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1
Introduction

Video games are a mainstream form of entertainment, increasingly common in a vast
number of households. In the last forty years, the rapid advancements in video game
technology have followed from the cultural and social ever-growing acceptance of
this form of entertainment. People of all demographics regularly play with their
computers, TVs or portable devices [ESA 13], immersing themselves in ever-richer
and deeper virtual worlds.

However, many players and researchers still feel that games could somehow be
even more fun and engaging. This can be apparent, for example, from one statistical
fact: the low average rate of players who complete games they bought (reported
from 10% [CNN 11] to 20 - 25% [IGN US 11]). In fact, this data has been analyzed to
conclude that most commercial video games do not include engaging single-player
campaigns [Game Front 12].

We identify one of the possible reasons for such lack of engagement: the rigidity
of games. When most commercial games are shipped, their gameplay has typically
been pre-scripted. All game components, e.g. characters, rules, narratives and envi-
ronments, are created during development, mostly as pre-determined artifacts with
which a player will interact. In an attempt to account for more flexible gameplay,
video games often include minor variations that depend on self-profiling. The most
common example is the customization of a game’s difficulty, where players choose
to experiment different sets of game conditions, with varying degrees of challenge.
However, this discrete approach is still somehow limited since it is typically con-
strained by the low-resolution of the available game options (e.g. self-classification as
beginner vs. expert).

1



2 CHAPTER 1. INTRODUCTION

Such lack of flexibility can significantly hinder player engagement. With rigid
game content and its fixed discrete variations, player engagement is dependent on
how good these game components were designed to fit that player. Furthermore,
game outcomes can be more easily anticipated by players, since all possible interac-
tions are bounded by such components. Even worse, if players can predict certain
outcomes, on a regular basis, they can repeatedly exploit those predictions to progress,
resulting in a less natural game experience. Such inflexibility can also affect some
of the replay value of such games. Content-wise, very little new or different can be
discovered when replaying previously explored games.

Furthermore, video games could do better in attracting and retaining a wider
audience of players. Being rigid, games are typically designed with a certain player
type in mind. This leads to player specialization, since new players must learn how
to become that player type or else be left out. Additionally, the discrete self-profiling
discussed above implies that such games might fail in appealing to players who do
not know how to profile themselves or who do not identify themselves with any of
the available classifications.

1.1 Adaptive games

Several game features have already been developed to help account for these issues.
An example is the dynamic adjustment of a game’s difficulty level to match the
measured skill of the player. The generation of specific game events, adjusted to the
pace and behavior of a player, and of linear game levels, adapted to the measured
emotional states of players, are other examples. Games which feature such automatic
adjustments are termed as adaptive.

An adaptive game automatically customizes itself to better fit an individual player.
Its components are no longer pre-determined, being able to dynamically change
themselves to fit player-centered requirements (e.g. an easier level, generated on-
the-fly). These types of games can cater the gaming experience to the individual
user, by being more responsive than normal games to different player types and their
individual needs [Charles 05, Gilleade 04, Magerko 08a]. As such, they can be played
in a more dynamic and flexible fashion, potentially engaging many more players.

Methods to support adaptive games already exist. The standard approach for an
adaptive game typically includes two components: a player model and an adaptation
mechanism. A player model is created by an algorithm that assesses and predicts player
behavior, by analyzing gameplay data and inferring a mathematical model of players’
actions, preferences or style [Houlette 04]. In adaptive games, this player model steers
some adaptation mechanism by requiring specific game changes to fit the model state.
One of the possible adaptation mechanisms is procedural content generation (PCG),
an umbrella term for algorithms that can automatically generate a specific type of
content [Smelik 11a], with limited or indirect user input. Content typically refers to
most of what is contained in a game (e.g. a game level, a story), except for the game
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engine itself or non-player characters (NPC) behavior [Togelius 11].

1.2 Problem statement

Although adaptive games are a possible solution for the player engagement issues
mentioned before, in practice they are rare. The technology and the development
techniques to support adaptive games are not easily accessible to game designers,
less technically savvy than programmers. In turn, this creates obstacles when author-
ing adaptivity, i.e. supplying designers with the opportunities to control how the
player model and adaptation mechanism should respond to individual gameplay.
Additionally, most adaptive game techniques are strongly ad-hoc, most of the times
developed for a specific case, without further application beyond it. Such dedicated
approaches are also limited in how and which components they are able to adapt (e.g.
only adjusting spawn points for enemy NPCs).

Apart from some noteworthy examples (see Chapter 2), the development of
adaptive games is in its infancy, especially when considering PCG as the adaptation
mechanism. Current PCG research shows that generating content can already be
considered very broad (e.g. levels, maps, textures, stories, events), produce highly
diversified artifacts and be effectively controllable. These qualities can have a high
impact on adaptive games, by providing more ways to adapt better. Therefore, it is
important to focus on the development of PCG-based adaptive games.

This dissertation’s goal is to contribute towards the development of adaptive
games, by addressing all the issues described before with a specific focus on PCG-
based adaptive games. We contribute to: (i) empower designers to author and control
adaptivity in games (since their knowledge on gameplay is too rich to not be used), (ii)
supply generic technology, applicable across different game genres, and (iii) support
more features on what can be adapted and to what purpose. We focus these aims on
the generation of complex game worlds, the target of our PCG-based adaptive games.
Generating game worlds, dependent on a player model, is a far reaching adaptation
mechanism but it remains an open research topic [Lopes 11b].

Solving these aims can considerably profit from recent achievements in semantic
modeling, where the control, features and generic nature of game world generation
have been successfully improved [Tutenel 12]. Game world semantics is all informa-
tion on a game world and its objects beyond their mere visual representation. For
example, the weight or capacity a box possesses, in a virtual game world. Semantics
can act as the knowledge base which constrains and steers the procedural generation
of complex artifacts as, for example, buildings [Tutenel 11a].

We propose the use of semantics to adaptively generate game worlds. We extend
the current semantics model with the notion of gameplay semantics, defined as:

the knowledge on the gameplay meaning and value of a game world and
its objects.
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For example, the fun the same box is able to provide to a certain known player style.
Our proposal is that gameplay semantics acts as the knowledge which glues together
player models and the appropriate game adaptation mechanism, steering the latter.
In Chapter 3, this definition of gameplay semantics is fully realized into a formal
framework.

1.3 Research question

All of this lead us to the following main research question:

• How can gameplay semantics improve the adaptive generation of game worlds?

To answer our research question, we will answer the following key questions:

1. How can gameplay semantics steer the adaptive generation of game worlds?

2. Which game world features can be generated from gameplay semantics?

3. How can game designers use gameplay semantics to author adaptive game
world generation?

4. Which games, genres, player modeling and PCG methods can gameplay seman-
tics apply to?

1.4 Methodology

The methodology we followed to answer these questions was divided into three
stages. First, we created a novel specification model of gameplay semantics, by
extending current semantic modeling methods. A generic generation method was
included in the specification model to allow easy integration into procedural content
generators. Second, we applied this approach to several case studies, with games
and methods of different characteristics. Finally, we assessed the effectiveness and
controllability within these case studies with players and game designers.

1.5 Outline of contributions

Our contributions emerge from answering the research questions above and are
presented in this dissertation, where each chapter corresponds to a published article.
Furthermore, each chapter is backed-up by a running software, typically composed
of: a game, a generator and a player modeling method.

The sequence of chapters in this dissertation illustrates the path to answering
our research questions. We start by validating the importance of adaptive game
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worlds and of PCG as a method to support them, as well as identifying the research
opportunities for semantics to improve both (Chapter 2). Next, we elaborate what is
gameplay semantics and how it can be used to steer adaptive game world generation,
by proposing a semantic model and a generation framework for adaptive game worlds
(Chapter 3). In our first case study, we focus on determining how game designers
can control adaptive game world generation, while investigating the generation of
specific game world layout features (Chapter 4). Further generable game world
features are investigated, with a focus on global (Chapter 5) and specialized (Chapter
6) properties of game worlds. Throughout Chapters 3, 4 and 5 not only we investigate
such features, but also what games, genres, player modeling and PCG methods can
benefit from gameplay semantics.

Each chapter encapsulates broader contributions to this field. Chapter 2 surveys
the current state of adaptive games research and technology, discussing the main
unexplored research opportunities. In particular, it concludes that PCG and semantic
modeling can powerfully combine to support the development of adaptive games.
This survey was published in IEEE Transactions on Computational Intelligence and
AI in Games: Adaptivity challenges in games and simulations: a survey [Lopes 11b].

Chapter 3 proposes a generation framework aimed at adaptively creating content
for complex and immersive game worlds. It introduces the core definition of gameplay
semantics and describes how it can be integrated within an adaptive game (game,
generator and player model), in a generic way. This work was published in the eighth
International Conference on Advances in Computer Entertainment technology: A
semantic generation framework for enabling adaptive game worlds [Lopes 11a].

Chapter 4 discusses how gameplay semantics can be used to procedurally generate
adaptive game worlds, when considering off-line generation of 3D racing stunt arenas,
using an heuristic-based player model. Results show that semantics can be effectively
used by designers to control PCG and make it fit personal gameplay. Additionally,
we discuss how gameplay semantics can generate emergent content, i.e. beyond the
designer pre-specification. This work on adaptive off-line game worlds was published
in the third workshop on Procedural Content Generation in games: Using gameplay
semantics to procedurally generate player-matching game worlds [Lopes 12].

Chapter 5 further investigates semantics-based adaptivity and respective designer-
centered control, but considering on-line generation of 2D platform levels for mobile
games. It also shows how gameplay semantics can be used effectively in conjunction
with other forms of adaptivity, based not on semantics or player models but on real-
world time constraints placed on the player. Performed user studies show that this
approach successfully accommodates different player types, adapting and improving
gameplay. This work was published in the fourth workshop on Procedural Content
Generation in games: Mobile adaptive procedural content generation [Lopes 13b] and in
the eighth International Conference on the Foundations of Digital Games: Gameplay
semantics for authoring adaptivity in mobile games [Lopes 13a].

Chapter 6 discusses how semantics can be used for more complex on-line and
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constraint-based generation of 3D maze-like levels. Specifically, this chapter shows
how semantics can contribute towards enabling designers to author adaptivity in
game world generation, in a more expressive and specific fashion than before. User
studies matching both designers and players showed that gameplay semantics can
provide game designers with a rich expressive range to convey specific adaptive
gameplay experiences to its players. This work has been submitted for journal
publication.

The final chapter 7 discusses our research results and draws conclusions and
future recommendations from them.

In addition to the above, throughout this project, we supervised and gave substan-
tial contributions to research work related to game level and game world generation.
This resulted in the following co-authored publications:

• A constrained growth method for procedural floor plan generation [Lopes 10], in
GAME-ON - Simulation and AI in Games Conference 2010.

• Generating consistent buildings: a semantic approach for integrating procedural tech-
niques [Tutenel 11a], in IEEE Transactions on Computational Intelligence and
AI in Games.

• Designing procedurally generated levels [van der Linden 13a], in the second AAAI
Workshop on Artificial Intelligence in the Game Design Process.

• Procedural dungeon generation [van der Linden 13b], in IEEE Transactions on
Computational Intelligence and AI in Games.

• A generic method for classification of player behavior [Etheredge 13], in the second
AAAI Workshop on Artificial Intelligence in the Game Design Process.



2
Adaptivity challenges in games and

simulations

In computer games and simulations, content is often rather static and rigid. As a
result, its pre-scripted nature can lead to predictable and impersonal gameplay, while
alienating unconventional players. Adaptivity in games has therefore been recently
proposed to overcome these shortcomings and make games more challenging and
appealing.

In this chapter we survey present research on game adaptivity, identifying and dis-
cussing the main challenges, and pointing out some of the most promising directions
ahead. We first survey the purposes of adaptivity, as the principles that could steer an
adaptation and generation engine. From this perspective, we proceed to thoroughly
discuss adaptivity’s features and methods.

We conclude that, among other methods, procedural content generation and
semantic modeling can powerfully combine to create off-line customized content and
on-line adjustments to game worlds. These and other promising methods, deserving
ample research efforts, can therefore be expected to significantly contribute towards
making games and simulations even more unpredictable, effective and fun.

Publication notice: The scientific content of this chapter was published in the IEEE Transactions on Computa-
tional Intelligence and AI in Games [Lopes 11b]

7
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2.1 Introduction

Typically, when most commercial games are shipped, their gameplay has been pre-
scripted. The same happens with simulations, which generally use game technology
to emulate reality and training conditions. In both cases, game content, rules, narra-
tives and environments are created during the development phase, mostly as static
elements with which a dynamic player will interact. Designing such predefined con-
tent is standard because it allows games and simulations to remain robust, testable
and controllable. As a result of such rigidity, game outcomes can be more easily
anticipated by players, since all possible interactions are bounded by such static
elements. Even worse, if players can predict certain outcomes, their progress can be
often achieved by repeatedly exploiting a successful strategy.

In an attempt to account for player individuality, games often include minor
variations that depend on players profiling themselves. For example, by customizing
the difficulty level or choosing time constraints, players are classifying themselves as
one of the available pre-defined low-resolution stereotypes, e.g. beginners or experts.
However, this discrete approach implies that such games might fail in appealing to
players who do not know how to profile themselves or who do not identify themselves
with any of the available classifications.

Static game content and its pre-defined variations, based on low-resolution pro-
files, all lead to games and simulations that can be played in an impersonal, pre-
dictable and inflexible fashion and that can fail to appeal to broader audiences.

For games with purposes other than entertainment, such as serious games and
simulations, these problems can become more acute. Players who need to capture or
practice certain skills, all have different learning abilities and training needs. However,
serious games and simulations typically do not take such a high-resolution player
individuality into account. Current ad-hoc and stereotyped training conditions can
induce players to mostly perform the same exercises in the same conditions, adding
little value to the learning process. This lack of player individuality can also affect
the replay value of such games, since nothing new or different can be experienced in
consecutive game sessions.

To solve the above shortcomings, many researchers agree that serious games and
simulations have to become more challenging, unpredictable and player-centric, to be
fully embraced as an effective way of knowledge transfer [Aldrich 02, Blackman 05].
Several other researchers claim that entertainment games should also address these
issues, by catering the gaming experience to the individual user, being more respon-
sive to different player types and their individual needs, and adapting themselves to
better fit the players [Charles 05, Gilleade 04, Magerko 08a].

Player-centered game adaptivity can help accomplishing the above goals. Dy-
namically adjusting game elements, according to the individual performance of the
player (i.e. personal gameplay), can contribute to make the game experience more
unique and personal. Consider the example of a driving simulation where a player is
monitored as speeding more than desired. An adaptive game could adjust the city
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environment to discourage this behavior. Examples could be either increasing the
number of speed bumps, traffic radars or police patrols or generating more curved
roads, stoplights or crosswalks, depending on the player’s experience and personality.

In this chapter, we survey the present state of adaptivity in games and simulations,
identify the main challenges ahead and discuss possible research directions to tackle
them. Fig. 2.1 lays out the architectural principles that drive research on adaptive
games. These principles were already latent in the preliminary proposals of Houlette
[Houlette 04], Charles [Charles 05] and Magerko [Magerko 08a], as well as in the vast
majority of the research that followed. In essence, game logs, recording the player
performance, are used to create models of player actions, preferences or personality.
Given a game state, these models assess and predict the players desired experience
for the next game state. Models for the player experience and performance are then
used to steer an adaptation and generation engine, which adjusts the appropriate
game components to better fit both.

This survey discusses game adaptivity research from an adaptation and generation
perspective. We strongly focus on how (methods) and to what (features) adaptation
and generation engines can or could adapt. By investigating the input and output
of an adaptation and generation engine, we are able to formulate our key research
questions and reflect on its answers (see Chapter 1): how can adaptive generative
methods be steered (and authored) and which features are important to generate in
an adaptive game.

Fig. 2.1 illustrates that steering adaptation, i.e. controlling it, is strongly related

Adaptation and 

Generation

Player 

Modeling

Player and/or experience models are used to steer:

Experience 

Modeling

Player Actions + Game State

Personalized components:

- quests, NPC / AI, worlds, etc...

Figure 2.1: Overview of game adaptivity architectural principles: player and experience modeling steer
adaptation and generation of personalized game components



10 CHAPTER 2. ADAPTIVITY CHALLENGES IN GAMES AND SIMULATIONS

with what is captured in player and experience models. Such models: (i) represent
the purposes of adaptivity, i.e. its objectives (e.g. player skill is modeled to adapt the
challenge of the game), and (ii) can, ultimately, serve as input and steer adaptation
and generation. We discuss these purposes from a generic perspective, independent
of player modeling and player experience prediction. An in-depth analysis of their
implementation through player modeling and experience prediction techniques will
therefore not be considered here. Player modeling principles have been already
discussed by several researchers [Houlette 04, Beal 02, Thue 07], and experience pre-
diction has been recently surveyed by Yannakakis and Togelius [Yannakakis 11].

This chapter is structured as follows: in Section 2.2 we look at the purposes for
adapting, by analyzing what is being presently done in steering adaptivity in games
and simulations. In Section 2.3 we focus on adaptivity features, surveying standard
adaptive game components (e.g. non playing characters). In Sections 2.4 and 2.5, we
survey and discuss, respectively, off-line and on-line methods which can be used to
adapt game content, before our final conclusions in Section 2.6.

2.2 Steering Adaptivity

In games and simulations, adaptivity can be used to better suit the game to a dynamic
element, for example, the skills of a player, the size of a team or the physical environ-
ment in which the game is played. As highlighted in Section 2.1, this chapter focuses
on player-centered adaptivity, i.e. adjustments which improve the individual player
experience. For adaptivity to achieve this goal, it needs to be steered by some purpose
that game designers can identify, measure and influence. As such, these purposes are
especially important since they are both the motivation and the potential interface for
game designers to author adaptive gameplay.

Knowledge on this steering purpose will determine how adaptation algorithms
decide what, when and how to adjust. For taking this decision, algorithms should
identify: (i) what triggers the need for adjustments and (ii) what should be adjusted.
For example, if difficulty adjustment is the steering purpose, an adaptive game needs
to recognize that consecutive failures may be a sign of high difficulty. It also needs
to know concrete in-game ways of affecting the difficulty level. Understanding and
choosing what to use to steer adaptivity is both an essential step and a major challenge,
required to ensure that game adjustments induce the personalized player experience,
on the desired way (e.g. adjusting difficulty in the previous example).

Player modeling is the traditional approach to capture and process the necessary
information to steer adaptivity. With player models, gameplay information and
metrics are processed to create knowledge about the behavior of the player. Player
modeling has recently been broadly surveyed in [Smith 11].

In this section, we survey adaptivity’s purposes, i.e. the generic principles that
support player modeling and experience prediction and steer game adaptation meth-
ods.
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2.2.1 Entertainment games

For entertainment games, fun is the fundamental purpose. There are many different
theories for explaining how to achieve this largely subjective emotion but, so far,
adaptive games are still at its infancy and have typically been considering only one
dimension to engage fun: challenge. For the existing adaptive games, this usually
means that the difficulty of performing game tasks must be in balance with the skills
of the player. The goal of such adaptivity is to avoid undesirable ’too easy’ or ’too
hard’ situations.

Such challenge purpose has been studied outside the context of adaptive games
and within player modeling techniques. Supervised machine learning has been used
for this goal. Through analysis of a training data set, consisting of correctly labeled
player models, a classifier function is inferred by a learning algorithm (e.g. artificial
neural networks, decision trees). This classifier function can then be used to model
players from real game data sets. Machine learning has been used to model player
skills in shooting games [Missura 09], and preferences in strategy games [Spronck 10].
Unsupervised machine learning, where the player models are not labeled a priori, has
also been proposed in this domain. Player clustering, i.e. identifying and aggregating
correlated gameplay data, has been applied to classify player styles and preferences
[Ramirez-Cano 10]. Furthermore, in terms of fully adaptive games, challenge has
mainly steered the methods, algorithms and games analyzed in Sections 2.3 and 2.5.

However, some promising work has already been done around different purposes.
Yannakakis and Hallam [Yannakakis 09] propose a methodology for adapting games
on the Playware physical interactive platform. The authors explore control of user
satisfaction rather than game difficulty, and their testbed is a ”bug” (tile) stepping
game for children. To model player satisfaction, the authors identify curiosity (the
spatial diversity of bugs) and challenge (pace with which bugs appear and disappear)
as the main factors. Furthermore, Pedersen et al. [Pedersen 10] build quantitative
models that predict the player experience in a platform game, to be used in generating
levels that are adjusted to these predictions. These models can predict gameplay as
being: fun, challenging, boring, frustrating, predictable or anxious. Fig. 2.2 illustrates
an example where, after a gameplay session, the system predicts what emotions were
experienced by the player.

These approaches show that there is room for going beyond challenge as a motiva-
tion for steering adaptivity. Magerko [Magerko 08a] argues that players have widely
different reasons for playing and that adaptive games should capture and use them,
focusing on the players main interests and adapting to match their motivations for
playing. Both methods above show promising results in capturing, as Magerko pro-
posed, other dimensions than challenge, as useful indicators of players’ motivations
for playing. Curiosity, boredom, frustration, predictability or anxiety are powerful
features that extend beyond fun or challenge. They can allow for more detailed and
flexible mechanisms of steering adaptation and generation.

Affective computing and advances in facial, motion and physiology monitoring
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Figure 2.2: Pedersen et al. [Pedersen 10]: predicted player emotions from a gameplay session

can have an important role in steering adaptivity as well. When applied to games,
these technologies have the potential to identify the affective states players experience.
A better understanding of these can allow for more effectiveness and higher resolution
in choosing and designing adaptivity purposes.

Recent research has been done in this direction, through the recognition of steer-
ing purposes as challenge [Rani 05], boredom, engagement and anxiety [Chanel 08]
and enjoyment preference [Tognetti 10] in adaptive games, using player physiology
detection technology (e.g. electrocardiograms, galvanic skin response, electroen-
cephalograms, palmar temperature sensors). A more in-depth discussion of the
relation between affective computing, physiology detection technology and adaptive
games is out of scope here and can be found in [Yannakakis 11].

2.2.2 Serious games and simulations

Serious games and simulations have purposes other than entertainment. For exam-
ple, they may aim at providing educational or training experiences, where players
are required to achieve learning goals in supervised (and sometimes collaborative)
environments. In this context, the motivation for steering adaptivity becomes clearer:
improve the effectiveness of the knowledge transfer between the game and its players.

Traditionally, to steer adaptivity, research in serious games and simulations has
been using a similar approach as in entertainment games: finding a balance between
the player’s skills and the game challenge level. Reaching this balance remains
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relevant for serious games and simulations, since it is a straightforward way of
simplifying all types of learning goals and styles.

In many serious games, the learning component strongly influences design de-
cisions. For example, the design philosophy of serious games needs to constantly
balance play (or entertainment) with meaning (knowledge transfer) and a strong sense
of reality [Harteveld 10]. Therefore, in serious games, adapting to specific skills is
more important than to the global notion of difficulty or challenge. The learning goals
to achieve are usually strongly coupled with the gradual personal improvement of a
skill set, most of the times, one skill at a time. In this domain, adaptive games have
specialized (and usually ad-hoc) approaches, where game components are adjusted
to encourage training a specific skill. Adaptivity is steered by a specific skill players
need to learn in a particular moment, and influenced by their personal proficiency.

Westra et al. [Westra 10], Peirce et. al. [Peirce 08], Magerko et. al. [Magerko 06] (all
further analyzed in Section 2.5), as well as Niehaus and Riedl [Niehaus 09] (discussed
in Section 2.3), all propose personal skill proficiency as the steering purpose for their
adaptivity mechanisms. Another skill-oriented adaptive simulation was proposed by
Johnson et. al. [Johnson 04], where individual language skills are modeled, determin-
ing how a virtual tutor offers guidance to the player. Lane et al. [Lane 07] also use a
virtual tutor which, constrained by the player’s past actions, gives feedback towards
a set of skill-based training goals. Martin et al. [Martin 10] automatically generate
scenarios for serious games using training objectives as the main requirements for
generation. Although players are not modeled, these training objectives are also a list
of specific tasks (or skills), appropriate for the domain of the game, e.g. hit a distant
target using an artillery unit.

Some interesting research has been done beyond pure skill modeling and consid-
ering other aspects of the learning process. Research on the Crystal Island narrative-
centered learning game demonstrates that supervised machine learning can be used
to recognize players’ affective states [Rowe 09] or model their knowledge [Rowe 10a].
However, future work stills needs to be addressed to apply the recognized data to the
adaptation of game content. On a different direction, Magerko et al. [Magerko 08b]
identify learning styles (e.g. explorer, achiever) in users of an educational game;
they then adapt the game to better fit players who have those learning styles, to
better acquire the desired knowledge. This research shows that steering adaptivity in
serious games and simulations can extend further beyond specific skill modeling, to
focus on other important features of the player’s learning mental process.

2.2.3 Assessment in serious games and simulations

Apart from their purposes, serious games have another differentiating aspect: assess-
ment. Measuring, discussing and reasoning on the gameplay effectiveness is specially
important in the simulation domain, since it can lead to reflection and therefore
improved learning. However, in this context, assessment has seldom been considered
in academic research. In particular, there is no work on combining game adaptivity
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with assessment. Chen and Michael [Chen 05] have already identified the main chal-
lenges that assessment in serious games is facing, namely affecting and improving
player experience. The authors suggest that log information and teacher/instructor
knowledge should be fully explored and, in some way, incorporated back in the game,
to guide its progress.

So far, research in assessment for serious games has been mainly centered on
After Action Review (AAR) methods. Still, some results already demonstrate that the
direction identified by Chen contains much potential. Lampton et al. [Lampton 05]
propose an AAR system for military simulations where trainees and trainers assess
exercises together. An interesting result was that participants developed innovative
ways to use AAR, not only for assessing past behavior, but also for planning new
future training exercises. Raybourn [Raybourn 07] proposes a design method for cre-
ating training simulations that promote player communication, in-game performance
feedback and sharing of strategies. The author focuses on using in-game and AAR
assessment information to create an emergent domain culture that could allow the
co-creation of future game scenarios.

