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Abstract. This paper documents a numerical study on entropy gen-
eration in zero-pressure gradient, laminar boundary layers of adiabatic
non-ideal compressible fluid flows. The entropy generation is expressed
in terms of dissipation coefficient Cd and its dependency on free-stream
Mach number, fluid molecular complexity, and flow non-ideality is inves-
tigated systematically by means of a boundary layer code extended to
treat fluids modeled with arbitrary equations of state. The results of the
study show that the trend of dissipation coefficient follows that of an
incompressible flow for complex fluid molecules like siloxanes in all ther-
modynamic and flow conditions. For simpler fluids like CO2 the trend
becomes inversely proportional to the free-stream Mach number and the
Cd value can significantly reduce in the non-ideal flow regime, where
strong thermo-physical property gradients occur near the wall.

Keywords: Boundary layer · Dissipation coefficient · Non-Ideal
Compressible Fluid Dynamics · Organic Rankine cycle · Supercritical
carbon-dioxide

1 Introduction

Loss mechanisms in internal flow components such as turbomachines and heat
exchangers are intimately related to entropy production due to irreversibility
in viscous processes [1]. These are induced by mixing in shear layers as well as
viscous dissipation in wall-bounded flows. In turbomachinery, boundary layer
loss usually accounts for nearly one-half of the total profile loss of a turbine [1],
corresponding to one-sixth of the total turbine loss. Its estimate is, therefore,
of particular concern to judge whether a certain design is superior or whether
desirable flow features, e.g. flow laminarization or delayed laminar-to-turbulent
transition, occur around the blade profile.

The magnitude of viscous dissipation in turbomachines depends on fluid
flow characteristics, i.e. Reynolds, Mach numbers and arguably the type of fluid
molecule, and it can be predicted using different methods. For instance, viscous
c© Springer International Publishing AG 2020
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dissipation can be well approximated as mass-averaged entropy rise resulting
from leading to trailing-edge of blades, and this quantity can be computed by
means of high-fidelity numerical calculations or experiments performed on single
cascades [2–4]. The drawback of this method is that the physical origin of this
loss becomes hard to grasp and systematic studies aimed at revealing physical
trends and at developing models for conceptual design can only be carried out
at the expense of a significant computational effort. A more convenient way to
approach the problem is to resort to the integral form of the kinetic energy
boundary-layer equation, whereby the rate of dissipation of mechanical energy
in the boundary layer explicitly appears [5]. Such rate, expressed in dimension-
less form, is commonly referred to as dissipation coefficient [1]. As opposed to
the more familiar skin friction coefficient, the value of dissipation coefficient is
relatively insensitive to the state of the boundary layer, i.e. the boundary layer
shape factor. Therefore, it is of practical use to gain understanding on the influ-
ence of free-stream flow parameters on boundary-layer loss and to provide a
quantitative indication of the amount of entropy generated in boundary layers
of flows typical of components of propulsion and power systems.

The trend of dissipation coefficient in laminar and turbulent regime has been
thoroughly characterized in zero-pressure gradient, accelerating, and decelerat-
ing boundary layers of incompressible flows [6]. However, no extensive investi-
gation on the effect of the free-stream Mach number has been reported so far
and only qualitative evidences can be found [1]. Furthermore, to the authors’
best knowledge, no published data are available with regard to the impact of the
fluid molecular structure and of the fluid thermodynamic state on the value of
the dissipation coefficient. The latter aspects are especially relevant in turbines
and compressors used in power systems based on the concept of organic Rankine
cycle (ORC), which operate with non-ideal compressible flows [7,8]. The term
Non-Ideal Compressible Fluid Dynamics (NICFD) is utilized to indicate the gas
dynamics of such flows. The relative importance of boundary layer loss in these
turbomachines is not known yet and thus steps forward in fluid-dynamic perfor-
mance are arguably possible from an improved physical understanding.

The aim of this paper is, thus, to investigate the effect of flow compressibility,
fluid molecular complexity, and flow non-ideality, i.e. departure from perfect gas
behaviour [9], on the dissipation coefficient in zero-pressure gradient, adiabatic
boundary layers of laminar flow, representative of flow problems occurring in
turbomachines. The calculations are carried out using a boundary-layer code
extended to the computation of thermo-physical fluid properties with arbitrary
equations of state.

