
 

S.C.A. Vieveen 

MSc Thesis report 

 

 

Daily supervisor 

Ir. C. Culmone 
 

 

Supervisors 

Prof. Dr. Ir. P. Breedveld 

Ir. P.W.J. Henselmans  

Dr. Ir. M. Langelaar 
 

 

Date: 17-01-18 



2 

 

Abstract 
Background: Delft University of Technology has developed two working prototypes of flexible 

instruments for surgery, together with a master-slave system. The master-slave system is compatible 

with the simple parallel cable configuration and the more complex parallel and diagonal cable 

configuration.  It is assumed that the instrument with a complex cable configuration requires fewer 

segments, compared to an instrument with a simple cable configuration, to cover a complex path, with 

the same accuracy.  

Study design: research 

Methods: The two different cable configurations are modeled. The model will first determine the shapes 

one segment can form. Afterwards, the possible shapes of the segments are combined to judge the 

performance of the flexible instruments with an algorithm. The algorithm is purely kinematic and does 

not take forces into account. 

Results: The results show a strong preference for the cable configuration with parallel and diagonal 

cables. This configuration needs fewer degrees of freedom to reach the same error.  

Conclusion: Therefore it can be concluded that the cable configuration with parallel and diagonal cables 

is more promising in combination with the predesigned master-slave system.    
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1. Introduction 
Minimally invasive surgery has become the new 

standard in the field of surgery [1]. This way of 

operating minimizes the size of the incisions and 

the technique brings other advantages.  Less 

invasive surgical operations reduce 

postoperative pain, the amount of scar tissue 

and the recovery time [2-8]. Moreover, the 

reduced recovery time decreases the hospital 

cost drastically [2, 3, 5-7]. It is a trend in surgery 

to minimize the number and the size of incisions 

since the first introduction of laparoscopy [2, 9- 

11]. The technical developments in surgical 

instruments are one of the drivers for this new 

way of operating [9,12]. 

The least invasive manner of operating is via 

natural orifices, this is called Natural Orifice 

Transluminal Endoscopic Surgery. This way of 

operating introduces benefits on top of the 

benefits of MIS, mainly, improved cosmetics, 

reduced systematic inflammatory response and 

a reduction in postoperative pain [13]. However, 

in practice NOTES is still in its infancy.  

1.1 Instrumentation  

Modern instrumentation provides the possibility 

to enable and enhance performance in MIS. 

However, to export these benefits to areas that 

require a more delicate circuitous access is 

challenging. Numerous procedures can still only 

be approached with open surgery. ‘’Thus, it 

would be greatly beneficial to have manipulators 

which are scalable to a small size, flexible yet 

strong, and which can reach difficult-to-access 

surgical sites via nonlinear pathways and 

complete the surgical task with dexterity.’’ [12]  

Skull-base surgery is one example of a 

complicated anatomy for operations. A 

schematic representation of skull-base surgery is 

shown in Figure 1. Instead of using open surgery, 

the procedures are slowly evolving to a less 

invasive endoscopic endonasal approach [14]. 

However, the possibilities of endonasal 

operations are limited due to the current 

instruments that lack maneuverability [14]. 

Therefore, more flexible instruments are 

needed.  

Figure 1: A schematic representation of skull base surgery 

[14].  

There are already flexible instruments on the 

market, bronchoscopes and colonoscopes for 

instance. Although these instruments are 

flexible, they cannot be used for the more 

complicated surgery sides, because they are not 

self-supportive, and require support and 

guidance from the environment. While delicate 

tissue, for instance at the skull base, is not 

capable of providing this kind of support, due to 

a high number of small blood vessels, nerves and 

other types of fragile tissue.  

There is need for small size, flexible yet stiff 

instruments, which can move across non-linear 

pathways. Several research groups came to this 

conclusion. Therefore, a number of flexible 

instruments are currently in development.  

One of the most famous flexible instruments is 

HARP. HARP is a flexible instrument consisting of 

two concentric tubes, one outer and one inner 
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tube [15]. These tubes are able to alternate 

between a rigid and a limp state. Whenever the 

inner tube is rigid and the outer tube is limp, the 

outer tube can slide over the inner tube, and 

moves forward while being steered. Afterwards, 

the outer tube is made rigid and the inner tube 

is made limp, so the inner tube can follow. 

Despite the fact that HARP is an instrument 

capable of following a complex path, it is 12 mm 

thick and therefore too large for endonasal skull 

base surgery. The diameter of the instrument is 

also hard to scale down because the system is 

friction based. Reducing the diameter will 

increase the tension in the material, causing it to 

deform plastically. 

For this reason, the Technical University of Delft 

is developing its own flexible instruments and a 

matching shape memory system to control 

them. This shape memory system consists of a 

desired physical track, a master and a slave. The 

master follows a physical track ex vivo. This 

master consists of the same segments as the 

slave. The master is pushed over the physical 

track and is therefore forced to follow the 

physical track. The slave is controlled by the 

master and follows the movement of the master 

track in vivo. The slave is controlled by cables. 

These cables are only attached at the end of each 

segment. Therefore, it is only possible for the 

master to prolong the angle and position at the 

end of each segment to the slave. In Figure 2 the 

green track is the predefined physical track that 

the master follows, while the blue track is the 

track which the slave will make due to the 

control of the master.  

The master and slave can be connected via 

different cable configurations. The Technical 

University of Delft has developed two different 

prototypes of flexible instruments with different 

cable configurations.  

 

Figure 2: A schematic representation of the master-slave 

system. [16] 

The first prototype is called the Multiflex, see 

Figure 3. This instrument consists of multiple 

segments. These segments have one degree of 

freedom, also referred to as DOF, and are cable 

controlled. The cables are positioned parallel 

among the shaft of the instrument. Each 

segment is capable of forming an arc with a 

constant curvature. Due to the configuration of 

the cables, it is only possible to adjust the angle 

of the tip of a segment, so only the angle is 

provided from the master to the slave.  

The second one has a more complex cable 

configuration and is called the Helixflex, see 

Figure 4. This instrument is comparable to the 

Multiflex. The main differences are in the 

number of segments and in the cable 

configuration. The Helixflex has parallel and 

diagonal cables. The instrument has only one 

segment, and this segment has two DOF. 

Therefore, the segment is capable of forming 

more complex shapes. This makes it possible to 

control the position and angle of the tip of a 

segment.  
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Figure 3: An image of the tip of the Multiflex. [17] 

 

Figure 4: An image of the tip of the Helixflex. [14] 

These two different cable configurations both 

have their advantages and disadvantages. 

However, it is inefficient to develop two 

different instruments with the same purpose. 

Thus the question is: “Which of the two cable 

configuration is more promising and therefore 

should be used for further developments?”.  

To answer this question there is taken a look at 

algorithms to define the maneuverability of 

flexible instruments. For the navigation of 

flexible instruments, there are already multiple 

existing algorithms such as path planning and the 

avoidance of particular obstacles. Chirikjain et al. 

developed a planar obstacle avoidance 

algorithm [18]. The algorithm gave a discrete 

solution towards an imaginary instrument. This 

instrument was capable of forming any 

continuous line, although the length was 

predefined.  Choset and Henning [19], extended 

the version of Chirikjain et al. by adding a follow 

the leader approach.  

A.A. Maciejewski et al. and I.S. Godage et al. also 

show an obstacle avoidance algorithm for rigid 

robots J. Burgner et al. applies this algorithm to 

continuum robots [13, 20, 21]. 

However, the control of the Multiflex and 

Helixflex works with a desired physical track, as 

described previously. Besides, the master that 

retrieves the information from the physical track 

has its limitations. It should be taken into 

account that the master can only retrieve 

information at the end of each segment. The 

cables transmit the information. The amount of 

information that can be transmitted depends on 

the cable configuration. A configuration with 

two cables can only transmit an angle at the tip 

of the segment, while a configuration with four 

cables can transmit an angle and a position.  

The preformed track will deliver endpoints and 

angles to each segment of the master. These 

endpoints and angles are the information that 

the master reads from the preformed track. That 

information is provided to the slave by the 

cables. This method is different than the other 

described algorithms because it is based on a 

real instrument together with its restrictions, 

where other algorithms are often based on 

imaginary instruments. It was decided to 

compare two cable configurations, based on the 

Multiflex and Helixflex, with the use of a specific 

path planning method based on the input to the 

instrument. This way the instruments can be 

compared as objective as possible.  

1.2 Problem statement and goal  

The Technical University of Delft has developed 

two working prototypes of flexible instruments, 

together with a master-slave system. The 

master-slave system is compatible with the 

simple parallel cable configuration and the more 

complex parallel and diagonal cable 

configuration.   
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Hypothesis: The instrument with a complex 

cable configuration requires fewer segments, 

compared to an instrument with a simple cable 

configuration, to cover a complex path, with the 

same accuracy.  

This report will examine this statement. This is 

done by developing an algorithm to compare the 

maneuverability of both configurations. 

1.3 Method  

The instruments will be simulated with an 

algorithm programmed in MATLAB R2016b 

to compare their maneuverability. Firstly the 

model of the instruments will define the possible 

shapes that a segment is able to form. The 

deformation is calculated and backed up by 

previous research. Afterwards, those shapes of 

individual segments are used to investigate the 

total shape an instrument can form. The 

algorithm used for this investigation is purely 

kinematic and does not take forces into account. 

The performance of an instrument is judged on 

the ability to overlay different predefined paths.  

There is decided for a kinematic algorithm to 

decrease the complexity of the algorithm. The 

forces on the cables are rather difficult to 

calculate. Specifically with the friction forces that 

depend heavily on the construction and design 

choices of the instrument. Besides the algorithm 

is to compare the maneuverability, so the forces 

on the cables are less interesting.   

There are multiple reasons to calculate the  

maneuverability of the instruments with an 

algorithm, instead of a test with the prototypes. 

The first reason is the adjustability of code. The 

number of segments and the length of the 

segments of the prototypes cannot easily be 

adjusted. The algorithm can, however, be 

adjusted easily.  

The second reason is that the produced 

prototypes are not compatible with the master-

slave system jet. Although the concept of the 

instruments is compatible with the master-slave 

system, the produced prototypes are not.  

A third reason is that an algorithm can 

investigate the final potential of the instruments, 

while a prototype test would only show insights 

in the now produced prototypes. Those results 

will be based on the limitations of the 

prototypes, which might be overcomable in the 

future.  

1.4 Contents 

Chapter 2, Modelling of a segment, models a 

single segment for both a simple and a complex 

cable configuration. Chapter 3, Kinematic 

simulation of multiple segments, will investigate 

the kinematic workspace of multiple segments 

attached to each other, together with the 

possibility of following a path. This will be done 

by programming the kinematic possibilities of 

one segment in the software program MATLAB. 

Chapter 4, Case studies, will introduce multiple 

virtual paths to test the maneuverability of the 

instruments. Chapter 5, Results and analysis, will 

present the results of the maneuverability tests 

from the case studies and will compare and 

interpret these results. Chapter 6, Discussion, 

will discuss the results of the previous chapters 

and investigates the possible implementations, 

together with further recommendations. 

Chapter 7, Conclusion, will look back on the 

problem statement and will conclude the final 

results of the report. 
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2. Modelling of a segment  
Intro  

In this chapter a single segment for different 

cable configurations will be modeled. The cable 

configurations are based on the cable 

configurations of the Multiflex and the Helixflex. 

Firstly, the cable configurations will be 

described.  Force and moment calculations will 

follow. Afterwards, the kinematics of the 

instruments will be discussed. This study will 

focus on the movement in a two-dimensional 

frame. This makes it possible to compare the 

maneuverability while reducing the model’s 

complexity, compared to a three-dimensional 

model.  

2.1 Cable configuration  

The basic segment for the cable configurations is 

displayed in Figure 5. The shaft has a length L, is 

compliant and is axially incompressible. The ribs 

are rigid with a total width of 2·R. The cables are 

attached to top ribs and pass through a sufficient 

number of cable guides, see Figure 6. Notice that 

the cable guides are left out in Figure 5. These 

ribs are used to guide the cables through the 

segment, the cables are, however, only fixed at 

the bottom and the top rib.  

Possible configurations Possible configurations Possible configurations Possible configurations     

Multiple cable configurations are possible. These 

configurations will directly affect the kinematics 

of the segment. All the configurations are 

symmetrical, which results in symmetrical 

behavior. The configuration that is based on the 

Multiflex segment is presented in Figure 5a. This 

segment has two parallel cables and will also be 

referred to as the simple configuration. Another 

possible configuration is diagonal cables instead 

of parallel cables, see Figure 5b. Or a 

combination of both, based on the Helixflex see 

Figure 5c. These three different constructions 

will be investigated.  

Parallel cables Parallel cables Parallel cables Parallel cables     

The first construction, Figure 5a, has parallel 

cables. These parallel cables can create a force in 

the y-direction, parallel to the longitudinal axis of 

Figure 5a: A schematic representation of a segment with two parallel cables. Figure 5b: a schematic representation of a segment with 

two diagonal cables. Figure 5c: a schematic representation of a segment with two parallel and two diagonal cables. 

   

 

  

B 

A 
C 
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the segment, to create a moment around the 

shaft.     

Diagonal cables Diagonal cables Diagonal cables Diagonal cables     

The second construction, Figure 5b, has diagonal 

cables. These diagonal cables can create a force 

in the direction of the cables. This force can be 

split into an x- and a y-component.   

PPPParallel and diagonal cables arallel and diagonal cables arallel and diagonal cables arallel and diagonal cables     

The third construction, Figure 5c, has parallel 

and diagonal cables. These parallel cables can 

create a force in the y-direction. The diagonal 

cables can create a force in the direction of the 

diagonal cables.  

 

Figure 6: A two-dimensional prototype of one segment 

with nine cable guides. [22]  

2.2 Force and moment analysis   

In order to compute the bending of the shaft, the 

forces in the cables need to be described. First, 

the segment with parallel cables will be 

analyzed. Afterwards, diagonal cables and the 

combination follow. 

