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Language-Guided Semantic Affordance Exploration for Efficient
Reinforcement Learning

Runyu Ma1, Jelle Luijkx1, Zlatan Ajanović2, and Jens Kober1

Abstract— Reinforcement Learning (RL) shows great poten-
tial for robotic manipulation tasks, yet it suffers from low
sample efficiency and needs extensive exploration of state-
action spaces. Some recent methods leverage the commonsense
knowledge and reasoning abilities of Large Language Models
(LLMs) to guide RL exploration toward more meaningful
states. However, LLMs may generate semantically correct but
physically infeasible plans, leading to unreliable solutions. In
this paper, we propose Language-Guided exploration for Rein-
forcement Learning (LGRL), a novel framework that utilizes
LLMs’ planning capability to directly guide RL exploration.
This approach utilizes LLM planning at both the task and
affordance levels, enhancing learning efficiency by directing
RL agents toward semantically meaningful actions. Unlike
previous methods that rely on the optimality of LLM-generated
plans or rewards, LGRL corrects sub-optimality and explores
multimodal affordance-level plans without human intervention.
We evaluated LGRL on pick-and-place tasks within standard
RL benchmark environments, demonstrating significant im-
provements in both sample efficiency and success rates.

I. INTRODUCTION

RL [1] provides a powerful framework for learning
decision-making and control policies for robotics [2] through
interactions with the environment. However, its practical
application is often limited by low sample efficiency during
exploration phases. Training a stable policy necessitates
a thorough exploration of the state-action space and the
collection of sufficient reward signals. This process can be
particularly extensive for randomly initialized neural network
policies, especially in complex exploration tasks.

Previous exploration methods provide intrinsic rewards to
encourage exploration of novel states [3]–[6], which do not
always align with meaningful robot behavior. To improve
efficiency, earlier studies have integrated demonstrations that
infuse human knowledge into off-policy RL training [7]–
[11]. However, using demonstrations as a source of human
knowledge can be costly, and the effectiveness of these
methods heavily relies on the quality of the demonstrations.

In contrast, foundation models such as Llama3 [12] and
GPT-4 [13], which are trained on large datasets, provide
a robust alternative. These models, acting as approximate
knowledge sources [14], utilize human-like reasoning to
enhance robot manipulation tasks. Recent studies have shown
that LLMs and Vision Language Models (VLMs) can
comprehend environmental contexts and execute task-level
reasoning, effectively translating high-level, open-language

1 Cognitive Robotics, Delft University of Technology, The Nether-
lands (e-mail: {j.d.luijkx, j.kober}@tudelft.nl, r.ma-8@student.tudelft.nl).
2 RWTH Aachen University, Germany (e-mail: zlatan.ajanovic@ml.rwth-
aachen.de).

commands into sequences of actionable skills with human
language patterns [15]–[19]. However, their reasoning capa-
bilities can be limited by an incomplete understanding of the
physical world, occasionally leading to errors.

Although foundation models may occasionally make er-
rors, their approximation of human knowledge can signif-
icantly enhance RL training. Utilizing LLMs to generate
dense reward functions [20]–[23] aligns robot actions with
human language, effectively addressing challenges associated
with sparse rewards. However, such human-like rewards can
lead to unwanted behaviors, such as staying in regions with
higher rewards rather than achieving task success. Beyond
rewards, recent works [24], [25] explore using LLMs to
generate direct actions, guiding robots towards semantically
meaningful areas and altering the data distribution in off-
policy RL replay buffers. These exploration-driven actions
may start suboptimally but are refined during policy training.
However, the effectiveness of these methods heavily depends
on the quality of the actions produced by the LLMs and
contrasts with off-policy RL approaches.

In this paper, we propose Language-Guided exploration
for Reinforcement Learning (LGRL), a method that en-
ables reinforcement learning agents to efficiently explore
semantically meaningful regions guided by LLMs. At the
affordance level—referring to the specific ways an object
can be manipulated—actions can be multimodal, with some
modes being semantically correct yet physically infeasible.
Our method uses the values of the critics function to guide
exploration at this level, helping the agent avoid infeasible
actions at the affordance level.

We claim our contributions as follows:

1) We introduce LGRL, a method that uses LLMs to gen-
erate task- and affordance-level plans, guiding efficient
exploration in reinforcement learning. This enhances
the efficiency of reinforcement learning in manipula-
tion tasks with sparse rewards by enabling robots to
explore semantically meaningful action distributions.

2) We propose a method to correct errors and explore
multi-modalities in affordance-level plans generated by
foundational models. This approach guides the policy
to explore semantic affordance spaces, effectively iden-
tifying the viable affordance modes.

II. RELATED WORK

In this section, we review methodologies in reinforcement
learning and the application of foundation models in robotic
manipulation.

1



Task Description &
Language commands

Task planing 

LLM

LLM

Multi-modal 

affordance 

Online Exploration 

uncertainty

affordances for  primitive j

uncertainty

Explore in a semantically 
meaningfull action distribution 

Explore affordance 
multi-modalities

Task level plan 

Fig. 1: Language-Guided exploration for Reinforcement Learning (LGRL). IGRL first leverages LLMs to generate task and affordance-
level plans, directing RL to explore semantically meaningful regions with a goal state g and a base policy µpj (s, g). Additionally, RL
explores affordance-level multi-modalities using the goal-conditioned value function.

A. RL Exploration Methods

Classic exploration methods [3]–[6] in reinforcement
learning reward agents with intrinsic rewards that encourage
exploration of novel or uncertain states. These strategies aim
to prevent agents from prematurely converging on exploita-
tive actions, but in robotic manipulation, this exploration may
accumulate non-contributory experiences. Demonstrations,
representing human knowledge, are crucial in sparse reward
environments and are incorporated into replay buffers to
guide behavior through behavior cloning (BC) loss [7], [8],
[10]. RLPD [9] utilizes high update-to-data (UTD) ratios and
ensemble critics to guide training effectively using offline
data without BC loss. IBRL [11] starts with demonstrations
to train a policy, which then bootstraps the learning of a TD3
agent [26]. However, these methods still require high-quality
and sufficient demonstrations to be effective.

B. Foundation Models in Manipulation

Researchers have demonstrated the ability of LLMs to do
task-level reasoning for robotics. For instance, SayCan [16]
and Grounded Decoding [27] integrate language scores with
affordance scores from pretrained skills to decompose tasks.
However, these methods may encounter errors as they do
not explicitly consider spatial and logical reasoning. Several
studies [28]–[30] have employed LLMs to adapt the Task
and Motion Planning (TAMP) framework for task settings
guided by open language commands. Furthermore, Plan-Seq-
Learn [31] introduces a framework using LLMs for task-
level planning, with a geometric planning module leading
to initial conditions for the reinforcement learning process.
These methods are effective in managing both contact-free
and contact-rich tasks in robot manipulation.

C. Foundation Models and RL

LLMs have been effectively used to generate dense reward
functions that align agent behavior with human language
distribution [20]–[22]. While these rewards often enhance the
relevance of agent actions, they can also lead to unintended
behaviors, such as repeating actions for higher rewards
without achieving the task or getting stuck in the early stages
if those offer higher rewards than later ones. Eureka [23]

proposes a method utilizing evolutionary optimization to
refine reward code functions within the parallel environment
but is less efficient due to the evolutionary process. Recent
studies [24], [25] have explored generating direct actions to
guide robots to semantically meaningful areas, altering data
distributions in off-policy RL systems’ replay buffers, with
the need for high-quality actions to ensure effective guidance.

In contrast, our method, LGRL, learns a residual RL
policy focused on semantically meaningful regions guided by
LLMs. The residual action space allows the agent to optimize
directly under LLM guidance with a more human-meaningful
online data distribution. It leverages environmental interac-
tions to address errors and explore multi-modalities at the
affordance level of LLM guidance.

III. PRELIMINARIES

A. Reinforcement Learning

In reinforcement learning, the problem is typically for-
mulated as a Markov decision process (MDP), i.e., M ≜
(S,A,R, P, ρ0, γ), where S and A denote the state and
action spaces respectively. The reward function R produces
rt = R(st, at, st+1), and the transition probability P de-
fines P (st+1|st, at). The initial state distribution ρ0 and the
discount factor γ are also specified.

The goal of RL is to find an optimal policy π∗ that
maximizes expected cumulative rewards per episode, with
π specifying action at = π(st) for each state st:

π∗ = argmax
π

Ea∼π(a|s)

[
T∑

t=0

γtR(st, at, st+1)

]
. (1)

1) Value Function in RL: In reinforcement learning, value
functions, often represented by neural networks with param-
eters ϕ, are trained to estimate the expected accumulated
reward from a given state.

In on-policy RL methods, such as PPO [32], the value
function V π

ϕ (s) is used to estimate the expected reward when
following a specific policy π from state s:

V π
ϕ (s) = Ea∼π(a|s)

[∑

t

γtR(st, at, st+1)
∣∣∣ s0 = s

]
. (2)
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"Put chocolate box 

in the cupboard"

Knowledges:

    Possible ways for the robot to pick/place object

    class Object: ...

Examples: ...

Rules: ...

Objects: #input

Instruction:  #input

Response: #output

Knowledges:

    Position, Gripper z-axis, Gripper x-axis,

    To describe the orientation, ...

Examples: ...

Rules: ...

Objects: #input

Instruction:  #input

Response: #output

Your role is to understand instructions and break 

them down into smaller, actionable sub-tasks.
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available to execute these skills.

Please determine the target position and 

orientation of the gripper.

Knowledges:

    Actionable sub-tasks: ...

    class Object: ...

Examples: ...

Rules: ...

Objects: #input

Instruction:  #input

Response: #output

robot.pick("chocolate_box") 

robot.transport("chocolate_box",

                          "cupboard")

pick the box

    1. from the top

    2. from the side

place the box

    1. vertically in the cupboard

    2. horizontally in the cupboard

{ "EE position": "box.centroid", 

 "EE z_axis": "box.major_axis", 

 "EE y_axis": "box.z_axis" } 

: ...

: ...

: ...

(a) The LLM planning framework of LGRL comprises a task-level planner T , an
affordance modality identifier M, and an affordance planner Ψ.

: Pick the Box from the side 

: Pick the Box from the top 

: Place vertically in the cupboard 

: Place horizontally in the cupboard 

(b) LGRL explores affordance modalities
with value V (s, g) and uncertainty scores c.

Fig. 2: Visualization of the planning and exploration components in LGRL.

Off-policy RL methods, such as TD3 [26], utilize Q-
functions Qϕi

(s, a) to estimate the expected rewards for
specific state-action pairs (s, a):

Qπ
ϕi
(s, a) = Ea∼π(a|s)

[∑

t

γtR(st, at, st+1)
∣∣∣ s0 = s, a0 = a

]
.

(3)
In our approach, we leverage these value functions within the
RL framework to guide exploration at the affordance level.

B. Problem Formulation

In our task settings, we concentrate on pick-and-place ma-
nipulation tasks similar to those described in [33], [34]. Our
preliminary problem formulation defines the observation and
action spaces as follows: The observation space comprises
the robot’s state and the states of objects in the environment.
The action space A includes the end effector’s relative
pose and the gripper’s open-close actions. The environment
provides sparse external rewards Re : S×A→ {0, 1}, which
indicates task success.

Our goal is to leverage the reasoning capacity of LLMs to
generate plans that guide reinforcement learning exploration.

IV. METHODS

This section presents the LGRL method, which utilizes
the reasoning abilities of LLMs to direct RL agents toward
semantically meaningful behaviors.

1) The process of guiding RL with LLM-generated plans
is detailed in Section IV-A.

2) Foundation models convert high-level task instructions
into a sequence of executable plans in task and affor-
dance level, as described in Section IV-B.

3) The RL agent explores multi-modalities at the affor-
dance level illustrated in Sec. IV-C.

A. RL with LLM Guidance

In this section, we discuss how plans generated by LLMs
guide RL exploration efficiently. Before training, the plan-
ning pipeline generates plans at both the task and affordance
levels. Task-level planning decomposes language commands
into a sequence of n pick-transport primitives p1:n, while

affordance plans f1:n describe the manipulation approach.
The complete plan is represented as p = {pi(fj) | j =
1, . . . , n}, where p ∈ {pick, transport}, as illustrated in
Figure 2a.

During training, primitive pj starts by translating the
affordance-level plan into a goal state gj , representing the
SE(3) pose of the end-effector. A Proportional-Derivative
(PD) controller serves as the base policy µpj

(s, gj) to move
toward gj with linear trajectories in both position and orien-
tation spaces. Actions ap generated by these controllers aim
to meet these goals. The RL agent learns a residual action
policy are = πθ(s, g). The residual policy allows LLMs to
direct exploration towards semantically meaningful regions
online while simultaneously training the RL to correct sub-
optimalities and inaccuracies in LLM-controllers, as depicted
in Figure 2a. Action a executed by the system is the sum of
ap and are:

a = ap + are. (4)

To guide exploration toward the goal state, the agent
is rewarded with an intrinsic reward ri that quantifies the
distance to the goal state. This dense reward is general,
depending only on the primitive used and not requiring fine-

Algorithm 1 TaskPlan
Input: Task description L
Output: Plans in task and affordance level {p1:n}, {f1:n}
Component: LLM planner T , M, Ψ

1: {p1:n} ← T (L) ▷ Decompose using planner T
2: for j ← 1 to n do
3: {lf1:m

j
} ←M(pj) ▷ Query LLM possible

affordances modalities
4: for i← 1 to m do
5: f i

j ← Ψ(pj , lfi
j
) ▷ Plan each modalities

6: end for
7: fj = {f1

j , . . . , f
m
j }

8: end for
9: return {p1:n}, {f1:n}
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tuning for specific tasks:

ri = Ri (epos, equat) , (5)

where epos is the positional error, and equat is the rotational
error. Here, Ri represents a general dense reward function
determined by errors relative to the goal state.

Our LLM-guided approach initializes the policy with
a more semantically meaningful state distribution. Conse-
quently, the RL agent needs only to fine-tune an optimal
policy around the state distribution induced by the LLM-
generated policy, greatly enhancing training efficiency. More-
over, our method can be applied to both on-policy and off-
policy methods, as it does not depend on off-policy data in
the replay buffer.

B. LLM Planning as Guidance
This section describes how LLMs convert high-level

task instructions into task- and affordance-level plans. This
pipeline consists of three LLM planners: a task-level planner
T , an affordance modality identifier M, and an affordance-
level planner Ψ.

The task-level planner T translates high-level task descrip-
tions L into basic primitive actions, such as “Pick up the
cube” or “Place the box in the cupboard”. These actions are
converted into Python primitives p, like ‘robot.pick(object)’,
for reuse across multiple episodes.

Affordance-level plans are inherently multimodal in their
semantics; however, while they may be semantically sound,
not all modes are necessarily physically feasible. For exam-
ple, the actions of picking and placing a box involve semantic
ambiguities: a box could be grasped from the top or side and
placed either horizontally or vertically. Placing a food box
horizontally on a table may cause it to spill its contents,
whereas placing it vertically might lead to an inaccessible
configuration space. These challenges complicate the use of
reinforcement learning for affordance-level guidance.

To address these challenges, we developed an affordance
modality identifier M that queries the LLMs to generate
all semantically feasible affordance plans when multimodal
language characteristics are present. It generates descriptions
lf1:m

j
for m different affordance modalities, such as “pick the

box from the side” or “pick the box from the top”.
The affordance-level planner Ψ : (pj , lfi

j
) → f i

j then
maps these descriptions to robot end-effector poses in natural
language f i

j , rather than precise SE(3) coordinates. For
picking tasks, affordances are defined by three attributes:
position, end-effector (EE) z-axis, and EE y-axis—specifying
the direction the end-effector faces and the direction in
which the gripper opens. This enables the LLM to align the
robot’s movements with environmental features effectively,
as shown in Figure 2a. For transport tasks, object-centric
formulations are used to accommodate variations between
expected and actual picking poses, enhancing robustness and
environmental adaptability.

C. Affordance Exploration
Our method is designed such that it explores affordance

multi-modalities. In the training phase, affordance plans

Algorithm 2 LGRL
Input: Task description L
Output: Trained policy πθ

1: {p1:n}, {f1:n} ← TaskPlan(L) ▷ Planning phase
2: Initialize policy πθ and critics Vϕ, uncertainty score cij
3: for step in training steps do
4: if pj needs to be initialized then
5: for all f i

j in fj do
6: gij ← Parser(f i

j) ▷ Transfer to goal state

7: p(gij) ∝ exp
(
βV π

ϕ

(
s, gij

))
cij ▷ Calculate

goal probabilities
8: end for
9: gij ∼ p(gij)

10: cij ← max(cij − αcij , cmin) ▷ Update uncertainty
score

11: end if
12: are ← πθ(s, g

i
j)

13: Train(πθ, Vϕ) ▷ Train policy and critics
14: end for
15: return πθ

f1:m
j are converted into goal states, g1:mj . The selection

of a goal state gij during training is determined by its
alignment with the value function and an uncertainty score.
The value function in RL provides an estimate of the
expected return from the current state, making it an effective
tool for approximating the value of a goal state based on
current observations. The selection probability for on-policy
reinforcement learning agents, where the value function is
denoted as V π

ϕ , is modeled as:

p(gij) ∝ exp
(
βV π

ϕ

(
s, gij

))
cij (6)

and for off-policy agents using a Q-function Qϕ (s, a), it is
given by:

p(gij) ∝ exp
(
βQϕ1

(
s, gij , π

(
s, gij

)))
cij (7)

where β > 0 is a temperature parameter that controls
the decision-making sharpness, and cij is an uncertainty
score that balances the exploration-exploitation trade-off. The
uncertainty score is updated as follows:

cij ← max(cij − αcij , cmin) (8)

Here, α is a small positive constant significantly less than
1, and cmin serves as the lower bound for the uncertainty
score.

