsection 2.1.1. The Prandtl-Glauert correction is a method used to account for
compressibility effects in high-subsonic flows. It is based on a simple coordinate
transformation featured by a coefficient η [37]:

η =
√
1−M2

∞ (4.1)

where M∞ is the free-stream Mach number. The lift coefficient, for instance,
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corrected by the Prandtl-Glauert rule, then becomes

CM>0
L =

CM=0
L

η
(4.2)

where CM>0
L and CM=0

L are the lift coefficients with and without correction,
respectively. It can be derived from Equations 4.1 and 4.2 that as the flow ap-
proaches the speed of sound (i.e. M∞ → 1), the corrected lift coefficient goes
to infinity (i.e. CM>0

L → ∞). As a consequence, the Prandtl-Glauert correction
tends to overpredict aerodynamic loads at transonic flow [37]. A Mach depend-
ency study, where the lift coefficient is plotted as a function of Mach number, can
typically shed some light on the range in which the Prandtl-Glauert correction
can be considered valid for a certain configuration. Such a study was not conduc-
ted in the current optimization since the Mach number for the two load cases in
Table 4.3 was well beyond the limit of linearized potential flow methods.

Figure 4.27: Convergence history of optimization cases

The convergence history of the three optimization cases, outlined in Subsection
4.2.4, is illustrated in Figure 4.27. For the purpose of increasing the readability,
the y-axis was subject to an upper and lower limit of 0.75 and 0.55, respect-
ively. The VLM/VLM case noticeably resulted in the smoothest convergence.
Apart from iterations 3, 7, 11 and 20, the structural weight appeared to reduce
monotonically until convergence. The optimization was not subject to a conver-
gence criterion in this study. Rather, the optimization was allowed to advance
for a considerable amount of iterations until it could be established, through a
visual representation in Figure 4.27, that convergence was achieved, whereupon
the optimization was terminated.
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The Euler/VLM optimization demonstrably converged to a lower structural weight
than the VLM/VLM. This observation was also made by Dillinger [34], where the
optimization including Euler load corrections with unbalanced laminates resulted
in a lower structural weight compared to the optimization excluding Euler load
corrections. Considering the fact that the analyses were trimmed and that the
total lift for all cases were identical, this outcome can be attributed to the dispar-
ity in load distribution between the two aerodynamic models in transonic flow.
Indeed, as Figure 4.26 indicates, the recompression shock triggered a rearwards
shift of the chordwise center of pressure towards the TE, effectively increasing
the negative torsional moment. This generated a wash-out effect and reduced the
need for the optimizer to compensate by adding mass at the LE. The chordwise
center of pressure of the VLM, on the other hand, is comparably closer to the
LE, thus prompting the optimizer to add weight at the LE to generate wash-out
and stimulate a reduced root bending moment. Hence, the load distribution of
the VLM increases the weight penalty associated to load alleviation in transonic
flow for this particular case.

The Euler/Euler20 case, where the superscript signifies the number of basis vectors
employed during the gradient reconstruction, displayed an improved convergence
for the initial 19 iterations. The convergence then stagnated for the subsequent
19 iterations, without any notable reduction in the structural weight, followed
by a rapid decrease in the objective function after iteration 38. The optimiza-
tion eventually converged to a lower structural weight than the Euler/VLM. It
is interesting to note that the introduction of corrected gradients prompted a
distinctly different convergence path. However, it did not contribute to a mono-
tonic decrease in structural weight, nor did it converge to a substantially different
optimum. A possible, and conceivable, source for this outcome is that the recon-
structed gradients were not sufficiently accurate or consistent with the structural
response. To this end, as was declared previously, two additional optimizations
with different sets of basis vectors were performed to investigate the difference in
convergence behavior.

