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Abstract

Interferometric Synthetic Aperture Radar (InSAR) stands as a widely adopted technique for
monitoring displacements on the Earth’s surface, providing millimeter-level precision. Sev-
eral InSAR studies show the efficacy in retrospectively identifying hazardous situations, such
as the failure of a structure. The next imperative step is to detect and identify anomalous
points proactively. This necessitates robust and repeatable displacement estimates to avoid
misinterpretation and instill confidence in the results.

Many InSAR studies use a batch estimation process requiring a robust algorithm to obtain
reliable results. Here we propose a test recipe and introduce metrics to assess the robustness
of the InSAR displacement estimates quantitatively, comparing the batch-estimated results of
varying SAR acquisition inputs. Robustness characterizes the stability of displacement esti-
mates in the face of disturbances and uncertainties, demonstrating resilience against changing
conditions and input. Our quantification of robustness involves three core metrics to assess
InSAR displacement estimates.

Case studies conducted over the city center of Amsterdam and a coastal region at the
North Sea reveal the useful insight provided by robustness testing in identifying ambiguities
and fallacies in the applied algorithm. Notably, the main challenges arise from the estimation
of atmospheric delay, which emerges as a sensitive step with ample room for enhancement. A
robust atmospheric estimation appears very dependent on the use of a sufficiently large area
of interest while the estimation is sensitive to first-order network changes.

Through the implementation of appropriate measures, an average metric improvement of a
factor of four can be achieved, reducing the likelihood of a misinterpretation of the InSAR time
series. This underscores the effectiveness of the proposed test recipe in improving existing
InSAR software.
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Glossary

batch estimation estimating parameters based on all observations available at the time of
the estimation, without taking prior estimation results into account.

brute force The production of outcomes ignoring any prior awareness of results obtained for
identical parameters.

measurement update The process of incorporating a newly acquired SAR acquisition into
an existing stack.

realization Result of a brute force DePSI run on a given set of SAR acquisitions.

recursive estimation estimation of the values of unknown parameters by combining (i) the
results of earlier estimation runs and (ii) new observations frommore recent acquisitions.

run Brute force processing of a certain stack.

stack Collection of SARSLC datasets, coregistered to a single reference (mother) acquisition.
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Acronyms

ΔASTM Differential Atmospheric Space-Time Matrix.

ΔSTM Differential Space-Time Matrix.

AO Ambiguity Overview.

APS Atmospheric Phase Screen.

AWLTD Area-Wide Long-Term Deviation.

AWSTD Area-Wide Short-Term Deviation.

CCDS Continously Coherent Distributed Scatterer.

CCPS Continously Coherent Point Scatterer.

DePSI Delft implementation of Persistent Scatterer Interferometry.

FAM Fraction of Ambiguous Measurements.

FLLTA Fraction of Localized Long-Term Ambiguities.

FLSTA Fraction of Localized Short-Term Ambiguities.

IDD Incremental Displacement Difference.

IDS Incoherent Distributed Scatterer.

IGRS Integrated Geodetic Reference Station.

InSAR Interferometric Synthetic Aperture Radar.

IRM Incremental Robustness Metrics.

LLTD Localized Long-Term Deviation.

LSTD Localized Short-Term Deviation.

NAD Normalized Amplitude Dispersion.

NMAD Normalized Median Absolute Deviation.

PS Point Scatterer.

PS1 First-order Point Scatterer.

PS2 Second-order Point Scatterer.

RMSD Root Mean Squared Difference.

TCDS Temporary Coherent Distributed Scatterer.

TCPS Temporary Coherent Point Scatterer.
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1
Introduction

1.1. Background and context
Since the 80s, the concept of utilizing Interferometric Synthetic Aperture Radar (InSAR) to
measure displacements of (objects on) the surface of the Earth has been extensively devel-
oped (J. Hu et al., 2014). InSAR is based on the phase difference of scatterers in two radar
satellite acquisitions taken at distinct epochs in order to estimate their relative displacement
in time (Massonnet & Feigl, 1998).

With the displacement over time, one can see the effect of events such as landslides,
earthquakes, and changes in groundwater levels (Osmanoğlu et al., 2016). Also, the sta-
bility of crucial civil structures can be monitored (F. Hu, van Leijen, et al., 2019). Studies
have shown that the displacement of for instance levees could be monitored with mm preci-
sion (Özer et al., 2019). In the case of levees, the use of InSAR has many advantages over
the current monitoring methods involving mostly visual inspections. The crucial advantage of
radar data is that the data is there to use, meaning that the costs are negligible compared to
reoccurring visual inspections of these levees. Besides, the revisit times are way shorter, and
measurement possibilities do not depend on weather conditions. Locally optimized InSAR
even outperforms leveling on the reliability of monitoring buildings in an inner city (Venmans
et al., 2020). Compared to for instance the use of GPS, the point density will be much higher
as well.

1.2. Caroline
This study is part of the CAROLINE project which is devoted to the monitoring of infrastruc-
ture (and possibly beyond). CAROLINE refers to Contextual and Autonomous processing
of satellite Radar Observations for Learning and Interpreting the Natural and built Environ-
ment (Hanssen, 2021). The fundamental idea is to create a self-operating computer system
in which InSAR and contextual data will be used to reach two objectives. The first objective
is to produce a database of points with attribute values and displacement time series. At the
moment, a table with points containing information such as the displacement on each epoch
and a linear displacement rate exists, commonly referred to as the Space-Time Matrix (STM).
However, much data is still to be added to improve the obtained estimates and the interpreta-
tion of the results by adding for instance the instantaneous velocity or non-linear deformation
rates. In the context of monitoring a dike region, the inclusion of contextual information, such
as temperature or water levels, has the potential to enhance our understanding of the dike
behavior allowing for a better monitoring assessment. Besides, the points are to be labeled,
since different conclusions can be drawn if a point represents either the crest or the slope of
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2 1. Introduction

a dike.
The second objective is to receive push notifications for points behaving beyond normality,

meaning an anomaly to the expected behavior of a point. At the moment, a lot of data is avail-
able such as the Bodemdalingskaart (SkyGeo, 2023) or the European Ground Motion Service
(Copernicus, 2023) on which there are millions of data points. These points can impossibly
all be manually to detect a potential anomaly. Besides, every point is different requiring a
specific function or stochastic model to describe the behavior. Therefore, an algorithm is re-
quired to enable the identification of potentially hazardous points that need further attention
from an InSAR expert. With every new satellite overpass, a new measurement is obtained.
This measurement informs us about any changes in the observed behavior, indicating whether
preventative measures to avert a collapse should be implemented.