2.2.1 Parallel cables  

One way of positioning the cables is to use 

parallel cables. The forces will be called left 

parallel forces Flp and right parallel forces Frp. 

They only have a y component and are made red 

in Figure 7. This configuration is based on two 

cables, so it will only be able to control one DOF. 

Force analysis parallel cables Force analysis parallel cables Force analysis parallel cables Force analysis parallel cables     

A schematic representation of a segment with 

parallel cables can be seen in Figure 7. The figure 

shows a force applied by both cables. These 

forces can be split into an x- and a y-component.  

    (2.1) 

   (2.2) 

 

Figure 7:  A schematic representation of a segment with 

two parallel cables, with a force Flp applied to the left 

cable and a force Frp applied to the right cable. 

Moment analysis parallelMoment analysis parallelMoment analysis parallelMoment analysis parallel    cablecablecablecablessss        

The moment around the shaft can be calculated 

with the applied force and the arm of the applied 

force. The y-component of the parallel force will 

create a constant moment around the shaft 

because the perpendicular distance to the shaft 

stays the same length R. The force in the x 

direction is equal to zero, therefore it does not 

influence the moment. The total moment can be 

calculated with the following equation.  

  (2.3) 
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If the force of the left parallel cable is larger than 

the force of the right parallel cable the moment 

would be positive. If it is the other way around 

the moment would be negative. The moment 

diagram can be viewed in Figure 8.  

 

Figure 8: A moment diagram of a segment with parallel 

cables, both cables apply a force. 

2.2.2 Diagonal cables  

Another way to position the cables is diagonal. 

This configuration is also based on two cables, so 

it will only be able to control one DOF.  

Force and moment analysis Force and moment analysis Force and moment analysis Force and moment analysis diagonal diagonal diagonal diagonal cables cables cables cables     

The forces are represented in Figure 9. Note, the 

forces are made red, the green arrows are the 

horizontal and vertical components of the 

forces, called and . The 

magnitude of the x and y -components can be 

calculated with the following equations.   

   (2.4)  

   (2.5)  

   (2.6)   

    (2.7) 

The moment around the shaft can be calculated 

with the following equation:  

   (2.8) 

Notice that Y is measured from the bottom of the 

segment, and determines the moment around a 

certain point on the shaft of the segment. If Y=L 

the moment is calculated around B, if Y=0 the 

moment is calculated around A, and every value 

in between correspond with a certain point on 

the shaft between A and B. Equation 2.8 can be 

simplified to:  

    (2.9) 

Because the ratio between  and  is the 

same as the ratio between R and L/2, This can 

also be substituted to  

   (2.10) 

This can be simplified to  

    (2.11) 

 

Figure 9:  A schematic representation of a segment with 

two diagonal cables, with a force Fl applied to the left 

cable and a force Fr applied to the right cable. Notice the 

x and y components are not defined in the direction of the 

axis. 
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The equation 2.11 leads to the conclusion that 

the moment is zero in the middle of the shaft 

when y equals L/2. This is always the case and 

can be easily checked because the diagonal force 

will have no arm to the center point of the beam. 

As can be seen in Figure 10, the moment is zero 

at the center of the shaft. Besides being linear, 

the moment is also opposed but equal at the 

start and the end of the shaft.    

If the force of the left diagonal cable is larger 

than the force on the right diagonal cable, the 

moment diagram will be flipped upside down.     

 

Figure 10: A moment diagram of a segment with diagonal 

cables, on both cables applies a force. 

2.2.3 Parallel and diagonal cables  

Both ways of positioning the cables can also be 

combined into one. This will give the controller 

of the segment the possibility to adjust the force 

on four different cables.  

Force and moment analysis Force and moment analysis Force and moment analysis Force and moment analysis all all all all cables cables cables cables     

If all four cables will apply a force on the 

construction a linear moment will occur. The 

moment is an addiction of the moment for 

parallel cables and the moment for diagonal 

cables. Figure 11 gives an impression of the 

forces. The moment around the shaft can be 

calculated with the following equation.   

 (2.12) 

This equation is an addition of the moment 

equation for parallel cables (2.3) and diagonal 

cables (2.11). The moment diagram is also an 

addition of both diagrams, see Figure 12. The 

equation can be simplified to:   

 (2.13) 

If Y=L the moment is calculated around B and the 

equation is   

 (2.14) 

If Y=0 the moment is calculated around A and the 

equation is   

 (2.15) 

 

Figure 11: A schematic representation of a segment with 

two parallel and two diagonal cables, with a force applied 

on both cables to all cables, where the forces are split into 

x and y components. Notice the x and y component are not 

defined in the same direction as the axis. 
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All three different cable configurations result in 

different moment distributions along the shaft. 

• Parallel cables give the possibility to 

create a constant moment along the 

shaft.  

• Diagonal cables give the possibility to 

create a linear moment along the shaft, 

where the midpoint of the shaft has a 

moment of zero.   

• A combination of parallel and diagonal 

cables give a linear moment around the 

shaft, which can be moved up and 

downwards.  

2.3 Multiple segments  

In chapter 2.2 one individual segment is 

analyzed. However, the maneuverability of one 

segment is limited.  Therefore, it is needed to 

combine multiple segments.  

The segments need to be attached to each other 

to move as one instrument. This attachment can 

be done quite straightforward. The top of the 

first segment can be viewed as the bottom of the 

second segment. The cables that control the 

second segment should be led through the first 

segment. A schematic view of the assumed 

attachment is presented in Figure 13.   

As concluded in Chapter 2.2, it is possible to 

control the moment at the end of the starting 

segment. Whenever the second segment is 

brought in position, this second segment will 

apply a moment to the first segment at the point 

of attachment. This moment can be countered, 

with the cables in the first segment. Therefore, it 

is possible to view each segment individually and 

control multiple connected segments. A simple 

test with the prototype supported this 

conclusion.  

 

 

 

 

 

 

 

Figure 12: A series of moment diagrams, which added will 

result in a moment diagram of a segment with parallel and 

diagonal cables, on all cables is a force applied. 
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Figure 13: A schematic representation of two segments 

attached to each other. The orange cables are the parallel 

cables of the first segment, the red cables are the diagonal 

cables of the first segment, the blue cables are the parallel 

cables of the second segment and the green cables are the 

parallel cables of the second segment. Possible guided ribs 

are made blue.  

2.4 Shape investigation  

The different forces all lead to different moment 

diagrams and therefore, different deformations. 

These deformations define all possible shapes a 

segment could form. A combination of shapes of 

multiple segments would eventually give the 

working range of the total instrument.    

2.4.1 Premises   

To calculate the possible shapes of a segment 

with the help of forces and moment diagrams 

some assumptions are used.    

I. The friction is neglected 

II. The stiffness of the cables is neglected 

III. The mass of the components is 

neglected 

IV. The model is a kinematic static 

representation 

V. The material is homogeneous   

VI. The material behaves in an elastic 

manner.  

VII. Shear stress can be neglect compared to 

bending stress. 

VIII. The moment diagram does not deform 

due to the deformation of the segment. 

These assumptions are explained below. Notice 

that assumption VIII is discussed separately in 

section 2.5 non-linearity. 

I. The friction between the cables and the extra 

ribs used for guidance are being neglected 

because adding this friction will make the system 

much more complicated. Besides, the goal of the 

research is to compare two cable configurations. 

When friction is neglected in both models, the 

influence on the comparison will be minimal.  

II. The bending stiffness of the cables is 

neglected. It is assumed that the cable has high 

axial stiffness, so the strain of the cables can be 

neglected.  

III. The mass of the components is neglected 

because the mass is relatively small compared to 

the cable forces.  
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IV. The model is a kinematic static 

representation. This means the dynamics of the 

system is not taken into account.  

V. The material used to produce the segments is 

homogeneous.  This means that the material is 

uniform throughout the whole segment.  

VI. The sixth assumption is that the material 

behaves in an elastic manner. Whenever plastic 

deformation will take place, the segment will no 

longer reshape to its original form. Therefore, all 

of the deformations need to be elastic 

deformations. A deformation can be viewed as 

elastic when the stress caused by the 

deformation is below the yield strength. 

VII. The last assumption is that the shear stress 

can be neglected compared to the bending 

stress. The length of the beam is assumed to be 

relatively long in comparison to the height. To 

verify this assumption a sample calculation is 

provided.  

Sample calculation  

The average shear stress is defined in equation 

2.16.  

     (2.16) 

     (2.17) 

Where  is the average shear stress in Pa. h is the 

thickness of the beam in the X-axis in m. b is the 

thickness of the beam in the direction of the Z-

axis in m. A is the shear area in m2. The shear 

area is assumed to be rectangular. Fx is the total 

force of the cables in the x-direction, notated as 

 in equation 2.15.  

The moments that are applied to the beam were 

earlier mentioned in the equation’s 2.11 and 

2.15.  

In the example R is the length of a rib and is 

assumed to be 5mm, L is the length of the 

segment and assumed to be 30mm, h is 0.2mm 

and b is 5mm. These assumed values in 

combination with equation 2.17, make it 

possible to calculate the area at which the shear 

stress is applied. They also give the possibility to 

calculate the maximal moment with equation 

2.15. If Y is equal to zero the moment is maximal, 

this results in equation 2.18. Notice that Fx is the 

total force of the cables in the x-direction, 

notated as  in equation 2.15. 

Notice that the force on the parallel cables, 

 in equation 2.15, are assumed to be 

zero. Because the parallel cables will increase 

the moment, however, they will not influence 

the shear stress.  It is investigated if the shear 

stress can always be neglected, so the maximal 

ratio between the shear stress and the bending 

stress is calculated.  

     

 (2.18) 

For the maximal bending stress, equation 2.19 

will be used.   

    (2.19)   

Where σ is stress in Pa, M is the internal moment 

in the beam in Nm. I is the beam's moment of 

inertia computed around the normal axis in m4 

and y is the distance of the computed point to 

the neutral axis of the beam in m. 

The second moment of inertia can be calculated 

using equation 2.20 

�

    (2.20) 
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Filling in equation 2.19 gives: 

 

Filling in equation 2.16 gives: 

 

The shear stress is approximately 1/450st of the 

bending stress in the sample calculation, so it can 

be neglected. This is the case because shear 

stress will only scale linearly with the thickness 

of the beam (=h), where the bending moment 

will scale with a factor 3.  

2.4.2 Shape deformation 

Based on the premises described in Section 2.4.1 

it is possible to calculate the deformation of the 

individual segments. The first equation that is 

needed for the calculation of the deformation is 

the Hooke's law. This law can be applied because 

it is assumed the material behaves in a linear 

elastic manner. 

     (2.21) 

Where ε is the dimensionless strain, σ is stress in 

Pa and E is the material's Elastic modulus in Pa.  

The deformation of a beam loaded in bending is 

calculated, instead of a beam loaded in tension. 

Therefore the flexure equation is also needed.  

The flexure equation is equation 2.19  

Only the maximal stress which is able to occur is 

interesting, therefore y will be the distance from 

the neutral axis up until the boundary of the 

material. So y is equal to thickness h divided by 

two. 

    (2.29) 

This combined equation shows that the 

curvature is depending on the stress, the Elastic 

modulus and the thickness of the beam. 

Equation 2.29 is valid for either small or large 

radii of curvature [23], where the maximal stress 

is depending on the elastic limit. This means that 

a material with a high ratio between the elastic 

limit and the E-modulus will be able to bend 

further. To give a frame of reference for the 

maximal bending angle, a sample calculation is 

provided below.     

Sample calculation  

For this calculation it is assumed that the 

segment is made from Titanium, beta alloy, Ti-

12Mo-6Zr-2Fe, form the database of CES 

Edupack [24]. This material is selected due to its 

ratio between the elastic limit and the Elastic-

modulus. This material has an Elastic modulus of 

63.1 GPa, and an elastic limit of 1.15 GPa. For the 

calculation, the thickness h is assumed to be 0.2 

mm, the length of the instrument is 30 mm. And 

y is equal to the thickness divided by two. 

   (2.30) 

If these properties are substituted in equation 

2.28, it will deliver a radius of curvature of 

  

This radius of curvature will deliver a maximal 

bending angle, with a constant curvature of  

  

Where  stands for the bending angle in 

degrees. This suggests that a segment can 

maximally reach a radius of curvature of 5.5 mm. 

This will result in an angle of 312.5˚ when the 

curvature is constant. The sample calculation is 

only providing a frame of reference.   
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2.5 Non-Linearity  

In section 2.2 Force and moment analysis the 

moment diagrams before deformation are 

calculated. However, a deformation might lead 

to a different moment diagram. In this section 

the consequences of larger bends will further be 

investigated. The non-linear calculations are 

rather complex and cannot easily be validated by 

an experiment. Therefore, it is decided to study 

the validation of the calculations in section 2.2 

Force and moment analysis with previous 

research.  

Cosserat modelCosserat modelCosserat modelCosserat model    

Whenever a segment is simulated as a Cosserat 

Rod model, the deformation of a segment that 

bends into a plane can be greatly simplified. A 

Cosserat rod model is a model to describe the 

behavior of a beam while taking the length of the 

beam into account for the stiffness calculation. 

The deformation can be simplified to a moment 

at the end of the Cosserat Rod. This also goes for 

large bends. The Cosserat rod theory is proven to 

be useful and accurate for flexible instruments in 

multiple papers [25-28].  

BernoulliBernoulliBernoulliBernoulli----EuleEuleEuleEuler beam theoryr beam theoryr beam theoryr beam theory    

Webster et al. came to the same conclusion 

using the Bernoulli-Euler beam theory [25]. The 

Bernoulli-Euler beam theory describes the 

deflection characteristics of a beam under load. 