The paper structure is as follows. Section 2 describes the background and
the scope of work. Section 3 documents the methodology. The findings of the
analysis are discussed in Sect. 4.
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2 Background and Scope of Work

The non-dimensional form of the boundary-layer kinetic energy equation for
planar, compressible flow [5] yields

dθ∗

dx
+ (3 − M2

e )
θ∗

Ue

dUe

dx
=

2Ḋ

ρeU3
e

, (1)

where θ∗ is the kinetic energy thickness, ρe, Ue,Me are the flow properties at
the edge of the boundary layer, while Ḋ represents the rate of dissipation of
mechanical energy in the boundary layer. θ∗ can be regarded as the defect of
kinetic energy that is extracted from the flow and it is therefore the key quantity
to characterize losses in internal flow devices. Equation (1) is applicable to both
laminar and (time-mean) turbulent flows. As the boundary layer develops along
the wall, the kinetic energy defect is altered by the presence of velocity gradients
and by the rate of dissipation of mechanical energy. The latter corresponds to
the amount of work done by viscous stresses transferred as heat to the fluid
which is given by

Ḋ =

ye∫

0

τxy
∂Ux

∂y
dy, (2)

per unit length along the wall and unit depth. For high-speed flows, the tempera-
ture variations within the boundary layer are of the order of M2

e [5] as compared
to the stagnation temperature of the outer flow. Therefore, a proper averaged
temperature value should be introduced to turn Ḋ into an entropy production
term Ṡ due to irreversibility. Alternatively, Ṡ can be computed by integrating
the local entropy generation along the boundary layer thickness

Ṡ =

ye∫

0

δḊ

T
=

ye∫

0

τxy

T

∂Ux

∂y
dy. (3)

The dissipation coefficient for compressible boundary layers can be defined as

Cd =
TeṠ

ρeU3
e

. (4)

Equation 4 can be further manipulated to obtain the classical expression of
the entropy loss coefficient.

Cd =
TeṠ

ρeU3
e

=
D

2L

LTeṠ

ρeUeD
U2

e

2

=
D

2L
ζ. (5)

The dissipation coefficient is, thus, equivalent to the local normalized entropy
production attained in a channel of aspect ratio D/L, with D the channel width,
i.e. the pitch between two adjacent blades, and L a characteristic length where
the Cd value can be assumed constant. As such, Cd can be directly used as the
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ultimate measure of lost performance due to viscous effects in boundary layers
of turbomachines.

From Eqs. (2), (3), (4), it can be inferred that Cd is function of the fluid and
flow characteristics, namely the boundary layer state, synthetically character-
ized through the free-stream flow properties and the Reynolds number based on
momentum thickness Reθ or kinetic energy thickness Reθ∗ . In analogy with the
findings reported in [1], the boundary layer momentum thickness θ is herein used
as characteristic length for the definition of the Reynolds number, while the flow
properties are conveniently expressed in terms of the free-stream static pressure
and temperature Pe, Te and of the free-stream Mach number Me. By introducing
the reduced form of the thermodynamic properties, i.e. Pre

= Pe

Pc
, Tre

= Te

Tc
, with

Pc, Tc the fluid critical pressure and temperature, Cd can be finally casted in the
following general dimensionless form

Cd = f(Reθ,Me, Pre
, Tre

, γ), (6)

where γ, that is the specific heat ratio of a fluid in the dilute gas state, is used
to denote an arbitrary compound. The reduced state variables Pre

, Tre
here

account for non-ideal flow effects in place of the compressibility factor z and the
fundamental derivative of gas-dynamics Γ [10].

The objective of the present study is to gain quantitative understanding of
the impact of compressibility, fluid molecular structure, and NICFD effects on
the trend of dissipation coefficient for laminar flows on flat surfaces. Once Cd

is determined for given flow condition, it can be utilized, for instance, in the
loss model described in [1], to estimate the boundary-layer losses of a turbine or
compressor cascade operating in the non-ideal compressible flow regime.

