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Abstract: Small reservoirs play an important role in mining, industries, and agriculture, but storage
levels or stage changes are very dynamic. Accurate and up-to-date maps of surface water storage
and distribution are invaluable for informing decisions relating to water security, flood monitoring,
and water resources management. Satellite remote sensing is an effective way of monitoring the
dynamics of surface waterbodies over large areas. The European Space Agency (ESA) has recently
launched constellations of Sentinel-1 (S1) and Sentinel-2 (S2) satellites carrying C-band synthetic
aperture radar (SAR) and a multispectral imaging radiometer, respectively. The constellations
improve global coverage of remotely sensed imagery and enable the development of near real-time
operational products. This unprecedented data availability leads to an urgent need for the application
of fully automatic, feasible, and accurate retrieval methods for mapping and monitoring waterbodies.
The mapping of waterbodies can take advantage of the synthesis of SAR and multispectral remote
sensing data in order to increase classification accuracy. This study compares automatic thresholding
to machine learning, when applied to delineate waterbodies with diverse spectral and spatial
characteristics. Automatic thresholding was applied to near-concurrent normalized difference water
index (NDWI) (generated from S2 optical imagery) and VH backscatter features (generated from S1
SAR data). Machine learning was applied to a comprehensive set of features derived from S1 and
S2 data. During our field surveys, we observed that the waterbodies visited had different sizes and
varying levels of turbidity, sedimentation, and eutrophication. Five machine learning algorithms
(MLAs), namely decision tree (DT), k-nearest neighbour (k-NN), random forest (RF), and two
implementations of the support vector machine (SVM) were considered. Several experiments were
carried out to better understand the complexities involved in mapping spectrally and spatially complex
waterbodies. It was found that the combination of multispectral indices with SAR data is highly
beneficial for classifying complex waterbodies and that the proposed thresholding approach classified
waterbodies with an overall classification accuracy of 89.3%. However, the varying concentrations
of suspended sediments (turbidity), dissolved particles, and aquatic plants negatively affected the
classification accuracies of the proposed method, whereas the MLAs (SVM in particular) were less
sensitive to such variations. The main disadvantage of using MLAs for operational waterbody
mapping is the requirement for suitable training samples, representing both water and non-water
land covers. The dynamic nature of reservoirs (many reservoirs are depleted at least once a year)
makes the re-use of training data unfeasible. The study found that aggregating (combining) the
thresholding results of two SAR and multispectral features, namely the S1 VH polarisation and the
S2 NDWI, respectively, provided better overall accuracies than when thresholding was applied to
any of the individual features considered. The accuracies of this dual thresholding technique were
comparable to those of machine learning and may thus offer a viable solution for automatic mapping
of waterbodies.
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1. Introduction

Communities in developing countries rely on freshwater stored in small waterbodies for
agricultural, domestic, mining, and industrial use [1]. These water resources are highly susceptible
to climate variations and are often not sufficient to withstand long periods of drought. Recently, the
water resources of the Cape Winelands District of South Africa have been under severe pressure due to
drought conditions brought about by the El Niño weather cycle [2]. Agriculture plays a critical role in
this region’s economy [3], with wine production alone contributing to more than 30% of its regional
gross domestic product (RGDP). Furthermore, the wine production industry provides more than 8% of
the employment in the Western Cape Province [4]. The district is well-known for irrigated perennial
crop production, mainly grapes (mostly for wine production) and fruits (apples, pears, peaches, olives,
and citrus) [2]. In contrast to other parts of southern Africa, the area has a semi-arid Mediterranean
climate with a mean annual rainfall of about 400 mm [5] and, as such, receives winter rainfall when
demand for irrigation water is relatively low. In contrast, the growing season occurs during the dry
and hot months when rainfall is low (about 20% of the total annual) and water demand for irrigation is
at its apex [6].

During the recent drought (2015–2018), water reserves in the principal reservoirs were reduced
to below 17% (April 2018), necessitating the implementation of drastic water restrictions by as much
as 80% of normal usage for crop irrigation and industrial and domestic use [7]. Authorities were
confronted with difficult decisions about how to best manage the limited available water resources
and minimise the inevitable socio-economic impacts. Many limitations of existing procedures and
gaps in available information sources were exposed. One of the biggest needs was to determine
how resilient the agricultural industry, in particular the perennial crops sector, would be to severe
water restrictions. This proved to be challenging given that no operational systems are in place to
quantify and monitor how much water is stored in privately owned and managed reservoirs (dams).
These reservoirs are of various sizes, ranging from 0.5–5 km2. Most of these dams are ungauged and
setting up, maintaining, and managing conventional in situ surveys, gauge stations, and telemetry
networks would be prohibitively expensive and time-consuming [8].

Satellite remote sensing techniques have been shown to provide a viable alternative for monitoring
water bodies. Satellite data can provide real-time, dynamic, and cost-effective information, and Earth
observation procedures can be set up to provide operational (autonomous) monitoring of water
resources [9,10]. Several methods have been proposed to classify surface water areas using either
multispectral [9,11,12] or SAR remotely sensed data [13,14]. Popular techniques are image thresholding
(rule-based classification) and supervised/unsupervised classification [15]. Image thresholding is
easy to implement and thresholds that can be applied to images of different dates and areas can be
automatically applied and are computationally inexpensive (not time-consuming) [9,16].

During thresholding, a single threshold value within the image scene is determined and all
pixels below (or above) it are classified as water or non-water. According to Pierdicca et al. [17], the
identification of a suitable threshold relies on a range of environmental factors, including atmospheric
conditions, adjacency effects, mixed pixels, shadows and system factors such as viewing angle and
pixel size [18–20]. Defining a robust threshold, one that will work effectively in different areas and on
imagery acquired on different dates, has been cited by Feyisa et al. [21] as being a very challenging
task, especially in optically complex (e.g., flooded vegetation and sedimented and turbid water)
environments. An alternative approach to finding a single “optimal” threshold that will work in
multiple situations is to make use of automated, image-specific, threshold identification methods.
Several such techniques have been proposed, among which Otsu’s simple and robust algorithm [22]
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is one of the most utilised techniques for surface water mapping [9,12,15]. The Otsu algorithm
finds a threshold by maximising the inter-class variance and minimising the weighted within-class
variance [22].