In this way, we enable reinforcement learning agents to
explore a higher semantic hierarchy, effectively addressing
the issues associated with multi-modality at the affordance
level. The complete algorithm is detailed in Algorithm 2.

V. EXPERIMENTS IN SIMULATION

We conduct experiments within simulation environments
to demonstrate the effectiveness of our proposed framework.
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Fig. 3: Training curves in simulation environments, with dashed lines indicating the success rate of LLM policies.

A. Environmental Setups and Results

Our evaluation involves a diverse range of tasks from
simulated environments: four from RLbench [33] and three
from Maniskill3 [34]. The robot end-effector control uses
relative position or velocity instead of joint space control,
simplifying the action space for language models. This space
includes delta velocity, delta orientation, and gripper actions,
represented as a = (δx, δy, δz, δrx, δry, δrz, grip).

We learn policies with a residual action space built on
top of base actions defined by pre-existing primitives. These
primitives are implemented using a PD controller that moves
linearly toward the target. The proportional gain is set to 1 by
default, with movements constrained by maximum velocity
and orientation velocity limits. For the pick primitive, the
termination condition is met when the object’s distance from
its initial position exceeds a specified threshold. For the
transport primitive, termination occurs when the positional
error to the goal is below a threshold, and the object is nearly
static.

We also design a general dense reward function for dif-
ferent primitives. For pick actions, the intrinsic reward is
defined as:

ri = − tanh(wpos · epos + wquat · equat). (9)

For transport actions, the reward is computed as follows:

ri = 2− 2 · tanh(wpos · epos + wquat · equat). (10)

Here, wp and wq are weights applied to the positional
error and the rotational error, respectively. In addition to the
intrinsic reward ri, an external reward re (where re ≫ ri) is
provided by the environment, granted upon successful task
completion or other specific termination conditions.

We chose OpenAI GPT-4o as the LLM due to its robust
performance, affordability, and quick response times. To
implement LLM planners, these planners follow a uniform
structure that includes a brief task description, followed
by specific instructions and task-related knowledge. While
LLMs generally yield reasonable results, a suitable answer
in one context may not necessarily be applicable in another.

Fig. 4: PegInsertion Task: LGRL learns the correct picking
position modality, i.e., picking from the end.

To address this, we provide several examples demonstrating
the desired format and reasoning. Additionally, we use these
planners to pre-query the LLM before the training phase,
storing results as Python functions and dictionaries for reuse
during training.

1) Maniskill Environments: In the Maniskill environ-
ments, we evaluate the LGRL framework using three rep-
resentative pick-and-place tasks: PickCube, StackCube, and
PegInsertionSide. This experiment aims to demonstrate the
sample efficiency of our method by comparing it against
three baselines: Text2Reward [22], Oracle reward, and
RLPD [9].

Text2Reward leverages the reasoning capabilities of
LLMs to generate dense rewards that implicitly guide robots
through necessary task steps, promoting meaningful behavior
without human fine-tuning. Our implementation uses a zero-
shot approach of Text2Reward without any prior expert
reward examples.

Oracle reward utilizes the expert-designed reward func-
tion provided within the Maniskill environment.

RLPD is an effective reinforcement learning method that
leverages demonstrations. It keeps a 50% offline training date

5
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Fig. 5: Multimodal affordance exploration, showcasing value and uncertainty score curves across tasks.

data proportion and uses 10 critics to avoid overfitting. We
tested it with 10, 25, and 100 demonstrations, training with
sparse rewards.

While using expert rewards and dense rewards generated
by LLMs demonstrates promising enhancements in episode
rewards, no significant improvement in success rates is
observed within a million steps, which is consistent with
the results in [22]. Although Text2Reward successfully gen-
erates human-meaningful rewards, the lack of task-specific
knowledge or RL expertise necessitates expert input in the
prompt or human feedback to refine the reward functions.
Furthermore, expert-designed rewards also failed to show im-
provement, indicating that methods relying solely on reward
still require extensive environmental steps to learn a policy
effectively.

The RLPD method exhibits improvements in success
within a million steps and high sample efficiency with
100 demonstrations. However, their efficiency declines with
fewer demonstrations and shows no improvement with only
10 for some tasks, as depicted in Figure 3a. Our experiments
confirm that RL-with-demonstration methods heavily depend
on demonstrations, while our method achieves comparable
efficiency to RLPD with 100 demonstrations but without
requiring human effort.

Our approach, which directly guides robots to goals gener-
ated by LLMs, achieves high convergence speeds and stable
convergence across all tasks built on PPO and TD3, as shown
in Figure 3a. The only exception is the PPO version of our
method, which does not converge within 2 million steps but
shows a positive trend. Although on-policy methods typically
have lower sample efficiency than off-policy methods due to
their inherent design, this performance gap is less noticeable
in our approach. This efficiency is primarily due to the
predefined primitives towards goals generated by LLMs that
provide effective actions, aiding significantly in the pol-
icy optimization process. Consequently, the guidance from
LLMs allows the policy optimization method to converge
significantly faster than it would when optimizing a fully
stochastic policy.

Table I shows the results of the affordance modality

identifier for each task. The PickCube and StackCube tasks
do not exhibit multiple options at the affordance level. For
the PegInsertion task, the LLM-generated affordance plan
is multi-modal, suggesting that the peg can be picked up
from either the head or the end. Although achieving stable
performance in PegInsertion typically requires millions of
steps, our method successfully identifies the correct mode,
as illustrated in Figure 4. Despite focusing on learning one
mode, the method continues to explore alternative modes, as
indicated by the uncertainty scores.

TABLE I: Summary of identified affordance modality across
various tasks.

Tasks N Modalities Affordance Description

PickCube 1 –

StackCube 1 –

PegInsert 2 Pick: the peg from the end / head.

OpenDrawer 1 –

TakeUmbrella 2 Pick: the handle from top / side.

PutBoxIn 4 Pick: the box from the side / top.
Cupboard Transport: vertically / horizontally in

the cupboard.

TakeLid 1 –

2) RLbench Environments: RLbench provides a wide
range of tasks that mimic everyday activities, making it a
suitable platform for evaluating our LLM task planning and
affordance-level planning pipeline. We assessed the LGRL
method across four environments: PutBoxinCupboard, Open-
Drawer, TakeUmbrellaOutOfUmbrellaStand, and TakeLid-
OffSaucepan. The control mode selected was EndEffector-
PoseViaIK, which utilizes relative position and orientation
for action.

Among these, we chose the PutBoxinCupboard task as
our motivation example, as shown in Figure 2. This task is a
modified version of the PutGroceriesInCupboard task, where
the robot is required to place a box inside a cupboard. Addi-
tionally, we imposed a manual constraint to prevent the robot

6



from tilting the box, ensuring the contents do not spill. This
constraint is not explicitly provided during the LLM planning
phase but is incorporated as an external reward during RL
training. Additionally, to ensure practical applicability, we
integrated collision detection as another form of external
reward signal. Our method aims to effectively explore both
the affordance level and the execution level to learn a policy
that successfully places the box in the cupboard.

During the planning phase, the LLM identifies multi-
modalities within the task-level plan. The picking action
offers two options: “pick from the side” and “pick from the
top”, while the placing phase also presents two possibilities:
placing the object vertically or horizontally in the cupboard.
As depicted in Figure 5a, as the value function learns
the accumulated discounted rewards, the affordance-level
plans learn to find the option with a higher success rate
based on its critic’s values. Through exploration, the system
autonomously discovers that picking from the top may lead
to an unreachable goal space for the transportation phase,
and placing the box horizontally could violate the constraint
on object orientation.

We conducted experiments on the four aforementioned
tasks, with the training curve shown in Figure 3b. The results
demonstrate that our method achieves high sample efficiency
in both TD3 and PPO as the base policies. Notably, apart
from the PutBoxinCupboard task, the TakeUmbrellaOutO-
fUmbrellaStand task also exhibits multimodalities in the
task-planning phase. The LLM identifies these as “pick the
umbrella from the top” and “pick the umbrella from the
side”. It is important to note that both plans are feasible,
and RL successfully learns to adapt to these modalities as
depicted in Figure 5b.

VI. REAL WORLD EXPERIMENTS

To demonstrate the effectiveness of our method in real-
world applications, we evaluated it on a manipulation task,
“PutBoxInCupboard” which requires stable object picking
and collision avoidance during placement—an ideal scenario
to showcase residual learning.

A. Experimental Setup

We utilized a Franka Emika Panda robot with a Franka
gripper, controlled by a Cartesian impedance controller con-
trolling the end-effector’s position and orientation at 1kHz.
Our method delivered end-effector pose commands at a lower
frequency to the impedance controller. Real-time object
tracking was facilitated using a RealSense D435 RGB-D
camera, as depicted in Figure 6a.

B. Result

We deployed our algorithm with TD3 on the robot and
conducted 15 episodes using our method and a baseline
LLM controller that directly employed the plans generated
by LLMs. Our method achieved a success rate of 93.3% with
only one failure, while the LLM-only controller had a 0%
success rate, failing all episodes due to collisions with the
cupboard.

Camera

Z

Y
X

Pick goal

Transport goal

(a) Real world settings for task: PutBoxinCupboard
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Fig. 6: Visualization for real robot experiment

Figures 6b and 6c illustrate the detailed trajectories used
to accomplish this task. As shown in these figures, the
actions generated by the primitive policy are straightforward
and directed toward the goal position defined by the LLM
planner. Even without specific Sim-to-Real techniques, the
base policy from these primitives guides the robot to regions
with higher confidence, even when encountering unknown
areas.

The residual policy refined trajectories for physical feasi-
bility. In Figure 6b, the RL agent learns to avoid collisions
during the picking phase. Similarly, in Figure 6c, it adjusts
upward during placement to prevent collisions with the cup-
board. Additionally, the robot moves in larger, stable steps,
completing tasks more efficiently than LLM controllers.
Overall, the residual policy significantly outperforms the
LLM-only policy in both success rate and reliability.

VII. CONCLUSION AND DISCUSSION

In this paper, we present the LGRL method, which lever-
ages the reasoning capabilities of LLMs to guide efficient
exploration in reinforcement learning at both the execution
and affordance levels. We evaluated our approach against
baselines involving LLM-guided reward shaping and effi-
cient RL with demonstration in simulated environments.
The results demonstrate that our method enables LLMs to
generate plans and detect multi-modalities at the affordance
level, thereby significantly enhancing the efficiency of rein-
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forcement learning and outperforming baselines in terms of
success rate and sample efficiency.

However, our approach has limitations. The current plan-
ning framework cannot handle complex objects with intricate
geometries and is limited to simpler objects such as cubes,
boxes, or drawer handles. Additionally, our method relies on
access to object states, which poses challenges for real-world
deployment.

To address these limitations, we plan to incorporate in-
teractive learning, where humans provide one or a few
demonstrations to help the robot plan for objects with more
complex geometric relationships. To improve generalizabil-
ity, we also aim to use manipulation foundation models,
such as AnyGrasp [35], to generate affordance goals without
relying on precise state information of the objects.
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ExploRLLM: Guiding Exploration in Reinforcement Learning with
Large Language Models

Runyu Ma*1, Jelle Luijkx*1, Zlatan Ajanović2, and Jens Kober1

Abstract— In robot manipulation tasks with large observation
and action spaces, reinforcement learning (RL) often suffers
from low sample efficiency and uncertain convergence. As an
alternative, foundation models have shown promise in zero-
shot and few-shot applications. However, these models can be
unreliable due to their limited reasoning and challenges in
understanding physical and spatial contexts. This paper intro-
duces ExploRLLM, a method that combines the commonsense
reasoning of foundation models with the experiential learning
capabilities of RL. We leverage the strengths of both paradigms
by using foundation models to obtain a base policy, an efficient
representation, and an exploration policy. A residual RL agent
learns when and how to deviate from the base policy while
its exploration is guided by the exploration policy. In table-top
manipulation experiments, we demonstrate that ExploRLLM
outperforms both baseline foundation model policies and base-
line RL policies. Additionally, we show that this policy can be
transferred to the real world without further training. Sup-
plementary material is available at https://explorllm.github.io.

I. INTRODUCTION

Foundation models (FMs) [1], which refer to models
trained on large-scale data (e.g., Large Language Models or
Vision-Language Models), have shown significant promise
in robotics. Large Language Models (LLMs), such as GPT-
4 [2], can generate commonsense-aware reasoning in various
scenarios. For instance, LLMs have demonstrated zero-shot
planning capabilities [3], breaking down complex tasks into
detailed step-by-step plans without additional training. When
integrated with Vision-Language Models (VLMs), LLMs
leverage cross-domain knowledge for robot perception and
planning in manipulation tasks [4]. This synergy allows for
the extraction of environmental affordances and constraints,
forming a foundation for subsequent robotic planning [5].
Despite the impressive results of FMs, unpredictable failures
in LLM predictions can still lead to robotic errors, and LLMs
generally do not learn from past experiences [6], [7].

Reinforcement Learning (RL) offers a powerful framework
for learning decision-making and control policies through
interaction with the environment [8]. However, RL struggles
with the “curse of dimensionality,” where large observation
and action spaces slow exploration and convergence. To
address this, we propose combining FMs and RL, using
FMs to guide the RL agent’s exploration. While actions
generated by FMs may be sub-optimal or fail, they highlight

* Equal Contribution. 1 Cognitive Robotics, Delft University of Tech-
nology, The Netherlands (e-mail: {j.d.luijkx, j.kober}@tudelft.nl, r.ma-
8@student.tudelft.nl). 2 RWTH Aachen University, Germany (e-mail:
zlatan.ajanovic@ml.rwth-aachen.de).
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Fig. 1: Graphical overview of ExplorLLM.

meaningful regions in the action space for exploration. Tra-
ditional RL exploration strategies (e.g., ϵ-greedy, Boltzmann
exploration [9]) are stochastic, focusing on exploration-
exploitation trade-offs, but lack mechanisms to incorporate
prior knowledge for faster convergence. We instead use
LLMs as few-shot planners, generating actions that serve
as exploration steps in RL, increasing the likelihood of
successful states and gathering more relevant state-action
pairs for off-policy RL agents.

Our method, ExploRLLM, improves performance by com-
pensating for FMs’ sub-optimality and biases through RL,
while FMs accelerate RL training by reducing observation
spaces and guiding exploration. To summarize, our main
contributions are: 1) We propose ExploRLLM, which em-
ploys an RL agent with a) residual action and observation
spaces based on affordances identified by FMs and b) LLM-
guided exploration. 2) We introduce a prompting method for
LLM-based exploration using hierarchical language-model
programs, leading to faster convergence. 3) We show that
ExploRLLM outperforms policies derived solely from LLMs
and VLMs and generalizes to unseen scenarios, tasks, and
real-world settings without additional training.

II. RELATED WORK

A. Foundation Models for Planning in Robotics

Researchers have shown that LLMs can generate zero-
shot or few-shot plans using reasoning capabilities [3], [10],
which is crucial for high-level planning in robotics. These
models facilitate task-level planning by integrating environ-
mental groundings, such as affordance value scores [11] or
feedback [12], with their language groundings. Furthermore,
LLMs can generate robot-centric code programs as represen-
tations for both task-level [13] and skill-level planning [14].
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VLMs are increasingly integrated into robotics as a percep-
tion module of environmental context. The integration of
knowledge from LLMs and VLMs facilitates the creation
of perception-planning pipelines [4] and the construction
of 3D value maps for zero-shot planning frameworks [5].
However, directly applying VLMs and LLMs to zero-shot
tasks may not guarantee success or safety due to real-
world uncertainty. In our research, we treat these actions as
exploratory behaviors within an RL framework.

B. Foundation Models and Reinforcement Learning

Incorporating FMs into RL frameworks has notably im-
proved RL’s effectiveness. In [15], the authors have imple-
mented LLMs as proxy reward functions, demonstrating their
utility in RL. In the context of RL for robotics, LLMs are
also capable of generating reward signals for robot actions
by connecting commonsense reasoning with low-level ac-
tions [16], self-refinement [17] and evolutionary optimization
over reward code to enable complex tasks such as dexterous
manipulation [18]. Regarding exploration, authors in [19]
reward RL agents toward human-meaningful intermediate
behaviors by prompting an LLM. LLMs are also utilized as
an intrinsic reward generator to guide exploration for long
horizon manipulation tasks [20]. Contrary to these studies,
our approach employs LLM-generated code policies to guide
exploratory actions rather than focusing on reward shaping.

