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ABSTRACT: Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a
significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin
Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally
with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe2. We show that this
technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the
substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on
exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the
Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods
and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning
tunneling spectroscopy.
KEYWORDS: machine learning, molecular quantum magnets, Hamiltonian learning, scanning tunneling microscopy, many-body physics

Q uantum magnets represent one of the potential
platforms to create exotic quantum excitations.1,2

Quantum magnetism appears in Heisenberg models which
are dominated by quantum fluctuations, an instance that often
emerges in the presence of frustrated interactions.3−8 These
phenomena can give rise to a variety of excitations, including
spinons, visons, gauge, and topological excitations.9−15 This
should be contrasted with classical symmetry-broken magnets
featuring magnon excitations.16−23 Understanding the nature
of excitations of a specific quantum material, thereby telling
quantum from classical magnets, requires knowledge of the
underlying Hamiltonian, which is often exceptionally difficult
to extract from experiments.24

Typical methodologies in quantum materials allow comput-
ing observables from Hamiltonians.25−27 However, extracting
the Hamiltonian from a set of observables is often a
challenging problem for conventional techniques. Machine
learning provides a strategy to tackle such a complex inverse
problem beyond the reach of conventional methodologies in
quantum materials. This has been demonstrated for Hamil-

tonian learning with supervised learning28−31 and generative
machine learning,32,33 among others.26,27,34−37 However,
learning Hamiltonians in quantum magnets remains a relatively
unexplored problem, which ultimately may allow us to tackle
the open challenge of identifying the nature of quantum spin
liquids.
Here, we put forward a strategy to extract the underlying

Hamiltonian parameters from scanning tunneling microscopy
(STM) measurements of a molecular quantum magnet. Our
methodology relies on combining tensor-network many-body
calculations of spin excitations of a molecular magnet with a
machine learning methodology, which enables us to extract all
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Hamiltonian parameters of the system directly from local
inelastic tunneling spectroscopy measurements. The Hamil-
tonian learning algorithm can extract spatially dependent
Hamiltonian parameters for arbitrarily large 1D molecular
chains solely by training the algorithm on many-body
calculations of fixed-size systems. In particular, we demonstrate
this methodology experimentally with a molecular quantum
magnet hosting triplon excitations, as realized in cobalt
phthalocyanine (CoPC) molecules on NbSe2. Our method-
ology puts forward a strategy to characterize with atomic
resolution Hamiltonians of quantum magnets, including
capturing local variations of exchange parameters, establishing
a machine-learning-enabled technique for Hamiltonian learn-
ing in molecular quantum nanomagnetism.
The system we focus on is a 1D molecular quantum magnet

that hosts triplon excitations and can be found experimentally
in CoPC molecules on NbSe2 (Figure 1(a)).

38 This system

hosts two magnetic moments on two orbitals of the CoPC
molecule, one in the center ion and the second distributed over
the outer ligands.39 The molecular chain realizes the following
Hamiltonian

= · + ·+ +H J S K S S
n

n n n
n

n n n n, 1 1
(1)

leading to a spin chain of length N with a pair of spin-1/2
operators = K K KK ( , , )n n

x
n
y

n
z and = S S SS ( , , )n

x
n
y

n
z
on each

molecule n. The Jn’s are the intramolecular exchange couplings

between the two orbitals, and Γij is the intermolecular
exchange coupling between neighboring molecules n and m.
In general, the molecular chain will have average exchange
couplings J = ⟨Jn⟩ and Γ = ⟨Γn,n+1⟩ and random fluctuations of
ΔJ and ΔΓ around those averages. Triplons emerge in this
system for J ≫Γ, where the bandwidth of the triplon
excitations scales as ∼Γ and their gap scales as ∼J.38 The
spectra of triplon excitations on site n and frequency ω are
accessed through the spectral function

= | + |
=

A n GS K H E K GS( , ) ( )
x y z

n GS n
, , (2)

of the many-body ground state |GS⟩, which we compute using
a tensor network kernel polynomial formalism.40−43 Inelastic
spectroscopy on the molecule with STM measure-
ments12,16,44−48 allows us to directly access the previous
spectral function as given by49

A n d I dV( , ) /2 2 (3)