1.3. Problem statement
For the automatic monitoring objective, it is crucial that results are robust and reproducible. In
this context, ”robust” implies that the estimated displacements for a single point at a specific
moment in time exhibit minimal variation when using a different set of radar acquisitions. Given
that InSAR is capable of detecting displacements on the order of millimeters (Özer et al., 2019),
it would be unexpected that displacement estimates vary significantly, e.g. by a fewmillimeters
when only the number of radar acquisitions varies. On the other hand, ”reproducible” signifies
that employing the same input consistently yields the same result. The term robustness will be
more extensively defined in section 3.1. Robustness is required to ensure that the algorithm
is reliable enough to flag only points that have an anomalous behavior, instead of false alarms
due to shortcomings in our algorithm. If points are often falsely flagged, one would lose faith
in the use of InSAR for monitoring. Currently, robustness is rarely used in an InSAR context.
Wang & Zhu (2016) use it to cover the improvement of a specific framework or estimators,
ignoring a simple quantification of what robustness in InSAR really means.

We are aiming for an efficient way to perform the monitoring. Specifically, in the process
of incorporating a newly acquired SAR acquisition into an existing stack, referred to as amea-
surement update, it is undesirable to recalculate every single displacement estimate. Such
an approach, where a new acquisition triggers the entire estimation procedure anew, with
complete disregard for estimation results from earlier estimation runs, is referred to as batch
estimation (Teunissen, 2017). Batch estimation is therefore a brute force approach.

A more efficient way to deal with a new acquisition would be to update existing estimates
recursively by using the newly acquired observation (Verburg, 2017). F. Hu et al. (2022) pro-
pose a recursive estimation monitoring procedure using the SAR amplitude to detect tempo-
rally consistent points and a Kalman filter to update parameters. However, this method of
updating underscores the importance of having a degree of certainty about the accuracy of
previous estimates. There is a risk of presuming that displacement time series have been
unwrapped correctly when, in reality, the integer number of cycles may be fundamentally in-
correct. Building upon an incorrect result will yield falsely detected points, for instance, points
falsely implying downward acceleration or, even worse, undetected hazardous situations. In
essence, the robustness of displacement estimates from previous epochs is crucial, andmore-
over, they should not depend on the stack length when constructing a time series.

Literature comprises numerous studies that suggest the possibilities of automatic moni-
toring of infrastructure using InSAR, providing specific examples where it could have proven
beneficial in hindsight (Macchiarulo et al., 2022; Bianchini Ciampoli et al., 2019). An example
is depicted in Fig. 1.1, where a collapsed quay wall in the old city center of Amsterdam is
detected with InSAR in hindsight. More quay walls and bridges are on the verge of collapse
and it would therefore be extremely convenient to detect hazardous locations before collapse
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to possibly avoid loss of lives.

Figure 1.1: Monitoring batch result of a collapsed quay wall in the city center of Amsterdam (SkyGeo, 2023). The
colored points represent scatterers in Amsterdam with the color indicating the average displacement velocity. The
framework plot shows the behavior of a selected point at the collapsed quay wall indicated with a marker. The
blue framework dots represent the displacement estimates and the grey dots the solutions of plus and minus one
ambiguity level. This point accelerates in time, exemplified by the black line fit, until the collapse on the 1st of Sep
2020.

Automatic monitoring systems using a similar approach as in CAROLINE are already oper-
ational in some regions. For instance, Tuscany has implemented a semi-automatic monitoring
system that provides information on the type of anomaly (i.e., slope instability, subsidence, up-
lift and geothermal activity) and corresponding risk to regional authorities (Raspini et al., 2018).
Subsequent field investigations are then conducted to assess the severity of the anomalous
points. Nevertheless, no definitive conclusions are drawn on the accuracy or validity of all de-
tected anomalies through the field investigations in real-time monitoring. The problem is that
hindsight is always 20/20. Analyzing and evaluating situations in retrospect is always easier
than doing so in the present moment. The crucial future direction involves conducting actual
real-time monitoring case studies detecting anomalies that can be validated. This approach
will provide genuine insights into the capability of using InSAR for monitoring purposes. At the
moment, the challenge lies not in the detection of potentially hazardous situations, but rather
in achieving a robust and accurate estimation, enabling a reliable interpretation of anomalies.

Adding (obtaining) an extra SAR acquisition to the existing stack is anticipated to add
more information to the point’s behavior rather than redefining it. Especially in the case of a
large number of acquisitions, the previously estimated displacement results are expected to
converge to a certain estimate rather than suddenly significantly change. When monitoring,
suddenly changing results can cause a wrong or inconsistent conclusion with the previous
result. This way, we can not detect which epoch specifically changed. For a certain location,
one could get a false warning or leave a dangerous situation undetected.

As an example, Fig. 1.2 shows the result of a neighboring quay wall perpendicular to the
collapsed one in Fig. 1.1 in the center of Amsterdam. This dataset uses a different number of
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acquisitions explaining different point locations and colors (velocities). The selected quay wall
is estimated to experience a strong uplift. However, one could very much question this solution
as other solutions seem at least as likely as the chosen path. The grey dots represent the
plus and minus one ambiguity level of the (blue) displacement estimates. The displacement
solution at the end of 2021 would for instance follow the lower grey path if one would judge
by eye, resulting in a different velocity. As all estimated parameters from heights to velocities
and displacements together form a total phase observation, the misinterpretation of one of the
parts can have dramatic effects on the other estimated phases. The question is whether this
solution is an incident or if a different batch estimated solution would yield the same result.