3 Technical Approach

The value of Cd is retrieved by using the in-house boundary-layer code BLnI,
which allows to solve the steady-state two-dimensional compressible form of the
boundary layer equations for ideal and NICFD flows of arbitrary fluids. The
thermo-physical fluid properties are obtained via the RefProp library imple-
mented in FluidProp [11]. To ease the numerical integration of the boundary layer
partial differential equations, these are put in a quasi one-dimensional form by
using the Falkner-Skan variable transformation adapted for compressible flows,
as proposed by [12]. More in detail, the transformed governing equations are
obtained by substituting the Cartesian coordinate y with the similarity variable
η, whose definition reads

η =

√
Ue

μeρex

∫
ρ dy, (7)

and introducing the dimensionless stream function f(x, η).
The use of this transformation allows i) to obtain velocity profiles that are

weakly dependent on the free-stream Mach number ii) to limit the increase of
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the boundary-layer thickness along the x coordinate, with the result that the
mesh domain has not to be adapted during the calculations, and iii) to reduce,
or even eliminate for the laminar case, the dependence of the equations solution
on x. The resulting momentum and energy equations for a two-dimensional zero-
pressure gradient boundary layer read [12]

Momentum :

(bf ′′)′ + 0.5ff ′′ = x

(
f ′ ∂f ′

∂x
− f ′′ ∂f

∂x

)
(8)

Energy :

(eg′ + df ′f ′′)′ + 0.5fg′ = x

(
f ′ ∂g

∂x
− g′ ∂f

∂x

)
, (9)

where a prime denotes differentiation with respect to η. Note that Eqs. (8) and
(9) hold for both laminar and turbulent flows described by the Reynolds-averaged
Navier-Stokes equations. For the more general case of turbulent flows, the terms
in Eq. (8) and (9) are defined as

b = CR
(
1 + ν+

)
, ν+ =

νT
ν

, CR =
ρμ

ρeμe
, (10)

d =
CRU2

e

h0,e

[
1 − 1

Pr
+ ν+

(
1 − 1

PrT

)]
, e =

CR

Pr

(
1 + ν+ Pr

PrT

)
, (11)

f ′ =
Ux

Ue
, f ′′ =

1
Ue

dUx

dη
, f =

∫
f ′dη, g =

h0

h0,e
. (12)

For laminar flows, the terms on the right-hand side of Eqs. (8) and (9) are
equal to zero, because the boundary conditions as well as the equations param-
eters do not vary with the coordinate x. This does not occur in the turbulent
regime, since the dimensionless eddy viscosity ν+ and, though to a less extent,
the turbulent Prandtl number PrT vary with Re.

The boundary conditions of Eqs. (8) and (9) for an adiabatic flow can be
written in terms of transformed variables as

f = 0, f ′ = 0, g′ = 0, at η = 0 (13)
f ′ = 1, g = 1 at η = ηe. (14)

From left to right, the boundary conditions in (13) state that, at the wall, there
is no mass transfer, fluid velocity is null, and no heat transfer takes place. At the
boundary layer edge, the fluid speed and the total enthalpy becomes, instead,
equal to those of the free-stream flow, as indicated by the two relations in (14),
respectively.

The system of equations is solved through the Keller-Box method [13]. The
differential equations are, first, converted into an equivalent first-order system.
The derivative terms are, then, approximated by centered finite differences over
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a rectangular and nonuniform grid discretizing in space the x − η plane. The
resulting algebraic system is solved by the Newton’s method. The numerical
scheme is unconditionally stable and is second-order accurate. The model is
validated by comparing the Cd trend for incompressible flows with that given
by the analytical function reported in [1].

A database of calculations is constructed by systematic application of the
numerical model. The examined test cases are reported in Table 1. The reduced
conditions for CO2, Toluene, and siloxane MM are selected to investigate the
impact of near-critical and supercritical flow conditions on the dissipation coef-
ficient. The thermodynamic states corresponding to the reduced conditions for
CO2 and MM are displayed on the contours of compressibility factor in Fig. 1.

Table 1. Test cases examined in this study.

Fluid Me Tre Pre

Helium 0.1 1.05 0.1

1.0 1.05 0.1

2.0 1.05 0.1

Air 0.1 1.05 0.1

1.0 1.05 0.1

2.0 1.05 0.1

CO2 0.1 1.05 0.1

1.0 1.05 0.1 1.0 1.2

2.0 1.05 0.1

Toluene 0.1 1.05 0.1

1.0 1.05 0.1 1.0 1.2

2.0 1.05 0.1

MM 0.1 1.05 0.1

1.0 1.05 0.1 1.0 1.2

2.0 1.05 0.1

4 Results for Laminar Flow

4.1 Influence of Flow Compressibility

The influence of Me on the distribution of the flow quantities inside the
boundary layer can be observed in Fig. 2, which reports the results for air at
Pre

