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Abstract

Multivariate images are built up by measuring multiple features or variables simultaneously
while recording a measurement’s location. An example of such images is Imaging Mass Spec-
trometry (IMS) data. IMS is a technique for recording the mass-over-charge ratio of molecules
in (biological) samples while also recording the molecules’ spatial location. High dimensional-
ity in multivariate images (e.g. many recorded features per pixel) often makes direct human
interpretation infeasible and computational analysis impractical. For this reason, unsuper-
vised and data-driven factorization is often applied prior to any exploration of the data,
with the goal of reducing its dimensionality. However, one of the more promising factoriza-
tion methods for multivariate images, Maximum Autocorrelation Factorization (MAF), still
depends on some input from the user.
Unlike most factorization methods, that focus solely on the spectral content of the observa-
tions, MAF also utilizes the spatial structure of the input data to generate matrix factors that
try to capture both spatial and spectral patterns in the data. The factors of MAF represent
the content of a matrix, ranked according to spatial autocorrelation, i.e. how rapidly they
vary spatially. The idea for application of MAF in a bioimaging context is that naturally
occurring, signals tend to form larger, more uniform areas and therefore change more slowly
spatially, compared to noisy, non-biological measurement patterns. Since MAF factors are or-
dered according to autocorrelation, noisy measurement (with low autocorrelation) tend to get
demoted in the order of factors, effectively separating them from biological data components
(with positive autocorrelation). The goal of this thesis is to build upon the MAF algorithm
and remove the current need for user input, making an extension of MAF.
This novel factorization method is named Extended Maximum Autocorrelation Factorization
(EMAF). Similarly to MAF, EMAF is invariant to linear transformations, utilizes spatial
and spectral information of the dataset to determine its factors, and produces uncorrelated
factors at all distances under certain conditions. The EMAF algorithm is fully unsupervised
and produces factors ranked according to spatial autocorrelation. Unlike MAF, EMAF does
not unnecessarily promote spatial artifacts oriented in one particular direction over other
directions. The exact formulation of EMAF, derivations of the mentioned traits, and practical
examples of EMAF are found in the following thesis. Preliminary experiments show that
EMAF returns factors of improved quality compared to MAF.
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Chapter 1

Introduction

Multivariate, spatially structured data or multivariate images are the result of measuring
multiple features or variables simultaneously along with recording their measurement location.
An example of this type of data is Imaging Mass Spectrometry (IMS) data [1], the technique
of recording ions in multiple mass-over-charge ranges simultaneously and their locations.
This technique is currently being used to study changes in the proteome due to diseases or
tumors [2], to achieve a better understanding of brain structure [1], and to better understand
fundamental biological concepts [3]. A common problem with these types of datasets is that
the high dimensionality makes the datasets impractical for direct human interpretation. For
example in [4] a dataset with 2611 images or peaks is being analysed, each image being
≈ 20.000 pixels. This can also cause impractically long computation or processing times
when the data is being processed [5, 6].

Matrix factorization or matrix decomposition [7] is the operation of decomposing a matrix into
matrix products. This procedure is illustrated in Figure 1-1. Matrix factorization plays a role
in different types of problems, for example outlier removal [8] and dimensionality reduction
[9].

A ∈ Rp×p = λ1 w1

v1

+ λ2 w2

v2

+ . . . + λn wp

vp

Figure 1-1: An example of matrix factorization. Using eigenvalue decomposition a p× p matrix,
A, can be broken up into a weighted sum of vector products, decomposing the original matrix
into p factors. Note that wi ∈ Rp×1, vi ∈ R1×p, and λi ∈ C for all i ∈ [1, 2, . . . , p].

Various factorization methods have been applied to IMS data, one of the more common ones
being Principal Component Analysis (PCA) [9]. PCA is applied to IMS data in [10, 11, 12, 13]
for example. Generally speaking, dimensionality reduction is the problem of finding a reduced
set of variables which can be used to represent the original dataset with minimal loss of
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information. PCA can be used for dimensionality reduction, where the problem is to create a
reduced set of variables that is able to capture the variance present in the original variables
[9].

It has previously been demonstrated that utilizing spatial information available in data can
reveal patterns that were previously hidden [14, 15, 16, 17]. Maximum Autocorrelation Fac-
torization (MAF) [18] is a factorization method that takes spatial structure of the data into
account. MAF incorporates the spatial information by creating the matrix factors based on
the spatial covariance matrix. As MAF utilizes the spatial structure of the data, it is a strong
candidate for dimensionality reduction of IMS data.

The idea behind utilizing the spatial information available in the data is to encourage discovery
of biological patterns, or simply patterns containing a signal rather than noise. Spatially noisy
patterns will for example often be single pixel artifacts, like salt-and-pepper noise. Signals,
especially biological, on the other hand will tend to form larger areas with uniform values.
This uniformity can be measured and quantified by spatial autocorrelation. This is exactly
what MAF tries to make use of.

One problem that arises with MAF is the fact that the algorithm is not always invariant of
its input parameter, the so called shift parameter. In this thesis, the main goal is to address
the tuning of the shift parameter. To alter the MAF algorithm in a way that makes the
algorithm independent of both the length and direction of the shift parameter, hopefully
returning factors which are at least of the same, if not better, quality than the standard MAF
algorithm. This alteration would make the MAF algorithm fully unsupervised, as now it is
dependent on an input from the user. This altered version of MAF will be called Extended
Maximum Autocorrelation Factorization (EMAF). The goal is to derive EMAF in a way
which does not compromise any of the attractive traits of the original MAF. EMAF should
also be invariant to linear transformations and produce fully uncorrelated features in the same
special cases as MAF.

Along with developing an extended version of MAF, the following research questions will
examined:

• How do MAF factors vary with different lenghts of the shift parameter?

• How do MAF factors vary with different orientations of the shift parameter?

• How does the shift parameter influence results when MAF is applied on a practical
dataset, e.g. with dimensionality reduction in mind?

These research questions will illustrate the current disadvantages of MAF and thereby give
guidance on how to extend the algorithm to remove the need for user input.

In this thesis, we will start by covering some fundamental concepts. We will start with the
basics of IMS, since IMS will be used as a case study for the altered algorithm. We will then
move on to geostatistics as MAF is based upon ideas from the field of geostatistics. Finally,
we finish the fundamentals chapter with an overview of factorization methods, building up to
and finishing with MAF.

The main matter of the thesis will be making alterations to the MAF algorithm, and deriving
the EMAF algorithm, a method which takes more than a single shift parameter into account
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and that is fully unsupervised. The performance of EMAF will then be assessed against PCA
and standard MAF in several experiments, which will illustrate both the advantages and
disadvantages of each of these factorization methods.

In the final chapter, a few concluding remarks are given about the work carried out in this
thesis and we propose ideas on future work and improvements.
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Chapter 2

Fundamentals

2-1 Imaging Mass Spectrometry

Imaging Mass Spectrometry (IMS) is a technique for recording the spatial location of elec-
trically charged molecules or ions in tissue specimens while measuring their mass-over-charge
ratio. Combining the chemical specificity and simultaneously detection of multiple analytes
from mass spectrometry with imaging capabilities, IMS enables scientists to examine the con-
tent of a tissue sample without the requirement of any prior labels or assumptions. With
improvements in sensitivity and availability, IMS has become a popular technique for bio-
chemically analyzing tissue samples [1].

IMS measurements can be carried out using different preparation techniques and instruments.
To get a general overview of the measurement techniques, relevant for the topic of this review,
the different procedures involved will be examined briefly. First, we look at how the spatial
information is retrieved. Second, we examine how the mass-over-charge measurements are
obtained. Finally, we discuss the resulting data and how it is generally handled.

2-1-1 Spatial Measurements

There are two main approaches to obtaining spatial information in IMS: microscope mode
and microprobe mode. Both methods result in a 2D pixel grid of measurements. The methods
differ in terms of what type of sensor is used for registering the spatial location of the ions,
also differing in attainable spatial resolution. Both methods are illustrated in Figure 2-1.

In the microprobe setting, a focused ionizing laserbeam is used to analyze a relatively small
area of a sample. The location of the laserbeam is registered when fired, which is used as the
spatial location of the molecule(s) measured. To cover the whole sample, the laser is shifted
by a set distance after each measurement, following a grid pattern. This means that the shift
of the laserbeam determines the spatial resolution of the dataset. A downside of this method
is that all spatial information within the spatial location where the laserbeam hits is lost,
such that higher resolution than the laserbeam size can not be obtained.
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6 Fundamentals

In the microscope setting, the ions are released from the sample, using a laser, and land on a
position sensitive sensor. This makes the measurements invariant of the ionization beam size.
The pixel sizes are determined by the resolution of the sensor. This method can conserve
spatial information within the ionizing beam, depending on the sensor resolution [1].

Sample

Laser

(a) Microprobe mode. The position of the laser-
beam is registered, after each measurement the
laserbeam is shifted by a set distance, forming a grid
pattern covering the whole specimen.

Sample

Position sensor

Laser

(b) Microscope mode. The relative position of ions
is maintained until they are recorded by the posi-
tion sensitive sensor, registering the ions spatial lo-
cations.

Figure 2-1: A comparison of the microprobe- and microscope measurement configurations. Sim-
plified illustrations showing the two different methods used in IMS to obtain spatial measurements.

2-1-2 Mass-over-charge Measurements

The mass-over-charge measurements in IMS experiments are usually obtained by ionizing
and releasing the ions from a sample or specimen, which for example can be biological tissue
such as, brain matter, or a section of a spinal cord. The two most common techniques
for ionization are Matrix-Assisted Laser Desorption/Ionization (MALDI) and Secondary Ion
Mass Spectrometry (SIMS) [19].

In SIMS measurements, a narrow ion beam (50 nm spot size beams are commercially available)
is fired at a sample to extract and ionize molecules. SIMS measurements usually give a
relatively high spatial resolution but have a much lower ion mass-over-charge range (m/z <
500) than MALDI. With MALDI measurements, a sample section is coated with a chemical
matrix. This matrix embeds the molecules of the sample, forming crystals. The coating or
deposition is usually done by spraying the matrix across the specimen as evenly as possible.
A laserbeam (≈ 10µm spot size are commercially available) is fired at the sample, ejecting
ions at a certain binding energy, controlled by the pulse length of the laser [1]. The data used
in this thesis was collected using the MALDI process.

The MALDI procedure is shown in Figure 2-2. First, the sample is placed on a piece of
glass. The sample is then coated with a chemical matrix, for example sinaptic acid or 2,5-
dihydroxyacetphenone. Finally, a laserbeam is fired at the sample, releasing and ionizing the
embedded molecules. After these steps, the mass-over-charge measurements take place.
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Sample

Sample

Deposition device Laser

Figure 2-2: The MALDI specimen preparation procedure. An illustration of a sample being
coated with a chemical matrix, as evenly as possible. Then a laserbeam is used to desorp and
ionize molecules from the sample.

The mass-over-charge value of the extracted ions is usually measured using electro-magnetic
fields. Two common techniques are Time of Flight (ToF) [1] and Fourier Transform Ion
Cyclotron Resonance (FT-ICR) analysers [20]. In ToF measurements, ions are accelerated
by a known electro-magnetic field through a field-free region. This field-free region covers a
set distance d and the ions are timed traveling this distance. A simple relation between the
measured time and the mass-over-charge value can now be found by looking at the energy
equilibrium of the ion. We have

Ep = Ek. (2-1)

qU = 1
2mv

2, (2-2)

qU = 1
2m

(
d

t

)2
, (2-3)

=⇒ t = d√
2U

√
m

q
, (2-4)

where t is the measured time it takes the ion to travel the distance d, U is the electric potential
of the electro-magnetic field, and m

q is the mass-over-charge of the measured ion. The ion
charges can also be expressed as a multiple of the elementary charge, the electric charge of
a single proton, that multiple is denoted with a z. It should be noted that this is a simple
example of how ToF operates, neglecting for example the initial potential energy of the ion
and aerodynamic drag of the ion. Now, to produce a spectrum, as shown in Figure 2-3, the
ions that fall within a certain m

z -range, or
m
z -bin, are counted [1, 21].

Another technique to measure the mass-over-charge value of the extracted ions is FT-ICR.
In an FT-ICR setup, the ions are trapped inside an electro-magnetic field, spinning around
in a circular orbit. An FT-ICR instrument will consist of three pairs of electrodes, two pairs
to generate electro-magnetic fields and one pair to detect ions. An example of the setup of
these electrode pairs is shown in Figure 2-4.

One of the electrode pairs functions as an ion trap, generating an electro-magnetic field that
accelerates the ions into a circular orbit. The angular velocity of the ions can be related to
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Figure 2-3: An example of a pixel specific mass spectrum. The intensity or ion count is plotted
on the y-axis and the mass-over-charge value of ions is on the x-axis.

their mass-over-charge value with

ω = B
q

m
, (2-5)

where ω is the cyclotron frequency of the ion, B is the strength of the electro-magnetic field,
and q/m is the inverse mass-over-charge of the ion [20]. The ions will now orbit in circles
with radius,

r = 1
qB

√
2mkT , (2-6)

where q is the ion’s charge, m is the ion’s mass, k is the Boltzman constant, T is the environ-
mental temperature, and B is the strength of the applied electro-magnetic field. This orbital
radius will generally be small enough that the detecting electrodes will not be able to detect
the ions without the ions being excited first.

The second electrode pair is used to generate another electro-magnetic field, perpendicular
to the ion trap field. This excitation field is used to increase the kinetic energy of the
trapped ions, or excite them, to achieve three things: (1) increasing their orbital radius
to an extent that they can be detected; (2) increasing their orbital radius to eject them from
the instrument; and (3) cause ion and/or ion-molecule dissociation. This electro-magnetic
field is set to promote a certain cyclotron frequency that excites only ions within a certain
m/z-range. This way a chosen pack of ions can be excited to be detected or ejected [20].

The last pair of electrodes is used to indirectly count the ions that are detectable in the
instrument. This is done by using a relation between the amplitude of the current and the
number of ions detectable in the trap. The current induced by the orbiting ions is recorded
by inducing a current in the detection electrode pair.
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Exciter

Detector

Trap

+

Figure 2-4: An example electrode setup of an FT-ICR instrument. One pair is used to trap the
ions in a circular motion. Another pair, the exciter, is used to excite the ions, increasing their
orbital radius or ejecting the ions out of the instrument. The last electrode pair, the detector, is
used to measure the current amplitude induced by the orbiting ions.

Instead of exciting the ions at only a single frequency at a time, the excitation field can
be swept across all frequencies. The time domain measurements of the current are then
Fourier transformed, yielding the frequency or the angular velocity of the ions. These angular
velocities can then be related to the mass-over-charge of the ions using equation 2-5 which
then results in the mass(-over-charge) spectrum [22].

2-1-3 Dataset

IMS datasets are typically represented as a matrix, with one dimension storing the spatial
locations and the other dimension encoding the mass-over-charge values (m/z-dimension).
For interpretation, it is common to reorder the spatial dimension into two separate spatial
dimensions (nx and ny), forming a 3-dimensional tensor as shown in Figure 2-5. Examining
this 3-dimensional tensor at a set value along the m/z-dimension results in an ion image [6].
Ion images are false color visualizations of the spatial distribution and abundance for a given
m/z-value, showing how ions of a certain mass-over-charge ratio are distributed across the
sample. Figure 2-5b shows an example of an ion image [6]. These images are obtained by
looking at a single column of the data matrix.
The size of IMS datasets will often contain high pixel counts as well as a large mass-over-
charge range. For a sample of 1 cm2 and a spatial resolution of 10µm, we get an image of
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(b) An example ion image. Shown in blue, where
the tensor is examined for a single m/z-value.
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(c) An example of a pixel specific spectrum. Shown
in green, where a single pixel is examined over all
m/z-values.

Figure 2-5: An example of a datatensor show in Figure 2-5a. If the tensor is sliced long the m/z-
axis (marked in blue) the resulting data is an ion image, shown in Figure 2-5b. If a single pixel is
examined (marked in green), the result is a pixel specific spectrum, shown in Figure 2-5c.[22]

10000× 10000 pixels, often with large mass-over-charge value ranges. This results in datasets
which are impractical for direct human interpretation due to dimensionality. In [4] for example
a dataset with 2611 images, or peaks, is analysed, each image being ≈ 20.000 pixels. This is
one of the main reasons why feature extraction and factorization of IMS data is increasingly
studied [23, 19, 1, 24, 2, 25].

2-2 Geostatistics

Representing IMS data mathematically, a data matrix X ∈ Rn×p with n observations of p
variables, that is n pixels and intensity values for p (variables) mass-over-charge ratios, can
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be constructed. This can be written as

X =


X1,1 X1,2 . . . X1,p−1 X1,p
X2,1 X2,2 . . . X2,p−1 X2,p
...

... . . . ...
...

Xn−1,1 Xn−1,2 . . . Xn−1,p−1 Xn−1,p
Xn,1 Xn,2 . . . Xn,p−1 Xn,p

 (2-7)

=
[
X1 X2 . . . Xp

]
, (2-8)

where Xi ∈ Rn×1 for i ∈ [1, 2, . . . , p]. The data matrix is now centered around zero. This is
done by subtracting the mean of each observation, arriving at another data matrix Z, which
is centered around zero. Z is defined as

Z =


X1,1 − E [X1] X1,2 − E [X2] . . . X1,p−1 − E [Xp−1] X1,p − E [Xp]
X2,1 − E [X1] X2,2 − E [X2] . . . X2,p−1 − E [Xp−1] X2,p − E [Xp]

...
... . . . ...

...
Xn−1,1 − E [X1] Xn−1,2 − E [X2] . . . Xn−1,p−1 − E [Xp−1] Xn−1,p − E [Xp]
Xn,1 − E [X1] Xn,2 − E [X2] . . . Xn,p−1 − E [Xp−1] Xn,p − E [Xp]


(2-9)

=
[
Z1 Z2 . . . Zp

]
, (2-10)

where Z ∈ Rn×p and Zi ∈ Rn×1 for i ∈ [1, 2, . . . , p]. This way,

E [Zi] = 0 (2-11)

for all i ∈ [1, 2, . . . , p].

2-2-1 Covariance

Covariance is a measure of variance between two variables. For two given random variables,
Zi and Zj , the theoretical covariance between them is defined as

Cov [Zi, Zj ] = E [(Zi − E [Zi]) (Zj − E [Zj ])] (2-12)

which is

Cov [Zi, Zj ] = E [ZiZj ] , (2-13)

if the variables have been centered. as defined in [26]. Inspecting equation 2-13, two numbers
are being multiplied, these two numbers are the variable values with the mean subtracted.
The results of this subtraction are called residuals. The residual is a measure of how the
variable spreads or disperses around its mean. So the covariance is a joint measure of how
variables spread around their mean. If both variables have a large spread around their mean,
the covariance will be large. Similarly, if both variables have a small spread around their
mean, that will result in a small covariance.
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To get the covariance from sample data, an experimental covariance can be defined as

Cov [Zi, Zj ] = 1
n

n∑
α=1

(Zα,i − E [Zi]) (Zα,j − E [Zj ]) = 1
n

n∑
α=1

Zα,iZα,j . (2-14)

Equation 2-14 can be rewritten to a matrix form, the experimental covariance matrix Cov [Z] ∈
Rp×p, defined as

Cov [Z] = 1
n− 1ZTZ. (2-15)

It is worth pointing out that the diagonal of the covariance matrix is the covariance of a
variable with itself, Cov [Zi, Zi], which is the variance of said variable, that is Cov [Zi, Zi] =
Var [Zi]. This is the reason the covariance matrix is often referred to as a variance-covariance
matrix [27].