It could lead to a loss of confidence in the algorithm by users who expect consistent results
if it appears that a lot of points are falsely flagged due to a lack of robustness. Especially if the
time series estimates significantly change when new observations arrive, monitoring results
will be worthless. As will be seen later in Figs. 2.10 and 2.11, some locations and epochs
show very dramatic differences in line of sight displacements making it hard, if not impossible,
to trust a single result for this location. The interpretation of these two graphs would lead to
entirely different conclusions regarding the potential danger of the situation. Consequently,
we can not monitor recursively as the newly added epoch depends on estimates that would
be fundamentally different if processed at a different moment.

Figure 1.2: Monitoring batch result of a quay wall perpendicular to the collapsed quay wall in Fig. 1.1 the city center
of Amsterdam (SkyGeo, 2023). The colored points represent scatterers in Amsterdam with the color indicating the
average displacement velocity. The framework contains a plot showing the behavior of a selected point at a wall
indicated with a marker. The blue dots in the framework represent the displacement estimates and the grey dots
the solutions of plus and minus one ambiguity level. This point shows a strong uplift, though the behavior is
questionable to say the least as following a different solution (grey dots) seems plausible as well.

Currently, several uncertainties surround the issue of robustness in the InSAR time series:
(i) it remains unclear whether this robustness is a genuine problem. We do not know if the es-
timate changes are problematic, and how often they occur. (ii) The different kinds of problems
we run into are not well-defined. Probably, the problems are correlated and not just randomly
occurring. (iii) Equations and methods for detecting and quantifying these problems are un-
determined as little to no research has been performed to quantify the robustness. (iv) The
causes of the problems are unknown, and (v) corresponding solutions to solve these problems
are not researched. These last two issues are inherent to each other as solutions can only
be proposed if the causes of the problems are known. Tackling these uncertainties will be an
essential step toward a robust, reliable, and reproducible result for monitoring purposes.
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1.4. Research goal
While monitoring with the current batch estimation setup is undesirable as it is inefficient, it
is currently unknown whether the displacements are reproducible and robust enough. Thus,
this research aims to gain more insight and make recommendations to avoid these problems.
The main research question within this thesis will be:

How can we assess the robustness of InSAR time series processing?

This main question will be answered with the help of the following sub-questions:

• Whenmeasurement updates arrive, do the InSAR time series parameter estimates change?
If yes, what types of displacement estimate differences occur, and what is their impact?

• How can we quantify the robustness of InSAR displacement estimates?

• What is the cause for these displacement estimate differences?

• What are the requisites to obtain robust displacement estimates for monitoring civil in-
frastructure with InSAR?

In the end, all these questions together should lead to an insight into InSAR time series ro-
bustness and produce a recommendation for future monitoring.

1.5. Outline
The outline will roughly follow the addressed sub-questions which will also be the basis of the
results chapter:

• In Chapter 2, the state of the art will be reviewed to see the current progress in the
CAROLINE project and DePSI. First, some important basics of the DePSI algorithm
will be described. Thereafter, current error types will be shown and hypotheses will be
formulated.

• In Chapter 3, robustness will be defined and corresponding metrics will be developed to
quantify the robustness. Besides, the testing recipe will be explained together with the
graphs to interpret the results.

• Chapter 4 will see the application of the introduced metrics and graphs on the current
DePSI algorithm (zero-state). After the analysis of the zero-state, several recommenda-
tions will be proposed to improve the robustness.

• Chapter 5 covers the result of these proposed improvements in the light of robust moni-
toring.

• Chapter 6 covers the conclusions and recommendations for future InSAR based moni-
toring.





2
Advancements in InSAR time series

Before any conclusions can be made about (the origin of) displacement estimate changes,
we need to understand the underlying algorithm (DePSI) and current CAROLINE progress.
Taking these considerations into account, we can differentiate between various error types
and formulate hypotheses accordingly.

2.1. State of the Art: DePSI
Van Leijen (2014) developed an algorithm that forms the basis of the current displacement
time series estimation in CAROLINE, called DePSI (Delft implementation of Persistent Scat-
terer Interferometry). Displacement time-series are estimated for Point Scatterers (PS) with a
strong and coherent signal showing sufficient consistency in the reflections over time (Ferretti
et al., 2001; Kampes, 2006). The principle of point scattering versus distributed scattering with
concrete examples is depicted in Fig. 2.2. The input consists of several radar images provided
by the user.

DePSI is a complex process well documented by Van Leijen (2014), which will thus not
be discussed entirely in this thesis. Only the crucial steps leading to the phase unwrapping
and the atmospheric delay will be touched upon in this chapter to create a context for robust
displacement estimates and proposed improvements. Fig. 2.1 contains the flowchart of DePSI
with all intermediate steps treated in this section. For extra details and more information, we
refer to Van Leijen (2014).

2.1.1. InSAR basics
All data used in this thesis is obtained from Sentinel-1 satellites. The Sentinel-1 mission origi-
nally contained two polar-orbiting satellites (1A and 1B) and works with C-band radar imaging,
centered around 5.405 GHz (European Space Agency, 2014). This corresponds to a wave-
length of 5.55 cm. The spatial ground resolution is ∼5 m by ∼20 m and the corresponding
pixel spacing is 4 m in azimuth and 13.9 m in range direction. Unfortunately, Sentinel 1B lost
power in December 2021 and was subsequently deemed inoperable (ESA, 2022). For the
Netherlands, this meant the temporal repeat period of Sentinel-1 shifted to 12 days instead of
an observation every 6 days, meaning that scatterers with potential anomalous behavior are
detected with a larger delay.