In Figure 4.28, a convergence study was performed for different sizes in the vector
basis. It can be observed that the case with the smallest subset of 15 basis vectors,
Euler/Euler15, encountered substantial convergence difficulties after the first 20
iterations. It did not fully converge within 70 iterations and even resulted in a
design with a higher structural weight than all the preceding cases that were de-
picted in Figure 4.27. This implies that the vector basis was not sufficiently large
to reconstruct accurate Euler aero-structural gradients. Conversely, the case with
the largest subset of 25 basis vectors, Euler/Euler25, displayed an improved con-
vergence behavior after the first 20 iterations. Although it converged to the same
structural weight as Euler/Euler20, the convergence appeared to be more rapid
in the range between iterations 24 and 38. It should be mentioned that 25 basis
vectors was an upper limit in this thesis. Optimizations with exceeding subsets
resulted in excessive computation costs and were consequently not considered.
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Figure 4.28: Convergence history of optimization cases with varying number of basis vectors

4.4 CONCLUSIONS

In this chapter, a structural sizing study was defined to investigate the potential
of the gradient reconstruction scheme developed in Chapter 3. The optimization
was performed on a FSW configuration and the in-house conceptual design tool
Proteus was employed to parametrize the structural layout of the wingbox. The
CFD solver elsA, delivered corrected loads and associated gradients by a 643K
cell Euler model. Three optimization cases were defined: (i) one with loads and
gradients generated by the built-in VLM in Proteus, (ii) one with corrected
loads by the Euler flow model but with VLM gradients and (iii) one with cor-
rected loads and gradients by the Euler flow model, employing the methodology
in Section 3.2. The three cases converged to different optima, where the third
case including corrected gradients converged to the lowest structural weight. The
limited applicability of VLM to shock-free flow conditions emphasizes the import-
ance of introducing high-fidelity aerodynamics in structural sizing, not only in the
form of corrected aerodynamic loads but also rectified aero-structural gradients.
In Section 4.3, the convergence characteristics were shown to improve for the case
with Euler gradients as the subset of basis vectors was enriched. Conversely, the
optimized result deteriorated when the subset was limited to a small set of vectors.

It must be stressed that the Euler equations, which are used extensively in this
design study, do not constitute the highest order of aerodynamic equations and
must be considered carefully in structural sizing. The deployment of even higher
order CFD, such as the RANS equations, can result in considerable shock reloca-

83



4

4. STATIC AEROELASTIC TAILORING OF A FORWARD-SWEPT WING

tion, effectively altering the pressure distribution and in extension the converged
design. Additionally, a convergence study on the mesh size of the Euler grid
should be performed to affirm the reliability of the aerodynamic loads generated
by the Euler equations. Since the mesh was delivered as an input from ONERA,
this was not possible in the current study.
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RECOMMENDATIONS

Panel methods are extensively used throughout industry and academia in con-
ceptual design. They provide rapid results, but their applicability is limited up
to high subsonic flow. Modern-day commercial aircraft predominantly operate in
transonic flow, and it is therefore important to include high-fidelity aerodynamic
methods in the design process that provide reliable results in this flight condition.

The primary motive, at the outset of this dissertation, was to advance the research
efforts of Dillinger [34] to not only account for high-fidelity aerodynamics in static
aeroelastic tailoring, but to account for high-fidelity aero-structural gradients as
well. The main objectives in this thesis were defined in the introduction and are
repeated below for the sake of clarity:

1. Develop a method and establish a framework for solving direct high-
fidelity aero-structural gradient problems.

2. Develop a method for computing structural response gradients in
high-fidelity aero-structural sensitivity analysis.

In the following section, the chapters are reviewed and the successfulness of accom-
plishing the main objectives is reflected upon. In Section 5.2, recommendations
for future research are discussed.
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5.1 CONCLUSIONS

Prior to solving the aero-structural gradient problem, the underlying governing
equations must be solved. Indeed, the initial challenge in this thesis was to solve
the high-fidelity static aeroelastic problem. The problem was partitioned in com-
putational modules to make it a more tractable undertaking. Each of the modules
was assigned individual subtasks with information exchanged in a systematic fash-
ion by a coupling module. The modules were: (i) two aerodynamic solvers (one
considered medium-fidelity and a second considered high-fidelity), (ii) a structural
solver, (iii) a coupling module and (iv) an aerodynamic stiffness matrix module.