Typical spectra on the different sites of a molecular chain are
shown in Figure 2, where we show the limit of a pristine

molecular chain ΔJ = 0 (Figure 2a), disorder in the coupling
ΔΓ ≠ 0 (Figure 2b), disorder in the internal exchange ΔJ ≠ 0
(Figure 2c), and a disordered decoupled chain with Γ = 0, ΔJ
≠ 0 (Figure 2d). We observe that while both types of disorders
ΔJ and ΔΓ create fluctuations in the triplons, their relative
values are challenging to directly extract from the spectral
function.
Our objective of this work is to develop a machine learning

algorithm that is trained on a finite system size that directly
generalizes to smaller and larger systems to extract the
Hamiltonian parameters of the molecular quantum magnet.
The goal of our algorithm is to learn the underlying intra- and

Figure 1. (a) Schematic of the one-dimensional spin model hosting
triplon excitations with intra- and intermolecular exchange parameters
J and Γ. This system can be engineered in CoPC on NbSe2. The red
dashed lines represent the singlet and triplet states of the molecule.
(b) Machine learning workflow to extract Hamiltonian parameters of
a chain of arbitrary length. Each site of the chain represents one
CoPC molecule. The neural network predicts the spin Hamiltonian
parameters of eq 1.

Figure 2. Spectral function of the spin chain in the limit of no
disorder for the exchange couplings (a), finite coupling disorder (b),
finite exchange disorder (c), and fully decoupled molecules (d). It is
observed that the presence of disorder and molecular coupling leads
to a strongly featured spectral function. We took ΔJ = 0.2J, ΔΓ = 0.2J,
and Γ = 0.3J, and the same identical disorder profile was used in (b-
d).
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intermolecular exchange parameters, Jn and Γn,n+1, by extracting
information from the spectral functions that directly map to
dI/dV measurements. For this, we develop an iterative
workflow with a deep neural network (NN) as the central
part to infer the Hamiltonian parameters (details given in the
SI). We create a training set of molecular chains of length N =
12 (24 spins S = 1/2) with random Hamiltonian parameters Jn
and Γn,n+1. We choose N = 12 to take a moderately large
system where finite size effects are not dominating. Then, we
separate the Hamiltonian of eq 1 into subsystems of length NS
= 3 as depicted in Figure 1(b). The subsystem has five
Hamiltonian parameters, three Jn parameters, and two Γn,n+1
parameters. The NN algorithm predicts these five parameters
at a time, taking the three dI/dVs (or spectral functions) of the
subsystem molecules as inputs. Finally, the algorithm sweeps
iteratively through the whole system of arbitrary size in slices
of NS = 3 molecules. These slices, however, contain
information from the parent Hamiltonian. In addition, we
averaged over the parameters of overlapping sites to obtain
more accurate predictions. The workflow is illustrated in
Figure 1(b). This enables us to make predictions for chains of
arbitrary lengths by training the algorithm only on systems of
size N = 12, which keeps the computational costs very low
even for predictions of very large systems. Our methodology
allows us to directly extract spatially dependent fluctuations of
the exchange coupling, as emerging from stacking-dependent
exchange in experimental molecular systems.38 In total, we
create 1500 systems with varying disorder strength of size N =
12 that we split up into NS = 3 subsystems to train the NN to
infer the underlying parameters. Furthermore, we add noise to
the simulated dI/dV spectra in the form of

= + ·dI
dV

dI
dV

R
noise data

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

(4)

where (dI/dV)noise represents the noisy simulated differential
conductance, (dI/dV)data is the original simulated differential
conductance data (in the form of an array with dimension [ω,
N]), R is a random noise matrix of shape [ω, N] uniformly
distributed in [0, 1], and η is the noise level used in the interval
[0, 0.2]. In eq 4, dI/dV is normalized to its maximum value so
that the normalized dI/dV ranges between the minimum value
0 and its maximum value 1. Thus, the random term containing
η in eq 4 controls the noise level as a percentage, where a value
of η = 0.2 corresponds to 20% noise. More details about the
data modeling, creation of the data set, and the postprocessing
of the experimental data can be found in the Supporting
Information (SI). The ML model that we use is a feed forward
NN, trained with data from the many-body spin chain from eq
1, where we define the intramolecular exchange Jn ∈ [0, 1] and
intermolecular exchange Γn,n+1 ∈ [0, 0.4]. The ML algorithm
with the underlying NN learns to predict the underlying
Hamiltonian of an NS = 3-molecule sub-Hamiltonian by taking
three spectral functions or dI/dV spectra as inputs, as depicted
in Figure 1(b). While being trained on subsystems of the N =
12-molecule chain, the algorithm transfers to smaller and larger
system sizes without decreased precision. The details of the
algorithm, including the architecture and training parameters,
can be found in the SI and in ref 50.

