
VOLUME 77, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 14 OCTOBER1996

13,

s

Topological Dislocations and Mixed State of Charge Density Waves
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We discuss the possibility of the “mixed state” in incommensurate charge density waves with three-
dimensional order. The mixed state is created by applying an electric field perpendicular to the chains.
This state consists of topological dislocations induced by the external field and is therefore similar to
the mixed states of superfluids (type-II superconductors or liquid helium II). However, the peculiar
coupling of charge density waves with the electric field strongly modifies the mixed state compared to
conventional superfluids. The field and temperature dependence of the properties of the mixed state are
studied, and some experimental aspects are discussed. [S0031-9007(96)01374-9]
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The charge density wave (CDW) is an ordered state
which translational symmetry is broken [1]. Topologica
dislocations (TD’s) of incommensurate CDW with three
dimensional (3D) order have been studied by sever
authors with connection to the phase slip phenomena
sliding CDW’s [2–5]. The analogy of the TD’s with the
dislocations in crystals has also been pointed out [6,7
However, unnoticed up to now seem to be the similaritie
of the TD’s with the vortices in superfluids: both are
topological singularities of complex order parameter. I
type-II superconductors in magnetic fields and liquid
helium II in a rotating container, the vortices create
remarkable, so-called mixed state, which generates a wi
variety of intriguing phenomena [8]. In this Letter, we
investigate the possibility of the corresponding mixe
state in CDW’s and discuss its properties.

In contrast to the vortices in type-II superconducto
and liquid helium II, which induce magnetic flux and
angular momentum, respectively, the TD’s in CDW’s
induce charge polarization. Therefore, in analyzing th
electrostatic properties of the TD’s, we have to treat th
scalar potential carefully. We start with the microscopi
model of the electron-phonon system in the presen
of scalar potential, and derive the Ginzburg-Landau fre
energy of the ordered state. The effective free energy
the TD’s is obtained by integrating out the single-value
part of the phase of the order parameter, i.e., the phaso
The TD’s in the CDW’s are similar to the vortices in
type-II superconductors or superfluids, except for th
coupling to the external field. We show that the mixed
state is created by an external electric field in the directio
perpendicular to the chains (transverse direction), whic
can be understood as follows. When the system tries
screen the field, the chemical potential must be chang
from chain to chain so as to induce a surface charg
This modulation changes the wave number of the CDW
condensate, i.e.,2kF , thus conflicts with the 3D order
and causes frustration [9]. We analyze this state bas
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on the free energy of TD’s. First, we determined th
lower critical fieldDc1 at which the first TD appears in the
system as we increase the field strength. If we increa
the field further, the density of the TD’s also increase
In the strong field region, the densities of TD’s becom
so high that we can treat them as a continuum. In th
limit we find that the width of the mixed state is given b
the Thomas-Fermi screening length of the normal sta
If we increase the field even further, the cores of th
TD’s begin to overlap, thus destroying the 3D order. Th
characteristic field of this phenomena, which we denote
Dc2, is estimated. We argue that these properties sho
be experimentally observable.

First, we derive the free energy of CDW from the 1D
electron-phonon system. The imaginary-time action rea
(here we act in the following units̄h ­ kB ­ 1 unless
noted)
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where cs ­ s1y
p

L d
P

k eikxak,s and bq are variables
expressing the electron and phonon degrees of freed
with excitation spectraek ­ k2y2m andvq, respectively.
L, gq, b, andm are the length of the chain, the electron
phonon coupling constant, the inverse of temperature, a
chemical potential, respectively. The scalar potential
expressed byw, and the charge of an electron is give
by 2e. From the above action, the free energy of th
CDW can be derived in the cases of bothT & Tc and
T ø Tc. In the former case, we utilize the expansio
of the order parameter up to fourth order and the sca
potential up to second order. On the other hand, in t
© 1996 The American Physical Society 3403
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latter case, we use a gradient expansion of the phase o
order parameters and the scalar potential [10]. When
quasiparticle excitation gapD is uniform, the free energy
becomes in both cases simply

F ­
e2

pyF
s1 2 fsd

Z
dx w2 1 i

e
p

fs

Z
dx uE

1
yF

4p
fs

Z
dxs≠xud2, (2)

disregarding irrelevant constants. Hereu is the
phase of the order parameter,E ­ 2≠xw, and
fs ­ jDj2pT

P
en

sjDj2 1 e2
nd23y2 is the conden-

sate density given by4c0jDj2 for T & Tc with
c0 ­ b2z s3, 1y2dys4pd2, and 1 2

p
2pbjDj e2bjDj

for T ø Tc, wherez s3, 1y2d is the zeta function. The
first term of Eq. (2) expresses the screening due
the excitation of quasiparticles [11]. The second te
describes the acceleration of the CDW and coincides w
the result obtained from the “chiral transformation”
T ø Tc [12,13].