This theory is based on the linear theory of 

elasticity. Notice that the Bernoulli-Euler beam 

theory is, however, normally used for small 

strains and small rotations. The shaft can be 

modeled as a beam. As long as the cables pass 

through a sufficient number of cable guides, a 

constant moment can be reached with cable 

control [29]. Gravagne et al. [30] also points out 

that the Bernoulli-Euler beam mechanics will 

lead to a constant curvature when a constant 

moment is applied.  For inner-plane motions, it 

is possible to replace the tendons by a moment, 

instead of adding cable forces [26].  

CCCConstant curvatureonstant curvatureonstant curvatureonstant curvature    

A constant moment can be reached with parallel 

cables whenever a sufficient number of guided 

ribs are used, as demonstrated by Li and Rahn 

[29]. The model suggests a ratio of  R/N=0.4. 

where R stands for the length of a rib and N 

stands for the distance between two guided ribs. 

With this ratio, the maximal displacement of the 

tip is equal to 0.6L, where L stands for the length 

of a segment. The theoretical predictions are 

validated with experiments.  

Next to Li and Rahn, Immega and Antonelli 

(1995), Cie´slak and Morecki (1999), Hanna and 

Walker (2003) and Jones and Walker (2006) also 

made a backbone based flexible instrument with 

three cables [29,31-34]. These models all used 

guided ribs and they all show a constant 

curvature. Besides, Webster et al. Claims to 

research multiple flexible instruments for which 

a constant curvature approach is applicable [25].  

Linear curvatureLinear curvatureLinear curvatureLinear curvature    

A model of a 2D instrument with diagonal cables 

and cable guides is presented by Henselmans 

[35]. This model divides one segment into 

multiple sub-segments between each 

conductive rib. The model assumes that each 

section of the flexible shaft between two cable 

guides can only bend with a constant curvature. 

On the basis of this assumption, the moment of 

each sub-segment is calculated. This results in a 

deformation for each sub-segment. A 

combination of those deformations will result in 

the shape of the total segment. The model of 

Henselmans shows a linear curvature with 

corners up to 90 degrees. Larger deformations 

could also be calculated, however, the report 

lists that this will result in non-linear behavior 
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[35]. The results of the model of Henselmans are 

validated with a physical prototype of the model.  

AssumptionAssumptionAssumptionAssumption    

A bent segment will result in a  deformed shaft. 

Whenever the cables are attached to the top ribs 

and do not pass through enough cable guides, 

the deformed shaft will adjust the direction of 

the cables. The change in direction will influence 

the moment and therefore the moment 

diagram. However, if the cables pass through a 

sufficient number of cable guides, this effect is 

limited [29].  

On the basis of the previous research, it has been 

decided to assume a constant curvature for the 

segment with the parallel cables, and a linear 

curvature for the segment with the parallel and 

diagonal cables. This assumption makes the 

calculations usable for other flexible instruments 

with a linear or constant curvature. 

2.6 Possible shapes 

The different configurations lead to different 

moment diagrams. These different moment 

diagrams lead to different curvatures. Equation 

2.19 and 2.29 can be combined to form equation  

2.31. This equation shows that the bending 

moment is inversely proportional to ρ and 

therefore proportional to the curvature.  

     (2.31) 

This conclusion leads to the shape possibilities of 

different configurations. A configuration with 

two parallel cables is capable of delivering a 

constant bending moment, see Section 2.2.1. A 

constant bending moment will result in a 

constant curvature. This means that the possible 

shapes are defined as a part of a circle. The 

radius of the circle is variable. This means that 

the end angle of the segment is dependent on 

the end location of the segment. Figure 14 gives 

an impression of possible shapes. 

 
Figure 14: A schematic overview of possible shapes made 

by a segment with two parallel cables [14]. 

A configuration with two diagonal cables is 

capable of delivering a linear bending moment 

which is zero at the center of the shaft, see 

Section 2.2.2. A linear bending moment will 

result in a linear curvature. The shape will, 

however, always be symmetrical from the center 

of the shaft. This means that the end angle of the 

segment is always the same as the start angle of 

the segment.  Figure 15 gives an impression of 

possible shapes.  

 

Figure 15: A schematic overview of possible shapes made 

by a segment with two diagonal cables [14]. 
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A configuration with two parallel and two 

diagonal cables is capable of delivering a linear 

bending moment, see Section 2.2.3. A linear 

bending moment will result in linear curvature. 

The other configuration shows parallel and 

diagonal cables.  

The shape does not need to be symmetrical from 

the center of the shaft, in contradiction to the 

configuration with only diagonal cables. This 

means that the end angle of the segment is 

independent of the end location of the segment.  

See Figure 16. 

 
Figure 16: A schematic overview of possible shapes made 

by a segment with two parallel and two diagonal cables 

[14]. 

The overview of the three different 

configurations teach us the kinematic 

differences.  

• Parallel cables give the possibility to 

create a constant curvature and 

therefore circle-like shapes.  

• Diagonal cables give us the possibility to 

create a linear curvature and therefore 

s-like shapes, however, the end angle 

will always be equal to the start angle.  

• A combination of parallel and diagonal 

cables give us a linear curvature, with 

the same possibilities of the previous 

configurations. However, in this case, 

the end angle is independent of the end 

position.   
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3. Kinematic simulation of 

multiple segments 
Intro 

In this chapter, the calculations involving the 

workspace of the instrument are described. The 

calculations are done with MATLAB R2015a. The 

calculation method will also be discussed for one 

and multiple segments. Together with the 

integration in the MATLAB code.  

The MATLAB code is written to get an insight of 

the possible configurations an instrument with 

multiple segments can achieve. This is done by 

defining an optimal path. The results will be used 

to compare the performance of the two different 

configurations.  

The kinematic simulation uses the constant 

curvature and linear curvature shapes found in 

chapter 2. It was decided to base the simulation 

on possible shapes instead of a cable length or 

force calculation to generate general results that 

are also applicable on future instruments if other 

types of manufacturing are used.   

3.1 Path optimizing 

For the selection of the most promising cable 

configuration, a mechanical system is translated 

into an algorithm. This specific algorithm is 

capable of predicting the maneuverability of the 

instruments.  

Transmitted informationTransmitted informationTransmitted informationTransmitted information    

As mentioned earlier, the control of the 

instrument will be done with the aid of a 

preformed shaft. An example of a schematic 

representation of the preformed shaft can be 

seen in Figure 17. The master and the slave exist 

of the same type of segments. Thus, the master 

for the simple slave only has parallel cables, and 

the master for the complex slave has parallel and 

diagonal cables. The master will follow the 

preformed shaft and will transmit the shape of 

the shaft to the slave, via cables. The master is, 

however, not able to transmit the whole shape. 

It is only capable of transmitting one angle or 

one angle and one position per segment, 

depending on the cable configuration. This 

means that the master and the slave can have 

different shapes, as long as the end angle and 

the end position of the segments are equal. The 

information that the master is transmitting to 

the slave is the red dots in Figure 18. These red 

dots can contain the desired end angle of a 

segment, and in case of the parallel and diagonal 

cables also the desired end position of a 

segment. 

 
Figure 17: A schematic representation of the desired path. 

 

Figure 18: A schematic representation of the desired path 

together with the desired points. 
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Figure 19: A schematic representation of a calculated 

slave. 

 

Figure 20: A schematic view of the code 

The used algorithm first determines the 

positions, which will be reached if the segment 

completely overlaps the ideal path. Each of these 

positions has an end angle, which is the desired 

angle on this point.  

Simple segment informationSimple segment informationSimple segment informationSimple segment information    

Simple segments with a constant curvature only 

have one DOF, hence it is possible to optimize to 

a certain position or towards a certain angle. The 

combination of both is, however, impossible. 

The mechanical system that is modelled will be 

able to transmit only an angle from the master 

to the slave.  So the segments in the algorithm 

will be optimized towards the transmitted angle. 

For the simple configuration, the red dots 

presented in Figure 18 will only deliver an end 

angle of every segment. So each red dot stands 

for an angle at the position on the path. This is 

all the information delivered to the simple slave. 

Complex segment Complex segment Complex segment Complex segment informationinformationinformationinformation    

Segments with a linear curvature, have two DOF, 

this makes it possible to calculate the shapes 

with the precise end angle, and select the best 

matching position. This will increase the 

probability of the best matching segment with 

the ideal path.  

For the complex configuration, each red dot 

represented in Figure 18 stands for a position 

and an angle at that position. This is all the 

provided information to the complex slave. 

Information useInformation useInformation useInformation use    

The end angle and end position are used as input 

properties for the MATLAB algorithm. The 

MATLAB algorithm calculates the slave, see 

Figure 19. The MATLAB algorithm will eventually 

calculate the difference between the path that is 

followed by the master, and the path that is 

formed by the slave.   

A schematic overview of the code can be seen in 

Figure 20. Firstly the desired angles (and 

positions) are calculated. These properties are 

loaded into the algorithm. The algorithm 
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calculates the form of the slave. The end position 

of the slave is the output of the algorithm. 

3.2 Shape determination 

In chapter 2 a connection between the moment 

diagram and the curvature is made. In this 

section, this connection is worked out to the 

possible shapes a segment can develop. The 

kinematics of the different configurations can be 

divided into segments with a constant curvature 

and segments with a linear curvature.  

CCCConstant curvatureonstant curvatureonstant curvatureonstant curvature    

The segment with a constant curvature can be 

described with as a part of a circle bow. If the 

total angle is given the radius of the circle can be 

determined by the following equation: 

      (3.1) 

Where r stands for the radius of curvature in m, 

L stands for the length of one segment in m and  

α stands for the angle of a segment in rad. 

Together with the radius and the angle, the x and 

y position can be determined.  

    (3.2) 

    (3.3) 

LinearLinearLinearLinear    curvaturecurvaturecurvaturecurvature    

Segments with a linear curvature can be 

described with an Euler spiral. An Euler spiral 

also known as clothoid or Cornu spiral, is a curve 

whose curvature linearly increases or decreases 

with its curve length. As can be seen in Figure 21, 

the radius of curvature is largest in the middle of 

the figure. When moving to the sides the radius 

of curvature decreases. This radius of curvature 

decreases linearly to the traveled distance from 

the center.    

An Euler spiral can be described with the Fresnel 

integral, which gives the following equations: 

    (3.4) 

    (3.5) 

Where  is the arclength from the orgin to the 

point  and u is the total arc length of 

the spiral.   

Because the Euler spiral is a function with a linear 

curvature, every function with a linear curvature 

can be described as a part of the Euler spiral. 

The starting point on the Euler spiral defines the 

begin curvature of the segment. This starting 

point is also connected with a radius of curvature 

and therefore with a curvature.  

 

 

Figure 21: Euler spiral [36]. 

The scaling factor in combination with the 

starting point, define the endpoint on the Euler 

spiral. Because the length of the segment is 

predefined, the scaling factor determines the 

relative distance from the starting point to the 

end point on the line. The ends point is also 

coupled to a curvature.  

Whenever the begin- and end-curvatures are 

known, the curvature of all the points between 

the starting point and endpoint, so all the points 

of the segment, are also known. The curvature of 

these points increases or decreases linear with 

the distance.  
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If the segment length is constant the starting 

curvature and the slope of the curvature decide 

the end curvature. Because the starting 

curvature and the slope of the curvature can be 

adjusted, every possible line with a linear 

curvature can be found on a scaled Euler spiral.  

MMMMultiple segmentsultiple segmentsultiple segmentsultiple segments    

Multiple segments need to be attached to each 

other. The end point of one segment is the 

starting point of the next segment. Notice that 

next to the position the direction is also 

forwarded to the next segment.  

3.3 Calculation structure  

Intro 

This section will describe the structure of the 

calculation. The first step in the calculation is the 

definition of the desired path. The desired points 

and angles will be determined. The second 

section describes the global and local frames. 

Next, the segment calculation will be discussed. 

Afterwards, the error calculation and the 

validation will be explained.  

3.3.1 Desired path for the simple and 

complex segments 

The instruments need to optimize towards a 

certain path. This path is defined by the 

performed shaft. In the code, the path can be 

defined and manipulated in the script code. The 

x and y-coordinate of the path are described 

separately with one variable called t, and can be 

defined by a number of mathematical 

expressions. x and y are independent.  

Determine desired pointsDetermine desired pointsDetermine desired pointsDetermine desired points    

The desired points are the points on the path to 

which the segments optimize. The first desired 

point lays one segment length from the starting 

point traveled along the desired path. The 

second desired point is again a segment length 

further from the first desired point.  

To determine the position of the desired points, 

the length of the path should be calculated. This 

is done with the Euler method. First, the 

derivative of the x and y curves is taken with 

respect to the independent variable called t, 

done with the help of the symbolic toolbox of 

MATLAB. After taking the derivative of the 

functions x-curve and y-curve, the step-size is 

defined. This step-size is directly related to the 

accuracy of the calculation. The arc-length is 

defined by the length of the instrument. After 

traveling the arc-length over the desired path 

the x and y position is saved as the desired point.  

Determine angle of desired pointsDetermine angle of desired pointsDetermine angle of desired pointsDetermine angle of desired points    

To determine the desired angle, the derivative of 

the desired path is needed. The path is divided 

into a large number of points. The derivative of 

the path can be used to calculate the direction of 

every point on the path.  

A clockwise angle is defined positive, and the y 

line is defined as an angle of zero radians. This 

calculation needs, however, two exceptions. 

First of all, the calculation will deliver the same 

angle, when both derivatives are positive as 

when both derivatives are negative, while the 

angle is certainly different. This is solved by 

adding the following exception, when both of 

the derivatives are negative, π is added to the 

found angle, to define an angle in the opposite 

direction.  