III. PROBLEM FORMULATION

In this study, we focus on tabletop manipulation tasks to
implement and evaluate our ExplorLLM method, as these
tasks facilitate the creation of a base policy using FMs. We
use a VLM for object detection and an LLM to identify
the object to be manipulated from a command. Each ma-
nipulation task begins with a linguistically described goal,
denoted by l. At each time step t, the agent receives an
observation ot, consisting of an overhead RGB-D image and
the state of the end-effector. Similar to existing methods (e.g.,
Transporter [21]), the action space involves a pick and a
place primitive, denoted as {Ppick,Pplace}, with each action
parameterized by pick and place positions in a top-down
view. We simplify this to a single motion primitive—either

pick or place. This simplification makes the RL challenge
more tractable by eliminating the need to learn a feature
representation for each primitive individually. The pick or
place action is defined as a tuple containing the primitive
index k (0 for pick, 1 for place) and a top-down view
position, expressed as x, i.e., at = (kt,xt). At each time
step, the agent receives a reward r consisting of a dense
reward component rd and a sparse reward rs.

IV. FRAMEWORK: EXPLORLLM

A. Observation and Action Spaces

Our methodology leverages the strengths of LLMs and
VLMs to extract the observation space used for the RL
framework, as depicted in Figure 2. LLMs reformulate user-
provided language commands into predefined templates and
highlight the objects within these templates to form an
interpreted command vector l̃. For example, it identifies
the pick object in a template like “Put [pick object] on
the [place object].” It is important to note that, within
a given task setting, the number and category of objects
do not change. Utilizing VLMs as open-vocabulary object
detectors, our system identifies and encloses objects rele-
vant to the task within bounding boxes from the image
in raw observation space ot, represented by their locations
Xvlm = [xvlm1 ,xvlm2 , ...]. RGB-D visual inputs are seg-
mented into crops based on bounding box positions, denoted
as Mvlm = [mvlm1

,mvlm2
, ...]. This method improves the

system’s robustness to detection inaccuracies and varying
object shapes. The interpreted commands l̃, the positional
data Xvlm and the image patches Mvlm are then integrated
into the reformulated RL observation st.

As the VLM already extracts each object’s position
Xt

vlm[i
t], the action space is converted into an object-centric

residual action space, as shown in Figure 2. The reformulated
action space consists of a primitive index k, an object index i
and a residual position xres, expressed as ãt = (kt, it,xt

res),
where xt = Xt

vlm[i
t] + xt

res. This residual action allows
to pick or place objects at specific locations. This is, for
example, needed when picking the letter O, and Xt

vlm[i
t]

denotes the center of the bounding box. In this case, the
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Algorithm 1 Exploration strategy πE

Input: state st, LLM policies πLLM
H , πLLM

L

Parameter: threshold ϵ
Output: action ãt

1: Sample a random number j from U(0, 1)
2: if j ≤ ϵ then
3: Run LLM-generated high level action policy πLLM

H

at
H = (kt, it) = πLLM

H (st)
4: Run LLM-generated low level action policy πLLM

L

xt
res = πLLM

L (st,at
H)

ãt = (kt, it,xt
res)

5: else
6: Run the reinforcement learning policy πRL

ãt = πRL(st)
7: end if
8: return action ãt

residual action xt
res is needed to prevent picking the letter O

at its empty center.

B. LLM-Based Exploration

Traditional deep RL algorithms (e.g., SAC [22], PPO [23])
do not inherently promote frequent visits to high-value states
in high-dimensional state-action spaces, making vision-based
tabletop manipulation tasks particularly challenging. In such
cases, RL agents may struggle when successful outcomes are
rare. Leveraging the planning capabilities of LLMs and the
perception strengths of VLMs can help guide the exploration
process more effectively by tapping into the rich prior
knowledge within these FMs. The LLM-based exploration
strategy, denoted as πE in Algorithm 1, draws inspiration
from the ϵ-greedy strategy. Specifically, during the rollout
collection at each timestep, the off-policy RL agent employs
the LLM-based exploration technique if a sampled random
variable falls below the threshold ϵ. Otherwise, the action is
selected according to the current RL agent’s policy, πRL, as
detailed in Algorithm 1.

Prior research frequently prompts LLMs at every step
to create plans for robotic manipulation, making the pro-
cess highly resource-intensive. This method incurs signif-
icant time and financial costs due to the numerous LLM
invocations required to train a single RL agent. Drawing
inspiration from CaP [14], our methodology employs the
LLM to hierarchically generate language model programs,
which are then executed iteratively during the training phase
as exploratory actions. The hierarchical language model
programs include both high-level πLLM

H and low-level πLLM
L

policy code programs. A high-level plan primarily involves
selecting robot action primitives and the objects to interact
with based on the current state of the robot and the objects.

In contrast to high-level tasks, instructing low-level actions
poses a more significant challenge because high-level states
and actions are more accessible and can be represented as
language. When dealing with low-level actions, the com-
plexity of the state becomes considerably more intricate,
particularly for image-based problems. Therefore, instead

of a deterministic code policy, we instruct the LLM to
produce a code policy πLLM

L for generating an affordance
map according to the input image. The low-level exploration
behavior is derived from a stochastic policy that relies on
the values within this affordance map. Although the code
generated by LLMs lacks guaranteed feasibility and accuracy
in robot environments, these models can generate potentially
useful policy candidates, with the one exhibiting the highest
success rate being selected as shown in Figure 3.

V. IMPLEMENTATION

The main components for the implementation of ExploR-
LLM are RL agent, VLM-based object detection, and code
policy generation by LLM.

1) Reinforcement learning agent: We use the Soft Actor-
Critic (SAC) algorithms with modifications in the collecting
rollout phase, detailed in Algorithm 1. Other implementation
aspects remain consistent with the standard SAC approach in
stable-baselines3 [24]. We employ two convolutional layers
to transform every image patch into a vector ϕ ∈ Rn×d,
where n is the number of objects captured by VLM and d the
dimension of each patch as encoded by the CNN. The vector
is subsequently concatenated with the position, robot gripper
state, and the extracted episodic language goal l̃ to form a
new vector ϕ′ ∈ Rn×d′

, where d′ denotes the dimension of
each patch’s vector following encoding and concatenation. It
then goes to a self-attention layer. The output features from
this layer then go into a two-layer MLP. The aforementioned
structure is consistently utilized across all actor and critic
networks.

2) VLM detection: Utilizing an open-vocabulary object
detector ViLD [25], objects in the environment can be
identified by given specific labels. However, implementing
this model online during training is time-consuming, so
ViLD is utilized solely in the evaluation phase. In the training
phase, the ground truth in the simulation is used to determine
the center positions of the bounding boxes. It is important to
note that ViLD’s position detection in real-world scenarios
is not always flawless. To simulate this imperfection, noise
following a Gaussian distribution with a standard deviation
equivalent to half the radius of the image crop is applied to
the ground truth positions.

3) Code policy generation by LLM: The policy code
for executing high-level behavior is obtained using a few-
shot prompt in GPT-4 [2]. It includes a list of available
robot motion primitives to demonstrate the robot’s actions.
A custom API is also provided to aid the LLM in reasoning,
such as determining whether an object is held in the robot’s
gripper or understanding the relationships between different
objects. Following the approach demonstrated by [14], where
LLMs have been shown capable of generating novel policy
codes with example codes and commands, our prompt also
includes examples. They are designed to guide the LLM in
formulating plans and conducting geometric reasoning for
our specific task scenarios.

For low-level exploration actions, we employ GPT-4 with
Vision [2], which generates code using prompts that combine
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[Task description]

A robot wants to pick up this letter with a suction gripper as shown in the first figure. The second

image is a top-down view of a block with the shape of the [letter V]. We want you to design a function

to sample the pick position in 2D to ensure successful picking.

[You should do]

Finish function: generate_pick_probability_map(img, threshold=100), img is the input image and

threshold is a threshold from 0 to 255.

1. Assume the input image size is [28, 28].

2. Detect the letter, position, and orientation of the letter.

3. Based on the position and orientation of the letter, draw a 2D probability map [28, 28] for the robot

to sample the pick position in Python.

[Rules]

You can only use Python libraries (numpy, opencv), input of the function is the image of the picked

object and the image of the placed object. Some threshold parameters are allowed and can be optional

inputs of the function, for example: the threshold of the gray scale.

2. Do not always use the center of mass as the pick position, you should consider the shape of the

letter. For example, get the contour of the letter and assign a higher probability to the area inside the

contour.

3. Provide only 1 Python function with a brief explanation, you cannot use undefined functions in your

code.

[Give 6 candidate python codes completing this template]

 import cv2

 import numpy as np

 def generate_pick_probability_map(img, threshold=100):

 # you should finish

 return prob_map

[candidates]

#1 #2 #3 #4 #5 #6

Prompt

Fig. 3: Based on an exploration prompt, candidate policy code is generated. The exploration policy is selected after evaluation.

example images with language descriptions, enriching the
context with visual information, as shown in Figure 3. The
provided example images include a depiction of the envi-
ronmental setup featuring the robot, a simulated background,
objects, and a specific example of image patches inside VLM
bounding boxes. The prompt describes the requirements and
guidelines, enabling generated code to create a probability
affordance heatmap for the specified image patch, utilizing
external libraries like OpenCV and NumPy. However, as
indicated in Figure 3, there are instances where the generated
affordance map may not be optimal. For example, the optimal
pick position for the letter O should be at its rim, whereas
the heatmap suggests the center.

To address sub-optimality, we use a stochastic policy
based on the affordance map instead of a deterministic
one that selects the point of highest affordance. Since RL
improves through rewards from environmental interactions,
sub-optimal exploration policies can be corrected via learn-
ing. This approach also allows for the generation of counter-
examples during replay buffer collection.

VI. EXPERIMENTAL SETUPS

A. Simulation Setup

The proposed method is trained and evaluated on a sim-
ulated tabletop pick-and-place task, as shown in Figure 2.
Similar to [21] and [26], we use a UR5e, and the input
observation is a top-down RGB-D image. Inspired by [26],
we increased the task difficulty by replacing simple blocks
with various objects, such as letters. We assess our method in
two tasks: a short-horizon (SH) task, “Pick the [pick letter]
and place it in the [place color] bowl”, and a long-horizon
(LH) task, “Put all letters in the bowl of the corresponding
color”, as shown in Figure 6a. In the SH task, each episode
starts with three letters and three bowls randomly placed on
the table, with pick-and-place actions generated from random
language commands. The task is completed when the robot
accurately places the chosen letter in the specified bowl. In
the LH task, all letters and bowls are randomly arranged, and

the task is completed when each letter is placed in a bowl
that matches its color.

B. Real-World Setup

We validated our approach on a Franka Panda robot
equipped with a suction gripper and an RGB-D camera, as
shown in Figure 6a, implementing our policy and code in
the EAGERx [27] framework. Given the potential risks to
hardware and the time-intensive nature of direct training,
we completed training in simulation, with real-robot appli-
cations limited to evaluation. We used ViLD for bounding
box identification based on object names. To simulate real-
world conditions more accurately, we introduced noise to
the bounding box center’s position during the training phase
in the simulation, mimicking the positional uncertainty in-
herent in VLM detection. We also added noise to bounding
box positions and image inputs, simulating VLM detection
uncertainty and camera noise, including lighting variations.

VII. RESULTS

A. Simulation Results

We investigated the effect of varying LLM-based ex-
ploration frequencies on training convergence, using ϵ ∈
{0.0, 0.1, . . . , 0.9}, as shown in Figure 4. An ϵ of 0 cor-
responds to stardard SAC. Training was conducted with six
random seeds per frequency, and each session began with
a 20,000-step warm-up phase without LLM exploration, as
no significant policy improvements were observed during
this phase. Post-warm-up results, shown in Figure 4 and
detailed in Table II for both short- and long-horizon tasks,
indicate that ExploRLLM consistently outperforms LLM-
only policies across various exploration frequencies.

In the short-horizon task (Figure 4a), training without
LLM-based exploration is often unstable, resulting in ei-
ther a successful policy or failure to converge. When the
exploration frequency is within 0 < ϵ ≤ 0.5, training sta-
bilizes and converges more quickly, with minimal variation
across different ϵ values. However, increasing ϵ beyond 0.5
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TABLE I: Results of 50 evaluation episodes for short-horizon (SH), long-horizon (LH), and different initialization methods:
no object overlap (NO) and allowed overlap (AO). ExploRLLM standard deviations are shown for 6 seeds.

Method Overall success rate Low-level error rate
SH NO SH AO LH NO LH AO SH NO SH AO LH NO LH AO

ExploRLLM (20%) 0.86±0.05 0.80±0.06 0.70±0.11 0.54±0.09 0.14±0.05 0.20±0.06 0.18±0.10 0.22±0.9
ExploRLLM (0%) 0.56±0.40 0.48±0.36 – – 0.32±0.24 0.42±0.30 – –

CaP∗ 0.60 0.48 0.38 0.30 0.38 0.52 0.42 0.48
Socratic Models + CLIPort 0.78 0.64 0.50 0.36 0.22 0.28 0.22 0.28
Inner Monologue + CLIPort 0.82 0.72 0.58 0.42 0.18 0.26 0.20 0.24
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(a) Pick the [pick letter] and place it in the [place color] bowl (SH).
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(b) Put all letters in the bowl of the corresponding color (LH).

Fig. 4: Training curves for varying exploration rates in SH and LH tasks. ExploRLLM outperforms the exploration policies
(dashed lines) and RL without LLM-based exploration (ϵ = 0). In the LH task, LLM-based exploration is crucial for success.

TABLE II: ExploRLLM training returns for varying ϵ.

Explore ϵ (%) SH Task (25k steps) LH Task (75k steps)
0 −0.03± 1.13 −3.22± 0.29
10 0.74± 0.13 −0.73± 0.40
20 0.79± 0.06 −0.42± 0.31
30 0.76± 0.16 −0.23± 0.26
50 0.70± 0.17 −0.40± 0.23
70 −0.29± 0.98 −1.71± 1.38
90 −0.52± 1.12 −2.51± 1.09

Exploration Policy 0.53 -1.2

TABLE III: Success rate (%) of SH ExploRLLM with [4].

Task Settings Seen Unseen Color Unseen Letters
Socratic Models + ExploRLLM 74 68 56

Socratic Models + CLIPort 72 50 34

reduces the proportion of online data, slowing progress and
introducing greater instability into the training. For long-
horizon tasks, Figure 4b shows that higher frequencies of
LLM-based exploration (0 < ϵ ≤ 0.5) correlate with faster
training. These results highlight the importance of LLM-
based exploration in navigating complex tasks by guiding
experience toward the optimal region, mitigating challenges
from large observation and action spaces. However, similar to
the short-horizon tasks, excessive exploration rates introduce
instability and slow convergence.

To evaluate the effectiveness of ExploRLLM, we bench-
mark its performance against four baselines: ExploRLLM
without the LLM-based exploration policy, the CaP-style
policy [14] (our exploration policy), Socratic Models [4],
and Inner Monologue [12]. Our implementations of Socratic
Models and Inner Monologue use ViLD [25] as the object
detector and GPT-4 [2] as a multi-step planner. The individ-
ual steps are executed by a pre-trained CLIPort [26] model

Fig. 5: Short-horizon ExploRLLM policies can be used in
long-horizon tasks with zero-shot LLM planners, e.g. [4].

with 500 demonstrations. The key difference between So-
cratic Models and Inner Monologue is that Inner Monologue
features a success detector that can identify mistakes.

During evaluation, the letter colors range from seen to
unseen colors. Tasks and initialization methods vary, with
“NO” indicating no overlap between the initial positions
of letters and bowls, and “AO” allowing overlaps. These
configurations assess each method’s robustness in handling
complex object relationships.

For short-horizon tasks, as shown in Table I, ExploRLLM
maintains stable performance, whereas versions without the
exploration policy often fail to converge and exhibit high
variance in success rates and low-level errors. Our method
surpasses LLM-generated policies in success rates, reduces
robot behavior errors, and minimizes the performance gap
between NO and AO scenarios, emphasizing the exploration
policy’s role in correcting FMs’ inaccuracies. In contrast,
CLIPort-based methods struggle with novel scenarios or
complex geometric object relationships. For long-horizon
tasks, RL agents without LLM-based exploitation fail to
converge. As shown in Table I, ExploRLLM outperforms
Socratic Models, Inner Monologue, and LLM-generated poli-
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(b) Visualization of VLM detections and pick and place actions.

Fig. 6: ExploRLLM can be practically applied using a sim-to-real approach with transfer due to VLM object detections.

cies, achieving superior results in long-horizon tasks.
Although our short-horizon agent is trained specifically for

a pre-defined pick-and-place task, our approach can transfer
to unseen long-horizon tasks in similar environments. This is
made possible by integrating a zero-shot planner framework,
such as Socratic Models [4]. This framework effectively
breaks down user-provided input into individual action steps,
each serving as a distinct language command for our single-
step RL agent, as illustrated in Figure 5. Following the
execution of each command, the task space is reset, allowing
for the subsequent command to be executed. Apart from
unseen colors, unseen letters are also included to evaluate
the generalization capabilities of unseen scenarios. Table III
demonstrates that the short-horizon ExploRLLM adapts to
these settings, surpassing earlier Socratic Models versions.
Using VLMs to provide bounding boxes and positions, our
approach reformulates the observation space, enabling RL to
focus on learning the physical attributes of objects, which
is crucial for precise pick-and-place tasks. This strategy
minimizes distractions from variations in colors and shapes.