Some recent research is already incorporating performance logged data to control
virtual participants in AAR sessions. Lane et al. [Lane 07] proposed a virtual reflective
tutor that, given the history of player actions, is able to automatically assess their
performance and even conduct an interactive deep reasoning AAR with the player.
Core et al. [Core 06] and Gomboc et al. [Gomboc 05] proposed explainable AI, a game
log based system in which AAR participants can directly question virtual characters
about their in-game actions, goals and even motivations behind those.

2.2.4 Discussion

With respect to our initial definition of adaptivity’s steering purposes, entertainment
games and serious games/simulations still form two rather different cases, although
both entail valid research challenges that are now discussed.

In entertainment games, some approaches are already being explored beyond the
traditional dynamic difficulty adjustment mechanism. A major challenge still lies in
exploring even further and materializing Magerko’s [Magerko 08a] vision. To adapt
better and more, there is a stronger need to capture and be guided by the real reasons
why people play. These reasons can be captured by the characteristics and affective
states of the gameplay that players expect to experience and be immersed in. For
example, a player whose motivations for playing a First Person Shooter (FPS) game
are to engage in a specific level of a stressful, scary but low pace experience.

Serious games and simulations are a different case. Due to their specific learn-
ing/training goal, many specialized approaches can adapt the game to provide
opportunities to develop the most needed skills, at the appropriate proficiency level.
However, research shows that there is a need to better account for player individ-
uality. Besides the case of learning styles-based adaptivity [Magerko 08b], Rowe et
al. [Rowe 10b] also evidence this. The authors investigate individual differences in
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gameplay and learning during the student’s interactions with an educational game.
They conclude that learning preferences (student background knowledge and inter-
ests) are strongly coupled to the gameplay style (e.g. objects used, content read) and
need to be considered in game design. The challenge in steering adaptive serious
games and simulations still remains in reaching further beyond skill modeling.

By addressing these steering challenges (and related ones) we can reflect on a
key research question: how can we steer the adaptive generation of game worlds?. Fun,
challenge and other gameplay-oriented affective states will typically remain as the
purposes of adaptivity. However, they need to be better accounted individually, in
a more specialized fashion. For example, in Super Mario, an adaptive game could
create more hardly accessible coins for a player who is excellent at collecting them.

The surveyed research shows that modeling player skills, preferences, styles and
learning goals are effective methods to support such adaptation purposes. We are
confident that the same would hold for more specialized purposes. The specificity of
the adaptation could come from the steered adaptation and generation engine, like
in the example above. Another major challenge in this direction lies in supporting
these mechanisms in a game domain independent fashion, so they can be re-used and
consolidated.

In addition to player skills, preferences, styles and learning goals, assessment of
past performances can also play a role in adaptive simulations. In this domain, there is
typically plenty of valuable information emerging from game logs and AAR sessions.
Using this information as a source to steer adaptivity seems a promising, unexplored
area. Interesting research opportunities exist in using assessment information to, for
example, re-generate ’try again’ game missions, adapted and focused on what the
players failed during the previous session. So, offering an adapted re-generated ’game
session’ could simultaneously allow a better understanding of what went wrong, and
better opportunities to succeed.

2.3 Adaptive game components

After discussing the purposes of adaptivity in the previous section, we now turn our
attention to one of our key research questions: adaptivity’s features. Potentially, all
components that are considered at game development can become adaptive. In fact,
dynamically adjusting (i) game worlds and its objects, (ii) gameplay mechanics, (iii)
non playing characters (NPC) and AI, (iv) game narratives, and (v) game scenarios and
quests, all can contribute to offer an individualized gameplay experience. Table 2.1
illustrates how surveyed work is distributed according to game components and
domain.

Gameplay mechanics, i.e. how game elements can work, including actions like run-
ning or shooting [Brathwaite 09], have already been made adaptive, in commercial
games. In Max Payne [Remedy Entertainment 01] (illustrated in Fig. 2.3), a mecha-
nism unknown to players altered the level of mechanics like player aim assistance,
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Table 2.1: Classification of surveyed work according to adaptive components and Industry / Academia
domains

Commercial games Academic research
Game worlds [Valve Corporation 09] [Nitsche 06],

[Togelius 07], [Shaker 10],
[Jennings-Teats 10],
[Kazmi 10], [Shaker 12]

Mechanics [Remedy Entertainment 01] [Hunicke 05],
[Yannakakis 09],
[Magerko 08b], [Kazmi 10]

AI / NPC [Nintendo EAD 08,
Konami 07]

[Westra 09] , [Peirce 08],
[Bakkes 09b], [Bakkes 09a],
[Hartley 09], [Spronck 06],
[Kazmi 10], [Andrade 06],
[Olesen 08]

Narratives [Valve Corporation 08,
Valve Corporation 09,
Quantic Dream 10]

[Thue 07], [Barber 07],
[Mott 06], [Sharma 07],
[Fairclough 06]

Scenarios/quests [Magerko 06, Niehaus 09,
Sullivan 10, Pita 07,
Ashmore 07]

according to individual skills (thus adjusting shooting difficulty).
Traditionally, adaptivity has been mostly researched and applied within the AI

Figure 2.3: Scene from Max Payne, by Remedy Entertainment [Remedy Entertainment 01]
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domain, specifically towards NPCs, since behavioral adaptation is a strong means of
displaying intelligent behavior. In Mario Kart Wii [Nintendo EAD 08], rubber band AI
techniques are used to increase the opponent NPC abilities when the player performs
too good. Pro Evolution Soccer 08 [Konami 07] introduced Teamvision, an adaptive
AI opponent system that changes its tactics and strategy to suit the player style and
explore his weaknesses. In academia, and as identified in Table 2.1, several techniques
have been proposed to support adaptive AI that recognizes the player actions and
responds by adjusting NPC behavior. Also, academic research on AI adaptation
focuses strongly on the pedagogical serious games domain, due to the extensive use
of NPCs in learning contexts (e.g. tutors). Several of the techniques surveyed in
Section 2.5 are applied to AI adaptation, both in entertainment and serious games.

Adaptivity has also been applied to game narratives, both in the commercial and
academic domains. Games can become more personal when the progressing narrative
builds up in a unique fashion, fitting the players’ behavior. Valve’s Left 4 Dead series
[Valve Corporation 08, Valve Corporation 09] introduced procedural narrative as a
technique to generate sequences of events, adapted to the pace and behavior of the
player. An AI Director analyzes players behavior (e.g. if they were particularly
challenged by one kind of enemy) and adds subsequent events (e.g. spawning that
enemy). According to Valve [Newell 08], this mechanism serves as a story-telling
device (at least, in simple narrative domains as most FPS games are) because players
can experience some notion of intentionality on the opponents’ side. Heavy Rain
[Quantic Dream 10] is an interactive drama game that focuses on personal gameplay,
where all the specific decisions each player takes are analyzed, in a more complex
way than before, to determine the narrative and outcome of the game.

In academia, there is a strong interest in interactive narratives, story-based experi-
ences which typically use game technology, both for entertainment or pedagogical
purposes. Roberts and Isbell [Roberts 08] have recently surveyed interactive nar-
ratives and drama management systems, identifying, among other aspects, their
adaptive capabilities. Here, we present only a brief overview of these systems. For a
more detailed discussion, e.g. on concerns as the use of centralized manager agents
vs. multi-agent networks, Roberts and Isbell’s survey is recommended.

Barber and Kudenko [Thue 07] researched the generation of dilemma-based in-
teractive narratives. A model of player behavior under specific dilemmas is used to
estimate and select difficult dilemmas, which a planner weaves together to form a
story. Mott and Lester [Mott 06] use a dynamic decision network as a planner for
creating interactive narratives. The decision network contains nodes for the player’s
goals, experiences and relationships, thus influencing decision making. In Sharma
et al.’s drama management system [Sharma 07], player preferences are determined
by an explicit case-based player model, derived from the behavior of earlier players.
This model guides generation towards stories that fit those preferences. Fairclough
[Fairclough 06] also uses a case-based approach, but to synthesize stories from a
knowledge base, constrained by the player’s evolving relationship with NPCs. Fi-



18 CHAPTER 2. ADAPTIVITY CHALLENGES IN GAMES AND SIMULATIONS

nally, Thue et al. [Thue 07] present an interactive narrative generation system which
models the player’s style according to five predetermined player types. Events are
annotated with their appeal for each player type and are selected accordingly for
inclusion in the narrative.

Game scenarios and quests only recently started to become a target of adaptivity
research. Game scenarios and quests both describe the flow of events and actions
within a game but they are primarily used, respectively, in simulations and entertain-
ment games. Generation of personalized game quests is already being researched
and is discussed in detail in Section 2.4.2. As for game scenarios, they highlight the
importance of adaptivity in the simulation domain. Niehaus and Riedl have recently
proposed a methodology for adapting game scenarios to suit players learning goals
[Niehaus 09]. A Scenario Adaptor adds, removes or replaces abstract game events,
guided by a mapping between a world domain-knowledge base (i.e. the dynamics of
the simulated world events) and a lifelong-learner model, which tracks a learner and
chooses the next training objectives that will help him advance. Earlier research from
Magerko et al. [Magerko 06] also adapts game scenarios, and it will be discussed in
detail in Section 2.5.

As for results on adaptive game worlds, they are very scarce. The only exam-
ple we found of game world adaptivity is in the commercial game Left 4 Dead 2
[Valve Corporation 09]. According to the developers, the layout of certain sections of
levels is dependent on the player’s performance [Walker, J. 09] (a graveyard with a
simpler layout for underachieving players is presented as an example). Being a recent
commercial release, the game’s publishers have not yet disclosed any technical details
nor the reach of this adaptivity mechanism, in terms of accounting for how much of
the content is static or dynamic. It is therefore still unknown which player modeling
or procedural content generation techniques are used, if at all. As for academic
research, several projects, mainly aimed at player modeling and difficulty adjustment
techniques, are focusing on adapting 2D game level structures, as discussed in Section
2.5. This simple game levels are still far from being compared to the complexity and
richness of modern game worlds. Although not fully adaptive, Charbitat [Nitsche 06],
further analyzed in Section 2.4, is the only example we are aware of where procedural
generation of complex game worlds is somehow influenced by player performance.

2.3.1 Discussion

With this survey, we identified the adaptivity features still lacking on broad, consoli-
dated and integrated research focus: modern game worlds and scenarios (or quests).
Research in game scenarios has already shown promising results. Niehaus and Riedl
[Niehaus 09], and Magerko et al. [Magerko 06] are good examples of the advances
achieved so far. However, there are still some open challenges: (i) reach beyond
skill-driven adaptivity (as discussed in Section 2.2), and (ii) integrate scenario with
world adaptation/generation.
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As for game worlds, and beyond the valuable research performed on classic simple
level structures, results are scarce. Considering more complex and modern game
worlds would offer more opportunities to achieve the open challenges in steering
adaptivity (Section 2.2.4). More complex and immersive game worlds are not only
richer to players, but also offer more opportunities to adapt, i.e. more (combinations
of) content to generate. Adaptive object placement in a 3D environment or the
generation of 3D game spaces/maps are examples of possible open challenges.

The importance of these two components, particularly if they are integrated,
can be highlighted through their definitions. Game worlds are the virtual environ-
ments within which gameplay occurs, with their geometry, geography, layout and
objects. Game scenarios are the framework for the global progression within a game
level, with their initial settings and the logical flow of events and actions that follow
[van Est 11]. As such, the fulfillment of a game scenario within a game world defines
and characterizes most of the player experience. Integrated world and scenario adap-
tivity seems therefore very likely to solve the shortcomings identified in Section 2.1,
certainly offering meaningful possibilities for affecting player experience.

Currently, game worlds are created during the design stage, prior to game release.
In that process, games and simulations occasionally use procedural generation algo-
rithms to automatically create some of the game world elements, with techniques
widely researched in academia, like the ones surveyed in Section 2.4. As for game
scenarios, they are typically created during the gameplay programming stage, when
scripts and code define the flow of events for the game. A major challenge in auto-
matically authoring game worlds and scenarios, as in fact with all game content, lies
in delaying its generation until the game is running. This challenge is essential for
adaptivity, since the creation of content that is adjusted to players relies on analyzing
their in-game performance. There are two main methods to tackle the challenge of
supporting adaptive game worlds and scenarios, through delayed authoring: (i)
off-line (pregb-game) customized generation, and (ii) on-line (i.e. in-game) adaptivity.
In the next two sections we will survey the present state of research on each of these
topics, and how they confirm that adaptive game worlds and game scenarios raise
very promising and challenging research questions.

2.4 Off-line adaptivity: customized content generation

Off-line adaptivity implies that adjustments are made considering player-dependent
data, but prior to initiating any gameplay. The typical example of its application
would be the processing of player data and game adjustments during the loading
stage of a game level. Therefore, off-line adaptivity involves mainly a generation
challenge.

Automatic content generation can therefore play a significant role in off-line
adaptivity. Research results in this field are particularly promising towards customized
content generation, a method for the automatic creation of virtual game worlds, adjusted
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to better suit players. We believe the same principles can be extended and applied to
what occurs within these worlds, i.e. to game scenarios, even though their off-line
generation has been less investigated than that of game worlds.

2.4.1 Game worlds

Previous work in automatic content generation has traditionally relied on procedural
methods and has often succeeded in creating visually convincing game environments.
For the public eye, procedural generation has been successfully associated with games,
due to Elite [Braben, D. and Bell, I. 84] or, more recently, Spore [Maxis 08]. The latter
extensively uses procedural generation for player-designed creatures, animations and
planet textures.

Regarding game worlds, many different procedures have been proposed to auto-
matically create content such as terrain, trees, plants and urban environments. Pro-
cedural methods were recently surveyed and discussed by Smelik et al. [Smelik 14],
who conclude that a common shortcoming in traditional methods is the lack of control
over the generated output. Therefore, researchers are now aiming at more control-
lable procedural methods, seeking to allow designers to intuitively steer content
generation.

In this direction, interesting work has been done in the generation of 2D platform
game levels. Compton and Mateas [Compton 06] use context-free grammars to gener-
ate platform levels, organized in patterns and branch structures. The generated level
is controlled by a hill-climbing algorithm that adjusts patterns to suit a target con-
trollable difficulty. Smith et al. [Smith 09] further developed these concepts, allowing
designers to directly constrain properties in the generated platform levels (e.g. level
path, jump rhythm and frequency, etc). Sorenson and Pasquier [Sorenson 10] propose
another approach where genetic algorithms are used to evolve 2D game levels to-
wards satisfying designer constraints. An interesting result lies in how they evaluate
generated levels: they are subjected to a fitness function that rewards levels based on
how fun (in this case, challenging) they are. These results show that generation of 2D
level structures has succeeded in considering important adaptivity concepts such as
difficulty, challenge or fun.

The generation of modern 3D game worlds is facing other issues, more related with
intuitive and interactive control. In this domain, Müller et al. [Müller 06] proposed
the use of shape grammars to generate highly detailed cities. The grammar uses
context sensitive rules to iteratively evolve building design, by creating more and
more detail. Users can control the generation of a city using their CityEngine system,
allowing them to create and edit grammar rules, in a similar way to using scripting
languages. Fig. 2.4a shows a model for the ancient city Pompeii, as generated by
CityEngine.

Recent research has focused on creating new methods for designers to control
game world generation, more intuitively than shape grammars. Doran and Parberry
[Doran 10] propose an approach where terrain elevation heightmaps are generated by
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: a) urban environment generated with CityEngine [Müller 06]. b) virtual world generated with
SketchaWorld [Smelik 11b]. c) road network and corresponding 3D city geometry, generated with [Chen 08].
d) height-map, generated with [Doran 10]. e) complex terrain, with arches, created with [Peytavie 09]. f)
top view of town, generated with [Bielikova 08].

independent software agents, with different roles for coastlines, beaches, mountains,
hills and rivers. Designers are responsible for defining terrain features that constrain
the amount of agents, their lifetime and actions and, thus, the way the terrain is
generated. Peytavie et al. [Peytavie 09] present a framework for generating complex
terrains that include overhangs, arches, caves and different materials such as sand and
rocks. Designers can control the terrain generation by sculpting bedrocks, modeling
cracks, fractures and tunnels, adding granular material and controlling erosion tools.
Chen et al. [Chen 08] use tensor fields to guide the generation of street networks.
Users can control the generated street network by placing basis tensor fields, using
tensor field patterns, smoothing fields to reduce its complexity, brushing the field
to orient streets or applying noise to make the road network less regular. Fig. 2.4c,
2.4d and 2.4e show, respectively, a road network created by Chen et al., a height-map
generated by Doran and Parberry, and a complex terrain modeled by Peytavie et al..

Even more interactive and user-centric methods have been proposed to control
automatic content generation by: sketching the silhouette and bounds of a mountain
in a 3D interface [Gain 09], brushing and sculpting outdoor terrains [de Carpentier 09]
and sketching roads, which are automatically generated to fit with the surrounding
environment [McCrae 09].

Some recent research results have already shown that control over the generation
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process can extend beyond this type of interactive modeling of geometric world
features. Bielikova et al. [Bielikova 08] propose a system for generating educational
game content: quests, NPC, virtual worlds (see example in Fig. 2.4f) and narratives. In
this case, domain experts, i.e. teachers, and not designers, control content generation.
Teachers can select pre-created game objects, add new learning content to them and
create relationships between objects. Knowledge about objects and their relationships
is the basis for solving and generating all the appropriate content. These results offer
another valuable contribution: control on the generated content is applied at a higher
level than geometric features, by using knowledge on objects and their relationships.

Nitsche et al. [Nitsche 06] introduce a case study for the procedural generation
of game worlds based on the gaming style of its players. In Charbitat, players steer
the generation of an infinite world through their in-game actions. The game world is
split into individual tiles and each new tile is generated using noise functions and
filters, where the underlying seed value is calculated based on player-dependent
character data, i.e. his actions. Players are involved and conscious of this process:
they can voluntarily influence the world generation in different directions as they
please. Although this is an on-line method, this guided generation nature relates
better with the methods and requirements for off-line adaptivity.

Both [Bielikova 08] and [Nitsche 06] show that automatic generation of game
worlds can be controlled on a higher level (when compared to geometric features),
and can be made dependent on player data. Both results seem successful advances
towards customized content generation.

2.4.2 Game scenarios and quests

Off-line automatic generation of game scenarios and quests has not been a subject of
much research, especially when compared with on-line scenario adaptivity (Section
2.5). The term game scenario, i.e the global progression within a game level, including
its initial settings and the logical flow of events and actions that follow, is mainly used in
serious games and simulations. Its entertainment game equivalent, game missions
or quests, also structures a sequence of events and actions, normally associated to a
game task that must be completed.

Research in this field shows that there is a growing interest in creating player-
centric quests that provide personalized gameplay. Sullivan et al.’s Grail frame-
work [Sullivan 10] is aimed at providing customized quests, through on-line player-
centered adjustments (better analyzed in Section 2.5), but it also includes an authoring
tool for designers to control quest generation.

Although the following two methods are in essence also on-line based, their
simple definition of quest avoids the usual design requirements of on-line methods
(e.g. performance or consistency concerns). Therefore, they relate closely to possible
off-line techniques. Pita et al. [Pita 07] propose a system to dynamically generate
quests in persistent Massively Multiplayer Online Role-Playing Games (MMORPG).
Quest generation creates valid game goals, which are unique for each player and
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game. Quest uniqueness is ensured by three player-centric features that constrain the
generation process to produce relevant quest paths: the memories (past quests) of
the player, his relationships to the character assigning the quest, and player attributes
(needed to complete quests). Ashmore and Nitsche [Ashmore 07] also investigate
player-centric quest generation. They propose a new quest generator to include in the
previously discussed Charbitat [Nitsche 06] system. Quests consist of key and lock
puzzles (a key must be found to unlock an obstacle) and the generation process places
within the game world, both the locked obstacle, its key, and the challenges along
the way to obtain it. Quest generation occurs during the generation of a new world
tile: possible locations for keys and locks are scored by evaluators that are highly
dependent on the procedurally generated tile. In the Charbitat case, quests become
unique for each player because they are influenced by the game world which was
itself generated in such a customized fashion.

These results evidence some of the potential in integrating and influencing game
quest generation with the surrounding game world. As stated in Section 2.3, integra-
tion with the game space is an important aspect to be considered in quest generation.
In Pita’s case, quests are generated in a game world that was manually designed,
before-hand. In Ashmore’s approach, the game world is first procedurally generated
and is then evaluated for placement of quest elements. Though not adaptive in any
way, Dormans work [Dormans 10] is a good example of a totally different approach,
a constructive integrated one. The generation of 2D action-adventure game levels is
broken down into two steps: a graph grammar generates mission structures that are
used in an extended shape grammar, which grows a space that accommodates the
generated game mission.

Off-line generation of game scenarios, as defined earlier, is still far behind these
concepts of customized quests or missions. Research in off-line scenario generation is
still more focused on the methods, i.e. on how, to generate and less on its purposes,
i.e. on what for, e.g. steering them to be player-centric. As mentioned in Section
2.2, Martin et al. [Martin 10] generate game scenarios for serious games. They use
functional L-systems, a variant of formal grammars, to write generation rules which
can expand training objectives into generated scenario elements, i.e. the initial settings
and the progression of game events. Hullet and Mateas [Hullett 09] also generate
game scenarios from pedagogical goals, but using a planning system that decomposes
pedagogical goals into tasks, subtasks and methods, which encode knowledge to
achieve that goal state.

Both approaches generate game scenarios from goals that capture which skills the
players should apply during the game. However, in both methods, these declarable
goals are simply a low-level and domain-dependent set of features that are implied
by the higher level desired gameplay skills. For example, Hullet explicitly declares
the goal ’a room should be blocked’ to implicitly capture the skill of breaching walls to
rescue victims.
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2.4.3 Discussion

In this section we surveyed research related to customized content generation, namely
off-line procedural generation of 2D game levels, 3D game worlds, quests and game
scenarios.

The surveyed methods show that the generation of 2D levels is already capable
of being controlled, or at least evaluated, by the same kind of criteria currently used
to steer adaptivity: difficulty, challenge, fun. These results highly encourage the
further use of player data, e.g. their preferences or performance, for controlling the
procedural generation of game levels. Even though level generation for the platform
game genre is less complex than the generation of modern game worlds, the same
conclusions could still hold for the latter.

Research shows that this is still far away, since the generation of complex game
worlds is facing other issues. The main challenge is to enable designers to control the
generation process. Controllable content generation is enabling procedural methods
to become more flexible and accurate. While maintaining its automatic nature, these
methods are allowing game designers to steer automatic content generation by means
of a better expression of their intent. Although these results are aimed at the design
stage, they seem promising steps towards customized content generation, as they
allow procedural methods to be interacted with and controlled.

Control of content generation at design time is also the key for an unexplored
research direction in this field: authoring adaptive generation in games. All of the
surveyed methods in this Chapter rely on a technical approach, where adaptivity is
programmed into the game code and not designed. An open challenge is to support
game designers to author adaptive generation, i.e. enabling them to link what and
how game content should be generated to individual player requirements. Such
link could be created by controlling content generation from a higher level (when
compared to geometric features) and making it dependent on player data capturing
adaptivity’s purposes (Section 2.2.4). A non-technical type of control, from a higher
level of abstraction, is essential to allow interactive design. Interactively creating
such links would enable game designers to specify and author adaptivity, one of our
key research questions (Chapter 1). The research of Bielikova et al. and Nitsche et al.
showed encouraging results in controlling the automatic generation of game worlds
from a higher level.

Regarding quest and scenario generation, results showed that customized gen-
eration is becoming more relevant, and it can be a successful mechanism to engage
players in more enhanced, interactive and personal experiences. However, the meth-
ods surveyed are still somehow rudimentary, due to their ad-hoc nature. For example,
quests are defined in an elementary manner, and generation is constrained to only
one aspect of what a quest can include: goals to accomplish and locations for objects,
in the cases analyzed. Furthermore, the analyzed methods show that the challenges
ahead are the same as with game worlds: (i) considering higher level skills or goals
(or the learning preferences discussed in Section 2.2) in an explicit way and (ii) taking
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advantage of player-dependent data. As stated in Section 2.3, we think that fully
integrating world and quest/scenario generation is a potentially important milestone.

Current research is already tackling some of the challenges identified above,
and its methods could be valuable to future work in customized content creation.
Semantic and declarative modeling techniques are already capable of controlling
procedural methods by embedding and interpreting higher level knowledge in virtual
objects. Tutenel et al. [Tutenel 08] define object semantics as all information, beyond
its 3D model, related to a particular object within the game world (e.g. functional
information like how to interact with it, possible relationships with other objects, etc).
With semantic modeling, object relationships, features and other semantic information
can be used to guide the layout generation of a game world, whether designing it
manually or creating it procedurally.

Bidarra et al. [Bidarra 10] introduce declarative modeling of virtual worlds, ex-
plaining how semantics can help designers to create virtual worlds by declaring what
they want to create, instead of how to model it. Such declarative modeling enables
designers to control and constrain virtual worlds, through semantic specifications that
describe what the virtual world and its objects should be. Fig. 2.5 illustrates how this
semantic level, presented to designers, is used to control the procedural level. This
scheme differs from conventional procedurally-based modeling, sporadically used by
designers and technical artists, in that it incorporates a semantics layer, between the
designer and the procedural techniques. This semantic level provides designers with
a powerful front-end that steers the underlying procedural level, while encapsulating
the complexity of the latter.