Covariance is a dissimilarity measure, assigning a numerical value to how two variables change
jointly, or as described above, how they spread around their mean. It is often desirable to
compare variables with different units of measure and scale, age, and salary for example. Due
to the different units and scales, it can be necessary to standardize measurements onto an
arbitrary unit of measure. Looking back at our example, a small fluctuation in salary might
have much higher influence on the values in the covariance matrix than the age due to the
different scales of the two. That is the fluctuation of a salary might be on the scale of hun-
dreds to thousands while age might only fluctuate by ones to tens. The covariance matrix of
this example dataset would predominantly describe the fluctuations of the salary, and the age
would barely be noticed. Standardization of the measurements would standardize the covari-
ance and return correlation coefficients, which is a standardized dissimilarity measure between
variables. But when working with measurements of the same unit and scale, standardizing
measurements is an unnecessary and often undesirable step. Standardizing measurements of
the same scale would make interpretation harder, since all measurements would now be on
an arbitrary, unitless scale with no physical meaning [9]. For that reason, when working with
IMS data, we will stick to examining the covariance instead of the correlation coefficients.

2-2-2 Spatial Covariance Function

The idea of covariance can be extended by adding spatial information to it, resulting in spatial
covariance. Spatial covariance is a dissimilarity measure between two variables, spatially
located somewhere relative to each other. This spatial covariance is often a function of the
two locations of the variables being examined. Let us start by looking at some notation and
terminology before defining spatial covariance further.

Let Z(x) denote the spatial location x ∈ D ⊂ Z2 of the data in Z, where D is a finite region
of allowed positions. Note that D is commonly referred to as the lag space. In the case of
IMS data, these allowed locations are the pixels. D can be seen as a sampled description of
the specimen being measured. This is shown in Figure 2-8.

The spatial covariance function is defined as

Ci,j(h) = Cov [(Zi(x)− E [Zi(x)]), (Zj(x + h)− E [Zj(x + h)])] (2-16)
= Cov [Zi(x), Zj(x + h)] , (2-17)
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Figure 2-6: An example 2D visualization of a spatial covariance function. In this example
the spatial covariance of three different variables is shown on the same plot. Generally the 2D
visualization is generated by averaging across the direction dimension, θ, of the shift parameter.
This explains the spread in the points as the length of the shift parameter increases.

where Ci,j(h) ∈ R for all values i, j ∈ [1, 2, . . . , p], and h ∈ Z2. The covariance between
two variables Zi and Zj is being examined, more specifically this is called the spatial cross-
covariance function. If a variable is being compared to itself, Ci,i, the resulting spatial covari-
ance function is called a spatial auto-covariance function, spatial direct-covariance function,
or simply a spatial spatial covariance function. Like the more traditional covariance, the
spatial covariance function is a measure of how two variables vary together, only spatially.
That is, examining the covariance between two observations at two different spatial locations
[28].
It is worth stating at this point that the spatial shift h is a vector. It is a vector linking two
spatial points within D together. The vector h will have both a length or magnitude and
direction tied to it.
The definition of the covariance function can be used to define the spatial correlation coeffi-
cient function. The spatial correlation coefficient is defined as

ρi,j(h) = Ci,j(h)
Ci,j(0) , (2-18)

where ρi,j(h) ∈ [−1, 1] ⊂ R for all values i, j ∈ [1, 2, . . . , p], and h ∈ Z2.
These definitions can now be assembled into matrix forms, covering the cases dealing with
multiple variables. This is achieved by ordering the newly defined functions into matrices ac-
cording to indices. This way, we end up with 2 matrices C(h) ∈ Rp×p and ρ(h) ∈ [−1, 1]p×p ⊂
Rp×p, for all values h ∈ Z2, which are defined as follows
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Figure 2-7: An example 3D visualization of a spatial covariance function. This example shows
the spatial covariance function of a single variable. Notice how the covariance changes both with
the direction, θ, and length of the shift parameter h, this means that the variable is anisotropic.

Sample

x1

x2

h

D

Figure 2-8: A measured sample being shifted by a vector h. The sample is divided into a grid
of pixels D when measured. A location x1 is shown and how the shift parameter h = x2 − x1
changes the location of focus. This is analogous to spatially translating the image by the vector
h.

C(h) =


C1,1(h) C1,2(h) . . . C1,p(h)
C2,1(h) C2,2(h) . . . C2,p(h)

...
... . . . ...

Cp,1(h) Cp,2(h) . . . Cp,p(h),

 (2-19)
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ρ(h) =


ρ1,1(h) ρ1,2(h) . . . ρ1,p(h)
ρ2,1(h) ρ2,2(h) . . . ρ2,p(h)

...
... . . . ...

ρp,1(h) ρp,2(h) . . . ρp,p(h).

 (2-20)

By using these multivariate extensions along with equation 2-18 arriving at the relation

C(h) = C(0)ρ(h), (2-21)

where C(0) is the covariance matrix of Z(0) [29].

2-2-3 Variogram

The spatial covariance function measures the spatial (dis)similarity between two variables
at two spatial locations. The dissimilarity caused by this spatial shift can be examined in
isolation by subtracting the value of each variable at the initial point. This results in what is
called a variogram. A variogram is a measure of dissimilarity between two variables across a
distance. The variogram is defined as

γi,j(h) = 1
2 Cov [(Zi(x + h)− Zi(x)), (Zj(x + h)− Zj(x))] , (2-22)

where γi,j(h) ∈ R for all values of the indices i, j ∈ [1, 2, . . . , p] and h ∈ Z2. This partic-
ular definition is the cross-variogram, but γi,i is called the auto-variogram. The variogram,
γi,j(h) ∈ R, is an even function, that is

γi,j(h) = γi,j(−h) (2-23)

and the values of the variogram are non-negative, that is

γi,j(h) ≥ 0. (2-24)

Under certain circumstances the variogram can be related to a covariance function, this will
be discussed later [30].

Similarly to the spatial covariance function and the spatial correlation function the variogram
can be assembled to a matrix structure. That gives the matrix

γ(h) =


γ1,1(h) γ1,2(h) . . . γ1,p(h)
γ2,1(h) γ2,2(h) . . . γ2,p(h)

...
... . . . ...

γp,1(h) γp,2(h) . . . γp,p(h),

 (2-25)

where γ(h) ∈ Rp×p for all values h ∈ Z2. Now since variogram values are all non-negative,
the variogram matrix, γ(h), positive semi-definite.

In Equation 2-22, the definition of a variogram, note the 1
2 in front of the covariance. That

is there due to convention. The 1
2 is likely there to get a mathematically neater relationship

between the variogram and the spatial covariance function, but it could also be a historical
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Figure 2-9: An example 2D visualization of a variogram. In this example the variogram of three
different variables are shown on the same plot. Generally the 2D visualization is generated by
averaging across the directional dimension, θ, of the shift parameter. This explains the spread in
the points as the length of the shift parameter increases.

confusion. Due to the 1
2 , the variogram is also often called the semi-variogram in literature

[31]. In this thesis the name variogram will be used.

In practice, the variogram is calculated by dividing the shift parameter h into k bins, denoted
H = {h1,h2, . . .hk}, segmenting the field of available shifts into bins of different shift param-
eter lengths and angles. This segmentation is shown in Figure 2-11. The variogram is then
averaged across each bin or segment, arriving at an experimental estimate of the variogram.
This can be written as

γ∗i,j(h) = 1
2N

N∑
α=1

(Zi(xα + h)− Zi(xα)) (Zj(xα + h)− Zj(xα)) with h ∈ H (2-26)

where N is the number of shift parameters which end up in each bin in H [32].

If γ∗i,i(h) = γ∗i,i(‖h‖) then Zi is said to be isotropic, otherwise Zi is said to be anisotropic. If
the variogram does not vary with the angle of the shift parameter h, but only the length the
data set said to be isotropic. There are different types of anisotropy and different methods
to try and correct the effects of it, as mentioned in [33], [34], and [35].

Looking at a two-dimensional representation of a variogram, the variogram has a few different
features. These features are called the range, sill, and nugget. The nugget, also sometimes
called the nugget-effect, is the initial value an experimental variogram takes, that means that
there is a spatial change in the data at a smaller scale than the resolution of the images allow
to be analyzed. The name nugget comes from the fact that scientist used the variogram to
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Figure 2-10: An example 3D visualization of a variogram. This example shows the variogram of
a single variable. Notice how the variogram changes both with the direction, θ, and length of the
shift parameter h, this means that the variable is anisotropic.

look for gold in soil, so this non-zero inital value of the variogram would imply that there
might be goldnuggets in the sample.
The lowest upper bound of a variogram is called the sill and the distance at which the sill is
reached is called the range. Only when a variogram has a sill a covariance function can be
related to it. These three terms are visualized in Figure 2-13 [30].

2-2-4 Stationarity of First Two Moments

In the following chapter spatial stationarity will be introduced. This is a spatial equivalent
to the weak-sense stationarity or wide-sense stationary seen in signal processing. Looking at
a dataset Z(x) =

[
Z1(x) Z2(x) . . . Zp(x)

]
, the variable Zi(x) is said to be second order

stationary if for all h ∈ D

1. The mean E [Zi(x + h)− Zi(x)] = mi(h) = 0 is constant.

2. The covariance C(h) has a finite value and is a function of h and invariant of x.

Another version of stationarity is the intrinsic stationarity of the first two moments (often
called intrinsic stationarity), which applies to the variogram rather than the spatial covariance
function. The variable Zi(x) is said to be intrinsic (second order) stationary if for all h ∈ D

1. The mean E [Zi(x + h)− Zi(x)] = mi(h) = 0 is constant.
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(a) An example segmentation of the shift parameter
field or lag space. In this case, each segment spans a
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visualization of a variogram.

Figure 2-11: Two example segmentations of the lag space. All values of the variogram calculated
using shift parameters within the same region (red and blue) will be averaged, calculating the
experimental variogram.

2. The variogram γi,i(h) has a finite value and is a function of h and invariant with of x.

If a variable is intrinsic stationary, a covariance function can be deduced from the variogram
with the relationship

γi,j(h) = Ci,j(0)− Ci,j(h). (2-27)

This can also be written as

γi,j(h) = Ci,j(0)− 1
2 (Ci,j(−h) + Ci,j(h)) , (2-28)

If the variogram does not have a finite value, it will not have a covariance function related to
it. [32, 30]

2-2-5 Linear Model of Coregionalization

The measured variables can be considered to be composed of different elementary signals and
noises. That can be reflected in the structure of the covariance matrix by writing it as a linear
combination of the elementary components. This decomposition is called a linear model of
coregionalization (LMC) [36].
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Figure 2-12: An illustration of how the experimental variogram is calculated. The variogram can
be calculated experimentally by dividing the shift parameters up into bins and averaging out the
resulting datapoints. In this example, the shift parameters are divided up into bins only according
to their length, similar to what is shown in Figure 2-11a, averaging across all angles for a certain
length of shift parameter.
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e

Figure 2-13: The definitions of nugget, range and sill illustrated.
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Looking at the dataset Z(x) =
[
Z1(x) Z2(x) . . . Zp(x)

]
from earlier that is assumed to

be second-order stationary, each variable Zi(x) can be decomposed as a sum of S spatially
uncorrelated components

Zi(x) =
S∑
s=1

Zsi (x), (2-29)

where Zi(x), Zsi (x) ∈ Rn×1. Note that here s is an index, and not a power. For all values of
the index i ∈ [1, 2, . . . , p] and s, r ∈ [1, 2, . . . , S] with s 6= r, we require

Cov [Zsi (x), Zri (x + h)] = 0. (2-30)

Comparing the uncorrelated components between two variables we define

Cov
[
Zsi (x), Zsj (x + h)

]
= Csi,j(h). (2-31)

This means spatial cross-covariance can be written as

Ci,j(h) =
S∑
s=1

Csi,j(h) =
S∑
s=1

bsi,jρ
s
i,j(h), (2-32)

where bsi,j ∈ R and ρsi,j(h) ∈ R for all s ∈ [1, 2, . . . , S]. This can be assembled into the matrix
form as

C(h) = Bsρs(h), (2-33)

where Bs ∈ Rp×p and ρs(h) ∈ R for all s ∈ [1, 2, . . . , S].

Similarly the variogram can now be calculated as

Cov
[
Zsi (x + h)− Zsi (x), Zsj (x + h)− Zsj (x)

]
= γsi,j(h). (2-34)

So we can write

γi,j(h) =
S∑
s=1

gsi,jγ
s
i,j(h), (2-35)

where gsi,j ∈ R and γsi,j(h) ∈ R. Which in the multivariate format becomes

γ(h) =
S∑
s=1

Gsγs(h), (2-36)

where Gs ∈ Rp×p and γs(h) ∈ R for all s ∈ [1, 2, . . . , S]. All matrices Gs are required to be
positive semi-definite, this is since all variogram values are non-negative.

In practice, this means that every variable of the dataset has to be described using the same
set of S variogram or covariance structures. A total of S structures are picked and if one or
more of those structures do not apply to a certain variable the corresponding scale coefficients,
bsi,j or gsi,j depending on whether the covariance or the variogram is being modeled, are set to
zero [36, 37].
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2-2-6 Moran’s I

Moran’s I, introduced by P. A. P. Moran [38], is a method of estimating whether there is
evidence of spatial correlation. It is a measure of the spatial correlation of a two, or higher,
dimensional space. In this thesis, Moran’s I will only be used in a two-dimensional setting,
so that will be the focus of this section.

For a random, two-dimensional, stationary variable Z ∈ Rn×1 with E [Zi] = 0, Moran’s I is
defined as

I = n∑n
i=0

∑n
j=0wi,j

∑n
i=0

∑n
j=0wi,jzizj∑n
i=0 z

2
i

, (2-37)

where zi ∈ R is the i-th element of the variable Z and wi,j ∈ R is a weighting factor between
observations i and j. This means that the value of Moran’s I is dependent on a weighting
matrix W ∈ Rn×n. This weighting matrix is used to describe the influence between obser-
vations. Often the weighting matrix is setup such that Moran’s I only takes the k nearest
neighboring observations into account. Note that the weight matrix is a symmetric n × n
matrix, so each column or row represent the influence of one observation to the n − 1 other
observations. An example of such a weighting matrix is shown in Figure 2-14 along with a
rearranged column of the same weighting matrix.

(a) 1 nearest neighboring weight
matrix.

(b) A rearranged row or column
of a 1-nearest-neighboring weight
matrix.

Figure 2-14: An example of a 1-nearest-neighboring weight matrix. The figure also shows a
rearranged version of one of the rows/columns of the same weight matrix.

Moran’s I returns a real value I such that,

−1 ≤ I ≤ 1. (2-38)

The values of the I is a measure of the spatial structure or the spatial autocorrelation in
the variable, for a given weight matrix. An illustration of what the extreme values of the
Moran’s I imply is shown in Figure 2-15. In practice, Moran’s I can be used to analyze what
the spatial autocorrelation is at a certain distance, by using different weight matrices. The
weight matrices are picked as k nearest neighboring matrices with k ∈ [1, . . . , kmax] where
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[1, . . . , kmax] relates to the distance range being analyzed. The word ’relates’ is used here
since k in this context is pixels or observations, but they relate to a physical distance based
on the resolution of the image being analyzed.

(a) Moran’s I of value -1. Perfect
spatial dispersion of values.

(b) Moran’s I of value 0. Values
show random structure.

(c) Moran’s I of value 1. Perfect
spatial separation of values.

Figure 2-15: A visualization of the extreme values of Moran’s I. Three examples illustrating
different values of Moran’s I and how the corresponding spatial structure looks.

2-3 Factorization Methods

Matrix factorization or decomposition is the technique of expressing a matrix in parts with
structures that are more useful in some way, perhaps more practical for computation or human
interpretation [7]. Factorization is commonly used to obtain insights into trends or patterns
in data by extracting a lower-dimensional representation [39, 6]. Factorization can also be
used as a method for separating noise from signal, hence giving the analyst a clearer view of
the data [9].

When working with IMS data, the dimensionality of the datasets make them impractical for
humans to interpret directly [5, 6]. Various factorization methods have been applied to IMS
data in order to extract useful information, the most common being Principal Component
Analysis (PCA) [6, 40, 41, 42, 43, 44], Independent Component Analysis (ICA) [43, 44], Non-
Negative Matrix Factorization (NNMF) [43], and Maximum Autocorrelation Factorization
(MAF) [45, 11, 46, 47, 48, 49].

In the following chapter an overview of the workings of PCA will be put forth. Expanding
on the principals of PCA by incorporating spatial information into the algorithm, will lead
us to MAF. Using the dataset Z(x) =

[
Z1(x) Z2(x) . . . Zp(x)

]
, and assuming the data

matrix Z has zero mean, without loss of generality, the data matrix has a covariance matrix,
Σ ∈ Rp×p, which is estimated to be

Σ = Cov [Z] = 1
n− 1ZTZ, (2-39)

where Z ∈ Rn×p.
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2-3-1 Principal Component Analysis

PCA is a factorization method which generates matrix products from a dataset, where these
products are such that they maximize the accumulated variance accounted for. These result-
ing matrices are often referred to as the loading matrix and the score matrix.

We are now looking for a decomposition of Z that maximizes the accumulated variance ac-
counted for. So, we are seeking a column vector wi ∈ Rp×1 that maximizes

Var [Zwi] = wTi Σwi. (2-40)

Maximizing the variance without constraints on wi would result in a non-finite value of wi.
So a normalization constraint on wi must be included. The most common constraint to pick
at this point wTi wi = 1, that is the sum of squares of wi must equal 1 [9]. There are other
available choices for this constraint, which will be discussed in-depth later.

Using a Lagrange multiplier, λi, the maximization problem can then be formulated as

maxwiwTi Σwi − λi(wTi wi − 1). (2-41)

Taking the derivative with respect to wi and finding the equilibrium point yields

Σwi − λiwi = 0, (2-42)
(Σ− λiIp)wi = 0, (2-43)

where Ip is the p× p identity matrix. This reveals that λi is an eigenvalue of Σ and wi is the
corresponding right eigenvector.

Looking back at the variance to maximize, applying Equation 2-42 gives

Var [Zwi] = wTi Σwi = wTi λiwi = λiw
T
i wi = λi. (2-44)

This means that the largest eigenvalue, λi, and its corresponding eigenvector wi will account
for the maximum variance. This requires the eigenvalues and corresponding eigenvectors to
be ordered according to the size of the eigenvalues. Let the eigenvalues be ordered such that
λ1 ≥ λ2 ≥ · · · ≥ λi · · · ≥ λp, their corresponding eigenvectors will share the same subscript
[9].
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ZTZ ∈ Rp×p = λ1 w1

wT1

+ λ2 w2

wT2

+ . . . + λp wp

wTp
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Selection of components

ZPCA = Z ∈ Rn×p

[w1, w2]

Figure 2-16: Dimensionality reduction with PCA. The covariance matrix of the dataset is fac-
torized using eigenvalue decomposition. Looking at the eigenvalues (variance) a few components
can be chosen and used to create a lower-dimensional representation of the dataset. Note that
in this example wi ∈ Rp×1, vi ∈ R1×p, and λi ∈ R for all i ∈ [1, 2, . . . , p], Z ∈ Rn×p, and
ZP CA ∈ Rn×2.