Supervised and unsupervised classification techniques have also been popular for mapping
water features using remotely sensed data [23,24]. For instance, using 30 m multispectral Landsat
TM imagery, Xie et al. [25] obtained an accuracy of 96%, whereas Pradhan et al. [26] achieved an
accuracy of 58% using 3 m TerraSAR-X data to retrieve water (flooded) pixels based on iterative
self-organizing data analysis technique (ISODATA) unsupervised classification. The relatively low
accuracy of the latter study was attributed to the presence of vegetation in the flooded area. Feng et
al. [27] employed supervised classification to map surface waterbodies with 30 m multispectral HJ-1B
imagery and achieved 94% overall accuracies. Similarly, Verpoorter et al. [28] achieved an accuracy of
95% using Landsat 7 ETM+ imagery. Although many authors agree that supervised classification is an
efficient (accurate and fast) approach to map waterbodies, many highlight the need for prior definitions
(training sites) to construct models capable of classifying unknown sites. The generation and collection
of training samples is time-consuming, expensive, and tedious, often requiring extensive field visits.
Nevertheless, recent implementations of non-parametric MLAs, including SVM, RF and DT, have
demonstrated their value for mapping surface water. MLAs have the ability to classify unknown sites
accurately using relatively small training sets and can handle large numbers of features [29].

In general, SAR and multispectral techniques are capable of accurately extracting water features
if there is a significant contrast between water and non-water features in the data. However, the
optical complexity of water affects the reflected spectral profile and backscatter values. For instance,
the waterbodies in the Cape Winelands are characterised by varying concentrations of suspended
sediments (turbidity), algae (e.g., chlorophylls, carotenoids), chemicals (e.g., nutrients, pesticides,
and metals), dissolved organic matter, and aquatic plants [30,31]. This makes the implementation
of supervised remote sensing-based water extraction methods difficult, as training data needs to be
universally applicable and frequently updated, especially in the case of water bodies that are highly
dynamic (reservoirs may be full or empty). To date, the remote sensing research community has
given very little attention to how these variations affect waterbody mapping. Notable exceptions
include Hong et al. [32], Frazier and Page [33], and Yang and Chen [34], who used RADARSAT-1
(16 m), Landsat TM (30 m), and S2 (10 m) data to map optically complex waterbodies. The latter study
mapped optically complex waterbodies in urban areas and concluded that it is necessary to find the
most appropriate and practical water identification methods regardless of the physical and chemical
characteristics of waterbodies. In the studies done by Hong, Jang, Kim, and Sohn [32] and Yang and
Chen [34], the water properties and conditions were not characterised. However, Frazier and Page [33]
mapped the waterbodies with a defined turbidity of 90 mg/L.

The ESA recently launched a constellation of high spatial and temporal resolution satellites,
namely S1 and S2, carrying C-band SAR and multispectral sensors, respectively [35]. Thanks to their
dual-satellite-per-orbit configurations, S1 and S2 have relatively high revisit times of six and five
days respectively. To our knowledge, no research has evaluated how data from these satellites can be
combined to improve classification accuracies of waterbodies in complex environments, such as the
Winelands District of South Africa [36,37].

Taking into account the challenges of mapping waterbodies with diverse physical and chemical
characteristics, the objective of this study is as follows:

• To compare the performance of simple rule-based methods, i.e., the application of dynamic
thresholds that can be easily incorporated into operational workflows, to the performance of
supervised learning approaches (i.e., MLAs).

Thresholding and MLAs were applied to a range of features derived from Sentinel-1 (SAR) and
Sentinel-2 (multispectral) data. This included a range of existing and new water indices and texture
measures. Five popular MLAs, namely DTs, RF, k-NN, c-SVM, and SVM, were considered. The study
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concludes by assessing the value of combining SAR and multispectral thresholding rules for mapping
optically complex waterbodies.

2. Materials and Methods

2.1. Study Area

The study area is located in the Cape Winelands district of South Africa (Figure 1.). The focus area
is about 40 × 45 km in size. The Cape Winelands district is the major wine and fruit producing region
in South Africa. The area was chosen because of the optical complexity of the dams and reservoirs
located therein.
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Figure 1. Study area and location of field survey sites.

The study area has a Mediterranean climate, characterised by warm, dry summers and cool, wet
winters [5]. It receives a mean annual rainfall of about 400 mm and has a mean annual minimum
and maximum temperature of 11 ◦C and 22 ◦C respectively. The high mountain ranges receive
rainfall of up to 2000 mm per annum. The resulting runoff is collected by reservoirs located in the
valleys. The suitable climate and presence of rivers and dams have led to agricultural activities and
urbanisation. Fertilisers containing phosphorous and nitrogen are widely used to increase crop yields.
These nutrients are carried by runoff from agricultural areas to waterbodies, resulting in eutrophication.

2.2. Data Collection and Preparation

2.2.1. Test Sites and Data Collection

Eight test sites (Table 1)) located in areas with diverse land cover/use featuring different types of
waterbodies (Table 1) were chosen to evaluate the performance of the proposed methods.

Water edge (i.e., transition between water and non-water) reference points, each representing a
10 × 10 m plot to correspond with a Sentinel-2 image pixel, were collected using a handheld global
positioning system (GPS) receiver (three metres accuracy). The GPS measurements were taken along
the water edge at each site. Four GPS surveys at different dates were carried out to record water
edge changes (due to water level fluctuations). The dates of the surveys were chosen to closely
match the dates of satellite acquisitions (Table 2). Since the GPS points were collected along the
edge of the reservoirs, they represent mixed pixels (i.e., they contained both water and non-water
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components). However, the locations were selected so that the majority of land cover in each plot is
water. These samples were consequently labelled as water.

Table 1. Description of the physical characteristics of the survey sites.

Site Description Size (km2)

Site A Very shallow and turbid 0.8
Site B Shallow with moderate turbidity and eutrophication 0.4
Site C Clear with moderate eutrophication 1.6
Site D Shallow and humic-rich (black) water 2.7
Site E Very shallow and eutrophied 2.3
Site F Shallow, sediment and humic-rich (black) water 1.7
Site G Shallow and moderate turbidity 3.1
Site H Shallow, clear, and wind-induced turbulence 4.88

Table 2. Sentinel image acquisition and field visit dates.

Field Visit Sentinel-1 Image Sentinel-2 Image

27 October 2016 27 October 2016 23 October 2016
26 November 2016 25 November 2016 22 November 2016

28 January 2017 31 January 2017 31 January 2017
25 February 2017 24 February 2017 03 March 2017

Reference points representing pure (not-mixed) water pixels were difficult to obtain during field
surveys as they required access to open water (e.g., using a boat). Instead, pure water samples were
collected using visual interpretation of the Sentinel-2 and Google Earth imagery. Point distributions
were random, although some points were excluded in cases where they were deemed to be mixed
(i.e., if they occurred near other land covers). Non-water reference samples were collected in a similar
manner. A broad four-class (grass, bare and built up, shadow, trees and shrubs) classification scheme
was adopted for the non-water samples to ensure diversity and to gain a better understanding of which
non-water classes are most frequently confused for water. Shadow was included as a separate class,
as it is well known to be misclassified as water. Table 3 summarizes the samples collected per land
cover class.

