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Summary

Downward continuation is a critical task in potential field processing, including gravity and magnetic
fields, which aims to transfer data from one observation surface to another that is closer to the source
of the field. Its effectiveness directly impacts the success of detecting and highlighting subsurface
anomalous sources. We treat downward continuation as an inverse problem that relies on solving a
forward problem defined by the formula for upward continuation, and we propose a new physics-trained
deep neural network (DNN)-based solution for this task. We hard-code the upward continuation process
into the DNN’s learning framework, where the DNN itself learns to act as the inverse problem solver
and can perform downward continuation without ever being shown any ground truth data. We test the
proposed method on both synthetic magnetic data and real-world magnetic data from West Antarctica.
The preliminary results demonstrate its effectiveness through comparison with selected benchmarks,
opening future avenues for the combined use of DNNs and established geophysical theories to address
broader potential field inverse problems, such as density and geometry modelling.
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Physics-Trained Neural Network as Inverse Problem Solver for Potential Fields: Downward
Continuation between Arbitrary Surfaces

Introduction

Downward continuation of potential field, including gravity or magnetic field, refers to transferring the
data from one observation surface to a lower surface that is closer to the source of the field. The goal is
to enhance the resolution of the continued field and amplify the shallow geological signals. Airborne
surveys are typically flown at uneven heights, making continuation from these surfaces a common
requirement. Downward continuation is a critical task in the processing of potential field data, impacting
the success of various downstream analyses, such as revealing the density structure and boundaries of
anomalous bodies, especially for detecting and highlighting shallow anomalous sources.

Many methods have been developed for the task of downward continuation (e.g. Pilkington and
Boulanger, 2017 and reference therein). Based on the numerical scheme, they can be classified into two
categories: frequency-domain (e.g. Cooper, 2004) and space domain approaches (e.g. Guo and Tao,
2020). Frequency-domain approaches are based on the fast Fourier transform, which amplify short
wavelength information. However, it causes downward continuation sensitive to noise level and highly
unstable (Cooper, 2004). In contrast, potential field continuation can be solved directly in the spatial
domain. The upward continuation is equivalent to a matrix multiplication problem KU, = U, where U,
is the potential field observed at the lower surface and K is the kernel matrix. Conversely, downward
continuation can be seen as an inverse problem derived from upward continuation, where U is the
observed field at the higher surface and Uy, is the unknown field, assumed observed at the lower surface.

In recent years, numerous deep learning (DL) applications have emerged in geophysics, with early
efforts primarily focused on supervised learning (SL). However, a key challenge in geophysical tasks,
including the downward continuation of potential fields, is the absence of ground truth data in real-
world problem-solving scenarios. This underscores the need for developing new learning strategies that
do not depend on labelled training pairs. Besides, well-established geophysical theories are often
overlooked in data-driven SL approaches, despite their potential to offer valid guidance to the deep
neural networks (DNNs)’ learning process. Therefore, to address the unique challenges posed by
geophysical problems, it is worthwhile to explore physics or theory-based DL approaches.

In this work, we propose a physics-driven self-supervised DL solution for potential field downward
continuation in the spatial domain. The deterministic upward continuation process is hard-coded into
the DNN’s learning process, steering the DNN to learn to function as an inverse problem solver, that is,
to downward continue the potential field, without ever being shown the ground truth data. We test our
proposed method using both synthetic and real-world data. The real-work application uses acromagnetic
data from Thwaites Glacier in West Antarctica (Jordan et al., 2023). Results demonstrate our proposed
method could downward continuate aeromagnetic data between arbitrary surfaces and effectively
highlighting local subglacial geological features.

Upward Continuation

Guo and Tao (2020) proposed a kernel function-based solution for upward continuation in the spatial
domain without limitations on the continuation distance, which serves as the foundation of our proposed
method. The classical formula of upward continuation from Blakely (1996) is given as,

Uy, )—AZ(”)j j @B 2) 1a )

U(a, B, zy) is the observed field on a horizontal plane S. U(x, y, z) is the upward continued field on an
irregular surface Q. 4z is a function of (x,y). R is the distance between any upward continued point P
and any observed point M (Figure 1a). Guo and Tao (2020) reduce Eq. 1 to the sum of piecewise
integrals, discretized using the midpoint quadrature rule (Figure 1b) as,
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Um,n = EZZ Pm,n;ij Uij (2)

where Uy, ,, = U(Xy,, Y, 2) is the continued field, discretized into a similar grid of the observational
fieldU;; = U (al-, B]-,ZO). Uij is assumed as a constant in subdomain of integration (blue translucent
rectangle in Figure 1b). The piecewise integral Py, 5,,;; can be written as,

(3)

ai+4Ax/2 Bj+Ay/2 dadﬁ
Pm,n;ij = Az(xm: yn) f

ai—Ax/2 Y Bj—-Ay/2 R3
where a; = a; +i-Ax and §; = B; + j - Ay represent the central points of subdomain of piecewise
integration. Combining Eq. 2 and 3, the upward continuation integration can be converted into a matrix
form, U = KU,, where U and U, represent vectors of the discretized continued and observed field,

respectively. K is the upward continuation kernel matrix with dimensions (M X N, M X N) where
1

kmnij = po Py niij - Note: “kernel” here always refers to the geophysical concept, not the term in DL.
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Figure 1. (a) Geometry for upward continuation from a horizontal plan to an arbitrary surface. (b)
Schematic diagram of integral and discretization schemes (adapted from Guo and Tao, 2020).