B. Real-World Results

We conducted real-world evaluations of ExploRLLM in
two scenarios: one replicating all letters from the simulation
experiments and another introducing the previously unseen
letter ‘C’, with each scenario tested over 15 episodes. The
short-horizon ExploRLLM achieved success rates of 66.6%
for seen letters and 53.3% for the unseen letter scenario. In
comparison, the long-horizon ExploRLLM recorded success
rates of 40% for seen letters and 33.3% for unseen letters.
Despite the Sim2Real gap, our approach shows promising
results without additional real-world training. As the VLM
extracts the observation space, the RL agent trained in
simulation is less distracted by real-world noise. Figure 6b
illustrates the adaptability of our method in handling di-
verse object orientations, understanding logical relationships
between objects, and executing long-horizon tasks in real-
world settings. However, challenges remain with noise in the
color and depth perception of objects, which hampers the RL

agent’s ability to manipulate objects. Using a photorealistic
simulator with extensive domain randomization is expected
to improve performance.

VIII. CONCLUSION AND DISCUSSION

In this work, we present ExploRLLM, a method that
combines RL with FMs. By using actions informed by
LLMs and VLMs to guide exploration, we accelerate RL
convergence, demonstrating the benefits of integrating the
strengths of both RL and FMs. We evaluated our method
on tabletop manipulation tasks, showing superior success
rates compared to policies based solely on LLMs and VLMs.
ExploRLLM also generalizes to unseen colors, letters, and
tasks. Ablation experiments with varying levels of LLM-
guided exploration further highlighted its significant role
in speeding up convergence. Additionally, we validated the
method’s ability to transfer learned policies from simulation
to real-world scenarios without additional training through
real robot experiments. Currently, our framework focuses on
tabletop manipulation, but we plan to extend it to a broader
range of robotic manipulation tasks. While the system can
correct low-level robotic actions, it struggles with mitigating
high-level errors that are less frequent in simulations. Future
work will focus on addressing these high-level discrepancies.
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Preface

This literature study report is the primary output of the RO57010 Literature Research course and forms
an integral component of the author’s master thesis work at the Department of Cognitive Robotics,
Faculty of Mechanical Engineering, Delft University of Technology. The report is dedicated to studying
reinforcement learning techniques for robot manipulation tasks, with a specific focus on utilizing
foundation models to guide reinforcement learning exploration.

Disclaimer regarding LLM usage: I hereby affirm that I utilize ChatGPT solely for refining and polishing
my existing literature study report. ChatGPT is not employed for generating new ideas or composing
extensive paragraphs on my behalf. All ideas, concepts, and original content within my report are
generated through my own research and understanding of the subject matter. ChatGPT serves only as a
tool for linguistic refinement and does not contribute to the conceptualization or generation of content
within my report.

Runyu Ma
Delft, September 2024
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1
Introduction

1.1. Backgrounds and Social Impacts
Robot manipulation has great significance for helping people in industrial, daily life, and medical
contexts. In industrial settings, robots handle tasks that are too hazardous or repetitive for humans,
thereby boosting productivity and worker safety. Additionally, robots facilitate daily activities in homes
and hospitals, taking over routine tasks to free up human time for more critical things.

In recent years, the application of machine learning techniques in manipulation has seen a significant
rise. Technologies such as imitation learning and reinforcement learning empower robots to learn from
experiences and adapt autonomously to new and intricate tasks. This adaptability proves invaluable in
dynamic and unpredictable environments, like adaptive manufacturing or interactive services, where
robots work alongside humans.

The advancement of robot learning techniques offers a broader perspective in these fields. With
machine learning algorithms, robots are becoming increasingly capable of intelligent and adaptable
coexistence with humans. This evolution enables robots to become integral, supportive companions in
daily human activities, enhancing both the quality and efficiency of everyday life.

1.2. Research Focus
Reinforcement Learning (RL), as outlined in [91], offers a promising framework for decision-making
through dynamic interactions with the environment. It is also utilized in developing control policies
for robotics, as detailed in [48]. RL is particularly effective in addressing complex robot manipulation
tasks involving contact-rich environments, such as pick-and-place operations and tool assembly, where
dynamics are often unknown or difficult to model accurately [20]. Through continuous interaction with
the environment, RL optimizes control policies based on objectives like success rate, accuracy, time
efficiency, trajectory smoothing, or safety, all of which are encapsulated in the reward signal.

Despite its promising potential for training control policies in robotics, applying RL in robotic
tasks, especially those requiring long-horizon manipulation, presents significant challenges due to
the complexities of exploration in continuous action spaces. Robots frequently need to explore vast
action spaces for millions of steps, often struggling to develop a stable policy that consistently reaches
the optimal state distribution. To overcome these challenges, the development and implementation
of effective exploration algorithms are crucial for successful manipulation tasks. Effective exploration
algorithms are crucial for successful reinforcement learning, as they must broadly identify regions
of high accumulated rewards and gather meaningful experience/data in these areas to optimize the
policy. Balancing these two aspects of exploration is particularly challenging, especially for long-
horizon manipulation tasks that require explicit learning of low-level control policies and implicit
decision-making at the task level.

On the other hand, foundation models offer a promising approach for robot manipulation that
eliminates the need to start learning from scratch by leveraging past experiences. Foundation models
(FMs)[17], such as Large Language Models (LLMs) and Vision-Language Models, are trained on
vast amounts of data and have shown considerable promise in the field of robotics. For instance,
in some scenarios, LLMs like GPT-4[73] can generate human-like, commonsense-aware reasoning.

1
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This ability has been effectively utilized as a zero-shot planner [39], capable of decomposing complex
tasks into detailed, step-by-step plans without additional training. In robot manipulation, LLMs
have demonstrated their potential to generate task-level plans [3, 38, 56, 37] or to provide knowledge
for low-level actions [40, 103, 61], showcasing their versatility and effectiveness in enhancing robotic
capabilities.

However, despite their potential, foundation models like LLMs often lack detailed knowledge of
the physical world and specific tasks, which can lead to errors in certain scenarios. This limitation
underscores that there is still a significant journey ahead before these models can be fully deployed
in real-world robotics. For LLMs to be effectively used in practical applications, they require further
development to enhance their understanding of the world and acquire more detailed knowledge about
task environments. This improvement is crucial for handling the uncertainties inherent in real-world
settings.

We are interested in exploring the integration of reasoning capabilities and embedded prior
knowledge of FMs with the trial-and-error nature of RL. On the one hand, the prior knowledge
contained within foundation models could significantly accelerate RL’s exploration and training phases,
eliminating the need for an exhaustive exploration of the action space and learning from scratch. On
the other hand, RL, through its trial-and-error approach, could provide real-world grounding to LLMs.
It also can correct mistakes and address sub-optimalities in the plans generated by foundation models
through policy optimization. By integrating foundation models and RL, we can potentially mitigate the
limitations of both approaches, enhancing their effectiveness and applicability in complex environments.

Based on the reasoning outlined above, the research question for this literature study is formulated
as follows:

How can Foundation Models be effectively incorporated into deep reinforcement learning
exploration for robot manipulation to enhance their training efficiency?

1. What are the state-of-the-art (SOTA) reinforcement learning methods for efficient exploration that
effectively achieve the exploration-exploitation trade-off? How could incorporating human prior
knowledge into RL accelerate the exploration process?

2. How can foundation models contribute to enhancing robotic manipulation? What roles can these
models play in robot manipulation, and what are their limitations in practical applications?

3. What recent advancements have been made in integrating foundation models with reinforcement
learning?

The remaining structure of this report is as follows:

• Chapter 2 introduces the basic concepts and methods of reinforcement learning, focusing on
techniques that enhance exploration and sample efficiency.

• Chapter 3 explores the application of foundation models in robot manipulation, analyzing their
functionalities and limitations.

• Chapter 4 reviews the current works in integrating foundation models with reinforcement learning.
• Chapter 5 discusses the existing limitations of this integrated framework and suggests directions

for future research.

1.3. Methods
In this paper, we primarily retrieve literature using several methods. The first method involves
identifying the most representative works in the field. These works typically have high reputations
within the corresponding community and can be found through search engines or recommended by my
supervisors. After locating these representative works, I use tools such as Google Scholar or Semantic
Scholar to find other significant works cited in or referencing these papers. This approach allows me to
construct a comprehensive network that maps the development of a specific field. The second method
includes drawing insights from recent reviews or surveys in this field to compile a set of relevant
literature. For example, I have acquired structured knowledge about reinforcement learning through
the survey by [48] and OpenAI’s Spinning Up [2]. For foundational models, I have consulted surveys
by [33, 46]. These sources serve as a knowledge base, providing a clear categorization of methods
and foundational knowledge. Utilizing these resources is beneficial for structuring the literature more
systematically.
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Figure 1.1: Distribution of literature

For the distribution of the literature, I mainly cite papers from the robotics and machine learning
communities, as the research focuses on a combination of foundation models and robot learning. As
shown in Figure 1.1, 32.7% of the literature originates from major machine learning conferences such
as NIPS, ICML, ICLR, AAAI, and CVPR. Additionally, 14.9% of the literature comes from the CoRL
conference, which focuses on both robotics and machine learning. 12.9% of the papers are from robotics
journals and conferences, such as ĲRR, RAL, ICRA, RSS, and IROS. Given the rapid evolution of
foundation models, some researchers publish their preliminary findings on platforms like arXiv before
formal publication. The papers cited are from the most prestigious conferences and journals in their
fields, representing the forefront of development at the time and significantly contributing to shaping
the perspective presented in this literature review.
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2
Reinforcement Learning and

Exploration Methods

Despite the promising potential of reinforcement learning for training control policies in robotics,
training RL agents for robotic tasks, particularly long-horizon manipulation tasks, remains challenging
due to the difficulties associated with exploration in continuous action spaces. Robots often need to
explore vast action spaces for millions of steps, struggling to achieve a stable policy that consistently
reaches the optimal state distribution. To address this, effective exploration algorithms are crucial for
manipulation tasks.

This chapter is structured to provide a comprehensive overview of reinforcement learning and
its applications in robotics. Section 2.1 outlines the problem formulation and the core concepts
foundational to understanding reinforcement learning. Following this, Section 2.2 delves into the
theoretical background of widely used RL methods, their learning frameworks, and exploration
techniques. Section 2.3 focuses on methods designed to enhance RL exploration by encouraging novelty
and managing uncertainty. In Section 2.4, we discuss how demonstrations, used as prior knowledge,
can significantly augment RL exploration. Section 2.5 introduces hierarchical approaches that facilitate
multi-level exploration, thereby improving the efficacy of reinforcement learning strategies. Section 2.6
provides a concise introduction to curriculum reinforcement learning (CRL). This approach strategically
progresses from simpler to more complex tasks, making initial exploration more manageable and
gradually increasing the challenge to improve learning effectiveness.

2.1. Reinforcement Learning Framework
Reinforcement learning (RL) constitutes an interdisciplinary domain within machine learning and
optimal control, focusing on learning a policy to optimize cumulative rewards through trial and error [91].
In contrast to supervised learning, RL does not rely on labeled input/output pairs or expert knowledge.
Instead, it learns from environmental reward signals, with the agent independently identifying an
optimal control policy that maximizes long-term rewards.

This methodology is particularly effective in robotics, enabling robots to autonomously determine
optimal behaviors through trial-and-error interactions with their environments [48].

2.1.1. Problem statement in RL
Markov Decision Process (MPD) [80] is the most commonly used problem formulation in reinforcement
learning problems. The term "Markov Decision Process" highlights that the system adheres to the
Markov property, meaning that transitions depend solely on the current state and the most recent action,
without influence from any previous history. An MDP is a 5-tuple ⟨𝑆, 𝐴, 𝑅, 𝑃, 𝜌0⟩, where:

• 𝑆 is the set of states named State Space,
• 𝐴 is the set of actions named Action Space,
• 𝑅 : 𝑆 × 𝐴 × 𝑆 → R is the Reward Function, with 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1),
• 𝑃 : 𝑆 × 𝐴→ 𝒫(𝑠) is the transition probability function, with 𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) being the distribution of
𝑠𝑡+1 given state 𝑠𝑡 and action 𝑎𝑡 ,

4
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2.1. Reinforcement Learning Framework 5

• 𝜌0 is the state distribution at the start of each episode.

2.1.2. Policies
The objective of RL and MDP is to identify an appropriate policy 𝜋 for decision-making. The function
𝜋(𝑎𝑡 |𝑠𝑡) that maps state 𝑠𝑡 to the currently optimal action 𝑎𝑡 .

To find the optimal policy 𝜋, it should maximize the cumulative reward function, representing the
sum of rewards over an infinite horizon, which is mathematically expressed as:

𝑅(𝜏) =
∞∑
𝑡=0

𝛾𝑡𝑟𝑡 .

Here, 𝛾 ∈ (0, 1) is a discount factor that moderates the importance of future rewards. The probability
distribution of a trajectory under a given policy is defined by:

𝑃(𝜏 | 𝜋) = 𝑝0(𝑠0)
𝑇−1∏
𝑡=0

𝑃(𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡).

The expected return of a policy 𝜋, denoted by 𝐽(𝜋), is calculated through:

𝐽(𝜋) =
∫
𝜏
𝑃(𝜏 | 𝜋)𝑅(𝜏) = 𝐸𝜏∼𝜋[𝑅(𝜏)].

To find the optimal policy 𝜋∗, we solve the following optimization problem:

𝜋∗ = arg max
𝜋

𝐽(𝜋)

where arg max𝜋 seeks the policy that yields the maximum expected return.

2.1.3. Value Functions
In some RL algorithms, agents are trained to learn a state-action value function, known as 𝑄-value,
rather than a direct policy. The "value" is defined as the expected return when starting from a given state
or state-action pair and subsequently adhering to a specific policy indefinitely. This is mathematically
represented as:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜏∼𝜋[𝑅(𝜏) | 𝑠0 = 𝑠, 𝑎0 = 𝑎]
The optimal Action-Value function, which encapsulates the highest expected return obtainable from any
state-action pair, can be defined as:

𝑄∗(𝑠, 𝑎) = max
𝜋

𝐸𝜏∼𝜋[𝑅(𝜏) | 𝑠0 = 𝑠, 𝑎0 = 𝑎]

This formulation seeks to identify the best possible return that can be achieved under any policy, thereby
guiding the development of optimal decision-making strategies in RL environments.

2.1.4. Challenges in RL
• Curse of Dimensionality The essence of RL lies in its exploration of the state-action pairs within

the state and action spaces. As the number of dimensions increases, the requirement for data
and computational resources grows exponentially in order to cover the entire state-action space
comprehensively. However, these spaces can be extensive, particularly in robotics. For instance,
the Franka Emika Panda Robot, which features 7 degrees of freedom in its joints, presents a
significant challenge. To address the joint-torque control problem through RL, this robot operates
within a state space of dimensions 2 × 7 and an action space of 7 dimensions. The complexity
increases substantially when training visuomotor policies that handle image inputs as the state
space expands dramatically.
The exploration-exploitation trade-off is a core challenge in RL that becomes increasingly complex
with dimensionality. Agents must continuously decide whether to exploit known rewarding
actions or explore new state-action pairs that might yield greater rewards in the future. As
the state-action space expands and becomes more intricate, effectively navigating this trade-off
becomes crucial for the success of RL algorithms.
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2.2. RL Base Algorithms 6

• Goal specification and Reward In RL, the reward function implicitly specifies the desired behavior,
with the primary goal of RL algorithms being to maximize the accumulated long-term reward.
However, defining an effective reward function can be surprisingly challenging in practice,
especially in the context of robot reinforcement learning [48]. This complexity arises from ensuring
that the reward function accurately reflects the intended tasks and goals without inadvertently
encouraging undesirable behaviors.

• Simulation and Reality Gap Although the Sim2Real gap is not a focus of our paper, it is a
notable challenge in robotic RL, describing the discrepancy between simulated environments
and real-world conditions. This gap can lead to significant issues when deploying learned policy
directly in physical systems due to differences in dynamics and inaccuracies in the simulation
modeling. While simulation offers a controlled and cost-effective environment for training and
testing, bridging this gap requires robust strategies, such as domain randomization, to ensure that
models developed in simulation perform reliably in real-world scenarios.

2.2. RL Base Algorithms
2.2.1. Taxonomy of RL Algorithms
There are two primary approaches for representing and training agents in model-free reinforcement
learning: policy optimization methods and value function methods, as well as a combination of both,
known as actor-critic methods. These approaches each have distinct strategies for learning to solve
reinforcement learning problems.

• Policy Optimization Method: These methods directly adjust the policy—the mapping from states
to actions—to maximize the expected return. By iteratively improving the policy based on return
feedback from the environment, these methods seek to enhance the decision-making process
directly. Because they directly optimize the policy, which ultimately determines the agent’s actions,
so they tend to be more stable and reliable than value function methods.

• Value Function Method: In contrast, these methods focus on estimating the value of being in
a given state or performing a specific action in a state. By learning these values, the agent can
indirectly determine the best actions by selecting those that maximize the expected value. For
learning the value function, Bellman equation [7] is proposed to update the value function by only
using a state-action-reward tuple ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩.