The data matrix can now be broken up into factors, using the eigenvectors of the covariance
matrix as follows

ZPCA = Z [w1, w2, . . . , wq] = ZLPCA, (2-45)

where [w1, w2, . . . , wq] = LPCA ∈ Rp×q with q ∈ [1, p]. It is to be noted that q ∈ [1, p] can
be chosen according to how many components are desired in this lower-dimensional represen-
tation. The matrix ZPCA is called the score matrix and LPCA is called the loading matrix.
The original dataset can be reconstructed with [9]

Z ≈ ZPCAL†PCA, (2-46)

where L†PCA is the pseudo-inverse in case LPCA is not a square matrix. This procedure is
visualized in Figure 2-17. The data is being transformed onto another coordinate system,
where most of the variance is explained by fewer axes than in the original coordinate system.
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In Figure 2-17, a two-dimensional dataset is shown being transformed onto another two-
dimensional coordinate system, where the new x′ axis explains most of the variance of the
data.
With the normalization constraint used in this section, wTi wi = 1, and if the eigenvalues
are all distinct, the matrix of eigenvectors will be orthonormal. That allows the following
reconstruction of the dataset.

Z ≈ ZPCALTPCA (2-47)

Be aware that this only holds given the above conditions.

x

y

x′
y′

Figure 2-17: Two-dimensional illustration of PCA. Each original point is mapped onto a new
pair of axes (x′ − y′) by applying a transformation. These axes are such that they explain the
variance of the data as best as possible.

Principal Component Rotations

It has become common practice to rotate the principal components, most commonly to ease
interpretability. The main idea behind principal component rotations is that the component
loadings are post-multiplied with a transformation, A, arriving at the rotated loadings. Ro-
tations can either be orthogonal or oblique. That is, either the principal components are
rotated onto a new pair of axes which are orthogonal or non-orthogonal. A non-exhaustive
list of available rotations is given in [50]. Different rotations can be applied to achieve differ-
ent results, for example maximizing the dispersion of the loadings as is done with a rotation
called Varimax.
In his paper, Richman, mentions four disadvantages unrotated principal components exhibit
and argues that due to these disadvantages, scientists should consider rotations. These dis-
advantages all have to do with interpretability of the principal components [50].
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The four disadvantages Richman mentions are the following:

1. Domain shape dependence, that is the unrotated components are determined by the
geometry of the domain they are described in, posing a limit on the components. In
this case domain refers to the coordinate system being used to describe the data. For
example, different covariance matrices have been analysed in the same geometrically
shaped coordinate system and they returned similar patterns.

2. Subdomain stability, the principal components are not invariant as sections of the do-
main are examined. The domain being the coordinate system describing the data. So,
if a section of the whole domain is analyzed, that might show patterns which were not
present if the whole domain was analyzed.

3. Sampling errors, if the populations is sampled in a way that the eigenvalues lie close
to each other (this resembles sampling white noise) the principal components may shift
order.

4. Richman finally mentions that rotated principal components sometimes simply yield
results which are easier to interpret.

There have been discussions on when principal components should be rotated and when they
should not. Jolliffe and Richman have for example been replying to each other discussing this
in [51] and [52]. A further discussion on this topic can also be found in [9] and [53].

Loading Normalization

In order to get finite eigenvectors when maximizing the variance of the transformed data,
a normalization constraint must be applied to the eigenvectors. There are a number of
normalization constraints available, but three of them are mainly used when carrying out
PCA. The constraints all give rise to different traits of the eigenvectors or the principal
components.

The constraint that has already been mentioned is

wTi wi = 1. (2-48)

This constraint rises naturally when deriving the principal components. This normalization
will preserve distances from the original data into the components.

A second constraint is

wTi wi = λi, (2-49)

where λi is the eigenvalue corresponding to the eigenvector wi, λi is also the variance of the
i-th principal component when wTi wi = 1. This constraint enables the eigenvector wi to be
interpreted as the correlation between the i-th principal component and the original variables.
This only applies if the original variables have been standardized to unit variance.

The third and last constraint examined in this review is

wTi wi = λ−1
i , (2-50)
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where λi is the eigenvalue corresponding to the eigenvector wi. This normalization will give all
the principal components the same, unit variance. This means that the principal components
will all have equal importance, which can for example be useful for outlier detection [54].

With component rotations in mind, it is worth noting that the choice of normalization will
have an impact on the rotation results. As Jolliffe outlines in [54], applying rotations with
certain normalization constraints applied will lead to correlation between principal compo-
nents, loss of orthogonality between components or even both. Mestas-Nuñez et al. also give
a good overview of how different normalization constraints affect orthogonality properties in
rotations [55].

2-3-2 Maximum Auto-correlation Factorization

MAF was introduced in 1984 by Paul Switzer and A. A. Green as a method of isolating noise
components from signal components in multi-channel remotely sensed data. MAF differs from
PCA mainly in that it makes use of global spatial statistics of the observed data as well as
being invariant to linear transformations [18].

MAF seeks to find a transformation maximizing the autocorrelation between observations
or measurements. The idea is that the signal component of the observation will exhibit
high autocorrelation while the noise components will have low autocorrelation, and hence
be suppressed [18]. Most factorization methods used with IMS data treat observations as
if they were spatially independent, that is they do not take any spatial relationships of the
observations into account. However, physical and biological phenomena are generally larger
than a single or few pixels in size and should therefore, in theory, exhibit higher spatial
autocorrelation than noisy substructures [13, 56].

An appealing trait of MAF is that no prior knowledge about the underlying signals is needed,
that is MAF is an unsupervised factorization method. In [57], the authors point out that by
assuming the statistical distribution of the noise the resulting factors could be improved, and
they carry out experiments with that in mind. The authors also point out that MAF seems to
perform poorly if the data has certain local spatial structures, like edges. Another drawback
of MAF is, similar to PCA, negative peaks values in the resulting factors, as mentioned in
[43].

Recall the following definitions of covariance matrices

C(h) = Cov [Z(x),Z(x + h)] , (2-51)

γ(h) = 1
2 Cov [Z(x + h)− Z(x),Z(x + h)− Z(x)] . (2-52)

(2-53)

Recall from Section 2-2-3 that if the dataset is intrinsic stationary, the following applies

γ(h) = C(0)−C(h) (2-54)
=⇒ C(h) = C(0)− γ(h). (2-55)

The covariance between a linear combination of the data matrix and a linear combination of
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the shifted data matrix, is

Cov [Z(x)wi,Z(x + h)wi] = wTi C(h)wi (2-56)
= wTi (C(0)− γ(h))wi (2-57)
= wTi C(0)wi − wTi γ(h)wi (2-58)

=⇒ wTi C(h)wi
wTi C(0)wi

= 1− wTi γ(h)wi
wTi C(0)wi

, (2-59)

where wi ∈ Rp×1. The term on the right in equation 2-59 is the autocorrelation of the
linear combination. Now to maximize the autocorrelation, the following quotient needs to be
minimized:

wTi γ(h)wi
wTi C(0)wi

. (2-60)

A quotient with the format x
TAx
xTBx , where A and B are real symmetric matrices and x is a real

vector, is called a generalized Rayleigh quotient, so we are minimizing a generalized Rayleigh
quotient. As shown in the A-2 Section of the Appendix, the minimization of the generalized
Rayleigh quotient is equivalent to the generalized eigenvalue problem, which gives

γ(h)wi = λiC(0)wi, (2-61)

where wi is the eigenvector corresponding to the eigenvalue λi.

At this point it is worth pointing out that this eigenvalue decomposition can also be written
as

γ(h)C(0)−1wi = λiwi. (2-62)

That is, the eigenvectors, wi, of the matrix γ(h)C(0)−1 can be used to transform the original
dataset in order to obtain factors which vary minimally across the distance h. Varying mini-
mally across h is similar to having high spatial autocorrelation. The result can be achieved
by first whitening, a process described in detail in the A-3 Section of the Appendix, with
C(0), such that C(0) = Ip, and then whitening with respect to the γ(h). This is exactly the
practical implementation suggested in [18].

Now, an eigenvalue problem has been formulated, which gives a way of transforming the
original dataset into factors, but it still needs to be ensured that the first resulting factor
will have the highest spatial autocorrelation. Let us start by addressing that problem before
showing exactly how the original dataset can be transformed. The Rayleigh quotient can be
re-written as

wTi γ(h)wi
wTi C(0)wi

= wTi λiC(0)wi
wTi C(0)wi

(2-63)

= λi
wTi C(0)wi
wTi C(0)wi

(2-64)

= λi. (2-65)
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Replacing the Rayleigh quotient in equation 2-59 with the solution to the generalized eigen-
value problem yields

wTi C(h)wi
wTi C(0)wi

= 1− wTi γ(h)wi
wTi C(0)wi

= 1− λi. (2-66)

So 1 − λi is the spatial autocorrelation of the i-th MAF factor. This means that to ensure
that the first MAF factor has the highest spatial autocorrelation the eigenvalues must be
ordered such that λ1 ≤ λ2 ≤ · · · ≤ λp. This way the noisy substructures, which exhibit
low spatial autocorrelation, will get demoted to the later factors. The first factors, however,
will have high spatial autocorrelation, resembling mostly biological phenomena [18, 45]. This
will ensure that when MAF is used for dimensionality reduction, the first few factors can be
used as a lower-dimensional representation of the original dataset, while still retaining most
of the biological information. In a way, the factors (with low spatial autocorrelation) that are
removed will mostly contain noise.

Taking the first q eigenvectors, w1, w2, . . . , wq, corresponding to the mentioned ordering, the
original dataset can be transformed as follows

ZMAF = Z [w1, w2, . . . , wq] = ZLMAF , (2-67)

where LMAF ∈ Rp×q. ZMAF is a matrix with the MAF scores and LMAF is a matrix
containing the MAF loadings, with i ∈ [1, p], which means any number of factors can be
included in the factorization. The original dataset can then be reconstructed using

Z ≈ ZMAFL†MAF , (2-68)

where L†MAF is the pseudo inverse in case LMAF is not a square matrix.

Nested Substructures

Examining the dataset Z(x) further, assuming each variable has a covariance structure with
a known number of substructures. This is rarely the case in practice, but is however done
here to analyze and understand the behavior of MAF in each case. In the following chapter
the cases of one, two, and three underlying covariance structures will be examined.

One Nested Substructure In the case of a single nested substructure the covariance function
of Z(x) can be written as

C(h) = B1c1(h), (2-69)

where c1(h) ∈ R for all h ∈ Z2 is a covariance function of the single substructure and
B1 ∈ Rp×p is a weight matrix for that substructure. The covariance function at lag h = (0, 0)
can be made identity by applying PCA to the dataset. This procedure is called whitening
and is further explained in the A-3 Section of the Appendix. This gives uncorrelated factor
at lag h = (0, 0), that is

C(0) = B1 = Ip. (2-70)
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Now only factors at lag h 6= (0, 0) need to be converted into uncorrelated factors. The
variogram at this point is

γ(h) = C(0)−C(h) (2-71)
= (1− c1(h))Ip. (2-72)

Since the variogram is now proportional to the identity matrix, hence diagonal and invariant
of h, when MAF is carried that will result in uncorrelated factors at all lag distances h [58].

Two Nested Substructures If the dataset has two nested substructures, then

C(h) = B1c1(h) + B2c2(h), (2-73)

where c1(h) ∈ R and c2(h) ∈ R for all h ∈ Z2 are covariance functions of the underlying
substructures and B1 ∈ Rp×p and B2 ∈ Rp×p are weight matrices for those substructures.
Again, the dataset can be made to have unit covariance at lag distance h = (0, 0), that gives

C(0) = B1 + B2 = Ip (2-74)
=⇒ B2 = Ip −B1. (2-75)

From this the covariance function can be rewritten as

C(h) = B1c1(h) + (Ip −B1)c2(h), (2-76)

with this in mind the variogram can be constructed as follows

γ(h) = C(0)−C(h) (2-77)
= Ip −B1c1(h)− (Ip −B1)c2(h) (2-78)
= Ip(1− c2(h))−B1(c1(h)− c2(h)). (2-79)

Eigenvalue decomposition of the variogram gives

γ(h) = Ip(1− c2(h))−B1(c1(h)− c2(h)) = WΛWT , (2-80)

where W ∈ Rp×p is the eigenvector matrix and Λ ∈ Rp×p is the eigenvalue matrix. Note
that since the variogram matrix is a real symmetric matrix, W is orthogonal. It is further
assumed that W has been normalized such that WTW = Ip. Using this eigenvector matrix
to whiten the variogram results in

γMAF (h) = WTγ(h)W = WT (Ip(1− c2(h))−B1(c1(h)− c2(h))) W (2-81)
= WT IpW(1− c2(h))−WTB1W(c1(h)− c2(h)) (2-82)
= Ip(1− c2(h))−WTB1W(c1(h)− c2(h)). (2-83)

The matrix product WTB1W is diagonal. Since I and B1 commute, that is IB1 = B1I,
they share the same invariance space and this transformation will therefore diagonalize B1,
according to [59]. This means that the variogram is at this point diagonal, resulting in
uncorrelated factors. Examining equation 2-80, it is worth noting that two arbitrary matrices
A and aI + bA (a, b ∈ R, b 6= 0) do not have the same eigenvalues, but they do have the same
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eigenvectors. A proof of this statement can be found in the A-4 Section of the Appendix.
This means that γ(h) and B1 will have the same eigenvectors, which also means that the
eigenvectors are invariant of the lag distance h. Since the MAF factors are derived using
eigenvectors which are, in this case, invariant of the shift parameter, the MAF factors will be
uncorrelated at all lag distances h [60, 58].

In [58], the authors carry out MAF on two nested structures, similar to what is shown here.
They conclude that in this context MAF is theoretically a perfect orthogonalization of the
nested structures. This statement is proven in [18].

Three Nested Structures If the dataset has three nested substructures, the covariance
function can be written as

C(h) = B1c1(h) + B2c2(h) + B3c3(h), (2-84)

where c1(h) ∈ R, c2(h) ∈ R, and c3(h) ∈ R for all h ∈ Z2 are covariance functions of the
underlying substructures and B1 ∈ Rp×p, B2 ∈ Rp×p, and B3 ∈ Rp×p are weight matrices for
those substructures. Whitening the covariance matrix at a lag distance h = 0 gives

C(0) = B1 + B2 + B3 = Ip (2-85)
=⇒ B3 = Ip −B1 −B2, (2-86)

yielding the variogram

γ(h) = C(0)−C(h) = Ip −B1c1(h) + B2c2(h) + (Ip −B1 −B2)c3(h) (2-87)
= (1− c3(h))Ip −B1(c1(h)− c3(h)) + B2(c2(h)− c3(h)). (2-88)

Now the variogram can not be diagonalized for B1 and B2 simultaneously, unless they com-
mute [59], that is if B1B2 = B2B1. If they indeed do commute, the factorization can carry
on and all factors will be uncorrelated for all lag distances h, similarly to the two nested
structure case.

If the matrices do not commute, one of the two matrices can be diagonalized while scaling
the other. No literature was found on this problem. This same problem arises in the case of
more than three nested substructures, except then three or more matrices must commute to
produce uncorrelated factors.

A similar effect is seen in the case where the dataset is anisotropic. If the data is anisotropic
and two or more nested substructures are present, the resulting factors will only be uncorre-
lated if certain matrices commute, similar to what has been demonstrated on the cases above.
This is described in [58].

This study of nested substructures raises the question of how to choose the shift parameter
h, since orthogonal factors cannot be ensured for all distances unless certain criteria are met.
When MAF was originally proposed, Switzer and Green suggested a unit horizontal shift
and a unit vertical shift [18]. This procedure has been used since and seems to be standard
practice in most implementations of MAF, see for example [48] and [46]. The question of how
to choose the shift parameter has been raised before, for example in [61].

This analysis above means that in the case where there are only two isotropic covariance
structures in the dataset, the choice of the shift parameter does not matter, showing that
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uncorrelated factors are ensured at all lag distances. However, the case where there are more
than two isotropic covariance structures present needs to be addressed. How the shift param-
eter, h, affects the resulting MAF factors in this specific case seems to be yet unexplored.
Whether the originally proposed diagonal shift is the universally optimal choice, whether this
diagonal shift promotes spatial structures which are aligned in the direction of the shift, or
whether there might be a different way of choosing the shift parameter remain open questions.

Loading Signs and Normalization

Normalization constraints set on the loadings can have a large effect on the properties of the
resulting factors, as seen with PCA. When solving the generalized eigenvalue problem, as
seen in equation 2-61, the eigenvectors ar constrained such that

wTi C(0)wi = Ip. (2-89)
After that the eigenvalue problem γ(h)wi = λiwi is solved. This implies that there are no
choices to be made regarding loading normalization in MAF. That is, in the MAF algorithm
the eigenvectors have already been constrained such that their values will remain finite after
minimizing the variogram. If this constraint would not have been applied, the values of the
eigenvectors would have been infinite. This is similar to what was discussed with PCA in
Equation 2-40.
Another known problem when dealing with loadings is that the scale and sign are arbitrary.
Having a look at equation 2-61 for example, it is clear that if the loadings −wi would be used,
they would still satisfy the equation, but the resulting factors would be different. When eigen-
value decomposition is carried out, the signs of the loadings have no meaningful interpretation
and can be seen as assigned randomly [62].
In [62], Bro et al. suggested a solution by making the loadings have the same sign as the
majority of the data-vectors being decomposed. That is, the loadings will point in the same
direction as the majority of the data. This will result in a decomposition without side effects
in terms of the eigenvector sign, so the same input it will always give the same output.

Data Transformations

When carrying out component analysis, it is common to transform the original dataset to
correct for sensor gains as seen in for example [9]. This raises the question of how MAF
factors are affected by transformations. A transformed dataset is defined as

Y = ZA, (2-90)
where A ∈ Rp×p is any real, non-singular transformation matrix. Let the dataset Z(x) have
the covariance function C(h) and the variogram γ(h). The transformed dataset will then
have the following covariance function and variogram

Cov [Y(x),Y(x)] = Cov [Z(x)A,Z(x)A] = ATC(0)A, (2-91)
Cov [Y(x + h)−Y(x),Y(x + h)−Y(x)] = Cov [Z(x + h)A− Z(x)A,Z(x + h)A− Z(x)A]

(2-92)
= ATγ(h)A. (2-93)
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Looking at the derivation of the MAF factors, the spatial autocorrelation can now be written
as

vTi C(h)vi
vTi C(0)vi

= 1− vTi ATγ(h)Avi
vTi ATC(0)Avi

, (2-94)

now since ATγ(h)A and ATC(0)A are both real symmetric matrices, this is called a Gener-
alized Rayleigh quotient. The Generalized Rayleigh quotient can now be minimized as shown
in the A-2 Section of the Appendix in order to maximize the spatial autocorrelation. This is
similar to was done in Equation 2-61. This gives the solution

ATγ(h)Avi = λiATC(0)Avi (2-95)
γ(h)(Avi) = λiC(0)(Avi). (2-96)

The transformation does not change the resulting loadings, that is Avi = wi. This results in
the following MAF factors

Y [v1, v2, . . . , vq] = YV = ZAV = ZLMAF , (2-97)

where LMAF ∈ Rp×q is the matrix of the q first eigenvectors [w1, w2, . . . , wq]. This means
that the Maximum Autocorrelation Factorization is invariant of linear transformations of the
original dataset. This feature of MAF makes data scaling or instrumentation gain irrelevant
[18, 63].
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Chapter 3

Methods

It has been demonstrated that utilizing the spatial information available in data can reveal
patterns that were otherwise hidden [14, 15, 16, 17]. Maximum Autocorrelation Factorization
(MAF) [18] is a factorization method that takes both spectral and spatial structure of data
into account by constructing factors based upon the spatial covariance function. As well as
utilizing spatial information in the data, MAF is an unsupervised factorization method, that
is no prior information about the data is provided by the user. Therefore, MAF is considered
a strong candidate for factorization and unsupervised exploratory analysis of Imaging Mass
Spectrometry (IMS) and other spatially structured, multivariate data.