Many of these methods have been integrated in SketchaWorld [Smelik 11b], a proto-
type system for declarative modeling of virtual worlds. In this declarative approach,
designers state their intent by specifying the high-level features a virtual world should
have, e.g. the layout of the landscape or the population size of a city. Designer’s
intent is used to generate a matching 3D virtual world, where each specification is
procedurally expanded to a visually convincing terrain feature. Within this declara-
tive approach, interactions between terrain features are automatically solved using
virtual world consistency maintenance, which consists of a combination of semantic
definitions of the geometric and functional relationships between terrain features,
and a set of generic resolution rules. A virtual world created with SketchaWorld is
shown in Fig. 2.4b.

Semantic and declarative modeling can already help in tackling some of the
challenges we identified throughout this section. The previously explained semantic
layer deals with all high-level information relating to virtual world objects at the
semantics level. This information helps conveying the meaning and the role of an
object in the virtual world, and consists of generic descriptions of classes of features,
including attributes, properties, roles, relations, etc. This encourages the incorporation
of further semantic information about player dependent gameplay purposes, and
how these can be used to control object generation. For example, if a player needs
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Figure 2.5: Generic approach of declarative modeling of virtual worlds [Bidarra 10]

obstacles in a race track, the semantic layer could indicate which and how obstacles
can be used with that player. Furthermore, this type of semantic information could
potentially be considered as the basis for authoring adaptive generation, by supplying
a vocabulary to declare dependencies between player data and content, as discussed
earlier.

Finally, declarative modeling already includes semantics-based mechanisms to
check and solve conflicts in procedurally generated worlds. This shows that these
techniques can be flexible enough to handle conflicting contexts, like those which
would likely arise when integrating player-centric with designer-centric purposes,
and virtual worlds with game scenarios.

The current state of research in semantic and declarative modeling, however, does
not answer all of the issues discussed in this section and many challenges still remain
open. Among them, supporting the generation of game scenarios in a similar fashion
(enriching them with an analogous semantic scheme), integrating these with virtual
world generation, and measuring player data into valid semantic knowledge, these
are some of the issues that need to be addressed to consider semantics as a relevant
technique to customized content generation.

2.5 On-line adaptivity

As mentioned in Section 2.3, off-line customized generation is not the only method to
support adaptivity through delayed authoring. On-line, or in-game, adaptivity is the
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term many researchers use to describe the ability of a game to adjust to its players, in
real time, as they play. Although this kind of adaptivity is still a recent research area,
there are some significant results worth discussing here.

Most adaptivity research focuses on a low level, i.e. adapting specific game
elements through non-integrated approaches. The traditional approach to adaptive
games has been the dynamic difficulty adjustment (DDA) mechanism. Non-PCG
DDA approaches have been used to influence players health or ammo in a first-
person shooter, depending on their individual performance, through probabilistic
models [Hunicke 05], to evolve opponent AIs in real-time strategy games, through
neural-evolution methods [Olesen 08] and to adapt intelligent agents behavior to fit
the players skills, using reinforcement learning [Andrade 06].

However, Charles et al. [Charles 05] proposed a high-level framework to explain
how on-line adaptivity should be supported in every domain, in an integrated manner.
This framework captures the main abstract ideas and approaches that are currently
adopted throughout this research area. A model of the player is used to capture the
player habits and skills, and the player performance is monitored and compared with
the model, while playing. Whenever an adaptation of the game is identified and
performed, the framework measures its effectiveness, which can lead to either a new
adaptation or an update of the player model.

Currently, on-line adaptivity mostly acts as a sandbox for researching new artificial
intelligence concepts and methods. As such, most work in this field focuses on
adjusting NPCs or other intelligent game agents to better suit players or even offer a
more challenging game.

Peirce et al. [Peirce 08] propose the ALIGN system as an approach for non-
invasively adapting NPCs behavior to enable a personalized learning experience.
ALIGN’s architecture separates the logic of generic adaptation from game specifici-
ties, so that game logic and adaptation are independently authored and operated.
Adaptive Elements (AEs) are the basic components that support possible adaptations.
AEs are pre-created and annotated with metadata describing both the game settings
in which they can be used, and the abstract outcome of their use. Separate inference
engines translate game events to AEs and create specific in-game interventions to
match the selected AE. Each in-game intervention is influenced by a set of rules that
examine a player model and determine the desired adaptation outcome.

Westra et al. [Westra 09] use agent organizations to adapt (in-game) the behavior
of game elements in serious games. Uncentralized and independent (learning) agents
choose the tasks to be performed by individual game elements, e.g. a burning fire
or NPCs. Possible behavior variations for all agents are implemented a priori, using
domain experts knowledge. During the game, each agent infers and proposes possible
actions, based on its own in-game goals. The agent organization framework mediates
this autonomy, by controlling which behavioral adaptation occurs for each agent. The
agent organization framework coordinates individual adaptations into a combined
one that adjusts the global behavior of game elements to fit the player skill level and
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a coherent storyline. For this coordination, Westra uses a player model that estimates
the skill levels of each player. This model is continuously updated to accurately steer
the agent organization framework.

Bakkes et al. [Bakkes 09b] focus on adapting an AI-controlled opponent in a
particular real-time strategy game. In this case, on-line adaptivity takes place at the
opponent AI, so that it can learn from its mistakes and act more effectively. The
authors propose an approach where domain knowledge is gathered automatically
by the game AI to form a case base (i.e. a compilation of solutions of similar past
problems), which is exploited immediately to evoke effective behavior. The case base
is compared with observations from previous games to allow improvement on past
behaviors. Preliminary research [Bakkes 09a] has been done to incorporate opponent
modeling, in this case used for the AI to gain a competitive advantage. Opponent
models are established automatically, through clustering of strategic feature data in
game observations. Past game observations are classified with such models, allowing
a better matching with the case base.

On a similar direction, Hartley and Mehdi [Hartley 09] also use a case-based ap-
proach that allows NPCs to learn, while playing, from the player actions, adapting
the challenge level in the game. Game observations are gathered in cases that take
the form of player state and action pairs. Matching these observations with previ-
ously registered cases, can be used to predict the next state-action pair and, therefore,
enhance the NPC decision making. Results show that this approach succeeds in
predicting player movement and actions in a FPS game. Therefore, despite its adap-
tivity focus on NPC (instead of player) goals, this case matching algorithm provides a
method for adjusting the game according to player actions.

Dynamic scripting [Spronck 06] is another technique proposed for adapting game
AI, adopted for dynamic difficulty adjustment to the player skills. This learning tech-
nique is able to generate scripts (sets of behavioral rules), from rulebases associated
with NPC classes, in order to control NPC behavior. Each rulebase comprises a set
of manually designed rules and the probability that a rule is selected for a script
is influenced by an attached weight value. Weights are updated according to their
success rate in the game, which includes maintaining an even and challenging game
for players.

Some promising work has already been done in directions other than AI and NPCs.
Adaptive (simple) game worlds and levels are starting to be researched. Togelius et al.
[Togelius 07] propose an approach for generating, on-line, tracks for a racing game.
Their goal is to augment player satisfaction, by creating a track that evolves with the
player’s characteristics. A player model is implemented by a neural network-based
controller which infers and simulates the behavior of the real player. This player
model is used to predict entertainment levels of specific players and decide how to
evolve the track. Tracks are initialized as b-splines with 30 segments and they evolve
through a mutation done by perturbing the positions of their control points. Although
the focus is on 2D racing tracks, this work shows promising results regarding the
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use of player modeling to generate adapted game content. Search-based procedural
content generation is also used similarly for creating personalized Super Mario Bros
platform levels [Shaker 10], with the use of exhaustive search algorithms.

Jennings-Teats et al. [Jennings-Teats 10] also focus on dynamically constructing 2D
game environments that are adapted to players. In this case, the Polymorph algorithm
generates 2D platform levels, as you play, driven by dynamic difficulty adjustment to
the player skills. A statistical model of difficulty and a model of the player’s current
skill level are used, through mass data collection and machine learning techniques, to
select the appropriate level segments to generate for each player.

In the same direction, Shaker et al. [Shaker 12] have proposed to generate platform
levels for Super Mario Bros, using grammatical evolution. This technique results from
the combination of an evolutionary algorithm with a grammatical representation for
automatic design. In this case, design grammars represent the underlying structure
of game levels. The grammatical evolutionary algorithm uses models of collected
player experiences as the fitness functions to search through the generative space of
the design grammar. The authors go beyond DDA, optimizing (off-line) the game
levels to improve engagement, frustration and challenge.

Kazmi and Palmer [Kazmi 10] also direct their research to adapting game envi-
ronments. They present a case study for a prototype of an adaptive FPS gaming
environment. Player actions are recognized through a finite state machine approach,
by which discrete actions reveal the skill level of players. Adaptation mechanisms try
to make the game harder for players identified as experts and easier for beginners.
In this research, finite state machines have also been used to implement all possible
adaptations, i.e. adjustments on NPC behavior and movement, weapon mechanics
and game level geometry. Although this approach was mainly centered on adapting
NPC behavior, the authors successfully explore other alternative ideas. They imple-
mented a simple ’Modify Geometry’ mechanism that dynamically changes the game
environment so that it becomes more difficult to navigate safely. They conclude that
the ’Modify Geometry’ mechanism provides the most significant impact on player
satisfaction.

In a different direction, some research has been done towards on-line adaptivity
in quests and game scenarios. Magerko et al. [Magerko 06] ISAT project uses an intel-
ligent director agent for customizing simulation training scenarios to suit individual
trainees. A skill model captures player proficiency levels in domain-specific skills,
by monitoring and rating the trainee’s actions. Scenarios are identified as sequences
of plot points, i.e. actions, events and skills involved in them, which are selected, at
run-time, for inclusion in the simulation. The director selects plot points by matching
the list of tested skills with the current state of the skill model.

Sullivan et al. [Sullivan 10] also proposed a centralized approach, the Grail Game
Manager, a run-time manager which dynamically generates quest structures using the
player’s history and current world state. This rule-based system is able to decompose
quests (from a quest library) into separate entities (goals, actions, rewards, NPCs,
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dialog options) that can be dynamically recombined upon generation. This process
filters possible quest entities through pre-conditions based on player history and
current world state, thus creating a personalized experience.

2.5.1 Discussion

As surveyed above, current research results show that on-line adaptivity is mainly
concerned with adjusting challenge levels of NPCs and game AI. In these approaches,
on-line adaptivity is still characterized by a certain degree of predictability, since
some of the analyzed methods require all possible variations to be created a priori.
Performance and control over the game are the reasons why this balance, between
static and dynamic techniques, is a recurring and important challenge in on-line
adaptivity.

The current scope (AI and NPCs), purpose (challenge level balance) and tech-
niques (combination of predefined content) in these approaches show that on-line
adaptivity is in its first steps. Integrated approaches, embracing on-line adaptive
game worlds and scenarios, are still far away. Confirmation of this is the fact that
player modeling and monitoring is still considered on an individual case, without
sound and common theoretical foundations.

However, recent work has broaden the focus to adapting game environments and
other game elements. Although, for example, Kazmi’s ’Modify Geometry’ mechanism
was simple and applied to only one type of situation, one can easily foresee the
potential of adapting more than just the behavior of intelligent agents. Procedural
content generation (as surveyed in section 2.4) is becoming more powerful and can
have a role to play in on-line adaptivity as well. An example of such potential is
evidenced by Kenneth Stanley’s Galactic Arms Race [Hastings 09], a multi-player
game where players control a spaceship and collect weapons throughout a game
world. Weapons are procedurally generated, at run-time, based on which weapons
have been selected and used before by players.

Results both in 2D game worlds and quest/scenarios confirm this observation:
procedural content generation is becoming more and more on-line efficient and player-
centric. This demonstrates that online adaptivity shares the research opportunities
of customized content generation (Section 2.4.3). Specifically, on-line generative
methods still also need to be steered/controlled by (player-dependent) data which
can be related with adaptivity purposes (Section 2.2.4). Furthermore, creating a
non-technical type of control, using parameters on a higher level of abstraction and
intrinsically related with gameplay, will enable that such type of adaptivity can be
authored by game designers.

Finally, modifying landscapes and topography of virtual worlds has already been
suggested as a valid direction for on-line adaptivity [Charles 05]. However, future
methods for dynamically changing game environments, on a world scale, must tackle
important challenges to be successful. Among them, maintaining coherence (e.g.
mountains cannot magically change shape) and ensuring performance and scalability
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are important aspects, so that this type of adaptivity does not undermine the player
experience.

2.6 Conclusions

In this chapter, we surveyed the present state of adaptivity in games and simulations.
We focused on the purposes, features and methods that have been proposed so far to
support adaptive game technology, from both academia and industry. Our goal was
to investigate and conclude on the research opportunities to improve the development
of adaptive games (Chapter 1).

Our first conclusion is that, regarding its purposes, adaptivity is already estab-
lishing itself as a rapidly maturing field. Current advances, both in industry and
academia, indicate good results in not only adapting towards an optimal challenge
level, but also towards other affective states like fun, frustration, predictability, anxiety
or boredom. With simulations, research is already successful in adapting to fit specific
skill levels and incorporate learning styles.

Concerning the features of adaptivity, we have concluded that a large community
both in industry and academia has already been focusing on game mechanics, AI,
NPC and narratives. Fewer research groups are already focusing, with success, on
adaptive game scenarios or quests. On the other side, concerning adaptivity in
modern and complex game worlds, many research questions are still unanswered.

Furthermore, there is a lot of potential not only in adaptive game worlds, but
particularly in their integration with adaptive scenarios/quests. Acting upon these, in
an integrated manner, can create plenty of (yet unexplored) possibilities for improving
gameplay.

Regarding the methods which can support adaptivity, some important advances
have already been achieved with off-line and on-line techniques. One of the most
promising methods is the procedural generation of off-line (i.e. pre-game) content that
is customized to fit each player. Procedural content generation is becoming more
controllable, although mainly through control over geometric features of that content.
Some preliminary work has been done to: (i) incorporate player data, (ii) control
generation using high-level information (e.g. object metadata, semantics) and (iii)
integrate game level and event generation. Further advances are being achieved
in generating personalized basic quests, for entertainment games, and generating
scenarios from declarable learning goals, for serious games.

On-line (i.e. in-game) adaptivity is also an essential method to consider. Current
research is succeeding in using player models to control the adaptation of NPC run-
time behavior. Moreover, promising work is being done on dynamically constructing
game scenarios, and even of game environments, that are adapted to the player in-
game performance. For adaptivity purposes, on-line adjustment of game worlds and
scenarios is likely to achieve better results than with NPCs. However, new methods
will need a paradigm shift, already encouraged by the recent advances in procedural
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content generation: from searching and selecting among predefined solutions to
generating dynamic emerging ones.

Fig. 2.6 summarizes the challenges of this field and how they relate to each other.
For both entertainment games and simulations, the main overall challenges include
capturing and incorporating higher-resolution player data, including gameplay ex-
pectations, broad learning preferences and assessment data, to generate (off-line or
on-line) more complex game worlds and scenarios. An underlying challenge lies in
enabling designers to author such systems in an interactive fashion.

These conclusions allowed us to focus our research contributions in the adaptive
generation of game worlds. In this thesis, we are interested in improving upon the
present off-line and on-line adaptation methods. From this survey, we concluded and
formulated our key research questions: how can the adaptive generation of game
worlds be controlled/steered? Which complex and modern game world features can
be generated? How can this process be authored by game designers? And how can it
be generic enough to apply to different games?

We concluded that recent research results in semantic modeling can offer a promis-
ing starting point to answer these questions. Object semantics have the potential to be
made dependent on player data and control content generation in immersive game
worlds. Furthermore, they can hold the declarative and generic power to empower
designers to author adaptive generation in a large domain of different games.

These challenges open up a variety of promising research directions. Pursuing
them will lead us to the development of new methods and techniques, which in turn
will improve present adaptive game technology. As a result, games and simulations
can become more flexible, agile and complete in the way they adapt to the player.
Ultimately, a better adaptivity will foster the potential to make games and simulations
even more unpredictable, effective and fun.

Figure 2.6: Open challenges for adaptivity in games and simulations



3
A semantic generation framework for

enabling adaptive game worlds

Adaptive games are expected to improve on the pre-scripted and rigid nature of
traditional games. Current research uses player and experience modeling techniques
to successfully predict some gameplay adjustments players may desire. These are
typically deployed to adapt AI behavior or to evolve content for simple game levels.
In this chapter we propose a generation framework aimed at creating personalized
content for complex and immersive game worlds. This framework captures which
content provided the context for a given personal gameplay experience. This model
is then used to generate content for the next predicted experience, through retrieval
and recombination of semantic gameplay descriptions, i.e. mappings between content
and player experience. Through its integration with existing player and experience
modeling techniques, this framework aims at generating, in an emergent way, game
worlds that better suit players. Dynamic game content, which responds to the player
performance, has the ability to personalize player experience, potentially making
games even richer, more varied and fun.

Publication notice: The scientific content of this chapter was published in the eighth International Conference
on Advances in Computer Entertainment Technology [Lopes 11a]
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34 CHAPTER 3. A SEMANTIC GENERATION FRAMEWORK FOR ENABLING ADAPTIVE GAME WORLDS

3.1 Introduction

As outlined in Chapter 1, we are especially interested in the adaptation of more
complex and immersive game worlds. This focus is driven by three motivations: (i)
adaptive game worlds can offer new unexplored possibilities for affecting player
experience, (ii) the research coupling between adaptivity and game world generation,
which seems natural to us, is mostly lacking, and (iii) this coupling can allow designers
to better author adaptive games.

Adaptive games typically require a two-step methodology: player modeling and
content generation. This means that a coupling between both of them is not only
natural, but required for adaptivity to work. One of our goals is to enable a loose
coupling to existing player modeling methods, so that our generation framework can
be integrated and applied in several domains.

In this chapter, we describe the conceptual scheme of a procedural generation
framework for adaptive game worlds. Our aim is to generate game world content
that can provide the context for personalized dynamic gameplay. Such contextualized
content can be made independent of the game narrative, although compatible and
coherent with it. Firstly, this solution applies naturally to games that either have
simple narratives or are tightly bound to learning objectives (see Sections 3.3 and
3.4). Secondly, for more intricate plots, generation can be specified to occur within
self-contained plot events, focusing on the way to achieve an outcome and not the
(narrative) outcome itself.

In order to represent the personal gameplay value of game worlds, we introduce
gameplay semantics, inspired by semantic game worlds, an approach that embeds
the world and its objects with all information beyond their geometry [Tutenel 08].
Deploying gameplay semantics will not only allow us to steer procedural mecha-
nisms, but also enable an interactive design of this type of adaptivity. It is therefore
highly relevant to survey what we propose as the support for adaptive game world
generation: virtual world semantics.

This chapter is structured as follows: in Section 3.2 we briefly survey game
world semantics and position our research. In Section 3.3 our semantic generation
framework is described in detail. In Section 3.4, we discuss possible scenarios where
we anticipate this framework will successfully apply. We finalize with our conclusions
and future work in Section 3.5.

3.2 Related work on virtual world semantics

Semantics in virtual worlds is a recent research field. Its motivations can be traced
back to the early proposal by Deussen et al. [Deussen 98] for an ecosystem simulation
model to generate an area with vegetation. Its input data, i.e. terrain and plant
properties, and its production rules, i.e. space, soil and sunlight competition, raised



3.3. GENERATION FRAMEWORK 35

a discussion for the need of more complete and ubiquitous information on virtual
worlds and objects.

In this direction, smart objects were proposed [Kallmann 98], containing infor-
mation about the possible interactions that can be executed on them. Peters et al.
[Peters 03] took the notion of smart objects further by creating objects with informa-
tion about their functionality, how NPCs can interact with them, and where important
features of the object are situated. Research in Virtual Reality (VR) has also been
exploring semantic representations, specifically to apply in the design of virtual
environments. Latoschik et al. [Latoschik 05] proposed Semantic Entities, an object
modeling method where the actions and functions of virtual objects can be specified
and applied. In the same direction, De Troyer et al. [De Troyer 09] introduced a
conceptual modeling approach for creating VR worlds, where designers can specify
high-level concepts on how complex objects are composed and moved.

Our own previous work on semantic modeling explores these ideas further, by
considering, in an integrated manner, both geometric constraints/relationships and
functional information (we leave its detailed discussion for Section 3.3). Additionally,
this semantic representation has been applied not only during runtime (as Peters’
smart objects), but also to procedural content generation and layout solving (thus
reassuming Deussen’s requirements). We consider that it is a natural step to further
integrate this approach with semantic information about the gameplay value of game
worlds, and match it with player data.

3.3 Generation framework

In the previous chapter, Fig. 2.1 outlined the architectural principles typically used to
support adaptive games. In essence, game logs, recording the players’ performance,
are used to create models of players’ skills, preferences or style. Given a game state,
these models can also be used to assess and predict the players desired experience of
the next game state. Depending on the approach, both player and experience models
can be used, in conjunction or not, to steer an adaptation and generation engine. This
engine adjusts or generates the appropriate game components to better suit the player,
i.e. adapted to the data in those models.

We are specially interested in researching within this field from an adaptation
and generation perspective. Our aim is to develop a generation framework able to
create game worlds that can provide the potential and the context for personalized
dynamic gameplay. We use the terms potential and context since we believe it is never
up to the content alone to fully realize experiences. The player and the game engine
are responsible for fulfilling that potential. The goal for this framework is then to
maximize the appropriateness of the generated content, to enable the fulfillment of
personalized experiences.

In this section we describe our proposal for the generation framework for adaptive
game worlds. See Fig. 3.1 for a conceptual scheme of the framework. It focuses on
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Figure 3.1: Scheme of our generation framework for adaptive game worlds: Semantic library, Semantic
gameplay descriptions, Content utility model, Game observer and Generator

generating adaptive game worlds, stemming from our goal of investigating new ways
of potentially affecting gameplay. As seen in Fig. 3.1, the generation process can be
integrated with player and experience modeling techniques, as the ones surveyed in
the previous chapter. Our aim is that this framework can be seamlessly reused with
distinct player modeling methods.

With our approach, semantics encoding the gameplay value of game worlds
is deployed atop geometry. This semantic information can be compared, using
mechanisms similar to case-based reasoning, with outputs from the integrated player
and experience modeling methods. This comparison and retrieval allows us to predict
what should be the content capable of providing the next desired player experience.
Using semantics we can: (i) explore the link between adaptive game worlds and
procedural content generation, and (ii) consequently, enable game designers to control
the generation process and author adaptivity. In the next paragraphs we will further
detail our semantic generation framework.

3.3.1 Semantic library

This generation framework builds upon previous work on semantics in game worlds
[Tutenel 08]. We define semantics, in the context of game worlds, as all information
about the world and its objects, beyond their geometry. This includes object properties,
high-level attributes and functional information, as well as interrelationships among
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different objects.
Each object in our game worlds typically carries all its semantics. It belongs to

some class of a semantic library [Tutenel 09b], a hierarchical class database, partly
based on the WordNet [Miller 95] ontology. This semantics can be used to control
and constrain algorithmic procedures that generate specific world content. This
semantic level provides designers with a powerful front-end that generates and steers
an underlying procedural level, while encapsulating the complexity of the latter.
This approach has already been successfully deployed, e.g. in interior layout solving
[Tutenel 09b], procedural filters [Tutenel 11b] and building generation [Tutenel 11a],
as shown in Fig. 3.2.

Designers use a library editor, Entika [Kessing 12], to specify semantics on each
class. Two types of classes are present: entities and abstractions. Entities refer to what
is possible to instantiate in a game world (e.g. physical objects, materials, substances).
Abstractions are characteristics of entities (e.g. attributes, states, services) or of sets of
entities (e.g. groups, scenes). Associating entities and abstractions allows us to specify
for each game object a set of attributes, including functional information, as well as
relationships with objects of other classes.

Building upon this approach, a new layer of gameplay semantics is required, so
that the semantic library classes can include knowledge on how they can affect player
experience. For this, we designed a set of gameplay abstractions: player skill, player
preference, player style, experience, game genre and actor. Each gameplay abstraction can
be associated with classes of the semantic library. The basic idea is to characterize
semantic classes in terms of their gameplay value to players. Typically, a designer
would create gameplay semantics by adding this type of abstractions on each class.
To do so, they will use the following scheme, available for each class:

Class A:
can provide gameplay experience(s) Z
to players with: skill(s) W, preference(s) Y, style(s) X
when owned by actor(s) V
in game genre(s) U

Allowed values for Z, W, Y, X, V and U are already encoded in the semantic
library.

We propose these gameplay abstractions since they naturally derive from the
conclusions of Section 3.2, i.e. they match the main features in player and experience
modeling. Also, as we will exemplify in Section 3.4, they can be further parameterized
using scalar values. Each class in the semantic library can be altered to include
several associations as the above. For example, a baseball bat can provide different
experiences in sport or fighting games, when owned by the player or NPC.

The nature of the semantic library allows high flexibility when creating gameplay
semantics. Since this can be defined for each class, both entities and abstractions can
be considered. As such, gameplay semantics can be specified for a variety of different
aspects, as, for example, physical objects, groups of entities or even generic attributes
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Figure 3.2: Interior layout example, generated using the semantic library [Tutenel 11a]

or states. Furthermore, the semantic library allows multiple levels of specification,
where property values can be constrained or instantiated. This allows us to define
and restrain gameplay semantics to different levels of class property values (e.g. to all
sizes of an object vs. to a specific size).

3.3.2 Semantic gameplay descriptions

As we described in the previous paragraphs, and as illustrated in Fig. 3.1, game
designers create gameplay semantics atop a game world semantic library. Our gen-
eration framework accesses this information through semantic gameplay descriptions,
containers of links between semantic classes (i.e. game world content) and player
experience. The aim of semantic gameplay descriptions is to compare them with the
observed behavior and experience of a particular player, at stages that require content
generation. An example of semantic gameplay descriptions is shown in Fig 3.3.