The free energy of the 3D ordered state can be obta
by introducing the rigidity due to the interchain couplin
as follows:

F ­
Z

dr
K
2

fh≠xusrdj2 1 g2h≠yusrdj2

1 g02h≠zusrdj2g

1
Z

dr
∑

iJewsrd≠xusrd 1
1

8p
hj=wsrdj2

1 l22
0 wsrd2j 1 iewsrdrextsrd

∏
, (3)

where the electrostatic energy is also included. We
sume that the chains are parallel to thex axis. The
anisotropy is parametrized byg ­ jyyjx and g0 ­
jzyjx with jx, jy, and jz being the coherence length
in the x, y, and z directions, respectively. The scree
ing length due to the quasiparticles,l0, is given by
l

22
0 ­ 8N'e2s1 2 fsdyyF . The response of the syste

is probed by the external charge densityrextsrd which
induces an external field given byDext

k ­ 4peikr
ext
k yk2

where k2 ; jkj2. K ­ N'yFfsy2p and J ­ N'fsyp

are coefficients proportional to the areal density of
chainsN'. Note that the size of the cores of the TD
is given byjx , jy , andjz in the x, y, andz directions,
respectively. Although the spatial variation of the am
plitude of the order parameter is neglected, the pres
treatment is applicable to the most CDW systems for
following reason. Since the transverse size of the co
is usually smaller than the interchain spacing except n
Tc, the dislocations mostly sit between the chains so a
minimize the free energy, and the cores thus do not af
the order of CDW. In this Letter we focus on the intri
sic properties of a clean CDW condensate and leave
effects of inhomogeneity pinning for further work.

Based on this free energy, we first clarify the screen
properties of the CDW state without TD’s. In this cas
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only the phason modes contribute to the screening a
leads the free energy,

Feff ­
X
k
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#
, (4)

where the effective screening lengthLk is given as
L

22
k ­ l

22
0 1 s4pe2J2yKdk2

xyk2
g and k2

g ; k2
x 1

g2k2
y 1 g02k2

z . In the low temperature limit, l0

diverges since the quasiparticle excitations are e
ponentially suppressed by the energy gap, and th
only the polarization of the condensate can contribu
to the screening. In the direction along the chain
(longitudinal direction: ky ­ kz ­ 0), the phason
contribution completely compensates the suppress
quasiparticle contribution. Actually, the screening lengt
becomes sl22

0 1 4pe2J2yKd21y2, which coincides
with the Thomas-Fermi length of the normal state
lTF ; h8N'e2ysh̄yFdj21y2. On the other hand, in the
transverse direction (kx ­ 0), there is no phason contri-
bution and, consequently, no screening forT ø Tc. This
can be attributed to the “rigidity” of CDW.

Next we examine how the TD’s affect the screenin
properties. Here we limit our discussion to straigh
dislocations parallel to thez axis, which reduces the
problem to a two-dimensional one. The density o
topological charge is thennsrd ­

P
m qmds2dsr 2 rmd,

where qm and rm are the topological charge,qm ­
2p 3 sintegerd, and the position of themth dislocation,
respectively. The phase of the order parameter is giv
by the relation s=udk ­ iku

s
k 1 ik 3 ẑnkyk2, where

u
s
k expresses the phason part,ẑ ­ s0, 0, 1d, and k ­

skx , ky , 0d. In the following we consider TD’s withqm ­
62p only. By integrating out the phason mode, the fre
energy of TD’s per unit length becomes

Feff
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(5)

whereLz is the length of the sample in thez direction.
Note that in the imaginary-time formulation the scala
potential has to be rotated to the imaginary axis lik
wk ! iwk. Therefore we define the expectation value o
wk by kwkl ; iw̄k, wherew̄k is the physical value.

Equation (5) tells us that the TD’s behave like a
Coulomb gas with background charge2eJskywkdyK,
which is proportional to the electric field in they
direction. Therefore TD’s are generated by the extern
electric field in they direction, forming the “mixed state”
of CDW. In order to quantify this point, we study
two limiting cases: the dilute and the dense limit o
dislocations.
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In the dilute limit, we consider the problem of a singl
TD: When does the first TD appear as we increase
field strength? The corresponding critical field can b
estimated from the difference of the free energy betwe
the single TD state and the TD free state,DF. It is given
in the limits ofT ø Tc andT & Tc as

DF
Lz

­

(
pKgWl

21
TF 2 2peJDext

y W2 for T ø Tc ,

pKg lnsWjyd 2 2peJl
2
TFDext

y for T & Tc .

