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Braiding and All Quantum Operations with Majorana Modes in 1D
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We propose a scheme to perform braiding and all other unitary operations with Majorana modes in one
dimension that, in contrast to previous proposals, is solely based on resonant manipulation involving the
first excited state extended over the modes. The detection of the population of the excited state also enables
initialization and read-out. We provide an elaborated illustration of the scheme with a concrete device.
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The paradigm of topological quantum computation [1,2]
provides an elegant solution to the most important problem
in quantum manipulations: the decoherence problem. It
implements a topologically protected degenerate ground
state as a computational basis. The degenerate state can
be visualized as a set of localized anyons while unitary
operations are performed by adiabatic exchange of the
anyons, that is, braiding of their world lines [2]. The braiding
is feasible in two dimensions and impossible in one
dimension since anyons should not collide in the course
of operation. The intrinsically slow speed of adiabatic
manipulation, as well as the difficulties of read-out and
initialization of the protected states, should be compensated
by the intrinsic fault tolerance of the operations.
Of all the numerous physical realizations of the topo-

logically protected degenerate ground state proposed, the
Majorana zero-energy states in hybrid semiconductor-
superconductor devices [3,4] seems to be the most tech-
nologically advanced and elaborated. After pioneering
experiments [5], an enormous outgoing research effort
[6–8] resulted in considerable improvement of the tech-
nology and new observations, yet the quantum coherence in
degenerate subspace still awaits experimental demonstra-
tion [9]. An obvious difficulty is that Majorana modes are
realized in 1D nanowires, making direct braiding impos-
sible. In principle, the 1D wires can be combined into a 2D
network. There are elaborated schemes to realize braiding
in various systems, for instance, in T or Y junctions of
nanowires [10–16]. A enormous technological challenge to
make such networks with necessary controls is being
addressed [17], but the progress is slow so far.
In this Letter, we propose a scheme to realize Majorana

braiding in a single 1D nanowire. Eventually, with this
scheme one can realize any unitary transformation in the
degenerate subspace, as well as initialization and readout in
this subspace. The scheme uses resonant manipulation
technique, the resonance being between the degenerate
subspace and the lowest excited state that extends over all
Majorana modes. The initialization and readout is possible
if the population of the excited state is detected.

Strictly speaking, the scheme compromises the quantum
computation paradigm since the topological protection fails
during the operation. The system is subject to relaxation
while being in the excited state. There are standard means
to reduce this only source of decoherence, for instance,
photonic [18–20] and phononic [21–24] cavities and
metamaterials, and make the operation time shorter than
the corresponding relaxation time. It is important that the
protection is preserved between the operations. This makes
the scheme an ideal tool to demonstrate persistence of
quantum superpositions in the degenerate subspace, and
quantify the macroscopically long decoherence time
expected. In the final part of the Letter, we discuss the
use of the scheme in wider context. We illustrate the
scheme on the example of a minimum concrete setup, at a
general level as well as with a concrete microscopic model
and numbers.
The setup under consideration (Fig. 1) encompasses a

finite 1D wire brought in proximity with a superconductor.

FIG. 1. The setup for the resonant manipulation of Majorana
modes. The proximitized nanowire (orange rectangle) with the
inverted gap in the middle section hosts four Majorana modes
(γ1−4) formed on the edges of the sections of different topology.
The four gates in the vicinity of the modes are used to apply a
pulse sequence for the resonant manipulation, the resonance
being with the lowest excited state (red line) extented over the
modes. A quantum dot on the left can be used to detect the
population of the excited state.
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It hosts 4 localized Majorana modes, two at the ends and
two in the middle. This is achieved by a gap inversion in the
middle section of the wire by a nearby gate. The wire
sections at the sides are thus in a topological regime of
parameters while the middle section is topologically trivial.
It is important for us that the first excited state right above
the gap extends over the whole wire. This is achieved by
matching the absolute values of the gap in the middle and
side sections by the gap inverter gate. To achieve efficient
resonant manipulation, we require four more gates near the
positions of Majorana modes. This is all we need for
resonant manipulation. To detect a possible quasiparticle in
the excited state, we put a quantum dot nearby (it can be in
the same nanowire, as presented in Refs. [25,26]). The
addition energy of the dot is tuned such that a quasiparticle
in the excited state tunnels to the dot changing its charge,
which is measured. For effective detection, the tunnel rate
should exceed the relaxation rate. The tunnel coupling can
be switched on only for duration of measurement.
To start with, let us understand the basis involving

the Majorana modes and the first excited state. Let
cL ¼ ðγ1 þ iγ2Þ=2, cR ¼ ðγ3 þ iγ4Þ=2 be the quasiparticle
annihilation operators in Majorana subspace, and cex to be
that in the excited state. A basis state is defined as
jnL; nRijnexi, where nL; nR; nex ¼ 0, 1 are the respective
occupation numbers. We thus have 8 states. They separate
into two groups of four corresponding to two possible total
parities. There can be no coherence between the states of
different parities. We define the bases as follows:

Φe ¼ fj00ij0i; j11ij0i; j01ij1i; j10ij1ig; ð1Þ

for the even parity, and

Φo ¼ fj01ij0i; j10ij0i; j00ij1i; j11ij1ig; ð2Þ

for the odd parity. The first two states for each parity form
Majorana subspace. We can thus realize a Majorana qubit
for each parity. Wewould like to perform unitary operations
in Majorana subspace. A particular unitary operation
is a braiding of two Majorana modes defined as
Uij ¼ 1ffiffi

2
p ð1þ γiγjÞ. For instance, the braiding of the

second and the third mode in the odd basis Φe is given by

Uo
23 ¼

1ffiffiffi
2

p ð1þ γ2γ3Þ ¼
1ffiffiffi
2

p

0
BBBBB@

1 i 0 0

i 1 0 0

0 0 1 i

0 0 i 1

1
CCCCCA
: ð3Þ

As we see, it is separated into blocks of Majorana and
excited subspace, as these operations are independent. Since
we wish to operate in Majorana subspace, the excited block
is irrelevant. The corresponding matrix in the even subspace
is obtained from Eq. (3) by the following transformation

Ue ¼ ΣyσyUo�σyΣy; ð4Þ

σy, Σy being Pauli matricies acting within and over the
blocks, respectively. Eventually, this relation holds for all
braidings as well as for any 4 × 4 matrix we consider here.
So we wish to perform braidings, as well as any unitary
operations in Majorana subspace. This task by its own is
senseless unless we have means to initialize to a state in this
subspace and measure the result. Let us see how we can
realize this by resonant manipulation.
A resonant manipulation is performed by applying the

oscillating voltages to the gates 1–4 with the frequency
matching the energy spacing. At constant amplitudes, the
general Hamiltonian in rotating wave approximation reads

Hrm ¼ ðα1cL þ α2cR þ α3c
†
L þ α4c

†
RÞcex þ H:c: ð5Þ

The four complex coefficients α1−4, are in linear relation
with the four complex voltage amplitudes at the gates, so 4
gates suffice to control all coefficients. Applying a pulse of
duration tmakes a unitary operationU ¼ e−iHrmt in an eight-
dimensional basis. The manipulation conserves parity, so the
matrix separates in two 4 × 4 blocksUe,Uo in the basesΦe,
Φo. It is simple and important to show that these matrices
satisfy the same relation (4) as the braiding matrices.
Let us stress that our aim is to find a unitary trans-

formation that works in Majorana subspace only. To this
end, we require a special form of the resulting U: that
separated in two 2 × 2 blocks, like in Eq. (3). In other
words, the excited state should not be populated at the end
of the resonant manipulation if we start in Majorana
subspace. This is impossible to achieve with a single pulse.
A key observation is that this can be achieved combining
several pulses. Two pulses with 8 complex parameters in
total in principle suffice to realize our aim: an arbitrary
2 × 2 unitary transformation in Majorana basis. We
describe the concrete methods of the pulse design and
give examples further in the text.
Let us describe the protocol for initialization and readout

starting from an unknown state of unknown parity in
Majorana subspace. We will show that this requires two
resonant pulse sequences, that is, unitary transformations,
and a measurement after each sequence. We dub these
sequences a developer and a fixer. To start with, let us
assume that we start in a Majorana state of even parity. Let
us understand the effect of the following 4 × 4 unitary
transformation:

De ¼ jBij1ihajh0j þ jbij0iha0jh0j
þ jB0ij1ihAjh1j − jb0ij0ihA0jh1j: ð6Þ

Here, lowercase letters denote the Majorana states in the
even subspace (j00i, j11i or their linear combination) while
capital ones denote those in the odd subspace (j01i, j10i or
their linear combination). The prime denotes a
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corresponding orthogonal state, ja0i≡ ðiσyjaiÞ�, haja0i ¼
0 (note that iσyiσyjai ¼ −jai). If the initial state is jai, this
developer brings the system to the excited subspace. The
quasiparticle tunnels to the dot, we measure outcome “1”
and the system is in the state of the opposite parity, jBij0i
(Fig. 2). If the initial state is orthogonal, no excitation
occurs, we measure output “0” and get to the state jbij0i.
We see that the developer can be used to measure the
probability of jai if the initial parity is known to be even,
and the final state is known from the measurement result.
However, the parity is generally unknown.
Let us see how the same developer works in the odd

subspace. We apply Eq. (4) to obtain

Do ¼ −jB0ij0iha0jh1j − jb0ij1ihajh1j
− jBij0ihA0jh0j þ jbij1ihAjh0j: ð7Þ

We see that now the developer tries to distinguish between
jAi and jA0i, while the final states for the same output are
opposite: jbij0i for 1 and jBij0i for 0. Thus, we do not
know the final state if the parity is unknown, neither we
know which state has been measured.
However, the situation can be fixed if we apply another

unitary transformation. While this transformation does not
depend on the result of the first measurement, it depends on
the desired parity of the final state. In any case, the incoming
states of a fixer are the same as the output states of the
developer in the Majorana subspace. Let us consider the
even fixer Fe first. Its representation for two parities reads

Fe
e ¼ jcij0ihbjh0j þ jCij1ihb0jh0j

þ jC0ij1ihBjh1j þ jc0ij0ihB0jh1j; ð8Þ

Fo
e ¼ jc0ij1ihb0jh1j þ jC0ij0ihbjh1j

− jCij0ihB0jh0j − jcij1ihBjh0j: ð9Þ

After the fixer, and the second measurement, the final state is
always jcij0i, this solves the initialization task. If the
outcomes of the first and second measurements are “11”
or “00,” the initial parity was even. Otherwise, it was odd.
The odd fixer Fo has a similar structure,

Fe
o ¼ jCij1ihbjh0j þ jcij0ihb0jh0j

þ jc0ij0ihBjh1j þ jC0ij1ihB0jh1j; ð10Þ

Fo
o ¼ −jC0ij0ihb0jh1j − jc0ij1ihbjh1j

þ jcij1ihB0jh0j þ jCij0ihBjh0j: ð11Þ

In any case, the final state is jCij0i. The measurement
outcomes 11 and 00 manifest even initial parity, 01 and 10
manifest odd initial parity. So both fixers not only solve the
initialization task: they determine the initial parity.
We see that the protocol described at the same time

provides a measurement tool. Suppose we are able to
arrange an unknown state of unknown parity, and repro-
duce it on demand. To characterize the state, one just
repeats the protocol collecting the statistics of outcomes.
The probabilities of outcomes 11,00,10,01 give the prob-
abilities of the basis states jai; ja0i; jAi; jA0i, respectively.
The developer and fixer pulse sequences can be designed
and realized for any choice of the superpositions
jai; jbi; jci; jAi; jBi; jCi. In the Supplemental Material
[27], we provide the concrete choice example.
To show the feasibility of the setup and the suggested

pulse sequence design, we now specify a microscopic
model and provide extensive numerical study for a concrete
set of parameters. We make use of the Hamiltonian [3,4] to
model a semiconducting nanowire with spin-orbit spectrum
splitting, in the presence of applied uniform magnetic
field B, and proximity-induced superconducting gap Δ.
The gap inverter gate is described by a coordinate-
dependent potential μðxÞ such that its values in the middle
and outer sections, μm, μo satisfy the conditions of trivial
B <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2m

p
and nontrivial B >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2o

p
topology.

The modulation gates are described by a time-dependent
addition μðx; tÞ ¼ P

i ViðtÞΘðx − xiÞΘðyi − xÞ, xi, yi giv-
ing the start and end position of the gate i (see Fig. 3). The
Hamiltonian in use reads

H0 ¼
Z

dxΨ†ðxÞ
��

−
1

2m
∂2

∂x2 − iαSOIσz
∂
∂x − μðxÞ

�
τz

þBσx þ Δτx
�
ΨðxÞ;