When one of the derivatives is negative, so a 

negative dx or a negative dy, the angle will be 

calculated, however, the direction will be 

opposite. If dy is negative but dx is positive, π is 

added to the angle, when dx is negative but dy is 

positive, the normal angle will be calculated.  
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3.3.2 Global and local frames  

All the calculations are done in multiple frames: 

a global frame, which is the same for all the 

segments, and multiple local frames. Each of the 

segments has a local segment frame, and each of 

the segments is firstly calculated in the Euler 

spiral frame.  

Notice that the simple segments of the constant 

curvature do have a global frame and a local 

segment frame. However, they do not have an 

Euler spiral frame. 

Simple segment framesSimple segment framesSimple segment framesSimple segment frames    

The simple segments have a global frame, 

wherein the desired path is defined. All the 

calculated segments are eventually exported to 

this global frame. Thus the global frame will 

represent the shape of the total instrument, 

after calculation. 

The information of the desired end angles and 

the endpoints are translated from the desired 

path to the local frame. In this local frame, the 

segment will be calculated. This segment is 

afterward exported to the global frame. For a 

representation of the local frames in the global 

frame see Figure 22. 

Global frameGlobal frameGlobal frameGlobal frame    of the complex segmentof the complex segmentof the complex segmentof the complex segment    

The global frame is the frame where all the 

desired points and the respective desired angles 

on the desired path are calculated. Besides the 

desired points, the final instrument segment 

solutions are also converted to the global frame. 

In Figure 22 the global frame is shown, with the 

local segments frame in it.  

The local segment frameThe local segment frameThe local segment frameThe local segment frame    of the complex segmentof the complex segmentof the complex segmentof the complex segment 

The desired points and angles are converted to 

the local segment frame. Figure 22 gives an 

overview of multiple local segments frames 

plotted in the global frame. The local frames are 

a translation and rotation compared to the 

global frame. The rotation is done with an Euler 

rotation matrix.  

The desired points are described in the global 

frame. These desired points are translated and 

rotated to be described into the local segment 

frame. The use of a local frame makes it possible 

to use the same calculation method for every 

segment.  

The possible shapes of the segments are 

calculated in the Euler spiral frame and 

transferred again to the local segment frame. 

The selection of the segment is done in the local 

segment frame. 

The selected segment is in its turn again 

transferred to the global frame. This is done with 

a rotation matrix together with a translation.  

 

Figure 22: Local frames in the global frame. 

The local Euler spiral frame The local Euler spiral frame The local Euler spiral frame The local Euler spiral frame of theof theof theof the    complex complex complex complex 

segmentsegmentsegmentsegment    

The Euler spiral frame is represented in Figure 

23. On the Euler spiral, different starting points 

are selected. Whenever a part of the Euler spiral 

is selected as a shape for the instrument, this 

part needs to start in an upwards direction. 



21 

 

Otherwise, it is not possible to paste this 

segment on top of the previous segment. See 

Figure 24 for an example. 

All these starting points have an angle compared 

to a reference point. The reference point is the 

center point of the Euler spiral. Each possible 

segment on the Euler spiral needs to be rotated, 

with the angle belonging to the starting point in 

order to translate the Euler frame to the local 

frame.  

As can be seen in Figure 24, the Euler spiral is 

rotated so that the instrument starts at a vertical 

position. The segment is the thick red line 

consisting of circles, while the whole Euler spiral 

is a thin red line. To convert the Euler spiral in 

Figure 23 to a local  Euler spiral of Figure 24 it has 

to be rotated with the angle of the starting point. 

The local Euler spiral is different for each point 

on the Euler spiral. 

 

Figure 23: Euler spiral frame. 

Overview of the complex segment Overview of the complex segment Overview of the complex segment Overview of the complex segment frameframeframeframessss    

Thus the segments are calculated on the Euler 

spiral frame. The segments in the Euler spiral 

frame are rotated to the local segment frame. 

The information of the desired path in the global 

frame is rotated to the local segment frame. The 

segments of the Euler spiral are selected in the 

local segment frame. Finally, the selected 

segment in the local segment frame is rotated 

and translated to the global frame.  

 

Figure 24: Rotated Euler spiral.  

3.3.3 Simple segment calculation 

The segment calculation can be divided into 

three steps 

• Endpoint calculation 

• Shape calculation  

• Segment rotation  

EndEndEndEndpointpointpointpoint    calculationcalculationcalculationcalculation    

Firstly the desired angle will be translated to the 

possible shape of the segment. For the 

calculation of the x and y coordinates at the end 

of the segment, the Equation’s 3.1-3.3 are used. 

For these equations the absolute value of the 

angle will be used. If the desired angle is 

negative, the x coordinate is multiplied by minus 

one, and therefore rotated in the other 

direction.  

Notice that the calculation of Equation 3.1 is not 

possible if the angle approaches zero. Whenever 

the angle is smaller than 0.001 radians, y 

assumed to be equal to the segment length and 

x is assumed to be zero.  

Shape calculationShape calculationShape calculationShape calculation    

The second step is to calculate a defined 

number of points between the start point of the 

segment and the endpoint of the segment. 
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These points lay on the shape of the segment 

and are used for the performance check at the 

end of the code.  

Segment rotationSegment rotationSegment rotationSegment rotation        

For this rotation of the segment from the local to 

the global frame an Euler rotation matrix is used, 

see equation 3.6. Whenever the x- and y-

coordinates in the local segment frame will be 

rotated with the Euler matrix, the x- and y- 

coordinates in the global frame can be calculated 

as shown in Equation 3.7.  

 (3.6) 

 (3.7) 

Translation 

Besides the rotation, the segment also needs to 

be translated. The starting point of the current 

segment should match the end point of the 

previous segment. This is done by firstly 

translating the starting point of the current 

segment to the origin. The x- and y -coordinates 

of the end position of the previous segment, will 

afterward be added to the coordinates of the 

current segment. This will result in two 

connecting segments.  

3.3.4 Complex segment calculation 

The segment calculation can be divided into five 

steps.  

• Selecting the starting points 

• Calculating the matching endpoints 

• Scaling the segment 

• Rotating and translating the segment 

• Selecting the best match 

Selecting the starting points means starting with 

a number of starting points on the Euler spiral. 

The matching endpoints that make the desired 

angle relative to the starting points are 

calculated. These endpoints lay on the Euler 

spiral as well. The path from the starting point 

over the Euler spiral to the endpoint will give the 

shape of the segment. This segment needs to be 

scaled, which will be explained in scaling the 

segment. Afterwards, these shapes are rotated 

to the local frame, to be compared to the desired 

endpoint. Finally, the selection of the best fitting 

segment takes place. These processes are 

further described in this section.  

Selecting the starting pointsSelecting the starting pointsSelecting the starting pointsSelecting the starting points        

The complex instrument segment calculation 

and selection starts with a number of starting 

points. These starting points are points on the 

Euler spiral. The number of starting points is 

defined by the length of the Euler spiral and the 

step size between every starting point. A higher 

number of starting points results in a higher 

number of calculated segments. Whenever the 

step-size is reduced, it will increase the precision. 

Both the step-size and the length of the Euler 

spiral are defined in the script file.  

Figure 23 shows a number of starting points on 

the Euler spiral, every red circle stands for a 

starting point. The number of starting points 

generated in Figure 23 is relatively low to give a 

clear image. Each starting point on the Euler 

spiral has one or more matching endpoints.  

To determine the possible endpoints for each 

starting point, the angle of the starting point is 

defined relative to the center of the Euler spiral, 

see equation 3.8. This equation is a definition of 

the Euler spiral.  

    (3.8) 
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The Euler spiral has a linear curvature. This 

means that the angle scales with a power of two 

compared to the distance from the center.  

Because all the starting points are all numbered, 

the first starting point gets the number one the 

second one gets the number two and so on, the 

equation in the code is equation 3.9. 

 (3.9) 

Where 

 

 

 

 

This angle stands for the rotation of the local 

Euler spiral frame, which is needed to rotate the 

shape to the local segment frame.  

CaCaCaCalculating the matching endlculating the matching endlculating the matching endlculating the matching endpointspointspointspoints    

Each of the starting points has at least one 

matching endpoint. This endpoint has a relative 

angle to the center of the Euler spiral, same as 

the starting point.  

The difference between the angle of the starting 

point and the end point is called the relative 

angle. This angle should be equal to the desired 

angle, the angle that the segment should create.  

    (3.10) 

 (3.11) 

However, there are multiple points that have a 

relative angle to the starting point that is equal 

to the desired angle. 

These angles will be converted into positions on 

the Euler spiral. The Equation 3.12 gives the 

position before the center of the Euler spiral, the 

Equation 3.13 gives the position past the center 

of the Euler spiral. 

  (3.12) 

  (3.13) 

 

 

 

 

The number of the endpoint is a number that is 

coupled to a location on the Euler spiral. The 

same goes for the number of the starting point.  

However, the number of the endpoint is not an 

integer. The number stands for the number of 

step-sizes traveled over the Euler spiral curve.  

If the angle is in the other direction, the Euler 

spiral will be mirrored to calculate the matching 

end points. The information of a start and an 

endpoint, gives the possible shapes of the 

instrument.  

Scaling the Scaling the Scaling the Scaling the segmentsegmentsegmentsegment    

Whenever the starting points and the matching 

end points are selected, it is time to scale the 

segments to the appropriate size.  

The segments are scaled with a scaling factor. To 

calculate the scaling factor two things should be 

known, the length of the unscaled segment, and 

the final length of the segment.  

The length of the unscaled segment can be 

calculated with the following equation. 

 (3.14) 

Where 
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The final length of the segment is predefined in 

the properties of the code. 

The scaling factor can be calculated with the 

following equation. 

�

�
    (3.15) 

Where 

 

 

 

The needed scaling factor is determined for 

every start-point with each possible end point, in 

this case, two per start point. 

The start and end point number indicate the 

position on the Euler spiral and can be 

subtracted. Whenever the difference is 

multiplied by the step-size, the unscaled 

segment length is calculated. This unscaled 

segment length should be multiplied by the 

scaling factor to reach the final segment length. 

Calculating the x and y coordinates 

The x and y coordinates can easily be calculated. 

This is done with the aid of the Fresnel’s integral. 

See equation 3.4 and 3.5.  

RotatingRotatingRotatingRotating    and translatingand translatingand translatingand translating    the the the the segmentsegmentsegmentsegment    

The next step is to convert the x and y-

coordinates in the Euler spiral frame to 

coordinates in the local segment frame. This 

needs to be done because the desired endpoints 

are expressed into the local segment frame.  

For this rotation, an Euler rotation matrix is used, 

see equation 3.6. Whenever the x and y-

coordinates in the segment frame will be rotated 

with the Euler matrix, the x and y of the local 

frame can be calculated, as shown in equation 

3.7. The same principle is used to rotate the 

segment in the local frame to the global frame.  

Translation 

Besides the rotation, the segment also needs to 

be translated. The starting point of the current 

segment should match the origin of the local 

segment frame.  

Selecting the best matchSelecting the best matchSelecting the best matchSelecting the best match    

All the different endpoints of the segments can 

be described in x and y-coordinates. All these x 

and y-coordinates are stored in a vector. This will 

give the possibility to compare the x and y –

coordinates with the desired end location of the 

segment. The root mean square error is taken, 

and the segment with the smallest error will be 

selected.  Notice that this calculation takes place 

in the local segment frame, so afterward the 

segments are translated to the global frame. 

Recalculation 

The selected segment will be calculated again, 

but this time not only with a starting point and 

an endpoint, but also with a defined number of 

points in between. This is done for the 

performance check at the end of the code.  

Afterwards, the segment is rotated and 

translated to the global frame. This happens in 

the same manner as the rotation and translation 

of the simple segment.  

3.3.5 Error calculation  

To measure the performance of a segment, it is 

possible to value the error compared to the 

desired path. 

It can be noticed that the preselection of the best 

segment is not decided on the error compared to 

the desired path, but instead to the error of the 

endpoint. It is not possible to physically control 

the total curve of the segment, therefore the 

selection is based on the endpoint.  

There are multiple methods to define the error 

of the instrument compared to the ideal path. 
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Because all the different error methods have 

pros and cons, multiple common error methods 

will be discussed in this section.  

Error Error Error Error     

To calculate the error of the instrument in 

comparison with the desired path, it is decided 

to compare the calculated points of the 

instrument, with defined points on the desired 

path. These are the defined number of points on 

the instrument are equally divided along the 

instrument with a total of 4000 points. The path 

is also defined in multiple points. The points on 

the path lay 1 μm from each other. Assuming the 

path approaches a straight line between the two 

points, the maximal error that can occur due to 

error measurement is 0.5 μm. This measurement 

error can be neglected, compared to the error 

formed by the instrument following the path. 

The calculated points of the instrument are 

individually compared to a number of points 

distributed along the desired path. This is done 

with the help of a double loop function.  

Firstly, an x-coordinate and a y-coordinate of a 

point on the instrument is taken. The first x-

position and y-position on the desired path are 

subtracted from the x-position and a y-position 

of the instrument. This subtraction gives a 

difference in x and y. This difference is squared 

and added up. Afterwards, the root of this result 

is taken. This error is saved in a vector. The next 

step is to compare the first selected x and y 

coordinates of the instrument with the next x 

and y coordinates of the desired path. When the 

first point of the instrument is compared to all 

the points on the desired path, the minimal error 

is selected. This calculation will take place for all 

different x and y coordinates of the instrument. 

Root mean squRoot mean squRoot mean squRoot mean square errorare errorare errorare error    

To calculate the root mean square error the root 

square error is needed. The root square error is 

already calculated in the previous step, these 

root square errors are all added up and divided 

by the number of errors to determine the root 

mean square errors.  

Standard deviation Standard deviation Standard deviation Standard deviation     

The standard deviation of the error is calculated 

to give extra information to the root mean 

square error.  

Square errorSquare errorSquare errorSquare error    

A square error plot is made by taking the square 

of every individual error, the reason for this plot 

is due to the larger errors are assumed to be 

exponentially more damaging compared to the 

smaller errors. So the sum of all the squared 

errors might be a better measurement.  