■ TRIPLON EXCITATIONS IN A QUANTUM MAGNET
In Figure 3, we demonstrate the performance of the ML
algorithm on the test data of the N = 12 many-body model (for

added noise of 2%). We compare the predictions of the
intramolecular Jn (a) and intermolecular Γn,n+1 exchange in
Figure 3(b) with their true values. The test samples are divided
into sub-Hamiltonians of size NS = 3. We observe that the
algorithm predicts the intramolecular exchange Jn in Figure
3(a) with high accuracy, showing small deviations from the
ideal match and a mean absolute error (MAE) of = 0.024J .
The predictions of the intermolecular exchange Γn,n+1 in Figure
3(b) show similar behavior, with slightly higher deviations
from the ideal match and an increased MAE of = 0.051.
The intramolecular exchange Jn determines the position of the
excitation spectra, and the intermolecular exchange Γn,n+1
determines the width. The difference in the accuracy of the
predictions is related to the higher complexity and impact of
Γn,n+1 on the shape and features of the molecular chain.
The quality of the Hamiltonian extraction can be

characterized by the fidelity between the prediction and the
real exchange couplings defined as28

=
| |

F( , )
( )( )

pred true
pred true pred true

true
2

true
2

pred
2

pred
2

(5)

where = +J ,n n ntrue
true

, 1
true and = +J ,n n npred

pred
, 1

pred are the
true and predicted Hamiltonian parameters of the system,
respectively. We calculate the fidelity of the simulated test data
and therefore include the ensemble average ⟨x⟩ over the whole
test set. The fidelity is defined in the interval [ ]0, 1 where
1 stands for identical predictions and true values and 0 stands
for fully uncorrelated values. In Figure 3(c), we show the
resilience of the algorithm to noise added to the data. Figure
3(c) shows that even for high noise levels of more than 10%,
the fidelity of the intra- and intermolecular exchange remains
high. As expected from the results of Figure 3(a,b), the
predictions for intramolecular exchange have generally higher
fidelity.
Now, we demonstrate that our algorithm is capable of

extending it to significantly longer spin chains. We apply the

Figure 3. Panels (a) and (b) show the predictions of the NN
algorithm to extract the intra- and intermolecular exchange
amplitudes described in eq 1 with the algorithm described in the
method section for 2% noise (η = 0.02). The inputs of the model are
dI/dV spectra. Panel (c) shows the fidelity (defined in eq 5) vs noise
strength (defined in eq 4) for increasing noise.
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algorithm that is trained on systems of size N = 12 to a
simulated N = 40 molecular spin chain with randomly chosen
Jn and Γn,n+1 and predict the underlying parameters, divided
into NS = 3-molecule subsystems. In Figure 4(a,b), we

compare the calculated spectral function with the recon-
structed one and show the difference in predictions for the
intra- and intermolecular exchange in Figure 4(c,d). We find
that we can extract the intramolecular exchange with very high
precision and a significantly lower error than that of the
intramolecular exchange. These results are in accordance with
the findings for the N = 12-molecule systems of Figure 3(a,b)
where we discuss that Γn,n+1 has a significantly lower impact on
the spectral function and dI/dV compared to Jn and therefore is
inherently more difficult to determine regardless of the
method. However, the appearance of the reconstructed
molecular chain in Figure 4(b) is almost indistinguishable
from the original calculation in Figure 4(a) that is used as
input to infer the parameters. This highlights that J has the
greatest impact on the main features of the spectral functions
(and dI/dV). These results demonstrate that our algorithm is
capable of extending to significantly longer chains and gives
faithful results for arbitrarily long chains.