Table 3. Reference samples collected per land cover type.

Class % No. of Samples from Imagery No. of GPS Samples Total

Water 26 3350 1045 4395
Grass 16 2660 0 2660

Shadow 10 1695 0 1695
Bare & built up 28 4660 0 4660
Trees & shrubs 20 3330 0 3330

Total 100 16,640

2.2.2. Multispectral Images Pre-Processing

Four cloud-free Sentinel-2 level-1C images were downloaded from ESA’s Scientific Data Hub
(https://scihub.copernicus.eu/dhus/). The Sentinel-2 images have 13 bands, of which, four bands
(blue, green, red and NIR) have a spatial resolution of 10 m; six bands (including SWIR) have
a spatial resolution of 20 m; and three have a 60 m resolution (coastal aerosol, water vapour, and
SWIR-Cirrus bands). The images were atmospherically corrected using the Sen2cor algorithm, available
in the Sentinel Application Platform (SNAP) toolbox, which uses the Climate Change Initiative (CCI)
land cover data to characterize atmospheric conditions at the time of acquisition. The atmospheric
correction was done at 10 m, resulting in the output excluding the 60 m bands (Bands 1, 9, and 10) and
resampling the 20 m bands to 10 m [38]. Thus, ten bands at 10 m spatial resolution were preserved for
further analysis.

https://scihub.copernicus.eu/dhus/
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2.2.3. SAR Data Pre-Processing

The Sentinel-1 constellation consists of two SAR satellites (Sentinel-1A and Sentinel-1B) that record
C-band (5.405 GHz) backscatter at incidence angles ranging from 29–46◦. The study uses the ground
range detected (GRD) interferometric wide (IW) images, which have large swath widths (250 km)
and moderately high spatial resolutions (5 × 20 m). IW offers dual polarization capability, which can
provide more information about ground surfaces, as compared to single polarizations. Only horizontal
transmit, vertical receive (HV) and vertical transmit, vertical receive (VV) polarizations were available
over the study area.

The Sentinel-1 toolbox (S-1 TBX), available in SNAP, was used for the pre-processing of the SAR
dataset. Figure 2 shows the pre-processing chain that was followed.
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Figure 2. Pre-processing steps for Sentinel-1 data.

The images were projected and resampled using nearest-neighbor to 10 m resolution. The universal
transverse Mercator (UTM) WGS84 coordinate system (zone 34 South) was used to allow for
pixel-to-pixel comparison with the Sentinel-2 images.

2.3. Feature Set Generation for Classification

In addition to the ten Sentinel-2 spectral and two HV and VV Sentinel-1 polarizations, a range
of supplementary features were generated and used as input to the classification methods. Table 4
outlines the 296 (74 per image capture date) features considered. To reduce the number of variables
(feature dimensionality), Bands 5 (vegetation red-edge), 7 (vegetation red-edge), and 8a (narrow NIR)
were excluded as the first two Bands were highly correlated with Band 6 and the latter with Band 8.

Table 4. Features used as input to the thresholding and MLAs.

Data Type Subtype Description Total Features

Sentinel-1
Speckle filters based on

polarisations
HV Boxcar, none, median (5 × 5),

Lee-sigma, refined Lee, frost,
gamma MAP, IDAN, and Lee

9

VV 9

Polarisation ratios HV
VV

Boxcar, none, median (5 × 5),
Lee-sigma, refined Lee, frost,
gamma MAP, IDAN, and Lee

9

Sentinel-2

Spectral indices

Reflectance bands
and mean of the six

bands
B2, B3, B4, B6, B8, B11, and Mean 7

Normalised
difference spectral

indices (NDSIs)

Band combinations from
Sentinel-2 bands (B2, B3, B4, B6,

B8, B11, and B12) e.g.,
(B2-B3)/(B2+B3)

21

Pan-sharpening of
SWIR (Band 11)

Band combinations P1 of B11 6

Band combinations P2 of B11 6

Textural features

Grey level
co-occurrence

matrix (GLCM)
Correlation, Homogeneity 2

Grey level
difference vector

(GLDV)
Contrast, Entropy, Mean 3

Image transform Principle
components PC1 and PC2 2

Note: P1 = ATWT pan-sharpening, P2 = Gram Schmidt pan-sharpening, PC = principal component, B = band,
MAP = maximum a posteriori, and IDAN = intensity driven adaptive neighbourhood.
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The S2 spectral bands were used to develop normalised difference spectral indices (NDSIs),
which include the normalised difference water index (NDWI) [39], normalized difference moisture
index (NDMI) [40], modified normalized difference water index (MNDWI) [41], and water ratio index
(WRI) [42] indices. Table 5 shows the calculation of the popular indices. Band 11 was up scaled from
20 m to 10 m (i.e., for generating a 10 m resolution SWIR band) to produce MNDWI at 10 m spatial
resolution. Two popular pan-sharpening algorithms, namely Gram–Schmidt (GS) [43] and À Trous
Wavelet Transform (ATWT) [44] were used, where Band 8 was employed as the panchromatic (PAN)
band, as suggested by [9]. Five bands (B2, B3, B4, B6, and B8) were used to develop the NDSIs at
10 m resolution.

Table 5. Calculation of the most popular indices-based on Sentinel-2 reflectance bands at 10 m
spatial resolution.

Index Equation

Normalized difference water index (NDWI) NDWI = Band 3−Band 8
Band 3+Band 8

Normalized difference moisture index (NDMI) NDMI = Band 8−Band 11
Band 8+Band 11

Modified normalized difference water index (MNDWI) MNDWI = Band 3−Band 11
Band 3+Band 11

Water ratio index (WRI) WRI = Band 3+Band 4
Band 8 +Band 11

The approach for examining all the possible combinations of spectral bands (Equation (1)) was
adopted from the OBA-NDWI methods proposed in [19]. Table 6 shows the list of the band combinations
that were considered. The means of the ten bands were also included to investigate whether any of
these features and OBA-NDWI were useful for surface water detection.