Number of large errorsNumber of large errorsNumber of large errorsNumber of large errors    

The number of large errors is a way of 

determining the number of errors which are 

relatively larger. This boundary can be set at for 

instance 3 mm, to filter out the smaller errors. 

The smaller errors are less important and will 

therefore not be shown by this way of 

measuring. To measure the number of larger 

errors, all the errors are compared to the 

boundary of 3 mm. The total number of errors 

higher than 3mm is shown in a percentage of the 

total number of measured errors.  

Maximal and minimal error  Maximal and minimal error  Maximal and minimal error  Maximal and minimal error      

The maximum error is an important value to put 

the other root mean square errors in 

perspective. The minimum error is also 

calculated , however, this will always result in an 

error of zero if the starting point of the 

instrument lays on the desired path.   

Rounded error  Rounded error  Rounded error  Rounded error   

All individual error components are rounded to 

the closest integer. This will show a clear division 

in the size of errors.  

Median errorMedian errorMedian errorMedian error    

The median error is determined. The median is 

less influenced by strong outliers, but outliers 
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are important in this error calculation so the 

median error is less important.  

HistogramHistogramHistogramHistogram 

A histogram gives a clear overview of how much 

an error of a size range occurs. This method gives 

a fast broad overview of the errors. 

3.3.6 Validation 

To control the algorithm different ways of 

validation are introduced. Many of these ways of 

validation are based on the knowledge of the 

observer. 

The first way of validation is the end angle 

control. Whenever the end angle of the segment 

is not equal to the desired end angle in the global 

frame, the algorithm will show an error. This 

code makes sure the end angle of the segment 

and the desired angle are equal. 

The second way of validation is the end error 

control. The end angle is recalculated in the 

script file. Whenever this end error is not equal 

to the calculated end error, the algorithm will 

display an error.  

The third way of validation is the segment plot. 

Each segment is plot as a part of the Euler spiral. 

This plot can be compared to the final segment 

plot to check if the segment is indeed possible to 

make.  

The fourth way of validation is the end plot. 

Although this plot is more complex to verify, the 

results can be compared to the expected 

outcome. 
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4. Case studies 
Intro 
The two different configurations can be 

compared by choosing multiple shapes that the 

instruments should be able to form. Because this 

is a static and not a dynamic study it is decided 

to map the segments over different paths, 

instead of moving segments over different 

paths.  

To compare the performance of different 

configurations seven paths have been designed. 

These paths are mathematical paths to decide 

the maneuverability of the segments. The 

decision to perform mathematical paths instead 

of medical paths is made to increase the 

objectivity, medical paths are more difficult to 

categorize and even more arbitrary to select.  

The mathematical cases that will be used for 

reference are a straight line, two exponential 

equations, two sinusoids, and two equations 

consisting of  combined circular arcs. 

The straight line is selected to validate the 

algorithm. Besides, it will give an impression of 

the accuracy of the algorithm. 

The exponential equations are selected because 

they are an example of a relatively sharp curve 

with a small radius. Therefore, both paths are 

important to show the ability in follow bends of 

the instruments.  

The sinusoids are selected to compare the 

instruments on their ability to form a complex 

shape, with multiple corners. The sinusoid will 

have a relatively high frequency to force the 

different instruments to form multiple curves.  

The paths consisting of two combined circular 

arcs are introduced to measure the capability of 

an instrument with constant curvature segments 

to follow a path with two different constant 

curvatures. 

Names 

• Case 1 straight 
• Case 2 exponential 
• Case 3 sinusoid 
• Case 4 circular arcs 

The instrument is chosen to be 120mm long.  

4.1 Case 1 straight  

The first path is a straight line. This path is used 

to validate the algorithm. Besides, the path gives 

us insight into the accuracy of the error 

calculation.  

The shape of this path is written down in the 

equations 4.1 and 4.2. 

      (4.1) 

     (4.2) 

The equations used in the code are 4.3 and 4.4. 

���
   (4.3) 

���
     (4.4) 

The equation is noted differently in the code 

because the code needs a second derivative that 

is not equal to zero, for the calculation of the 

direction of the path. Notice that the equation 

used in the algorithm is an accurate 

approximation of the original equation. The path 

is presented in Figure 25. 
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Figure 25: A schematic representation of path case 1 

4.2 Case 2 exponential  

The second shape is an exponential equation. 

This basic mathematical equation is able to show 

the capability of an instrument in forming a path 

with a sharp curve followed by a straight line. 

This shape is presented in two forms to increase 

the reliability of the results. The first exponential 

equation can be described with the equations 

4.5 and 4.6. 

    (4.5) 

    (4.6) 

The equations used in the code are 4.7 and 4.8. 

    (4.7) 

���
   (4.8) 

The path is presented in Figure 26. 

The second exponential form can be described 

with the equations 4.9 and 4.10. 

    (4.9) 

    (4.10) 

Notice that the higher power in equation 4.9 will 

result in a sharper curve and the path is, 

therefore, harder to follow. The equations used 

in the code are 4.11 and 4.12. 

     (4.11) 

���
  (4.12) 

The path is presented in Figure 27. 

 

Figure 26: A schematic representation of path case 2 

version 1 

 

Figure 27: A schematic representation of path case 2 

version 2 

4.3 Case 3 sinusoid 

The third shape is a sinusoid. A sinusoid is a 

continuous mathematical equation, with 

multiple changes in direction, and therefore an 
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interesting path. The radius of curvature 

constantly chances among the path, which 

makes the form difficult to follow. To improve 

the reliability of the results it is decided to define 

two sinusoid paths. The first sinusoid can be 

described with the equations 4.13 and 4.14. 

   (4.13) 

    (4.14) 

The equations used in the code are 4.15 and 

4.16. 

   (4.15) 

���
  (4.16) 

The path is presented in Figure 28. 

 
Figure 28: A schematic representation of path case 3 

version 1 

The second sinusoid has more and sharper 

angles and can be described with the equations 

4.17 and 4.18. 

   (4.17) 

    (4.18) 

The equations used in the code are 4.19 and 4.20 

   (4.19) 

���
   (4.20) 

The path is presented in Figure 29. 

 
Figure 29: A schematic representation of path case 3 

version 2 

4.4 Case 4 circular arcs 

The fourth shape is two circular arcs added to 

each other. This shape is a continuous equation, 

with two constant curvature arcs. Either 

instrument should be able to form a constant 

curvature arc. However, a path that consist of 

multiple parts with different constant curvatures 

is probably more difficult to follow. 

To improve the reliability of the results, it is 

decided to define two paths with multiple 

circular arcs. Two mathematical equations are 

designed based on this concept. The first form 

can be described with the equations 4.21 and 

4.22. 

 (4.21) 

 

     (4.22) 
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The H in this equation stands for a Heaviside 

function. This equation results in a circle bow 

with an angle of 1/3 π. After this circle bow, the 

path continues with another circle bow with the 

same radius but an opposite direction.  

The equations used in the code are 4.23 and 

4.24. 

 

    

 (4.23) 

   (4.24)  

The path is presented in figure 30.

 
Figure 30: A schematic representation of path case 4 

version 1 

The second form of this has angles of ½ π. This 

path can be defined with equations 4.25 and 

4.26. 

   (4.25) 

    (4.26) 

The equations used in the code are 4.28 and 

4.27. 

   (4.25) 

   

 (4.26) 

The path is presented in Figure 31. 

 
Figure 31: A schematic representation of path case 4 

version 2 

4.5 Performance evaluation 

The performance measurement of the 

instruments should be as unbiased as possible. A 

couple limitations of this evaluation should be 

taken into account. 

Limitations Limitations Limitations Limitations     

The equations of the paths are always arbitrary. 

Therefore, it is decided to use two equations for 

each type of path. This will make the results 

more diverse, and therefore more reliable. The 

straight line is only programmed in one-way 
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because other equations of a straight line will 

not change the path. 

The Step-size influences the accuracy of the 

instrument. The step-size between starting 

points can be minimized for the error calculation 

of the complex segment. To determine the step-

size that should be used for this calculation, it is 

decided to compare results with different step-

sizes. Figure 32, 33 and 34 are error plots of case 

3.1 sinusoid, and have a step-size of respectively 

0.01, 0.005 and 0.001. It can be noticed that the 

maximal error with a step-size of 0.005 is 

0.12mm smaller compared to the maximal error 

when a step-size of 0.01 is used. This difference 

is far less than 1% of the maximal excepted error 

of 3mm. When the step-size 0.005 and 0.001 are 

compared, it can be noticed that the error only 

differs with 0.01mm, while the calculation time 

is increased by a factor 5. Case 2.1 exponential 

showed a comparable result. Therefore, it is 

decided to use a step-size of 0.005. 

Error measurementError measurementError measurementError measurement    

The different instruments are compared based 

on the error. The error plots that will primarily 

be used are the normal error plot with the 

largest and average error, the histogram of the 

errors, and the plot of the segments over the 

desired path.  

For the determination of the error each 

configuration should have a number of 

segments. The number of segments will vary. 

Firstly, the instrument with parallel cables is 

placed over the path. The number of segments 

needed to get the maximal error below 3 mm 

will be determined. Afterwards, the instrument 

with parallel and diagonal cables will be placed 

over the path, with the same amount of DOF so 

half the amount of segments, and the number of 

segments that deliver the same maximal error. It 

should be noted that the maximal error does not 

need to decrease when the number of segments 

increases. 

The number of segments of the first case, a 

straight line will deviate from the standard 

because the case is only a proof of a working 

algorithm. 

Figure 32: A schematic representation of the error of case 

3.1 with a step-size of 0.01. 

Figure 33: A schematic representation of the error of case 

3.1 with a step-size of 0.005. 

 
Figure 34: A schematic representation of the error of case 

3.1 with a step-size of 0.001. 
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5. Results and analysis 
Intro 

This chapter will present the results of the simple 

and complex instrument following different 

paths. Afterward the results will be analyzed.   

The graphs in the second row of Table 1 to 7 of 

both the simple and the complex instrument 

show the desired path and the form of the 

instrument. The instrument consists of 

segments, which are colored red and green, 

depending on the position of the segment. The 

bottom segment is always colored red, the 

attached segment is colored green, the next 

segment is again red and so on. The scale next to 

the axis is a position scale in mm.  

The third row of Table 1 to 7 shows the distance 

of the instrument compared to the ideal path. 

The instrument is represented with 4000 points. 

These points are equally distributed among the 

instrument. The distance from those points to 

the path are measured and plotted in this graph.  

The vertical axis shows the size of the error, 

while the horizontal axis shows the number of 

the segment point. The first segment point can 

be found on the basis of the instrument. Point 

4000 is at the tip of the instrument.  The red line 

shows the minimal and maximal error. And the 

green line shows the average error. The blue line 

shows the error for each point.  

The histogram plot, the fourth row of Table 1 to 

7, shows the same errors as the previous plot. 

This plot orders the errors in their size. This gives 

a better overview of the errors. 

The error table, the fifth row of Table 1 to 7, 

shows the difference between the endpoint of 

each segment and the desired end positions of 

each segment. 

5.1 Case 1 straight 

The simple and the complex instrument show 

that they are capable of following a straight line 

with one or multiple segments. For the test, four 

segments are used. Because this will also show 

insight in the connection between segments. 

The results of case 1 are presented in Table 1. 

Instrument and Instrument and Instrument and Instrument and ppppath plotath plotath plotath plot    

In these particular graphs of Table 1 row 2, the 

instruments completely overlap the path. This 

shows that the instruments are at least quite 

capable of forming the desired path. Keep in 

mind that the graphs are relatively small, and 

small errors and other details are hard to notice 

on this graph.  

Error position plotError position plotError position plotError position plot    

Table 1 row 3 shows that the instruments are 

capable of approaching the desired path with a 

high accuracy. Therefore the position error of 

the instruments is negligible.  Notice that the 

scale in the simple segment is in the order of 10-

11, this would equal the scale of ten femtometer. 

The error scale of the complex segment is in the 

order of 10-4, which equals the scale of a hundred 

nanometer. Although it looks like the error of the 

simple segment is rapidly increasing, the error is 

so small it should not be taken into account. The 

complex instrument shows that the error goes to 

zero a couple of times in the graph. This happens 

when the complex instrument crosses the 

desired path. Whenever the desired path is 

crossed, the instrument technically lays on the 

path, therefore the error is close to zero. Both 

instruments can form a straight line, so the 

calculated error is only due to the accuracy of the 

error calculation.  

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

Table 1 row 4 shows that the errors are 

incredibly small. Therefore this plot only shows 
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that both instruments are capable of following 

the path.    

Error tableError tableError tableError table    

Those errors are below 500 nanometer and 

therefore the tables do only show zeros. 

In practiceIn practiceIn practiceIn practice    

Although the instruments are in practice capable 

of forming a straight line, the accuracy will not 

approach the accuracy of the algorithm, due to 

the accuracy of the production, and Elastic 

modulus of the cables. Both instruments are 

capable of following a straight-line with a high 

accuracy.    

Table 1: Case 1. Straight line. The second row shows 

two path plots as well as  the instrument following 

the path. The third row shows an error plot. The 

fourth row shows a histogram of the error plot. And 

the fifth row shows the endpoint errors of the 

segments compared to the desired position.  

 

The simple instrument 

Case 1 

The complex instrument 

Case 1 

  

  

  
Error of the end position compared to the 

desired position (simple) 

 

Segment 1 2 3 4 

Error mm 0.000 0.000 0.000 0.000 
 

Error of the end position compared to the 

desired position (complex) 

 

Segment 1 2 3 4 

Error mm 0.000 0.000 0.000 0.000 
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5.2 Case 2 exponential 

Case 2 consists of two different types of 

exponential equations. These preformed paths 

are followed by the simple instrument and by the 

complex instrument. Firstly the results of case 

2.1 will be analyzed.    