Semantic gameplay descriptions are partly inspired on case-based reasoning.
They are meant to encode valid combinations between content and the gameplay
experiences they can provide, for a given set of preconditions. In our case, these
preconditions relate to player features (e.g. αδ in Fig. 3.3) and game genres (e.g. G1 in
Fig. 3.3). Semantic gameplay descriptions result from the designer-specified semantic
library (see Fig. 3.1) at design stage, for each new adaptive game. The gameplay
semantics of each library class is analyzed and semantic descriptions are created
and assembled accordingly. The logic is simple: analyze library classes, identify
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Figure 3.3: Example of semantic gameplay descriptions, with notation consistent with Fig. 3.1

and aggregate preconditions, create respective gameplay descriptions and add the
applicable classes and respective experience to them. The accuracy of semantic
gameplay descriptions is therefore dependent on the knowledge specified by game
designers.

Any class from the semantic library can potentially be used in a gameplay descrip-
tion (e.g. objects, scenes, groups) not only with different levels of instantiation (i.e.
with attribute values already specified, constrained or not) but also linked to different
ways of creating its geometry (e.g. geometric models, procedures).

3.3.3 Content utility model

To be able to compare semantic gameplay descriptions with player behavior and
experience, we need to not only model these, but also the content that enabled and
provided the two aspects.

For this, we introduce content utility modeling, supported by two steps: (i) inte-
gration with player and/or experience modeling and (ii) monitoring the relevant
content which enabled player behavior/experience. As discussed in the previous
chapter, player and/or experience models typically include player behavior features
and experience features, not only describing which experience was observed but
also which should be the next. Their integration is achieved by a model translator, a
component which converts the format of the player/experience models’ output to the
format of our semantic player/experience features. If complex experience modeling
is not needed for integration (for example, for difficulty level adjustments), the model
translator can be built to encode the behavior (even if static) of the model left out.
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Content utility models are responsible for relating player/experience features
with the relevant content that enabled them. To do so, we propose a virtual game
observer that monitors and selects content appropriate to incorporate in the content
utility model. It is critical that this observer only selects content which, with a high
degree of confidence, contributed for the conclusions from the player/experience
models. Otherwise, our new model would include misleading data.

As seen in Fig. 3.1, the game observer accomplishes this by monitoring both the
game world and the integrated models. For this to be possible, we devised a set of
criteria for selecting relevant content, which spans both domains. Regarding the game
world, the observation criteria account for content that was interacted by: players,
NPCs and the game engine. The nature of these interactions accounts for the use of
objects and the occupation of spaces, in the same time interval as what was processed
by the integrated models. Regarding the integrated models, a single criteria accounts
for the content that is directly related with the game metrics they use. The idea is to
observe which game metrics, measured by the model, reflect content interaction and
include the content related to those metrics. For example, if a player modeling method
monitors the number of walls broken by the player, the game observer should monitor
and include broken walls in the content utility model. The game observer needs to be
customized for every instance of a new game or a new integrated modeling technique,
so that these criteria are totally fulfilled.

3.3.4 Generator

The generator in Fig. 3.1 is responsible for the creation of game worlds, by applying
the information modeled in our framework. The basic approach, analogous to case-
based reasoning, tries to match the content utility model with gameplay descriptions.
The plausible assumptions are that: (i) if gameplay descriptions include valid content-
experience combinations, and (ii) if the content utility model associates content, player
features, and experience, all measured for a given moment, and (iii) if a semantic
gameplay description exists with that same association, then (iv) the remaining
combinations in that description can also be considered valid and usable.

Under these assumptions, generation becomes a matter of retrieval and recombi-
nation of semantic gameplay descriptions. As illustrated in the example of Fig. 3.1, if
the content utility model includes content T0 which enabled experience X, for a player
modeled as αβδ, then the generator needs to implement the following function G,
where Y is the experience required for the next stage:

G(f({αβδ}, X, content T0), Y ) = content T1 (3.1)

Function f needs to retrieve and return a set of semantic gameplay descriptions
where its arguments are valid. Afterwards, function G examines the retrieved se-
mantic gameplay descriptions and selects the content (content T1) which provides
the required experience Y. The frequency and moments on which the generator, G(x),
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should act in a game world will need to be decided when integrating our framework
in each particular game.

If only a single description is retrieved by f(x), the generator has a simple task in
creating the relevant content. Content from the description is selected and instantiated
by G(x) according to the description semantics and using the associated geometric
models or generation procedures. The generator will include a procedural mechanism,
based on semantic layout solving [Tutenel 09b], responsible for combining the selected
instances into game world sections.

If several descriptions are retrieved by f(x), then the generator has a more emergent
behavior. In this case it will recombine several instances of content declared in
independent descriptions. This way, the content to generate emerges from distinct
descriptions, maximizing the potential for a richer and more complex variability.

The variability in this emergent recombination mechanism is possible in two ways,
both implemented in G(x): precondition selection and content selection. For the former,
we consider as valid all gameplay descriptions with preconditions which are a subset
of the player modeled features. For example, in Fig. 3.1, the player was modeled as
αβδ and, in Fig. 3.3 there are descriptions for players modeled as αδ and βδ. Function
f(x) will consider these as retrievable and selectable in G(x). To solve possible conflicts
between content of the retrieved descriptions, they are ordered by degree of similarity
with the player modeled features.

As for content selection, increasing the number of retrieved gameplay descriptions
can lead to redundant or conflicted content. So, solving these situations differently
can lead to different generated worlds. Besides the degree of similarity described
above, we use and compare semantics to identify and remove redundant or conflicting
content, also introducing randomness in this process.

Finally, a remark on ”starvation” situations where the function f(x) does not
retrieve any semantic gameplay description for a given step: even though we do not
envision such a use for our generation framework, acceptable solutions can be found,
e.g. using predefined static content, as done with non-adaptive games, in these steps.

3.4 Application scenarios

In the previous section, we described our proposal for a semantic generation frame-
work for adaptive game worlds. In this chapter, we aim at presenting and discussing
the framework’s conceptual scheme; its implementation and validation will be done
in the remaining chapters of this thesis. Instead, we will describe here two simulated
scenarios of the application of our framework, in order to help us evidence and
discuss its advantages. Each scenario will focus on one game world section where
generation is required, using what was modeled (player, experience and content)
in the previous world section. Please refer to Fig. 3.1 for the framework modules
mentioned throughout this section.



42 CHAPTER 3. A SEMANTIC GENERATION FRAMEWORK FOR ENABLING ADAPTIVE GAME WORLDS

3.4.1 Scenario 1

The first scenario occurs in a First Person Shooter (FPS) game, where generation
is required to occur between one room and the next one. Player and experience
modeling are deployed to capture style and affective experience (using, for example,
[Ramirez-Cano 10] and [Pedersen 10]).

Two different players have been modeled as (i) explorer, i.e. likes to explore the
environment, and (ii) achiever, i.e. likes collecting items and leveling up his abilities
through balanced gameplay. Both were modeled as being bored and needing a 50%
increase in excitement. The content utility model registers the following content, for
both players: previous room had one division, four empty boxes were opened, three
crates were used as hideouts for NPC and a time-bomb was activated by the player.

For the explorer player, a single gameplay description is retrieved stating that
rooms with one division, zero hidden chambers and time bombs increase boredom.
This gameplay description also declares that hidden chambers in rooms increase
excitement in 10%. From this, the generator decides to create the next room with five
hidden chambers.

For the achiever player, a single gameplay description is retrieved where empty
item boxes and NPC-owned crates increase boredom. This gameplay description also
states that leveling up items that increase player abilities increase excitement in 25%.
So the generator instantiates two leveling up items in the next room.

Discussion

In the scenario above, we can highlight the flexibility of the semantic library in allow-
ing designers to specify how content can influence player experience. Boredom for
the explorer is characterized by simple one-division rooms and by time bombs. This
way, gameplay semantics can be used to capture that simpler rooms leave no space to
explore and time bombs, if activated, can leave no time to calmly explore. The same
authoring expressive power is shown for the achiever, where empty item boxes and
NPC-owned crates increase boredom. This expresses the designer’s knowledge on
the fact that achievers like to progress in the game, by having multiple opportunities
of collecting items, in a balanced way, where advantages by NPC are disliked.

The potential of our generator is also demonstrated in this scenario. In the end,
two players with different styles were given two different rooms, with content more
appropriated for each one. This shows the value in considering game world content
in adaptive games. Also, in this scenario, the main gameplay was not hindered.
The type of generated content was specified to not relate with the main goals or the
mission of the game; it affects the player experience in that specific moment and room.
So, although somewhat different, the game still remains the same for both players.
This scenario also highlights the ability of our generator to function in a mixed mode:
the room could actually be the same geometric space with some static content, and
only some key objects are generated.
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3.4.2 Scenario 2

The second scenario occurs in a driving simulator, a serious game where a player
drives around a city and executes what an instructor suggests. Generation occurs
on each street. Player modeling is integrated to capture the skills of the player, and
experience is modeled to encourage, in an transparent way, the development of the
captured skills (as, for example, in [Westra 10]).

For a player, skills are modeled as: 0.4 (out of 1) proficiency in parking sideways
and 0.6 in clutch balancing. In this case, the modeled experiences are redundant and
directly mapped from skills, i.e. low and medium proficiency in, respectively, parking
sideways and clutch balancing (here defined as features a and b). Consequently,
the learning goals to be encouraged next are thus to improve on these skills, using
different learning levels, with an accessible level on parking sideways (c) and a
challenging level on clutch balancing (d), both due to the measured skill levels.
Besides these player and experience features, the content utility model includes: a
one lane steep road (e), misplaced parked cars on the side of the road (f) and traffic
lights placed on a steep road (g).

Two gameplay descriptions are retrieved, for the two types of modeled player
skills. Tables 3.1 and 3.2 describe the content of these descriptions. We signaled both
the classes and the features which match what was captured in the content utility
model, i.e. arguments X, content T0 and Y of the G(x) function, as explained in Section
3.3.

Table 3.1: For players with proficiency ≤ 0.5 in parking sideways

Semantic class Experience
e) Road(lanes=1) a) low proficiency: parking sideways

f) Car(parked=misplaced) a) low proficiency: parking sideways

z) Road(lanes≥2 , steepness=0) c) accessible level: parking sideways

y) Car(parked=parking space) c) accessible level: parking sideways

Table 3.2: For players with proficiency ≥ 0.5 in clutch balancing

Semantic class Experience
e) Road(steepness=30) b) medium proficiency: clutch balancing

g) Stoplight(location=e,wait=40) b) medium proficiency: clutch balancing

x) Road(steepness=45) d) challenging level: clutch balancing

w) Stoplight(location=e,wait=60) d) challenging level: clutch balancing

Since both descriptions are retrieved, their entries are combined, generating a
road with two lanes (z), with cars parked inside parking spaces (y), traffic lights with
longer waiting periods (w) and with steepness angle 45 (x). The dilemma between
a leveled or a steep road (z and x) would be solved by comparing skill proficiency.
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The parking sideways skill is closer to be matched (0.4 from the model to 0.5 from
the description) than the clutch balancing skill (0.6 from the model to 1 from the
description), and could therefore be considered less important to be encouraged.

Discussion

This scenario highlights the authoring flexibility of our framework, showing its
applicability in a different context: skill-based learning. Here, gameplay semantics
can still be created to evidence the need to respond to different players by using
different content. For example, for parking sideways, more street lanes lead to more
space and thus less pressure, leveled streets mean more visibility and cars inside
parking spaces lead to more space to maneuver. In other words, using the semantic
library, designers can specify that dissimilar players can benefit differently from
different content.

Scenario 2 also highlights the emergent behavior of the generator. The final
scene is created through the combination of two retrieved gameplay descriptions.
This can increase the variability in the generated content, in an unique way. In this
scenario, this is made possible by considering two player experience requirements
simultaneously, a usual behavior in present adaptive games. The conflict resolution in
this example is based on a similarity degree between the models and the descriptions,
together with a criterion to focus on the skill needing more improvement. We foresee
that mechanisms like these should be directly specified in the generator. This scenario
also highlights the ability of our generator to act in a fully procedural mode, where
all content is generated.

Although not directly mentioned in these scenarios, we should also discuss per-
formance and burden on designers. This framework is envisioned to perform on-line,
while the game is running. Considering that each semantic class should be already
instantiated as of the import of gameplay descriptions (i.e. at the design stage), the
remaining bottlenecks are likely the retrieval of descriptions and the layout solving by
the generator, both at run-time. Through the experiments on the remaining chapters
of this thesis, we verified that an indexing mechanism for descriptions was enough to
achieve satisfactory generation efficiency.

As for the process of creating gameplay semantics, it needs to avoid burdening
designers with overwhelming manual effort. The semantic library already provides
mechanisms to facilitate the specification of semantics, including control on class
inheritance and automatic consistency checks.

3.5 Conclusions

In this chapter, we presented the conceptual scheme of our semantic generation
framework for adaptive games. We have discussed its main components, highlighting
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the role that semantic modeling can play in adaptive game worlds. Through this
framework and, specifically, by means of gameplay semantics, game worlds are
generated to match integrated player and experience models, i.e. adapting to the
players’ goals and needs. Semantics about personal gameplay value, associated
with game world geometry, steer a procedurally-based generator in creating a more
suitable context for personalized dynamic gameplay.

The novelty and advantages of this framework can already be highlighted here.
First, this framework allows us to include 3D immersive game worlds among those
game components targeted by adaptivity. Achieving this, in turn, can trigger investi-
gation on new, unexplored ways of affecting gameplay.

Second, regarding the process of creating adaptive games, the framework can
allow content generation methods to be loosely coupled with a variety of player and
experience modeling.

Third, the framework brings about the first inclusion of gameplay information
in the area of semantic modeling. Although it is here being used for the procedural
generation of game worlds, in the future, this new semantic scheme will likely become
valuable, for example, for runtime interaction with game objects.

Finally, we can expect that deploying more and richer semantics will enable game
designers to much better author adaptivity.
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4
Using gameplay semantics to

procedurally generate player-matching
game worlds

The use of procedural content generation to support adaptive games is starting to gain
momentum in current research. However, there are still many open issues to tackle,
namely the control over such generative methods. Our research focuses on authoring
adaptivity in games, i.e. controlling reusable and generic methods for linking the
procedural generation of 3D game worlds with gameplay, as measured by player
modelling techniques. As the interface for that link, we propose the use of gameplay
semantics, a knowledge representation technique that allows our generator to match
content to player models. We present and discuss the implementation of our proposed
method in an existing racing stunt game. Gameplay semantics is created by designers
in a generic way and is then used to procedurally generate player-matching game
worlds, both at design and at game stage. Current results show that our approach
can automatically create such adaptive game content, thus effectively bridging game
world designers, procedural generation and gameplay.

Publication notice: The scientific content of this chapter was published in the third workshop on Procedural
Content Generation in games [Lopes 12]

47



48 CHAPTER 4. USING GAMEPLAY SEMANTICS TO GENERATE PLAYER-MATCHING GAME WORLDS

4.1 Introduction

In the previous chapter, we proposed the use of gameplay semantics as the inter-
face to match the player behavior and experience with the game content generator
[Lopes 11a]. With this semantics, i.e. embedded gameplay knowledge about virtual
world objects beyond their geometry, our framework can support the generation of
player-matching game worlds, in games where this is applicable and valuable.

This chapter investigates the suitability and power of this approach, discussing our
implementation results in a modification of an existing game, Stunt Playground 1. We
explain how our semantic approach can be easily applied to create a game with player-
matching game worlds, in an off-line fashion (on-line generation will be approached
in the next chapters). This is achieved by integrating our semantic framework with
a generation process for game worlds and with player and experience modeling
techniques. In this case, we added semantic layout solving techniques for generating
Stunt Playground game worlds and also created new player and experience models.
We showcase our results, i.e. game worlds generated at game stage, discussing the
added value of the new adaptive Stunt Playground.

This chapter is structured as follows: in Section 4.2, we give a brief overview
of our previously proposed semantic generation framework and highlight the new
contributions for the actual generation process. In Section 4.3 we explain the inte-
gration of our methods with Stunt Playground and the player modeling and content
correlation methods. Section 4.4 presents and discusses our results, preceding our
conclusions, in Section 4.5.

4.2 Semantics and generation

In the previous chapter, we outlined our proposal for a framework aimed at generating
player-matching content for complex and immersive game worlds. In this section we
will first summarize this framework, to give context to the rest of this chapter and we
will also outline new contributions on the generation process (layout solving), not
presented before.

4.2.1 Semantic framework

Our semantic generation framework (see Fig. 3.1) is responsible for integrating behav-
ior and experience modeling with procedural content generation, possible through
the use of game world semantics.

Designers use the semantic library to deploy information on several semantic
classes (or entities), e.g. objects, attributes or groups. Gameplay semantics is one
of the many layers of information that can be deployed. It describes the gameplay

1Stunt Playground was developed by Tim FitzRandolph using the Ogre3D engine. Available as freeware
at: http://walaber.com



4.2. SEMANTICS AND GENERATION 49

value of various entities and can be specified in terms of: (i) gameplay experiences, (ii)
player behavior features and (iii) involved game actors. For example, a designer can
specify that a car ramp (the semantic entity) entails a certain level of fun (experience)
for a reckless driver (behavior), when used by the player (actor) in a racing game.
Gameplay semantics is defined by designers, and can be as generic and reusable as
the designer wants them to be.

Semantic gameplay descriptions are automatically converted from the gameplay
semantics layer in the library and are partly inspired by case-based reasoning. They
are knowledge containers which encode valid combinations between semantic entities
(the car ramp) and player experiences (fun provided). They are individually organized
by the case preconditions each one applies to, i.e. the player behavior features (e.g.
reckless driver). This way, adaptive content generation becomes a retrieval and
recombination problem where the solution is to find the most appropriate semantic
gameplay description, i.e. the best case, for a given moment.

The input of such a retrieval process is given by the behavior and experience mod-
els, integrated with the framework. Behavior models supply the behavior features
(a certain level of reckless driving) to retrieve the matching gameplay descriptions.
Experience models help retrieval by supplying not only the next expected gameplay
experience (a certain level of fun), but also the previous measured gameplay experi-
ence (e.g. player was not having fun). Additionally, we developed a game observer
component to further help the retrieval process. It correlates which game content
enabled the previous gameplay experience. As explained in the previous chapter, the
assumption is that if a semantic gameplay description includes an observed content-
experience association, then the remaining associations can be considered valid to be
used.

In our framework, the retrieval of multiple descriptions allows this generation
process to be emergent. For a description to be selected, it is enough to include only
one (and not all) case precondition matching an input behavior feature. This means
that finding multiple descriptions and combining their retrieved content is possible
and increases variability beyond what designers declared. Solving retrieved content
is up to the post-retrieval generator.

4.2.2 Post-retrieval content generation

After retrieval, it is still necessary to synthesize such player-matching content into a
meaningful game world (segment). The post-retrieval generation we describe here is
responsible for this.

For post-retrieval generation, we make use of previous work on semantic layout
solving (see [Tutenel 09b] for details). This choice was motivated by two reasons: (i)
the input of the semantic layout solver fits very well with the output of the retrieval
generation process, and (ii) the solver is already fully integrated with the semantic
library. The use of other generators should be possible, as long as the generator can
synthesize large scenes from individual content.
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Given an initial layout, the semantic layout solver can stochastically position
individual objects in that layout, complying with a set of rules. These placement
rules take into account the relationships, rules and predicates defined in the semantic
library. Each entity in the library includes a semantic representation consisting of
object features, i.e. tagged 3D shapes. The object features we used are Clearance and
OffLimits. A Clearance feature cannot overlap with any other features except for other
Clearance features (shared open areas) and an OffLimit feature cannot overlap with
any other feature type (solid areas). Additionally, we used object features back, front,
top, bottom, left and right, which define the respective 3D shape of each of those object
boundaries. These features are used in placement rules to derive valid locations and
orientations for each entity in any layout. The layout solver includes rules for against,
around and on. As an example, if the semantic entity plate has an on rule with the
feature top of the semantic entity table, the solver places the plate somewhere on the
table top.

Each placement rule requires its own individual procedure, within the layout
solver, to calculate all valid locations. These procedures are the geometric realization
of the respective placement rule and return a group of multiple possible locations. As
an example, the individual procedure for the on rule uses the Minkowski subtraction
between both features of both semantic entities to calculate the polygonal shape that
contains all possible valid locations. The layout solver is also responsible for selecting
the best order in which to solve placement rules. The order to pick entities to place is
defined by a dependency graph, with the following sorted criteria : (i) least outgoing
rules to entities not yet picked, (ii) most incoming rules, (iii) most outgoing rules to
already picked entities, (iv) largest entity. If semantics are correctly defined in the
library, then they, together with the ordering algorithm, are enough to solve layouts,
and if there are no available valid locations left, an entity is simply not placed.

4.2.3 Contributions to semantic layout solving

Regarding the semantic layout solver of [Tutenel 09a], the existing object features and
placement rules, as defined by designers, are the basis for post-retrieval generation to
work. The retrieval process feeds its result, i.e. the player-matching content, to the
solver that, supported by the semantics of the library, creates a valid game world.

However, upon analysis of the layout solver of [Tutenel 09a], we identified addi-
tional placement rules and object features necessary for player-matching game world
generation. As a result, these were created and added to the semantic layout solver.

The new empty when placed object feature defines a shape which cannot overlap
with any other object feature, but only at the moment when the entity possessing
this feature is being placed. Afterwards, that shape can overlap with any entity or
feature. This feature is typically used to express a precondition to a placement rule
with another entity. For example, if a ramp should be placed before some obstacle,
then the placement of the ramp should consider and reserve some empty space in
front of it for future occupation by an obstacle. The implementation of such a new
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feature builds upon the Clearance and OffLimits features. For each placement rule and
its two semantic entities, a Minkowski sum is used to calculate an area containing
all locations for which the empty when placed shape would overlap with the already
present shapes (objects, Clearance, OffLimits, etc). This area is then subtracted from the
possible placement locations.

The new follow on placement rule constrains the possible locations of a source and
a target entity. This rule is used to specify that a source entity should be placed in a
layout, aligned with an already placed target entity, i.e. where both form a trajectory.
For example, an obstacle should be placed following on an already placed car ramp,
in a certain trajectory. This new rule implied the creation of new additional features:
mid-axis x, y and z. These features define a plane shape which cuts an object in half, in
each of the 3D coordinates. For flexibility purposes, we also added similar spaces for
cuts in quarters. The new and existing features can be used to define the trajectory of
the source and target entities.

The implementation of this new rule involved a new dedicated procedure. For
a target feature (e.g. center line of a car ramp), a new extruded line is defined by
calculating two incremental points (the incremental range is either defined from
designers parameters or, if not present, randomly) in the same direction as the feature.
The center point of the source entity is then randomly placed somewhere on that line,
rotated to respect the source feature plus an optional rotation parameter. Even though
this follow on procedure constrains the placement of the source entity, there are still
some degrees of randomness and, thus, variability: the initial placement of the target
entity, the range of the placement line (if not defined by designers) and the selected
point in the placement line.

4.3 Player-matching game worlds

This chapter describes the integration of our semantic generation framework into an
adaptive game. In this section we will outline its implementation and research issues.

We chose to integrate our approach with an existing game, in order to assess how
generic and applicable the semantic generation framework is. The chosen game was
Stunt Playground; see Fig. 4.1 2. In this single-player game, players can drive around,
free to do stunts in an arena with a variety of props. It is an open sandbox game with
no scoring, progression or goals. It includes a game world editor, where the user can
create, save, load and play arenas, apart from the ones already included in the game.

For this research, we developed and added a new adaptive game mode, in which
the player starts in a predefined initial arena. After playing a game cycle of five
minutes, a new arena is generated each time to better fit the player’s style. Unique
arenas are generated every game cycle for every player. This new mode entailed

2Stunt Playground was developed by Tim FitzRandolph using the Ogre3D engine. Available as freeware
at: http://walaber.com
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Figure 4.1: Stunt Playground gameplay

the creation of methods for player and experience modeling, content correlation,
gameplay semantics and procedural content generation, which will now be described.

4.3.1 Behavior and experience modeling

As stated in Section 4.2, our framework needs to integrate behavior and experience
modeling, in order to generate player-matching game worlds. For Stunt Playground,
we developed our own behavior and experience models. Due to the simplicity of
the game mechanics, we opted for heuristic vector-based models, which seem to be
effective enough, as demonstrated by Westra et al. [Westra 10]. All the heuristics
described below, for both models, were the result of empirically observing various
informal game sessions with several player types.

For modeling player behavior, we defined two simultaneous scales able to capture
a stunt driver’s playing style. The Evel Knievel scale measures how much of a reckless
stunt driver a player is. On the other side, the Sunday Driver scale measures how much
cautious a player is in performing stunts. We used two simultaneous measurements
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because we aimed to capture overlaps between one behavior and the other. Our initial
idea was to investigate the existence of a dual complex behavior where a player might
drive around acting as cautious and reckless simultaneously. For example, using only
one measurement would be less expressive in characterizing a player who drives
very fast, but does not interact with any prop or does any jump.

For both measurements, we use the following heuristics, which are logged and
measured at run-time, and stored in a vector:

• i : ratio between the distance spent in the air (jumps) and the total driven
distance;

• j : ratio between the time spent in the air (jumps) and the total game time;

• k : ratio between the measured average speed and the maximum possible speed;

• l : ratio between the number of flips which were made, and a maximum number
of flips.

Heuristic k is particularly interesting since it hides a fifth measurement. On each
arena, the player can choose from a group of vehicles with different maximum speeds,
ranging from a bus to a racing car. However, the maximum speed in heuristic k is
fixed to the maximum speed achieved by the fastest vehicle. This way, this heuristic
indirectly reflects the impact of choosing a faster or slower vehicle, an important
factor in characterizing a player. As for the maximum number of flips in heuristic l,
they are calculated proportionally to the props available in the arena, with an average
of flips per prop per time experimentally determined.