NDSI =
bi − b j

bi + b j
i = {1, 2, . . . . . . . . . . . . , n− 1}, j = {i + 1, . . . . . . . . . , n}. (1)

Table 6. The normalized difference spectral indices (NDSI) generated from the seven bands, as well as
two pan-sharpened band 11 features.

B2 B3 B4 B6 B8 B11 B12
B2

B3 B2−B3
B2+B3

B4 B2−B4
B2+B4

B3−B4
B3+B4

B6 B2−B6
B2+B6

B3−B6
B3+B6

B4−B6
B4+B6

B8 B2−B8
B2+B8

B3−B8
B3+B8

B4−B8
B4+B8

B6−B8
B6+B8

B11 B2−B11
B2+B11

B3−B11
B3+B11

B4−B11
B4+B11

B6−B11
B6+B11

B8−B11
B8+B11

B12 B2−B12
B2+B12

B3−B12
B3+B12

B4−B12
B4+B12

B6−B12
B6+B12

B8−B12
B8+B12

B11−B12
B11+B12

B11ATWT
B2−B11ATWT
B2+B11ATWT

B3−B11ATWT
B3+B11ATWT

B4−B11ATWT
B4+B11ATWT

B6−B11ATWT
B6+B11ATWT

B8−B11ATWT
B8+B11ATWT

B2−B11ATWT
B2+B11ATWT

B11GS
B2−B11GS
B2+B11GS

B3−B11GS
B3+B11GS

B4−B11GS
B4+B11GS

B6−B11GS
B6+B11GS

B8−B11GS
B8+B11GS

B12−B11GS
B12+B11GS

Note: The shaded part of the table was not considered.

Principal component analysis (PCA) was performed on ten S2 bands per image date and the
first two components (PC1 and PC2) with the largest “percent of Eigenvalues” were retained [45].
Two types of textural measures, namely the grey level co-occurrence matrix (GLCM) and grey level
difference vector (GLDV), were generated from each PC1. These texture measures were calculated
based on equations as explained in [46]. These measures quantify differences in the grey levels
within a local window [47]. In this study, the window size was set to (5 × 5) pixels, as suggested by
Zhang et al. [48]. The GLDV texture measures employed were contrast, entropy, and mean, while
correlation and homogeneity were selected from the GLCM analyses.

Nine popular speckle filters available in SNAP, namely boxcar, none, median (5 × 5), Lee-sigma,
refined Lee, frost, gamma-MAP (maximum a posteriori), intensity driven adaptive neighbourhood
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(IDAN), and Lee were applied to the HV and VV SAR polarizations [49]. In the interest of brevity, the
reader is referred to [50–52] for overviews of these speckle filters.

2.4. Experimental Design

The thresholding results were compared to the classifications produced by the MLAs to get
a sense of relative performance (i.e., the MLA results were used as benchmarks against which the
autonomous rule-based approaches (e.g., thresholding) could be compared). Autonomous rule-based
approaches classify images based on stipulated rules with little or minimum intervention [53,54].
The classification experiments were applied for each site separately and in combination (general model)
to better understand how variations in waterbody types influence accuracies. Table 7 summarises
the experiments, classification methods, and input features. The thresholding classified each feature
individually, whereas MLAs considered them all in combination.

Table 7. Thresholding and machine learning experiments carried out in this study.

Experiment Set Classification Method Input Features Number of Experiments

A Thresholding Each feature individually 296 × 9 = 2664

B k-NN All features combined 1 × 9 = 9

C DT All features combined 1 × 9 = 9

D RF All features combined 1 × 9 = 9

E SVM All features combined 1 × 9 = 9

F c-SVM All features combined 1 × 9 = 9

2.5. Image Thresholding

Threshold selection is a key step in using rule-based approaches for waterbody mapping [9].
Several researchers have noted the difficulty of selecting robust threshold values, as image variables
(e.g., spectral indices and backscatter) are often dynamic [15,55–58]. Furthermore, threshold values vary
both temporally and spatially among regions, depending on different image and water characteristics.

The use of a deterministic threshold, such as zero, and automatic thresholding techniques (e.g.,
zero in NDWI) can either overestimate or underestimate surface water areas [9,19]. Various automatic
threshold selection methods have consequently been proposed in the literature, including histogram
shape, measurement space entropy, spatial correlation, and local grey-level surface [11,57]. Although,
threshold segmentation can distinguish water pixels, the methods have been known to yield unstable
results in situations where the spectral characteristics between water and other dark objects, such as
buildings and shadows, is similar [11].

In this study, waterbody masks were extracted from each of the 252 features (Table 4)) by applying
a threshold dynamically generated with the Otsu algorithm, which is based on histogram shape [22].
The algorithm is a widely used automatic thresholding method aimed at maximizing inter-class
variance and minimising intra-class variance [9]. However, the method has been known to yield
unstable results when a small area of water bodies and large non-water features exist [11].

The thresholding experiments per feature (Table 4) and per each site were automated in MATLAB
software. Otsu automatically defines a threshold value t that divides the image into two classes. In this
study, the two classes were set to water and non-water. The threshold value t separating these classes
is determined by a set of equations as outlined in [9] as follows:

δ2 = Pnw · (Mnw −M)2 + Pw ·(Mw −M)2, (2)

M = Pnw ·Mnw + Pw·Mw , (3)

M = Pnw ·Mnw + Pw·Mw , (4)
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Pnw + Pw = 1 , (5)

t∗ =
Arg Max
a ≤ t ≤ b

{
Pnw · (Mnw −M)2 + Pw ·(Mw −M)2

}
, (6)

where δ is the inter-class variance of the non-water class and the water class; Pnw and Pw are the
probabilities of one pixel belonging to non-water and water, respectively; Mnw and Mw are the mean
values of the non-water and water classes; and M is the mean value of the feature image.

2.6. Machine Learning

The Supervised Learning and Image Classification Environment (SLICE) software developed
by the Centre for Geographical Analysis at Stellenbosch University [59] was used for the supervised
machine learning classification. SLICE integrates five popular MLAs, namely DTs, k-NN, RF, constant
optimisation parameter SVM (c-SVM), and SVM. These MLAs are well established in RS applications,
due to their flexibility, simplicity and computational efficiency [59].

SVM is a classification technique based on a statistical learning theory and aims to determine the
location of decision boundaries by maximizing the margin between classes [60]. In the case of two
linearly separable classes, SVM selects, from among the infinite number of linear decision boundaries,
the optimal separating hyperplane (OSH), which minimises the generalisation error. When the data are
not linearly separable, SVM is extended by introducing slack variables and applying a kernel function
to solve the optimisation problem [61]. The radial basis function (RBF) kernel usually trains much
faster by mapping every point to a Gaussian function and was chosen for this study, as recommended
by Jia et al. [62]. The c parameter in c-SVM helps to optimise SVM, since the value is tuned based
on the input data. For large values of c, the optimisation will choose a smaller-margin hyperplane,
whereas a very small value of c will cause the optimiser to look for a larger-margin OSH, even if that
hyperplane misclassifies more points.