= 0.1, Tre
= 1.5. The charts display the dimensionless velocity and temper-

ature profile as function of the transformed coordinate η, the dissipation coef-
ficient, and the entropy loss coefficient at Mach numbers ranging from incom-
pressible to supersonic flow regime. As anticipated, the solutions of the boundary
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Fig. 1. Contours of compressibility factor z of CO2 and Siloxane MM. The black dots
indicate the reduced conditions of the flow at the edge of the boundary layer considered
in the present study.

layer equations are self-similar, i.e. are independent of x. Moreover, the veloc-
ity profiles do not vary significantly with the Mach number since the adopted
variable transformation removes most of the compressibility effects. The influ-
ence of Mach number is, instead, clearly visible in the temperature distribution.
The higher the Mach number flow the larger the amount of dissipation Ṡ and,
then, the higher the temperature rise close to the wall. The large dependence
of Ṡ on Mach number becomes apparent by expressing Eq. (3) in terms of the
transformed variables

Ṡ =
√

ρeμe

x
U

5
2
e

ηe∫

0

CR

T
f ′′2dη (15)

where CR is the Chapman-Rubesin (CR) parameter, whose definition is reported
in (10). Ṡ increases with the 5/2 power of Mach number, if the static thermo-
dynamic conditions of the freestream flow are fixed. The term under the inte-
gral sign tends, instead, to decrease as the temperature in the boundary layer
increases, but its effect is minor with respect to that of the free-stream velocity.
The same considerations can be made based on the Eckert number Ec = U2

e

cpeTe
,

which for a perfect gas simply reads Ec = M2
e (γ − 1). Flows featuring higher

values of the Eckert number, namely of Mach number, are subject to stronger
thermal gradients within the boundary layer and show an increased amount of
dissipation.

Notwithstanding the increase in entropy generation, the dissipation coeffi-
cient Cd exhibits the opposite trend and is found to be minimum for the highest
Mach number all along the flat plate. Similarly to what done for Ṡ, it is possible
to express Cd as

Cd =
1√
Rex

ηe∫

0

CR
Te

T
f ′′2dη (16)
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The result points out that the amount of entropy production relative to the
kinetic energy of the bulk flow diminishes at increased Me. At higher Mach
number, Te

T reduces while Rex increases, and the combination of the two effects
leads to a reduction of the dissipation coefficient for high speed flows. At the
same time, the reduction of CR close to the wall remains limited in spite of the
large temperature gradients at high Mach number.
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Fig. 2. Dimensionless velocity and temperature profile, dissipation coefficient, and loss
coefficient for air at three different Mach numbers. The dashed line in the Cd plot refers
to the trend for incompressible flows given in [1].

Similarly to what found for Cd, the profiles losses ζp over the plate are lower
for high-Mach number flows. ζp is shown in the bottom-right chart of Fig. 2 and
is computed using the cumulative entropy generated up to a distance x/L from
the plate leading edge. The calculated value at x

L = 1 would then correspond to
the total performance lost caused by viscous effects at the end of the flat plate.

These findings point out that the distribution of Cd is a direct measure of
the magnitude of profile losses in turbomachines.



112 M. Pini and C. De Servi

4.2 Influence of Fluid Molecular Complexity

In light of the above considerations, the Cd from one fluid to the other
varies according to three parameters: the Eckert number, the Chapman-Rubesin
parameter, and Rex. The results of the analysis made for Helium, CO2, and
Toluene in ideal gas conditions (Pr = 0.1, Tr = 1.05) at Me = 1 are shown in
Fig. 3. The trend of Cd is plotted against Reθ to facilitate the comparison among
the fluids.
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Fig. 3. Dimensionless velocity and temperature profile, dissipation coefficient, and
global loss coefficient for Helium, CO2, and Toluene at Me = 1. The dashed line
in the Cd plot refers to the trend for incompressible flows given in [1].

Complex fluids present relatively low values of the Eckert number for Me

characteristic of turbomachinery applications. As a consequence thereof, the
boundary layer of highly complex fluids like Toluene and siloxane MM is prac-
tically iso-thermal. Similarly, CR does not exhibit appreciable gradients. As a
consequence, Cd is only a function of Rex and its trend resembles that one of an
incompressible flow. In fluids made by simple molecules the effect of Ec becomes
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significant and may predominate over that of Rex. This eventually translates
into a relevant reduction of Cd. Trends in agreement to those reported in Fig. 3
are also found for Me = 2.