However, as demonstrated in Chapter 4, MAF is dependent on a spatial shift parameter,
which needs to be tuned and set by the user before analyzing the data. This shift parameter
has typically been set to a default value since MAF was introduced, namely a diagonal shift
(to capture variation along the two axes of a two-dimensional image). In this work, the goal is
to extend MAF to become independent of user-input, optimizing the shift parameter without
human intervention.

Similarly to Chapter 2-2, we have a dataset

Z =
[
Z1 Z2 . . . Zp

]
, (3-1)

with Z ∈ Rn×p and Zi ∈ Rn×1 for i ∈ [1, 2, . . . , p]. That is, the dataset contains n observations
(usually pixels) of p variables (features measured per pixel). It is assumed, without loss of
generality, that all variables are zero mean, that is

E [Zi] = 0 (3-2)

for all i ∈ [1, 2, . . . , p]. It is further assumed that this data is intrinsic stationary, that is the
mean does not change if the data is shifted spatially and the variogram is only a function of
the shift parameter. This assumption is discussed in detail in Chapter 2-2-4.

We propose an altered version of the original MAF algorithm, will be used for the Extended
Maximum Autocorrelation Factorization (EMAF) algorithm, which is a single-step approach
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to achieving the eigenvalues and eigenvectors needed to transform the dataset. This single-
step approach, unlike the originally proposed algorithm, does not involve sphering the data.
The reason why sphering is avoided is discussed in detail in Chapter 3-5. A description
of sphering can be found in Chapter A-3. Note that this alternative approach is the same
approach as introduced in the Chapter 2-3-2. The same approached is used in for example
[61, 64].

So, for comparison, the originally proposed algorithm is:

1. Sphering: Transform the data, Z, using a transformation matrix S ∈ Rp×p, such that
Cov [ZS] = Ip×p,

2. The eigenvalue problem: solve C(h)wi = λiwi to get eigenvalues λi, and eigenvectors
wi, where C(h) ∈ Rp×p is the spatial covariance function of the dataset for a specific
shift vector h,

where Ip×p ∈ Rp×p, wi ∈ Rp×1, and λi ∈ R. A more detailed discussion about the original
MAF algorithm can be found in [18]. The alternative to this two-step algorithm is referred
to as the single-step method, which is solving the eigenvalue problem

C(h)wi = λiC(0)wi, (3-3)

directly.

The shift parameter will be described in Cartesian coordinates, that is h = (x, y). This choice
is made for practical reasons. When implementing the algorithm the shifts will end up being
described as x pixels horizontally and y pixels vertically. It is to be noted that the images
can only be shifted an integer number of pixels, that is x, y ∈ Z.

In this chapter the focus will be on altering the eigenvalue problem shown in Equation 3-3. To
start off, an intuitive understanding of how this eigenvalue problem works will be established
and then the eigenvalue problem will be altered. The hope is to alter the eigenvalue problem
in such a way that it becomes independent of a shift parameter input from the user. Later
in the chapter, the sphering step in the original MAF algorithm will be discussed and what
its effects on the resulting factors are. Then, a robust version of the EMAF algorithm will
be discussed briefly. The last section in this chapter will summarise the traits of the newly
developed EMAF algorithm.

3-1 The MAF eigenvalue problem

The MAF eigenvalue problem is generally formulated as

C(h)wi = λiC(0)wi, (3-4)

where C(h) ∈ Rp×p is the spatial covariance function of the dataset, C(0) ∈ Rp×p is the
spatial covariance function of the dataset evaluated at location h = 0 (so without spatial
shift), wi ∈ Rp×1 are the eigenvectors and λi ∈ R are the eigenvalues.

Generally speaking, when solving an eigenvalue problem we are looking for vectors that are
only scaled by the transformation in question, the spatial correlation function in this case.
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This change in scale is quantified by the eigenvalues and the vectors being scaled are the
eigenvectors. The eigenvectors can also be though of as the axes of the transformation, for
example the axes which this linear transformation is rotating, flipping, skewing, etc. around.

In the case where the transformation matrix has a physical meaning tied to it, the eigenvalues
can have a physical meaning, as well. In the case of MAF, the eigenvalues are related to the
spatial autocorrelation of the resulting MAF factors [61]. The goal here is to find a linear
transformation of the dataset which will maximize this spatial autocorrelation of the resulting
factors. How such a linear transformation can be found is shown later in this thesis. To get
factors with maximal spatial autocorrelation, the factors can simply be ordered according to
their eigenvalues. One problem with MAF is, looking at Equation 3-4, that the eigenvalues
are dependent on the user input h. How should users choose this parameter?

The user’s goal is to extract information from the dataset and hopefully be able to separate
out noise. In the case of IMS data, biological patterns are generally more likely to exhibit high
spatial autocorrelation compared to noise. Single pixel artifacts for example are most likely
not biological information, with single pixel artifacts having close to zero spatial autocorrela-
tion. Before being able to apply MAF the user has to know in which direction and distance
the autocorrelation is greatest, this direction and distance will assemble the shift parameter.
The idea behind EMAF is to relief the user from having to analyze the data and pick this parameter.
This can be achieved by taking more than one shift into account, making the algorithm in-
variant of the shift parameter, in terms of both its length and direction.

In order to take multiple shifts into account, the lag space is segmented and the values of
the spatial correlation function are averaged across each segment. A similar idea can be used
to calculate MAF factors. This way the MAF algorithm will not promote spatial artifacts
oriented in one direction over any other direction, it will rather seek to maximize the average
spatial autocorrelation across all the shift parameters taken into account.

One of the goals here is to alter the MAF algorithm such that it will not promote spatial
distributions oriented in one direction over any other. This is achieved by calculating an
average of all shift parameter angles in a certain Region of Interest (ROI) of the lag space.
There will be different angles available depending on the size of this ROI. If, for example, the
ROI is a circle of radius r = 1, there will be four angles, θ, available, that is θ ∈ [0, π2 , π,

3π
4 ].

The number of available angles increases as r increases. But the idea is that all angles are
utilized, whatever the ROI radius is.

Formulating this averaging idea mathematically, the spatial correlation function is first as-
sumed to be a continuous function; the results will then later be discretized for practical
applications.

First the ROI is formulized, that is the part of the lag space that is being averaged across.
Since all angles should be treated with equal weight, the region should to be circular. So the
ROI is a circle in the lag space, centered at (0, 0) with radius r, described by the equation
x2 + y2 = r2, where the shift parameter is h = (x, y). There are two two different options
that arise. One option is to take all shift parameters that fall within this ROI into account.
This would result in a relatively accurately approximated spatial correlation over the ROI,
albeit slowing down calculation times, since more shifts are taken into account. This method
of taking the average across the whole ROI will be refered to as the disc implementation. An
alternative to this, which might prove more practical due to lower calculation time, is to only
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look at the rim of the ROI. This method of taking only shift parameters which land on the
rim of the ROI into account will be referred to as the rim implementation.

(0, 0)

r

(a) The ROI for the disc implementations.

(0, 0)

r

(b) The ROI for the rim implementations.

Figure 3-1: The ROI for both disc- and rim implementations. The circular region with radius r
that determines what values in the lag space will be included in the average correlation calculations.
Shifts not included in the average correlation are indicated with black squares and the included
shifts are indicated with red circles.

3-2 MAF disc extension

This section focuses on extending the MAF algorithm with the disc implementation, taking
all shifts that fall within the ROI into account. These shifts can be described as all shifts
h = (x, y) where −r ≤ x ≤ r and −

√
r2 − x2 ≤ y ≤

√
r2 − x2. Figure 3-1a shows an

example of what shifts or lags fall within this region. The region has an area of A = r2π, the
calculations for this surface area are shown in the A-1-1 Section of the Appendix. This is also
done to show that this parameterization of the region is valid.

First the average spatial correlation will be calculated, which will then be used to formulate
an optimization problem. The average spatial covariance can be found by integrating the
spatial correlation function across some ROI and dividing the integral by the area of this
ROI. For now, all shifts are assumed to be continuous, the results will be discretized later.

A general formula for the average spatial covariance across the disc is, covdisc is

covdisc = 1
A

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

C(x, y)dydx, (3-5)

where the area of the ROI is A. Since the ROI is a circle, we have A = r2π, so

covdisc = 1
A

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

C(x, y)dydx (3-6)

= 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

C(x, y)dydx. (3-7)
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The data is assumed to be intrinsically stationary, so

γ(x, y) = C(0, 0)−C(x, y) (3-8)
=⇒ C(x, y) = C(0, 0)− γ(x, y). (3-9)

Equation 3-7 can now be written with the variogram instead of the spatial correlation function,
getting

covdisc = 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

C(x, y)dydx (3-10)

= 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

(C(0, 0)− γ(x, y)) dydx (3-11)

= 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

C(0, 0)dydx− 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydx (3-12)

=C(0, 0) 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

dydx− 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydx (3-13)

=C(0, 0) 1
r2π

r2π − 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydx (3-14)

=C(0, 0)− 1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydx, (3-15)

by using the results shown in the A-1-1 Section of the Appendix, to calculate∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

dydx. (3-16)

This average spatial correlation can now be maximized using a linear transformation, using a
similar idea as for Principal Component Analysis (PCA). First, the average spatial covariance
covdisc is multiplied by a weight vector, wi ∈ Rp×1, the the average spatial correlation can be
formulated and maximized. That is

wTi covdiscwi = wTi

(
C(0, 0)− 1

r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydx
)
wi (3-17)

= wTi C(0, 0)wi − wTi
1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydxwi (3-18)

=⇒ wTi covdiscwi
wTi C(0, 0)wi

= Ip×p −
wTi

1
r2π

∫ r
x=−r

∫√r2−x2

y=−
√
r2−x2 γ(x, y)dydxwi

wTi C(0, 0)wi
(3-19)

It has until now been assumed the the lag space is continuous, but it is discrete. The variogram
for example is not a continuous function, but a discrete function. Because of this, integrating
the function is not an option in practice. The integral can be estimated by using a Riemann
sum. This approximation gives

1
r2π

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

γ(x, y)dydx ≈ 1
r2π

r∑
x=−r

√
r2−x2∑

y=−
√
r2−x2

γ(x, y)∆y∆x, (3-20)
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where x, y ∈ Z, ∆x and ∆y are the spatial intervals between the points where the variogram
function is evaluated. The variogram will be evaluated at every pixel in the ROI. Since there
is now a single pixel shift between every evaluation of the variogram meaning that

∆x = 1, (3-21)
∆y = 1. (3-22)

This approximation is visualized in Figure 3-1, all the available values of the variogram
which fall within the circular ROI are being summed up. This results in a weighted average
correlation of

wTi covdiscwi
wTi C(0, 0)wi

= Ip×p −
wTi

1
r2π

∑r
x=−r

∑√r2−x2

y=−
√
r2−x2 γ(x, y)wi

wTi C(0, 0)wi
. (3-23)

This weighted average correlation can now be maximized, yielding

max
wi

wTi covdiscwi
wTi C(0, 0)wi

≈ min
wi

wTi
1
r2π

∑r
x=−r

∑√r2−x2

y=−
√
r2−x2 γ(x, y)wi

wTi C(0, 0)wi
. (3-24)

This minimization problem is a Generalized Rayleigh Quotient. The minimization of a Gen-
eralized Rayleigh Quotient is shown in Section A-2 of the Appendix. Applying the results
from the Appendix yields the following eigenvalues and eigenvectors

 1
r2π

r∑
x=−r

√
r2−x2∑

y=−
√
r2−x2

γ(x, y)

wi = λiC(0, 0)wi, (3-25)

where λi ∈ R is the i-th eigenvalue, wi ∈ Rp×1 is the corresponding, i-th eigenvector for all
i ∈ [1, 2, . . . , p]. Since the sum of variogram values over the ROI is being minimized, the
eigenvalues are ordered such that λ1 ≤ λ2 ≤ · · · ≤ λp. This is calculated using the results
shown in the A-2 Section of the Appendix.

Unlike when solving a standard eigenvalue problem, in this case there is no need to pick a
constraint on the eigenvectors. When solving a standard eigenvalue problem the eigenvectors
have to be contrained in order to get finite valued eigenvectors. The problem being that there
are a few constraints to choose from, each with different traits. This is discussed for example
in [9, 54]. In this case, the eigenvectors constraint

wTi C(0)wi = Ip, (3-26)

rises naturally, as discussed in Chapter 2-3-2.

In this case the eigenvalues, λi will represent the average variogram divided by the covariance,
C(0), across the ROI. Looking at Equation 3-23, this eigenvalue can be related to the average
spatial autocorrelation by the equation 1− λi. This means that the produced factors should
have a high average spatial autocorrelation, when shifted within the ROI. That way promoting
factors with larger spatial artifacts of uniform values.
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Taking the first q eigenvectors, w1, w2, . . . , wq, corresponding to the mentioned ordering, the
dataset Z ∈ Rn×p can now be transformed using the EMAF eigenvectors to obtain the EMAF
factors as

ZEMAF = Z [w1, w2, . . . , wq] = ZLEMAF , (3-27)

where LEMAF ∈ Rp×q. ZEMAF is a matrix with the EMAF scores and LEMAF is a matrix
containing the EMAF loadings. With i ∈ [1, p], which means any number of factors can be
included in the factorization. The original dataset can then be reconstructed using

Z ≈ ZEMAFL†EMAF , (3-28)

where L†EMAF is the pseudo inverse in case LEMAF is not a square matrix.
This is now a directionally independent version of MAF which results in factors with maximal average spatial autocorrelation, calculated from a set of shifts within an ROI with radius r.
This method is described in Algorithm 1.

Algorithm 1 Disc version of EMAF.
Require: Z ∈ Rn×p, r ∈ R>0

procedure EMAFdisc(Z, r)
Σ = cov [Z(0, 0)]
(x, y) = {x, y ∈ Z |x2 + y2 ≤ r2}
variogram_sum = 0p×p
for all (x, y) do

γ = 1
2cov [Z(x,y)− Z(0,0)]

variogram_sum = variogram_sum + γ
end for
variogram_average = 1

r2πvariogram_sum
W,Λ = eig(variogram_average,Σ)

return ZW ∈ Rn×p, W ∈ Rp×p, Λ ∈ Rp×p
end procedure

Require: A ∈ Rp×p, B ∈ Rp×p
procedure eig(A,B)

AW = BWΛ
return W ∈ Rp×p, Λ ∈ Rp×p
end procedure

3-3 Rim implementation

In this section, the MAF algorithm will be extended using the rim implementation. Only
shifts that fall exactly on the rim or boundary of the ROI are taken into account in this case.
Recall that the ROI is a circular region with radius r, centered at (0, 0) in the lag space.
These shifts can be described as all shifts h = (rshift, θ) where 0 ≤ θ ≤ 2π and rshift = r,
that is the shifts are noted in polar coordinates. Figure 3-1b shows an example of what shifts
or lags fall within this region. This average can be carried out as a single dimension integral
in polar coordinates, that is the radial dimension θ. The length of the rim is L = 2rπ, the
calculations for this are shown in A-1-2 Section of the Appendix.
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First the average spatial correlation is calculated, which will then later be used to form an
optimization problem. The average spatial correlation is found by integrating the spatial
correlation function across the boundary of the ROI and dividing the integral by the circum-
ference. It is assumed for now that the shifts are continuous and the results will be discretized
later.

A general formula for the rim average spatial correlation, covrim is

covrim = 1
L

∫ 2π

θ=0
C(r, θ)rdθ, (3-29)

where L is the circumference of the ROI. As stated previously L = 2πr, and using the relation
between the variogram and the spatial covariance function derived in the previous section,
Equation 3-9, we get

covrim = 1
L

∫ 2π

θ=0
C(r, θ)rdθ (3-30)

= 1
2πr

∫ 2π

θ=0
C(r, θ)rdθ (3-31)

= 1
2πr

∫ 2π

θ=0
(C(0, 0)− γ(r, θ)) rdθ (3-32)

= 1
2πr

∫ 2π

θ=0
(C(0, 0)− γ(r, θ)) rdθ (3-33)

= 1
2πr

(∫ 2π

θ=0
C(0, 0)rdθ −

∫ 2π

θ=0
γ(r, θ)rdθ

)
(3-34)

= 1
2πr

(
C(0, 0)

∫ 2π

θ=0
rdθ −

∫ 2π

θ=0
γ(r, θ)rdθ

)
(3-35)

= 1
2πr

(
C(0, 0)2πr −

∫ 2π

θ=0
γ(r, θ)rdθ

)
(3-36)

= C(0, 0)− r 1
2πr

∫ 2π

θ=0
γ(r, θ)dθ (3-37)

= C(0, 0)− 1
2π

∫ 2π

θ=0
γ(r, θ)dθ, (3-38)

using the results shown in the A-1-2 Section of the Appendix and the fact that r is constant.