DT is a predictive, flexible, and comprehensive classification algorithm that labels an unknown
class using a sequence of rules that leads to a classification decision [63]. A decision tree is composed
of a root node, a set of interior nodes, and terminal nodes (termed leaf nodes). The root node and
interior nodes are linked to decision stages, while the terminal nodes represent the final classification.
The efficiency and performance of this algorithm are strongly affected by the set of rules inducting the
path to be followed, starting from the root node and ending at one terminal node that represents the
label for the object being classified. At each nonterminal node, a decision is made about the path to the
next node [64].

RF is an ensemble MLA consisting of a combination of DT classifiers [65]. All trees are trained
with the same features but on various training sets, which are generated randomly from the original
training data. After training, each tree assigns a class label to the test data. Finally, the results of all
decision trees are fused and the majority of votes determine the class label for each land cover [66].
Depth and minimum sample size are the two important tuning parameters in the RF algorithm. In this
study, the maximum depth, the minimum number of samples, and pruning harshness was set to 50,
one, and the minimum, respectively, as suggested by Garage [67].

The k-NN classifier is a distance rule-based technique which assigns an unknown sample to the
class that occurs most frequently among its k nearest neighbours [68]. The basic functioning behind
k-NN is that the group of k samples in the calibration dataset that are nearest (in feature space) to an
unknown sample is used to infer (through a majority vote) its membership [69]. Therefore, k is the key
tuning parameter in this classifier and largely determines the performance of the classifier. For this
study k was set to 1, as proposed by [69].

2.7. Accuracy Assessment

A 3:2 sample split ratio was employed for classifier training and accuracy assessment, as suggested
by Gilbertson, Kemp, and Van Niekerk [3]. The number of test samples needed for accuracy testing was
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based on the multinomial distribution for a confidence interval of 95% for the accuracy assessment [70].
Testing samples per class was determined based on the percent coverage calculated from an initial
unsupervised classification, as suggested by [71]. The percentage coverages were 24.8, 19.8, 30, 15,
and 10.6 for water, trees & shrubs, bare & built, grass, and shadow, respectively (see Appendix A).
The non-water classes were combined (reclassified) into one class, namely non-water, to assess the
binary thresholding experiments. The same training (input) and testing (validation) datasets were
used for all the classification experiments to ensure that differences in accuracy could be attributed to
the nature of the class allocation processes.

A producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and the kappa coefficient
(K) were generated for each classification experiment. OA is easily interpreted as it represents the
percentage of classified pixels in the image that have been correctly labelled, while K can be used to assess
statistical differences between classifications [68]. The statistical significance of the accuracy differences
among experiments was evaluated using non-parametric statistical tests, namely McNemar’s [72] and
Friedman’s test, as implemented in the Statistical Package for Social Sciences (SPSS). Differences were
considered as statistically significant at p < 0.05.

3. Results

3.1. Thresholding

Table 8 lists the results of the six best-performing Otsu-based thresholding experiments (named
T1–T6 for easier notation). The Table 8 also defines what each T1 represents. Compared to the Sentinel-1
features, higher accuracies were achieved when thresholding was applied to the Sentinel-2 variables,
with only one SAR-based experiment (T2) being among the six best results. When considering the
combination of all the study sites, NDWI (T1), derived from the green and NIR Sentinel-2 bands, was
the most successful in separating water from other land covers with an OA of 81.6% and K of 0.73.
The second-best performing feature was the Sentinel-1 VH polarisation (T2), derived from the RL filter,
with OA and K values of 77.7% and 0.67 respectively. According to McNemar’s test, the difference
between T1 and T2 is statistically significant. The second-best performing Sentinel-2 feature (OA of
71.8%) was the MNDWI, derived from the green band, and the ATWT pan-sharpened SWIR Sentinel-2
Band 11 (T3). This result was significantly lower than both T1 and T2, but not significantly higher than
when individual bands (T4 and T5) were used as input to the thresholding algorithm. The accuracy
levels dropped off sharply in T6 when Gram–Schmidt pan-sharpening was used for MNDWI.

Table 8. Overall accuracies (OA), kappa coefficients (K), mean (
¯
x), and standard deviation (δ) values

for the six best performing thresholding features.

Thresholding Average

T1 T2 T3 T4 T5 T6
OA K

NDWI VH PolRL MNDWIATWT Band 8 Band 11ATWT MNDWIGS
SITE

OA K OA K OA K OA K OA K OA K ¯
X δ

¯
X δ

A 88.2 0.83 85.5 0.65 73.2 0.59 74 0.53 63.7 0.53 64.2 0.51 77.6 9.5 0.50 0.27
B 91.8 0.84 88.5 0.77 68.3 0.58 77.6 0.55 75.4 0.51 71.6 0.54 76.8 12.1 0.40 0.38
C 90.8 0.83 88.4 0.77 93.6 0.87 81.2 0.73 78 0.57 84.2 0.89 86.9 7.1 0.78 0.15
D 91.6 0.89 89.6 0.79 75.8 0.62 76.7 0.53 65.9 0.51 65.7 0.51 77.8 11.4 0.49 0.30
E 90.7 0.81 89.5 0.79 94.6 0.89 80.8 0.62 75.9 0.52 85.1 0.92 87.1 8.0 0.78 0.17
F 89.1 0.78 88.7 0.77 65.9 0.55 78.9 0.58 73.1 0.57 64.3 0.51 75.4 16.0 0.38 0.37
G 96.1 0.92 92.4 0.85 98.2 0.91 88.8 0.78 88.6 0.77 93.2 0.93 90.5 6.0 0.81 0.11
H 90.3 0.81 82.8 0.71 91.1 0.82 76.3 0.53 75.7 0.52 70.4 0.54 83.9 11.0 0.63 0.20
X 90.7 0.82 86.3 0.70 85.2 0.67 81.3 0.61 77.8 0.55 75.2 0.73 82.8 5.8 0.7 0.13

SD 1.57 0.03 3.1 0.10 11.8 0.20 4.5 0.10 6.2 0.05 13.2 0.15 6.73 4.75 0.11 0.06
All sites 81.6 0.76 77.7 0.71 73.8 0.69 69.5 0.57 67.7 0.57 65.2 0.56 72.3 6.25 0.64 0.08