The following formulas define the final values calculated at the end of each game
cycle, and determine, respectively, the measurements for the Evel Knievel and Sunday
Driver scales:
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where d̃, t̃, s̃, f̃ represent, respectively, reference values for ratios i, j, k and l,
expected for the ideal neutral player and dependent on the props in the arena. Thus,
these formulas capture the normalized average deviation from the experimentally
determined neutral behavior. We choose to apply quadratic functions to each heuristic
to better capture the faster growth rate observed for each measurement. We applied
a cubic function and weight 2 to heuristic l to give additional importance to the
number of flips, a maneuver which is both harder to perform and a better indicator of
recklessness.
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Due to the pure sandbox nature of Stunt Playground, we decided that the adap-
tation goal would be the maximization of the game fun factor, in every scenario.
Although fun is a complex concept, virtually impossible to accurately measure, the
limited nature and goal of Stunt Playground’s game mechanics encouraged us to
simplify it to a more attainable level. Therefore, for modeling the player experience
we defined a simplistic measurement for capturing the fun experienced by players.
For this, we used the following heuristics:

• m : initial fun value, for finalizing an arena (game cycle);

• n : difference between both behavior modeling scales;

• o : number of re-spawns (if stuck somewhere or bored, the player can choose to
be relocated back to the initial position);

• p : ratio between the time spent totally stopped and the total game time.

Heuristic m was fixed as half of the maximum fun value (1), to represent an
average game session. Heuristic n was introduced to capture an implicit goal of
gameplay: to experience the progression towards a gradual specialization in one
preferred type of behavior (in this case recklessness vs. cautiousness). The calculation
of the fun factor in the end of each game cycle is easily explained: heuristics m and n
are added, and heuristics o (normalized against an experimental maximum reference
value) and p are subtracted from that value. These factors are weighted to reflect
the experimentally observed relative importance of each heuristic. Additionally, the
result is normalized between 0 and 1.

Validation of both the behavior and experience models was performed empirically
by both observing game sessions and informal questionnaires. Both models were
initially considered valid and expressive in capturing the intended information.

4.3.2 Correlation with content

As illustrated in Fig. 3.1, the measured behavior and gameplay experiences need to
be correlated with the game content that enabled them. These correlations are used
as inputs for the retrieval of semantic gameplay descriptions. In the previous chapter,
we proposed a set of criteria to be implemented by a game observer. Our hypothesis
is that these criteria can be sufficient to correctly establish those correlations.

In Stunt Playground’s case, the implementation of the game observer’s criteria
was straightforward. The simple nature of the game mechanics, and the behavior
and experience models explained above, both show that the content interacted by
players is enough to account for the correlations. Therefore, the Stunt Playground
game observer keeps track of the arena props a player interacts with and correlates
that list with the behavior and experience models’ final values.
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4.3.3 Gameplay semantics

Gameplay semantics is defined by designers, using a semantic library editor for that
purpose. Figs. 4.2 and 4.3 illustrate a screenshot of the semantic library editor, Entika
[Kessing 12]. For Stunt Playground, we defined all the required semantics, not only
for the gameplay semantics layer, but also all remaining necessary knowledge (e.g.
placement rules and features for semantic layout solving). Although semantics is
specified manually, there are some mechanisms in place to prevent this task from
becoming too tedious. The use of WordNet, inheritance between semantic entities or
the creation of stand-alone gameplay semantics (to then re-apply to different entities
faster) are examples of this.

Figure 4.2: The semantic library allows associating player behavior (Evel Knievel) and experience (Fun)
features to create and save gameplay semantics blocks (MaxFunLowEvelKnievel)

For this case study, we created all semantics before designing the player models.
The goal was to keep semantics independent from the modeling methods, able
to capture all the knowledge the semantic library offers. The only constraint was
the mandatory integration requirement: gameplay semantics should use the same
vocabulary as what is being modeled. In this case, the player styles for Evel Knievel
and Sunday Driver and a Fun parameter.

As explained, we decided that the goal of adaptation would always be to maximize
fun, measured as described above (see Section 4.3.1). This meant to apply a Fun
parameter, at maximum value (100% or 1), to different semantic entities, depending
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Figure 4.3: Gameplay semantic blocks created in the semantic library can be applied and tag different
entities. In this example, a ramp will be specified as appropriate for the player behavior and experience
features of the MaxFunLowEvelKnievel gameplay semantics

on the type of player they apply to, i.e. a value for the Evel Knievel or Sunday Driver
player styles. We also applied a lower fun value to semantic entities, depending
on whether they were not deemed appropriate for the corresponding player styles.
We devised this binary behavior (fun vs. not fun) due to the simplicity of Stunt
Playground and the research goals for this chapter (implement, integrate and test our
framework).

We created six levels of player styles: low, medium and high proficiency as Evel
Knievel, and low, medium and high proficiency as Sunday Driver. Each level was
quantified as ranges: 20% - 50% (low), 51% - 74% (medium) and 75% - 100% (high).
These rates were defined following conversations with game designers and players.

The described gameplay semantics originated six semantic gameplay descriptions.
They refer to the six independent levels of player styles and contain different corre-
lations of semantic content and fun levels. Although these descriptions are disjoint
in nature (due to the six independent player style levels), they can still be combined
during retrieval. This happens because, as explained before, the input of the retrieval
process always includes simultaneous player modeling measures for the Evel Knievel
and Sunday Driver styles.
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4.3.4 Generation

We integrated our approach with Stunt Playground (developed in C++) using both
the semantic generation framework and the semantic layout solver (both developed
in C#). The behavior/experience modeling and content correlation methods were
developed directly in Stunt Playground’s code (due to their dependence to the game’s
nature) and acted as input for the retrieval process. In the end of each game cycle
(each arena), the models’ values are used to retrieve content from the appropriate
semantic gameplay descriptions. Although descriptions already include knowledge
about the quantity of each semantic entity (in this case, stunt props), we also made
that quantity proportional to the values of the player models. The semantic entities
contained in the gameplay descriptions refer to the same content used in the game
since they include the same identifiers and the same model meshes (Ogre3D models,
in this case).

After content retrieval, the semantic layout solver generates a new player-
matching stunt arena. The layout solver places the retrieved content within the
basic input mesh of the arena, following the semantic placement rules. As explained
before, Stunt Playground includes a game world editor to create, save and load stunt
arenas. Since this editor uses XML as the format to represent game worlds, we are
able to store all generated arenas for each player.

Concerning generation, we developed a game design prototyping tool to generate
player-matching stunt arenas 3. This tool works outside the game, at the design
stage, and within a clone of the semantic library editor. Designers can input values
for gameplay semantics levels (described in Section 4.3.3) and a matching arena is
generated as an XML file. This arena can then be loaded in Stunt Playground and
played. This prototyping environment is a valuable contribution for creating game
worlds at the design stage, fitted for input player types and game experiences. It can
be used both for testing purposes or to deploy worlds in a game where there are no
player modeling methods available, but where the player/gameplay profile is known
beforehand.

4.4 Results

Our results for this case study relate to the success in procedurally generating player-
matching game worlds. In this section we present our early results, i.e. some examples
of typical player-matching game worlds generated during gameplay. We saved all
generated stunt arenas and logged all the data, both collected from players and
calculated by the models. For this section, we showcase various examples that are
especially representative of the global results. Table 4.1 shows which data matches
with the examples chosen.

3Demo videos of the design tool and the game adaptation available at http://rlop.es
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Table 4.1: Behavior and experience model data used as input for the generation of each game world in the
corresponding example. The meaning of each parameter is described in Section 4.3.

Fig. 4.4 Fig. 4.5 Fig. 4.6 Fig. 4.7 Fig. 4.8 Fig. 4.9

i (m/m) 18.1/1013.5 39/892.6 211.2/1206.9 780.6/1505.2 105/859.6 84.2/851.3

j (s/s) 2.3/300 10.3/300 35.6/300 69.6/300 41.3/300 29.3/300

k (kmh/kmh) 52.7/150 49.1/150 60.7/150 79.4/150 58.2/150 66.3/150

l (#flips/#props) 0/6 0/10 4/14 24/18 1/6 1/6

EvelKnievel 0 0 0.62 0.75 0.21 0.2

SundayDriver 0.79 0.65 0 0 0.4 0.4

o (#) 6 10 19 12 6 2

p (s/s) 25 18.5 22.3 6.7 15.6 9.1

Fun (before) 0.73 0.7 0.66 0.83 0.49 0.54

Fig. 4.4 and Fig. 4.5 show game worlds that were generated in response to a
detected ”low” fun experience of players modeled with, respectively, a high and a
medium value of the Sunday Driver style. Each of these game worlds used different
retrieved semantic gameplay descriptions, containing different semantic content. The
main variations, besides the quantity of content (e.g. the amount of hurdles), resides
in prop types. The less extreme Sunday Driver arena (Fig. 4.5) does not include cones,
but adds new types of small ramps and new possible layouts for them (notice the
liftoff-landing ramp layout in Fig. 4.5). In these examples, the amount of variability is
limited by the number of stunt props available in the game. Of the 15 available props,
we only deemed 8 as appropriate for this player type. This ends up not hindering
gameplay that much, since the game is naturally biased towards encouraging players
to be Evel Knievel. Since the goal of the game is to perform stunts, it was unusual for
players to assume a Sunday Driver performance, even with less props.

Fig. 4.6 and Fig. 4.7 are examples of game worlds generated for, respectively,
a medium and a high value of Evel Knievel player style. The variations observed
between them are also explained by the retrieval of different semantic gameplay
descriptions, which include different quantities and different (more complex) layout
possibilities (whereas the props nature is approximately the same). Fig. 4.7 shows
the typical upper limits (in terms of complexity and richness) of exclusively Evel
Knievel-based game arenas. This is also the performance lower limit of our frame-
work: generation took, in average, 5.1 seconds, a value acceptable while players wait
between arenas. This value is mostly dependent on the performance of the semantic
layout solver.

Even though low proficiency levels are not exemplified here, the progression of
Fig. 4.4 through Fig. 4.7 demonstrates that our framework is able to generate game
arenas that are highly dependent on the player behavior and experience. They were
generated for different players, but always for the third game cycle (i.e. as the second
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Figure 4.4: Stunt arena generated for player modeled as high Sunday Driver.

Figure 4.5: Stunt arenas generated for player modeled as medium Sunday Driver.

generated arena), showing that the game content at that stage is strongly adapted to
how the game was played until then.

Fig. 4.8 and Fig. 4.9 illustrate arenas that were generated for players modeled as
part Evel Knievel and Sunday Driver. They demonstrate the emergence in our genera-
tion framework and the variability of the generator for a similar input. The emergence
is possible through the retrieval of multiple semantic gameplay descriptions, for both
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Figure 4.6: Stunt arenas generated for player modeled as medium Evel Knievel.

Figure 4.7: Stunt arenas generated for player modeled as high Evel Knievel.

Evel Knievel and Sunday Driver, and is illustrated by the presence of content appro-
priated to both player types. These arenas are emergent in a sense that the rules
of their generation (i.e. the gameplay descriptions) were not entirely described by
designers, but are derived from a combination of those. The semantic layout solver
is responsible for the variability between both examples. This is illustrated not only
by the quantity of props and their layout (notice the white tunnel ramps on both
cases), but also the content that was actually placed, e.g. the tunnels of Fig. 4.8 and
the hurdles of Fig. 4.9.
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Figure 4.8: Stunt arena example, generated for a player modeled as low Evel Knievel and medium Sunday
Driver

Figure 4.9: Another stunt arena example, generated for a similar input of a player modeled as in Fig. 4.8

Finally, we point out that these emergent cases did not occur as much as expected.
We can identify two reasons for this observation. First, this can be explained by the
nature of Stunt Playground, with a gameplay naturally biased towards high values of
Evel Knievel models. The second reason relates to our player behavior modeling goals.
In our case, emergence is only dependent on the dual simultaneous classification of a
player as both Sunday Driver and Evel Knievel. We find two related reasons for this
lack of emergence: (i) both measurements (see Section 4.3) are in fact less disjoint than
we intended, to the point of actually acting as one single scale, and (ii) players simply
do not behave like that.
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4.5 Conclusions

In this chapter, we presented our results in applying gameplay semantics within a
game, to generate player-matching game worlds. We demonstrated that our semantic-
based methods are generic and re-usable enough to be integrated with an existing
game, in this case Stunt Playground. This approach, based on designer-defined
gameplay semantics, can use procedural content generation to create player-matching
game worlds. These game worlds are not only fitted to the players behavior and
experience, but also include the expected variability of procedurally generated content.
We also confirmed that our generation process can have some emergent behavior,
beyond what was specified by designers. Our semantic framework can therefore not
only bridge procedural content generation, gameplay and designers, but also add
some emergent, yet controllable, elements to the generation of player-matching game
worlds.



5
Mobile adaptive procedural content

generation

Procedural content generation can act as the adaptation mechanism in an adaptive
game. One of the key research questions relates to which types of features can be
generated in such a game. In this chapter we investigate the generation of level
properties in response to a global experience-driven feature: difficulty. As a case
study, we use a platform game in the mobile devices domain. The nature of most
computer/console games is different from that of most modern mobile games, which
are typically targeted at casual gamers and are played in a wide variety of space,
time and device contexts. We argue that this feature of mobile games naturally fits
with adaptive procedural content generation (PCG). In this chapter, we propose the
integration of two PCG-based approaches (experience-driven and context-driven
PCG) to support the generation of adaptive mobile game levels. We present and
discuss the implementation of our approach in an existing game, 7’s Wild Ride. Simi-
larly to Chapter 4, gameplay semantics and player modeling are used to steer a level
generator, featuring a time-dependent dynamic difficulty adjustment mechanism.
From our two user studies, we conclude that (i) context-driven levels have advantages
over traditional ones, and (ii) the game can adapt to different player types, keeping
its gameplay balanced.

Publication notice: The scientific content of this chapter was published in the the fourth workshop on Procedural
Content Generation in Games [Lopes 13b] and in the eighth International Conference on the Foundations of Digital
Games [Lopes 13a]
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5.1 Introduction

The nature of most modern mobile games, i.e. games played in smartphones and
tablets, is different from that of most computer/console games. Mobile gaming is
becoming the preferred medium for the casual gamer, changing the demographics
in the marketplace and bringing along cheaper, less powerful hardware [Farrell 12],
which are used in a wide variety of environments and conditions. By observing the
most downloaded games in mobile marketplaces like Apple’s App Store and Google
Play, we can confirm that a vast majority falls within the definition of a casual game
[Nielsen Company 09]: ”inexpensive to produce, straightforward in concept, easy to
learn, and simple to play”.

With their casual nature, these mobile games need to appeal to wider audiences.
Accommodating player characteristics, styles or preferences for such a varied de-
mographics is therefore a bigger concern. The usual solution for catering for casual
players, offering shorter, simpler gameplay, tends to alienate some more demanding
players, typically from the hardcore audience. Furthermore, mobile games are played
in a wide variety of environments, conditions and time availability, dependent on
the player context. Again, the usual approach to accommodate this diversity is to en-
hance the casual aspect of these games: keep them straightforward, simple and short.
For this type of games, attracting and retaining all player types, while providing
meaningful gameplay in a wide variety of contexts, raises additional challenges.

5.1.1 The case for mobile adaptive PCG

Adaptive games have the potential to be more personal, by adjusting their content or
mechanics to better serve individual player needs [Lopes 11b, Yannakakis 11]. Ideally,
adaptive games can accommodate for all types of players (casual or not) and their
wide variety of commitment, skills or styles, i.e. player experience. Additionally,
adaptive games have the potential for being meaningfully responsive to a variety of
player-related contexts. For example, for a player waiting at an airport for a specific
time period, an adaptive game could adjust the overall gameplay experience to fit
that time-constrained context.

Currently, standard approaches for supporting such adaptive games are increas-
ingly based on procedural content generation (PCG) [Lopes 11b, Yannakakis 11]. We
argue that this adaptive PCG can tie in very naturally with the casual mobile gaming
paradigm (henceforth, simply referred to as mobile games), where broad ranges of
player commitment and circumstances should be addressed. To accommodate this
wide variety of player experience and player-related contexts in mobile games, we
envision two different modalities of adaptive PCG: experience-driven and context-
driven.
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5.1.2 Experience and context-driven PCG

Our research goal is to investigate the integration of experience and context-driven
PCG in the mobile games domain, and to assess its potential value 1.

In experience-driven PCG, generative methods are responsive to some sort of player-
generated gameplay-specific data. In this chapter, we propose a semantics-based
experience-driven PCG approach where online content generation is used to dy-
namically adjust the game’s difficulty. This dynamic adjustment of game difficulty
(DDA) to the personal skill level of a player has the potential to attract and retain a
larger variety of players.

We define context-driven PCG as the use of generative methods to yield content
that fits some player-related context. The demands a given context puts on that content
generation are therefore extrinsic to the gameplay, and respond to that player’s
concrete situation (e.g. available time, weather, location, health,...) Regardless of
whether a context is explicitly input or implicitly derived, the neat effect will be a
direct steering of the generator (even if players are unaware of it). Moreover, such
demands of context-driven PCG can stretch deeper and more meaningful than players
might anticipate. For example, for the airport time-dependent context mentioned
above, setting a play duration constraint should not only determine the time to
play, but also smoothly scale the full gameplay experience under that constraint. We
envision that this form of adaptive PCG provides a powerful basis to accommodate for
a variety of player-related contexts. In this research, we investigated a first example
of context-driven PCG: level generation for an explicitly set play duration constraint.

Our case study in this chapter is a first step towards demonstrating that experience-
driven and context-driven generation fit well together to support an adaptive mobile
game experience. For this, we developed a game that allows you to specify how much
available time you have to play; a level is then generated online, fitting both: (i) that
time-constraint (context-driven PCG), and (ii) your measured skill level (experience-
driven PCG). For this, gameplay semantics, i.e. gameplay information about the
world and its objects, is used to support and steer the procedural content generator.

The above mentioned demands of mobile gaming (large variety of players, skills
and contexts) cannot be met anymore by simply using handmade static levels. We
believe that both experience-driven and context-driven game levels provide a much
better and richer alternative, and that our adaptive PCG proposal is a valuable
contribution to solve this mobile gaming challenge. Recent mobile games like Canabalt
(2009) or Robot Unicorn Attack (2010) confirm this trend, by already incorporating
a simple form of experience-driven PCG. Game content is there generated on the
fly, based on player performance, but only sampled at the single instant generation
is executed [Lager 09]. Our research, on the other hand, collects and uses player
performance and time progression, over the whole game session, to steer generation.

1a video on this research can be found at http://rlop.es
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This chapter is structured as follows: Section 5.2 outlines the methods behind our
case study’s generator. In Section 5.3, we explain our dynamic difficulty adjustment
method and player modeling approach, including both our control mechanisms and
the level features that can be generated. Section 5.4 presents and discusses our play
testing results, preceding our conclusions in Section 5.5.

5.2 Content generator

To demonstrate our approach proposed in the previous section, we implemented an
adaptive version of a mobile game developed by a multidisciplinary team for a course
project at the Entertainment Technology Center of Carnegie Mellon University. The
game, named 7’s Wild Ride (Fig. 5.1), is a side-scrolling platform game where players
have to prevent the main character from falling off a rolling snowball. They keep the
character in balance by: (i) tilting the mobile device left and right to counteract the un-
balance gravity effects of navigating slopes, and (ii) by jumping on the snowball over
obstacles that it picks up. Additionally, score points, power ups and achievements
are part of the game. To balance the character, the player has to keep it within a safe
zone, on the top of the snowball. If the player is riding the snowball in an unstable
position, an animation is triggered to warn that the balance must be correct to avoid
falling (see Fig. 5.1).

Figure 5.1: 7’s Wild Ride: player character is struggling with balance on the snowball due to an upwards
slope (danger zone). Halfway the slope, the snowball is about to pick up the obstacle cone.
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This mobile game was originally developed using a fixed set of designer-handmade
levels, in the Unity game engine. Therefore, our first step was to develop a content
generator able to create levels on-the-fly2. Subsequently, the control over the generator
(as explained in Section 5.3) will support its dependency on player experience and
context.

The generator creates levels by selecting and combining level segments (chunks)
from a content library, as the player advances through the level. Level obstacles are
also selected independently from the content library and placed on valid locations of
the level segments. This means that level segments can be dynamically coupled with
obstacles, to synthesize different combinations, thus ensuring high variability.

The generator is always running as the player advances through the level. When
the player reaches the midpoint of a level segment, it immediately selects and retrieves
the next chunk from the library, placing it accordingly. The character’s speed and the
hardware capabilities of current mobile devices ensure that online generation does
not cause any performance drops. The framerate remains identical to the original
game. Additionally, and since this game is a right side-scrolling game (going left is
not allowed), previous level segments are removed, to save up memory. This means
that, at any given moment, only a fixed number of level segments exist before and
after the player’s current position. Players are unaware of this due to the limited
camera field of view (see Fig. 5.1). Fig. 5.2 shows examples of the level segments
included in the library, and an example global view of a generated level, at a given
instant.

(a) (b)

Figure 5.2: (a) Procedural level generation in 7’s Wild Ride: examples of chunk level segments, to be used
by the content generator, (b) example of a level generated during play (debug view). Notice the two placed
obstacles (next to the player and at the far right).

2from this point on, all 7’s Wild Ride mentions refer to the new adaptive version
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5.3 Adaptive control

In this section, we describe the main methods used to support this on 7’s Wild Ride
adaptive case study. Control over the content generator can be exerted by selecting
which level segments, obstacles and obstacle locations to combine.

5.3.1 Semantics and DDA

To investigate experience-driven PCG in the context of our research goal, we im-
plemented DDA on 7’s Wild Ride. We used virtual world semantics to control the
procedural generator. In previous work [Tutenel 08], virtual world semantics is de-
fined as all information about the world and its objects, beyond their geometry. This
includes object properties, high-level attributes and functional information, as well
as interrelationships (geometric, functional, etc) among different objects. We use
the semantic library Entika [Kessing 12], to create a a hierarchical class (relational)
database, responsible for storing all game objects and each of its associated semantics.
As explained in Chapter 3, game designers use this library to specify semantics, atop
game world geometry, in a generic and reusable way. Semantics imported from
this library can be used as knowledge to automatically constrain and control PCG
methods.

Gameplay semantics is all information that captures the gameplay value of all
game world entities. It can express, for example, affective experiences, player perfor-
mance, player actions or game actors. Importing gameplay semantics and embedding
them in game worlds can be used to steer online PCG methods. This approach has al-
ready been successfully deployed to generate off-line experience-driven game worlds,
which adapt to a player’s behavior [Lopes 12].

For 7’s Wild Ride, we used gameplay semantics to support the DDA mechanism.
Knowledge on the semantics of level segments and obstacle entities is specified, once
and for all, prior to the game’s deployment. The generator searches and selects
content only if its semantics matches some desired input, typically expressed in the
same semantic terms. An example is obstacle placement: locations for placement are
only selected if they were marked as semantically valid.

Semantics was also used to label and select the difficulty associated with the
different segments and obstacles in the library. Partnering with the designers team
of the original 7’s Wild Ride, we were able to not only specify the new semantics, but
also design the new DDA mechanism.

Three independent difficulty scales were defined: (i) slope selection, (ii) obstacle
placement, and (iii) obstacle frequency. These were deemed sufficient to capture
and influence the main difficulty-related aspects of the core gameplay. Semantics
was pre-specified for all content, describing (i) the difficulty of the shape of a level
segment (combinations of two level segments were also considered), and (ii) the
specific difficulty of each valid location for the obstacle placement. For this, two
independent numerical scales were defined.
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Control over the generator is done by supplying input values for these three inde-
pendent difficulty scales. For a certain input, the generator algorithm retrieves which
library content was specified as appropriate to that difficulty scale. Additionally,
obstacles placement follows a frequency constraint: only every N level segments is
an obstacle selected and placed. Each input combination of the two difficulty scales
might have several possible results (level segment and obstacle placement combina-
tions). Whenever alternative results were deemed as equally difficult, the generator
selects one randomly.

Gameplay semantics allows designers to participate in authoring the DDA mecha-
nism without having to program. More importantly, it holds the expressive power to
directly specify the building blocks and the selection rules which support level gener-
ation. Designers can create slope segments and even combine them to form groups
with specific semantics. They can express constraints to the generation process, e.g.
which segment can(not) follow which segment. Entities for obstacles can be created
independently from the specification of valid level locations for their placement.
And each of these entities and locations can be associated with numerical values for
difficulty scales for obstacle placement or slope selection. The level generator uses all
this information to synthesize (on-line) an adaptive level. With gameplay semantics,
designers can even author DDA in an iterative way. Any corrections and changes
to the semantic library directly tweak the level generator behavior. By changing the
semantic attributes of placement and difficulty for all associated content, designers
can effectively influence the behavior of the generation algorithm. This opens new
possibilities for designers to explore the expressive power of this form of adaptive
PCG.

To the best of our knowledge, this is the first time a semantics-based adaptive
approach is applied in the mobile device segment. Android OS and the Unity game
engine allowed quick integration with the technology supporting the persistent
semantic library, SQLite and C#. We developed a light-version of a semantic engine,
which is able to import and query semantic content from the database, as the game is
running, on a mobile device.

5.3.2 Experience-driven PCG

The above semantics-based control of the generator already supplies a basis to support
DDA. To fully realize this we developed a specific player model to steer the generator.
Working together with the original team of 7’s Wild Ride, we became most familiar
with its design goals and principles, and were therefore able to create this player
model.

The proposed player model directly maps measured skills into the three difficulty
scales described above. Player performance is measured and converted into a desired
new level of difficulty for that player. Each difficulty scale is influenced by the
following measured skills:
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• slope selection: BalancePerformance, BalanceDeath

• obstacle placement: BalancePerformance, ObstacleDeath

• obstacle frequency: ObstacleDeath

BalanceDeath and ObstacleDeath flag whether the player died because of, respec-
tively, loosing balance or hitting an obstacle. BalancePerformance measures the rate of
transitions between the character’s safe and danger zones (see Section 5.2). A player
with less of these transitions is typically more skilled at balancing his character.