4.3 Influence of NICFD Effects

The impact of NICFD effects on the dissipation coefficient is herein documented.
Flat plate simulations at Me = 2 are performed for CO2 and MM in near-critical
and super-critical conditions to better highlight the impact on Cd of variations
in the thermo-physical properties. The summary of the performed calculations
is reported in Table 2, along with the corresponding Eckert number based on the
free-stream quantities.

Table 2. Summary of the simulations performed in the NICFD region.

Fluid Pre Tre Ec

CO2 0.1 1.05 1.03

1.0 1.05 0.27

1.2 1.05 0.12

MM 0.1 1.05 0.094

1.0 1.05 0.033

1.2 1.05 0.018

It can be observed that the Eckert number undergoes large variations only
for CO2 and that the values for MM are an order of magnitude lower than those
of CO2. The reason thereof is the comparatively higher increase of the specific
heat capacity Cp of CO2 as compared to the other, more complex, fluids when
approaching the critical point. These preliminary considerations suggest that
the boundary layer of CO2 in dense gas conditions would behave like the one
of an incompressible flow, and thus an increase of Cd as compared to ideal gas
conditions should be expected. However, the numerical results for CO2, displayed
in Fig. 4, show the opposite trend. More in particular, though the reduction of
Ec for Pr = 1.0, 1.2 entails a decrease of the temperature gradient, i.e. a more
uniform temperature profile, within the boundary layer, Cd lowers at fixed Reθ,
in contrast to what found previously. The trend of Cd for MM remains instead
essentially insensitive to the fluid thermodynamic state, see Fig. 5.

The different physical behavior between the two fluids can be explained as
follows: the velocity profile of CO2 becomes steeper in dense gas conditions,
while it is almost equivalent in all conditions for MM. The change in the velocity
distribution of CO2 can be attributed to the strong reduction of the Chapman-
Rubesin parameter close to the wall. Note, however, that reductions of CR also
manifest for MM flows in dense gas conditions, but their impact is much more
limited on the velocity distribution. In other words, the entropy loss coefficient of
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viscous flows in trans- and super-critical state becomes comparatively lower than
that of the same fluid stream in ideal conditions provided that strong thermo-
physical property gradients occur within the boundary layer. Such gradients are
characteristic of flows of fluids made by relatively simple molecules like CO2. On
the other hand, NICFD effects are still present in flows of complex fluids like
MM and Toluene, but with regard to the trend of Cd they can be considered
negligible at flow speed typical of internal flow applications.
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Fig. 4. Results for CO2 in ideal and NICFD conditions at Me = 2. Top: dimensionless
velocity and temperature distribution. Bottom: dissipation coefficient and Chapman-
Rubesin parameter within the boundary layer.
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Fig. 5. Results for MM in ideal and NICFD conditions at Me = 2. Top: dimensionless
velocity and temperature distribution. Bottom: dissipation coefficient and Chapman-
Rubesin parameter within the boundary layer.

5 Conclusions

Viscous dissipation in laminar, compressible boundary layers of ideal and NICFD
flows on a flat plate is investigated in this paper. The study is carried out by
using a numerical code to solve the two-dimensional compressible boundary layer
equations for flows described by arbitrary thermo-physical models. The main
findings of the work can be summarized as follows:

1. For a fixed Reθ, the higher the Mach number the lower the dissipation coeffi-
cient Cd. This derives from the simultaneous increase of Rex and temperature
variations T

Te
with increasing Mach number.

2. For a fixed Reθ, the higher the molecular complexity the higher the dissipa-
tion coefficient Cd. Such an increase is principally caused by a progressive
reduction of the Eckert number with increasing molecular complexity, which
eventually leads to an almost uniform temperature profile inside the boundary
layer irrespective of the free-stream Mach number.

3. NICFD effects tend to reduce the value of Cd especially for simple fluid
molecules like CO2. This is attributed to the significant decrease of the
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Chapman-Rubesin parameter CR close to the wall due to strong thermo-
physical property gradients. The reduction of CR at the wall becomes more
prominent for increasing Mach numbers.

4. For complex molecules like Toluene and MM the trend of Cd can be therefore
well approximated by the power law 0.173Re−1

θ up to Mach numbers typical
of unconventional turbomachinery applications.

Future studies will be devoted to extend the analysis to fully turbulent flows
and to investigate the trend of Cd for NICFD flows with heat transfer. The
ultimate goal is to obtain simplified analytical models for the prediction of Cd

that can be used for the preliminary design of components of propulsion and
power systems operating with non-ideal compressible flows.
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