Notes: MNDWIGS = the MNDWI produced from applying Gram–Schmidt pansharpening to band 11;
MNDWIATWT = the MNDWI produced by applying à Trous wavelet transform pan-sharpening to band 11;
and VH PolRL= the VH polarisation produced from refined Lee speckle filtering.
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Generally, thresholding was more successful when each site was classified individually (i.e., using
a locally adapted threshold). For instance, the mean OA of the per-site NDWI (T1) classifications was
90.7%, which is significantly higher than the 81.6% OA achieved when all the sites were classified in
combination. A similar pattern is observed for the other features (all differences between mean OAs
per-site and OAs of all sites combined were statistically significant), although the variation among
site-specific classifications varied considerably. Notably, the standard deviation (SD) of the NDWI
(T1) classifications was 1.57%, while for MNDWIGS (T6) and MNDWIATWT (T3) it was 13.2% and
11.8%, respectively, which brings the stability of the latter two features into question. The stability
of the Sentinel-1 VH refined Lee (RL) speckle filter (T2) was better (SD of 3.1) than that of the two
MNDWI-based features (T3 and T6), but still significantly lower than that of NDWI (T1). This suggests
that no single threshold could accurately separate water and non-water land covers in all sites. This is
supported by Figure 3a–c, which demonstrates the temporal variability of NDWI, MNDWI and VH/VV
for the points taken at the same waterbody (Site G) on different dates. Furthermore, Figure 3d shows
the spectral and spatial shift at each point, based on a Sentinel-2 image acquired on 22 November 2016,
which suggests variability within the same waterbody.

The accuracies among study sites varied substantially. Site G, which is slightly turbid and
eutrophied, achieved the highest mean OA (90.5%) while the lowest accuracy was recorded at site
F (mean OA 75.4%). The latter site is shallow with humic-rich water from a slow-moving channel
flowing through forested plantations (Eucalyptus pine). MNDWI (T3) showed the highest accuracy for
delineating sites C, E, and H. These sites represent clear and eutrophied water. Thresholding of NDWI
(T1) produced the best results when humic water sites were classified (i.e., A, B, D, and F), while T2
(SAR backscatter) performed generally well (> 82%) in all sites. This suggests that the SAR data were
less affected by the optical variabilities among the waterbodies. A Friedman’s test showed that the
difference between feature type and optical variability of water are statistically significant (p = 0.002).Remote Sens. 2019, 11, x FOR PEER REVIEW  12 of 23 
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Figure 3. The selected GPS points collected on Site G showing the temporal and spatial variability
in (a) NDWI, (b) MNDWI, (c) VH/VV on different dates, and (d) shows the spectral variability on a
Sentinel-2 image acquired on 22 November 2016.

Unlike the other indices tested, NDWI was found to have the ability to spectrally differentiate
surface water with different characteristics located among different land cover types, including shadows
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or dark areas. For instance, Figure 4 shows that MNDWI incorrectly classified humic rich water as
non-water and confused shadows with water (Figure 5). Details of confusion matrices, including
commission and omission errors when applying NDWI, MNDWI, and VHPolarisationRL, are shown in
Tables A1–A3. The waterbodies were better captured by NDWI in all cases.
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Figure 4. Detailed (large-scale) examples of the 10 m true colour maps of Sentinel-2 (4, 3, 2), MNDWI,
and NDWI images. The first column represents site A and the second column is for site F.

Shadows and water are spectrally similar and were consequently difficult to discriminate, as
depicted by large errors of omission and commission in the shadow class with all the MNDWI, NDWI
and VH PolarisationRL. For example, for MNDWI, a higher commission error in the shadow class was
detected (47%) (mainly due to misclassification of water), which is also reflected in the high omission
error (16.5%). Furthermore, this is supported by the visualisation of false positives for MNDWI,
especially in mountainous terrain (Figure 5).
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3.2. Benchmarking Thresholding to Machine Learning  

Table 9 summarises the machine learning classification results. Generally, all the classifiers 
performed well at classifying slightly turbid water (site G). SVM significantly outperformed the 
other classifiers when the classifications were carried out per individual site, with site G recording 

Figure 5. Visual comparison of Sentinel-2 (a) true colour image (4, 3, 2), (b) MNDWI, and (c) NDWI on
mountain slopes showing the misrepresentation of shadows by MNDWI.

Figure 6 provides a qualitative comparison of T1 and T2 in test site F generated from images
captured on 31 January 2017. In general, it seems that T1 classified water with greater accuracy than
T2; however, T1 (marked with green squares) and T2 (marked with red squares) omitted water in
some areas (Figure 6). To reduce these errors and in the interest of finding a solution to classify water
automatically and accurately, an additional experiment (called “T1+T2”) was carried out in which T1
and T2 were unioned (i.e., using the Boolean operator OR). Visual inspection of Figure 6 suggests that
T1+T2 resulted in a better accuracy of surface water mapping compared to either T1 or T2. The accuracy
of T1+T2 was significantly (8%) higher than that of T1, achieving an OA of 89.3%.
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3.2. Benchmarking Thresholding to Machine Learning

Table 9 summarises the machine learning classification results. Generally, all the classifiers
performed well at classifying slightly turbid water (site G). SVM significantly outperformed the other
classifiers when the classifications were carried out per individual site, with site G recording the highest
mean OA of 95.9%. This result is significantly higher (p = 0.03) than the second-best classifier c-SVM
(mean OA = 93.3%). On average, DT was the worst performing classifier (mean OA of 88.4%) when
the classifications were carried out per site, except for site G (94.6%), where it outperformed RF (92.5%)
and k-NN (93.8%). With a SD of 3.7, DT was also the least stable of the five classifiers. The c-SVM was
the second-best performing classifier, but it did not perform well at classifying sites D and E (relative
to k-NN and RF).

SVM consistently outperformed the other classifiers, with an OA and K values of 91.7% and
0.82, respectively, when all sites were combined. This was significantly higher (p = 0.03) than the
second-best performing classifier c-SVM, which achieved an OA of 89.6%. DT delivered the poorest
overall classification results (OA = 78.7%), followed by RF (79.5%), and k-NN (80.7%). The accuracies
of all classifiers dropped significantly when all the sites were classified in combination (i.e., when the
complexity of the target classes increased), with RF and k-NN being the most affected (reduction in
mean OA of more than 10%).

Table 9. Overall accuracies (OA), kappa coefficients (K), mean (
¯
x), and standard deviation (δ) values

for the MLAs.