The high-fidelity aerodynamic solver used throughout this thesis was elsA. Al-
though it is capable of solving both the Euler and RANS equations, it was primar-
ily used in this thesis to solve the former, with an exception in chapter two where
the RANS equations were implemented as well. The limited use of the RANS
equations can be attributed to the substantial increase in computation cost and
the unavailability of a structured RANS mesh for the forward-swept wing model
in chapters three and four. The medium-fidelity aerodynamic solver was the in-
house aeroelastic design tool Proteus, solving the linearized potential flow equa-
tions with a Prandtl-Glauert compressibility correction. The structural solver in
chapter two was Nastran, while the structural solver in chapter three was later
changed to Proteus in order to accommodate for the subsequent optimization
in chapter four. The coupling module was designed to account for load transfer
from the aerodynamic surface mesh to the structural degrees of freedom, but also
to conform the aerodynamic grid to the structural deformations. To that end, a
simple nearest-neighbor algorithm was adopted for the load transfer, whereas a
radial basis function approach was adopted for the mesh deformation. In partic-
ular, a globally supported thin-plate spline function was used to determine the
translation of the aerodynamic grid points. To reduce the computation time, the
mesh deformation routine was parallelized with the CPU time shown to scale
linearly up to 16 processors. The aerodynamic stiffness matrix, describing the
change in aerodynamic loads on the structural grid due to perturbations on the
structural degrees of freedom, was constructed by Proteus.

With all necessary modules available, the high-fidelity static aeroelastic equa-
tions were efficiently solved by a defect-correction methodology. This approach,
previously developed and described by Dillinger [34], was successfully implemen-
ted in this thesis to converge the coupled nonlinear problem to a state of static
equilibrium.

The solution of the static aeroelastic problem provided the necessary inputs for
the subsequent aero-structural gradient problem. In chapter two, a new method
was proposed to solve the gradient problem using the aerodynamic stiffness matrix
as a preconditioner to accelerate the convergence. This method was benchmarked
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against a conventional linear block Gauss-Seidel (LBGS) method with and without
under-relaxation. The model which was used to study the convergence rate was
the ONERA M6 wing in transonic flow condition. The proposed method was
shown to outperform the LBGS by up to 41% in computation time in conditions
of strong aeroelastic coupling using the Euler flow model, whereas a 16% reduction
in computation time was registered for the same conditions using the RANS flow
model. The proposed method demonstrated promising results for the ONERA
M6 wing, but admittedly requires further evaluation on more conventional aircraft
configurations such as the Common Research Model. Nevertheless, a high-fidelity
aero-structural gradient computation framework was at hand and the first research
objective of the thesis was considered successfully accomplished.

As outlined in the introduction, the contemporary state-of-the-art method in
aero-structural gradient computation for MDO relies on constraint aggregation.
Structural constraints are lumped in one or a limited number of aggregation func-
tions, whereupon the gradients are efficiently determined by solving the coupled
adjoint problem. However, this methodology delivers gradients that guides the
optimizer to suboptimal designs and it was therefore deemed important to provide
an alternative method of obtaining said gradients.

In chapter three, a new method was presented to reconstruct high-fidelity aero-
structural gradients using the aerodynamic stiffness matrix from chapter two.
The method employed singular value decomposition on the aerodynamic stiffness
matrix to inexpensively construct a set of basis vectors, which were then used
to solve the high-fidelity aero-structural gradient problem and subsequently re-
construct the corresponding high-fidelity aerodynamic stiffness matrix by pseudo-
inverting. The method was tested in two case studies: (i) the Onera M6 wing for a
fixed angle of attack and (ii) a forward-swept wing model in a trimmed condition
provided by ONERA. By benchmarking the reconstructed gradients with accur-
ate semi-analytical gradients, the method demonstrated successful high-fidelity
aero-structural gradient reconstruction with an increasing subset of basis vectors.
Moreover, the spectrum of the forward-swept wing case study was extended by
investigating the efficiency of the proposed method for three Mach numbers: 0.72,
0.81 and 0.87. It should be mentioned that the dynamic pressure was kept fixed
for all three cases. The first Mach number, corresponding to high-subsonic flow,
resulted in very promising reconstruction, while the reconstruction for the remain-
ing two Mach numbers, corresponding to transonic flow, indicated that the quality
of the basis vectors provided by the VLM decays with increasing Mach number.
Nevertheless, gradient reconstruction was still possible for very high Mach num-
bers. Unfortunately, a monotonic decrease of the error with an enrichment of
the vector basis could not be guaranteed. Consequently, the method in its cur-
rent formulation makes it difficult to estimate how many basis vectors would be
required for a sufficient reconstruction of the high-fidelity gradients. Regardless,
the second research objective was successfully accomplished by establishing a new
method to compute structural response gradients in high-fidelity aero-structural
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sensitivity analysis.