Similarly to the disc case, it was assumed that the shift parameter was continuous, but it
needs to be discretized. Although in this case it was further assumed that the shift parameter
was given in polar coordinates so the shift parameter needs to be transformed into Cartesian
coordinates as well. The shift parameter can be cast into Cartesian coordinates, such that
h = (x, y), using

θ = arctan
(
y

x

)
. (3-39)

Then, discretizing the average spatial correlation gives

1
2π

∫ 2π

θ=0
γ(r, θ)dθ ≈ 1

2π

2π∑
θ=0

γ(r, θ)∆θ (3-40)

Daníel Freyr Hjartarson Master of Science Thesis



3-3 Rim implementation 43

In this case the angle does not change constantly, so the evaluations of the variograms get
weighted depending on the length of the rim they cover. This length can be calculated using

∆θ = − y

x2 + y2 ∆x+ x

x2 + y2 ∆y (3-41)

where ∆x and ∆y are the changes in the x and y coordinates between two shift parameter
values, respectively.
The final goal is to find a linear transformation that will maximize the average spatial corre-
lation of the resulting EMAF factors. First, this linear transformation is formulated, then the
maximization is carried out later. Using vectors wi ∈ Rp×1 to transform the average spatial
covariance gives

wTi covrimwi = wTi

(
C(0, 0)− 1

2π

2π∑
θ=0

γ(r, θ)∆θ
)
wi (3-42)

= wTi C(0, 0)wi − wTi
1

2π

∫ 2π

θ=0
γ(r, θ)dθwi (3-43)

=⇒ wTi covrimwi
wTi C(0, 0)wi

= Ip×p −
wTi

1
2π
∑2π
θ=0 γ(r, θ)∆θwi

wTi C(0, 0)wi
(3-44)

Maximizing this linear transformations gives

max
wi

wTi covrimwi
wTi C(0, 0)wi

≈ min
wi

wTi
1

2π
∑2π
θ=0 γ(r, θ)∆θwi

wTi C(0, 0)wi
(3-45)

This minimization problem is a Generalized Rayleigh Quotient. The minimization of Gener-
alized Rayleigh Quotients is covered in Section A-2 of the Appendix. Similarly to the disc
implementation, the vectors wi need to be constrained. Again the constraint wTi C(0)wi = 1
rises naturally, as discussed in Section 2-3-2. This leaves the eigenvalue problem

1
2π

2π∑
θ=0

γ(r, θ)∆θwi = λiC(0, 0)wi, (3-46)

where λi ∈ R is the i-th eigenvalue, wi ∈ Rp×1 is the corresponding, i-th eigenvector for all
i ∈ [1, 2, . . . , p]. Since the sum of variogram values over the boundary of the ROI is being
minimizing, the eigenvalues are ordered such that λ1 ≤ λ2 ≤ · · · ≤ λp.
In this case, the eigenvalues will represent the average variogram across the ROI, and so 1−λi
will be the average spatial autocorrelation of the i-th factor if it is shifted to the rim of the
ROI. This relation is derived from Equation 3-40. This means that the produced factors
should have a high average spatial autocorrelation when shifted to the rim of the ROI, that
way promoting factors with larger spatial artifacts of uniform values.
Taking the first q eigenvectors, w1, w2, . . . , wq, corresponding to the mentioned ordering, the
dataset Z ∈ Rn×p can now be transformed using the EMAF eigenvectors to obtain the EMAF
factors as

ZEMAF = Z [w1, w2, . . . , wq] = ZLEMAF , (3-47)
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where LEMAF ∈ Rp×q. ZEMAF is a matrix with the EMAF scores and LEMAF is a matrix
containing the EMAF loadings. With i ∈ [1, p], which means any number of factors can be
included in the factorization. The original dataset can then be reconstructed using

Z ≈ ZEMAFL†EMAF , (3-48)

where L†EMAF is the pseudo inverse in case LEMAF is not a square matrix.

This results in a version of MAF which produces factors with maximal average spatial au-
tocorrelation, calculated from the boundary of a set ROI with radius r. This method is
described in Algorithm 2.

Algorithm 2 Rim version of EMAF
Require: Z ∈ Rn×p, r ∈ R>0

procedure EMAFdisc(Z, r)
Σ = cov [Z(0, 0)]
(x, y) = {x, y ∈ Z |x2 + y2 = r2}
variogram_sum = 0p×p
for all (x, y) do

γ = 1
2cov [Z(x,y)− Z(0,0)]

∆θ = − y

x2 + y2 ∆x+ x

x2 + y2 ∆y
variogram_sum = variogram_sum + γ∆θ

end for
variogram_average = 1

2πvariogram_sum
W,Λ = eig(variogram_average,Σ)

return ZW ∈ Rn×p, W ∈ Rp×p, Λ ∈ Rp×p
end procedure

Require: A ∈ Rp×p, B ∈ Rp×p
procedure eig(A,B)

AW = BWΛ
return W ∈ Rp×p, Λ ∈ Rp×p
end procedure

3-4 Region of interest radius

The question of how to choose the radius of this ROI remains. How to choose a radius for the
ROI is not as straightforward as dealing with the angle of the shift parameter. The radius of
the ROI is bounded by the size of the image being analyzed. Two constraints to keep in mind
is that calculating a variogram value can be time consuming and spatial covariance generally
decreases with increasing shift distance (in real-world data that is). For these reasons, the
radius of the ROI should be kept relatively small. However, the accuracy of the approximation
of the average spatial correlation increases with increasing radius, as more data points are
used to calculate the variogram with a larger radius.

A good balance between a large and a small radius of the ROI should be found. We need
to find a radius such that it gives a good balance between accuracy and computational time,
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Table 3-1: The radius estimation methods as well as control methods applied. Note that
r2

roi = x2 + y2.

Method name Abbreviation Mathematical description

Maximum spatial autocorrelation Max AC r = arg max
rroi

I(Z(x, y))

Minimal spatial autocorrelation Min AC r = arg min
rroi

I(Z(x, y))

Unit circle UC r = 1

while still maintaining a high spatial autocorrelation of the resulting factors. Since there
is no obvious choice of radius at this point, a few different methods to select a radius of
the ROI will be proposed. Some of these methods rely on having an estimate of spatial
correlation at certain distances. To keep calculation times low, the spatial correlation should
be estimated using other methods than the variogram directly. In this thesis, Moran’s I will
be used to estimate the spatial autocorrelation, due to its ease of implementation and how
computationally inexpensive it is.

The methods proposed are found and described in Table 3-1. In Section 5-3, these methods
will be compared both to each other as well as to PCA and MAF, using both the rim- and
disc implementation of EMAF.

The reasons for looking at the Unit Circle (UC) is that spatial autocorrelation generally de-
creases with distance, so similarly to the original MAF algorithm a unit shift might work best.
Another method is to find the radius with the maximum spatial autocorrelation, Maximum
Autocorrelation (Max AC). The idea is that if the maximum spatial autocorrelation does not
occur at a unit length shift, this method will at least get close to evaluating the variogram
where the maximum spatial autocorrelation occurs. The third method is to find the radius
where the minimum spatial autocorrelation occurs, Minimum Autocorrelation (Min AC). Set-
ting the radius of the ROI to the radius where the minimum spatial autocorrelation occurs
might enable the data to be transformed and increase the spatial autocorrelation by the
largest amount.

3-5 The problem with data sphering

As mentioned at the beginning of this chapter, this extension of MAF deviates from the
originally proposed MAF algorithm. The original algorithm suggests sphering the data before
solving the eigenvalue problem. The problem with that is that the sphering method has to
be affine equivariant. A sphering function S(X) is said to be affine equivariant if for any
non-singular matrix A ∈ Rp×p

S(XA) = S(X)A. (3-49)

If the sphering method is not affine equivariant, the MAF algorithm loses its invariance
towards linear transformations. This is similar to what is stated in Section 2-3-2, where the
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original data is sphered using a sphering algorithm S(X). When the sphered data is then
transformed by a linear transformation A ∈ Rp×p, we get

Cov [S(ZA), S(ZA)] = (S(ZA))T S(ZA). (3-50)

If the sphering method is affine equivariant,

Cov [S(ZA), S(ZA)] = (S(ZA))T S(ZA) (3-51)
= ATS(Z)TS(Z)A (3-52)
= AT Ip×pA, (3-53)

where Ip×p ∈ Rp×p is the covariance matrix of the sphered dataset.

This statement is only true if both the sphering algorithm and the covariance estimator are
affine equivariant. A covariance estimator, Σ̂(Z), is said to be affine equivariant if

Σ̂(ZA + b) = AT Σ̂(Z)A, (3-54)

where Z ∈ Rn×p is the data matrix being analyzed, A ∈ Rp×p is any non-singular matrix and
b ∈ Rn×p is a bias matrix [65].

By skipping the sphering step, finding a sphering method which is equivariant is not a problem.
In his paper on sphering and its properties, Jian Zhang presents three different sphering
methods [66]. None of these sphering methods are fully equivariant, namely the Square
Root Decomposition (SRD) algorithm is orthogonally equivariant, that is the transformation
matrix is limited to being orthogonal instead of only non-singular. In [66], Jian Zhang points
out that the three methods covered in his paper are the three methods found in literature.
So whether an affine equivariant sphering method exists, is unanswered. For these reasons
the EMAF factors are calculated using the single-step method, avoiding the sphering.

3-6 Robustness

Geir Storvik suggests, in his paper on data reduction by separation of signal and noise compo-
nents for multivariate spatial images [67], to use a robust estimator to estimate the covariance
matrix for the MAF algorithm. Storvik does not specifically recommend one single robust
covariance estimator, but instead compares the performance of three different estimators. It
is concluded that using robust estimators when implementing MAF yields factors containing
more information, especially if the underlying classes in the data do not mix too much.

Robust estimators of the covariance matrix are estimators which are resistant towards out-
lying measurements. The EMAF algorithm is used to factorize and preprocess data, it is
highly likely that the data contains a large proportion of noisy measurements better. Those
measurements will, if not handled correctly, skew the estimated covariance matrix. A robust
estimator handles these noisy measurements. The performance of these robust estimators is
often measured by a metric called the breakdown point. The breakdown point is the signal-to-
noise ratio of the data the estimator can handle without loosing performance. An estimator
might have a breakdown point of 10%, meaning that it can handle data where up to 10% of
the measurements are noisy or outliers.
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Since Storvik published his paper, a new high breakdown, affine equivariant covariance esti-
mator has been introduced. The algorithm in question is the Minimum Covariance Determi-
nant (MCD) [68, 69]. As discussed in the previous section, the covariance estimator needs to
be affine equivariant for MAF, otherwise MAF will not be invariant to linear transformations.
Furthermore, since MAF operates by transforming the data linearly, if the covariance esti-
mator was not affine equivariant the transformed data would not have the same covariance
estimate as the original data. This is discussed in [65].

MCD is considered a good candidate covariance estimator to use in EMAF, first of all because
it is an affine equivariant covariance estimator. Secondly, MCD has the highest possible
breakdown point for affine equivariant estimators. Its breakdown point is

⌊
n−p+2

2

⌋
, where

b·c is the floor function, when estimating the covariance of a matrix with p variables and
n observations [68]. Thirdly, the MCD has been implemented using an algorithm which
is considered faster than comparable algorithms [70]. When concluding about the robust
covariance estimation, Storvik mentions that the robust covariance estimators he tried were
all computationally expensive. A downside to using MCD is that it is recommended to have
a ratio of n

p < 5 between observations and variables [68]. It has also been pointed out that
MCD seems to have poor performance in high dimensions [65]. That problem has been
adressed with a version of MCD which is designed specifically for high dimensions [71], but
that estimator is not affine equivariant, hence not suitable for EMAF.

For some applications the high dimensional performance might be a limit to keep in mind,
although for IMS datasets are often peak picked before any processing which in some cases
might keep the datasets within reasonable limits for application of MCD. For those reasons,
robust estimation of the covariance matrix will be kept optional in the implementation of
EMAF. In the case of the IMS-RBDS dataset for example, the MCD estimation is applicable
since we end up with a ratio of about 27 observations per variable. Although if the dataset
is analysed before peak picking, this ratio is down to about 3 obersations per variable, which
is not enough for the MCD. For this reason, it is still considered impractical to apply robust
estimation of the covariance matrix to IMS data in general, although it is a promising future
step. On the other hand, for datasets that generally contain a low number of variables com-
pared to obersevations, for example RBG images, this method is considered a good addition
to the EMAF algorithm.

In Figure 3-2, the resulting factors are shown for when EMAF is carried out on the Imaging
Mass Spectrometry - Rat Brain Dataset (IMS-RBDS) dataset in a robust setting using a unit
circle ROI. The resulting factors seem very similar to the equivalent non-robust factors, seen
in Figure 5-23. The factors are so similar that comparing them visually is not useful. In order
to assess the increase in quality, an artificial dataset will be needed.

3-7 Properties of EMAF

In this section an overview of the properties of EMAF the extended version of MAF, is given.
This is mainly done to underline that the attractive traits of MAF, such as invariance towars
linear transformations, are still present in EMAF.

It has previously been shown that the standard MAF algorithm is invariant to linear transfor-
mations. This is an important feature, as preprocessing steps like corrections for instrument
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Figure 3-2: EMAF robust unit circle factors 1 - 10. Evaluating the quality of these factors is not
practical through visual inspection, since these factors are very similar to the EMAF UC factors.

gain on different bands would otherwise alter the resulting factors. To show that EMAF is
also invariant of linear transformations, EMAF is carried out on a transformed dataset

Y = ZA, (3-55)

where Z ∈ Rn×p is the dataset before transformation and A ∈ Rp×p is any non-singular
transformation matrix. Calculating the covariance matrix and variogram for this transformed
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dataset gives

Cov [Y(x),Y(x)] = Cov [Z(x)A,Z(x)A] = ATC(0)A, (3-56)
Cov [Y(x + h)−Y(x),Y(x + h)−Y(x)] = Cov [Z(x + h)A− Z(x)A,Z(x + h)A− Z(x)A]

(3-57)
= ATγ(h)A. (3-58)

If this is applied to the eigenvalue problem for the rim implementation of EMAF, that gives

1
2π

2π∑
θ=0

ATγ(h)A∆θvi = λiATC(0)Avi (3-59)

1
2π

2π∑
θ=0

γ(h)∆θAvi = λiC(0)Avi, (3-60)

where vi ∈ Rp×1 are the eigenvectors for the transformed dataset. This works since A is
invariant of h and can therefore be taken outside of the sum. Defining wi = Avi, gives

1
2π

2π∑
θ=0

γ(h)∆θAvi = λiC(0)Avi (3-61)

1
2π

2π∑
θ=0

γ(h)∆θwi = λiC(0)wi. (3-62)

This is the exact same result as for the non-transformed data, which means that the factors
remain the same. The same result applies to the disc implementation of EMAF.

Another feature of MAF, shown for example in [58], is that the MAF factors are invariant of
the choice of shift parameter when there are only two or fewer isotropic structures present in
the data being factorized. The same if true for EMAF, this is shown in the A-5 Section of
the Appendix. This result applies both to the disc- and rim implementation of EMAF.

In addition to these features, EMAF is fully unsupervised, in the sense that no prior knowl-
edge is required to run the algorithm. It is particularly worth emphasizing that the EMAF
factors are not only calculated from a single shift parameter, but from an average of all shift
parameters with the same length. This is a similar idea as when the experimental variogram is
calculated, as demonstrated in Section 2-2-3. In the EMAF setting this gives a more realistic
value to the factors instead of including a single shift.
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Chapter 4

Experiments

In order to motivate and evaluate the extended version of Maximum Autocorrelation Factor-
ization (MAF) presented in Chapter 3, a set of experiments need to be conducted and for
that, datasets are needed. In some cases, artificial datasets exhitibing certain features have
to be constructed. In other cases, real-world datasets will be used. This chapter starts out by
giving an overview of the experiments conducted. Furthermore, we motivate why said exper-
iments are carried out and what the expected result from each of them is. The datasets used
throughout this thesis will be described, as well as how the artificial datasets are constructed,
where the real-world dataset comes from, and what the datasets will be used for. A tabular
overview of the datsets can be found in Table 4-1.

Table 4-1: An overview of the datasets used in this thesis.

Name Description Chapter

ArtDirDS Artificially created dataset with different sized spatial
artifacts oriented in various directions.

4-1-2

ArtLenDS Artificially created dataset with spatial artifacts that
have different sized circles. That is spatial artifacts
that have the same length in all directions.

4-1-3

IMS-RBDS A real-world Imaging Mass Spectrometry (IMS)
dataset obtained from a coronal rat brain section as
part of a study on Parkinson’s disease [4].

4-1-4

The goal is to motivate and evaluate the alterations made to MAF. In order to do so, three
experiments will be carried out using the same dataset, but different factorization methods.
Each experiment is given a name, which references the method in question. A tabular overview
of these experiments can be found in Table 4-2. For example, an experiment analysing if MAF
is dependent on the direction of the shift parameter would be called DirDep - MAF.
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Table 4-2: An overview of the experiments conducted in this thesis.

Name Description Dataset

DirDep - [method] Analyze whether [Method] factors are de-
pendent on the spatial direction of the
shift parameter.

ArtDirDS

LenDep - [method] Analyze whether [Method] factors are de-
pendent on the spatial length of the shift
parameter.

ArtLenDS

MEval - [method] Evaluation of the performance of the var-
ious alterations proposed.

IMS-RBDS

To motivate the alterations made to the MAF algorithm, the DirDep and LenDep experiments
are carried out. With the DirDep - [method] experiment a certain factorization method
is applied to the ArtDirDS dataset, passing as arguments shift parameters with varying
direction. This dataset has spatial artifacts which have different lengths in different directions.
If the method in question is dependent on the direction of the shift parameter, it will probably
promote spatial artifacts in the dataset of a certain direction. If the method does not return
the same factors, for the different input directions, it is an indication that the method in
question is dependent on the direction of the shift parameter.

The LenDep - [method] experiment is carried out in order to analyze if a particular method is
dependent on the physical length of the shift parameter, by applying the same method with
shift parameters of different lengths as arguments. This is done on the ArtLenDS dataset that
consists of spatial artifacts with different lengths, independent of direction. If the method in
question is dependent on the length of the shift parameter, it will return different factors for
different shifts for different input lengths.

The MEval experiment is carried out to compare the different alterations made to the MAF
algorithm. More specifically, comparing the rim- and disc implementations with the three
different distance determination methods listed in Table 3-1. For this experiment, all versions
of the Extended Maximum Autocorrelation Factorization (EMAF) algorithm are applied, as
well as applying Principal Component Analysis (PCA) and MAF for comparison. All methods
will be carried out on the IMS-RBDS dataset. Spatial autocorrelation and other metrics will
be used to evaluate and analyze the resulting factors. The metrics used will be discussed in
detail in Section 5-3.

4-1 Datasets

4-1-1 Construction of artificial datasets

In the following section a number of experiments will be carried out on artificial datasets. To
construct artificial multivariate images, a set of spatial distributions and spectral distributions
(or spectra) are generated. Being an artificial dataset, neither of the distributions can be tied
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to any specific physical meaning. However, to give some idea about the function of each of
these distributions, the spatial distribution corresponds to ion images in the case of IMS and
the spectra correspond to mass-over-charge spectra in IMS. In the following section, when
the datasets are introduced, these distributions will be shown.