5.2.1 Case 2.1 

Case 2.1 shows an exponential path with a 

relatively blunt bend. This path should be easier 

to follow than case 2.2. The results of case 2.1 

are presented in Table 2. 

Instrument and pInstrument and pInstrument and pInstrument and path plotath plotath plotath plot    

The Simple instrument is able to follow the 

exponential path with 3 segments and a maximal 

error of 3 mm. However, the path is clearly not 

covered by the instrument, see row 2 of Table 2. 

So the instrument has a continuous error.  

Notice that it is not possible to form a complex 

instrument with the same amount of DOF, as the 

simple instrument. Therefore there it was 

decided to plot a complex instrument with 4 

DOF, one more than the simple instrument, and 

a complex instrument with 2 DOF, one less than 

the simple instrument.  

The complex instrument with two segments and 

four DOF is overlapping the path in the 

instrument and path plot. Thus it is relatively 

accurate in following the path.  See Table 2 row 

2. 

The complex instrument with one segment and 

two DOF is not totally overlapping the path. It 

can be noticed that the instrument is moving 

away from the path in the middle of the 

segment. But the tip finds the ideal path again.   

Error position plotError position plotError position plotError position plot    

The simple segment shows an error that is 

increasing at the start of the instrument, see 

Table 2, row 3. After a rapid increase, the error 

seems to be stable. Notice that the instrument is 

not capable of optimizing to a position.  

The complex instrument with two segments 

shows a maximal error below 0.15 mm. This is 

fairly accurate. Definitely compared to the 

simple instrument, with a maximal error just 

below the 2.5 mm. It can be noticed that the 

instrument crosses the path multiple times, 

therefore the error position plot shows multiple 

zeros. The error seems relatively large at the end 

of the first segment. The segment does, 

however, not optimize to the minimal distance 

to the path, but only to the minimal distance to 

the desired endpoint.  

The complex instrument with one segment 

shows an error at the center of the segment that 

is higher than the maximal error of the simple 

segment. However, this error is compensated at 

the end of the segment. This suggests that the 

instrument is more capable of following the path 

than the simple instrument. Additionally the 

average error is also smaller. 

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

The histogram of the simple instrument shows a 

high amount of relatively large errors. The 

complex segment with two segments does not 

show large errors. The complex instrument with 

one segment is showing a high number of small 

and a high number of large errors.  

Error tableError tableError tableError table    

The endpoints of the simple instrument are 

clearly further from the desired endpoints than 

the endpoints of the complex instruments. The 

endpoint error of the simple instrument is also 

increasing. This can be explained because the 

instrument does not have information about the 

position of the desired endpoint. And therefore 

cannot optimize to this point, or compensate for 

previous errors.  
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In practiceIn practiceIn practiceIn practice    

 he results show that a complex instrument with 

two segments is much better at approaching the 

path than the simple instrument is. However, 

this complex segment would also have one DOF 

more. A complex instrument with one segment 

also seems to be more capable of approaching  

 

Table 2: Case 2.1. An exponential equation. The 

second row shows three path plots as well as the 

instrument following the path. The third row shows 

an error plot. The fourth row shows a histogram of 

the error plot. And the fifth row shows the endpoint 

errors of the segments compared to the desired 

position. 

The simple instrument 

Case 2.1 

The complex instrument 

Case 2.1, same amount of DOF 

The complex instrument 

Case 2.1, same maximal error 

Error of the end position compared to the 

desired position (simple) 

Segment 1 2 3 

Error mm 2.248 3.694 4.852 
 

Error of the end position compared to the 

desired position (complex) 

Segment 1 2  

Error mm 0.1354 0.0114  
 

Error of the end position compared to the 

desired position (complex) 

Segment 1   

Error mm  1.545   
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the desired path. Although the maximal position 

error is larger, the tip error is smaller, and the 

average position error is also smaller. In practice 

a segment of 120 mm seems relatively long. But 

one segment is probably easier to produce than 

3 simple segments mounted together.   

5.2.2 Case 2.2 

Case 2.2 shows an exponential path with a 

relatively sharp curve at the start of the path. 

Therefore the start of the path is hard to 

approach. The results are presented in Table 3. 

Instrument and pInstrument and pInstrument and pInstrument and path plotath plotath plotath plot    

The Simple instrument is able to follow the 

exponential path with 8 segments and a maximal 

error of 3 mm, see Table 3 row 2. This is a 

relatively high number of segments, besides the 

path is still not covered at the difficult part. 

A complex instrument with four segments and 

the same amount of DOF as the simple segments 

seems to cover the path more decently.  

A complex instrument with three segments and 

a maximal error below 3 mm seems to overshoot 

at the first curve. Afterwards, this overshoot is 

compensated.   

Error position plotError position plotError position plotError position plot    

The simple instrument shows a large error at the 

start of the instrument. This peak is just after the 

end of the first segment. This was expected 

because this curve is the hardest part of the path 

to follow. The simple instrument is, capable of 

reducing the error to a minimum after the sharp 

curve.  

The complex instrument with four segments has 

a smaller maximum error of 1.5 mm, instead of 

2.4 mm of the simple instrument. However, this 

difference is small compared to the other cases. 

This means that the instrument is only slightly 

better at following this track. This is probably 

because the end position of the first segment is 

already past the difficult curve. So this 

information cannot be used for the reduction of 

the maximal error.  

The results of the complex instrument with 3 

segments are comparable to the result of the 

complex instrument with 4 segments. However, 

the error is larger. The error is in the same range 

as the error of the simple instrument.  

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

All of the instruments show relatively few large 

errors and a large number of small errors. This is 

the case because the path is only difficult to 

follow at the start.  

Error tableError tableError tableError table    

The endpoint errors of the simple instrument 

compared to the desired points are very large 

compared to the complex segment. This shows 

that the instrument is not able to follow the 

path. Although the error plot shows that the 

instrument is overlapping the path, the desired 

points are far from reach. Thus the information 

retrieved from the desired points is only correct 

because the angles between the desired points 

are approximately the same.  

The error table clearly shows that the complex 

instrument with four segments is better at 

approaching the desired position, overall the 

error is around 50% smaller compared to the 

complex instrument with three segments.  

In practiceIn practiceIn practiceIn practice    

The sharp angle at the start of the path might be 

hard or impossible to follow with the produced 

segments in practice. However, it is interesting 

to see that both segments are able to follow a 

straight line after a sharp angle. However, the 

simple segment is not able to find the path with 
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a high accuracy after the difficult angle. While 

both complex instruments  

Table 3: Case 2.2. An exponential equation. The 

second row shows three path plots as well as the 

instrument following the path. The third row shows 

an error plot. The fourth row shows a histogram of 

the error plot. And the fifth row shows the endpoint 

errors of the segments compared to the desired 

position. 

reduce their error drastically after the difficult 

angle. This is the case because the simple 

instrument can only optimize to an angle and not 

to a position. This restriction is clearly visible, 

and definitely a huge loss. The simple instrument 

is lacking the capability of reducing a previous 

error, while the complex segment can reduce a 

previous error.   

The simple instrument 

Case 2.2 

The complex instrument 

Case 2.2, same amount of DOF 

The complex instrument 

Case 2.2, same maximal error 

   

   

   
Error of the end position compared to 

the desired position (simple) 

 

Segment 1 2 3 4 

Error mm 2.412 1.962 1.932 5.671 

Segment 5 6 7 8 

Error mm 6.073 2.456 6.260 8.801 
 

Error of the end position compared to 

the desired position (complex) 

 

Segment 1 2 3 4 

Error mm 1.082 0.564 0.510 0.527 

 
 

Error of the end position compared to 

the desired position (complex) 

Segment 1 2 3 

Error mm 2.149 0.949 0.997 
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5.3 Case 3 sinusoid 

Case 3 is two sinusoids. These paths are 

relatively hard to follow because the paths have 

multiple curves. Case 3.1 shows a sinusoid with 

relatively soft bends, where 3.2 has more and 

sharper curves and is therefore even more 

challenging.  

5.3.1 Case 3.1 

Case 3.1 shows a sinusoid, with relatively blunt 

bends. Multiple curves make the path harder to 

follow. The results are presented in Table 4. 

Instrument and Instrument and Instrument and Instrument and ppppath plotath plotath plotath plot    

The simple instrument needs eight segments to 

follow the path, see row two Table 4. And even 

with eight segments, it is still clear to see that the 

second curve is hard to form.  

The complex instrument seems to perform much 

better with the same amount of DOF. Notice that 

the path seems completely covered by the 

segments.  

The complex instrument with three segments is 

able to follow the path with a maximum error 

below 3 mm, even below 1 mm. However, this 

path can no longer be followed with 2 segments.   

Error position plotError position plotError position plotError position plot    

The error position plot of the simple instrument 

shows the error at the second curve as the 

maximal error, as expected. The error seems to 

be recovered at the tip of the instrument, this is 

however, a coincidence. 

The complex instrument with four segments 

shows a relatively small error below 0.4 mm. An 

order of magnitude smaller than the simple 

instrument.  

The complex instrument with three segments is 

also outperforming the simple instrument. The 

maximal error is around 1 mm. So it is safe to say 

that the complex instruments are performing 

much better on this complex path.   

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

The histogram shows that the simple instrument 

only has a few large errors. The modulus lays 

between 0.8 and 0.9 mm. This is still large 

compared to the complex instruments. The 

complex instruments have a more evenly 

distributed error, also due to the smaller errors. 

Error tableError tableError tableError table    

The error table clearly shows that the complex 

instruments are better in approaching the 

desired positions, compared to the simple 

instrument. The simple instrument shows errors 

between the 1.1 mm and 3.2 mm, while the 

maximal error of the complex instruments is 0.75 

mm. Thus the simple instruments performed 

significantly worse in following the desired path.  

The error table clearly shows that the complex 

instrument with four segments is better at 

approaching the desired position, overall the 

error is around 50% smaller compared to the 

complex instrument with three segments.   

In practiceIn practiceIn practiceIn practice    

The simple instrument clearly has more 

difficulties following a complex sinusoid path, 

compared to the complex instruments. The 

average and maximum error are much higher, 

even with more DOF. For this specific path, it is 

safe to say that the complex instrument is 

outperforming the simple instrument on all 

fronts. 
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Table 4: Case 3.1. A sinusoid. The second row shows 

three path plots as well as the instrument following 

the path. The third row shows an error plot. The 

fourth row shows a histogram of the error plot. And 

the fifth row shows the endpoint errors of the 

segments compared to the desired position. 

 

 

The simple instrument 

Case 3.1 

The complex instrument 

Case 3.1, same amount of DOF 

The complex instrument 

Case 3.1, same maximal error 

  Error of the end position compared to the 

desired position (simple) 

Segment 1 2 3 4 

Error mm 1.629 2.392 1.712 1.130 

Segment 5 6 7 8 

Error mm 1.569 2.799 3.102 2.673 
 

Error of the end position compared to the 

desired position (complex) 

Segment 1 2 3 4 

Error mm 0.202 0.141 0.289 0.298 

 

 

Error of the end position compared to 

the desired position (complex) 

Segment 1 2 3 

Error mm 0.418 0.484 0.753 
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5.3.2 Case 3.2 

The second sinusoid, case 3.2 is a difficult path 

with multiple changes of direction. This path is 

really challenging due to the number and 

sharpness of the bends. This path is the most 

complex variant, and can probably not be 

followed in practice due to the sharp bends. 

However, the results still give insight in the 

maneuverability of the different instruments. 

The results are presented in Table 5. 

Instrument and Instrument and Instrument and Instrument and ppppath plotath plotath plotath plot    

The simple instrument needs fifteen segments to 

follow this path, see Table 5 row 2. This is an 

extreme amount of segments, and therefore 

hard to manufacture. Even with this number of 

segments, the error increases at the tip. Because 

the instrument is not able to correct the previous 

error.  

A complex instrument with seven segments, 

note that this is one DOF less than the simple 

instrument, is clearly outperforming the simple 

instrument. The instrument is capable of 

completely overlaying the path. 

A complex instrument with five segments can 

follow the path, however, the bends of certain 

segments are relatively sharp. This might lead to 

difficulties in practice. 

Error position plError position plError position plError position plotototot    

The simple instrument has a sharp bend at the 

tip. It is not able to reduce this error. It also 

shows a large error at the second angle. 

The complex instrument with seven segments 

shows fluctuating errors, but all the errors are 

below 0.45 mm. So the instrument performs 

well. 

The complex instrument with five segments also 

shows sharp bends at the tip. This is probably 

due to the complexity of the second angle. The 

instrument should, in contradiction to the simple 

instrument, be able to reduce this error when 

the instrument follows the path even further.  

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

The histogram plots from all of the instrument 

show a relatively low number of large errors.  

Error tableError tableError tableError table    

The simple instrument performs worse in 

reaching the desired points compared to the 

complex instrument with the same amount of 

DOF. However, the complex segment with the 

same error also shows one large error at the tip, 

compared to the desired endpoint. It should also 

be noted that the desired endpoint error of the 

simple instrument is not constantly increasing. 

This is a coincidence because the instrument has 

no information about the desired position.  

The error table clearly shows that the complex 

instrument with seven segments is better at 

approaching the desired position than the 

complex instrument with five segments. An 

endpoint error at the tip of 2 mm shows that the 

instrument with five segments is no longer able 

to follow the path correctly.   

In practiceIn practiceIn practiceIn practice    

The main conclusion from this path is that the 

simple instrument performs less well on complex 

paths. This path is more a proof of concept than 

a realistic real-life measurement. Due to the 

sharp curves, and the lack of a maximal segment 

angle, the bending of certain segments is really 

high. The high number of segments needed by 

the simple instrument makes it also hard to 

fabricate. So the path is certainly complex to 

follow with both methods.  