In chapter four, the applicability of the gradient reconstruction method was in-
vestigated for static aeroelastic tailoring. Structural weight minimization was
performed on the forward-swept wing from chapter three. The optimization con-
sidered buckling and material failure constraints, but disregarded other important
constraints such as divergence and aileron effectiveness. Moreover, to minimize
the computation time, the optimization was limited to two transonic maneuver
load cases, while the design variables were lamination parameters and laminate
thicknesses. Three optimization cases were defined to study the effects of intro-
ducing high-fidelity load corrections: (i) one with loads and gradients generated
by the built-in VLM in Proteus, (ii) one with corrected loads by an Euler flow
model using elsA but with VLM gradients delivered by Proteus and (iii) one
with corrected loads and gradients by an Euler flow model using elsA. The con-
vergence behavior was studied for the three cases and comparisons were made.
It was demonstrated that the second and the third case converged to a lower
structural weight by virtue of corrected aerodynamic load distribution. Since the
static aeroelastic analyses were trimmed for all three cases, the total lift did not
differ, but only the distribution of aerodynamic pressure exerted on the struc-
tural wing-box. The third case, including corrected gradients, displayed superior
convergence characteristics compared to the second case, in particular when the
subset of vectors was enriched for the gradient reconstruction. However, the con-
cession for improved convergence using the gradient reconstruction method in the
third optimization case is the increased computation cost.

5.2 RECOMMENDATIONS

Several recommendations are brought forward here to inspire and further promote
the topic of aero-structural gradient computation in MDO. The gradient recon-
struction method proposed in chapter three appeared as a promising alternative
to the conventional approach, which is combining constraint aggregation with the
adjoint method. However, a concession of the proposed method in its current
implementation is its inability to enforce a monotonic reduction of the error as
the vector basis is enriched. This shortcoming makes it difficult to determine a
minimum number of basis vectors required for a sufficient reconstruction of the
aero-structural gradients. Moreover, benchmarking the proposed method against
the aforementioned conventional method could also provide some insight on its
true potential. A wing-body configuration, for instance the Common Research
Model, with a larger set of coupling nodes would provide a good test case of the
proposed methods ability to reconstruct accurate gradients with a limited number
of basis vectors using a linearized potential flow model.

In this thesis, the compressible Euler equations were predominantly used as a
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high-fidelity model to determine nonlinear aerodynamic flow, including recom-
pression shocks, in the transonic regime. However, modeling recompression shocks
without the consideration of viscosity can substantially diminish the credibility of
the shock location and in extension the optimized results. To account for shock-
induced flow separation and by that obtain a superior prediction on the shock
location, the RANS equations are recommended. However, extending the optim-
ization to include viscous effects by adding boundary layers in the computational
model requires additional attention to the mesh deformation strategy. While the
radial basis function approach is a robust deformation method for Euler grids,
this is not generally the case for RANS grids. The RBF approach implemented in
this thesis considers only linear elastic deformations where the displacements in
the three coordinate axes are independent of one another. It is therefore not the
most suitable mesh deformation method when local rotations are significant. For
instance, a highly deformed RANS mesh can result in very skewed boundary lay-
ers which makes it difficult for the solver to reduce the flow residuals and converge
to a steady-state. To address this shortcoming, local rotations must be considered
by a high-quality mesh deformation strategy which preserves the orthogonality of
the undeformed cells.