For all skills and difficulty scales, the same strategy was applied: an improvement
on skill performance leads to an increment on the corresponding difficulty scales, and
a decrease, to a corresponding decrement. Since all difficulty scales are independent,
individual and specific behavior can be captured by the player model. This can lead
to specialized reactions by the generator. For example, if the player is mostly dying
from hitting obstacles, only the obstacle related difficulty scales are affected. Below
is the algorithm for the mapping of skills performance into the difficulty scales they
affect.

// All d i f f i c u l t y s c a l e s are pre−i n i t i a l i z e d to t h e i r minimum values

// t r a n s i t i o n s measured per time elapsed per l e v e l segment
//performance i s normalized to the current d i f f i c u l t y
balancePerformance = t r a n s i t i o n s / ( timeElapsed/o b s t a c l e P e r i o d ) ;
balancePerformance = normalize ( balancePerformance , slopeSelect ion ) ;
//BalancePerformance
i f ( balancePerformance>balancePerformanceAvg OR t r a n s i t i o n s = 0)

slopeSelect ion+=s1 ;
obstaclePlacement+=o1 ;

e lse
slopeSelection−=s2 ;
obstaclePlacement−=o2 ;

//BalanceDeath
i f ( BalanceDeath AND timeAlive<timeAliveAvg )

slopeSelection−=s3 ;
//ObstacleDeath
i f ( ObstacleDeath AND timeAlive<timeAliveAvg )

obstaclePlacement−=o3 ;
obstacleFrequency−=f1 ;

This player model is re-evaluated every N level segments, which might lead to
difficulty scale changes. In our experiments for this chapter we used N = 4. If, in
the current N segments, a player improves his BalancePerformance (compared to his
past average) on the current N segments, the values for both the slope selection
and the obstacle placement difficulty will increase. A decrease of these occurs in
the opposite case. Both difficulty scales are affected, since jumping over obstacles
can provide additional balance challenge. When the character dies and its last life
duration was shorter than the average, difficulty scales are decreased accordingly,
for the respective death type. The player model above only contemplates obstacle
frequency decreases. The simultaneous presence of frequency increases and our
context-driven PCG approach, explained in the next section, could lead to steep
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difficulty increases, overburdening players. All the increase and decrease operations
should not lead to immediate difficulty changes. Therefore, we implemented two
features to assure that the generator affects gameplay and difficulty only when
continuous consistent performance improvements or declines occur. First, each
increment is smaller than 1. Second, the generator only considers new inputs from the
player model when a difficulty scale changes its integer value. Each of the difficulty
scales are numeric scales: 1-5 for slope selection, 1-4 for obstacle placement, 0 to M
for obstacle frequency. All the values for the parameters (N,M,s1,s2,s3,o1,o2,o3,f1)
were determined experimentally in playtests with numerous players, as described in
Section 5.4.

With this player model in place, player performance can be measured in terms of
gameplay skills which are translated into dynamic difficulty scales. These scales steer
the semantic generator to synthesize the appropriate content, classified according
to that difficulty. This way, the difficulty of the level generated ahead is adjusted to
match the player performance. In Fig. 5.3, you can see an example of the functionality
of our experience-driven DDA, as observed in a user evaluation.

(a) (b) (c)

Figure 5.3: In (a), player dies by not jumping successfully over the obstacle. Later on, in a subsequent life,
an obstacle is placed at an easier location, in a similar situation (b). Eventually, after repeated deaths by
obstacle collisions, no obstacle is placed at all (c).

5.3.3 Context-driven PCG

To investigate context-driven PCG, the generation of 7’s Wild Ride game levels has
been made dependent on a time constraint (duration), explicitly specified by the
player. The consequence of such a constraint is that it will directly steer the generator,
adjusting the game to a context, in this case, the available time.

We implemented a solution to support this, that uses our generation approach,
online recombination of level segments. A timer is responsible for ceasing level
generation and gameplay, at the end of the requested duration. We opted for a
strict strategy for this timer, where the pause and death menus do not interrupt time
counting, even though no generation is occurring. In this way, we give high priority
to fulfill the player’s request, regardless of interruptions.



72 CHAPTER 5. MOBILE ADAPTIVE PROCEDURAL CONTENT GENERATION

More importantly, and as explained in Section 5.1, setting a time constraint should
also scale the full gameplay experience to that requested time. In our case, the
requested time has a direct effect on the difficulty evolution of the game level, which
is adjusted to fit not only the player experience, but also to fit the requested time.

This scaling relates to game progression. In many games, level difficulty typically
increases with the advancement on a (handmade) game level, where the final sections
provide harder challenges than the initial sections. The same happens between
consecutive (handmade) levels, to provide the player a sense of progression.

In our case, we applied the same progression principle, but in the context of
available time. As the player advances in the generated game level, approaching the
requested time limit automatically increases difficulty to give the player a notion of
proportionally scaled progression.

We start by dividing the requested time into five equal slots which are then
grouped to create four time-based level phases: beginning (slot 1), middle (slots 2
and 3), pre-final (slot 4), final (slot 5). As you progress through these phases, all
difficulty scales increase automatically by a value t, every P level segments. Both t
and P change according to the phase the player is in. The closer a player approaches
the final section, the more difficulty increases in frequency and value. As before,
all parameter values were determined experimentally, with players, as described in
Section 5.4.

With this approach, the context-driven PCG loop is closed: the requested time
context affects difficulty increases, which has a direct effect on the generated content;
this, in turn, scales gameplay progression to the available and requested time context.
At the same time, this difficulty progression is still being balanced by the experience-
driven DDA, which guarantees that any progression is still adjusted to each individual
player performance. Ultimately, difficulty and content are being dynamically adjusted
to both the individual player performance and the requested time context, thus
creating a personalized and unique gameplay experience.

We are aware that PCG and, specifically, DDA can potentially prevent fair com-
parison of game scores and achievements, among players. We are interested in the
debate on the (un)desirability of such comparisons, but that concern is not currently
present in our research goals. Therefore, no scoring or collectibles game mechanics
were taken into account in our case study.

5.3.4 Semantics and reusability

Our proposed approach can be generalized and applied to other games beyond 7’s
Wild Ride. This is, in fact, a consequence of using a semantics-based generator, while
saving considerable work.

The content generator can be applied to any game (most notably, platformers)
which levels/world can be generated by the re-combination of adjacent world seg-
ments and the careful placement of adequate game objects. The semantic library
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combines all information about the individual content (geometry) with the knowl-
edge that steers its retrieval and placement by the generator. In our case study, we
defined the difficulty scales as these steering semantic attributes, which means they
can be reused and extended in other projects. Using other generation control mech-
anisms beyond difficulty can also be easily achieved; it would entail using Entika
to create and classify new semantic attributes, and minor changes to the retrieval
process. As for our simple player model, it is certainly specific to 7’s Wild Ride, as it
converts player performance data into our semantic difficulty scale values. Except for
some generic machine-learning methods, typical player models are mostly dependent
on specific games. However, with semantics, the implementation of a conversion
from performance data to semantic attributes, as a new final step within such models,
should assure their smooth integration with the generator.

As for our first experiment on context-driven PCG, this approach does not quite
take advantage of gameplay semantics yet. In our future work, we plan to not only
investigate new forms of context-driven PCG (beyond time), but also their integration
with gameplay semantics. As with DDA, this would ensure their generalization and
reusability.

5.4 Results and discussion

To evaluate our approach, we performed two user studies. We opted to use two
distinct sets of participants to investigate each of our PCG-based methods: time
context-driven and DDA. This not only avoids longer questionnaires, but also appeals
to the different characteristics of both user groups, as explained below.

5.4.1 Time context-driven PCG

In our first user study, 17 participants (college students) played several game sessions
and were interviewed. The goal was to define which parameter values (see Section
5.3) should be used in the generator, to guarantee a satisfying gameplay experience.
Participants played two different versions of the game (different sets of parameters),
and even re-played them by directly changing the parameters (available in these
versions interface). This resulted in choosing the set of parameters to use in our
second user study.

Since college students understand better the concept of limited time (when com-
pared to our second user group), participants also evaluated our context-driven PCG
approach. We performed a questionnaire to investigate the perceived value of our
context-driven PCG implementation. Participants were invited to choose the time
available for their game session, using a slider available in the game start menu.
Additionally they were briefed on the meaning of our time-based level constraint, i.e.
on the fact the game session would be generated to fit the requested time window.
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We asked participants to rate, from 1(less) to 5(more), how valuable they thought
this time context-driven generation was. Additionally, we asked them which type of
levels they would rather play again, on their mobile devices: time-based generated
levels or normal levels. 35% of participants ranked the value of time-based generation
as 3, another 35% as 4 and 30% as 5. 65% of the participants would prefer to play
time-based generated levels again, and 35% normal levels.

These results indicate the potential value in games that generate content in re-
sponse to a player-specified time context. All the participants, even the minority
which would not prefer this mechanism over traditional ones, recognized some posi-
tive value in this type of approach. It was clear from the interviews that everyone
saw multiple applications for this method, even beyond time constraints.

Finally, we decided to ask about the role of adaptive PCG when it comes to
comparing gameplay (scores, achievements). After explaining to participants to what
extent adaptive PCG was supporting this game, 58% of the participants found the
loss of gameplay comparison (between players) as important. This demonstrates that
this is an important issue needing to be addressed. Finding ways of normalizing
PCG-enabled gameplay and making dynamic game levels comparable (in terms of
gameplay) remains an open question that deserves future research.

5.4.2 Dynamic difficulty adjustment

In our second user study, we focused on assessing our DDA case study. 22 participants
(children between 6 and 12, visiting a science museum) played 7’s Wild Ride, using
the set of parameters discovered in the first user study. Data about their performance
was automatically logged and a short individual interview was conducted to assess
the DDA mechanism. Before each game session (3 minutes), players had to complete
a tutorial to learn the basic game mechanics: balancing and jumping. The children
selected for this user study were identified in loco as rather casual players with little
experience, thus with low commitment and skill.

Among other data, we logged the variation of the slope selection difficulty scale,
measured throughout the game session for all participants. From the analysis of the
collected data, we can identify two player categories: players without progression
(Fig. 5.4a) and players with progression (Fig. 5.4b). For players without progression,
the difficulty scale typically shifts a few units back and forth, between 1 and 3. For
players with progression, the difficulty scale gradually increases more or less linearly,
between 1 and 5. These patterns capture an underlying skill evolution, where players
improve (or maintain) their performance. As expected, players without progression
died more often (average of 6.72 deaths) than players with progression (average of
3.6 deaths), indicating this skill difference.

Challenge - We asked all participants to rate the challenge they felt throughout
the game, from 1 (less) to 5 (more). Answers are summarized below, in Table 5.1.

Challenge results for rate 3 seem to indicate that the game is balanced, an indicator
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(a) (b)

Figure 5.4: Variation of slope selection difficulty scale during the game session time, for all user study
participants. Two categories were identified: (a) players without skill progression and (b) players with skill
progression .

Table 5.1: Questionnaire ratings: game challenge and unfairness

1 (less) 2 3 4 5 (more)
Challenge 0% 0% 55% 41% 4%
Unfairness 9% 45% 23% 15% 9%

of a successful DDA mechanism. However, the remaining participants (45%) felt a
high degree of challenge. By correlating these answers with the two player categories
from Fig. 5.4 (Table 5.2), we find some explanations.

Table 5.2: Questionnaire ratings: game challenge

Players 1 (less) 2 3 4 5 (more)
without progression 0% 0% 73% 27% 0%

with progression 0% 0% 33% 56% 11%

This seems to indicate that participants rated the experience as more challenging
due to their improved skill progression and, consequently, to having reached higher
difficulty scale values. Similar results on the obstacle placement difficulty scale
confirm these observations.

Fairness - We asked all participants about the fairness of the game’s progression.
We wanted to detect whether the DDA mechanism was effective in providing the
most appropriate balance, in a non-obtrusive way. Participants were asked to rate
the unfairness felt throughout the game, from 1 (less) to 5 (more). Being children,
this concept was hard to explain. Therefore, this question was posed with a more
negative connotation (unfairness) than the challenge question, where participants
would assess frustration (or satisfaction) and injustice. The answers are summarized
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in Table 5.1.
These results show that the majority of the participants found the game either

fair and satisfying (rate 1,2) or balanced (rate 3). The positive/negative assessment
nature of this question seems to further confirm our previous findings: again, the
game seems balanced, an indicator of a successful DDA mechanism.

Further conclusions are observed if we correlate these answers with the two player
categories from Fig. 5.4. As shown in Table 5.3, for players without progression, 64%
rated the game fairness and frustration as 1,2 or 3 (fair, satisfying and balanced). For
players with progression, 89% rated the same way. This seems to demonstrate that: (i)
the majority of the participants is satisfied with the game balance of difficulty, and
(ii) this satisfaction is stronger for players with progression. With these results, we
observed that although gradual difficulty progression (Fig. 5.4b) implied a higher
degree of challenge, that actually lead to a higher degree of satisfaction. This seems
to indicate that the balance of difficulty to skill (DDA) was actually improved with
the integration of a context-dependent difficulty progression.

Table 5.3: Questionnaire ratings: game unfairness

Players 1 (less) 2 3 4 5 (more)
without progression 9% 37% 18% 18% 18%

with progression 11% 56% 22% 11% 0%

Nevertheless, and since we had hoped for a balanced challenge level, we also
made an effort to identify the reasons when that did not happen. We asked only the
participants who identified high challenge (rate 4 or 5) to justify their answers. Al-
though no one identified progression as the reason, 40% mentioned the new paradigm
of using the accelerometer as the game controller, and 60% identified the ”jumping
over obstacles” mechanics. Logged data seems to confirm these answers: (i) players
with jump issues died more performing jumps than everyone else (8.8 deaths to 7.6),
and (ii) players with control issues died more of lack of balance than everyone else
(6.25 deaths to 5.5).

Jumping seems to be a special case, deserving designers’ attention. The concerns
that it raised among players essentially relate to gameplay mechanics. In the game,
the snowball picks up an obstacle (see Fig. 5.3b) which attaches itself to the snowball.
To avoid the obstacle, the player has to jump on the snowball when the obstacle is
approaching from behind, as it rolls on. Participants who identified the jumping
as a challenge concern (and even others) often over-reacted by jumping as soon as
they saw an obstacle on the screen, before it attaches to the snowball. They were
mimicking behavior found in classic platform games, where the player character
simply jumps above obstacles. These results give valuable feedback on the design
of 7’s Wild Ride jumping mechanics, which might not be the most intuitive for some
casual players.



5.5. CONCLUSIONS 77

5.5 Conclusions

In this chapter, we proposed the integration of experience-driven and context-driven
PCG to support mobile adaptive game levels. We investigated this approach by
implementing time-constrained level generation and DDA in the game 7’s Wild Ride,
and evaluated it with two separate user studies.

Evaluation with users allowed us to conclude that our DDA mechanism can
accommodate for a variety of players and skills. It has the potential to adjust the
gameplay to different player categories (e.g. with and without progression), while
keeping it balanced and players satisfied. User study participants were receptive on
our context-driven PCG approach, to the point of valuing our time context-driven
level generation above traditional mobile game levels, clearly recognizing its useful-
ness in the mobile games domain. Furthermore, our results allowed us to observe
that the integration of context-driven PCG (specifically the gameplay progression it
implied) with DDA actually leads to an increase in player satisfaction.

We can conclude that these two modalities of adaptive PCG can work well together
in accommodating some of the characteristics of mobile gaming. The casual and
context-dependent nature of mobile gaming seems to naturally call for this integration
of PCG approaches, and we anticipate increasingly challenging research on this topic
in the near future.
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6
Authoring adaptivity in game world

generation

So far, current research on adaptive games has not sought to actively include game
designers in the creation loop. In our previous work, we focused on enabling the
control over adaptive game world generation. In this chapter, we extend our contri-
bution towards enabling designers to author adaptivity in game world generation,
in a more expressive and specific fashion. We propose the use of adaptation rules to
control adaptive game world generation. Adaptation rules are built atop gameplay
semantics to steer the on-line generation of game content. Designers create these rules
by matching sets of skill profiles, describing skill proficiency, with content descrip-
tions, detailing the properties of game worlds. Game content is generated through the
same matching and retrieval approach used in Chapter 3. We performed user studies
with both designers and players, and concluded that adaptation rules can provide
game designers with a rich expressive range to convey specific adaptive gameplay
experiences to its players.

Publication notice: The scientific content of this chapter was submitted for journal publication
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6.1 Introduction

Adaptive games are steadily becoming a focus of interest. As shown in Chapter
2, significant academic and even commercial work has been invested into games
that dynamically adjust their content or mechanics to better fit individual player-
dependent needs or goals.

However, current research on adaptive games is not concerned with actively
empowering game designers to author adaptivity. Most work focuses on successfully
establishing new methods for modeling the behavior of players or automatically
generating game content or mechanics, in an adaptive fashion [Lopes 11b].

Such advancements already provide a solid basis to finally consider designers as
part of an adaptive game creation loop. We are motivated to harness and integrate
designers’ specific knowledge into adaptive content generation methods. We believe
such rich design knowledge still has a role to play, when authoring more dynamic
games. Our goal is to contribute towards a design paradigm shift: from authoring one
gameplay experience by using geometry models and static content towards designing
multiple ones by using content generators. If appropriate and desired for the games
in question, game creators will not design standardized game worlds but rather sets
of instructions which will steer content generators, in-game, to dynamically create
personalized worlds.

In this chapter, our main contribution is a semantic model to enable designers to
author adaptivity in game world generation, in a more expressive and specialized
fashion. We use gameplay semantics to support designer control over procedural con-
tent generation (PCG) methods and its integration with player modeling techniques.
We build on top of our previous work to focus more on expressiveness and specificity
of the control over adaptive game world generation.

We propose the use of adaptation rules to steer fully on-line adaptive game world
generation. Designers specify these adaptation rules as matching sets of skill profiles
and content descriptions. Skill profiles are created and visualized as radar charts,
where each axis represents proficiency in a specific skill. Content descriptions allow
specification of game world characteristics, expressed in terms of semantic game
world entities. To support the use of adaptation rules, we implemented a new
generation method where semantic game world entities are retrieved for a given
input of a player model.

To demonstrate and evaluate our semantic model of adaptation rules, we imple-
mented adaptive game world generation in a case study of an existing game. For
this case study, we performed both design and play user tests, to assess whether this
method can effectively be used to author adaptive game world generation.

This chapter is structured as follows. In Section 6.2, we outline our semantic model
of adaptation rules and describe our generic generation algorithm. In Section 6.3, we
present the case study and detail how it was integrated with our semantic model. In
Sections 6.4, 6.5 and 6.6 we present and discuss the results of our user studies, before
outlining our conclusions and future work in Section 6.7.
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6.2 Authoring adaptive generation

In this chapter, as outlined in Section 6.1, we propose the use of adaptation rules
to author and steer fully on-line adaptive game world generation. One of the key
differences from our previous work resides in the authoring mechanism of such
rules. We no longer rely solely on Entika and its text and drag-and-drop interface, as
seen in Fig. 4.2 and Fig. 4.3. A more expressive, specific and intuitive method was
implemented for this purpose.

6.2.1 Semantic model: adaptation rules

Adaptation rules are responsible for encoding the knowledge of game designers, by
associating what they consider the most adequate game world characteristics to each
given player profile. Rules act similarly as the cases in case-based reasoning, i.e. as the
solution (the game world characteristics) to an observed problem (the player profile).
Designers can construct an adaptation rule by creating an instance of a skill profile
and associating it with a content description.

A skill profile groups a set of values for different players skills, where each one
is a proficiency measured in a certain skill scale. An example of a player skill can
be the ability to jump over platforms in Super Mario, measured by the percentage
of successful jumps. Player skill profiles are best visualized and created in a radar
chart, where each axis represents a specific skill. The shape of a skill profile is the
polygon created by connecting all skill proficiency values in a radar chart, as observed
in Fig. 6.1(a). If a certain instance of in-game player behavior, measured using these
axes, occurs inside that shape, we say the player belongs to that skill profile.

A content description is a set of quantitative characteristics specifying how specific
game world elements should look like. Examples include the gaps to be jumped on a
Super Mario level (their number or size) or even constraints over them (their order or
placement). A content description is also illustrated in Fig. 6.1(b).

As stated before, our new contributions focus on expressiveness and specificity of
the control over adaptive game world generation. Specificity stems from the use of
individual player skills (in skill profiles) and the open range of world entities that can
be used in a content description (any object that can be included in a game world).
Such range allows designers to create adaptation rules that can hold some highly
specialized and therefore personalized value. For example, again in Super Mario, an
adaptation rule can create more hardly accessible coins for a player who is excellent
at collecting them.

Expressiveness links not only to this open range of entities but also to the lack of
assumptions that our model holds. Our skill profiles make no assumptions on player
behavior or psychology, and allow designers to freely decide, for example, where and
when do beginners or experts stay on the scale. We also make no assumptions on the
value or characteristics that the world entities in a content description might mean.
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Content can be combined in any way to convey a desired experience, as intended by
a designer.

Adaptation rules, skill profiles and content descriptions build on top of our previ-
ous work. Adaptation rules are represented internally as semantic gameplay descrip-
tions, as proposed in Chapter 3. Skill profiles take the role of the preconditions of a
semantic gameplay description, and content descriptions take the role of the semantics
classes of a description. Unlike our previous work, semantic gameplay descriptions,
here adaptation rules, are created directly by designers, and not automatically derived
from classes labeled with gameplay semantics.

Skill profiles are represented internally by sets of player skill gameplay abstrac-
tions, as proposed in chapter 3. This data structure is already integrated within our
overall gameplay semantics model and allows for parameterization of skills with
proficiency values.

Content descriptions are represented internally by sets of semantic entities and
corresponding semantic attributes. These classes are part of the semantic model
proposed in [Tutenel 12] and already integrated with our gameplay semantics model,
as outlined in Chapter 3. Like in our previous work and in [Tutenel 12], each semantic
entity can have one or several geometric models that represent the geometry of that
entity. These models are helpful for game world generation based on synthesis of
game objects (e.g. as the layout solving in Chapter 4). As before, that is not necessarily
the only case: semantic entities can include (or be included as input for) algorithmic
procedures to generate the corresponding geometry. The research in this chapter
includes the latter case. Such semantic entities still fit the definition of: all information
about the game world and its objects, beyond their geometry.

Adaptation rules are created in a new design tool, expressively implemented for
this research. Fig. 6.1 illustrates the tool. This design tool builds on top of Entika and
it requires the previous creation of semantics for valid entities, attributes and player
skills abstractions.

6.2.2 Rule matching and retrieval

With adaptation rules, the goal is (i) to identify when they apply in an adaptive game
and (ii) to apply them to create an appropriate set of game content. Like in Chapter
4 and semantic gameplay descriptions, adaptation rules are the solutions for given
adaptation problems, as outlined by designers. Identifying when rules apply, i.e. step
(i) above, relies on the existence of a player model. As with our previous work, a
player model should be responsible for capturing and classifying player behavior
into a quantitative model. Significant changes in this model should reflect significant
changes in player behavior, thus identifying the need for game adaptation.

A player model is also responsible for steering the selection of which adaptation
rule(s) to apply, i.e. step (ii) above. This model, based on captured player behavior,
should be matched with the skill profiles in adaptation rules to identify: (a) if the
player is performing how a designer predicted and, (b) the content the designer
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specified as appropriate for that player behavior. Player models should therefore be
expressed (or converted) in the same skill axes as the skill profiles in the adaptation
rules. This allows an immediate matching process between the player model and
adaptation rules.

In our previous work, as explained in Chapter 4, semantic gameplay descriptions
are also matched against the player model and retrieved for use in content generation.
In semantic gameplay descriptions, player preconditions are used to specify to what
characteristics of a player a gameplay description applies. They are expressed as a
player characteristic (skills, preferences, styles) and an upper limit value (e.g. jumping
skill < y). We considered as a valid match all gameplay descriptions with player
preconditions which are a subset of the input features of a player model. In other
words, this meant that if a player is modeled as having proficiency value x in a
certain skill, all gameplay descriptions which include at least one precondition on
that same skill, and where x < y, are deemed as a valid match. The goal was to
maximize variability and emergence by recombining several valid semantic gameplay
descriptions.

For this research, we developed a new, and more powerful, matching method. The
motivation behind it was to simplify the creation process for designers while being
more certain about their intent, minimizing errors. When creating a rule, designers
should be as precise as possible, and only have in mind a certain player profile. In
Chapters 3 and 4, designers had to be aware that semantic gameplay descriptions
might apply to players who only partially matched its player preconditions. Unlike
before, we want to avoid forcing designers to be self-conscious that an adaptation rule
might apply similarly. Although the previous matching method was not incorrect, it
forced a more self-conscious design method. The following matching and retrieval
algorithm for adaptation rules was created:

Algorithm 6.1: Matching and retrieval algorithm

FindRules ( PlayerModel <S1, S2, S3, ..., SN>)
{

for every AdaptationRule r
Distance = CalculateEuclideanDistance ( S k i l l P r o f i l e ( r ) , PlayerModel ) ;
Axis = CalculateInclusion ( S k i l l P r o f i l e ( r ) , PlayerModel ) ;

i f ( Distance < MinD)
Selec tedRule1 = r ;
MinD = Distance ;

i f ( Axis <= MinA)
i f ( Distance < MinD2)

Selec tedRule2 = r ;
MinA = Axis ;
MinD2 = Distance ;

i f ( Se lec tedRule1 == Selec tedRule2 )
return Selec tedRule1 . Content ;

e lse
return ContentFrom ( SelectedRule1 , Se lec tedRule2 ) ;

}
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The input for matching and retrieving adaptation rules is a tuple< S1, S2, S3, ..., SN >
originated from a player model, where each item represents the proficiency value for
a certain skill. For each input, we calculate the euclidean distance (formula below)
between the input tuple and each tuple formed by the skill profile of each adaptation
rules. We also calculate a measure of inclusion of the input tuple in the skill profile,
by counting the number of axis where the corresponding value of the input is smaller
or equal than the value of the skill profile (CalculateInclusion).