Classifier Overall Average

SVM c-SVM k-NN RF DT OA KSITE

OA K OA K OA K OA K OA K ¯
X δ

¯
X δ

A 95.8 0.91 92.7 0.90 87.2 0.85 88.7 0.86 81.7 0.79 89.2 4.73 0.86 0.05
B 97.4 0.93 94.2 0.91 89.0 0.87 89.8 0.86 85.0 0.82 91 4.07 0.88 0.05
C 96.8 0.94 94.4 0.91 90.5 0.89 89.3 0.86 86.2 0.83 91.2 3.39 0.88 0.04
D 95 0.94 90.7 0.92 91.8 0.90 91.3 0.89 90.2 0.89 93.9 1.89 0.91 0.02
E 96.3 0.88 93.3 0.95 93.6 0.90 91.4 0.89 91.2 0.89 93 1.52 0.90 0.03
F 94.5 0.90 92.2 0.90 89.7 0.87 88.7 0.86 86.2 0.83 90 2.1 0.87 0.03
G 98.2 0.96 95.7 0.95 93.8 0.89 92.5 0.89 94.6 0.95 94 2.67 0.93 0.03
H 94.6 0.91 94.3 0.93 91.5 0.89 92.7 0.90 91.3 0.90 93 1.08 0.91 0.02
X 95.9 0.93 93.3 0.92 90.8 0.9 90.5 0.88 88.4 0.89 91.8 2.89 0.90 0.03

SD 2.17 0.03 1.1 0.02 2.26 0.02 2.6 0.04 3.7 0.03 2.37 0.93 0.03 0.01
All 91.7 0.82 89.6 0.81 80.7 0.78 79.5 0.77 78.7 0.76 81.2 2.32 0.79 0.03

The OAs of the MLAs and best thresholding classifications are graphically compared in Figure 7.
SVM and c-SVM performed the best, regardless of the characteristics of the waterbody. T1 performed
better than the worst performing machine learning classifier (k-NN) at sites A, B, and C, which are
characterised by moderately eutrophied water. At site D (humic water), T1 achieved a 1.5% higher OA
than c-SVM. Although T3 was the worst performing classification when all sites were combined, it
performed on par with the machine learning classifiers at sites C, E, G, and H. For instance, at site E its
accuracy was significantly (1.3%) higher than what was obtained with c-SVM.

Although SVM was superior, the fusion of the T1 and T2 rulesets improved the threshold-based
classification outcome to achieve competitive results. T1+T2 achieved a higher accuracy than k-NN
at all individual sites and, at site D, it outperformed c-SVM by about 2.7%. At site E (eutrophied
waterbody), T1+T2 attained the highest accuracy, whilst at sites C and G, its accuracy was almost on
par with that of c-SVM. It is important to note that the fusion of T1 and T2 did not improve the OAs at
sites D and H by much. Figure 7 shows that all the classifiers struggled (OAs below 95%) at sites D, F,
and H. These sites are characterised by humic rich water and are located in mountainous terrain.
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4. Discussion

The results show that the characteristics of the water, type of classifier, and input feature dataset
had a significant impact on the accuracies of the surface water classifications. With the multispectral
data, the selection of the spectral index had a significant impact on accuracies. MNDWI’s lower OA
compared to NDWI was mainly due to the under classification of humic rich water (Figure 4) and over
classification of shadows (Figure 5).

NDWI was able to highlight dark, turbid, and eutrophied water more effectively than MNDWI.
This finding contrasts with those of Xu [41] and Zhai et al. [73], who noted that MNDWI provided
better discriminatory power than NDWI for shadowed and dark areas in close spectral proximity to
water. Zhai, Wu, Qin, and Du [73] found that MNDWI performed substantially better than NDWI
in mapping waterbodies that have similar spectral profiles to shadows, while Xu [41] showed that
MNDWI performed significantly better than NDWI for extracting turbid water, which has a high
spectral resemblance to some non-water classes. It should be noted, however, that these studies used
spectral bands from Landsat 7 and Landsat 8, which differ from Sentinel-2 bands used in this study.
However, our observations support those of Rokni et al. [74] and Zhou et al. [75], who found NDWI to
be superior to other indices in delineating shallow and turbid lakes respectively. A likely explanation
for NDWI performing better than MNDWI in our study was the study region. Although MNDWI is
known to be more effective than NDWI in suppressing built-up features [9,11], it performed poorly in
our study region, which is located in a rural setting. Nevertheless, the different OAs of NDWI and
MNDWI suggest that the NIR and SWIR bands were more sensitive to the variations in physical and
chemical properties of water than the green band.

It was observed that the SAR VH polarisation classified water more accurately than the VV
polarisation did, irrespective of the targeted water characteristics. Classification errors at site H were
mainly due to windy conditions at the time of acquisition, which created waves on the water surface
and resulted in high backscatter signals. The VV polarization produced higher backscatter values over
water surfaces than the VH polarization, which suggests that the former configuration is more sensitive
to variations between water and non-water features. A bigger difference between the backscatter
responses of land and water features was noted in the VH polarization than in the VV polarization.
This corresponds well with Clement et al. [76] who also noted that VH outperformed VV polarization
for turbid water mapping. Our study observed that the refined Lee speckle filter can suppress the
speckle effect and maintain details of the water boundary [14], which is important for the identification
of water pixels at the water/soil interface.
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In this study, the semi-automated MLAs were used for benchmarking the autonomous thresholding
results. All multispectral and SAR features were included in the MLAs to produce a best-case scenario.
Although inequality within the waterbodies (e.g., depth, colour, and sediment variations) has been
shown to affect classification results when using remotely sensed data [75], this study has proved SVM
to be less sensitive to intra-class variations compared to other classifiers. Moreover, SVM was credited
with its ability to effectively separate classes that are spectrally similar (e.g., humic rich water and
shadows). This was likely a major contributing factor to its outstanding performance in this study.

Challenges relating to different applications and data used were encountered when attempts were
made to directly compare the findings of this study with those of previous studies. The majority of
the published studies that focus on the use of MLAs for the supervised classification of RS data have
been done for vegetation and crop type classification using Landsat data. However, the outcomes of
this study are closely related to those of Sarp and Ozcelik [77], who revealed that machine learning
algorithms marginally outperform thresholding.