As observations with radar are from active remote sensing, a complex observation is made
which can be converted to the amplitude 𝐴, indicating the amount of reflection reaching back to
the satellite, and the phase 𝜑, indicating the fraction of a wave returning to the satellite, without
knowing the number of integer wavelengths (Hanssen, 2001). A SAR acquisition consists of

7
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Figure 2.1: DePSI flowchart. Nine modules can be distinguished, indicated by a number. Reoccurring modules
have an additional letter. The standard processing flow is shown in black, optional steps are indicated in gray.
(Van Leijen, 2014, Figure 3.1)
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a regular grid of individual pixels (𝑖), represented in complex form by:

𝑦𝑖 = |𝐴𝑖|𝑒𝑗𝜑𝑖 , (2.1)

where 𝐴𝑖 represents the amplitude and 𝜑𝑖 the phase in the interval [−𝜋,𝜋).

2.1.2. Objective DePSI
The observed phase of one single pixel consists of many different signals. The observed
Single-Look Complex phase, observed as in Eq. (2.1), is given by Hanssen (2001):

𝜑obs = 2𝜋𝑎 + 𝜑2×range + 𝜑atmo + 𝜑scat + 𝜑noise (2.2)

where 𝑎 is the number of full phase cycles or integer ambiguity, 𝜑range the range from the
Eucledian distance the radar signal has to travel, 𝜑atmo the phase due to the atmospheric
delay, 𝜑scat the phase due to scattered signals and 𝜑noise represents the phase due to noise.
A single phase estimate for a pixel is useless in itself as we do not know the exact number
of integer cycles, and 𝜑 is unknown. Thus, we need to work with a relative or interferometric
phase in time and space to achieve sufficient accuracy.

The interferometric phase is the phase difference between the mother image 𝑚 with the
radar image of a subsequent coregistered overpass 𝑑 (daughter) in time. Taking the phase
difference in space between two point scatterers, the reference point 𝑖, and another point 𝑗
leads to the double-differenced phase 𝜑𝑚𝑑𝑖𝑗 (Brouwer et al., 2023):

𝜑𝑚𝑑𝑖𝑗 = 𝜑𝑚𝑑𝑗 − 𝜑𝑚𝑑𝑖 = −2𝜋𝑎𝑚𝑑𝑖𝑗 + 𝜑𝑚𝑑𝑖𝑗,𝐷 + 𝜑𝑚𝑑𝑖𝑗,𝐻 + 𝜑𝑚𝑑𝑖𝑗,𝑆 + 𝜑𝑚𝑑𝑖𝑗,𝑛, (2.3)

where 𝑎 again represents the real number of full-phase cycles, and 𝜑𝐻, 𝜑𝑆, 𝜑𝑛 the phases
due to the height, atmospheric delay, and noise respectively. 𝜑𝐷 is the desired displacement
phase, and the goal of DePSI is to estimate this displacement as accurately as possible.

The PS are linked in time by coregistration. In principle, all daughter images are resampled
such that the pixels in a stack of daughter images cover the same geometry as the mother
image. This stack of interferograms, or simply stack, will be the input for the DePSI algorithm.
Given that the observed phase comprises various distinct components, it is important to cap-
ture all phase constituents correctly. This precision is crucial to capture a final displacement
phase, as any variation in the estimated atmospheric phase e.g. will yield a corresponding
alteration in the estimated displacement phase. The subsequent sections include some pro-
cedures to attain other phase constituents.

2.1.3. PS1 selection
One of the mentioned advantages of monitoring with InSAR is the spatial density of the ob-
servations. However, in certain instances, the coherence of signals from certain pixels may
exhibit temporal inconsistency, or their estimation may lack sufficient certainty, thereby hin-
dering the attainment of a reliable estimate for 𝜑𝑎𝑡𝑚𝑜 and, consequently, the displacement
𝜑𝑚𝑑𝑖𝑗 . We only want to calculate and estimate parameters based on phase measurements of
superior quality, meaning the result of coherent point scattering. Moreover, the drawback of
complex images consisting of billions of pixels is that it poses a challenge to the efficient anal-
ysis of processing steps (Van Leijen, 2014). Therefore, strong and coherent Point Scatterer
(PS) are selected based on their Normalized Amplitude Dispersion (NAD). The NAD (𝐷𝐴), also
referred to as dispersion index is a measure for the phase stability, and is given by Ferretti et
al. (2001):

𝜎𝜓 ≈
𝜎𝐴
𝜇𝐴
≜ 𝐷𝐴, (2.4)
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where 𝜇𝐴 and 𝜎𝐴 represent the mean and standard deviation of the pixel’s amplitude time
series. By employing a threshold, only PS characterized by a notably low NADwill be retained.
For the computation of the atmospheric phase delay, only PS with an arbitrary NAD value
of less than 0.3 are considered. The different scattering and coherence combinations are
shown in Table 2.1. In DePSI, the aim is to use the lowest NADs possible therewith mainly
considering Continously Coherent Point Scatterers. The principle of point scattering versus
distributed scattering is depicted in Fig. 2.2 containing concrete examples.

Table 2.1: Taxonomy of classes of scatterers based on coherence, including their acronyms, and expected nor-
malized amplitude dispersion (NAD), from F. Hu, Wu, et al. (2019)

Continuously Coherent Temporary Coherent Incoherent
Distr.Scat CCDS TCDS IDS

NAD low NAD high NAD medium

Point.Scat CCPS TCPS unlikely
NAD lowest NAD highest
CCS TCS

Figure 2.2: Point scattering versus distributed scattering in case of coherence or incoherence. Top) Scattering
objects within a resolution cell at two acquisitions (indicated by black and gray reflecting objects). A large object
corresponds to a strong reflection, whereas the small objects represent weak reflections. Middle) Phasors for the
two acquisitions (again in black and gray). Bottom) Examples of scattering objects. (Van Leijen, 2014, Figure 2.2)