To construct the dataset, the spatial and spectral distributions are multiplied together, which
assigns spectral intensity to the spatial distributions. Each peak on the spectral distribution
will indicate how strong or intense the spatial distribution is at the spectral location. To
be able to multiply the two distributions together, the spatial distributions first need to be
vectorized, that is reshaped from being an nx×ny matrix to being an nx ·ny×1 = n×1 vector.
So the vectorized, n× 1 spatial distribution and the 1× p spectral distribution are multiplied
together forming an n × p matrix. The set of all these n × p matrices are then all added
up, resulting in the final dataset. This procedure is shown in Figure 4-1. When carrying out
factorization, this procedure is essentially reversed using the constraints and specific goals of
the factorization algorithm.
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Figure 4-1: An illustration of the procedure of generating artificial datasets. In this example,
the dataset Z ∈ Rn×p is constructed from S different spatial and spectral distributions, such that
Z =

∑S
s=1 Zs, where Zs ∈ Rn×p for all s ∈ [1, 2, . . . , S]. The spatial and spectral distributions

may be constructed to suit the experiment. In this case the procedure is illustrated with randomly
generated spatial and spectral distributions. The vectorized or flattened spatial distributions will
form n× 1 vectors and the spectral distribution form 1× p vectors, which are multiplied together
forming the n × p matrices. Note that s in this case is an index and not a power. The vec(·)
operator flattens an nx × ny matrix into an (nx · ny)× 1 matrix.
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4-1-2 The ArtDirDS Dataset

The artificial dataset used to examine whether a certain method is dependent on the direction
of the shift parameter is shown in Figure 4-2. This dataset is refered to as ArtDirDS. The
dataset is made up of five different spatial distributions, each with a shape oriented in a
certain direction. That enables us to see if a method with a given shift parameter promotes
spatial artifacts oriented in a certain direction over any other. The spectral distributions
used are simply unit impulses at different spectral locations. That means that the factors
are spectrally separated. The factors are constructed of a unit vector loading and score,
containing a shape which is mostly oriented in a certain direction.
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Figure 4-2: An unmixed, artificial dataset used to examine the dependence of MAF factors to
the shift parameter direction. The dataset is constructed of five factors, each a multiple of a unit
vector loading and a score containing a shape that is oriented mostly in a certain direction.
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4-1-3 The ArtLenDS Dataset

In order to examine how the shift parameter length affects a given method, another artificial
dataset introduced, shown in Figure 4-3. The spatial distributions used to construct this
dataset are circles of different diameter. Using circles ensures that the length of the shapes
is independent of which direction the images are shifted in. This decreases the effect of the
shift parameter length on the results. For the spectral distributions, unit vectors at separated
spectral locations are used. Each factor is constructed from a unit vector loading and a score
matrix with shapes of different sizes.
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Figure 4-3: An unmixed, artificial dataset used to examine the dependence of MAF factors to
the shift parameter length. The dataset is constructed of three factors, each a multiple of a unit
vector loading and a score containing a shape that will result in varying variogram ranges.
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4-1-4 The IMS-RBDS Dataset

The real-world dataset used in this thesis describes a section of a rat brain where scientists
have simulated Parkinson’s disease by compromising the rat’s dopamine receptors in one
hemisphere of the brain. The other hemisphere of the brain was left untouched as a control.
Note that all in-house animal experiments were performed with approval by the Vanderbilt
Institutional Animal Care and Use Committee. The rat brain was frozen, prepared, and
sectioned coronally into 10µm sections. Each section was then prepared for Matrix-Assisted
Laser Desorption/Ionization (MALDI) measurements and finally measured in a 15T Fourier
Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer with a spatial sampling
resolution of 75µm and a mass resolving power of 50000 m

FWHM at m/z 5000. The molecular
images lie on a m/z-range from 1300 to 24000 with a total of about 21000 pixels. After
measuring, the data was peak picked, resulting in a total of 809 m/z-peaks. This procedure
is described in full detail in [4]. Sample ion images from this dataset are shown in Figure 4-4
and sample mass-over-charge spectra are shown in Figure 4-5.

(a) m/z 5629.0 (b) m/z 5028.5 (c) m/z 2663.2

Figure 4-4: Three random samples of ion images from the rat brain dataset.
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Figure 4-5: Three random samples of mass spectra from the rat brain dataset.
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Chapter 5

Discussions and results

5-1 Dependency on shift parameter direction

5-1-1 MAF

In past literature, it has been pointed out that under certain conditions Maximum Autocor-
relation Factorization (MAF) factors are invariant of the shift parameter h [58, 18]. One of
the goals of this experiment is to explore cases where these conditions are not met, analyzing
if there are potential improvements that could be made to MAF. specifically we are inter-
ested in changes to address the cases where MAF factors are invariant of the shift parameter,
where the variable(s) being factorized do(es) not contain more than two isotropic covariance
structures. The ArtDirDS is designed to test these features of a factorization method, so the
ArtDirDS dataset will be used for this experiment. This means that a variable for exam-
ple can contain two isotropic covariance structures or contain a single anisotropic covariance
structure, which would be equivalent to two isotropic covariance structures. The conditions
for invariance are outlined both in Section 2-3-2 and in [58].

In order to analyze if the conditions where MAF is invariant of the shift parameter are met
or not, the two- and three-dimensional representations of each variable’s variogram anal-
ysed. The two-dimensional representation is shown in Figure 5-1 and the three-dimensional
representations are shown in Figure 5-2.

In Figure 5-1 the variogram is shown as a function of shift distance in pixels. The shift
distance in pixels is the same as looking at the length of the shift parameter, i.e. ‖h‖. In
Figure 5-2 the three-dimensional variogram is shown as a function of the shift parameter
h = (r, θ). In this case, the shift parameter is described in polar coordinates, but the shift
parameter is still limited to values h = (x, y) with x, y ∈ Z.

Note that in Figure 5-2 all of the variables are at least anisotropic, i.e. the variograms
change with both the direction and length of the shift parameter. In addition to all the
variograms being anisotropic, they also all have a nugget-effect. That is, the value of the
variogram is not estimated to be zero at a shift distance of zero. The nugget-effect is a
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separate covariance structure [72], so in this case there are at least two covariance structures,
one of which is anisotropic. This means that the resulting MAF factors will vary with different
shift parameters.

To gain some intuition on how MAF works under different angles, the ArtDirDS dataset
is factorized using MAF with different shift parameters as input and the resulting factors
interpreted. In order to limit the effect of the length of the shift parameter, only shifts lying
close to the unit circle will be used, with the limitation that the shift coordinates are limited
to integers. The three shift parameters used in this experiment are: h = [0, 1], h = [1, 0] and
h = [1, 1].
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Figure 5-1: The isotropic version of the variograms of all the five factors in the Artificial,
Directionally Dependent Dataset (ArtDirDS) dataset. In these 2D variogram plots, the value is
averaged over all directions of shift vectors of a certain length. There is a high similarity between
this 2D plot and the 3D plots in 5-2. Note that factors 1 and 2 share variograms as do factors 3
and 4.

Figure 5-3 shows that the algorithm promotes horizontal lines and demotes vertical lines. This
is because a copy of the dataset is shifted by h = [0, 1] and the difference between this shifted
dataset and the original, non-shifted dataset determines the order of the factors. Looking at
the cases of the horizontal and vertical lines, if the horizontal line is shifted by h = [0, 1],
that is one pixel vertically. That will result in a difference of a single pixel times the length
of the line. The vertical line on the other hand will result in a difference of a single pixel
times the line width. Since the line length is larger than the line width, the horizontal line
gets promoted.

The opposite case is seen with the shift parameter h = [1, 0], as shown in Figure 5-4. There
the vertical line gets promoted and the horizontal line gets demoted. The same reasoning
still applies, the shift parameter has been rotated by π/2 rad and therefore also the results.
It is worth noting that scores 3 and 4 remain similar, so the algorithm has found some factors
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Figure 5-2: The variogram of each individual variable of the ArtDirDS dataset. Notice that each
factor’s variogram changes both with distance and angle of the shift parameter, that is all the
factors are anisotropic.

which result in relatively high autocorrelation for both h = [0, 1] and h = [1, 0].

In the last case MAF is carried out with the shift parameter h = [1, 1], the resulting factors
are shown in Figure 5-5. This shift does not lie exactly on the unit circle, but the effects
of the shift parameters length should not affect the results. This is concluded since the
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vertical ordering of the variograms, in Figure 5-1, does not change between a shift distance
of 1 and

√
2, which are the shift distances used in this experiment. For this shift parameter,

the algorithm seems to promote spatial artifacts that are oriented diagonally. Note that the
horizontal and vertical lines do not appear on their own anymore, but only in combination.

So in all the cases examined so far the resulting factors are dependent on the direction of the
shift parameter. The variograms that are shown in Figure 5-2, could have been used to deduce
which variables would rank highly for each of the shift parameters. The main takeaway from
this experiment is that the MAF factors do depend on the direction of the shift parameter
when more than two covariance structures are present.

When MAF was first introduced by P. Switzer and A. A. Green in [18], they proposed using
the shift parameter h = [1, 1]. However, as shown in Figure 5-5, that shift parameter on its
own will promote scores with a certain orientation. When dealing with natural phenomena
there might not be any reason to promote autocorrelation in one direction rather than any
other. In the general use case the first MAF factors should contain spatially large shapes
with high loading values, regardless of the directional orientation of the shapes of the score.
This is one reason the shift parameter needs to be determined differently.
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Figure 5-3: The resulting factors and loadings when MAF is applied to the ArtDirDS dataset
with the shift parameter h = [0, 1].
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Figure 5-4: The resulting factors and loadings when MAF is applied to the ArtDirDS dataset
with the shift parameter h = [1, 0].
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Figure 5-5: The resulting factors and loadings when MAF is applied to the ArtDirDS dataset
with the shift parameter h = [1, 1].
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5-1-2 EMAF

To enable a comparison of Extended Maximum Autocorrelation Factorization (EMAF) and
MAF, the DirDep experiment is also carried out using EMAF. This is also done to ensure that
EMAF does not favour spatial artifacts oriented in a certain direction. That is, EMAF should
return factor which are not oriented in any particular direction, at least not on this dataset
as the spatial distributions pointing in opposite directions have the same size or surface area.
To make the comparison fair, the EMAF UC method is used, since only shifts lying on the
unit circle were used when conducting the experiment with MAF. The resulting factors are
shown in Figure 5-6.

Looking at the EMAF factors in Figure 5-6, we notice that the algorithm does not seem to
favour spatial distributions oriented in any direction. In all the factors the spatial artifacts
that are oriented in a certain direction (e.g. the horizontal and vertical lines) always appear
in pairs, meaning that the EMAF algorithm is not favouring one direction over another.
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Figure 5-6: The resulting factors and loadings when EMAF is applied to the ArtDirDS dataset.
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5-2 Dependency on shift parameter length

5-2-1 MAF

We start by analyzing if the dataset meets the criteria where MAF is invariant of the shift
parameter. In order to do that, the variogram of the ArtLenDS dataset is analyzed. Figure
5-7 shows the two-dimensional representation of the variogram of the three factors of the
dataset. The variogram is shown as a function of shift distance in pixels. The shift distance
in pixels is the same as looking at the length of the shift parameter, i.e. ‖h‖. Notice how the
different ranges of the factors correlate with the shapes seen in the respective scores of the
factors. Note for example, the peak on the variogram for factor 2 at a shift value of length
20, the larger circles in the spatial distribution of factor 2 have a radius of 20.

Since the variograms show a large spread, the three-dimensional representation of the vari-
ogram for each variable should be analyzed, those variograms are shown in Figure 5-8. The
three-dimensional variogram is shown as a function of the shift parameter h = (r, θ). Note
that in this case the shift parameter is described in polar coordinates, but the shift parameter
is still limited to values h = (x, y) with x, y ∈ Z. Looking at the three-dimensional variograms,
we notice that the variables are indeed anisotropic. All the variograms exhibit somewhat of
a nugget-effect and a nugget-effect is considered to be a separate covariance structure [72].
That means each variable has at least two covariance structures, one of which is anisotropic,
so the resulting MAF factors should change with different shift parameters.

In order to analyze the effect of the shift parameter length on MAF factors, MAF will now
be carried out with three different shift parameters, oriented in the same direction but with
different lengths. In this case, the lengths chosen were ‖h‖ ∈ {15, 26, 40}. These lengths were
chosen with the variogram in mind. The behavior of the factors will be analysed in relation
to the variogram. So for that reason, the three shift lengths are chosen at a location where
the variograms are separated, but in a different order compared to the other shift lengths.
The shift parameter lengths are shown as vertical lines on the variogram in Figure 5-9.

The resulting factors for the shift ‖h‖ = 15 are shown in Figure 5-10, the factors for the shift
‖h‖ = 26 in Figure 5-11, and the factors the shift ‖h‖ = 40 in Figure 5-12. One thing that
we do note is that the order of the resulting factors seems to change according to the order
of the variogram. No two shifts return the same order of factors, although the factors seem
relatively similar with regard to the spatial distribution.
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Figure 5-7: Variogram of the factors of the Artificial, Length Dependent Dataset (ArtLenDS)
dataset. The range of the three factors changes with the length of the shift parameter. It is
worth mentioning that these factor are also anisotropic, but they were not used for the directional
dependence experiment since it is harder to intuitively argue why one factor is dominant rather
than another for a certain direction of shift.
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Figure 5-8: The variogram of each individual variable of the ArtLenDS dataset. Notice how
each factors variogram changes both with length and angle of the shift parameter, that is all the
factors are anisotropic.
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Figure 5-9: Variogram of the factors of the ArtLenDS dataset, with vertical lines indicating the
shifts used in the Length Dependence (LenDep) experiment. These shifts are chosen since there
is a change in magnitude of the variograms between the shifts. For example, in the first shift
at ‖h‖ = 15, variable 1 has a higher value compared to the other two. At the shift ‖h‖ = 40,
variable 3 has a higher value compared to the other two.
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Figure 5-10: The resulting factors and loadings when MAF is applied to the ArtLenDS dataset
with a shift parameter h = [15, 0].
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Figure 5-11: The resulting factors and loadings when MAF is applied to the ArtLenDS dataset
with a shift parameter h = [26, 0].
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Figure 5-12: The resulting factors and loadings when MAF is applied to the ArtLenDS dataset
with a shift parameter h = [40, 0].
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5-2-2 EMAF

In order to analyze and assess the alterations made to the MAF algorithm, EMAF is also
applied to the ArtLenDS dataset. Although the EMAF algorithm does not specifically offer
for the radius of the Region of Interest (ROI) to be set, the experiment was carried out using
the same distances as in the LenDep MAF experiment. This is done to make the comparison
more fair. The shift distances used, along with the variogram of the dataset can be seen in
Figure 5-9.

The resulting EMAF factors for a shift distance of 15 can be seen in Figure 5-13, the factors
for a shift distance of 26 are shown in Figure 5-14, and the factor for a shift distance of 40
are shown in Figure 5-15. It is worth noting that, although the factors do change between
shift distances, there are some similarities. Comparing the order of the factors to the order
each variable appears on the variogram, the changes in the order of the EMAF factors seem
relatively reluctant compared to the variogram.
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Figure 5-13: Resulting factors when EMAF is applied to the ArtLenDS dataset, using a ROI
with radius 15.
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Figure 5-14: Resulting factors when EMAF is applied to the ArtLenDS dataset, using a ROI
with radius 26.
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Figure 5-15: Resulting factors when EMAF is applied to the ArtLenDS dataset, using a ROI
with radius 40.
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5-3 Method evaluation

As discussed in Chapter 3, there are a few possible variations of EMAF that need to compared.
These methods are the rim- and disc implementations of EMAF and the three different
methods of picking the radius of the ROI, which are described in Table 3-1. The goal of this
section is to compare and evaluate the performance of these different methods.

All combinations of the EMAF configuration are tried out in this chapter. That is, for the
rim implementation of EMAF the Maximum Autocorrelation (Max AC), Minimum Autocor-
relation (Min AC), and Unit Circle (UC) radius estimation methods are used and for the disc
implementation of EMAF the Max AC, Min AC, and UC radius estimation methods are also
used. It is noted that there is no difference between the UC radius estimation method for the
rim- and disc implementation of EMAF, so these methods will simply be referred to as EMAF
UC. In order to evaluate the performance of EMAF the resulting factors are compared to the
results of Principal Component Analysis (PCA) and MAF.

Comparing factorization methods can be hard, since each method has different goals and
objectives. Therefore, finding a single performance metric and comparing the methods using
only that would be unfair. For example, if variance accounted for is used to compare the
results, PCA would turn out to be the best choice of algorithm. With that in mind, this
experiment should illustrate what might be gained from applying EMAF instead of any com-
parable factorization method. The goal is also to evaluate if there are any performance gains
in particular from using the disc implementation of EMAF compared to the rim implemen-
tation of EMAF for example. The disc implementation is more computationally expensive,
since it takes more variogram matrices into account. The evaluation will both be based on
performance metrics as well as visual inspection of the resulting factors.

First, the different algorithms are compared using three performance metrics, namely spatial
autocorrelation, Spearman correlation, and variance accounted for. In the following subsec-
tions, the first few component scores and loadings of each algorithm are shown and analyzed
briefly.

The EMAF algorithm estimated the shift distance with the maximum spatial autocorrelation
to be at a distance of 1, and the minimum spatial autocorrelation to be at a distance of
6. The maximum spatial autocorrelation distance does not come as a surpise, as spatial
autocorrelation generally decreases with distance. The distance at which the minimum spatial
autocorrelation appears is suprising however, one would have expected that to decrease further
with longer distance.

Figure 5-16 shows the estimated autocorrelation for the first 50 factors, across a range of
shift distances for each factorization algorithm. What we notice is that all algorithms show
a similar structure in the spatial autocorrelation. It seems that MAF and EMAF show a
slightly higher concentration of high spatial autocorrelation for the first few factors. Notice
that EMAF Min AC appears to show slightly worse performance than the other methods it
is being compared to.

Figure 5-17 shows the Spearman correlation of the spatial autocorrelation of each factor across
a distance for each algorithm. The Spearman correlation is a measure of whether the spatial
autocorrelation of the factors decreases. So a Spearman correlation of 1 means that the spatial
autocorrelation is decreasing across the factors, i.e. if factor 1 has a spatial autocorrelation
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Figure 5-16: Comparison of estimated spatial autocorrelation.

of I1, then factor two has a spatial autocorrelation of I2 ≤ I1 and so on. If factors with
high spatial autocorrelation appear in higher number factors that will show in the Spearman
correlation. The higher the Spearman correlation, the better, since factors with high spatial
autocorrelation should appear in the first factors, i.e. the low number factors.

Looking at Figure 5-17, notice that MAF already has about 67% higher Spearman correlation
at shorter shift distances and about 27% higher Spearman correlation at longer shift distances.
This confirms that MAF is actually returning factors with decreasing spatial autocorrelation
and behaving as intended. Comparing MAF to EMAF, notice that the Spearman correlation
is very similar for both algorithms, apart from the Min AC radius determination method.
Another thing to note is the jump in Spearman correlation in the case of MAF at short
distance, which is not present in most of the EMAF algorithms.

Figure 5-18 shows the variance accounted for, for the different algorithms. That is, the
factors are ordered according to how much of the total variance of the dataset they explain,
showing how much each factor contributes to that variance. PCA seems to have far better
performance in this case than the other two algorithms. First of all, neither the MAF nor
EMAF factors are in any sort of order, contrary to the PCA factors. Secondly, the variance
accounted for by either MAF or EMAF only reaches about 10% with 10 factors combined,
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Figure 5-17: Comparison of Spearman auto-correlation.

compared to around 70% for PCA. This is to be expected, since the goal of PCA is to
maximize the variance accounted for. It is questionable, however, if variance accounted for is
a good metric to be looking at when using factorization methods for dimensionality reduction
purposes. Noisy measurements will often exhibit high variance, so by including these noisy
measurements in the reduced dimensional representation of the data, the variance accounted
for will increase.
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Figure 5-18: Comparison of variance accounted for.
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5-3-1 PCA

Figure 5-19 shows the first 10 PCA factors and Figure 5-20 shows factors 11 to 20. The
scores look clear and mostly free from noise, although some single pixel artifacts are already
visible in the first score. At around score 8, noisy artifacts start to appear more dominantly.
From score 8 to around 15 the noise mostly consists of speckles and after score 16, there is
barely any resemblence with the original rat brain anymore. The last few scores are highly
contaminated with single pixel artifacts and striped noise patterns.