(6)

In calculating Eq. (6), we assumed that the system
infinite in the x direction and of widthW in the y
direction, thus introducing an infrared cutoff of1yW for
the wave vectorky. Note that “T & Tc” should not
include the region too close toTc, where the present
treatment fails due to the diverging coherence leng
In the limit of T ø Tc, the critical field is expressed
as Dc1 ­ sgy4edh̄vpW21, where vp is the plasma
frequency given by

p
8N'e2yFyh̄. Therefore, the critical

voltage defined byVc1 ; Dc1W becomes independent o
the sample width. On the other hand, atT & Tc, Dc1

is given by sgy4edh̄vpl
21
TF lnsWylTFd. This is larger

than theDc1 of the low temperature limit, because th
energy gain due to the creation of TD’s is reduced
quasiparticles.

In the dense limit,nk is approximated by a continuous
function rather than a function of the positions of individ
ual TD’s hrmj. This corresponds to neglecting the spati
structure smaller than the spacing between TD’s. In th
approximation, it is quite simple to evaluatenk andw̄k by
using Eq. (5). The minimization of the free energyFeff
in terms ofnk gives

nk ­ 2
eJ
K

kywk . (7)

The density of TD’s turns out to be proportional to th
strength of the electric field in they direction. On the
other hand, the variation ofFeff with respect towk gives
the Poisson equation,

sk2 1 L22
k dw̄k ­ 24pe

√
J

g2

k2
g

ikynk 1 rext
k

!
. (8)

Substituting Eq. (7) into Eq. (8), we obtain̄wk ­
24per

ext
k ysk2 1 L22

m d, where L22
m ­ l

22
0 1 4pe2J2yK.

Note that Lm now equals the Thomas-Fermi screenin
length of the normal state,lTF . When we apply the
electric field in they direction, the field penetrates the
sample to the depthLm. As we can see from Eq. (7), the
TD’s are thereby distributed in this surface region whe
the mixed state is formed.

In case of type-II superconductors (or liquid helium II
there is another characteristic field, i.e., the upper critic
field (or angular velocity), usually denoted asHc2 (Vc2)
[8], which defines a phase transition within the mea
field theory. Hc2 (Vc2) can be understood as the fiel
at which the cores of the vortices begin to overlap.
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case of the CDW’s, when the cores of the TD’s beg
to overlap, the CDW ordering is almost destroyed b
strong fluctuations due to the dimensional reduction. W
denote this characteristic field asDc2 for convenience,
although it is still unclear whether there is a real pha
transition or not. This field strength is first realized at th
surface where the internal field coincides with the extern
one. Since the cores begin to overlap when the num
density of the TD’s exceeds1ysjxjyd, the corresponding
field strength,Dc2, is estimated from Eq. (7) asDc2 ­
pyFh̄ysejxjyd.

In the following, we discuss the experimental aspects
the mixed state with actual CDW materials in mind. W
concentrate on the low temperature limit where the effe
due to the mixed state are rather clear. Since the TD
modify the screening properties of the system, the mix
state can be observed by measuring the dielectric cons
of the system in a capacitor with the transverse elect
field. The capacitance should display the crossover fro
the insulating behavior in the weak field region (V , Vc1)
to the metallic one in the strong field region (V . Vc1).
In the case of K0.3MoO3 (g ­ 0.01 0.1 depending on the
direction [1]) ,Vc1 is estimated as0.69g V. On the other
hand,Dc2 is estimated as2.9 3 106g21 Vym, which can
be much larger thanVc1 even if we takeW ­ 1 mm .
It should be noted that, in the case of K0.3MoO3, a
simple estimation of the Thomas-Fermi screening leng
in the normal state,lTF ­ vpyyF , gives less than 1 Å,
which is smaller than the interchain spacing,10 Å. This
estimation is based on the continuum model of met
and, therefore, we cannot take it too seriously sin
the continuum approximation is no longer valid at th
scale, especially in the transverse direction. However,
expect that, in the strong field region, the width of th
mixed state can be as narrow as the lattice spacing
most TD’s are confined to the outermost layers. In t
weaker field region, this width can be much wider.

In the uniform electric field, there can be an addition
effect due to the quasiparticles excited through Zener tu
neling process [14]. In the WKB approximation [15]
the characteristic electric field of Zener breaking is hu
in the present configuration (,107g21 Vym) due to the
narrow band width and the large lattice spacing. The
fore the contributions from the quasiparticle excitations
strongly suppressed, and we expect that the mixed stat
the condensate can be observed.

The effects of pinning cannot be avoided in realist
CDW systems [16], but are beyond the scope of t
present Letter. However, we expect a hysteretic behav
in the observed capacitance. Of course, the magnitude
the hysteresis depends strongly on the inhomogeneity
the sample.

In conclusion, we proposed a new state, i.e., t
mixed state, in CDW’s, which is realized by applyin
the transverse electric field. The physical properties a
quantitatively discussed based on the Ginzburg-Land
3405
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free energy of the CDW and the critical fields which
characterize the mixed state are estimated. The mixe
state strongly affects the screening properties of th
system and is thus detectable through the dielectr
constant measurement in a capacitor.
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