The selected PS together form a first-order network making them a First-order Point Scat-
terer (PS1). This selection step is represented by ”2 PSC selection” in Fig. 2.1. Later this
PS1 network will be densified by Second-order Point Scatterer (PS2) to obtain a better spatial
resolution.
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Thereafter, a relative radiometric calibration is performed to correct for different factors
such as power loss and sensor differences (Laur et al., 2002). In DePSI, it is chosen to use a
thousand pixels with the lowest amplitude dispersion to perform this calibration. This is needed
to get a fair amplitude comparison for the stable scatterers and avoid other influences such
as moisture differences between the images (Ketelaar, 2009). In this amplitude calibration
algorithm, the calibration factors of 20 subsets, each containing 50 randomly selected points,
are averaged to obtain one calibration value per epoch. After the radar image calibration,
a subselection of PS1 is made to ensure a homogeneous distribution in space using shifted
grids where only the PS with the lowest amplitude dispersion is kept in each grid cell. In the
end, a PS1 network remains where points are connected via arcs. Kampes (2006) developed
an algorithm where the closest neighboring points are connected until each point achieves
a minimal number of connections. These arcs represent the phase difference of one point
relative to a reference epoch and a reference point, and based on this network the phases are
unwrapped and the atmospheric and orbital phase screens are estimated.

2.1.4. Phase unwrapping
After the creation of a network with arcs, the relative phase ambiguities 𝑎𝑚𝑑𝑖𝑗 need to be re-
solved, called phase unwrapping. Some possibly isolated points with limited stable arcs to-
wards other PS1 are removed from the PS1 set, based on the ensemble coherence or variance
factor quality indicator. The phase unwrapping step includes the (topographic) height differ-
ence, mother atmosphere, and displacement between PS1s and is therefore also referred to
as parameter estimation. In DePSI, we choose to first unwrap the phase for each pixel tempo-
rally followed by the spatial unwrapping, see ”3a Network construction” in Fig. 2.1. To reduce
the number of unknown parameters in the phase unwrapping step, functional model assump-
tions are made. The simplest assumption for the displacement 𝐷𝑖,𝑗𝑚𝑑 is given by a steady-state
model:

𝐷𝑖,𝑗𝑚𝑑 = 𝑣𝑖,𝑗(𝑡𝑑 − 𝑡𝑚), (2.5)

where 𝑣𝑖,𝑗 represents the average displacement rate of pixel 𝑗 relative to pixel 𝑖, and 𝑡𝑚, 𝑡𝑑 the
time acquisition of the mother and daughter image. A stochastic model with all parameters is
estimated by a variance component estimation (VCE), where the model gets an update after
the removal of for instance the atmospheric phase screen. Spatially, a testing scheme is used
to detect and adapt or remove incoherent PS1 as ambiguity inconsistencies in the network are
changed until a closing network exists. This step is iteratively applied after the estimation of a
new phase screen as well. The remaining points are subsequently used to spatially detrend
the data caused by orbit inaccuracies.

2.1.5. Network selection
All parameters per arc, apart from the atmospheric phase delay, are estimated after the first
network construction. Using the network of arcs created in section 2.1.3, one can get the
individual estimations per PS relative to a single reference point. This means that the noise
and displacement of the reference PS propagate into all other PS. If not explicitly specified in
the parameter file, DePSI will choose a reference location selecting the PS1 with the highest
temporal coherence. However, using the temporal coherence does not indicate anything of
the displacement behavior of this reference PS.

2.1.6. Atmospheric phase screen
After the estimation of the displacements, height difference, and integer ambiguities, the At-
mospheric Phase Screen (APS) for the PS1 is assumed to be lumped into the sum of the
last two components of Eq. (2.3). These two components need to be disentangled. It is es-
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timated in the fifth module, see Fig. 2.1. The atmosphere causes a phase (delay) difference
between points (locations) and epochs, which needs to be estimated. Thus, this APS needs
to be estimated to obtain the displacement in Eq. (2.3). However, to avoid the leakage of non-
parameterized displacement into the atmosphere estimates, a deterministic low-pass (yearly)
filter is run over the residual phase separating the non-parameterized displacement and APS.
Fig. 2.3 contains an example of an arc where the atmosphere in blue and non-parameterized
displacement in green are separated by the filter from the residual phase in red by means of
a Gaussian window of one year.

Figure 2.3: Seperation of the unmodelled non-parameterized displacement and the atmospheric signal from the
residual phase by means of a low-pass (one-year Gaussian window) filter for a randomly selected PS1 relative to
the reference PS1.

The APS is spatially correlated (Hanssen, 2001) and to make a smooth estimation over
an area a variogram is constructed for each epoch in the stack. Only the PS1s are used as
they appeared to be the most temporally coherent and thus expected to be the most reliable to
base the atmospheric delay upon. The experimental semi-variogram is constructed by using
(Matheron, 1962):

�̂�(ℎ) = 1
2𝑁ℎ

𝑁ℎ
∑
𝑖=1
(𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖))

2 , (2.6)

where 𝑍(𝑥𝑖 + ℎ) and 𝑍(𝑥𝑖) are the atmospheric delay estimations of PS1 at locations 𝑥𝑗 and
𝑥𝑖 at a distance ℎ = |𝑥𝑖 − 𝑥𝑗| apart. 𝑁ℎ represents the number of pairs in bin 𝑁(ℎ).

A function is fitted to these experimental semi-variance observations to obtain a theoret-
ical semi-variogram. Multiple functions exist to describe the experimental semi-variogram,
from which the spherical, exponential, and Gaussian models are the most widely used func-
tions (Oliver & Webster, 2014). From this theoretical semi-variogram, three parameters are
deduced. The nugget, sill, and range describe the variogram’s principal behavior. Fig. 2.4
visualizes a theoretical semi-variogram, indicating the meaning of the nugget, sill, and range
parameter. The nugget describes the initial uncertainty in the data or measurement errors,
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the sill indicates the value at which the semi-variogram levels out, and the range describes
the distances to which sample locations are spatially correlated.

In summary, the atmospheric estimation process involves numerous parameters and choices,
by which the displacement estimates are directly influenced if these change. The Atmospheric
Phase Screen can then be estimated for all second-order PS (PS2) by means of interpolation
using a Kriging method to densify the network and get a better spatial resolution for monitoring.