The high contamination of noise seen in the PCA scores is explained by the fact that PCA
generates and orders the factors according to variance. The noise patterns are likely high
variance noise patterns, since they are promoted by the PCA algorithm. Score 18 is an
example of this behaviour.

Examining the loadings, the first thing to notice is that the loadings are negative, which
is a problem all the methods being compared in this experiment have. Since the original
measurements are ion counts, all the loadings would preferably be non-negative. There are
some distinct peaks and bundles of peaks in the first few loadings. As higher number loadings
are examined, they seem to become more and more contaminated with noise, containing
mostly single peaks, for example in loadings 16, 18, and 19. These single peaks are an
indication of a high concentration of a certain mass-over-charge, i.e. a strong signal.
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Figure 5-19: PCA factors 1 - 10.
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Figure 5-20: PCA factors 11 - 20.
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5-3-2 MAF

Figure 5-21 shows the first 10 MAF factors and in Figure 5-22 factors 11 to 20 are shown.
The first scores seem clear and free from single pixel artifacts. The single pixel artifacts do
not start appearing until around factor 10. Each score seems to highlight a particular part of
the sample, which was not obvious when looking at the PCA factors. Another thing to notice
is that only the last score is contaminated by speckled spatial noise. The striped patterned
noise seen in the PCA scores is not visible in the first 20 MAF factors. Note how blurred the
MAF factors seem compared to the PCA factors. This is to be expected due to the fact that
a shifted version of the dataset is used to calculate the MAF factors.

Looking at the loadings of the MAF factors, they seem comparable to the ones in the PCA
case. One difference is that the values on the loadings are higher in many cases for the MAF
loadings. This might be an indication of a higher signal to noise ratio but could also be
a matter of scaling. This would need to be tested on a dataset where the ground truth is
available. In the case of MAF, the first two loadings reach close to 15 · 104 while the PCA
loadings are only around 4 · 104.
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Figure 5-21: MAF factors 1 - 10.
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Figure 5-22: MAF factors 11 - 20.
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5-3-3 EMAF

EMAF - Unit circle

Figure 5-23 shows the first 10 EMAF UC factors and Figure 5-24 shows factors 11 to 20.
Similar to the MAF scores, the EMAF UC scores seem clear and highlight certain areas of
the sample. Noisy structures in the scores do no appear until around factor number 10.
Whether the speckled noise is more or less than in the MAF case is hard to state, that would
have to quantified further in order to compare it. These EMAF factors are, like the MAF
factors, slightly blurred compared to the PCA factors. This is again due to the shifted nature
of the matrix used to calculate the factors.

The loadings show some high peaks. Loading 2 for example goes up to 20 · 104 and seems
to contain low noise levels. This might be an indication of a higher signal to noise ratio, but
could also be a matter of scaling. This would need to be tested on a dataset where the ground
truth is available. However, in other aspects, the loadings seem similar to the ones seen in
the MAF results.
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Figure 5-23: EMAF UC factors 1 - 10.
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Figure 5-24: EMAF UC factors 11 - 20.
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EMAF - Rim

Maximum estimated spatial autocorrelation region of interest
Figure 5-25 shows the first 10 EMAF Rim Max AC factors and Figure 5-26 shows factors
11-20. There is no difference to be seen between the EMAF UC and EMAF Max AC factors;
this is because the distance used in the EMAF Max AC turned out to be 1, so in fact they
are the same. This is also seen by comparing the loadings and scores of the two resulting
factors. They are indentical.
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Figure 5-25: EMAF Rim Max AC rim factors 1 - 10.
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Figure 5-26: EMAF Rim Max AC rim factors 11 - 20.
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Minimum estimated spatial autocorrelation region of interest
Figure 5-27 shows the first 10 EMAF Rim Min AC factors and Figure 5-28 shows factors
11-20. Observing the scores of these factors, they seem to contain more noise than the other
EMAF scores that have been examined so far. The striped noise patterns, observed in the
scores of the PCA patterns, start appearing at around factor 15. The loadings seem similar
to other EMAF loadings.
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Figure 5-27: EMAF Rim Min AC rim factors 1 - 10.
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Figure 5-28: EMAF Rim Min AC rim factors 11 - 20.
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EMAF - Disc

Maximum estimated spatial autocorrelation region of interest
Figure 5-29 shows the first 10 EMAF Disc Max AC factors and Figure 5-30 shows factors
11-20. There is no difference to be seen between the EMAF UC and EMAF Max AC factors;
this is because the distance used in the EMAF Max AC turned out to be 1, so in fact they
are the same. This is also seen by comparing the loadings and scores of the two resulting
factors. They are indentical.
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Figure 5-29: EMAF Disc Max AC disc factors 1 - 10.
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Figure 5-30: EMAF Disc Max AC disc factors 11 - 20.
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Minimum estimated spatial autocorrelation region of interest
Figure 5-27 shows the first 10 EMAF Disc Max AC factors and Figure 5-28 shows factors
11-20. What is most interesting to compare here is the difference between the Min AC rim-
and disc implementations. Unlike the rim implementation, in this case there are no longer any
striped noise patterns present in the scores, albeit the scores are still relatively contaminated
with noise and unclear. Looking at the loadings, they seem similar to other loadings that
have been examined so far.
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Figure 5-31: EMAF Disc Min AC disc factors 1 - 10.

Daníel Freyr Hjartarson Master of Science Thesis



5-3 Method evaluation 97

-0.6

-0.3

0.0

0.3

(a) Factor 11

-1

-0.5

0

0.5

1

1.5

Io
n
 c

o
u
n
t

10
4

200 400 600 800

Ion mass-over-charge

(b) Loading 11

-0.5

-0.1

0.3

0.7

(c) Factor 12

-2

0

2

4

Io
n

 c
o
u

n
t

10
4

200 400 600 800

Ion mass-over-charge

(d) Loading 12

-0.3

-0.0

0.3

0.6

(e) Factor 13

-1

0

1

2

Io
n
 c

o
u
n
t

10
4

200 400 600 800

Ion mass-over-charge

(f) Loading 13

-0.4

-0.1

0.1

0.4

(g) Factor 14

-6000

-4000

-2000

0

2000

4000

6000

Io
n
 c

o
u
n
t

200 400 600 800

Ion mass-over-charge

(h) Loading 14

-0.4

-0.2

0.1

0.3

(i) Factor 15

-1

-0.5

0

0.5

1

Io
n
 c

o
u
n
t

10
4

200 400 600 800

Ion mass-over-charge

(j) Loading 15

-0.6

-0.3

0.1

0.4

(k) Factor 16

-1

-0.5

0

0.5

1

Io
n
 c

o
u
n
t

10
4

200 400 600 800

Ion mass-over-charge

(l) Loading 16

-0.4

-0.2

0.1

0.3

(m) Factor 17

-10000

-5000

0

5000

Io
n
 c

o
u
n
t

200 400 600 800

Ion mass-over-charge

(n) Loading 17

-0.4

-0.1

0.2

0.5

(o) Factor 18

-8000

-6000

-4000

-2000

0

2000

4000

Io
n
 c

o
u
n
t

200 400 600 800

Ion mass-over-charge

(p) Loading 18

-0.5

-0.1

0.2

0.5

(q) Factor 19

-2

-1

0

1

Io
n
 c

o
u
n
t

10
4

200 400 600 800

Ion mass-over-charge

(r) Loading 19

-0.3

0.1

0.6

1

(s) Factor 20

-10000

-5000

0

5000

Io
n
 c

o
u
n
t

200 400 600 800

Ion mass-over-charge

(t) Loading 20

Figure 5-32: EMAF Disc Min AC disc factors 11 - 20.
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Chapter 6

Case study: An application to Imaging
Mass Spectrometry (IMS) data

To illustrate and show how useful the resulting Extended Maximum Autocorrelation Factor-
ization (EMAF) factors potentially are for a user, a case study is carried out. To do so, the
IMS-RBDS dataset is used, this is the same dataset introduced in Chapter 4-1-4. In this case
study, we focus on the dataset with less stringent peak picking, which means that the dataset
contains 6638 m/z peaks instead of the 809 meantioned before.

The dataset is a 10µm thick coronal section of a rat brain, in which Parkinson’s disease
has been simulated by compromising the dopamine receptors in one of the halves of the
brain. This section was then prepared for MALDI measurements and finally measured in a
15T Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer with a spatial
sampling resolution of 75µm and a mass resolving power of 50000 m

FWHM at m/z 5000. The
molecular images lie on a m/z-range from 1300 to 24000 with a total of about 21000 pixels.
The preparation of the section is described in more detail in [4].

In a practical setting, factorization methods are often used for dimensionality reduction or
noise removal. In this case study, three different factorization methods are used to carry
out noise removal on the IMS data and the results are compared. The algorithms used are
Principal Component Analysis (PCA), Maximum Autocorrelation Factorization (MAF) with
two different shift parameters, and EMAF. In all cases the same procedure is applied:

1. The dataset is transformed using the eigenvectors that each factorization method pro-
duces.

2. A set number of components or factors of this transformed dataset is chosen.

3. The reduced set of components or factors are transformed back into the original (mea-
surement) space.

4. The resulting, cleaned dataset is normalized to have values on the range [0, 1].
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In the second step, a number of components or factors is chosen. How many factors to choose
remains an open question. Generally, when doing dimensionality reduction with PCA, a
certain percentage of the variance accounted for is chosen and that determines the number of
factors used. That way the reduced dataset explains a certain percentage, say 95% or 99%, of
the original variance. A more detailed discussion on the topic of how many factors to select
is found in [9]. In this case study, the first 30 components are used, which results in around
75% of the variance accounted for. This is done since IMS data is particularly noisy and the
first thirty components revealed a seemingly sound result, evaluated visually. The number
of factors is used for all the factorization methods. Unlike for PCA, there are no specific
guidelines for how many factors to choose for MAF.

The goal of this case study is to illustrate the potential complications an analyst faces trying
to remove noise from a dataset. We have already skimped on one of the decisions a user has
to make, that is how to choose the number of components. In the case of MAF the user
would also have to choose a shift parameter. For this reason, two different shifts are applied,
where these shifts are perpendicular to each other. One is the originally proposed diagonal
shift h = [1, 1] and the other is a shift perpendicular to that, or h = [−1, 1]. The original
shift is chosen for historical reasons and the other is chosen to illustrate what effect the shift
parameter choice has on the resulting factors.

EMAF was applied with the Max AC distance estimation method and using the disc imple-
mentation. The estimated distance where the maximum spatial autocorrelation occurs turned
out to be 1. This does not come as a surprise, as spatial autocorrelation generally decreases
with distance.

Since the dataset contains 6638 m/z peaks, it is infeasible to show all ion images in this
thesis. Instead, a few hand picked peaks are shown along with the equivalent peak in each
of the cleaned datasets. These peaks were chosen to illustrate certain points about the
performance of the different factorization methods. One peak shows an example of a highly
noisy measurement.

Figure 6-1 shows that the original data contains a relatively clear measurement, where the
ions seem concentrated in the right hemisphere. The PCA ion image reconstructs the original
image well, the image is clear and shows a difference in concentration between the two hemi-
spheres. The concentration spots also match the original ion image. The ion images cleaned
with other factorization methods all have in common that they are blurred.The EMAF ion
image is less blurred that the MAF images. It is also worth noting that the MAF images are
blurred in the direction of the respective shift parameters used in the algorithm.

Figure 6-2 shows an example of a highly noisy measurement. Note that PCA was not able
to remove the stripe patterned noise from the data. This is likely because this noise has
high variance and is included in the first 30 principal components because of that. The other
methods, however, show a reconstruction of the measurement without the striped pattern,
albeit not a very clear reconstruction. It is questionable where this reconstruction comes
from, this might an explaination for why MAF factors do not correlate well with the original
dataset compared to PCA [73].

Figure 6-3 shows a measurement of a distinct biological pattern, although maybe contami-
nated with noise. The ion image cleaned with PCA seems to be an exact copy of the original
ion image. The PCA ion image appears clear and seems to capture even the spatially sparse
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measurements, which show as speckled patterns. Both the MAF and EMAF ion images have
in common that they are slightly blurry compared to the PCA ion image. It is interesting to
note that the MAF are blurred in the orientation of their respective shifts. It also seems that
the EMAF image is less blurred that the MAF images.

This case study illustrates some of the things an analyst needs to keep in mind when carrying
out noise reduction using these factorization methods. The figures shown in this chapter
illustrate the difference the shift parameter setting makes in a practical setting. Since all the
cleaned data is of decent quality, the number of component or factors included is not likely
to be skewing the results. The visually assessed quality of the MAF cleaned data seems to
be blurred compared to EMAF and PCA. To this day there are no guidelines for scientist on
how to choose this shift parameter, so that is one more thing scientist have to keep in mind,
if they decide to use MAF as a factorization method.

However, these examples clearly demonstrate that although PCA based decomposition of multivariate images is less blurry than EMAF results, it has a non-trivial risk of being seriously skewed by non-biological noise patterns with high variance.

EMAF, on the other hand, is able to avoid such high variance noise and delivers a result set that is enriched in genuine biological variation. In doing so, EMAF outperforms the previous standard MAF implementation available in the literature.
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Figure 6-1: Original and cleaned versions of the ion image of m/z value 1755. The dataset was
cleaned by using 30 components to reconstruct the original dataset. Each image has been scaled
to the range [0, 1]. The ion image cleaned with PCA is clear and resembles the original image
well. The MAF-cleaned ion images are blurry in the direction of the shift used in the algorithm.
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Figure 6-2: Original and cleaned versions of the ion image of m/z value 9979. The dataset was
cleaned by using 30 components to reconstruct the original dataset. Each image has been scaled
to the range [0, 1]. MAF and EMAF cleaned images have managed to reject the striped (and
non-biological) pattern found in the original image, unlike the PCA cleaned image. The MAF
based methods simply seem to approximate a homogeneous tissue pattern, rejecting the dominant
stripe pattern that dominates the PCA results and the original data.
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Figure 6-3: Original and cleaned versions of the ion image of m/z value 9598. The dataset was
cleaned by using 30 components to reconstruct the original dataset. Each image has been scaled
to the range [0, 1]. The MAF cleaned images are blurred in the direction of the shift used. It is
also worth noting that the intensities vary slighly between the MAFs, especially in the lower part of
the images. The PCA images captures sparse, speckled measurements well and results in a clear
image. The EMAF image is slightly blurred, but manages to capture the original measurement
the best.
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Chapter 7

Conclusions

When evaluating the results of the experiments carried out in this thesis, the DirDep and
LenDep experiments demonstrated that Maximum Autocorrelation Factorization (MAF) fac-
tors are affected by the shift parameter, more specifically in the case where more than two
isotropic covariance structures, or an equivalent thereof, are present in the data. In real world
data, there are often multiple isotropic and anisotropic covariance structures in the variables
of a dataset. As an example of this, a variogram of real world data is shown in Figure 7-1. The
variogram in Figure 7-1 would have to be modeled with at least one anisotropic covariance
structure and a nugget-effect structure.

The conclusion that MAF factors will in some cases depend on the shift parameter raises the
question of how this shift parameter should be tuned. The goal in this thesis was to alter the
MAF algorithm in a way that makes the algorithm fully unsupervised, thereby not relying on
any inputs from the user. This was to be done without losing any of the attractive features
of the original MAF algorithm.

The DirDep experiment showed that the resulting MAF factors favor spatial artifacts oriented
in the same direction as the shift parameter or perpendicular to it. This same behavior was
also seen in the case study, in Chapter 6. To mitigate this behavior, more shifts were included
in the calculations of the factors. More specifically an average across a circular Region of
Interest (ROI) was used to calculate the eigenvectors, which should in theory result in an
algorithm which does not favor spatial artifacts that are oriented in one direction over any
other. To make sure this produces expected results, the DirDep experiment was conducted
with Extended Maximum Autocorrelation Factorization (EMAF) as well. The difference
between the MAF and EMAF factors in the DirDep experiment indicated that the EMAF
algorithm is at least radially invariant of the shifts.

Examining the results of the LenDep experiment is not as straight forward as the DirDep
experiment. MAF was applied to the ArtLenDS dataset using different shift parameters with
three different lengths, but the same orientation. The resulting MAF factors were different for
each of the three shift parameters, showing that MAF is dependent on the length of the shift
parameter. This means that the MAF algorithm is reordering and changing which factors are
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Figure 7-1: A real world variogram. This particular variogram would most likely be modeled
with a single anisotropic covariance structure as well as a nugget-effect structure.

mostly signal and which are mostly noise. How to extend MAF and address that dependence
is not as obvious as with the directional dependence.

MAF operates by trying to separate signal from noise, by ordering the resulting factors from
"contains mostly signal" to "contains mostly noise". This ordering is done by observing how
rapidly all the measurements in the dataset vary spatially. MAF compares the autocorrelation
of the dataset at its initial spatial position with the autocorrelation of the dataset shifted by
the shift parameter, this difference in autocorrelation determines where in the signal-to-noise
ranking each factor ends up. The shift parameter length should therefor be set to a distance
where the difference between spatial change of signal and spatial change of noise is the greatest.
Intuitively this difference is greatest where the maximum autocorrelation occurs.

Knowing that spatial autocorrelation generally decreases with distance, it seems logical to use
the smallest shift available for the purpose of MAF. Since the shifts can only be integers, that
would be a unit length shift. This was done in the original version of MAF [18]. Although, this
strategy will give the best results in most cases, in this thesis three strategies of choosing the
shift parameter length were proposed. The performance of these strategies will be discussed
in detail later.

The LenDep experiment was also carried out using the EMAF algorithm and three different
shift lengths. EMAF also changes the order of the factors, similarly to what was seen with
MAF, but EMAF seemed more reluctant to change the factors or the order of the factors.
This is likely because instead of taking the values of the variogram at a single instance like
the MAF algorithm does, the EMAF algorithm looks at the area under the variogram and
generates the factors according to that area. This results in the "smoother" change in factors
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noticed in the LenDep experiment.

These experiments answer two of the research questions put forth in this thesis. The questions
on how the shift parameter length and direction affect the MAF factors. The direction of the
shift parameter will make MAF promote spatial artifacts oriented in that particular direction.
The length of the shift parameter affects the MAF factors by changing their order and alter
the weights assigned to each of the underlying structures, which make up the factors. The
underlying structures are a combination of the covariance structures found in the dataset.

Three different methods of picking a radius of the ROI were proposed in Chapter 3. These
methods were then compared in the MEval experiment, in Chapter 5. One of these methods
was the naive method of choosing a shift lying on the unit circle and the other two were data
driven methods finding the distance at which the minimum and maximum spatial autocor-
relation occur. As was expected, based on these experiments, it is concluded that, although
in most cases the Unit Circle (UC) will probably work well in most cases, the Maximum
Autocorrelation (Max AC) methods covers some additional special cases, where the maximal
spatial autocorrelation does not occur at a distance of 1.

The logic behind using the Max AC method is that generally spatial autocorrelation will
decrease with an increase in shift distance. This means that, naively, a good strategy of
picking a shift distance is using the shortest shift available, which is a shift distance of 1
in this case. Although, in special cases where the maximal spatial autocorrelation, i.e. the
greatest difference in spatial autocorrelation between signal and noise does not occur at a
distance of 1, the Max AC method will pick up on that at relatively low computational
expense. For this reason, the Max AC is used for EMAF instead of the UC radius estimation
strategy.