𝑄∗(𝑠, 𝑎) = E𝑠′∼𝑃
[
𝑟(𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄∗(𝑠′, 𝑎′)

]
Those Q functions can be updated through the Temporal-Difference (TD) method:

𝑄′(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼(𝑅 +𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎))
However, value function methods can lead to instability due to several potential failure modes,
such as approximation errors, bootstrapping, and using off-policy data [91].

• Actor-Critics Method: This approach combines the strengths of both policy optimization and
value function methods. The actor updates the policy based on the guidance of the critic, which
evaluates the action taken by estimating the value function. This synergy allows for more stable
and efficient learning by balancing direct policy updates with value estimation. Currently, most
methods in the field, to some extent, follow the actor-critic framework, making it a widely adopted
model in reinforcement learning.

In reinforcement learning, agents are updated through interactions with their environment, from
which they receive feedback. There are primarily two approaches to handling past data. On-policy
reinforcement learning algorithms do not utilize old data to update the agent. off-policy algorithms
leverage batches of old data for training.

• On-policy Method: This method strictly uses data collected from the current policy’s execution
to make updates, ensuring that the learning process aligns directly with the policy’s behavior.
This approach is exemplified by algorithms like Policy Gradient, where updates are based on
the action taken under the currently evaluated policy. Because these methods do not employ
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2.2. RL Base Algorithms 7

old data, they exhibit lower sample efficiency. However, they directly optimize the most critical
objective—policy performance. Mathematically, on-policy data is essential for calculating these
updates, as it ensures the integrity and relevance of the information used to refine the policy.

• off-policy Method: Off-policy methods allow the agent to learn from experiences not generated
by the current policy. This is achieved by storing past experiences in a replay buffer, which the
algorithm can then use to sample from. This approach decouples the policy under which data is
collected from the policy being improved. However, a significant challenge with this method is
that there are no assurances that effectively satisfying Bellman’s equations will result in optimal
policy performance. While empirical results can sometimes be great, offering impressive sample
efficiency, the lack of guaranteed performance improvements renders these algorithms potentially
unstable.

• offline Method: Offline RL operates entirely on a pre-collected dataset of experiences without
further interaction with the environment during learning. This method is particularly advanta-
geous when online data collection is risky, expensive, or impractical. Offline RL aims to derive the
best possible policy by utilizing a comprehensive static dataset. However, the reliance on a fixed
dataset poses unique challenges, such as distribution shift and overfitting.

2.2.2. Core RL algorithms
In this section, we intend to introduce the core algorithms in the RL community. We mainly focus on
their theory background and their design to achieve exploration and exploitation trade-offs and higher
data efficiency.

2.2.2.1.On-policy method
• Vanilla Policy Gradient: The concept behind training with vanilla policy gradients (VPG) [91] is

to increase the probabilities of actions that result in higher returns. This is achieved by defining
the gradient as follows:

∇𝜃 𝐽(𝜋𝜃) = 1
|𝒟|

∑
𝜏∈𝒟

𝑇∑
𝑡=0

∇𝜃 log𝜋𝜃(𝑎𝑡 |𝑠𝑡)𝑅(𝜏)

This equation essentially treats policy training as a weighted classification problem, where the
weights are provided by the episode return function 𝑅(𝜏).
Exploration in VPG is facilitated by its inherent nature as a stochastic policy. As training progresses,
the policy gradually learns to become more deterministic, increasingly outputting actions that
offer higher returns.

• A2C: The key distinction between Advantage Actor Critics (A2C) [65] and VPG is that A2C
incorporates an advantage function through a critic network to mitigate the variance associated
with the return estimates. The advantage function, defined as 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) −𝑉(𝑠), measures
how much better taking a particular action is over the average.

∇𝜃 𝐽(𝜋𝜃) = E𝜏∼𝜋𝜃

[
𝑇∑
𝑡=0

∇𝜃 log𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝐴𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)
]

This formula underscores how A2C updates policy parameters by focusing on the most advanta-
geous actions, improving efficiency and convergence over traditional VPG.

• PPO: Trust region methods [85, 84] aim to update policies by taking the largest step possible to
improve performance without stepping so far that we accidentally cause performance collapse.
The problem of the trust region policy gradient method is defined as:

𝜃𝑘+1 = arg max
𝜃

ℒ(𝜃𝑘 , 𝜃) s.t. 𝐷𝐾𝐿(𝜃 ∥ 𝜃𝑘) ≤ 𝛿

where the policy loss is calculated through:

ℒ(𝜃𝑘 , 𝜃) = E𝑠,𝑎∼𝜋𝜃𝑘

[
𝜋𝜃(𝑎 | 𝑠)
𝜋𝜃𝑘 (𝑎 | 𝑠)𝐴

𝜋𝜃𝑘 (𝑠, 𝑎)
]
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Proximal Policy gradient (PPO) [84] uses a few other tricks to keep new policies close to old which
is significantly simpler to implement than TRPO [85].

𝜃𝑘+1 = arg max
𝜃
E𝑠,𝑎∼𝜋𝜃𝑘

[𝐿(𝑠, 𝑎, 𝜃𝑘 , 𝜃)]

The loss of PPO can be defined as:

𝐿(𝑠, 𝑎, 𝜃𝑘 , 𝜃) = min
(
𝜋𝜃(𝑎 | 𝑠)
𝜋𝜃𝑘 (𝑎 | 𝑠)𝐴

𝜋𝜃𝑘 (𝑠, 𝑎), clip
(
𝜋𝜃(𝑎 | 𝑠)
𝜋𝜃𝑘 (𝑎 | 𝑠) , 1 − 𝜖, 1 + 𝜖

)
𝐴𝜋𝜃𝑘 (𝑠, 𝑎)

)

Similar to VPG and A2C, PPO trains a stochastic policy that can achieve exploration and
exploitation trade-offs.

2.2.2.2.Off-policy method
• DQN and DDPG: Deep Q-Networks (DQN) [66, 31] represents a significant breakthrough in

reinforcement learning, combining classical Q-learning principles with the power of deep neural
networks as Q value approximation, which efficiently handle environments with high-dimensional
state spaces. Compared to classic Q-learning, DQN uses a deep neural network to approximate
the Q-function instead of using a tabular approach to store Q-values.
One of the key innovations in DQN is the use of experience replay. As the agent interacts with
the environment, it stores transitions in a replay buffer. These transitions are tuples of (current
state, action, reward, next state). The replay buffer then randomly samples mini-batches of these
transitions to train the network.

𝐿(𝜙, 𝐷) = E(𝑠,𝑎,𝑟,𝑠′ ,𝑑)∼𝐷
[(
𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)max

𝑎′
𝑄𝜙(𝑠′, 𝑎′))

)2
]

DQN do not have an explicit policy network, but they use maximum action in the discrete action
space:

𝑎∗(𝑠) = arg max
𝑎
𝑄∗(𝑠, 𝑎).

.
To balance exploration and exploitation, DQN employs an epsilon-greedy strategy. With a
probability of 𝜖, the agent chooses a random action, promoting exploration of the environment.
With a probability of 1 − 𝜖, the agent selects the action with the highest predicted Q-value from
the network, exploiting its current knowledge
Deep deterministic policy gradient (DDPG) [55] can be considered as DQN for continuous action
space. It explicitly introduces a policy network for continuous action space, which results in
changes in the network update of critics.

𝐿(𝜙, 𝐷) = E(𝑠,𝑎,𝑟,𝑠′ ,𝑑)∼𝐷
[ (
𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑄𝜙(𝑠′, 𝜇𝜃(𝑠′)))

)2
]

The gradient of the policy’s performance is estimated using the critic’s Q-value output, essentially
performing gradient ascent on the actor’s parameters.
As DDPG is a deterministic algorithm, it would probably not try a wide enough variety of actions
initially. To make deterministic policy explore well, action noise is introduced to improve the
variety for trajectory at training time.

• TD3: Twin Delayed Deep Deterministic Policy Gradient (TD3) [25] is an enhancement over the
DDPG algorithm, designed to address overestimations in Q-value calculations and to prevent the
exploitation of Q-function estimates. TD3 incorporates three key tricks to mitigate these issues:
target policy smoothing, clipped double-Q learning [95], and delayed policy updates.
Like DDPG, TD3 also adds noise to the deterministic policy as exploration. TD3 also adds noise to
target action for policy updates, which avoids the exploitation of the incorrect sharp peak in the
critics’ network. It helps to achieve a balance between exploration and exploitation.
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• SAC: Soft Actor Critics (SAC) [30] is an RL algorithm incorporating entropy regularization into
the stochastic policy to enhance exploration. This approach is quantified by the entropy of the
policy:

𝐻(𝑃) = E𝑥∼𝑃[− log𝑃(𝑥)].
The objective of SAC is to develop a policy that not only maximizes expected return but also
maintains a high level of stochasticity facilitated by entropy. The degree of exploration is controlled
by the entropy coefficient 𝛼, where a higher 𝛼 promotes more exploratory behavior:

𝜋∗ = arg max
𝜋
E𝜋

[ ∞∑
𝑡=0

𝛾𝑡 (𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛼𝐻(𝜋(·|𝑠𝑡)))
]
.

The inherent randomness introduced by this policy aims to enhance exploration and make the
policy more robust to noise. Also, to avoid exploiting the incorrect sharp peak in the critics’
network, SAC employs a clipped double-Q learning strategy to prevent value overestimation.

𝑦(𝑟, 𝑠′, 𝑠 , 𝑑) = 𝑟 + 𝛾(1 − 𝑑)
(
min
𝑗=1,2

𝑄𝜃𝑗 (𝑠′, �̃�′) − 𝛼 log𝜋𝜃(�̃�′ |𝑠′)
)
, �̃�′ ∼ 𝜋𝜃(·|𝑠′)

Table 2.1: Comparison of Reinforcement Learning Algorithms and Exploration Methods

Method Action Space Policy
Stochasticity

Tricks for exploration and data
efficiency Explicit Exploration Method

VPG Both Stochastic No No
A2C Both Stochastic No No
PPO Both Stochastic No No
DQN Discrete Deterministic Experience replay Epsilon-greedy

DDPG Continuous Deterministic Experience replay, Added noise to
actions No

TD3 Continuous Deterministic
Experience replay, Added noise to
actions, Clipped double-Q, Target

policy smoothing
No

SAC Continuous Stochastic Experience replay, Clipped
double-Q Entropy regularization

This section provides an overview of fundamental reinforcement learning algorithms and their
approaches to balancing exploration and exploitation, as detailed in Table 2.1.

Most on-policy RL algorithms, such as VPG, A2C, and PPO, naturally incorporate exploration
through their inherently stochastic policies. This intrinsic randomness serves as a mechanism for
exploration without explicit exploratory actions. Off-policy RL methods, including DQN, DDPG, and
TD3, utilize a replay buffer to store past transition tuples, significantly enhancing training sample
efficiency. However, these methods can experience unstable training and policy behavior. To encourage
exploration, these algorithms often add randomness to the policy, enabling more diverse rollout
trajectories. This is typically achieved through strategies like random discrete action selection in DQN
or action noise in DDPG and TD3. Also, the SAC algorithm extends these concepts by incorporating
entropy regularization directly into the policy. This technique encourages a richer on-policy data
distribution and balances exploration and exploitation, aiming to increase the overall robustness and
effectiveness of the policy learning process.

2.3. Exploration Method In Reinforcement Learning
2.3.1. Count-Based Exploration
There is a concept called “optimism in the face of uncertainty” (OFU), widely used as a heuristic in
sequential decision-making problems. This concept operates on the principle that decision-makers
should prefer actions with uncertain outcomes when the potential for positive results exists, especially
when information is incomplete.
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2.4. Efficient Reinforcement Learning with Demonstration 10

A key method employing this heuristic is the Upper Confidence Bound (UCB) algorithm [4], which
balances exploration and exploitation by prioritizing actions that have either been less explored or
shown promising results. When selecting the next action, the agent considers not only the cumulative
rewards but also a reward for optimism of uncertainty, primarily determined by the frequency of visits
to each action. The selection rule is represented by the formula:

𝑎∗𝑡 := arg max
𝑎∈𝐴

©
«
𝑄(𝑠𝑡 , 𝑎) + 𝐶

√
log

∑
𝑎′ 𝑁(𝑠𝑡 , 𝑎′)
𝑁(𝑠𝑡 , 𝑎)

ª®
¬

This foundational approach has paved the way for further developments in count-based exploration
techniques.

However, traditional methods like UCB function effectively in environments with discrete state
and action spaces. In continuous or complex environments, directly counting the 𝑁(𝑠𝑡 , 𝑎) is infeasible.
A study [6] proposes an algorithm that derives a pseudo-count from an arbitrary density model to
estimate uncertainty, allowing count-based exploration strategies to be adapted to non-tabular settings.
Building on this, [75] improved this approach by integrating PixelCNN pseudo-counts with Monte
Carlo updates, significantly advancing exploration capabilities in sparse scenarios. Additionally, authors
in [62] developed a technique that rewards agents for exploring transformed feature spaces instead of
raw state spaces. #Exploration [92] implemented state mapping to hash codes, enabling state occurrence
counting via a learned hash table and applying traditional count-based exploration rewards to modern
and complex environments.

2.3.2. Novelty Motivated Exploration
State counts are not the only indicator of an RL agent’s knowledge about specific states. There are
various other techniques available to motivate exploration and measure uncertainty.

System dynamics serve as a measure of uncertainty in [90]. The authors propose a method that
utilizes prediction errors from states and actions as bonuses in the reward function. In this context,
a larger prediction error indicates greater uncertainty about the state. This scalable and efficient
approach makes it well-suited for exploration bonuses in tasks involving complex, high-dimensional
state spaces. Building on this concept, inverse dynamics has also been utilized to quantify state
uncertainty, incentivizing the agent for exploration in [77].

However, these methods that rely on prediction errors during exploration often gravitate towards
transitions with high stochasticity. To address this, the authors of RND [12] proposed using the error
of a neural network predicting features given by a fixed randomly initialized neural network as an
exploration bonus instead of focusing solely on error in transitions. Despite its strengths, this method can
sometimes concentrate exploration too narrowly, neglecting other potential areas of interest. Addressing
this limitation, NovelD [109] introduces a straightforward solution by applying approximately equal
weighting to all novel areas. While still employing RND to determine novelty, NovelD allocates the
calculated difference as an intrinsic reward, thus prioritizing unexplored boundary states. This approach
results in more efficient and extensive exploration patterns, effectively broadening the scope of discovery
within the environment.

In reinforcement learning, count-based and curiosity-driven methods have demonstrated effectiveness
primarily in structured environments such as mazes or games like Montezuma’s Revenge, where
exploring a broad expanse of the state space is integral to success. These tasks explicitly require agents
to traverse and explore themselves with nearly all possible states to complete the objectives effectively.
However, the configuration space in robotics applications often lacks a direct correlation with successful
outcomes. Here, novelty or curiosity-driven exploration does not inherently guarantee meaningful or
purposeful exploration. The challenge lies in adapting these exploration strategies to ensure relevance
and utility in the varied and often unstructured contexts encountered in robotics.

2.4. Efficient Reinforcement Learning with Demonstration
In robot manipulation tasks, the actions performed by a robot often convey semantic information,
such as "pick up the block" or "reach a position." For RL agents to explore these tasks effectively, it
is crucial that they grasp the meanings of these actions, rather than simply traversing every possible

31



2.4. Efficient Reinforcement Learning with Demonstration 11

joint or end-effector state. Traditional exploration methods often fail to incorporate this semantic
knowledge into the RL agent’s learning process. Demonstrations, which are robot trajectories collected
by human experts, serve as a bridge transferring human prior knowledge to machine learning agents,
employing techniques such as behavior cloning or inverse reinforcement learning (IRL). Since 2017,
several researches has focused on utilizing demonstrations and offline data to reduce the exploration
period and accelerate the training of RL agents. This approach allows agents to rapidly assimilate
complex skills by leveraging human insights.

DDPGfd [97] is the first framework that integrates demonstrations into the replay buffer of an
off-policy reinforcement learning algorithm. To effectively balance online transitions with offline
demonstrations during training, it incorporates a prioritized replay buffer that samples transitions
based on their temporal-difference (TD) error. Building upon the foundational DDPG model [55], this
work also introduces a combined loss function for the critic network, which encompasses both 1-step
and multi-step returns. This innovative framework has enabled reinforcement learning to successfully
tackle robot insertion tasks using just 100 demonstrations, significantly enhancing the learning efficiency.
DQfd [32] is an approach similar to DDPGfd, but it builds upon the DQN algorithm [66]. Like its
counterpart, DQfd incorporates demonstrations into the replay buffer to facilitate learning from offline
data. This method enhances training efficiency for Atari games, which feature discrete action spaces,
by employing a margin loss. This loss function specifically encourages expert actions to have higher
Q-values compared to all other actions.

A concurrent study [70] focuses on addressing the exploration challenges in long-horizon, multi-step
robotics tasks involving continuous control, such as stacking blocks with a robot arm. This paper
systematically explores various methods to integrate demonstrations with the DDPG reinforcement
learning technique to enhance training efficiency and performance. These methods include the
introduction of a demonstration buffer, the incorporation of behavior cloning loss to regulate the actor
network, the use of hindsight replay buffers, and the strategy of resetting to demonstration states.