The path is, however, still interesting because it 

shows the potential possibilities of both cable 

configurations. The potential possibilities of the 
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segments with parallel and diagonal cables seem 

much higher, than the possibility of an 

instrument based on only parallel cables, in 

complex paths. 

Table 5: Case 3.2. A sinusoid. The second row shows 

three path plots as well as the instrument following 

the path. The third row shows an error plot. The 

fourth row shows a histogram of the error plot. And 

the fifth row shows the endpoint errors of the 

segments compared to the desired position. 

The simple instrument 

Case 3.2 

The complex instrument 

Case 3.2, same amount of DOF 

The complex instrument 

Case 3.2, same maximal error 

  Error of the end position compared 

to the desired position (simple) 

 

Segment 1 2 3 4 

Error mm 1.306 0.940 1.465 0.781 

Segment 5 6 7 8 

Error mm 0.857 1.914 1.997 2.284 

Segment 9 10 11 12 

Error mm 2.288 1.460 2.902 1.525 

Segment 13 14 15  

Error mm 1.908 2.599 2.821  
 

  Error of the end position compared to the 

desired position (complex) 

Segment 1 2 3 4 

Error mm 0.260 0.217 0.376 0.244 

Segment 5 6 7  

Error mm 0.241 0.328 0.153  

 

 
 

  Error of the end position compared to the 

desired position (complex) 

Segment 1 2 3 4 

Error mm 0.555 0.613 0.219 0.078 

Segment 5    

Error mm 2.058    
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5.4 Case 4 circular arcs 

Case 4 describes a path consisting of two parts 

with a constant curvature, so parts of a circle. 

These paths are consisting of two parts with a 

constant curvature and seem easy to follow. 

Because an instrument is able to form a constant 

curvature, it can follow a constant curvature line. 

However, the shape in this case consists of two 

different arcs. This will result in some difficulties 

at the point where the radius of curvature 

switches.  

5.4.1 Case 4.1 

The curve of the first case has an angle up to 

1/3π. The second part is defined by the same 

radius of curvature, in the opposite direction. 

The results of case 4.1 are presented in Table 6. 

Instrument and Instrument and Instrument and Instrument and ppppath plotath plotath plotath plot    

The simple instrument needs 5 segments to 

follow the path with a maximal error below 3 

mm, see Table 6 row 2. Notice that the 

instrument follows the desired path perfectly for 

the first segment. This is possible because the 

path is a constant curvature. However, the path 

between the end point of the first segment and 

the end point of the second segment has no 

longer a constant curvature. So after the second 

segment, an error starts to form.   

It is not possible to reach five DOF with the 

complex instruments. Therefore, there is 

decided to plot an instrument with six DOF and 

one with four DOF. An instrument with six DOF 

seems completely capable of following the path. 

An instrument with four DOF shows, however, 

some errors at the first angle. 

Error position plotError position plotError position plotError position plot    

The error plot shows that the simple instrument 

is perfectly capable of following the path for the 

first segment. Afterwards, an error is introduced. 

Although it looks like the error is compensated, 

this is not the case. The instrument simply 

crosses the desired path, this reduces the 

distance between the instrument and the 

desired path.  

The complex instrument with three segments 

shows a maximal error below 0.5 mm. But it 

should be taken into account that this 

instrument uses more DOF than the simple 

instrument. A simple instrument with 6 

segments, shows an error just above 0.8 mm to 

put the results in context.  

The complex instrument with two segments 

shows a comparable maximum error as the 

simple instrument with one DOF more.  

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

The histogram plots from all of the instruments 

show a high number of small errors. The results 

are in line with the expectations, given the 

results of the previous plots.   

Error tableError tableError tableError table    

The error table of the simple instrument shows 

that the desired position of the first segment is 

reached exactly. This is because the start of the 

path has a constant curvature. After the first 

segment, a small error occurs, this is because the 

second part does not have a constant curvature. 

Afterwards, the error stays constant. This is 

expected because the curvature is again 

constant after the second segment.  

The complex segments do not show a zero error 

because the segment covers a larger part of the 

path. This larger part does not have a constant 

curvature.  However, both the instrument with 3 

as the instrument with 2 segments is capable of 

correcting for the error.  
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In practiceIn practiceIn practiceIn practice        

The path is not extremely difficult to follow and 

does not show sharp bends. However, the 

complex instrument with only two segments 

might give trouble with the relatively sharp 

angles per segment. 

Table 6: Case 4.1. An equation existing of constant 

curvature arcs. The second row shows three path 

plots as well as the instrument following the path. 

The third row shows an error plot. The fourth row 

shows a histogram of the error plot. And the fifth row 

shows the endpoint errors of the segments 

compared to the desired position. 

The simple instrument 

Case 4.1 

The complex instrument 

Case 4.1, same amount of DOF 

The complex instrument 

Case 4.1, same maximal error 

  Error of the end position 

compared to the desired position 

(simple) 

 

Segment 1 2 3 4 

Error mm 0.000 2.722 2.722 2.722 

Segment 5    

Error mm 2.722    
 

Error of the end position compared 

to the desired position (complex) 

 

Segment 1 2 3  

Error mm 0.045 0.169 0.047  

 

 
 

Error of the end position compared 

to the desired position (complex) 

 

Segment 1 2   

Error mm 1.057 0.646   
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The complex instruments show clear advantages 

in the error table. This simply shows that the 

complex instrument is better at reaching the 

desired end position. And shows the importance 

of compensating an error. Even in a constant 

curvature path with only one change of 

direction, the simple instrument will still show a 

large error and is unable to compensate for this 

error.  

5.4.2 Case 4.2 

The second version of case 4 shows an arc with a 

constant curvature up to an angle of ½ π before 

the curvature changes in the opposite direction. 

The results of case 4.2 are presented in Table 7. 

Instrument and Instrument and Instrument and Instrument and ppppath ath ath ath plotplotplotplot    

The simple instrument needs 6 segments to 

follow the path with a maximal error of 3 mm. 

Notice that the instrument is capable of 

following the path nicely. 

The complex instrument with the same amount 

of DOF is also perfectly capable of following the 

path. The same goes for the complex instrument 

with two segments. 

Error position plotError position plotError position plotError position plot    

The simple instrument shows that the error is 

close to zero for the first 3 segments. This is the 

case because the curvature is constant. 

Afterwards, the maximal error occurs, that is 

below 1.2 mm. This is small compared to other 

cases because a simple instrument with 5 

segments shows a maximal error just above the 

3.5 mm.  

The complex instrument with three segments 

shows an even smaller maximum error of 0.75 

mm. Although the difference is significant, it is by 

far not as large as in the previously described 

cases.  

The complex instrument with two segments has 

a maximum error of 1 mm and is therefore 

comparable with the error of the simple 

instrument. 

Histogram error plot Histogram error plot Histogram error plot Histogram error plot     

The histogram plots from all of the instrument 

show a relatively low number of large errors.  

Error tableError tableError tableError table    

The simple segment is perfectly capable of 

following the first part of the path. This part has 

a constant curvature. The error is equal to zero 

for the first three segments. The fourth segment 

cannot follow a part of the desired path with a 

constant curvature, so an error occurs. This error 

cannot be compensated. However, the rest of 

the path is again a constant curvature, so the 

error stays the same. 

Although the complex instrument is technically 

capable of following a constant curvature, the 

way of programming gives a small limitation. To 

reach a constant curvature the Euler spiral needs 

to be infinitely long. Therefore a small endpoint 

error can be noticed for the complex instrument 

with three segments.  

The complex instrument with three segments is 

capable of reducing the endpoint error. And 

both complex instruments show a significantly 

smaller endpoint error than the simple 

instrument.   

In practiceIn practiceIn practiceIn practice    

The complex instrument with only two segments 

should be able to follow the path. However, the 

angle that a single segment needs to make is 

around ½ π. Therefore an approach of three 

complex segments seems more logical.  

Notice that the simple segments are capable of 

following a path with constant curvatures 

perfectly. However, for each part of the desired 
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path that does not form a constant 

curvature,  an error will occur. Thus this error will 

always occur, unless the path is only consisting 

of one arc with a constant curvature. And this 

error cannot be compensated. This shows the 

absolute main disadvantage of the simple 

instrument.  

Table 7: Case 4.2. An equation existing of constant 

curvature arcs. The second row shows three path 

plots as well as the instrument following the path. 

The third row shows an error plot. The fourth row 

shows a histogram of the error plot. And the fifth row 

shows the endpoint errors of the segments 

compared to the desired position. 

The simple instrument 

Case 4.2 

The complex instrument 

Case 4.2, same amount of DOF  

The complex instrument 

Case 4.2, same maximal error 

  Error of the end position 

compared to the desired position 

(simple) 

 

Segment 1 2 3 4 

Error mm 0.000 0.000 0.000 1.210 

Segment 5 6   

Error mm 1.210 1.210   

 

Error of the end position compared 

to the desired position (complex) 

 

Segment 1 2 3  

Error mm 0.045 0.168 0.005  
 

Error of the end position compared 

to the desired position (complex) 

 

Segment 1 2   

Error mm 0.052 0.673   
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5.5 Overview of the results 

This section discusses the performance of 

different instruments on multiple different 

paths. The results of the different cases deliver 

information on the behavior of the different 

instruments. However, one case cannot provide 

all the information on the instruments, therefore 

multiple cases were used. This Section will give 

an overview of the information concluded from 

the previous results.  

It should be kept in mind that all the previously 

described cases are arbitrary examples of 

different paths. Besides, the cases do not show a 

moving instrument, but only an instrument after 

it has traveled along the path for 120 mm.  

Complex instComplex instComplex instComplex instrument with the same amount of rument with the same amount of rument with the same amount of rument with the same amount of 

degrees of fdegrees of fdegrees of fdegrees of freedomreedomreedomreedom    

Whenever the simple instrument is compared to 

the complex instrument with the same amount 

of DOF, it should be noticed that the complex 

instrument is showing smaller errors in all the 

cases, except for the straight-line, case 1.  

Case 1 is a straight-line and both instruments can 

follow the path exactly. However, the simple 

instrument is programmed with a possibility of 

making an arc with a zero angle, this results in a 

straight-line. The Complex instrument will select 

a starting point and an endpoint on the Euler 

spiral and scales the Euler spiral by a massive 

factor, so a straight-line occurs. Thus the 

advantages of the simple segment lay in a way of 

programming.  

Whenever the simple instrument is compared to 

the complex instrument with the same amount 

of DOF, it can be noticed that the complex 

instrument is showing smaller errors in all the 

cases, except for the straight-line, case 1.  

In case 2 up till case 4 the complex instrument 

with the same amounts of DOF, is showing a 

maximal error, far below the error of the simple 

instrument. The difference between the error of 

the simple and the complex instrument seems to 

be the largest for case 3.1, case 3.2 and case 4.1. 

These examples give a maximal error difference 

of a factor 5. 

Complex instrument with the same maximal Complex instrument with the same maximal Complex instrument with the same maximal Complex instrument with the same maximal errorerrorerrorerror    

Table 8 shows the number of segments needed 

for the simple and the complex instrument to 

follow the desired path, with a maximal error of 

3 mm. The table clearly shows that the complex 

instrument needs fewer segments, and fewer 

DOF to follow all of the different paths, within 

this error margin. The reduction of DOF is 20% in 

case 4.1, 25% in case 2.2  and 33% in cases 2.1, 

3.2 and 4.2. This is a significant decrease in DOF.  

Complex pathsComplex pathsComplex pathsComplex paths    performanceperformanceperformanceperformance    

The more complex paths like the two sinusoids, 

case 3.1 and 3.2, show a clear preference for the 

complex instruments. The complex instrument 

performed better on all paths. However, the 

more complex a path seems, the better the 

complex instrument performers relative to the 

simple instrument.  

Compensating for an errorCompensating for an errorCompensating for an errorCompensating for an error    

The information provided to the simple and the 

complex instrument is different. The simple 

instrument only receives the desired end angles. 

These end angles match with a certain end 

position. However, the end angles also dictate a 

certain end position of the simple segment, 

which might not match the desired end position 

of the path. 
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Table 8: The number of segments and degrees of 

freedom needed to follow a path.  

 Number of 

segments 

simple 

instrument 

Number of 

segments 

complex 

instrument 

Number of 

DOF 

complex 

instrument 

Case 

2.1 

3 1 2 

Case 

2.2 

8 3 6 

Case 

3.1 

8 3 6 

Case 

3.2 

15 5 10 

Case 

4.1 

5 2 4 

Case 

4.2 

6 2 4 

 

The complex instruments will receive 

information of an end position and a desired 

angle at this position. The desired end position is 

given in the global frame. Thus the end position 

error of the bottom segment can be 

compensated by the next segment. 

The end angle of a segment controls the starting 

angle of the next. This will therefore directly 

influence the direction of the next segment. If 

the end angle is not given or not reached, the 

next segment will start in a wrong direction and 

would, therefore, perform significantly worse.  

The desired position is valid information about 

the segment. The end position of the previous 

segment determines the starting position of the 

current segment. But the most important factor 

of a position is the possibility to compensate for 

previous position errors.  

Curvature analysisCurvature analysisCurvature analysisCurvature analysis    

To get a better understanding of the 

performance of the instruments, curvature plots 

have been made from the different paths.  

Case 1 the straight path shows that the curvature 

is constant and zero see Figure 32. Thus the 

straight path can be perfectly followed by the 

simple and complex instrument with only one 

segment, as the results prove. 

The second case with the exponential equations 

gives a different result.  Both exponential 

equations show a relatively constant curvature 

after 60mm, see Figure 32. The first exponential 

equation shows an almost linear decrease in 

curvature at the start of the path. This should be 

relatively easy for the complex segment to 

follow. The second exponential equation case 

2.2 shows, however, a large fluctuation at the 

start of the path. This fluctuation can only be 

approached with 2 complex segments in the first 

30mm of the path. In practice, the curvature 

fluctuation cannot be matched but doesn’t 

create a large position error for the complex 

instrument. The simple instrument needs 

multiple segments to overcome this fluctuation.   