Figure 2.4: Schematic example of a theoretical semi-variogram fit, indicating the meaning of the nugget, sill, and
range parameter (De Doncker et al., 2006, Figure 2).

2.2. Current CAROLINE progress
In the current progress for CAROLINE, the idea is to automatically process a 1 by 1 km re-
gion over Amsterdam by the DePSI algorithm for every Sentinel 1 track passing by. Every 12
days (current Sentinel-1 repeat period), a new image arrives for the same track. When a new
satellite image is acquired, DePSI will be run with all collected radar images. This means that
we start again from scratch, disregarding the phase estimates in the previous time series con-
struction. With that, a new time series is estimated where all corresponding parameters such
as the height, velocity, and atmospheric delay are re-estimated. Fig. 2.5a shows a screenshot
of the principal layout in the CAROLINE portal. On the left-hand side of the map, a drop-down
menu with all batch estimated solutions from 4 different tracks. These individually processed
stacks can be selected based on the date of addition to the portal. For each processing, dots
appear in space representing the estimated linear displacement in mm/year of a single PS.
Selecting a point (dot) of interest, given the linear displacement rate, will show the brute forced
time series of that particular PS, see Fig. 2.5b.

2.2.1. Schematic measurement updates
As mentioned in the problem statement, the literature contains no well-defined robustness
tests to quantify the InSAR displacement results. While the batch estimation method may
not represent the ultimate desired approach for monitoring due to its inefficiency and incon-
venience, it serves as a valuable means to evaluate the extent of change in displacement
estimation. Consequently, we will compare distinct batches of estimated results, as schemat-
ically illustrated in Fig. 2.6. The different solutions for the displacement estimates, after a
measurement update, can be compared by linking the location in the radar image.

In the flat plane (top layer), we visualize the space-time matrix, with ’space’ as rows, where
each row represents a point scatterer (ten example PS in this case), and ’time’ as columns,
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(a)

(b)

Figure 2.5: Screenshot of the starting view in the CAROLINE portal (a) and an example of a time series when
selecting a point scatterer (b).
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where each column corresponds to an acquisition/epoch. The top layer represents estimates
for all epochs calculated after acquisition seven but before acquisition eight. In the second,
underlying layer, we see the same space-time matrix: obtained after epoch eight but before
epoch nine. This way, we sequentially create new space-time matrices, represented as layers
in Fig. 2.6, with the majority of elements sharing the same parameter estimate (the displace-
ment of point x at epoch t). The only difference between the different layers is that the esti-
mates are based on a different number of input acquisitions. This number of input acquisitions
is referred to as realizations. For example, realization eight is the space-time matrix obtained
based on all acquisitions up to and including acquisition eight.

Figure 2.6: Schematic overview of several used terms. A red square indicates a high displacement value and a
blue square a low value for all epochs included in ten conjunct example Point Scatterers (PS). With every new
realization, a new epoch is included as a new satellite overpassed.

In Fig. 2.6, a red square signifies a positive displacement value (moving away from the
satellite), and a blue square a negative value for that particular PS and that particular epoch.
Each new realization comes with a new epoch as a new satellite is overpassed. To enable a
meaningful comparison between realizations, only those PS that are common between real-
izations will be considered.

So, realization eight and realization ten contain estimates of the same parameters for
epochs one through eight. Ideally, adding new epochs (i.e., SAR acquisitions nine and ten)
should make little difference to the estimates of those earlier epochs (1-8). However, because
the solutions are performed ’in batch’, it may be possible that this is not the case. Therefore,
we consider the differences between (the conjunct part of) epochs one to eight as a metric for
the robustness of the estimation. If adding a new SAR acquisition, say acquisition 100, will
cause significant changes in the estimated parameters compared to the estimated parameters
from realization 99, that would be an indication of poor robustness.

Subsequently, we can take the conjunct part of two runs and take the difference between
the two displacement matrices to obtain a Differential Space-Time Matrix (ΔSTM). An example
of the construction of a Differential Space-Time Matrix is schematically shown in Fig. 2.7.
Realization 𝑁 is subtracted from realization 𝑁−1 to obtain ΔSTM𝑁,𝑁−1 with 𝑁−1 overlapping
acquistions.
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Figure 2.7: Schematic representation of the calculation of a Differential Space-Time Matrix. A red square indicates
a high displacement value and a blue square a low value for all epochs included in ten conjunct example Point
Scatterers (PS). The two top layers (realization 7 and 8) are the batch estimated results obtained when using 7
and 8 SAR acquisitions respectively.



2.2. Current CAROLINE progress 17

2.2.2. Real case measurement updates
The current CAROLINE measurement updates also rely on this batch estimating procedure.
All phase estimations (such as atmospheric and topographic corrections) are redone once a
new image arrives, meaning the displacement estimates may change as well. Thus, we can
evaluate the robustness of this real case simulation. At first sight, the time series from Fig. 2.5b
looks plausible as there appears to be a clear signal. However, based on this visualization of
the time series containing 140 acquisitions it is impossible to judge how robust the estimates
are for the displacement. To check the stability of the estimates, these displacement estimates
can be compared with the results for the batch estimation processing after the next satellite
overpass some 12 days later with 141 acquisitions. Now, two realizations from the current
CAROLINE output are used to create a real case ΔSTM using realizations 140 and 141. The
entire DePSI process, starting from obtaining a new acquisition to the displacement estimates
(realization), will be referred to as a run.

Fig. 2.8 shows a schematic representation of the output obtained from a DePSI run. There
are three main parts. The yellow part contains the main PS-specific information. Table 2.2
shows an elaborated example of the DePSI output for the yellow part of an example PS. This
information comprises the location parameters in WGS84, the pixel location in the image,
linear deformation rate, spatial-temporal consistency, and coherence. The spatial-temporal
consistency is a quality indicator comparing PS behavior in space and time with surrounding
PS (Hanssen et al., 2008).