Prior works have primarily focused on utilizing demonstrations to enhance sample efficiency. In
contrast, AWAC [69] shifts the focus to another aspect of integrating offline data with online processes.
Specifically, AWAC emphasizes using online RL exploration to fine-tune sub-optimal data from offline
sources. While previous methods [32, 82, 70] have employed behavior cloning loss, this can sometimes
limit the policy’s potential to outperform the demonstrations due to their inherent suboptimality. AWAC
addresses this limitation by introducing a maximum likelihood loss function(behavior cloning loss)
weighted by advantages function.

𝜃𝑘+1 = arg max
𝜃
E𝑠,𝑎∼𝛽

[
log𝜋𝜃(𝑎 | 𝑠) exp

(
− 1
𝜆
𝐴𝜋𝑘 (𝑠, 𝑎)

)]

This adjustment allows AWAC to leverage online exploration effectively to fine-tune policies based on
offline data, bridging the gap between the sub-optimal behaviors and optimal policy learning.

RLPD [5] introduces a method that integrates efficient online RL techniques with offline demon-
strations. Drawing inspiration from REDQ [14], RLPD incorporates several elements to expedite
online learning, including a high Update-to-Data (UTD) ratio and ensemble critics. The UTD ratio,
which is the ratio of policy updates to environment steps, enhances data efficiency, particularly for
off-policy methods that already include offline demonstrations in the replay buffer. However, it risks
overfitting to data collected in the early stages. To mitigate this overfitting, ensemble critics are employed
through randomized ensemble distillation, which also helps prevent catastrophic overestimation—a
phenomenon where the Q-function overestimates the Q-value of out-of-distribution samples, leading to
divergence in the critics. Furthermore, the paper introduces additional elements such as a balanced
ratio of online-to-offline data in each batch and layer normalization to better integrate offline data. These
innovations have enabled RLPD to achieve state-of-the-art performance in the current RL community
for using offline data with online fine-tuning.

Some research [51, 71]focuses on using online exploration to refine and enhance offline RL policies.
Traditional offline RL methods have often struggled with online fine-tuning due to state-action
distribution shifts, which can lead to severe bootstrap errors. This issue can be addressed through
approaches such as Balanced Replay and Pessimistic Q-Ensemble [51], and Q-value calibration [71].
These techniques mitigate key challenges associated with distribution shifts and utilize demonstrations
more effectively and reduce the necessary exploration phase.
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2.5. Goal-based Method For Reinforcement Learning 12

Table 2.2: Efficient RL methods with demonstration

Method Basic RL
Algorithm Replay Buffer Design Additional Loss Other Designs

DDPGfD [97] DDPG prioritized-replay L2 -
DQNfD [32] DQN prioritized-replay L2 & BC -

Nair et al., [70] DDPG hindsight-replay BC reset to
demonstration state

AWAC [69] Actor Critics - Advantage weighted
BC -

RLPD [5] SAC with 50% offline data
ratio - Layer normalization,

ensemble critics

However, a significant assumption underlying these works is that demonstrations are readily accessible,
which may not always be the case. Additionally, the quality of these demonstrations greatly impacts the
efficiency of the learning process. Demonstrations from experts can significantly accelerate learning
and reduce the need for exploration, while demonstrations of lower quality may lead to inefficient
learning processes and necessitate additional exploration. Moreover, if the demonstrations do not cover
specific meaningful regions of the state-action space, the RL algorithm must still undertake substantial
exploration on its own. This dependence on the quality and comprehensiveness of demonstrations
imposes significant limitations on methods that integrate reinforcement learning with demonstrations.

2.5. Goal-based Method For Reinforcement Learning
When faced with large state and action spaces and extended task horizons, exploration using standard
RL approaches becomes challenging. Hierarchical Reinforcement Learning (HRL) addresses this by
decomposing complex tasks into simpler subtasks through a hierarchy of policies, each learned via
reinforcement learning, as depicted in Figure 2.1a. The advantages of this hierarchical structure are
thoroughly proven and analyzed in [68]. The study concludes that hierarchical modeling facilitates RL
training and exploration within more semantically meaningful action spaces, enhancing both efficiency
and effectiveness.

(a) Architecture of Hierarchical Reinforcement Learning (b) HRL method with off-policy correction [67]

(c) SPiRL [79]:HRL method with skill prior (d) MAPLE [72]: HRL method with predefined robot primitive

Figure 2.1: A illustration of methods in HRL

Early works such as FeUdal [98] and h-DQN [49] integrate hierarchical modeling in modern deep
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reinforcement learning, where a high-level agent specifies goals and a low-level agent works to achieve
them. The high-level policy is trained using extrinsic rewards, while the low-level controller is trained
with intrinsic rewards focused on goal attainment. Hierarchical modeling thus provides an effective
framework for exploration in complex environments, such as tasks with long horizons.

However, these methods often require careful, task-specific design, which can limit their generality.
Additionally, changes in the behavior of the lower-level policy can create non-stationary issues for the
higher-level policy, reducing stability during off-policy training. As illustrated in Figure 2.1b, HIRO [67]
addresses these challenges by implementing off-policy corrections. It involves relabeling high-level
transitions with alternative high-level actions that maximize the probability of achieving the set goals.
Furthermore, HIRO directly uses the state as the goal and defines the reward function as the distance to
this goal, enhancing the method’s applicability across a broader range of scenarios.

One approach, presented in [28], integrates HRL with unstructured demonstrations. This method
comprises an imitation learning stage that develops goal-conditioned hierarchical policies, followed by
a reinforcement learning phase that fine-tunes these policies for enhanced task performance. Similarly,
SPiRL [79], shown in Figure 2.1c, leverages offline data within an HRL framework. It focuses on
extracting skill embeddings and skill priors from offline data, subsequently training an HRL policy
guided by these priors. This approach eliminates the need to learn low-level behaviors directly and
guides the policy training process through pre-learned skills.

Robot manipulation is a field where actions carry significant semantic meanings. MAPLE [72]
introduces a method that utilizes predefined primitives, such as Reaching, Grasping, Pushing, Releasing,
and Atomic actions, as high-level representations, as illustrated in Figure 2.1d. To effectively utilize
these heterogeneous primitives, a hierarchical policy is developed, which organizes the primitives
and facilitates their execution with specific input parameters. Experiments conducted in tasks such
as Pick-Place and Assembly demonstrate that these behavior primitives can substantially enhance
exploration efficiency.

2.6. Curriculum RL
Curriculum learning is a method that starts with easier tasks to facilitate the learning of more difficult
tasks, thereby enhancing the efficiency of RL, particularly in robot manipulation. One approach within
curriculum learning involves generating start-state distributions. For instance, a reverse exploration
method proposed by [23] sets the start state of an episode by beginning at the goal state, thereby creating
a more generalized start distribution. Similarly, BaRC [41] uses a given physical model to initiate from
the goal state and spread the start state distribution backward. These methods employ a reverse search
to select goal states, starting with the easiest states and progressing to more difficult ones, simplifying
the achievement of goals. Additionally, another method by [22] uses a generative model to create goal
states for curriculum learning, enhancing adaptability and scalability.

Furthermore, CHER [21] introduces a method that applies curriculum learning concepts to training
data. It generates goals in the hindsight replay buffer as part of the curriculum, balancing curiosity and
proximity. These goals are then utilized to recalculate rewards in the hindsight replay buffer. Another
approach adjusts the tolerance levels of tasks from easy to difficult as part of the curriculum. PCCL [59]
modifies the precision of a success detector, starting with easier criteria and gradually increasing
difficulty throughout the training process.

While curriculum learning in reinforcement learning significantly accelerates task learning and
enhances model adaptability, a key limitation is its dependency on accurately defining task difficulty
and sequence, which can vary widely between different environments and learning objectives.

2.7. Conclusion
This chapter has introduced the foundational concepts and methodologies of RL, focusing on enhancing
exploration and sample efficiency. Novelty-driven and count-based methods, discussed in Section 2.3,
have shown promising results in exploring state spaces in games and mazes. However, their nature may
not align well with manipulation tasks, where most states in the robot action space may be meaningless.

Both demonstrations and hierarchical modeling have significantly improved sample efficiency within
robotics. To some extent, each method integrates prior knowledge into robotic systems. Demonstrations
serve as an intermediate for transferring human knowledge to RL agents, effectively bridging the gap
between human expertise and machine learning. Hierarchical modeling reflects the human cognitive
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model in structuring robot learning for long-horizon manipulation tasks, enabling robots to learn what
to do (high-level) and how to do it (low-level). Exploring both high-level and low-level aspects can lead
to a more efficient exploration process.

Despite the effectiveness of these methods, questions remain about their sufficiency. The aforemen-
tioned approaches still require millions of steps to converge or hundreds of pre-collected demonstrations
by human experts. This raises an important question: Is there another source of prior knowledge that
could accelerate RL training more effectively?
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3
Foundation Models for Manipulation

In this chapter, we explore the application of foundation models in robotic manipulation tasks. We
concentrate on the “reasoning capability” of these models, particularly how they perform in robot
manipulation tasks under zero-shot or few-shot conditions.

In Section 3.1, we introduce core concepts and architectures of foundation models. Section 3.2
analyzes the use of these models for high-level planning in robotic tasks. In Section 3.3, we review
current literature that leverages vision-language models (VLM) for perception in robot tasks, focusing
on scenarios involving unseen environments. Finally, Section 3.4 discusses methods that incorporate
feedback to refine and correct plans generated by foundation models, enhancing their applicability in
dynamic settings.

3.1. Foundation Models Introduction
Recent advances in natural language processing (NLP) and machine learning, particularly the devel-
opment of the Transformer architecture [96], emerge a new category of models known as foundation
models [8]. These models, such as Large Language Models (LLMs) and Vision-Language Models
(VLMs), are characterized by their extensive training on broad datasets. This extensive training enables
them to perform effectively across various tasks and modalities, even those not encountered during
their training.

This versatility enables foundation models to be powerful tools in tackling diverse challenges across
various fields, including robotics. In robotics, these models can be integrated as key components for
tasks such as perception, planning, and control, enhancing the robot’s ability to interpret and interact
with its environment effectively.

3.1.1. LLMs
Large language models refer to large deep neural networks that typically incorporate multiple transformer
blocks in their architecture. These models are trained auto-regressively to predict the next token in
a sequence. Some of the most commonly used LLMs are GPT-3 [11] and GPT-4 [1], which have
demonstrated remarkable effectiveness across various language processing tasks. Leveraging extensive
text datasets in the training phase, these models are able to generate coherent and contextually relevant
text for tasks such as text completion, question answering, and even code generation. GPT-4 Vision
extends this functionality to include vision input modalities, enhancing the model’s versatility and
applicability to multimodal tasks.

Furthermore, GPT and other LLMs such as Llama2 [93], Liama3 [36] and Mistral [43] can be
prompt through Chain of Thought (CoT) [101] technique. This method enables the models to exhibit
more complex inference capabilities by iterating through intermediate reasoning steps while solving a
problem, thereby improving their problem-solving processes and outcomes.

3.1.2. VLMs
Language input alone often falls short in solving complex tasks, as it may not capture detailed information
comprehensively. In contrast, vision modalities can provide a rich description of the environment,
encapsulating extensive details within images. Vision-language Models (VLMs) are trained with
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Internet-scale massive datasets and designed to integrate and interpret visual and linguistic information.
These models effectively bridge the gap between vision and language, enabling them to perform complex
tasks that require an understanding of multimodal inputs.

CLIP [81] leverages contrastive training to correlate visual inputs with language using a 400 million
image-text pairs dataset. It employs separate encoders for text and images, allowing each modality to be
encoded independently. CLIP effectively maps both modalities into a shared latent space by computing
the cosine similarity between text and image representations. In this space, texts and images with
similar content are positioned closer together, facilitating a more aligned understanding across visual
and textual data.

Several studies have successfully extended the capabilities of VLMs to tasks such as open-language
object detection and localization. Notable examples include VILD [26], OWL-ViT v1 [64], OWL-ViT
v2 [63] and DinoV2 [74]. Those models facilitate more complex and flexible open-language object
detection tasks, which could be valuable for robotics perception modules.

Segment Anything [47] is a Large Vision Model specialized in image segmentation tasks. It is trained
on the largest segmentation dataset, which contains 1 billion masks on 11 million images. This model
can transfer knowledge zero-shot to unseen image distributions through prompts, enabling it to adapt
to new visual contexts effectively.

3.2. Foundation Models as Planning
Foundation models have proven their capability in reasoning and contextual generalization, making
them increasingly popular in the robotics community for high-level (task-level) planning. Large
Language Models (LLMs) decompose complex tasks into discrete, primitive-level action steps in such
applications. A notable example from SayCan [3] illustrates this application effectively: consider a
scenario where a human gives the instruction, "I spilled my drink, can you help?" The LLM would break
down this task into the following steps:

1. find a sponge
2. pick up the sponge
3. come to you
4. put down the sponge
5. done

These actions are subsequently executed by a low-level controller, which could involve techniques such
as pretrained behavior cloning policies, pretrained RL policies, or model predictive control, among
others. This approach ensures that the high-level commands decomposed by the foundation models are
translated into precise, real-world movements and tasks handled efficiently by the control systems of
various embodiments.

However, one of the main concerns is that large language models may lack sufficient insights
into real-world environments and embodiments when addressing high-level planning problems. It
is challenging for a language model to fully comprehend complex geometries, action feasibility, and
embodiment kinematics. These gaps in understanding can lead to failures in executing high-level plans
effectively, highlighting the need for more integrated and context-aware approaches in robotics.

3.2.1. Real World Grounding
Grounding is a crucial concept in integrating foundation models with robotics. It refers to the ability
of a system to associate contextual meaning with signals or symbols. Specifically, grounding involves
aligning the abstract knowledge possessed by foundation models with real-world environments and
robotic systems. This alignment ensures that language-driven decisions correspond meaningfully
with physical actions and environmental contexts, enhancing the relevance and effectiveness of robotic
operations based on language instructions.

• Pretrained Skills/Affordances as grounding:
SayCan [3], as depicted in Figure 3.1a utilizes pretrained skills as a means of grounding in the
real world, which constrains the model to propose natural language actions that are both feasible
("Can") and contextually appropriate ("Say"). To achieve this, the authors integrate an affordance
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score—which reflects the success rate of a specific pretrained skill—with the language scores.
Ultimately, the skill with the highest combined score is selected for execution by the pretrained
policy. This planning method is iteratively run until the task is completed, ensuring each step is
practical and relevant to the current context.
Grounding Decoding [37] also integrates language model planning with a grounded pretrained
affordance model. Unlike SayCan, which selects skills for task-level planning, Grounding Decoding
operates at the token level by jointly decoding the next word in the sentence from both LLM and
the Grounded Models, as illustrated in Figure 3.1b. This approach allows the system to engage
in open language task planning without the constraints of predefined skill libraries, thereby
enhancing flexibility and applicability to a broader range of scenarios.

(a) Saycan framework [3] (b) Grounded decoding framework [37]

Figure 3.1: A illustration of methods using Affordance as world grounding

However, most recent works that combine LLM planning with affordance grounding require
a set of low-level language-conditioned policies and a grounded model, which are not always
accessible. This dependency can pose challenges in implementing such systems across different
applications and environments.

• Feedback as grounding:
Inner Monologue [38] explores how to utilize environmental feedback to enable an LLM to develop
an inner monologue for reasoning over various types of feedback, including success detection,
scene description, and human instruction.
Recent research investigates how human feedback can refine plans generated by LLMs, encom-
passing several approaches: DROC [107] focuses on distilling knowledge from human feedback;
CoPAL [44] develops a system architecture that handles corrections at different levels; and
REFLECT [58] introduces a framework that prompts LLMs to reason about failures using a
hierarchical summary of the robot’s past experiences. These studies enhance the adaptability and
effectiveness of LLMs in dynamic and interactive environments.
However, relying solely on feedback can not ensure successful planning, particularly in complex
environments where unpredictable variables can affect outcomes.

• Perception as grounding:
VLMs are valuable tools for the Perception module in robotics, serving as effective scene descriptors.
Socratic Models [105] aims to leverage the combined knowledge and capacities from different
modalities—vision and language—to aid in robot planning tasks. This integration allows the
utilization of commonsense knowledge across different domains. VLMs are employed for open
language object detection, translating the results into language to provide an environmental
grounding for LLM planning. Instead of the language descriptions from VLMs, Voxposer [40]
uses VLMs to construct a 3D value map that serves as the environmental grounding. The robot
then performs model predictive control based on this cost map.
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Figure 3.2: Voxposer [40]: a framework that utilizes LLM to generate cost map for planning

VILA [34] takes a direct approach by using LLMs with vision modalities (e.g., GPT-4 Vision) for
planning without combining with a VLM. GPT-4 Vision can process visual inputs and effectively
"observe" the environment. This approach integrates perceptual data into the reasoning and
planning process and enhances the model’s ability to apply commonsense knowledge in visual
contexts, demonstrating its superiority over traditional LLM-based planners.