Although MLAs (specifically SVM) outperformed the thresholding methods in individual sites
and when the sites were combined (i.e., when complexity increased), the main drawback of supervised
MLAs is their dependence on training data. The application of supervised approaches is limited to
regions for which representative samples of labelled data are available. Once training samples are
established, they can be reused and applied to images with different dates and even of different areas.
However, the accuracy of the resulting classifications is usually negatively affected [24,78,79], mainly
due to temporal and regional variations. Waterbodies are highly dynamic as they continuously fill
up and empty, which makes the reuse of training sets very challenging and limits the operational
implementation of supervised techniques for monitoring changes in surface water reservoirs.

Despite the relatively lower recorded accuracies of thresholding (compared to those of MLAs), it
seems to be a viable solution for operational implementations. In contrast to supervised approaches that
require training data and rule-set (expert system) approaches that make use of a set of static thresholds,
thresholding generates dynamic rules (appropriate thresholds) that do not require human interaction
or training data. However, our results show that the use of a single feature (rule) for thresholding
produced relatively poor and unstable results. Combining the outputs of different thresholding results
produced much better and more robust results. For instance, we combined the two best thresholding
outputs (NDWI and VH PolarisationRL) and found that the combination (using Boolean OR) of these
SAR and multispectral features significantly improved the accuracy and stability of the surface water
classifications. More work is needed to investigate the efficacy of other combinations of thresholding
outputs. Furthermore, the differences in results between thresholding and MLAs can be related to
many other issues, such as pre-processing (atmospheric effects), the thresholding algorithm used, and
illumination geometry. Previous works have shown that larger variances between the water features
and non-water features typically minimize the accuracy of water body mapping, especially when a
small area of water bodies and large non-water features exist [80,81]. Future studies are recommended
to quantitatively consider how the variations in depth and concentrations of sediments and chlorophyll
can affect classification accuracies.

5. Conclusion

Accurate temporal and spatial changes for small waterbodies are critical for water security, drought
monitoring, and crop irrigation decision-making. Remote sensing offers a reliable, cost-effective,
and potentially autonomous alternative for surface water mapping of large and inaccessible areas.
The recently launched Sentinel-1 and Sentinel-2 satellites provide fine spatial and temporal resolution
remote sensing data, which makes it ideal for monitoring waterbodies at regional and even global scales.

In this study, we proposed an approach that combines automatic thresholding of near-concurrent
NDWI (generated from Sentinel-1) and VH backscatter polarisations (generated from Sentinel-1) for
mapping waterbodies (mainly reservoirs and dams) with diverse spectral and spatial characteristics.
Waterbodies of different sizes and varying levels of turbidity, sedimentation, and eutrophication were



Remote Sens. 2019, 11, 1351 17 of 21

targeted. The resulting maps were compared to the classification performances of five machine-learning
algorithms (MLAs), namely decision tree (DT), k-nearest neighbour (k-NN), random forests (RF), and
two implementations of the support vector machine (SVM). The results showed that the physical and
chemical properties of water significantly affected classification accuracies. The performance of the
best machine learning classifier (SVM) and thresholding (NDWI) dropped by more than 10% when the
complexity of the task was increased (i.e., when the classifiers were applied to all sites in combination).
However, the union of the two best thresholding results (NDWI and VHRL) was relatively accurate
and stable, likely because it takes advantage of both SAR and multispectral data. Although several
heterogeneous sites were used to evaluate the results, more work is needed to test whether the dynamic
NDWI– VH PolRL rule-set will be as effective in other areas, on other water types, during different
seasons, and under contrasting conditions. Other indices, such as the automated water extraction
index (AWEI) and tasselled cap wetness transformation, should also be evaluated when the coefficients
for Sentinel-2 bands are made available. In addition, when it comes to PCA, it might be useful to see
the correlation of the various component images with the water locations; as one of the components
might be a good water index.

In summary, the techniques and datasets evaluated in this study show much promise for the
accurate classification of optically complex waterbodies. Moreover, the relatively accurate and stable
classifications achieved when the multispectral and SAR data were fused and automatically thresholded
are very encouraging and may provide a viable solution for the operational monitoring of surface
waterbodies in the Winelands district of South Africa. The implementation of this technique will
provide invaluable information for water management and water security.
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Appendix A

Table A1. NDWI confusion matrix.

Water Trees & Shrubs Bare & Built Grass Shadow TOTALS PA*% EO†%
Water 3607 69 88 54 183 4160 86.7 13.3
Trees & shrubs 67 2645 123 326 68 3329 79.5 20.5
Bare & built 104 87 4162 189 248 4990 83.4 16.6
Grass 27 458 101 1794 66 2496 71.9 28.1
Shadow 119 38 62 21 1425 1665 85.6 14.4
TOTALS 3924 3297 4536 2384 1990 16,640

CA‡% 91.9 80.2 91.7 75.3 71.6
EC§% 8.1 19.8 8.3 24.7 28.4
Overall accuracy 81.6
Overall kappa 0.76

*PA = Producer’s accuracy; †EO = Errors of omission; ‡CA = Consumer’s accuracy; EC = Errors of commission.

www.linguafix.net
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Table A2. VH polarisation confusion matrix.

Water Trees & Shrubs Bare & Built Grass Shadow TOTALS PA*% EO†%
Water 3597 83 79 89 262 4110 86.5 13.5
Trees & shrubs 88 2679 60 218 284 3329 80.5 19.5
Bare & built 179 193 3805 381 145 4703 76.3 23.7
Grass 41 303 158 1920 49 2471 76.9 23.1
Shadow 168 104 162 63 1168 1665 70.1 29.9
TOTALS 4073 3362 4264 2671 1908 16,640

CA‡% 88.3 79.7 89.2 71.9 61.2
EC§% 11.7 20.3 10.8 28.1 38.8
Overall accuracy 77.7
Overall kappa 0.71

*PA = Producer’s accuracy; †EO = Errors of omission; ‡CA = Consumer’s accuracy; EC = Errors of commission.

Table A3. MNDWI confusion matrix.

Water Trees & Shrubs Bare & Built Grass Shadow TOTALS PA*% EO†%
Water 3271 85 189 56 469 4160 83.5 16.5
Trees & shrubs 69 2879 97 128 56 3329 78.2 21.8
Bare & built 90 126 4271 147 186 4990 73.8 26.2
Grass 49 401 93 1625 48 2496 74.1 25.9
Shadow 463 49 97 89 857 1665 70.2 29.8
TOTALS 3942 3540 4747 2045 1616

CA‡% 83 81.3 89 79.5 53
EC§% 17 18.7 11 20.5 47
Overall accuracy 73.8
Overall kappa 0.69

*PA = Producer’s accuracy; †EO = Errors of omission; ‡CA = Consumer’s accuracy; EC = Errors of commission.
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