Figure 32: A representation of the curvature of the straight 

path case 1 and the exponential paths case 2.1 and case 

2.2. 

The third case with sinusoids does show complex 

curvature plots. Those plots show that the 

sinusoid paths are impossible to follow with 

simple or complex segments and that an 

approximation requires a large number of 
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segments. Case 3.1 shows smaller curvature 

changes and is, therefore, easier to follow, see 

Figure 33. 

The fourth case shows two circular arcs. The 

direction of the curvature changes after a corner 

of 1/3π for case 4.1 and after an angle of 1/2π 

for case 4.2. This switch can be noticed in the 

curvature plot Figure 34. The curvature plot 

shows a constant curvature and can, therefore, 

be followed by both types of instruments. 

However, the complex instrument is better in 

handling the switch between the two circular 

arcs. 

Figure 33: A representation of the curvature of the 

sinusoid paths case 3.1 and case 3.2. 

Figure 34: A representation of the curvature of the 

circular arc paths case 4.1 and case 4.2. 

Stability analysisStability analysisStability analysisStability analysis    

The stability of the instruments is difficult to 

calculate. To get an impression of the stability of 

the results, all the calculated paths are scaled 

with a factor 0.9 and with a factor 1.1. The 

maximal error for both the complex and the 

simple instrument is shown in respectively Table 

9 and Table 10. It should be noted that a scaled 

path will result in different desired positions and 

therefore will influence the shape of the 

segments. 

Table 9 shows a maximal relative error decrease 

of 45% and a maximal relative error increase of 

173%. It should be noted that this percentage is 

only a small error increase in mm. The maximal 

error difference is just below 1.3mm.  

Table 10 shows a maximal relative error 

decrease of 44% and a maximal relative error 

increase of 116%. The maximal absolute error 

difference is just below 1.9mm.  

Both instruments show relatively large 

fluctuations whenever the path is 10% larger of 

10% smaller than the original form. This means a 

slightly different path does influence the 

maximal error significantly for path instruments. 

This can, however, be explained, because a 

different path will result in different desired 

positions and different matching shapes. Table 9 

and 10 also show that the complex instrument 

with the same amount of DOF outperformed the 

simple instrument on all the cases, also for the 

scaled paths.  
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Table 9: The table shows the maximal error of the complex instrument compared to the desired path. The column of 0.9 shows 

the maximal error whenever the original path is scaled with a factor 0.9. Column 1 shows the maximal error of the original 

path. And column 1.1 shows the shows the maximal error whenever the original path is scaled with a factor 1.1. The error 

difference between the two scaled paths and the original path is expressed in percentages in the two right columns.   

Case Number of 

segments 

0.9 1 1.1 (0.9-1)/1 

*100% 

(1.1-1)/1 *100% 

case 2.1 1 segments 

complex 

2.660 2.889 1.677 -8% -42% 

case 2.1 2 segments 

complex 

0.3296 0.1207 0.06611 173% -45% 

case 2.2 3 segments 

complex 

2.882 2.844 2.670 1% -6% 

case 2.2 4 segments 

complex 

1.806 1.495 1.126 21% -25% 

case 3.1 3 segments 

complex 

1.059 1.041 1.888 

 

2% 81% 

case 3.1 4 segments 

complex 

0.6857 0.3511 0.5502 95% 57% 

Case 3.2 5 segments 

complex 

1.233 1.623 1.937 -24% 19% 

Case 3.2 7 segments 

complex 

1.075 0.4319 0.8728 149% 102% 

Case 4.1 2 segments 

complex 

2.289 2.564 2.439 -11% -5% 

Case 4.1 3 segments 

complex 

0.5743 0.4526 1.030 27% 128% 

Case 4.2 2 segments 

complex 

1.170 1.021 2.295 15% 125% 

Case 4.2 3 segments 

complex 

0.8404 0.6989 1.125 20% 60% 

 

Table 10: The table shows the maximal error of the simple instrument compared to the desired path. The column of 0.9 shows 

the maximal error whenever the original path is scaled with a factor 0.9. Column 1 shows the maximal error of the original 

path. And column 1.1 shows the shows the maximal error whenever the original path is scaled with a factor 1.1. The error 

difference between the two scaled paths and the original path is expressed in percentages in the two right columns.   

Case Number of 

segments 

0.9 1 1.1 (0.9-1)/1 

*100% 

(1.1-1)/1 *100% 

Case 2.1 3 segment 

simple 

2.551 2.353 1.607 8% -32% 

Case 2.2 8 segments 

simple 

3.270 2.363 1.377 38% -42% 

Case 3.1 8 segments 

simple 

2.737 2.727 2.965 0% 9% 

Case 3.2 15 segments 

simple 

3.157 2.777 2.408 14% -13% 

Case 4.1 5 segments 

simple 

4.590 2.722 1.515 69% -44% 

Case 4.2 6 segments 

simple 

1.764 1.172 2.531 51% 116% 
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6. Discussion 
Intro 

The discussion will give a broader interpretation 

of the results, together with the limitations of 

the model and the further recommendations.  

6.1 Information  

The simple instrument receives different 

information compared to the complex 

instrument with the same number of DOF. The 

simple instrument receives end angles, where 

the complex instrument receives end angles and 

end positions. A simple segment is capable of 

reaching the desired angle because the segment 

has one DOF and the desired angle is one 

coordinate. The complex segment is, however, 

not able to reach the desired angle and the 

desired position, because the desired angle is 

one coordinate and the desired position is an x 

and a y-coordinate. So the complex segment is 

only able to reach the desired angle and optimize 

to the desired position.  

Desired angleDesired angleDesired angleDesired angle    

The desired angle is the starting direction of the 

next segment. If the desired angle is reached, the 

segment on top of the current segment will start 

in the desired direction.  

The desired angle can also give a hint of the 

shape of the path between two points. Although 

this information is less reliable. Whenever the 

desired path does not consist of a large number 

of sharp curves, the end angle of a segment will 

often give an impression of the path between 

the two desired points. Notice that this 

information is, however, unreliable. 

Desired position  Desired position  Desired position  Desired position      

The desired position exist of two coordinates, an 

x and a y-coordinate. The complex cable 

configuration has two DOF, and one of them is 

used for reaching the desired position. It should 

be noted that the desired position consists of 

two generalized coordinates, and therefore 

cannot be exactly reached with one DOF control, 

but it can be approached.  

The desired position gives information about the 

desired endpoint of each segment. This desired 

endpoint is given in the Global frame. Thus even 

if the previous segment makes an error 

compared to the previous desired position, the 

current segment will still optimize towards the 

global desired position. Therefore the position 

error does not necessarily increase with each 

segment.  

The desired endpoint has another benefit. 

Together with the desired angle, it gives more 

information over the track in between the 

desired points. Without the desired position, the 

desired angle only gives a hint of where the 

desired position would be.  

Because the instrument is judged on the error 

that it makes compared to the desired path, a 

DOF that optimizes towards the desired path is 

very important.  

Increasing errorIncreasing errorIncreasing errorIncreasing error     

Whenever a segment is not able to reach the 

desired end position. The distance between the 

end point of the current segment and the 

desired end position of the next segment might 

be larger. Therefore the next desired position 

might not be reachable. This can result in an 

increasing end position error.  

DDDDesired angle and desired positionesired angle and desired positionesired angle and desired positionesired angle and desired position    

The results show a much better performance 

from the instrument with complex segments 

compared to the instrument with simple 

segments with the same number of DOF. This 

suggests that the information of the desired 
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position is more important for the instrument 

than the information of an angle.  

The angle is more important for the starting 

direction of the next segment than for the 

current segment. However, the desired position 

in combination with the desired angle does give 

an indication of the shape between the desired 

positions. Therefore, the complex segment 

seems to be far superior for following different 

tracks.  

The different shapes that a segment is able to 

make is directly related to the number of DOF it 

has. Therefore, the different possibilities in 

shapes of a segment cannot be viewed 

separately from the DOF of a segment.  The 

larger possibility of shapes from the complex 

segment might be beneficial in following a path 

with multiple curves.  

Notice that an increase in segments will lead to 

better results in all the presented cases. This is a 

direct effect of more information provided to the 

instrument and an increase of the number of 

DOF of the instrument.    

6.2 Limitations of the model 

It should be kept in mind that the algorithm is 

designed as a tool for comparing the potency of 

two cable configurations. Although the model 

tries to be accurate, the results might be 

inaccurate at sharp bending angles. Therefore, it 

is not advised to use the model as a path planner, 

but as an indicator of possibilities.   

Notice that the second segment gets a global 

position that it needs to reach. Just like the 

mechanical system gets a global position of the 

preformed track for each of the segments. This 

gives the instrument the possibility to 

compensate for the previous errors. Whenever 

this is not the case, the position error cannot be 

compensated. This will result in an increasing 

position error. An increased position error will 

influence the accuracy of the information 

provided to the segments. Whenever a desired 

position is not reached, the instrument lags 

behind on the desired path. The provided 

information is based on the previous desired 

position instead of the end position of the 

segment. Therefore this information becomes 

less reliable. 

It was decided not to introduce a maximal angle 

to the instruments. Although the algorithm 

makes it possible to introduce a maximal 

bending angle. A maximal angle would be 

arbitrary. Besides, this arbitrary decision will 

influence the results. This influence will 

eventually decrease the amount of information 

that the results present. Besides, it would also 

not be realistic to use a constant maximal angle 

for each segment, because a longer segment 

might be able to achieve a larger angle. Thus an 

angle per mm would be more realistic, however, 

the attachment between different segments will 

in practice also influence the bending angles.  

6.3 In practice 

In practice, a third dimension will need to be 

added to form the needed paths for surgery. 

However, with the addition of a third dimension, 

the constant curvature approximation is proven 

to be less precise [26].  

Notice that the number of cables is large in 

practice. In 3D the minimal number of cables for 

the simple configuration would be three per 

segment. Although most of the papers use four 

cables for this configuration. Whenever diagonal 

cables are added to the four parallel cables, the 

total number of cables per segment is eight. A 

concept with three parallel and three diagonal 

cables is also an option. Although multiple 

research groups prefer four cables due to the 
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intuitive control. The complexity rises with the 

number of cables. Therefore it is important to 

optimize towards an instrument with a high 

maneuverability but a low number of cables.   

The friction is neglected in this model. This will 

directly influence the magnitude of the force 

applied from the cable. However, because the 

report is focused on the kinematics rather than 

the dynamics of the system, the effect on the 

results will be minimal. Friction can become a 

problem if the number of segments increases. 

Notice that the friction will increase with the 

number of guidance ribs.  

Guidance ribs are needed to prevent extreme 

non-linear behavior. The simple configuration as 

well as the complex configuration need guidance 

ribs for larger bending angles. In practice, the 

instrument might be uncontrollable due to 

friction if too many guidance ribs are used.  

6.4 Design recommendations 

Whenever a flexible instrument is designed in 

combination with the master-slave system, it is 

recommended to choose for an instrument with 

a linear curvature. The second DOF is important 

for the maneuverability of a flexible instrument. 

Whenever there is chosen to use a flexible 

instrument with only parallel cables, it is strongly 

recommended to look at a position based 

control instead of an angle based control. A 

combination with the selected master-slave 

system is inefficient and will demand a large 

number of segments. 

The second recommendation is to look into the 

manners of providing guidance ribs. Although a 

higher number of guidance ribs will lead to more 

linear behavior, a higher number of ribs will also 

increase the complexity. Therefore it might be 

interesting to look at other promising ways of 

guiding the cables like a triple helix structure 

presented by Henselmans et al. [35].  

The third recommendation is to produce an 

instrument with four or five segments. Although 

more is always better, a production with five 

segments seems to be able to cover all the 

calculated paths, besides each segment makes 

the instrument more complex. An increasing 

number of segments would also decrease the 

length of the segments and might lead to a stiffer 

instrument, although there is more research 

needed in this area.  

6.5 Future recommendations 

There are a couple of recommendations for the 

improvement of the model. A maximal bending 

angle can be introduced. Although the code is 

already capable of using a maximal bending 

angle, this maximal bending angle should be 

based on measurements from prototypes. Thus 

more research is needed to implement a 

maximal bending angle.  

The algorithm only works in two dimensions. A 

third dimension can be added. This would give 

more insight into the behavior of the different 

configurations. However, it should be noted that 

other papers, like Rucker et al. [26] suggest 

different out of plane behavior.  

The different instruments can be tested on 

realistic paths. Those paths should be based on 

the anatomy of the area of interest of the human 

body.  
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7. Conclusion 
Delft University of Technology has developed 

two working prototypes of flexible instruments, 

together with a master-slave system. It was 

assumed that the instrument with a complex 

cable configuration requires fewer segments, 

compared to an instrument with a simple cable 

configuration, to cover a complex path, with the 

same accuracy.  

The two prototypes were modeled to select the 

most promising cable configuration. This model 

was used to predict the kinematic possibilities of 

those cable configurations. The kinematical 

shapes are used, in combination with a model of 

the master-slave system, to judge the 

configurations on their ability to follow complex 

paths.   

The developed algorithm shows a more accurate 

performance of the instrument with a complex 

cable configuration, for the investigated desired 

paths. In all the investigated paths, the number 

of needed segments to follow the desired path 

was lower for the complex cable configuration 

compared to the simple cable configuration. But, 

not only the number of segments was lower, the 

needed number of degrees of freedom, needed 

to follow a desired path with the same accuracy, 

was also lower.  

The results clearly show that an instrument build 

from segments capable of forming a shape with 

a linear curvature has more potential than an 

instrument existing of segments with a constant 

curvature. Even when the constant curvature 

instrument has twice the number of segments 

and therefore the same number of degrees of 

freedom.  
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