• Code as grounding:
Using LLMs to generate plans represents an explicit method of task-level planning. Still, there
are also more implicit methods that enable LLMs to undertake planning, such as through code
generation. Code as Policies (CAP) [54] introduces an approach for robotic planning by generating
code. When provided with several example language commands formatted as comments, followed
by corresponding policy code via few-shot prompting, LLMs can process new commands and
autonomously re-compose API to generate robot-centric policy code accordingly.
This method of utilizing LLMs goes beyond simply planning a sequence of skills. The ability of
LLMs to write code allows them to handle spatial relationships (e.g., "move the apple a bit to the
left"), incorporate commonsense priors in control (e.g., "move faster", "push harder"), and operate
effectively even with a limited skill library. This approach broadens the applicability of LLMs in
complex environments and enhances their utility in precise and context-sensitive tasks.
ProgPrompt [88] utilizes a code-completion LLM to generate robotic plan programs, enhancing
situated awareness in LLM-based robot task planning. The authors have crafted a programmatic
LLM prompt structure to facilitate plan generation that is adaptable across various environments,
robot capabilities, and tasks. A key advantage of using code is its ability to effectively handle
state feedback from the environment. For instance, when given the instruction "make dinner,"
the availability of ingredients like chicken, soda, or pickles in the refrigerator may vary, which
traditional LLM-based task planning methods might struggle to accommodate. However, the
code-generated by ProgPrompt can dynamically adjust to these variations by incorporating
real-time state information, ensuring more accurate and context-aware task execution.
Instruct2Act [35] leverages an LLM to generate Python programs constituting a comprehensive
perception, planning, and action loop for robotic tasks. Within the perception module, pre-defined
APIs provide access to multiple foundation models, such as SAM [47] and CLIP [81]. This
framework can derive robotic plan codes that integrate code from perception foundation models,
pretrained action policies, and hard-coded APIs and IO operations.
Compared to methods that prompt LLMs for high-level plans, code-based LLM methods can
handle a wider variety of environments and instructions without the constraints of a predefined
skill library. However, regarding execution accuracy, current code generation methods are typically
limited to simple tasks, such as pick-and-place operations. It is challenging for LLM-generated
code policies to execute complex tasks with high precision without the support of pretrained
skills.

3.2.2. LLM with TAMP
Some studies have utilized LLMs for robot task-level planning, such as SayCan [3] and Inner Mono-
logue [38]. However, language models alone cannot reliably solve long-horizon robot planning problems
because language lacks complete environmental information. Additionally, by only myopically executing
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the next skill at each timestep, they may fail to account for geometric dependencies that span the entirety
of a skill sequence. Recently, numerous works have aimed to integrate the "commonsense knowledge"
embedded in LLMs with classic task and motion planning (TAMP). This integration can enhance the
feasibility and efficiency of handling symbolic and geometric relations.

Some research has used planning frameworks to solve long-horizon reasoning with LLMs and
Q-functions. Text2Motion [56] uses feasibility heuristics encoded in Q-functions of a library of skills
to guide task planning with LLMs. They proposed a method to combine shooting-based (planning
full sequences) and search-based (one-by-one in a greedy manner) planning strategies to construct
geometrically feasible plans for long-horizon tasks.

LLM+P [57] represents the first framework to integrate the strengths of classical planners into
LLMs. Instead of using LLMs as planners, some literatures employ LLMs to generate a PDDL [24]
description of the given problem and then translate the plan back into natural language. This framework
has demonstrated superior feasibility and spatial reasoning in robotics tasks compared to LLM-AS-P.
AutoTAMP [15] translates natural language task descriptions into a TAMP task representation that can
then be solved with task and motion planning. This method also re-prompts the LLM autoregressively
to detect and correct both syntactic and semantic errors, significantly improving task completion rates.

While PDDL plans are symbolic, a symbolically correct skill sequence may fail during execution due
to the robot’s kinematic constraints or geometric dependencies across the skill sequence. To address
these issues, some research combines planners with LLM planning. 𝐿𝐿𝑀3 [99] use a motion planner to
rollout the result from LLM. Feedback from the classic motion planner, such as collision or unreachable
states, serves as implicit heuristics for the LLM planner, guiding it to replan based on this feedback.

The results generated by LLMs are not necessarily optimal, necessitating the use of TAMP planners
for feasible and efficient task-motion plans. LLM-GROP [18] prompts LLMs to extract commonsense
knowledge about semantically valid object configurations and integrates this with a task and motion
planner to generalize to varying scene geometries. After LLM generates symbolic and geometric spatial
relationships between the tableware objects, Task and Motion Planner GROP [110] generates the optimal
plan for the robot to execute based on the information provided by the LLM.

All the works mentioned above demonstrate improved performance by integrating planning
structures, symbolic planning, or motion planning with LLMs. Introducing these planning modules
helps LLMs achieve more accurate grounding in logical and spatial relationships between objects.
Compared to traditional planning frameworks, LLMs enable handling tasks with open language inputs
without the need for manual setup. However, it is noteworthy that although these methods focus on
robot manipulation as the environmental setting, none address contact-reach tasks, a domain where
classic planning frameworks also face challenges. Contact-reach tasks commonly require robots to learn
how to make contact with objects using machine learning techniques such as reinforcement learning
and imitation learning.

3.2.3. Language conditioned policy for execution
The aforementioned approaches leverage low-level skills for task execution. CLIPorts [86] is a prominent
example, utilized as a low-level skill in works that incorporate LLMs for high-level planning [3, 38, 105].
CLIPorts is an end-to-end language-conditioned imitation learning agent that merges the broad semantic
understanding provided by CLIP [81] with the spatial precision of Transporter [106], as illustrated in
Figure 3.3a. Its semantic stream enhances its ability to comprehend and generalize semantically to
some extent, enabling it to tackle open-language tasks in previously unseen scenarios. Like CLIPort,
PerAct extends semantic information integration into end-to-end language-conditioned policy learning,
progressing from 2D to 3D contexts. It utilizes FiLM [78] for language feature conditioning within
a transformer architecture, facilitating the imitation of 6-DoF manipulation tasks from just a few
demonstrations. PERACT [87], as depicted in Figure 3.3b proposes the representation of observation
and action spaces using 3D voxels and leverages the structured 3D nature of voxel patches to enhance
the efficiency of language-conditioned behavioral cloning.

Different from CLIPort [86] or PerAct [87] that use foundation models to achieve open-language policy
learning, some works use large-scale data to achieve task generalization. BC-Z [42] is a task-conditioned
imitation learning method that has been trained on a large-scale dataset comprising 25,000 episodes
across 100 manipulation tasks. It is also employed as a low-level policy in the SayCan framework [3].
BC-Z incorporates a language encoder and a video encoder to train an embedding-conditioned policy
based on the encoded embedding 𝑧, as illustrated in Figure 3.4c. By encoding input language or the
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(a) CLIPort [86]: a two-stream architecture handling spatial and semantic input

(b) PerAct [87]: a transformer framework with language input and voxel state representation

Figure 3.3: SOTA methods for language conditioned policy in 2D and 3D manipulation

current video, BC-Z can effectively generalize to unseen tasks, enhancing its applicability and versatility
in real-world scenarios.

RT-1 [9] aims to leverage large-scale data to develop a general robotic model that processes both
language and visual inputs. As depicted in Figure 3.4a, the model is based on a transformer architecture
that handles diverse data, including robot trajectories encompassing multiple tasks, objects, and
environments. It is trained on a large dataset of real-world robotic experiences, consisting of over 130,000
episodes that cover more than 700 tasks, demonstrating impressive generalization capabilities. Building
on the foundations of RT-1 [9], RT-2 [10] extends this approach by training vision-language models on
both robotic trajectory data and Internet-scale vision-language tasks. In RT-2, actions are represented as
text tokens incorporated directly into the model’s training set, treated similarly to natural language
tokens. This approach enables RT-2 to harness various capabilities derived from Internet-scale training,
including significantly improved generalization to novel objects, the ability to comprehend commands
not included in the robot training data, and enhanced reasoning abilities.

Research in RT-X [76] focuses on training a "generalist" robot policy using large-scale data across
various tasks and embodiments. The team has compiled a dataset of 1 million episodes featuring 22
different robots across 527 skills. This extensive dataset has been used to train RT-1 [9] and RT-2 [10],
demonstrating that these models exhibit positive transfer and significantly enhance the capabilities of
multiple robots by leveraging experiences from other platforms.

3.2.4. Can LLM do planning?
Although many studies have already utilized LLMs for planning in reasoning tasks and task-level
planning in robotics, some pessimistic views question their capability for genuine reasoning. Some
critics refer to LLMs as “Causal Parrots” [104], suggesting that LLMs do not possess the strong reasoning
capabilities of humans but rather learn from the distributions of human language data. The term
“parrot” implies that LLMs are good at repeating the language found in large datasets. Because they are
trained on enormous volumes of contextual data, they can sometimes appear "causal" by mimicking the
correlations between causal facts encountered during training.

Further research suggests that LLMs may struggle with generating actionable plans autonomously [45].
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(a) RT1 [9] framework

(b) RT2 [10] framework (c) BC-Z [42]

Figure 3.4: language conditioned robot policy trained on large-scale data

Results from [94] show that only about 12 percent of the plans generated by top-performing LLMs like
GPT-4 are executable without errors and achieve their intended goals. These studies also highlight that
LLMs cannot self-improve through iterative prompting. Critics argue that unless LLMs are trained
not just on “correct data” but also with “corrections data”, there is no inherent reason to believe their
outputs would be relevant or accurate. Nevertheless, it is suggested that LLMs should be regarded as
universal approximate knowledge sources, which have significant potential to contribute to planning
and reasoning tasks beyond merely acting as simple front-end/back-end format translators.

From my perspective, LLMs can plan and perform reasoning tasks when utilized appropriately. Using
LLMs directly for planning, however, results in infeasible or suboptimal plans. Previously mentioned
approaches, such as world grounding, TAMP methods, or low-level skill libraries, enhance the capability
of LLMs by bridging the gap between open language and tangible world interactions. LLMs can also
serve as universal approximate knowledge sources, providing valuable support in robot learning.

Another concern addressed in this section is whether the combination of groundings, motion
planning, and predefined skills is sufficient for solving robotic tasks as an intelligent agent. Robot
manipulation tasks often require interactions with various objects, where the complex dynamics involved
make it challenging to resolve solely through coding, symbolic planning, or pure motion planning.
While pre-trained skill libraries developed through behavior cloning or RL can address contact-rich
problems, these low-level skills often lack awareness of high-level plans. This disconnect means that
even if a task-level plan appears correct symbolically or linguistically, it may result in execution errors.
Consider, for example, a robot commanded to place a chocolate box in a cupboard, with the plan
outlined as:

1. pick up the box,
2. move to the cupboard.

During the pre-training phase, the first skill is trained to pick up the box from the top, while the second
skill involves holding the box from the side to move it to the cupboard. It is worth noting that holding
the box from the top could lead to a collision with the cupboard. Despite the task-level plan being
symbolically correct, it fails in execution. To effectively complete such manipulation tasks, there needs
to be greater integration and knowledge sharing between the task-level planning and execution levels.
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3.3. Foundation Models as Perception
LLMs, with their language modality, can function as the ‘brain’ of a robotic system. However, like
humans, a robot cannot operate effectively without sensory input. Previously, perception modules
were typically neural networks trained specifically for recognizing a set of objects or were part of an
end-to-end visuomotor policy that directly mapped observations to actions. With the developments in
vision foundation models, many recent works have adopted them as perception modules capable of
handling open-language tasks in unseen scenarios. This section focuses on VLMs’ roles in the literature
and explores how they are implemented in these contexts.

Initially, VLMs were utilized primarily as scene descriptors. As depicted in Figure 3.5a, Socratic
Models [105] demonstrate how to integrate LLMs with VLMs by using ViLD [26] to describe scene
objects, which are then input into an LLM for task-level planning. However, this method uses language
as an intermediate from VLM to LLM prompts, which results in the loss of rich visual information and
limits the ability to tackle complex tasks. Voxposer [40] proposes using VLMs to construct a global cost
map, enhancing performance beyond merely using VLMs as descriptors. It leverages OWL-ViT [64] to
generate bounding boxes for objects and SAM [47] to create masks. Instead of using VLMs merely as
intermediaries for LLM task-level planning, Voxposer directly utilizes VLM-provided information as a
cost map for motion planning, enriching the environmental data available.

(a) VILD [26] for open language detection (b) SAM [47]+CLIP [81] for detection and segmentation

Figure 3.5: VLMs for perception

In other works [88, 35, 107], VLMs function within the code. LLMs are prompted to generate code
functions that actively utilize VLMs for scene information acquisition. In ProgPrompt [88], similar to the
Socratic models, ViLD [26] is used to detect scene objects. However, Instruct2Act [35] and DROC [107]
utilize a pipeline that employs SAM [47] and CLIP [81] to segment visual inputs into masks and
recognize them contrastively, providing a more accurate and flexible perception approach, as depicted
in Figure 3.5b.

In DoReMi [27], the visual question answering model Blip [52] is employed as an error detection
mechanism to identify any constraints violations in robot motion.

3.4. Foundation Models as Correction/Error Handling
LLMs can function not only as planning and perception modules but also as interactive tools capable of
processing feedback due to their inherent language capabilities. By receiving feedback from humans or
the environment, LLMs can reason about this feedback and refine their plans accordingly.

Human feedback provides an intuitive method for interacting with robots. Since humans inherently
possess strong reasoning abilities, incorporating human feedback can effectively improve planning.
DROC [107] introduces a method that distills knowledge from online human feedback to enhance
task-level planning. Initially, it generates a task plan using the code-generating capabilities of the LLM,
which may be imperfect or suboptimal. After executing the plan, a correction handler assesses and
classifies the feedback, determining whether corrections are required at low-level or high-level aspects
of the plan. A Knowledge Distillation module then extracts task-relevant knowledge from this feedback,
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enabling robots to autonomously generate and refine plans with human input across various tasks.
CoPal [44] proposes a system architecture that enables interplay between multiple cognitive levels,
including reasoning, planning, and motion generation The system presents a hierarchical architecture
for robot manipulation tasks in 3 levels and defines the workflow and feedback between those levels.
This architecture defines a multi-level feedback loop that facilitates closed-loop task planning.

Incorporating human feedback is more challenging than handling feedback from dense sensory
inputs, as it requires a robust reasoning framework. DoReMi [27] actively uses a VLM to determine
whether pre-defined constraints by the LLM are violated. This online detection-feedback-replan loop
allows the robot to adapt based on environmental feedback. REFLECT [58] introduces a method for
automatically detecting and explaining its failures. It transforms multi-sensory data into a hierarchical
summary of the robot’s past experiences and queries the LLM with a failure explanation algorithm.
This summary detects key changes across three levels: subgoal, event, and sensory input. The LLM is
prompted sequentially to identify the error’s level, enabling it to correct failures in the task. CLAIRify [89]
presents a novel approach that combines automatic iterative prompting to handle syntactic errors and
incorporate environmental constraints. LLMs may struggle with generating domain-specific language if
not extensively trained on it, leading to errors. CLAIRify receives feedback from a structured verifier
that manages environmental constraints. Based on this feedback, the LLM iteratively plans until no
further corrections are needed, enhancing the reliability and accuracy of task execution.

3.5. Conclusion
LLMs can play multiple roles in robotics, such as planning, perception, and error handling. Although
some critiques label LLMs as "causal parrots" that lack genuine planning capabilities, they can still
provide valuable task grounding. LLMs can be effectively applied in robotics when combined with
various world grounding techniques. Moreover, given sufficient context, LLMs are capable of in-context
learning and making corrections based on identified errors.

However, their practical application in real-world robotics still faces significant challenges, particularly
when it comes to tasks that require low-level skills for contact-rich manipulation. These low-level skills
often do not seamlessly integrate with high-level planning or may require extensive data for training, as
seen in models like RT-1 or RT-2. Consequently, there remains a notable gap between the capabilities of
LLMs in theoretical or controlled environments and their effectiveness in real-world applications.
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4
Foundation Models in RL Training and

Exploration

RL faces challenges such as long training periods, difficult exploration, and issues with reward functions,
as discussed in Chapter 2. In robot manipulation tasks, RL methods are traditionally limited to
short-horizon scenarios due to the exploration challenges inherent in RL. RL struggles with learning
high-level reasoning and low-level control simultaneously for long-horizon tasks.

Foundation models, to some extent, can "plan" for robots based on their commonsense knowledge
and language reasoning capabilities. These models can perform task-level planning and act as auxiliary
modules in robotic manipulation tasks, as discussed in Chapter 3. Recently, some studies have utilized
these capabilities within foundation models to guide and enhance reinforcement learning.

This chapter primarily introduces works that use foundation models to improve reinforcement
learning data efficiency by guiding training (Section 4.1), shaping reward signals (Section 4.2) and
generating data (Section 4.3).

4.1. Guiding Training and Exploration
In section 2.3, we introduce the classic method for exploration in RL. Count-based and novelty-motivated
methods encourage the RL agent to visit states that are seldom visited or not well-learned. However,
in complex environments, such as long-horizon tasks, a novel state does not necessarily represent a
meaningful state, as the novelty might be irrelevant to downstream tasks.