ΨðxÞ ¼ fψ↑ðxÞ;ψ↓ðxÞ;ψ†
↓ðxÞ;−ψ†

↑ðxÞg; ð12Þ

ψσðxÞ being the electron field operators.
We measure length and energy in units of ðmαSOIÞ−1

and mα2SOI, respectively. We compute the spectrum
and wave functions diagonalizing the discrete-in-space

de
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r

ev
en
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r

1

0

0

1

1

0

0

1

FIG. 2. Initialization and readout in Majorana subspace is
achieved by two resonant pulse sequences: developer and fixer,
and subsequent measurements of the excited quasiparticle.
Uppercase and lowercase letters refer to Majorana superpositions
of odd and even parity, respectively, prime indicates orthogon-
ality, ha0jai ¼ 0. The measurement outcomes are in square boxes.
The protocol brings the system to the state jci from an unknown
state. The probabilities of the measurement outcomes give the
probabilities of the states jai; ja0i; jAi; jA0i. See the text for
details.
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approximation of the Hamiltonian (12), with the discreti-
zation step 0.2. We choose a relatively long wire with
length L ¼ 100 and the material parameters are of the order
of 1: B ¼ 3, jΔj ¼ 2.5, μm ¼ −1.91, μo ¼ −1.34, see
Ref. [27] for details. The transition between these two
values are smoothed at the length scale of 3, and the setup
has been made slightly asymmetric. The bulk energy gaps
corresponding to these parameters are Ge ¼ 0.146 and
Gm ¼ 0.164, they are not precisely equal because of the
finite size of the middle section. With this, the lowest
excited state at E1 ¼ 0.175 is extended over the wire (see
Fig. 3). Higher excited states are situated at E2 ¼ 0.180 and
E3 ¼ 0.187. For the resonant signal to address the lowest
excited state only, the inverse pulse duration should not
exceed the level spacing E2 − E1, this gives t > 103.
The wave functions are presented in Fig. 3. There are 4

Majorana localized modes with the width ≈5. We neglect a
marginal overlap between the states setting them at zero
energy. The wave function of the first excited state reminds
the first particle-in-the box state with noticeable dips owing
to orthogonality with Majorana peaks, and is extended over
the whole length of the wire. With these wave functions, we
compute the matrix elements of voltages applied to 4 gates
whose positions are given in Fig. 3. This gives as a 4 × 4
matrix M̂ that relates the voltage amplitudes and the
resonant manipulation coefficients αi [Eq. (5)]. To design
a pulse sequence corresponding to a unitary operation, we
compute the resulting matrix depending on the parameters
αi and time duration of each pulse, and iteratively minimize
in αi the distance between the resulting and target matrix.
Using the matrix M̂, we convert to the gate voltage
amplitudes. The design for the braiding of the second
and the third Majorana mode is presented in Fig. 4,
extensive examples are to be found in Ref. [27].

To conclude, we propose a scheme that allows us to
realize braiding and all other unitary operations, as well as
the measurement and initialization, for a Majorana qubit
in a single 1D wire. It suits ideally to demonstrate
macroscopically long coherence in Majorana space.
The topological protection fails only during the operation.
We illustrate the scheme with a concrete elaborated
example.
Let us shortly present necessary discussions in a wider

context. No experimental system can be modeled with the
accuracy we did. However, to design the pulse sequencies,
one only needs E1 and the matrix M: the latter can be
determined from the analysis of the spectra of the dressed
resonant state at varying Vi. The resonance with the lowest
state only is essential since it minimizes dissipation.
Moreover, the excitation to many excited states is expo-
nentially suppressed owing to destructive interference. The
scheme can be readily extended to more Majorana modes
within the single wire, like proposed in Refs. [9,28]. While
this can be done with a single state extended over the wire,
but a simpler design would involve separate excited
states, each extended over a group of Majorana modes.
This can be achieved by proper profile of μðxÞ. At the
moment, the technological efforts are aimed to increase
transparency of the barrier between the wire and the
superconductor. As it is shown, for instance, in Ref. [29]
at sufficiently high transparency the wire is not described
by the Hamiltonian [3,4] and eventually looses the local-
ized excited states. So the moderate transparency is
required for experimental realization of our idea. The idea
presented may be also useful in the context of more
traditional 2D Majorana braiding: one can set a localized
excited state, switch on a resonant field, and move the
modes passing the state to achieve the resonant manipu-
lation and read out.

The data that support the findings of this study are
available in Ref. [30].
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chosen at ½0; 10�, ½30; 40�, ½55; 65�, and ½90; 100�.

FIG. 4. Designed two-pulse sequence for the braiding U23. The
gate voltage amplitudes V1−4 times pulse durations t1;2 are given
by circle, plus sign, triangle, and x mark, respectively.