The Proposed Physics-Driven Self-Supervised Deep Learning Method
Figure 2 illustrates the framework of the proposed method. The DNN employed in this paper consists

of residual blocks (He et al., 2016), which were initially introduced as part of ResNet. Exploring
different network architectures is worthwhile for further performance enhancement.
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Figure 2. The framework of the physics-driven DL method with a visualization of the employed residual
block-based DNN. U is the observed potential field. Uy is downward continued field. K is the
geophysical kernel matrix derived from the height maps of the observation and the target surfaces.
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The DNN processes the observed potential field U as input, and its output U, (the downward
continued field), rather than being compared with the ground truth, is passed through the upward
continuation function, where the required kernel matrix K is derived from the height maps of the
observation and the target surfaces. The height maps of both surfaces are recorded during acquisition.
Afterward, the upward continued field based on the DNN’s output is used for loss calculation with the
original input to the DNN, upon which the backpropagation is conducted.

Synthetic Data Example

To demonstrate the effectiveness of our proposed method, we first test it on synthetic magnetic data
generated by a 3D intrusion model using Noddy (Jessell and Valenta, 1996). The model domain includes
a 2X2x2 km volume with 80 m voxels. We calculate the magnetic response in 100 m above the flat top
surface and an arbitrary undulated surface (Figures 3a). Our goal is to downward continue the magnetic
field (Figure 3b) to 100 m. Figure 3¢ shows the upward-continued field based on the DNN’s output; the
loss is computed by comparing it with the DNN’s input (Figure 3b). Their final difference after the
DNN’s learning process is shown in Figure 3d.

For evaluation, we display the magnetic field simulated at the target surface of 100 m in Figure 3e and
the DNN’s output in Figure 3f, as well as their misfit in Figure 3g. The downward continuation result
highlights the distribution of individual magnetic intrusions, in contrast to the continuous linear
magnetic high observed at higher elevations. We observe that the misfit maps in Figures 3d and 3g
exhibit spatial similarities with the input magnetic data, which is largely attributed to the resolution of
the observational data and the continuation height (Guo and Tao, 2020).
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Figure 3. Synthetic data examples: (a) height map of the observation surface; (b) observed magnetic
field; (c) upward-continued field based on the DNN'’s output; (d) difference between (b) and (c); (e)
magnetic field simulated at the target surface; (f) DNN'’s output; (g) difference between (e) and (f).

Field Data Example

We also test the proposed method on real-world magnetic field from Thwaites Glacier, West Antarctica
(Jordan et al., 2023). The airborne magnetic data were collected between 2004 and 2020 with varying
line spacings and flight heights. These lines are leveled and interpolated onto two 1x1 km cellwise
grids: one with each line upward and downward continued at an elevation of 2500 m above the bedrock
topography (Figures 4a) and the other continued to 500 m above the ice surface (Figure 4b).To evaluate
the proposed method for downward continuation between arbitrary surfaces, we use the magnetic field
at 2500 m above the bedrock topography as the observed (to-be-downward-continued) field (Figure 4c),
and the magnetic field at 500 m above the ice surface serves as the benchmark result (Figure 4d).

The downward continuation result from the proposed method is shown in Figure 4e. We compare the
upward-continued fields (Figures 4f and 4g) based on respectively the benchmark’s and the DNN’s
outputs with the observed magnetic field (Figure 4c). The corresponding differences are shown in
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Figures 4h and 41, respectively. It is clear that the upward-continued field based on the DNN’s output
is much closer to the observed magnetic field, as Figure 4i illustrates a relatively smaller difference.
The larger difference in Figure 4h can be attributed to the use of different upward continuation
techniques (1D line-by-line vs. 2D kernel). Figure 4j shows the difference between the downward
continuation results obtained from the benchmark and the proposed method. Compared to the
benchmark’s result (Figure 4d), the proposed method produces a similar overall result but with refined
magnetic textures and amplitudes. For instance, the DNN output reveals that Mt. Takahe (a snow-
covered shield volcano) exhibits a high-amplitude magnetic low, potentially indicating stronger
magnetic remanence. Additionally, the linear magnetic high, which indicates mafic intrusion, shows
improved local refinement and sharpness in the result.
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Figure 4. Field data examples from West Antarctica: (a) and (b) are height maps of the observation
surface and the targeted surface, respectively; (c) is the magnetic field observation at surface (a); (d)
is the benchmark result and (e) is the proposed method’s result (i.e., DNN’s output) on downward
continuation, (f) and (g) are upward-continued fields respectively based on (d) and (e), (h) and (i) are
differences respectively between (f) and (g) with (c); (j) is the difference between (d) and (e).

Conclusions

In this work, we treat downward continuation as an inverse problem, for which the forward problem is
upward continuation. We employ a DNN as the inverse problem solver, whose learning process is
driven by the embedded physical function of upward continuation, rather than a large amount of
‘labelled’ training pairs, thus eliminating dependency on the existence of ground truth data. We
demonstrate its effectiveness in downward continuation of magnetic fields between arbitrary surfaces
using synthetic and real-world data. This approach opens future avenues for the combined use of DNNs
and established geophysical theories to address broader potential field inverse problems, such as density
and geometry modelling.
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