ELLM [19], as depicted in Figure 4.1a proposed a method that leverages the knowledge from LLMs to
regulate exploration towards human-meaningful behaviors. ELLM allows the LLM to plan a sequence of
language goals as intrinsic motivation and measures the similarity between these goals and transitions.
The agent is rewarded for achieving higher similarity between the goals and transitions.

ELLM is the first approach to use LLMs to guide RL exploration towards human-meaningful states.
However, there are several limitations to this method. Firstly, the intrinsic motivation reward is based on
the similarity to the goals planned by the LLMs, meaning the agent will not learn from other meaningful
state distributions outside the LLM plan. Additionally, the rewards derived from language goals can be
sparse for low-level continuous control tasks in manipulation.

As illustrated in Figure 4.1b, ExploRLLM [60] also leverages LLM to guide RL agents in taking
meaningful actions. Unlike reward shaping, ExploRLLM directly uses LLMs to generate actions that
guide the distribution of RL rollouts. Drawing inspiration from the 𝜖-greedy strategy, actions generated
by LLMs are executed with a probability 𝑝, while the RL policy is applied with a probability 1− 𝑝 during
the rollout phase. These transitions are stored in the Replay Buffer, aiding in the faster convergence
of off-policy RL methods. Inspired by Code-As-Policy [54], ExploRLLM employs pre-generated code
to guide both high-level and low-level actions during exploration. This approach significantly saves
time and resources compared to prompting LLMs at every step. However, this method is specifically
designed for tabletop manipulation tasks. Taking LLM-guided actions at a fixed frequency does not
perform well for guiding exploration in generalized manipulation tasks.

Similarly, RLingua [13], shown in Figure 4.1c, employs an LLM controller to direct RL training
for generalized manipulation tasks, using LLM-generated action samples with a decaying probability
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(a) Overview for ELLM [19] methods that use LLM
for guiding exploration
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Figure 4.1: A illustration of methods using LLMs to guide exploration in RL

during rollouts. Unlike ExploRLLM, RLingua incorporates a behavior cloning loss to train the RL actor,
penalizing deviations between the RL-generated actions and those suggested by the LLM. Despite
these advancements, RLingua faces challenges in enabling LLMs to accurately generate correct grasp
poses, complicating the execution of complex pick-and-place tasks that demand spatial or affordance
reasoning. Moreover, the introduction of behavior cloning loss to the training of the policy network
may align it too closely with the potentially imperfect policy suggested by the LLM.

Some approaches integrate LLMs and motion planning to guide RL training. Combining these
techniques enables RL to avoid complex high-level planning and navigation tasks, concentrating instead
on mastering contact-rich manipulation.

One of the representative works is PLAN-SEQ-LEARN [16], illustrated in Figure 4.1d. This modular
strategy employs motion planning to bridge the gap between abstract language instructions and learned
low-level control, effectively tackling long-horizon robotics tasks from scratch. It utilizes an LLM to
generate a high-level plan, orchestrates motion in contact-free regions, and trains a single RL policy to
proficiently handle contact-rich tasks. The approach includes a sequence module that moves the robot
to regions of interest, thus enabling the RL to learn short-horizon control efficiently.

Another development is LEAGUE++ [53], which integrates LLMs with TAMP and RL for continuous
skill acquisition. In this framework, the LLM generates a symbolic plan that is subsequently validated
through classical motion planning. The RL component then executes these symbolic plans, with the skill
training driven by rewards generated by the LLM. This integration demonstrates that a symbolic skills
library can significantly enhance training efficiency for tackling new long-horizon manipulation tasks.

4.2. Reward
In the literature concerning applying LLMs to guide RL, reward shaping emerges as a dominant trend.
Reward design plays a crucial role in directing policy learning within RL. Additionally, reward design
presents challenges in the RL community; it can inadvertently encourage undesired behaviors in robots,
and sparse rewards can significantly hinder exploration. To address these challenges, some researchers
are exploring using LLMs to generate rewards that aid in reward shaping, thereby encouraging behaviors
with semantic meaning.

In [50], the author presents the first framework that utilizes an LLM as a proxy for the reward function.
The primary contribution of this work is the design of a textual prompt that includes descriptions and
examples of desired behavior, as depicted in Figure 4.2a During training, the LLM assesses the RL’s
behavior against the desired behavior described in the prompt and generates a corresponding reward
signal.
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In robotics, authors in [103] employ LLMs to define parameters for dense reward. To bridge the gap
between high-level instructions and low-level robotic actions, their approach incorporates a motion
descriptor that plans the motion and a reward coder that translates this motion into a code function and
parameters. This reward mechanism has been successfully implemented in quadruped and manipulator
robots to execute instructions. Similarly, Text2Reward [102] generates dense reward functions based on
goals expressed in natural language. The LLM receives a code-style environment description and human
feedback and outputs the reward as a Python function. Given the sensitivity of RL training, single-turn
generation sometimes fails to produce adequate reward functions to complete tasks. Text2Reward
addresses this by soliciting human feedback on failure modes and refining the dense reward accordingly.

(a) Architecture for generating reward for
robot skill given open language [103] (b) Eureka [61]: a framework for LLMs to generate rewards via evolutionary optimization

Figure 4.2: A illustration of methods using LLMs to generate rewards for RL

Previous methods primarily utilized LLMs to generate rewards for relatively simple tasks. However,
a more sophisticated approach to prompting LLMs is required for more complex tasks where the reward
function is less apparent. Eureka [61], as illustrated in Figure 4.2b, employs evolutionary search to
generate multiple executable reward functions. These functions are then evaluated during training.
Starting with a reward function from an earlier iteration, EUREKA performs in-context reward mutation,
generating an improved reward function based on textual feedback. Without relying on task-specific
prompts or predefined reward templates, EUREKA successfully produces reward functions that surpass
those engineered by human experts.

There are also works that utilized VLMs to generate reward signals. VLM-RMs [83] using pretrained
VLM CLIP [81] to generate reward signals to train a humanoid robot to learn complex tasks without
a manually specified reward function. Those rewards are the cosine similarity between state image
representation and natural language task description. The direct result from those VLMs could be noisy
or inconsistent. Addressing this, RL-VLM-F [100] introduces a method to learn a reward model based
on feedback from VLMs. It queries VLMs to determine preferences over pairs of the agent’s image
observations, guided by textual descriptions of the task goals and subsequently learns a reward function
from these preferences. The authors demonstrate that RL-VLM-F successfully generates rewards for
various tasks, including manipulating rigid, articulated, and deformable objects.

4.3. Data/Demonstration Generation
Besides reward shaping, LLMs can also directly influence data collection to guide policy development.
Robots can generate rollouts or meaningful actions driven by LLM guidance. This data is then used for
skill acquisition in robotics. This method is not confined to online reinforcement learning but is also
applicable to offline reinforcement learning and imitation learning.

"Scaling Up and Distilling Down" [29], shown in Figure 4.3b serves as an illustrative example of
these methods, although it does not employ RL for learning skills. For scaling up data generation,
it uses an LLM to guide high-level planning and sampling-based robot planners to generate diverse
manipulation trajectories. Successful trajectories are compiled into a dataset for multitasking and
subsequently distilled into a policy for real-world deployment.

In contrast to merely generating datasets, some works focus on generating policies. Bootstrap Your
Own Skills (BOSS) [108], as illustrated in Figure 4.3a, is a method that learns to execute a set of useful,
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(a) Foundation Models guide skill acquisition for
offline RL learning [108] (b) "Scaling Up and Distilling Down" [29] Framework

Figure 4.3: Foundation models for offline data generation

long-horizon skills with minimal supervision through LLM-guided skill bootstrapping. The LLM
plays a crucial role in connecting an initial skill library to create new, extended behavioral sequences.
These rollouts are collected as experiences, serving as the training data for an offline RL agent. Newly
discovered skill chains, summarized by the LLM, are integrated back into the skill library for further
development and refinement. Over time, this iterative process expands the agent’s skill repertoire
significantly. In this approach, LLMs utilize their comprehensive knowledge to effectively bridge and
enhance the skill library, continuously shaping and enriching it with new skills and data.

4.4. Conclusion
This chapter discusses various approaches to integrating reinforcement learning (RL) training with
foundation models to enhance the efficiency of RL exploration. As depicted in Figure 4.4, these methods
leverage foundation models in distinct ways. One approach involves using the LLM to explicitly plan
and guide RL training, which we call "Foundation models guiding training." The "Data collection"
strategy employs plans derived from foundation models to direct robot actions. The data generated
from these actions then serves as an offline dataset for policy shaping.

Figure 4.4: Different methods to integrate RL training with Foundation Models

Although these methods show promising results in bridging the reasoning capabilities of foundation
models with RL control policy learning, they are not without limitations. A common assumption in
most of these approaches is that insights derived from LLMs are accurate, which is expected to lead
to improvements in RL. However, suboptimal guidance from LLM knowledge can result in inefficient
training or unpredictable behaviors in RL. Particularly with methods like reward shaping, while the
rewards generated by LLMs might be contextually relevant, they can still lead to typical RL issues
where the reward structure inadvertently encourages undesired behaviors. Eureka [61] attempts to
address this problem through evolutionary optimization, which allows for the gradual improvement of
policy performance. Nevertheless, this evolutionary process can be extremely resource-intensive and
time-consuming, involving numerous training trials to achieve optimal results.
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5
Discussion and Conclusion

5.1. Research Question Revisited
This chapter provides an overview of the findings from the literature review. After discussing recent
trends and significant developments in the field over the past few years, we now return to the research
questions posed in Chapter 1:

1. What are the state-of-the-art (SOTA) reinforcement learning methods for efficient exploration that
effectively achieve the exploration-exploitation trade-off? How could incorporating human prior
knowledge into RL accelerate the exploration process?

2. How can foundation models contribute to enhancing robotic manipulation? What roles can these
models play in robot manipulation, and what are their limitations in practical applications?

3. What recent advancements have been made in integrating foundation models with reinforcement
learning?

5.1.1. RL and exploration
The content in Chapter 2 addresses the first research question regarding state-of-the-art reinforcement
learning methods for efficient exploration that effectively manage the exploration-exploitation trade-off.
Basic RL algorithms utilize stochastic policies, action noise, or entropy regulation to achieve this balance,
with SAC [30] providing a foundational approach for many subsequent studies. While successful in
various control policies, these basic RL algorithms struggle to tackle long-horizon manipulation tasks
independently.

Exploration algorithms explicitly designed for specific applications, such as count-based [4, 6, 75,
62, 92] or novelty-driven [90, 77, 12, 109] methods, show promising performance in navigating mazes
or game spaces. However, these methods are not inherently suited for robot manipulation, where
most state-action pairs in joint-position or end-effector position joint spaces are less meaningful. Two
methodological families have demonstrated high data efficiency and effectiveness in addressing these
challenges:

1. demonstration as prior knowledge: Using demonstrations as prior knowledge from humans to RL
agents allows these agents to bypass initial learning stages by incorporating this data directly into
the replay buffer. Techniques such as behavior cloning loss [32, 82, 70, 69], high Update-to-Data
ratios [5, 14], ensemble critics [5, 14], and layer normalization [5] are integrated to enhance training
efficiency.

2. Hierarchy modelling: Hierarchical modeling aligns with the human cognitive approach to
structuring robot learning for long-horizon manipulation tasks, enabling robots to understand
both what to do (high-level) and how to do it (low-level). This structured approach has proven
to facilitate a more efficient exploration process than that achieved by single-layer RL agents, by
allowing simultaneous exploration at multiple levels.

These two approaches incorporate prior knowledge into reinforcement learning at different levels,
enriching the RL agents’ capability to handle complex tasks. Furthermore, there are methods that
synergize these approaches [28, 79], combining hierarchical modeling with learned skill priors [79] to
further boost training efficiency and effectiveness.
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5.1.2. Foundation Models for Manipulation
The content in Chapter 3 addresses the second research question regarding the roles that foundation
models can play in robotic manipulation. Recent literature demonstrates that foundation models
can function effectively as planning modules [3, 37, 54, 56, 57], perception modules [105, 40], and
mechanisms for handling environmental and human feedback [107, 44, 27, 58].

Despite some skepticism regarding their reasoning capabilities [104], these works illustrate that
LLMs can facilitate task-level planning in robotic tasks when properly utilized. Effective utilization
includes providing world grounding, using well-designed prompts, or TAMP systems.

However, there are still limitations to consider:

1. Sub-Optimality of Plans: Plans generated by LLMs may be sub-optimal and may require further
refinement to meet operational standards.

2. Limitations in Low-Level Control: While LLMs show promising performance in task-level
planning, they face challenges in low-level control policy, especially for contact-rich tasks. These
low-level skills often do not seamlessly integrate with high-level planning or may require extensive
data for training, as seen in models like RT-1 [9] or RT-2 [10].

There remains a noticeable gap between high-level planning and the execution capabilities of low-level
policies in manipulation tasks, indicating a need for better integration and alignment of these two layers
to enhance overall task performance.

5.1.3. Foundation Models Guiding RL Training and Exploration
The content in Chapter 4 addresses the third research question concerning the integration of foundation
models with RL. This integration has led to significant advancements in RL policy learning for robotics,
categorized into three main methods:

1. Foundation models guide training and exploration,
2. Foundation models generate reward,
3. Foundation models generate offline data.

These methods have been instrumental in enhancing the training efficiency of reinforcement learning.
However, they rely heavily on the assumption that the plans or reward signals generated by the
foundation models are sufficiently accurate to guide the RL training process effectively. Particularly,
the reward shaping method may encounter challenges if it learns unwanted behaviors or operates
inefficiently due to suboptimal or incorrect insights from LLMs.

5.1.4. Limitations
This review has certain limitations that should be considered when interpreting its findings. Firstly,
the nature of Large Language Models (LLMs) has been primarily viewed as a tool, without exploring
the potential relationship where RL could be used to fine-tune LLMs. This one-sided perspective may
overlook important dynamics in the interaction between these technologies.

Secondly, the theoretical background of LLMs has not been extensively covered in this review.
Although understanding the theoretical underpinnings of LLMs is crucial for a deeper comprehension
of their operations and limitations, it was not the focus of this study, which primarily concentrated on
the integration of LLMs in robotic tasks.

Lastly, due to the rapidly evolving nature of this research area, some claims in this literature review
may be perceived as subjective and not fully substantiated. The field’s quick advancement means
that even the most recent studies can quickly become outdated, necessitating continuous updates and
revisions to stay current with new developments and insights.

5.2. Future work and Discussion
Although current literature aiming to integrate reinforcement learning with foundation models has
shown promising performance, most studies still rely on the assumption that the outputs provided
by these models, such as plans, are correct. RL learning could also benefit from providing foundation
models with environmental feedback, which would help in self-correction. Additionally, some methods
from classic reinforcement learning literature that aim to improve training efficiency have not been
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widely combined with foundation models, such as Hierarchical RL or RL with demonstrations. In
Figure 5.1, we illustrate the plan that integrates RL with foundation models to utilize the advantages
from both sides.

Figure 5.1: Integrating RL with Foundation models

To address existing challenges within both the reinforcement learning and foundation models
literature, we propose several directions for future work:

1. LLM self-improvement through RL If the plans or rewards generated from foundation models
are suboptimal, this can limit the efficiency of RL training. While Eureka [61] utilizes evolutionary
optimization to enhance insights from foundation models, training thousands of episodes is
resource-intensive. However, during training, there is potential to refine the plans generated by
LLMs using episode feedback from RL. Previous methods have demonstrated that LLMs can
reflect on their own failures based on environmental feedback. This approach would allow LLMs’
plan and low-level control policy to co-evolve through trial and error within an RL framework,
potentially leading to more effective learning strategies.

2. LLM is compatible in hierarchy RL framework In hierarchical reinforcement learning HRL, action
in the first layer often encapsulates rich semantic meaning, outlining subgoals for manipulation
tasks. This characteristic makes LLMs highly compatible with task-level planning within HRL
frameworks. LLMs can guide the high-level layer of HRL, enabling efficient exploration at this
level and facilitating a more structured approach to achieving complex objectives.

3. LLM data generation with Efficient RL LLMs have demonstrated their capability to generate
robotic trajectories, as shown in [29]. These trajectories can serve as prior data in efficient RL
frameworks like those discussed in [5], potentially enhancing the efficiency of RL training. This
approach addresses the domain shift issues common in previous methods primarily relying on
behavior cloning policies. Using online RL to fine-tune these LLM-generated trajectories, it is able
to bridge the gap between simulated training environments and real-world applications, ensuring
that the learned behaviors are effective and adaptable.

5.3. Conclusion
This literature review examines the current research on utilizing foundation models to guide rein-
forcement learning, with a focus on RL theory and exploration methods outlined in Chapter 2, the
functionality of foundation models discussed in Chapter 3, and the integration of these two fields
presented in Chapter 4. Our goal is to enhance the efficiency of reinforcement learning by leveraging the
knowledge encapsulated in foundation models. We have identified that there remains a gap between
current studies and enabling LLM robust generate guidance improving RL efficiency for long-horizon
manipulation tasks.
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5.3. Conclusion 31

As for the next stage, we aim to develop a method that synergistically integrates foundation models
with reinforcement learning. Our goal is to design a framework that enables foundation models to
guide RL learning in a more accurate and efficient manner, thereby bridging the identified gaps and
enhancing overall system performance.
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