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (6.1)

The initial idea behind this algorithm was to minimize distance and consider
inclusion only, as stated before: if a tuple occurs inside the shape of a skill profile,
the player belongs to that skill profile. However, we quickly decided on not making
any assumptions on what the designers might think is best: inclusion on the shape
of a skill profile vs. distance to that skill profile (even if the input behavior occurs
”outside”).

As such, our algorithm tries to find the adaptation rule with minimum distance
(in terms of skill axis values) to the input player model tuple. Furthermore, it finds
the adaptation rule with most axes with a value higher than the input tuple, and from
those, at a minimum distance. Fig. 6.2 displays a case where two different rules are
matched to an input tuple.

This method retrieves either one or two adaptation rules to apply at a given gen-
eration moment. If two adaptation rules are matched as valid, conflicting content
descriptions might occur, e.g. generate 10 coins vs. generate 20 coins. In these cases,
the method ContentFrom examines the content descriptions by observing if the same
semantic entity (e.g. coins) occurs in both. If that is the case, one of the semantic enti-
ties is randomly removed. This means that the resulting final content is synthesized
from merging the semantic entities of both rules (possibly with random removal).
We feel confident that merging and random removal will result in meaningful con-
tent, as intended by designers, because they will occur mostly between two ”close”
adaptation rules. Furthermore, it is likely that a single adaptation rule will occur
in a next generation moment. The resulting list of semantic entities, attributes and
relationships represent a set of instructions and constraints (with possible geometric
models attached) that will steer an in-game generator to create a game world, as
exemplified in the next section.

The rule matching and retrieval algorithm (Algorithm 6.1) calculates n Distance
and Axis values for each input player model value. This might raise some perfor-
mance concerns, especially with on-line generation, since it does not scale with the
number of adaptation rules. We believe this concern is not serious since we do not
anticipate the number of adaptation rules to be high (>50). In the study case of this
chapter, explained in the next section, we used on-line generation and a maximum



86 CHAPTER 6. AUTHORING ADAPTIVITY IN GAME WORLD GENERATION

Figure 6.2: A represents an example input player model tuple, and B and C represent the two adaptation
rules selected by the rule matching and retrieval algorithm. Rule C has the minimum distance to the input
tuple. However, values for for Skill 2 and 4 are higher than the input tuple. Rule B has a higher distance to
the input tuple, but all skill values are inclusive in the input tuple shape. To avoid assumptions on what is
best, both rules are selected and combined.

of 50 adaptation rules with no performance issues. Furthermore, we anticipate that
any future performance problems could be fixed with pre-computing (before game
release) and indexing all distance values, for each adaptation rule, with all possible
(typically discrete) player model values.

6.3 Case Study: Achtung Die Kurve 3D

To demonstrate and evaluate the contributions of this chapter, we integrated adap-
tation rules in an existing game, thus making it adaptive. For this case study, we
experimented on a new technical domain, not yet tested in previous chapters: a 3D
graphics-based game, with full on-line PCG, and as such, on-line adaptivity. Our aim
was to demonstrate that, atop our previous contributions, gameplay semantics can
also be applied to effectively support and control adaptive generation in this technical
domain (3D and online).
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6.3.1 Achtung Die Kurve 3D

Achtung Die Kurve 3D 1 is the game we chose to use as the case study for this chapter.
As illustrated in Fig. 6.3, this is a third-person 3D version of the classic Blockade
or Achtung Die Kurve games. In this game, players spawn at random places on a
maze-like playing field composed of multiple floors connected by ramps. They keep
growing ahead at a constant speed, using only left and right keys to control trajectory,
until they crash. The goal is to survive and be the last one standing. Players leave
a solid tail behind their moving head as they progress through a level. Crashes can
occur when players collide with: their own tail, other players’ tails, obstacles, floor
edges, and ramp limits. As seen in Fig. 6.3, power ups can spawn at random places
and be collected by the players. Power-ups are a combination of a target (self, only
others, all) with a type (increase speed, decrease speed, turn harder, turn softer, switch
keys, no tail, thicker tail, thiner tail and clear all tails, all with a temporary effect) and
are visually identified using a color and icon system.

For this research, we implemented a modification of the original Achtung Die
Kurve 3D. Our modification is a single player game, where the human player tries to
reach the highest floor possible. Upon crash, the player tries again. Each new floor is
generated automatically when the player enters a ramp and floors can be generated
indefinitely. Opposing players are AIs who are constrained to the floor they spawn in,
only trying to kill the human player.

For our modification2, we implemented the following changes in the original game:
(i) we changed the scoring system from highest score on the number of surviving
game sessions to highest score in cleared floors, (ii) we extended the AI behavior to
avoid entering ramps, and (iii) we added the feature of different ramp widths (before,
only a single fixed width was possible). Finally, our biggest changes were in the
generation algorithm.

6.3.2 Floor generation

In the original Achtung Die Kurve 3D game, an off-line generation algorithm is re-
sponsible for creating a game world with 3 fixed-sized floors. This ad-hoc algorithm
uses a three-dimensional matrix (n x m x k) to represent the game world, where each
n x m matrix represents a floor. Each entry in this matrix represents a unit-size cell
in the 3D environment. Matrix entries can represent: empty cells, obstacles, ramps,
power-ups and AI spawn points. Microsoft XNA geometry primitives and shaders
read this matrix and draw the game world accordingly. Before the game starts, the
matrix is stochastically generated for a fixed requirement on the number of game
world elements. At runtime, power-ups are stochastically generated in the matrix,
according to a fixed time frequency.

1http://graphics.tudelft.nl/ mkt4/2011/groep7/
2A video of our modification of Achtung Die Kurve 3D can be observed in http://rlop.es
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(a)

(b)

Figure 6.3: Achtung Die Kurve 3D game. In (a), notice the player’s green tail, on the left, the white and blue
AI enemies, power ups on the right, and ramps and obstacles ahead of the player. In (b), a tower of stacked
floors was generated online, as the player progressed through the level

For our modification, we changed most of the matrix generation algorithm to
support on-line PCG. We changed the inner representation of a three-dimensional
matrix to a stacked list of matrices, with each new matrix being generated when a
player enters a ramp. Each matrix (i.e. floor) can have n x m dimensions, different
from the previous one. Each floor has only one entry, provided by the ramp used by
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the player to enter it. This entry is randomly placed in the generated floor. Ramp
generation was extended to accommodate different widths, with the shader and
collisions implementation changed accordingly.

Finally, we changed the stochastic nature of matrix generation to a more controlled
method. Constraints have to be declared for each generated floor, typically describing
number, type and placement of content. Sequential constraint solvers were imple-
mented for the generation of: matrix (size), ramps, objects and AIs. In Sub-section
6.3.4 we discuss the format of these constraints in more detail.

6.3.3 Player model

As discussed in Chapter 3, an adaptive game requires a player modeling algorithm
to capture the player’s behavior. Furthermore, as discussed in Section 6.2, a player
model is responsible for providing the matching input for retrieving adaptation rules.
We designed and implemented a skill-based player modeling method for Achtung Die
Kurve 3D.

Since our main focus is on authoring adaptive generation, we defined a clear
set of design principles for our player model: (i) simplicity, and (ii) intuitiveness
in matching to skill profiles. An investigation on more complex player modeling
methods and its (comparative) effectiveness is beyond the scope of this research.

Our player model was inspired by the concept of experience points through
practice, as observed in RPGs (e.g. Skyrim [Bethesda Game Studios 11]). The player
model captures six individual players skills, on: (i) ramp use, (ii) obstacle avoidance,
(iii) floor edge avoidance, (iv) power up selection, (v) AI defense, (vi) AI offense.
We chose these six skills in order to capture all individual player behavior we could
identify. Player behavior was identified by the observed in-game player actions
(avoid, crash, use, kill), with relation to all content. Each skill is measured into an
individual proficiency scale. The following algorithm illustrates how:

Algorithm 6.2: Player Model algorithm

PlayerModel ( Event e , Target t )
{

i f ( e == Avoidance )
i f ( t == o b s t a c l e )

sk i l lObstac leAvoidance ++;
i f ( t == floorEdge )

ski l lFloorEdgeAvoidance ++;
i f ( t == AI )

s k i l l A I d e f e n s e ++;

i f ( e == Use )
i f ( t == ramp )

skillRampUse ++;
i f ( t == PowerUp ( help , s e l f ) | | t == PowerUp ( harm , others )

sk i l lPowerUpSelect ion ++;
i f ( t == PowerUp ( harm , s e l f ) | | t == PowerUp ( help , o thers )

ski l lPowerUpSelect ion−−;
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i f ( e == Crash )
i f ( t == ramp )

skillRampUse −= 1∗ConsecutiveCrashes ( t ) ;
i f ( t == o b s t a c l e )

sk i l lObstac leAvoidance −= 1∗ConsecutiveCrashes ( t ) ;
i f ( t == floorEdge )

ski l lFloorEdgeAvoidance −= 1∗ConsecutiveCrashes ( t ) ; ;
i f ( t == AI )

s k i l l A I d e f e n s e −= 1∗ConsecutiveCrashes ( t ) ;
s k i l l A I o f f e n s e −= 1∗ConsecutiveCrashes ( t ) ;

i f ( e == Kil l )
i f ( t == AI )

s k i l l A I o f f e n s e ++;

return <skillRampUse , ski l lObstac leAvoidance , ski l lFloorEdgeAvoidance ,
ski l lPowerUpSelect ion , s k i l l A I d e f e n s e , s k i l l A I o f f e n s e>

}

This player model increases or decreases an absolute proficiency value for each
of the six skills. If a player is successful in avoiding a crash into a specific type of
content, the corresponding skill is incremented. Successfully using ramps or killing
AIs increases the corresponding skills. Power-up use detects if the used power up
had a positive or negative effect for the player’s success and increases or decreases
the corresponding skill accordingly. Finally, crashing into a specific type of content
decreases the corresponding skill (with no negative skill values though). However,
that decrease is proportional to the number of consecutive crashes into the same
content type.

For this player model, we implemented the detection of all these in-game events,
which was not present in the original game. The occurrence of each event fires an
update to the player model. Furthermore, each event is being persistently registered
in a individual log file.

Our player model presents some noteworthy issues. Its reliance on absolute
proficiency values (and not in, for example, percentages) is more effective and simple
in capturing absolute practice proficiency. However, just as its inspiration, RPG
experience points, it requires an elementary understanding of how its values are
affected to grasp the meaning of an individual value. Furthermore, our player model
makes the assumption that consecutive crashes (or deaths) of the same type strongly
capture, in a linear fashion, a decrease in the corresponding skill.

6.3.4 Integration with adaptation rules

Integration with our semantic model of adaptation rules was required to make
Achtung Die Kurve 3D adaptive. Three integration steps were needed: player model,
generation parameters and the design tool for authoring adaptation rules.

The player model is responsible for invoking the algorithm for adaptation rules
matching and retrieval (Section 6.2). In this case, the simplicity of the player model
allows us to easily match it with adaptation rules, since they will use the same six
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skills in their skill profiles. This means the input (a player model tuple) directly
matches with one or more skill profiles.

A matched adaptation rule will specify semantic entities and attributes in its
content description. For Achtung Die Kurve 3D, we decided on the following semantic
model:

• Floor entities have Width and Length attributes

• Ramp entities have Quantity, Width and Placement attributes

• Obstacle entities have Quantity, Type and Placement attributes

• PowerUp entities have Frequency, Action, Type and Placement attributes

• AIs have Quantity and Placement attributes

The non-numerical attributes require further explanation. The Placement attribute
constrains the location to assign to that entity. It can hold three possible values: close
to player, distant to player or random. The Obstacle Type attributes refers to specific
Achtung Die Kurve 3D content, where obstacles can be an individual block (cells),
a line, or stacked lines. As for PowerUps, Action refers to its positive or negative
effect (help, harm or random) and Type to the target (self, others or random). As for
numerical attributes, they can be expressed as either a fixed value or an interval, from
which a random fixed value will be selected in-game.

This type of attributes determines that each adaptation rule can return, in its
content description, several configurations of entities and attributes. This includes
configurations using the same entity. For example, a content description might
include 2 ramps of width 1 and 1 ramp of width 2. Furthermore, for this research we
considered AIs as a specific piece of content, able to be generated. We felt this was a
reasonable assumption since we are not changing (i.e. adapting) AI behavior but only
its instantiation.

The floor generation algorithm, as described in sub-section 6.3.2, was implemented
to accommodate the control constraints from the semantic model above. In other
words, the input parameters of the generator are expressed in the same vocabulary
and are able to steer it to create a floor with the specified characteristics. The placement
constraint in the generator includes a hard-coded limit, proportional to the floor size,
to determine between close or distant to player. As for power-ups, positive or negative
effects are randomly mapped to specific ones: increase speed, decrease speed, turn
harder, turn softer, switch keys, no tail, thicker tail, thiner tail.

An important aspect of this generator is its behavior in the absence of input
parameters. In this case, the input parameters of the previous floor are re-used, on an
individual semantic entity base. For example, if the input parameters are missing only
the floor size, the previous values are used.

Finally, the design tool for creating adaptation rules was enriched with a semantic
model that included the six matching player model skills and the semantic entities
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and attributes above. Using the tool’s interface, see Fig. 6.1, designers can use this data
to create adaptation rules by instantiating and shaping skill profiles and associating
each of them with content descriptions. This semantic data is stored in a persistent
database. This means that each instance of a database (i.e. a rule set) supports an
instance of a different adaptive version of Achtung Die Kurve 3D. Upon start-up,
the game loads all the rules from the database into memory and the matching and
retrieval algorithm is ready to act.

6.4 Designing adaptive generation

In this chapter, we proposed adaptation rules, a generic semantic model that enables
game designers to author adaptive game world generation, with a stronger expressive
power and specificity than before. In the following sections, we assess its contribu-
tion by evaluating both the expressive and the specificity range of our authoring
mechanism.

Our research question was to investigate whether game designers can control
adaptive game world generation, in an expressive and specific way, to create a desired
user experience, i.e. an adaptive gameplay experience. To evaluate our approach, we
asked game designers to create a range of adaptive gameplay experiences in Achtung
Die Kurve 3D. We then performed player testing in each of the created versions of
the game, asking players about their user experience and logging their performance
data. The goal was to discover if the players’ experience matched with the designer’s
intent.

For the design experiment, our goal was to consider a wide range of different
adaptive versions of Achtung Die Kurve 3D while still maintaining control and com-
parability within our experiments. For this, we selected 3 game designers, each of
them tasked with creating the same set of 3 different adaptive versions of Achtung Die
Kurve 3D. In the end of our experiment we had 9 different adaptive versions of the
game.

The selected designers had amateur experience with game design and significant
background in game technology, game development and content generation. They
were all experienced gamers. The idea was to minimize the impact that professional
pre-conceived design strategies might have in the experiment.

The 3 designers were asked to use our design tool to produce the following 3
variants, pertaining to 3 adaptive gameplay experiences:

• Game 1: Design a game that adapts to the player’s skills, always maintaining a
low challenge level;

• Game 2: Design a game that adapts to the player’s skills, being easy to learn
and hard to master;
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• Game 3: Design a game that adapts to the player’s skills in the most balanced
and fair way;

Participants were instructed to design each gameplay experience for a typical 15
minutes game session. They were also advised to, faced with each task, be as specific
or expressive as they wanted, by choosing to focus on the skills and content they
deem as fit.

Each design session, comprising of the 3 variants, included: (i) demonstration of
the game, (ii) explanation of all the concepts in this chapter, (iii) demonstration of the
design tool, (iv) training with the game and the design tool, (v) iterative loop between
designing adaptation rules and testing the resulting game, per task. Before (v), users
were instructed to play a non-adaptive version of the game, for 15 minutes, to grasp
and reflect on the evolution of the player model (always visible in this version).
We observed all design sessions, providing support and engaging in open-dialog
interviews.

6.4.1 Results

Fig. 6.4 (a to c) illustrates the skill profiles that all designers (A, B and C) created for
for each game. They correspond to all adaptation rules created in theses experiments.

Designer A was fairly consistent throughout its games, by creating adaptation
rules with similar skill profile shapes. This user focused on variation of all skills in a
consistent manner, except for power up selection, which was ignored as a relevant
skill. This designer increased the number of adaptation rules, using 4 in game 1, 6 in
game 2 and 10 in game 3.

As for designer B, he varied the most between different games. In game 1 he chose
to focus only on the ramp use skill, using 5 different adaptation rules. In game 2 he
extended his focus on ramp use by also considering the obstacle selection skill, in
6 adaptation rules. In game 3, designer B focused on all skills except for floor edge
avoidance and power up selection, using 11 adaptation rules.

Designer C was fairly consistent, using fairly similar shapes throughout its 3
games. For the first 2 games, and like designer A, this designer focused on all skills,
except power-up selection. However, the shapes of the skill profiles are substantially
different between both designers, since they are determined by the different used
values in each skill axis. On game 3, designer C chose to only focus on ramp use,
obstacle avoidance and AI defense.

Figs. 6.5 to 6.7 illustrate the content descriptions that were used for each of these
skill profiles. Each figure shows how the content, i.e. each semantic entity, corresponds
to each skill profile. The attributes of each entity (x axis) correspond, from left to
right, to the skill profiles of the corresponding Fig 6.4, from the inside to the outside.
Regarding Floor and Ramps, each first attribute maps to its second corresponding
attribute. So, for example, in Fig. 6.5, for the first adaptation rule (most inner rule for
designer A, in Fig. 6.4) and for the Ramp entity, a configuration of 4 ramps of width
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(a)

(b)

(c)

Figure 6.4: Skill profiles created for: (a) Game 1, (b) Game 2 and (c) Game 3, by all 3 designers (A, B, C)



6.4. DESIGNING ADAPTIVE GENERATION 95

2 was declared. In these figures, a single point represents a fixed value, whereas an
interval determines that a random value will be selected within that interval.

(a) Game 1

(b) Game 2

(c) Game 3

Figure 6.5: Content descriptions created by Designer A. Squares represent ”Distant to player” placement
constraints and circles represent ”Close to player”. Crosses and intervals represent random placement.

Using these content descriptions, we can observe how designers created specific
features for their adaptive games. For game 1, designer A chose to focus more on
ramp and obstacle variation. Power ups and AIs vary little between adaptation rules.
Size changes, but with a narrower noticeable variation. For game 2, besides slightly
increasing the overall number of AIs, this designer maintains its attention to ramps
and obstacles. In this game, when compared to game 1, the variation for both entities
is wider. For example, for obstacles, rules for less skilled players include less obstacles
than in game 1 and rules for more skilled players include more. Additionally, floor
size variation has a more noticeable impact than for game 1. For game 3, designer
A created more rules, and chose more gradual and wider variations on all types of
content, including power ups (with a gradual decrease of helpful power ups, and
increase of harmful ones).

Designer B did not consider power ups in any of his games. For game 1, the
designer used not only slight changes in how the content evolved, but also lower
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absolute values than the other designers. This is apparent in the absence of AIs
in the first adaptation rule, and a variation of only the position of one AI in the
following ones. For game 2, this designer chose to maintain a lower focus on AI
variation, keeping it at low absolute values, and drastically change the way floor
size and ramps varied. Obstacles still have an influence in this game, but they were
made to be appropriate to the floor size in question, except for the adaptation rules
for high-skilled players. In game 3, designer B created a very gradual adaptive
experience. With more content descriptions, the designer used them to slowly insert
slight variations at a time, typically changing only one aspect with each adaptation
rule (e.g. increasing one AI at a time).

(a) Game 1. The emboss symbol in Ramps represents a ”Distant to player” placement.

(b) Game 2

(c) Game 3

Figure 6.6: Content descriptions created by Designer B. The same symbols from Fig. 6.5 apply.

Designer C used less adaptation rules than any of the other designers. His games
typically used a less wide variation in terms of content. In game 1, the designer
changed the content very little, keeping it in a narrow variation interval. Even ramps
can be more or less constant, due to the intervals used in ramp quantity in the first
and third rule. The only noticeable specific aspect resides in a higher variation in AI
quantity and position. For game 2, floor size and ramps changed the most drastically
between rules. Obstacles and AIs also vary but using slightly overlapping attributes,
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when considering adjacent adaptation rules. For example, in AI quantity, we could
observe an increment of 2, 3 and 3 in the lower skill profiles. For game 3, designer C
focused more on gradual, specific changes on all attributes for ramps, obstacles and
power ups. Floor size and AIs only change in the lowest and highest skill profiles.

(a)

(b)

(c)

Figure 6.7: Content descriptions created by Designer C. The same symbols from Figs. 6.5 and 6.6 apply.
Additionally, intervals with a cylinder-like effect represent ”Close to player” placement.

The following table summarizes what is most specific in each game, in terms of
content descriptions, by detailing the semantic entities that change most frequently
and with higher variation.

6.4.2 Discussion

The results of the design experiment (Figs. 6.4 to 6.7) allow us to report on the
expressive range offered by our approach. Even asked for the same 3 variants,
3 different participants were able to design them in significantly different ways,
resulting in 9 games with easily recognizable differences.

Skill profiles were able to offer flexibility at capturing the designers’ desired intent
for player characteristics. Designers A, B and C created significantly different shapes
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Table 6.1: Content descriptions: specific focus in terms of semantic entities variation

Game 1 Game 2 Game 3

Designer A Obstacles, ramps Floor size, obstacles,
ramps

Everything
(gradual)

Designer B Everything (slight) Floor size, ramps
(drastic changes)

Everything (very
gradual, one entity

or attribute at a
time)

Designer C AI Floor size, ramps Ramps, obstacles
and power ups

for their skill profiles. This was possible not only through a focus on different skill
sets (e.g. notice the difference between designer A and B in game 2) but also due
to the use of different values in each skill set. Furthermore, designers were able to
experiment with different skill profile shapes between their own 3 different games
(e.g. designer B and his 3 games). The concept of absolute values in the player model
(as explained in section 6.3) was easily understood by designers. The selection of
these values was made with certainty, with designers projecting the different desired
player classes. However, in this type of experiment, the chosen values are influenced
by the individual play testing (by designers) and by their assumptions about their
”target audience”.

As for content descriptions, they were able to offer an expressive range for design-
ing 9 distinct games. As observed in Figs. 6.5 to 6.7 and Table 6.1, different designs
naturally emerged from the variation offered by semantic entities and attributes, even
within the same task. We argue that this is not only a result of the varied content,
available to be combined, but mainly of the expressive power in the concept of adapta-
tion rules. A good example is game 3, with: (i) designer A using all available content
for very gradual but wide variations, (ii) designer B creating an adaptive experience
where only one type of content varies at a time, very gradually, and (iii) designer C
focusing on specific content (ramps, obstacles, power ups) on a narrower interval of
variation.

Regarding specificity and the design experiment, it links with the available ex-
pressive range of our tool. As observed in Table 6.1, adaptation rules are a valuable
tool to construct specific and recognizable features in an adaptive game. Designer B
is the best example for this: in game 1 he chose to specifically focus only in the ramp
use skill (Fig. 6.4(a)), and in game 3 he created a very particular content variation,
already explained above. However, none of the designers chose to construct more
complex specific adaptation rules, as we originally envisioned them. For example,
combining several individual skills with individual semantic entities (e.g. ramp use
skill variation resulting in ramp generation variation). The lack of this type of rules
might be explained by the limited time of the (single session) design experiment and
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the heavier authoring burden of performing them.
Design sessions lasted for 3 to 4 hours, and we were able to gather several valuable

observations and comments. Designers considered the design tool very expressive
and were able to identify several ways of performing the assigned tasks, beyond their
own designs. They were fully satisfied with their own designs. They spent most of
the time exploring the tool’s expressiveness and planning their designs. Typically,
we observed that they chose to limit themselves in their designs to prevent dealing
with an information overload for the time given. Furthermore, all designers enjoyed
the intuitiveness of the radar chart polygons. One specific designer was very pleased
with the lack of assumptions in our approach and its low level control (i.e. beyond,
for example, pre-defined beginners vs. experts cases).

Overall, the design experiment allowed us to conclude that adaptation rules were
able to provide an expressive and specific means to effectively capture the designer’s
intent in authoring adaptive game world generation.

6.5 Assessing adaptive gameplay

For the player experiment, our goal was to investigate if a desired adaptive gameplay
experience could be conveyed through adaptation rules. The experiment consisted in
play testing all the 9 previously designed variants of Achtung Die Kurve 3D, inquir-
ing players about their experience and logging their performance data. To capture
meaningful data, we considered 3 players per variant, thus performing tests with 27
players.

Each play session consisted of: (i) brief explanation of the game and its generative
nature, (ii) brief training session with the game, lasting typically 2-3 minutes, (iii) play
testing one of the games for 15 min. At the end of the session, players were requested
to:

1. Plot how challenge/difficulty evolved over the time they played;

2. Answer the question: Can you tell me specific level features you felt changed while
you played and how?

Players were asked to plot the perceived challenge over a grid representing the
total game session time (x axis), with a minimum challenge of 0 and maximum
challenge of 5 (y axis). Our aim was to match those plots with the desired adaptive
gameplay experiences, as created by designers and see if, how and why they differ.
Furthermore, we posed the second question above to confirm if the specific features
of the adaptive game, as desired by designers, were easily felt by the players. We
registered all the in-games events and player model values in individual log files, to
correlate and support our user studies.
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6.5.1 Results

Fig. 6.8(a) to 6.8(i) illustrate the results of the play test, for each player and each game.
Each figure refers to a single game and includes the perceived challenge, as plotted
by each of its 3 players. Below this, each figure also includes a time line plotting each
instant where a crash occurred for each player. From all the logged performance data,
we considered this to be the better measure to illustrate how challenge evolved over
time and, as such, the better measure to correlate with each plotted line.