Considering the computational bottleneck during the optimization in chapter four,
the gradient reconstruction method could be parallelized to improve the optim-
ization time. In fact, several instances of parallelization could be accomplished.
In its current layout, only the aerodynamic gradient computation in elsA and
the mesh deformation were parallelized. Additional code parallelization could be
applied to the load cases, such that each load case is distributed and computed
in parallel by a separate set of processors. The reduction in computation time
for the optimization would then roughly be proportional to the number of load
cases. Another improvement can be made by allowing the basis vectors to be
computed in parallel during the gradient reconstruction. For instance, there are
very efficient block-Krylov algorithms that can account for multiple right-hand
sides during the iterative solution of the linear systems.

Only two types of structural constraints were applied during the optimization in
chapter four: strain and buckling failure. Other constraints of static aeroelastic
nature, such as divergence and control effectiveness, were not included. How-
ever, these constraints are extremely important during structural design and the
certification process and must be considered in future design studies. Indeed, di-
vergence and control effectiveness are of particular interest in forward-swept wing
configurations and generally have a significant impact on the structural design.
All of the aforementioned aeroelastic constraints were available in Proteus by
virtue of the built-in unsteady and steady vortex lattice method but were inact-
ive during the optimization due to the inconsistency with the load and gradient
corrections. For instance, the structural constraints were determined by the aero-
dynamics of the Euler flow model, but the response and gradients of the control
surfaces, if active, would have been governed by the VLM. It is therefore sugges-

89



5

5. CONCLUSIONS AND RECOMMENDATIONS

ted that the aeroelastic constraints are accounted for by the Euler flow model as
well such that they become consistent with the structural responses.

Finally, only structural optimization with static aeroelastic deformations was con-
sidered in this thesis. That is, the analysis and sensitivity analysis were multi-
disciplinary, but the optimization was mono-disciplinary. To achieve MDO which
is an aspiration in the industrial design process, the shape of the wing must be
allowed to change with an objective function that, in addition to structural weight
minimization, accounts for a reduction of the aerodynamic drag. To accomplish
this, a parametrization of the wing shape is required to facilitate the perturba-
tion of the surface grid based on the design variable output from the optimizer.
For instance, this can be accomplished by a non-uniform rational basis spline
(NURBS) mathematical model. Moreover, an objective function is required that
accounts for a simultaneous improvement of both structural and aerodynamic ef-
ficiency. The Breguet range equation is just one example of such an objective
function formulation. In addition to these modifications, cross-coupling partial
derivatives are required that describe how perturbations of structural variables
affect aerodynamic residuals, and vice versa.
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[8] B. Grossman, Z. Gürdal, R. T. Haftka, G. J. Strauch, W. M. Eppard, Integ-
rated aerodynamic/structural design of a sailplane wing, Journal of Aircraft
25 (9) (1988) 855–860. doi:10.2514/3.45670.

[9] B. Grossman, R. T. Haftka, J. Sobieszczanski-Sobieski, P.-J. Kao,
D. M. Polen, M. Rais-Rohani, Integrated aerodynamic-structural design
of a transport wing, Journal of Aircraft 27 (12) (1990) 1050–1056.
doi:10.2514/3.45980.

[10] A. Chattopadhyay, N. Pagaldipti, A multidisciplinary optimization using
semi-analytical sensitivity analysis procedure and multilevel decomposi-
tion, Computers & Mathematics with Applications 29 (7) (1995) 55–66.
doi:10.1016/0898-1221(95)00018-T.

91

http://dx.doi.org/10.2514/2.2412
http://dx.doi.org/10.2514/3.45670
http://dx.doi.org/10.2514/3.45980
http://dx.doi.org/10.1016/0898-1221(95)00018-T


BIBLIOGRAPHY

[11] M. Baker, J. Giesing, A practical approach to MDO and its application
to an HSCT aircraft, in: 1st AIAA Aircraft Engineering, Technology, and
Operations Congress, American Institute of Aeronautics and Astronautics,
1995, dOI: 10.2514/6.1995-3885.

[12] A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W. H. Mason, L. T.
Watson, R. T. Haftka, Multidisciplinary optimization of a supersonic trans-
port using design of experiments theory and response surface modeling, Tech.
rep., Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
(1997).