PHYSICAL REVIEW LETTERS 126, 117701 (2021)

117701-4



Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant Agreement
No. 694272) and was supported by the Netherlands
Organisation for Scientific Research (NWO/OCW), as part
of the Frontiers of Nanoscience (NanoFront) program.

[1] A. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).
[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[3] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
[4] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[5] V. Mourik, K. Zuo, S.M. Frolov, S. R. Plissard, E. P. A.M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
[6] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff,

and H. Q. Xu, Nano Lett. 12, 6414 (2012).
[7] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.

Shtrikman, Nat. Phys. 8, 887 (2012).
[8] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,

and X. Li, Phys. Rev. Lett. 110, 126406 (2013).
[9] H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven,

Nat. Commun. 10, 5128 (2019).
[10] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.

Fisher, Nat. Phys. 7, 412 (2011).
[11] F. Harper, A. Pushp, and R. Roy, Phys. Rev. Research 1,

033207 (2019).
[12] Z.-C. Yang, T. Iadecola, C. Chamon, and C. Mudry, Phys.

Rev. B 99, 155138 (2019).
[13] T. Posske, C.-K. Chiu, and M. Thorwart, Phys. Rev.

Research 2, 023205 (2020).
[14] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.

Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, and J. Alicea, Phys. Rev. X 6,
031016 (2016).

[15] D. J. Clarke, J. D. Sau, and S. Das Sarma, Phys. Rev. B 95,
155451 (2017).

[16] C. W. J. Beenakker, SciPost Phys. Lect. Notes 15 (2020),
https://scipost.org/SciPostPhysLectNotes.15.

[17] S. Gazibeg1ovic et al., Nature (London) 548, 434
(2017).

[18] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[19] N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11, 917

(2012).
[20] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[21] Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński,

and P. A. Deymier, Surf. Sci. Rep. 65, 229 (2010).
[22] P. A. Deymier, Acoustic Metamaterials and Phononic

Crystals (Springer Science, Berlin, 2013), Vol. 173.
[23] A. Khelif and A. Adibi, Phononic Crystals: Fundamentals

and Applications (Springer, New York, 2016).
[24] V. Laude, Phononic Crystals: Artificial Crystals for Sonic,

Acoustic, and Elastic Waves (De Gruyter, Berlin, 2015).
[25] M.-T. Deng, S. Vaitiekėnas, E. Prada, P. San-Jose, J.

Nygård, P. Krogstrup, R. Aguado, and C. M. Marcus, Phys.
Rev. B 98, 085125 (2018).

[26] E. Prada, R. Aguado, and P. San-Jose, Phys. Rev. B 96,
085418 (2017).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.126.117701 for additional details and
calculations regarding the example setup under consideration,
as well as concrete designs of unitary transformations for
quantum manipulation, initialization, and measurement.

[28] S. Das Sarma, J. D. Sau, and T. D. Stanescu, Phys. Rev. B
86, 220506 (2012).

[29] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys.
Rev. B 84, 144522 (2011).

[30] E. Repin, V. Kornich, X. Huang, and Y. V. Nazarov, https://
doi.org/10.5281/zenodo.4377165 (2020).

PHYSICAL REVIEW LETTERS 126, 117701 (2021)

117701-5

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/PhysRevResearch.1.033207
https://doi.org/10.1103/PhysRevResearch.1.033207
https://doi.org/10.1103/PhysRevB.99.155138
https://doi.org/10.1103/PhysRevB.99.155138
https://doi.org/10.1103/PhysRevResearch.2.023205
https://doi.org/10.1103/PhysRevResearch.2.023205
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevB.95.155451
https://doi.org/10.1103/PhysRevB.95.155451
https://scipost.org/SciPostPhysLectNotes.15
https://scipost.org/SciPostPhysLectNotes.15
https://scipost.org/SciPostPhysLectNotes.15
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1038/nmat3431
https://doi.org/10.1038/nmat3431
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1016/j.surfrep.2010.08.002
https://doi.org/10.1103/PhysRevB.98.085125
https://doi.org/10.1103/PhysRevB.98.085125
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1103/PhysRevB.96.085418
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117701
https://doi.org/10.1103/PhysRevB.86.220506
https://doi.org/10.1103/PhysRevB.86.220506
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.5281/zenodo.4377165
https://doi.org/10.5281/zenodo.4377165