We registered all the players answers to question 2. Players were typically ex-
pressive in their answers, finding no difficulties in identifying level features. The
table below summarizes these answers by focusing on which semantic entities were
identified as the changing level features. We also asked how they changed, although
this was a mere psychological mechanism to force reflection and therefore identify
semantic entities. All the answers largely correlate with the plotted challenge lines,
with players referring to increases and decreases of semantic entities.

Table 6.2: Variation of specific level features, for each game and designer, as perceived by players. They
typically refer to quantity or size of the semantic entity. If an attribute is between brackets, the player
additionally identified it as a varying feature.

Game 1 Game 2 Game 3

A ramps obstacles
ramps,

obstacles
(position)

ramps,
obstacles

(both
drastically),
power ups

floor size,
obstacles,

power ups
(type)

obstacles
(positions),
floor size,

ramps,
power ups

(type)

ramps, AIs,
obstacles

AIs, ramps,
floor size,

power ups
(type)

floor size,
AIs,

obstacles

B
ramps

(width), AI
(position)

obstacles
(position),

AIs

AI
(position)

floor size,
ramps

ramps,
obstacles

(both
drastically),
floor size,

AIs

floor size,
obstacles

empty in
beginning;

ramps,
obstacles,

AIS
(slowly)

ramps
(position),

AIs
(slowly)

obstacles
(position),

AIs
(smarter)

C

AIs
(smarter),
obstacles

(type),
ramp

(width)

AIs
(position),

ramps
(width)

AIs
(smarter)

floor size,
ramps,

zero power
ups

ramps,
obstacles

(both
drastically)

ramps
ramps,

power ups
(type)

obstacles
(position),

ramps

ramps,
power ups

(type)

6.5.2 Discussion

The results of the player experiment (Figs. 6.8(a) to 6.8(i)) enable us to assess if the
designers intended adaptive experiences were conveyed by adaptation rules and
perceived by players as desired.

Overall, the challenge plots show that adaptivity is working and that the game is
responsive to the players’ performance. Typically, challenge does not remain constant
throughout large periods of the game, but increases and decreases in alternate periods.
The length and frequency of these periods and the range of the challenge varies per
player and per game, but the plots show that the game offers a personalized dynamic
challenge. This is visible even in game 2, a game with a clear tendency for gradually
increasing challenge, where each increase step still includes some challenge variation.
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The exceptions for this behavior are player 2 and player 8. When observing player 2, it
was noticeable that this version of game 1 (overall low challenge) eventually became
too easy for the improving player, who became visibly bored with the experiment.
We conclude that such boredom influenced his plot. Player 8 will be explained below.

These plots also show that the player perceived gameplay experiences match with
the intent of the game designers. All versions of game 1 illustrate an adaptive game
with a dynamic challenge variation, while keeping it at a low overall value. This is
more evident if we compare the range of the challenge variation in all games 1 with
games 2 and 3: most of the time is spent between challenge values 1 and 3.

In contrast, all versions of game 2 show a gradual increase in challenge, with most
time spent in the higher values (between 3 and 5). This fits with the designers intent
for game 2. An analysis of the created content (Figs. 6.5 to 6.7) shows that the task
”easy to learn, hard to master” was interpreted by all designers as a game which is very
easy for players with lower skills and extremely hard for players with higher skills.

Game 3 offered the most diverse results. This game was intended as the most
possible balanced and fair game, and, because of that, able to best accommodate all
types of players. With the exception of designer B (explained later), the versions of
game 3 show a diverse challenge variation behavior (with values varying between 1
and 5) with no obvious tendency. Our conclusion is that these games encourage and
accommodate a wide range of differently skilled players. For example, in game 3 for
designer C, player 26 seems to quickly reach the top of his skills and is faced with
higher challenges (subsequent failures result in a drop in challenge) while players 25
and 27 took more time to reach higher challenge levels.

Comparing these plots with logged data on crash time instants can confirm these
insights. Our interest is in showing different tendencies in challenge variation, since it
is not accurate to match an exact timeline (crash events) with a subjective one (user
perceptions of challenge). The data on all versions of game 1 shows less crashes than
any of the other games with a slight increase towards the middle of the experiment.
Data on all versions of game 2 shows more crashes than any of the other games. They
distribute with a lower concentration in the beginning of the game and a very high
concentration towards the end. As for game 3, data is more diverse and does not
show a clear tendency in the amount of crashes. However, its distribution seems to
be more regular across all the timeline and, as with the remaining games, correlates
with the perceived challenge, validating the observations in the previous paragraphs.

Some of the results require further analysis, since they are exceptions to these
observations. In game 1 of designer A, both player 1 and player 3 peak (around
the same time) at a challenge value of 4, a surprisingly high value for a version of
game 1. This is easily explained by looking at the design data (Figs. 6.5 to 6.7).
Game 1 of designer A is clearly the most difficult version of all games 1, with a much
higher amount of obstacles, especially when correlated with the decreasing floor sizes.
Furthermore, his skill profiles for this game are the smallest for all games 1 (Fig. 6.4),
showing that it is easier for players to reach higher levels of challenge. Never the less,
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our observations are still valid, since designer A created his games 2 and 3 following
on his game 1 design. As explained before for player 2, in this game we also found a
complete mismatch between overall challenge and player natural skill. The same can
be observed for game 1 of designer C and player 8. In this case, the player crashed
very little in the beginning, playing for a lot of time without dying. During play
test, we observed that when challenge actually increased, the player and his lack
of skill could not cope with that slight but sudden change. Although we observed
that challenge would also slightly decrease with his now worse performance, the
significant psychological shock between the two phases of his play hindered his
perception and influenced his ”binary” answer.

Another exception is game 3 of designer B. As explained before, this game features
a very gradual adaptive experience, where slight variations are inserted at a time,
typically changing only one aspect with each adaptation rule (e.g. increasing one AI at
a time). The specificity of this game, as observed in Fig. 6.8(h), allowed players to have
a perfect consistent learning curve, with gradual challenge increase. Whereas the
other games 3 show that they can accommodate different player types, this version
shows a more balanced, linear form of challenge increase, especially when compared,
for example with versions of game 2.

From these results we can conclude that the adaptation rules were effective in
enabling individual players to experience the desired challenge fluctuations, either
for maintaining a low challenge level, enabling a steep increase from low to high, or
keeping a balanced fluctuation. The players’ answers and gameplay data typically
matched with what was expected and what was designed for each game. We conclude
that the adaptation rules’ expressive range can be effectively shaped by designers to
author desired adaptive gameplay experiences.

Furthermore, from comparing Tables 6.1 and 6.2, we can observe that the specific
features (variation in a type of content) of each game were easily felt and identified by
players. All the players mentioned at least one of the specific features we identified
in Table 6.1. For the players that mentioned more than these, the extra identified
features were still correct. If we correlate those extra features with Figs. 6.5 to 6.7,
we can observe that variation still occurs, albeit in a less drastic manner. Finally, by
joining, per game, all player answers from Table 6.2, all specific features are covered.

6.6 Generalization

Encouraged by these results, we believe that the semantic model proposed in this
chapter is highly generalizable. In this section we discuss the inherent features of our
model that support such generalization (as well as its limits).

As mentioned before, adaptation rules make no assumptions on how skills are
linked to content. For example, there is no obligatory number of rules or skill profiles
nor is there a minimum or maximum amount of content that should be specified for
each one. This lack of assumptions means that the authored associations between
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player behavior and game world content can be applied to any domain designers
deem as valid. As such, this model is generic enough to be applied to any game genre
where content generation can be considered an effective way of influencing gameplay.

Furthermore, the underlying building blocks supporting adaptation rules, i.e.
player skill gameplay abstractions, semantic entities and semantic attributes, can all
be created by designers to represent a certain domain of player skills and game world
content (e.g. coin collection skill and coin entities). This means that adaptation rules
can be as generic as the freedom to create such building blocks, i.e. as generic as its
underlying semantic model [Tutenel 12]. The authoring effort to create these building
blocks is outweighed by its potential for reusability. For example, power up entities
can be used in many games, like Achtung Die Kurve 3D or Super Mario, its sequels or
any game where power up generation is useful.

Skill profiles can be composed of any type and number of player skills. With no
limitations on the number of the axes (or dimensions) of a skill profile, the model is
generic enough to capture from the simplest to the most complex multi-dimensional
behavior. However, skill profiles and underlying player skill gameplay abstractions
are limited by: (i) its representation as a a scale of proficiency quantitative values and
(ii) its matching to the skills measured by a player modeling algorithm to include in
the game.

An additional limitation of our model resides on its dependency on skills. How-
ever, such limitation is weak and only exists since we decided to focus on skill-based
games. This could be easily improved in the future since skills are only represented
by a name and a proficiency value. Such representation could be used to capture
player preferences, styles or other analogous features.

Content descriptions include combinations of semantic entities and attributes,
which can represent a variety of types of content, e.g. any materials, parts, objects,
spaces, scenes or worlds. As mentioned before, this means that content descriptions
are as generic and powerful as its underlying semantic model and its authoring
freedom, which were found to be considerably high [Tutenel 12]. Nevertheless, the
potential for content descriptions is dependent on the existence of a specific generation
algorithm, which can realize the semantic entities and attributes into a specific game
world, e.g. the Achtung Die Kurve 3D floor generator.

A valid issue to raise is how our contributions relate to the burden of authoring
adaptation rules and a compatible specific generation algorithm vs. the burden of
authoring a single adaptive generation algorithm every time it is needed. Through
its semantics nature, our approach enables reusability, where the semantic model
and adaptation rules can be recycled in games with the same domain and (player)
features. A typical example is the case of game sequels. More importantly, and as
observed in our design experiments, adaptation rules enable an iterative loop between
designing and testing, with no programming involved. Game designers can now test
and experiment with controlling adaptive generation without the need to go back
into the source code every time they need.
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6.7 Conclusions and future work

In this chapter, we proposed the use of adaptation rules to author adaptive game
world generation. Adaptation rules are built atop gameplay semantics to steer the on-
line generation of game content. Designers create adaptation rules by matching sets
of skill profiles, describing skill proficiency, with content descriptions, detailing the
properties of game worlds. Personalized dynamic game worlds are generated through
a matching and retrieval algorithm where designer-specified content descriptions are
selected for a given input of a skill-based player model.

We integrated this approach in a specific game, Achtung Die Kurve 3D, and perform
both design and play user tests. Through our design test results, we concluded
that adaptation rules can provide game designers with a rich expressive range to
control the adaptive generation of game worlds. This control over the dynamic
and responsive generation of content can enable designers to author adaptive user
experiences. Furthermore, this rich expressive range provides the freedom and the
tools for game designers to be as specific in their intent as the existing skills and
content allow them.

Through our play tests, we concluded that adaptation rules are effective in con-
veying the designed gameplay experience to players. We concluded that adaptation
rules can provide a match between design and play, where the perceived and logged
adaptive gameplay experiences correspond to the designers intent.

Through our case study and subsequent reflection on our method, we also iden-
tified its potential for generalization. Its lack of assumptions and the freedom in
authoring a semantic model, both allow that this method can be easily adopted in a
variety of game genres, as long as content generation can be used as an adaptation
mechanism.

As for future work, we see room for various improvements. Regarding skill profil-
ing in adaptation rules, we think that it would be interesting to add the possibility of
weighing individual skills. The idea would be for the matching and retrieval process
to differentiate between important from non-essential skills. This would allow a finer
grained control over which skills are more important than others. Furthermore, we
are interested in finding a more intuitive graphic interaction method for creating con-
tent descriptions, analogous to the skills’ radar charts. Inspired by current research
[Liapis 13], an idea would be to sketch a low resolution representation of the game
world’s entities and attributes.

Finally, we are interested in performing more and longer user tests with profes-
sional game designers. We believe their feedback will be instrumental in establishing
whether our approach can be used to support a new design paradigm: the interactive
authoring of adaptive game world generation.
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7
Conclusions

In this final chapter, we conclude this thesis by discussing the present and future
contributions that gameplay semantics can bring to the adaptive generation of game
worlds. We start by revisiting the research contributions outlined throughout the
chapters of this thesis, linking them to our original research questions. Then, we
propose some recommendations for future work in semantics-driven adaptive games.

7.1 Research contributions

Although we have been observing a recent research interest in PCG-based adaptive
games, we initially identified the lack of a corresponding growing trend in developing
such games. We encountered a relevant problem in the absence of generic game
technology to create adaptive games. No such technology exists, that it is accessible
and controllable by game designers and powerful enough to be used across a variety
of games and methods. We identified semantics as a valuable technique to be extended
and used to reach that goal. Our initial definition of gameplay semantics allowed us to
address such problems:

gameplay semantics is the knowledge on the gameplay meaning and
value of a game world and its objects.

Considering all this, we can now revisit our main research question:

How can gameplay semantics improve the adaptive generation of game worlds?

107
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To answer this question, we surveyed the field of adaptive games (Chapter 2) to
identify research opportunities and existing problems. We confirmed that modern
complex game worlds and their geometry are both a very effective way of influencing
gameplay and among the most lacking targets of adaptive mechanisms. We concluded
that the off-line and on-line generation of this type of game worlds, adjusted to the
individual player, can become important methods for supporting adaptive gameplay.
However, they still lack a declarative type of control that can be both linked to
personal player behavior and exherted by game designers. To identify how gameplay
semantics can empower these methods beyond such limitations, we addressed the
following key questions, as introduced in Chapter 1.

1. How can gameplay semantics steer the adaptive generation of game
worlds?

In Chapter 3, we addressed this issue by proposing a semantic generation frame-
work for adaptive games. Through this framework, player and experience models,
encapsulating personal behavioral data, are matched to gameplay semantics, as
defined before. This semantics, holding gameplay meaning and value, is thus se-
lected along with its matching game world content, specified as semantic entities and
attributes. These act as the instructions, constraints or rules to generate a game world.

We used this approach throughout Chapters 4, 5 and 6. In Chapter 4, we modeled
the player’s style and matched it against appropriate game content (racing props),
thus generating game worlds which increased fun for that player’s style. In Chapter 5,
we modeled player performance to steer the selection of matching game level sections
and obstacles, synthesized to offer a dynamically adjusted difficulty. In Chapter 6,
we captured individual player skills, in a multi-dimensional fashion, and generated
maze-like floors from rule sets of matching game level characteristics. Gameplay
semantics was responsible for steering game world generation from matching player
styles, player performance and skills with the appropriate semantic content.

2. Which game world features can be generated from gameplay seman-
tics?

In this thesis, we established gameplay semantics as the knowledge base able to
steer different types of game world generation. In Chapter 4, we used layout solv-
ing, creating off-line generation algorithms able to synthesize game worlds through
placement of (semantically player-matched) objects.

In Chapter 5, we developed an on-line generation algorithm based on the selection
and re-combination of (semantically player-matched) level segments (chunks) and
additional placement of level objects. In Chapter 6, we further continued with the
on-line generation of game worlds, this time through a constraint solving approach,
where playable map-like grid levels (representing mazes) were stochastically generated
to fit (semantically player-matched) parameters. Furthermore, and outside the scope
of this thesis, we collaborated with the integration of our gameplay semantics, in
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this case, player actions, to steer the generation of connected spaces through graph
grammars [van der Linden 13a].

3. How can game designers use gameplay semantics to author an adap-
tive game world?

In Chapter 3, we laid out the principles on how gameplay semantics can be used
to control adaptive game world generation. Game designers can specify gameplay
knowledge semantic entities, i.e. game content. This effectively creates associations
between specific content and specific gameplay, enabling generators to reason on
such knowledge. Authoring such knowledge is therefore controlling how generation
works.

In Chapter 4, we enabled designers to control the adaptive generation of racing
arenas. They created gameplay semantic blocks associating player styles with game-
play experiences. These blocks were used to apply and tag different game objects
or relationships between them. Authoring adaptivity consists in controlling which
combinations of generated objects are appropriate for the possible player styles and
experiences.

In Chapter 6, we aimed at making this process more interactive and expressive.
We empowered game designers to create rules which associated player skills vectors
(represented as radar chart shapes) with level content descriptions, expressed quan-
titatively in terms of semantic entities and their attributes. The creation paradigm
was reversed from Chapter 4, to create gameplay semantic blocks (the skill vectors)
and applying and tagging these with content. Authoring adaptivity consists in in-
teractively creating such rules, which specify which game world configurations (the
content descriptions) should be used for the possible player skills.

4. Which games, genres, player modeling and PCG methods can game-
play semantics apply to?

Throughout the chapters of this thesis, we experimented with several domains
which allowed us to reflect on how and what can gameplay semantics apply to.

Regarding games and genres, we concluded that such scope lies in games which
mechanics rely heavily on the geometry and objects of their world. In order to
influence and adapt the player experience through game world generation, such
experience should be strongly connected to the interaction with the surrounding
world and objects. This excludes games which, for example, rely heavily on other
elements, such as narrative interaction. Examples of suitable games can be racing
games, with track and prop generation (Chapter 4), platform games, with level
(terrain) and object generation (Chapter 5) or navigation-based games (e.g. maze-like
games), with map and space generation (Chapter 6).

The integration of player models with gameplay semantics requires that they
either are or can be converted into quantitative models. In this thesis, gameplay
semantics used to characterize different player features (styles, preferences, skills,
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etc) use quantititative scales (fixed values or intervals). Therefore, the player models,
responsible for matching themselves with such gameplay semantics, should be re-
latable to the same scales. Examples of such player models are heuristic-based tuple
models (Chapters 4, 5 and 6).

We concluded that gameplay semantics is able to steer PCG methods that can be
controlled through descriptions of game world objects or parameters. In semantics-
driven adaptive game world generation, an input of player and experience models
results in a list of semantic entities and attributes which are most appropriate, as
declared by a designer. Generators must be able to use this list to create meaningful
content. Typically, most constructive and search-based PCG methods can work in such
fashion. For example, even evolutionary algorithms could include fitness functions
which evaluate content on the basis of matching it to such a list of semantic entities
and attributes. Other examples are generation through layout solving (Chapter 4),
re-combination (Chapter 5) or stochastic constraint solving (Chapter 6).

To conclude, gameplay semantics for adaptive game world generation, proposed in this
thesis, makes the following research contributions:

1. enables the adaptive generation of complex game worlds, by working as the
middleware responsible for linking player models to specialized PCG methods;

2. opens up the possibility for generic adaptive generation, by being compatible
and effective with a range of games, player model techniques and PCG methods;

3. enables and improves the authoring of adaptivity in games, by offering game
designers an expressive and specific level of control over how player models
can link to PCG methods;

4. improves and encourages the development of more adaptive games, by being
an effective, generic and controllable method.

7.2 Recommendations for future work

We believe that our proposal of gameplay semantics provides a solid and rich basis
for upcoming research on the fields of PCG and adaptivity. To conclude this thesis,
we present some recommendations for future work in this direction:

Integration with event generation We believe that gameplay semantics could be
used to control other types of generation, as scenario or narrative generation. It
would be possible to associate gameplay semantics to other types of semantic
entities beyond game world objects. Game events or player actions are an obvi-
ous example, since they can form the basis of scenario or narrative descriptions.
Gameplay semantics could link player models to existing methods of scenario
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or narrative generation, thus enabling other forms of adaptivity beyond game
world generation. More interestingly, by acting as a middleware, gameplay
semantics could enable the integration of this type of adaptivity with this thesis
approach to game world generation. Adaptive games would then include a
coherent approach, where game events, and their associated content, would be
generated in response to player behavior.

Automatic creation of gameplay semantics Our proposal of gameplay semantics de-
fines it as the knowledge on the gameplay meaning and value of a game world
and its objects. In this thesis, this knowledge is created by game designers,
enabling them to author adaptivity. In alternative, an interesting future direc-
tion would be to investigate the emergence of gameplay semantics from actual
player data. Gameplay semantics could be created from observing gameplay, by
modeling both the player behavior and the content that enabled and supported
that behavior. As such, the knowledge on the gameplay value and meaning of
content would be a reflection of the mass collection of player data. Therefore,
adaptive game world generation would be supported not by designers, but by
past observed behavior from similar players. Furthermore, and more interest-
ingly, such gameplay semantics could still provide a basis for a mixed approach,
where game designers would use and fine tune player-created semantics to
author adaptivity.

Adaptive game world interactions We believe that gameplay semantics could sup-
port other types of adaptive game mechanics, beyond generative-driven adap-
tivity. An interesting direction could be to make the interactions that a semantic
game world offers dependent on the player behavior. This would imply that
interactions would be adjustable, at run-time, to better fit the player. As simple
examples, we imagine the amount of damage of a weapon (picked up by the
player) as dependent on the player shooting skill, or the waiting period and/or
speed of an elevator adjusted according to the players pacing style. All of these,
and more, could be supported by gameplay semantics which would still link
player models to semantic representations of game world entities. However,
such representations would be used not to steer generation, but to choose and
adjust parameters of available interactions, and how they can be performed.
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Summary

When most commercial games are shipped, their gameplay has typically been pre-
scripted. All game components are created during development, mostly as pre-
determined rigid artifacts with which a player will interact. This can lead to pre-
dictable and impersonal gameplay, while alienating unconventional players. Adaptiv-
ity in games has been recently proposed to overcome these shortcomings. Although
adaptive games are a possible solution for this problem, in practice they are rare. The
technology and development techniques to support such games are strongly ad-hoc
and not easily accessible and controllable by game designers.

Procedural content generation and semantic modeling can powerfully combine
to tackle these issues. This thesis proposes the use of gameplay semantics, i.e. the
knowledge on the gameplay meaning and value of a game world and its objects, to
adaptively generate game worlds.

Using gameplay semantics, we devised a generation framework aimed at creating
personalized content for complex and immersive game worlds. This framework
captures which content provided a given personal gameplay experience. This model
is then used to generate content for the next predicted experience, through retrieval
and recombination of semantic gameplay descriptions, i.e. case-specific mappings
between content and gameplay semantics.

This framework can be used to link the procedural generation of game worlds
with gameplay, as measured by player modeling techniques. Gameplay semantics is
created in a generic way and can be effectively used to steer the procedural generation
of player-matching game worlds, both at design and at game stage.

Gameplay semantics can steer the adaptive generation of game worlds by captur-
ing the key features required for adaptivity. Both game world objects and properties
can be synthesized in response to experience-driven features, e.g. the personalized dif-
ficulty of a game. Our player studies showed that this type of generation is successful
in keeping such experience features in balance with different player types.

Gameplay semantics can be used to actively include game designers in the cre-
ation loop, by allowing them to author adaptivity in a more expressive and specific
fashion. Designers can: (i) interactively create gameplay semantics that describe
players and content, and (ii) match one with the other. These matching rules are the
underlying semantic gameplay descriptions that support our generation framework.
User evaluation shows that gameplay semantics can provide game designers with a
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rich expressive range to convey specific adaptive gameplay experiences to its players.
From the combined results of these contributions we can conclude that gameplay

semantics is an effective, generic and controllable method to improve adaptation in
games. We therefore hope that this work will encourage and facilitate the develop-
ment of more and better adaptive games.



Samenvatting

De meeste commerciële games worden geleverd met voorgeprogrammeerde function-
aliteit. Al de componenten waarmee de speler zal interacteren zijn vooraf ontwikkeld
en weinig flexibel. Dit kan leiden tot voorspelbare en onpersoonlijke gameplay
die vervreemdend is voor gevorderde spelers. Recentelijk is adaptiviteit in games
voorgesteld om deze tekortkomingen te verhelpen. Echter in de praktijk komt dit
nog maar weinig voor en zijn de ontwikkelingstechnieken om deze adaptiviteit
te realiseren nog sterk ad-hoc en moeilijk toegankelijk en beheersbaar voor game
designers.

De combinatie van procedurele model generatie en semantisch modelleren biedt
mogelijkheden dit te verbeteren. De in dit proefschrift voorgestelde gameplay seman-
tics koppelt de kennis over gameplay aan de inrichting van de game wereld en diens
objecten, om zo game werelden adaptief te kunnen genereren.

Op basis van gameplay semantics, is een raamwerk ontwikkeld voor het ontwer-
pen van gepersonaliseerde content voor complexe game werelden. Dit raamwerk
houdt bij welke eigenschappen geleid hebben tot een goede gameplay ervaring. Dit
model kan dan worden gebruikt om nieuwe werelden te genereren door het opzoeken
en hercombineren van geval-specifieke combinaties van wereldeigenschappen en
gewenste gameplay semantics.

Dit raamwerk kan gebruikt worden om procedurele generatie van game werelden
te koppelen aan gameplay, zoals vastgelegd door technieken die eigenschappen van
spelers beschrijven. Gameplay semantics is gecreëerd op een generieke manier en
kan effectief gebruikt worden voor het sturen van procedurele generatie van game
werelden die tegemoet komen aan de gewenste gameplay, en dit zowel vooraf bij het
ontwerp als tijdens de spelfase.

Gameplay semantics kan adaptieve generatie van game werelden sturen door
eigenschappen van game werelden te linken aan de persoonsgebonden moeilijkhei-
dsgraad van het spel. Onze experimenten met spelers hebben aangetoond dat dit
soort generatie slaagt in het koppelen van dergelijke ervaringskenmerken aan uiteen-
lopende typesn van spelers.

Gameplay semantics biedt game ontwerpers de mogelijkheid om op een meer
expressieve en specifieke manier de adaptiviteit te bepalen in het adaptieve creatie
proces. Ontwerpers kunnen: (i) interactief gameplay semantics creeren die spelers
en content beschrijven, en (ii) het n met het ander combineren. Deze combinatie
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regels zijn de onderliggende semantische gameplay beschrijvingen die ons generatie
raamwerk ondersteunen. Evaluatie van de gebruikers toont dat gameplay seman-
tics designers een rijke, expressieve waaier van mogelijkheden biedt om specifieke
gameplay ervaringen over te brengen aan de spelers.

Uit het geheel van de contributies in dit proefschrift kunnen we concluderen
dat gameplay semantics een effectieve, generieke en controleerbare methode is om
adaptiviteit in games te verbeteren. Daarom hopen we dat dit werk de ontwikkeling
van meer en betere adaptieve games zal stimuleren en faciliteren.
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