[13] K. Maute, M. Nikbay, C. Farhat, Coupled analytical sensitivity analysis
and optimization of three-dimensional nonlinear aeroelastic systems, AIAA
Journal 39 (11) (2001) 2051–2061. doi:10.2514/2.1227.

[14] J. Reuther, J. Alonso, J. Martins, S. Smith, A coupled aero-structural op-
timization method for complete aircraft configurations, in: 37th Aerospace
Sciences Meeting and Exhibit, American Institute of Aeronautics and Astro-
nautics, 1999, dOI: 10.2514/6.1999-187.

[15] J. Martins, J. Alonso, J. Reuther, Aero-Structural Wing Design Optimiza-
tion Using High-Fidelity Sensitivity Analysis, in: Proceedings of the CEAS
Conference on Multidisciplinary Aircraft Design and Optimization, 2001.

[16] J. Martins, J. Alonso, J. Reuther, High-fidelity aerostructural design optim-
ization of a supersonic business jet, Journal of Aircraft 41 (3) (2004) 523–530.
doi:10.2514/1.11478.

[17] G. K. W. Kenway, G. J. Kennedy, J. R. R. A. Martins, Scalable par-
allel approach for high-fidelity steady-state aeroelastic analysis and ad-
joint derivative computations, AIAA Journal 52 (5) (2014) 935–951.
doi:10.2514/1.J052255.

[18] G. K. W. Kenway, J. R. R. A. Martins, Multipoint high-fidelity aerostructural
optimization of a transport aircraft configuration, Journal of Aircraft 51 (1)
(2014) 144–160. doi:10.2514/1.C032150.

[19] G. Kennedy, J. Martins, A laminate parametrization technique for
discrete ply-angle problems with manufacturing constraints, Struc-
tural and Multidisciplinary Optimization 48 (2) (2013) 379–393.
doi:10.1007/s00158-013-0906-9.

[20] T. Brooks, G. Kennedy, J. Martins, High-fidelity multipoint aerostructural
optimization of a high aspect ratio tow-steered composite wing, in: 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, 2017.

92

http://dx.doi.org/10.2514/2.1227
http://dx.doi.org/10.2514/1.11478
http://dx.doi.org/10.2514/1.J052255
http://dx.doi.org/10.2514/1.C032150
http://dx.doi.org/10.1007/s00158-013-0906-9


BIBLIOGRAPHY

[21] E. Jonsson, G. Kenway, G. Kennedy, J. Martins, Development of flutter con-
straints for high-fidelity aerostructural optimization, in: 35th AIAA Applied
Aerodynamics Conference, 2017. doi:10.2514/6.2017-4455.

[22] G. J. Kennedy, J. R. R. A. Martins, A parallel aerostruc-
tural optimization framework for aircraft design studies, Struc-
tural and Multidisciplinary Optimization 50 (6) (2014) 1079–1101.
doi:10.1007/s00158-014-1108-9.

[23] A. Elham, M. J. L. van Tooren, Coupled adjoint aerostructural
wing optimization using quasi-three-dimensional aerodynamic analysis,
Structural and Multidisciplinary Optimization 54 (4) (2016) 889–906.
doi:10.1007/s00158-016-1447-9.

[24] M. Barcelos, H. Bavestrello, K. Maute, A schur-newton-krylov solver for
steady-state aeroelastic analysis and design sensitivity analysis, Computer
Methods in Applied Mechanics and Engineering 195 (17-18) (2006) 2050–
2069. doi:10.1016/j.cma.2004.09.013.

[25] M. Akgün, R. Haftka, C. Wu, J. Walsh, J. Garcelon, Efficient structural
optimization for multiple load cases using adjoint sensitivities, AIAA Journal
39 (3) (2001) 511–516. doi:10.2514/2.1336.

[26] N. Poon, J. Martins, An adaptive approach to constraint aggregation using
adjoint sensitivity analysis, Structural and Multidisciplinary Optimization
34 (1) (2007) 61–73. doi:10.1007/s00158-006-0061-7.