Quantifying and assessing the quality of factors is hard when working with unsupervised
methods and unlabeled data. In order to do so, an artificial dataset would have to be created
and different types of noise added to it. That way, the ground truth is known. Creating an
artificial dataset like that was considered out of the scope of this thesis. As discussed earlier,
optimally the distance should be set to a value at which the spatial change between the signal
and the noise contained in the dataset is the greatest. From the comparison carried out in
this thesis, between the radius estimation methods, it is concluded that using the Max AC
method is best suited for the EMAF algorithm. But this should preferably be confirmed using
an artificial dataset.

Two different implementations of the EMAF algorithm were derived, one which included all
shift vectors within the ROI in the lag space, the so called disc implementation and another
that only included the shifts lying on the rim of the ROI, the so called rim implementation.
The disc implementation seemed to give slightly higher quality factors, although at an expense
of increased computation time. Since EMAF is a preprocessing method intended to be used on
high dimensional data, this increase in computation time is not thought to be worth the effort
in most practical cases. For this reason, the rim implementation of EMAF is recommended.
It is to be noted that these two methods produce the same results in the case where the radius
of the ROI is 1.

In the case study chapter, the factorization methods of interest were applied to real world data,
EMAF seemed to perform better than MAF when reducing noise in the dataset, judging from
the visual quality of the factors. The MAF-cleaned data seemed to be blurred in the direction
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of the shift parameter used. On the other hand, the EMAF cleaned data was less blurred,
and not directionally. Judging from visual quality, the EMAF cleaned data was competing
with the Principal Component Analysis (PCA)-cleaned data. The PCA cleaned data did
pick up some of the sparse measurements which the EMAF regarded as noise. However, this
performance gain from using EMAF instead of MAF should be quantified and confirmed using
an artificial dataset where the ground truth is known. From a practical standpoint, using
EMAF is less troublesome to apply, compared to MAF, since there is no need to select or
tune the shift parameter.

The examples shown in the case study clearly demonstrate that although PCA based decom-
position of multivariate images is less blurry than EMAF results, it has a non-trivial risk of
being seriously skewed by non-biological noise patterns with high variance. This behavior of
PCA might explain why PCA-cleaned data often correlates better with the original dataset,
compared to MAF-cleaned data. Since both the PCA-cleaned data and original dataset are
contaminated with these high variance, non-biological noise patterns. This skewing or con-
tamination was not seen with any of the MAF based methods.

The case study combined with the experiments in this thesis cast light on the last research
question, how the shift parameter influences MAF factors in practice. MAF factors change
with both length and direction of the shift parameter. However, since only a single direction
is used to calculate the MAF factors, when MAF is used for dimensionality reduction that
results in a directional blur in the reduced dataset. This effect was shown in the case study,
Chapter 6. This blurring effect was reduced by including more shifts in the EMAF algorithm,
at all available directions, when calculating the factors.

To conclude, the initial goal was making a version of MAF which was not dependent on
the shift parameter, both in terms of the length and direction of the shift parameter. A new
algorithm, EMAF, was derived for this purpose. It has been shown that EMAF is independent
of linear transformations to the dataset being processed, similarly to MAF. It was also shown
that EMAF is independent on the shift parameter in the case where there are two or fewer
covariance structures (or an equivalent thereof) present in the data. The performance of this
new algorithm was compared, visually, to MAF and it seemed to produce clearer scores and
similar loadings as MAF when applied to the same dataset. An additional perk of the EMAF
algorithm is that it does not depend on any input from the user.

7-1 Future work

In this section, a few ideas of future work will be presented. These ideas could be carried out
to further improve the development of unsupervised factorization methods.

• Test EMAF in a classification pipeline and evaluate the performance of the algorithm
in such a setting.

• Analyze the performance of EMAF further. Evaluating what type of noise it can handle
and in what quantities, compared to PCA or MAF, especially looking at EMAF in a
robust setting.
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• Optimize the EMAF algorithm to become less computationally expensive, making it
more feasible as an industry standard for noise reduction, evaluating its runtime and
making sure it scales well with both increased spectral and spatial dimensions.

• Explore how EMAF factors perform when used in a classification setting, compared to
PCA components or MAF factors.

• Research if there are any ways of choosing the number of EMAF factors to use in a
practical setting, with the ultimate goal of at least publishing guidelines for practical
use of the algorithm.

• Look into what possibilities there are of applying rotations to EMAF factors. Could
rotations potentially be used to improve the interpretability of factors, similar to what is
done with PCA components? This could be a way of constraining the EMAF loadings to
be non-negative for example, which would greatly improve interpretability for Imaging
Mass Spectrometry (IMS) applications.
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A-1 Region of Interest (ROI)

A-1-1 Disc

x = rx = −r

y =
√

r2 − x2

y = −
√

r2 − x2

Figure A-1: An illustration of the disc be-
ing integrated across.

To calculate the area of the ROI mention in Section
3-2 and shown in Figure 3-1a the following integral
needs to be evaluated

∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

dxdy. (A-1)

This area is a circle, centered at the origin of the lag
space with a radius r ∈ R. This integral is illustrated
in Figure A-1, the area is segmented into small steps
along the x-axis and the y-values constrained to lie on
the range [−

√
r2 − x2,

√
r2 − x2]. The area A can now

be evaluated as

A =
∫ r

x=−r

∫ √r2−x2

y=−
√
r2−x2

dydx (A-2)

=
∫ r

x=−r

(√
r2 − x2 −

(
−
√
r2 − x2

))
dx (A-3)

= 2
∫ r

x=−r

√
r2 − x2dx. (A-4)
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Now defining x = r sin(u), getting dx = r cos(u)du. These values can then be substituted in
the integral, getting

A = 2
∫ r

x=−r

√
r2 − x2dx (A-5)

= 2
∫ arcsin(r)

u=arcsin(−r)

√
r2 − r2 sin2(u)r cos(u)du (A-6)

= 2
∫ arcsin(r)

u=arcsin(−r)
r
√

1− sin2(u)r cos(u)du (A-7)

= 2r2
∫ arcsin(r)

u=arcsin(−r)

√
1− sin2(u) cos(u)du. (A-8)

Using the identity

sin2(u) + cos2(u) = 1 (A-9)
=⇒ cos2(u) = 1− sin2(u), (A-10)

we can now get

A = 2r2
∫ arcsin(r)

u=arcsin(−r)

√
1− sin2(u) cos(u)du (A-11)

= 2r2
∫ arcsin(r)

u=arcsin(−r)

√
cos2(u) cos(u)du (A-12)

= 2r2
∫ arcsin(r)

u=arcsin(−r)
cos(u) cos(u)du (A-13)

= 2r2
∫ arcsin(r)

u=arcsin(−r)
cos2(u)du. (A-14)

Using the identity

cos2(u) = 1 + cos(2u)
2 , (A-15)

we can now substitute and get

A = 2r2
∫ arcsin(r)

u=arcsin(−r)
cos2(u)du (A-16)

= 2r2
∫ arcsin(r)

u=arcsin(−r)

1 + cos(2u)
2 du (A-17)

= r2
∫ arcsin(r)

u=arcsin(−r)
(1 + cos(2u)) du (A-18)

= r2
[
u+ 1

2 sin(2u)
]arcsin(r)

u=arcsin(−r)
. (A-19)
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Substituting back to the original variable x, by using u = arcsin
(
x

r

)
, we get

A = r2
[
u+ 1

2 sin(2u)
]arcsin(r)

u=arcsin(−r)
(A-20)

= r2
[
arcsin

(
x

r

)
+ 1

2 sin
(

2 arcsin
(
x

r

))]r
x=−r

(A-21)

= r2
[
arcsin

(
r

r

)
+ 1

2 sin
(

2 arcsin
(
r

r

))
−
(

arcsin
(−r
r

)
+ 1

2 sin
(

2 arcsin
(−r
r

)))]
(A-22)

= r2
[
π

2 + 1
2 sin

(
2π2

)
−
(
−π2 + 1

2 sin
(
−2π2

))]
(A-23)

= r2
[
π

2 + 1
2 sin (π) + π

2 −
1
2 sin (−π)

]
(A-24)

= r2
[
π + 1

2 sin (π)− 1
2 sin (−π)

]
(A-25)

= r2π, (A-26)

since sin(π) = sin(−π) = 0. The ROI is a circle so this is the expected result. But to show
that this parameterization of the region is valid and to use this result in the thesis we carry
out these calculations here.

A-1-2 Rim

To calculate the circumference of the ROI mention in section 3-3 and shown in Figure 3-1b
we need to integrate across the boundary, that is evaluating the integral∫ 2π

θ=0
rdθ. (A-27)

This integral is the circumference of a circle with radius r, centered at the origin, so evaluating
the integral we get

L =
∫ 2π

θ=0
rdθ = r

∫ 2π

θ=0
dθ (A-28)

= r [θ]2π0 = r(2π − 0) (A-29)
= r2π. (A-30)

A-2 Minimizing the Generalized Rayleigh Quotient

The generalized Rayleigh quotient is defined as

x∗Ax
x∗Bx , (A-31)
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where A and B are both symmetric matrices. In the case where the matrices A and Y and
the vectors x are all real, the definition reduces to

xTAx
xTBx . (A-32)

Factorizing B such that B = CTC and then substituting y = Cx, the generalized Rayleigh
quotient can then be rewritten to the form

yTC−TAC−1y

yT y
. (A-33)

For formatting purposes let D = C−TAC−1, arriving at

yTDy
yT y

, (A-34)

this format is known as the Rayleigh quotient. It is to be noted that D is a symmetric matrix.
The objective function of the minimization problem can now be formatted using a Lagrange
multiplier, where the vector y gets normalized according to the equation yT y = 1, as follows

min
y

yTDy − λ(yT y − 1). (A-35)

This gives the Lagrangian

L(y) = yTDy − λ(yT y − 1), (A-36)

with the derivatives
∂L

∂y
= yT (D + DT ) + 2λyT , (A-37)

∂L

∂λ
= yT y − 1. (A-38)

Setting ∂L
∂y = 0 gives

yT (D + DT ) + 2λyT = 0, (A-39)
=⇒ Dy = −λy, (A-40)

since D is symmetric. From this it is clear that the value minimizing the Rayleigh quotient is
the smallest eigenvalue of D. Substituting back the definition of y and D to get the original
vectors and matrices gives

Dy = −λy (A-41)
=⇒ C−TAC−1Cx = −λCx, (A-42)

C−TAx = −λCx, (A-43)
Ax = −λCTCx, (A-44)
Ax = −λBx, (A-45)

according to the definition of C. Translating this result, the minimum of the generalized
Rayleigh quotient is the minimum eigenvalue of the generalized eigenvalue problem.
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A-3 Data Sphering

Data sphering is a transformation to remove the covariance information contained within data,
often performed to help highlight structures in the data beyond linear correlation. Sphering a
dataset involves transforming it such that the data gets an identity covariance matrix. There
are various ways a dataset can be be sphered, in this section we will list one of these methods
as an example, but more methods can be found for example in [66]. The following sphering
method is sometimes called Square Root Decomposition (SRD) or SRD for short.
Given a zero-mean variable Z ∈ Rn×p, such that

E [Z] = 0, (A-46)
Var [Z] = ZTZ = Σ. (A-47)

Note that Σ is an estimation of the covariance. In this example a simple estimation technique
will be used, although more robust methods could be applied to estimate the covariance. The
only condition is that the covariance estimator has to be affine equivariant, that is for any
covariance estimator Σ̂(X), we have

Σ̂(XA + b) = AT Σ̂(X)A, (A-48)

where X ∈ Rn×p is the data matrix being analyzed, A ∈ Rp×p is any non-singular matrix and
b ∈ Rn×p is a bias matrix.
The covariance estimate can now be decomposed as

Σ−1 = Σ−
1
2 Σ−

1
2 , (A-49)

A variable Y, which contains the sphered data from Z, i.e. with unit covariance, can be
defined as

Y = ZΣ−
1
2 (A-50)

The covariance of Y can now be estimated as

Var [Y] = YTY =
(
ZΣ−

1
2
)T

ZΣ−
1
2 (A-51)

= Σ−
1
2 ZTZΣ−

1
2 (A-52)

= Σ−
1
2 ΣΣ−

1
2 (A-53)

= I, (A-54)

since the covariance matrix is symmteric. This is the result that was expected. Sphering is
visulized in Figure A-2.

A-4 Equal Eigenvectors

Proving the statement that the two, arbitrary matrices A and aI + bA have the same eigen-
values, where I is the identity matrix with the same size as A and a, b ∈ R, b 6= 0. Let the
eigenvalue decomposition of A be

A = WΛW−1, (A-55)
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x

y

(a) Original data

x

y

(b) Sphered data

Figure A-2: Two-dimensional illustration of sphering. The original dataset is rotated and scaled
to have close to unit covariance in all dimensions. In this case the data has been centered around
the origin, without loss of generality.

where W is a matrix with the eigenvectors of A and Λ is a diagonal matrix containing the
eigenvalues of A. Note that this requires the matrix of eigenvectors to be normalized such
that

W−1W = I. (A-56)

Then

aI + bA = aWIW−1 + bWΛW−1 = W (aI + bΛ) W−1, (A-57)

which means that aI + bA and A do have the same eigenvectors W. The two matrices do
not have the same eigenvalues, A will have the eigenvalues Λ, while aI + bA has eigenvalues
aI + bΛ as demonstrated.

A-5 Proof: Special case of Extended Maximum Autocorrelation
Factorization (EMAF) invariance to the shift parameter

In this section the goal is to proof that similarly to Maximum Autocorrelation Factoriza-
tion (MAF) factors, EMAF factors will return the same factors regardless of how the shift
parameter is chosen, for a special case of covariance structures on the data being factorized.
This special case is when each variable only contains two or fewer isotropic covariance struc-
tures or the equivalent thereof. In the case of MAF this is both shown in Section 2-3-2 and
discussed in [58].

To prove this the EMAF factors will be calculated in the case of one and two covariance
structures, which will show that the spatial autocorrelation function can be diagnolized in both
cases, regarless of how the shift parameter is chosen. This will, however, only be shown for the
rim implementation, as for the disc implementation the exact same logic and argumentation
applies.

Daníel Freyr Hjartarson Master of Science Thesis



A-5 Proof: Special case of EMAF invariance to the shift parameter 117

A-5-1 One covariance structure

In the case of a single nested substructure the covariance function of Z(x) can be written as

C(h) = B1c1(h), (A-58)

where c1(h) ∈ R for all h ∈ Z2 is a covariance function of the single substructure and
B1 ∈ Rp×p is a weight matrix for that substructure. This means that C(0, 0) = B1. In this
case it is noted that the shift parameter is annotated in polar coordinates, that is h = (r, θ).
Then the minimization problem becomes

wTi
1

2π
∑2π
θ=0 γ(r, θ)∆θwi

wTi C(0, 0)wi
=
wTi

1
2π
∑2π
θ=0 (C(0, 0)−C(r, θ)) ∆θwi

wTi C(0, 0)wi
(A-59)

=
wTi

1
2π
∑2π
θ=0 (B1 −B1c1(h)) ∆θwi

wTi B1wi
(A-60)

=
wTi

1
2π
∑2π
θ=0 (B1 (1− c1(h))) ∆θwi

wTi B1wi
(A-61)

= wTi B1wi
wTi B1wi

1
2π

2π∑
θ=0

(1− c1(h)) ∆θ (A-62)

= Ip×p
1

2π

2π∑
θ=0

(1− c1(h)) ∆θ, (A-63)

since B1 is invariant of the shift parameter. This means that since the weighted average
correlation is similar to the identity matrix, it can be diagnolized, regardless of how the shift
parameter is chosen. This in turns means that EMAF will, in this special setting, produce
spatially uncorrelated factors at all distances regardless of how the shift parameter is set.

A-5-2 Two covariance structures

In the case of two nested substructures in the covariance function of Z(x) can be written as

C(h) = B1c1(h) + B2c2(h), (A-64)

where c1(h), c2(h) ∈ R for all h ∈ Z2 are covariance functions of the covariance structures
and B1,B2 ∈ Rp×p are weight matrices for those structure. This means that C(0, 0) =
B1 + B2 =⇒ B2 = C(0, 0)−B1.

Similarly to the single covariance structure case, the average correlation is analysed. In this
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case it is noted that the shift parameter is annotated in polar coordinates, that is h = (r, θ).

wTi
1

2π
∑2π
θ=0 γ(r, θ)∆θwi

wTi C(0, 0)wi
(A-65)

=
wTi

1
2π
∑2π
θ=0 (C(0, 0)−C(r, θ)) ∆θwi

wTi C(0, 0)wi
(A-66)

=
wTi

1
2π
∑2π
θ=0 (B1 + B2 −B1c1(h)−B2c2(h)) ∆θwi

wTi C(0, 0)wi
(A-67)

=
wTi

1
2π
∑2π
θ=0 (C(0, 0)−B1c1(h)− (C(0, 0)−B1) c2(h)) ∆θwi

wTi C(0, 0)wi
(A-68)

=
wTi

1
2π
∑2π
θ=0 (C(0, 0) (1− c2(h))−B1 (c1(h)− c2(h))) ∆θwi

wTi C(0, 0)wi
(A-69)

=
wTi

1
2π
∑2π
θ=0 C(0, 0) (1− c2(h)) ∆θwi − wTi

1
2π
∑2π
θ=0 B1 (c1(h)− c2(h)) ∆θwi

wTi C(0, 0)wi
(A-70)

=
wTi C(0, 0)wi

1
2π
∑2π
θ=0 (1− c2(h)) ∆θ − wTi B1wi

1
2π
∑2π
θ=0 (c1(h)− c2(h)) ∆θ

wTi C(0, 0)wi
(A-71)

=Ip×p
1

2π

2π∑
θ=0

(1− c2(h)) ∆θ − wTi B1wi
wTi C(0, 0)wi

1
2π

2π∑
θ=0

(c1(h)− c2(h)) ∆θ. (A-72)

The Generalized Rayleigh Quotient, wTi B1wi
wTi C(0, 0)wi

is diagonalizable [59] and independent on

the included shift parameters. The matrix Ip×p is also diagonal and independent on the
included shift parameters. That means that the resulting EMAF factors will be spatially
uncorrelated at all distances invariant of the included shifts, in this special case.
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Glossary

List of Acronyms

MAF Maximum Autocorrelation Factorization

EMAF Extended Maximum Autocorrelation Factorization

PCA Principal Component Analysis

IMS Imaging Mass Spectrometry

MALDI Matrix-Assisted Laser Desorption/Ionization

SIMS Secondary Ion Mass Spectrometry

ToF Time of Flight

FT-ICR Fourier Transform Ion Cyclotron Resonance

ICA Independent Component Analysis

NNMF Non-Negative Matrix Factorization

ROI Region of Interest

Min AC Minimum Autocorrelation

Max AC Maximum Autocorrelation

UC Unit Circle

SRD Square Root Decomposition

MCD Minimum Covariance Determinant

ArtDirDS Artificial, Directionally Dependent Dataset

ArtLenDS Artificial, Length Dependent Dataset

IMS-RBDS Imaging Mass Spectrometry - Rat Brain Dataset
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126 Glossary

DirDep Directional Dependence

LenDep Length Dependence

MEval Method Evaluation
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