The green and blue parts of Fig. 2.8 contain the displacement and atmosphere estima-
tion for each epoch. Table 2.3 shows an example of the displacement estimates output from
DePSI. The same exists for the atmospheric delay estimates. We can extract the displace-
ment data from the tabular format and organize it into a matrix resulting in a Space-Time
Matrix. Here, time is represented along the horizontal axis and space along the vertical axis,
see Fig. 2.6. Based on the PS Range and Azimuth value in the image, the Space-Time Matri-
ces of two realizations are linked and a ΔSTM of the conjunct part can be constructed. Note
that we take the absolute value of the differences since negative or positive differences are
equally important.

Figure 2.8: Schematic representation of the output from DePSI. The first yellow part contains the PS-specific
information such as location and coherence. Thereafter, the green and blue parts contain the displacement and
atmosphere estimates for all epochs 1 to N. Every row contains the information of one Point Scatterer.
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Table 2.2: PS-specific output for an example PS.

ID Lat [deg] Lon [deg] Height [m] Azimuth Range Defo [mm/y] STC [mm] Coh

PS #1 52.266∘ 4.899∘ 50.50 m 1 182 1.13 mm/y 2.30 mm 0.906

Table 2.3: Example DePSI displacement output for the first three Point Scatterers.

ID Displacements [mm]
1-Mar-’20 7-Mar-’20 ... 2-Feb-’23

PS #1 0 −1.61 ⋯ −1.66
PS #2 0 −3.55 ⋯ −3.30
PS #3 0 −0.19 ⋯ 0.59

2.2.3. Deviation types
A visualization of the ΔSTM can be generated, as depicted in Fig. 2.9. This ΔSTM contains
around 13500 points (rows, example in a horizontally shaped rectangle) conjunct in both re-
alizations and 140 epochs (columns, example in a vertically shaped rectangle). Thus in total,
there are almost two million conjunct estimates between realization 141 and realization 140. It
is important to note that this matrix represents a simple time series difference on a single row,
but now for all locations with a shared azimuth and range coordinate in the two datasets. The
heatmap visualization has a logarithmic color scale, ranging from an insignificant difference
(0.01 mm) to exactly one ambiguity level (27.7 mm in the case of the Sentinel-1 mission) to
clearly discriminate between both small as well as large differences. This matrix will be noted
as ΔSTM𝑦,𝑥 where 𝑦 and 𝑥 represent the number of acquisitions as input in the two realiza-
tions. As the matrix in Fig. 2.9 represents the double differenced difference between stacks
with 141 and 140 acquisitions, it is denoted by ΔSTM141,140.

The displacement differences in Fig. 2.9 are not randomly spread over the Point Scat-
terer and epochs, but contain a pattern. Therefore, we define four ’deviation’ categories to
be able to group the differences. Table 2.4 shows the four categories, separating short-term
and long-term, and localized and area-wide deviations., Three of these deviations are clearly
distinguishable in the ΔSTM141,140, indicated by the green rectangles. Fig. 2.9 contains (i) sev-
eral horizontal white lines, highlighting a Localized Long-Term Deviation, (ii) incidental white
stripes within a horizontal line, highlighting a LSTD, and (iii) clearly correlated vertical bands
with higher values on certain epochs, highlighting an Area-Wide Short-Term Deviation. The
fourth and last deviation category that is not visible in this figure is the Area-Wide Long-Term
Deviation. This deviation type can occur as will be elaborated in the section 2.2.4. To keep an
overview of the deviations and their hypotheses, a schematic chart has been made in Fig. 4.8.

Table 2.4: Classes of displacement estimate deviations possibly present comparing two batch estimated realiza-
tions.

Short-term deviations Long-term deviations
(single epoch)

Localized deviations LSTD LLTD
(single scatterer)
Area-wide deviations AWSTD AWLTD
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Figure 2.9: Visualization of the absolute Δ𝑆𝑇𝑀141,140 obtained from comparing the same PS in two different re-
alizations 140 and 141. The horizontal axis contains the epoch date, starting from the 1st of March 2020 and
the vertical axis represents an arbitrary point number. The green rectangles highlight three of the four deviation
categories. The heatmap has a logarithmic color scale, ranging from an insignificant difference (0.01 mm) to one
ambiguity level (27.8 mm).
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Localized Long-Term Deviation
The first category of deviations is the Localized Long-Term Deviation illustrated as a horizontal
white stripe and highlighted by green rectangle I in Fig. 2.9. Within this main category, we
distinguish two subtypes. Firstly, we have the distinct horizontal white lines indicating that two
totally different displacement time series were estimated, even though the difference was just
one acquisition extra. Since the influence of a single additional acquisition is so significant,
this is a clear indication of (a lack of) robustness. Secondly, ΔSTM141,140 shows, brighter
values that are horizontally correlated. These are deviations with a relatively small value, and
because they are only significantly occurring at PS containing a white incidental stripe, they
will be focussed upon in the next subsection of the Localized Short-Term Deviation.

The most severe deviation category consists of three further distinct types of deviations.
In Fig. 2.10, an example of such a Point Scatterer appearing as a white line in ΔSTM141,140 is
shown. The result is substantial as the final displacement estimates of current dates differ over
150mm, meaning that all parameters such as the velocity completely changed, while it ought to
cover the same information. However, a closer examination of the displacement difference plot
on the right in Fig. 2.10 suggests that the initial received phases were not significantly different,
but the unwrapping changed. As the plot transitions between instances of integer ambiguities,
variations in the phase unwrapping result in an upward trend rather than a downward one.
Therefore, this deviation type is denoted as ambiguous drift. Undoubtedly, both solutions lead
to a different conclusion when assessing the behavior of the PS. Such discrepancies can lead
to a lack of trust among possible users of monitoring software as locations are falsely flagged
or not identified as potentially dangerous.

Figure 2.10: Example of a PS containing large displacement estimate differences inΔSTM141,140 of type ambiguous
drift. The left plot shows both time series together with their ambiguities. The difference in line of sight displacement
of these time series is plotted on the right.

The second type of LLTD is the consequent ambiguity. Fig. 2.11 contains an example of
a PS that very quickly made one different integer ambiguity choice and almost consequently
stays one ambiguity apart. For this deviation type, the estimated velocities and other param-
eters will be different as well.