[27] A. Giunta, A novel sensitivity analysis method for high fidelity multidiscip-
linary optimization of aero-structural systems, in: 38th Aerospace Sciences
Meeting and Exhibit, American Institute of Aeronautics and Astronautics,
2000, 10.2514/6.2000-683.

[28] J. R. R. A., A coupled-adjoint method for high-fidelity aero-structural op-
timization, Ph.D. thesis, Stanford University (2002).

[29] C. Blondeau, T. Achard, P. Girodroux-Lavigne, R. Ohayon, Recent achieve-
ments towards aero-structure gradient computation using high-fidelity cfd-
csm in the onera elsa software, in: International Forum on Aeroelasticity and
Structural Dynamics, 2015.

[30] T. Achard, C. Blondeau, R. Ohayon, An uncoupled approach to
compute aero-structure gradients using high-fidelity cfd-csm, in: 17th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
2016. doi:10.2514/6.2016-4121.

[31] G. Kreisselmeier, R. Steinhauser, Systematic control design by optimizing a
vector performance index, International Federation of Active Controls Sym-
posium on Computer-Aided Design of Control Systems 12 (7) (1979) 113–117.

93

http://dx.doi.org/10.2514/6.2017-4455
http://dx.doi.org/10.1007/s00158-014-1108-9
http://dx.doi.org/10.1007/s00158-016-1447-9
http://dx.doi.org/10.1016/j.cma.2004.09.013
http://dx.doi.org/10.2514/2.1336
http://dx.doi.org/10.1007/s00158-006-0061-7
http://dx.doi.org/10.2514/6.2016-4121


BIBLIOGRAPHY

[32] A. Lambe, G. Kennedy, J. Martins, An evaluation of constraint
aggregation strategies for wing box mass minimization, Struc-
tural and Multidisciplinary Optimization 55 (1) (2017) 257–277.
doi:10.1007/s00158-016-1495-1.

[33] G. A. Wrenn, An indirect method for numerical optimization using the
kreisselmeier-steinhauser function, Tech. rep., NASA Contractor Report 4220
(1989).

[34] J. K. S. Dillinger, Static aeroelastic optimization of composite wings with
variable stiffness laminates, Ph.D. thesis, Delft University of Technology,
Delft (2014).

[35] N. P. M. Werter, Aeroelastic modelling and design of variable stiffness com-
posite and morphing wings, Ph.D. thesis, Delft University of Technology,
Delft (2017).

[36] N. P. M. Werter, R. De Breuker, A novel dynamic aeroelastic framework for
aeroelastic tailoring and structural optimisation, Composites Structures 158
(2016) 369–386.

[37] J. Katz, A. Plotkin, Low-speed aerodynamics, Cambridge University Press,
2001.

[38] L. Cambier, M. Gazaix, S. Heib, S. Plot, M. Poinot, J. Veuillot, J. Boussuge,
M. Montagnac, An overview of the multi-purpose elsa flow solver, Aerospace
Lab Journal (2).

[39] C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2:
Computational Methods for Inviscid and Viscous Flows, Wiley, 1990.

[40] MSC.Software Corporation, MSC.Nastran 2012, Design Sensitivity and Op-
timization Users Guide (2012).

[41] MSC.Software Corporation, MSC.Nastran 2013, DMAP Programmer’s
Guide (2013).

[42] A. Beckert, H. Wendland, Multivariate interpolation for fluid-structure-
interaction problems using radial basis functions, Aerospace Science and
Technology 5 (2) (2001) 125–134.

[43] T. Rendall, C. Allen, Efficient mesh motion using radial basis functions with
data reduction algorithms, Journal of Computational Physics 228 (17) (2009)
6231–6249.

[44] T. Rendall, C. Allen, Reduced surface point selection options for efficient
mesh deformation using radial basis functions, Journal of Computational
Physics 229 (8) (2010) 2810–2820.

94

http://dx.doi.org/10.1007/s00158-016-1495-1


BIBLIOGRAPHY

[45] K. Jovanov, R. De Breuker, M. Abdalla, J. Dillinger, Accelerated con-
vergence of static aeroelasticity using low-fidelity aerodynamics, in: 56th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, American Institute of Aeronautics and Astronautics, 2015.
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