■ APPLICATION OF THE ALGORITHM TO THE
EXPERIMENTAL MOLECULAR CHAIN

We now apply the algorithm to real measurement data for a 1D
molecular chain. The sample was fabricated by subliming
CoPC molecules onto a freshly cleaved NbSe2 substrate.
Subsequently, the sample was transferred to a low-temperature
STM operating at 4 K. The measurements were performed
with an NbSe2-coated superconducting tip to enhance the
energy resolution.51−53 This induces sharp peaks at the edges
of the spin-flip excitations. The spectra can be deconvolved
with the tip spectral density to remove this effect (details are
given in the SI). Depending on the surface coverage, CoPC
self-assembles into various motifs on NbSe2, forming individual
molecules, molecular chains, and islands.38

We now use our machine learning methodology to study the
experimental molecular chain. A typical STM image of such a

system is shown in Figure 5(a). In Figure 5(b), we show the
results of the Hamiltonian learning algorithm applied to the N

= 14 molecular chain, specifically enabling the extraction of the
intra- and intermolecular exchange couplings for each molecule
on the chain. In Figure 5(c,d), we show example spectra from
the measured triplon chains of lengths N = 14 and 11,
respectively. The Hamiltonian parameters are extracted from
the deconvolved dI/dV spectra. We compare the reconstructed
dI/dV spectra with the experimental and deconvolved
spectra.54 The results demonstrate that the weight of the
step, which is proportional to the exchange coupling constant
(Jn), is accurately captured in panels Figure 5(c,d).
Furthermore, the width and steps, which are related to the
broadening parameter (Γn,n+1), are also well reproduced for
both chains (N = 14 and 11).55 For the intermolecular
exchange (Γn,n+1), we obtain values of Γ between Γ ≈ 0.08J
and Γ ≈ 0.19J, depending on the system size and specific
molecule, consistent with previous average estimates.38 These
findings highlight that training the ML model with simulated
data generalizes effectively to experimental data, eliminating
the need for retraining, and is capable of predicting
Hamiltonian parameters in systems whose system size is
different from the theoretical training set. As a result, our
algorithm is system-size-independent and can be applied to
experimental systems of arbitrary size, provided N > 3.
To summarize, here we presented a machine learning

strategy to extract the underlying Hamiltonian of 1D molecular
spin systems. This methodology was demonstrated using a
molecular spin chain hosting triplon excitations, highlighting
its ability to extract information on 1D chains of arbitrary
length by dividing the system into sub-Hamiltonians. Our
methodology performs a faithful Hamiltonian extraction across
a wide range of systems, from those with no disorder to highly

Figure 4. Hamiltonian learning algorithm trained on systems of size N
= 12 applied to a simulated molecular chain of size N = 40. Panels (a)
and (b) show the original and reconstructed spectral function. Panels
(c) and (d) show the extracted and exact Hamiltonian parameters for
the intra- and intermolecular exchange. The predictions are averaged
over 10 random initializations of the NN.

Figure 5. (a) Image of a CoPC molecular chain on NbSe2 (size 20 ×
3 nm2). (b) Extracted Jn and Γn,n+1 for the N = 14 molecular chain.
(c,d) parameter extraction and reconstructed dI/dV from STM
measurements. The examples are taken from dI/dV spectra from the
chains with N = 14 (c) and N = 11 molecules (d). The experimental
and deconvolved spectra are compared to the reconstructed simulated
dI/dV.
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disordered configurations. We showed that by solely training
our algorithm in chains with N = 12 molecules, the machine
learning method enables us to perform Hamiltonian learning in
systems of arbitrary size, in particular, with N = 40 emulated
molecular spin chains. We applied our strategy for Hamiltonian
learning to experimental dI/dV measurements of molecular
quantum magnets, where we show accurate results in
extracting Hamiltonian parameters in disordered systems in
the presence of noise in chains of up to N = 14 molecules. This
strategy allows us to train the algorithm to work with arbitrary
system sizes by using quantum many-body calculations of
specific finite-size systems. This approach can be extended to
general spin models beyond those featuring triplons and
general 1D many-body Hamiltonians, possibly even to more
spatial dimensions. While extending to two dimensions is more
challenging due to the rapid growth of entanglement
entropy,56−58 emerging numerical techniques such as neural
quantum states offer promising alternatives for generating
training data in 2D systems.59−61 Our results establish a
versatile framework to perform Hamiltonian learning in
engineered molecular quantum magnets, which can be
extended to generic quantum lattice models, including
interacting quantum dots and qubit arrays.
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