The third and last severe LLTD type is the uncorrelated difference, see Fig. 2.12. In this
graph, we see a very dynamic PS in both time series with differences that fluctuate tens of
millimeters over time. As both time series seem to have little resemblance, one could have
low confidence in the monitoring results for this particular location.
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Figure 2.11: Example of a point scatterer containing large displacement estimate differences in ΔSTM141,140 of
type consequent ambiguity. The left plot shows both time series together with their ambiguities. The difference in
line of sight displacement of these time series is plotted on the right.

Figure 2.12: Example of a point scatterer containing large displacement estimate differences in ΔSTM141,140 of
type uncorrelated difference. The left plot shows both time series together with their ambiguities. The difference
in line of sight displacement of these time series is plotted on the right.
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Localized Short-Term Deviation
The second deviation category is the Localized Short-Term Deviation. This category is domi-
nated by incidental ambiguity slips that frequently occur, looking at the incidental white stripes
in the ΔSTM141,140 heatmap, exemplified green circles II in Fig. 2.9. In Fig. 2.13, an exam-
ple of such a PS with a localized short-term deviation is depicted. Across all epochs, the
differences between the two estimated displacement time series are within 1 mm. However,
one single displacement phase unwrapped differently even though this epoch was almost 2
years before the measurement update. These localized incidental ambiguities often occur in
the last few epochs as well. This implies that monitoring based on instantaneous velocities
over the last month (5 measurements), for instance, would yield different conclusions. More-
over, it suggests that the solution for some epochs is precarious, as it almost always coincides
with a moderate Localized Long-Term Deviation complicating the determination of the correct
solution.

Figure 2.13: Example of a point scatterer containing a localized short-term deviation. The left plot shows both
estimated displacement time series together with their ambiguities. The difference in line of sight displacement of
these time series is plotted on the right.

Area-Wide Short-Term Deviation
The third deviation category is the effect of Area-Wide Short-Term Deviation. Some epochs
significantly underperform compared to the other dates, see the brighter column in Fig. 2.9
indicated by green rectangle III. In this case, the overall or instant velocities are not affected
severely, meaning that a monitoring interpretation will likely not change. Still, it remains odd
that adding the radar acquisition on 14 February 2023 (number 141 in the stack) mostly affects
the displacement estimates of 18 May 2020, see an example in Fig. 2.14. Moreover, this could
again lead to for instance different instant velocities if these anomalies occur more to the end
of the stack. Besides, it could lead to people questioning the reliability of the results as it keeps
changing the results on dates over one year ago.

Area-Wide Long-Term Deviation
The last deviation category is the effect of Area-Wide Long-Term Deviation. This phenomenon
was not visible in Fig. 2.9, but could occur if the mother (reference) acquisition or reference
location changes. section Section 2.2.4 will elaborate on this last specific case.
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Figure 2.14: Example of a point scatterer containing Area-Wide Short-Term Deviation. The left plot shows both
estimated displacement time series together in one plot. The difference in line of sight displacement of these time
series is plotted on the right.

2.2.4. Hypothesis deviation types
As the algorithm to produce these results was identical for both runs, each of these deviation
types is a direct consequence of (choices within) the algorithm. There are many estimated
parameters and variables during the process, thereby leading to multiple hypotheses causing
the deviations.

Localized Long-Term Deviation
First of all, the ambiguity differences will most likely be caused by the phase unwrapping step of
section 2.1.4. The first two subtypes of LLTD are caused by temporal unwrapping. In the case
of the ambiguous drift, the estimated deformation rate is entirely different, working through to
the temporal unwrapping. This could be caused by the limited initialized displacement model
assumption that was identical in both runs. A different initial displacement model with for
instance a seasonal signal will cause a different interpretation of the integer ambiguities and
could thus provide more robustness.

A consequent ambiguity could originate from the same displacement velocity uncertainty
or could be caused by a slightly different estimation of the other parameters such as the APS.

The uncorrelated difference on the other hand is believed not to be caused by specific
choices in the algorithm. As there seems to be very little correlation between the two time se-
ries in terms of phase cycles, this phenomenon will not be triggered by the phase unwrapping
step. The question is whether these are the points that have a high NAD value (low quality)
anyway. Looking at the PS around this devious location it can not be due to the estimation of
the APS as well. A possible solution could be that the pixel just underwent some change. As
we are performing an analysis right over an urban environment it is not unthinkable that the
real situation changed by means of construction or other urban developments.

Localized Short-Term Deviation
Looking at the Localized Short-Term Deviation in ΔSTM141,140 (Fig. 2.9), we see that the oc-
currence of this deviation is correlated in time. A large portion of the slips seem to occur in
the last 20 epochs indicating that it is often caused by a phenomenon mostly adjusting later
epochs. This hints at a difference in the separation of the non-linear displacement from the
atmospheric signal, see section 2.1.6. The addition of acquisition 141 to the stack may cause
the non-linear displacement to be estimated differently, potentially leading the algorithm to
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make a different unwrapping decision in those PS that are close to being unwrapped differ-
ently. Furthermore, moderate Localized Long-Term Deviations are (almost) only occurring in
combination with an incidental ambiguity. This can be explained as an ambiguous measure-
ment has a large effect on the estimation of other parameters as the velocity, atmosphere, and
estimated height are all influenced causing a significant change in all other epochs other than
the incidental ambiguity. If this happens at some location it could impact some other PS as
well during the spatial unwrapping procedure. This needs to be further investigated in Chapter
3.

Area-Wide Short-Term Deviation
In the Area-Wide Short-Term Deviation such as previously highlighted by green rectangle III,
we see significantly higher area-wide differences over all PS compared to other epochs. This
leads to the belief that there might be some spatial correlation in displacement deviations. The
differential displacement of this epoch is depicted in Fig. 2.15 (column in the Δ𝑆𝑇𝑀141,140). The
colored points represent all conjunct PS2 locations in the two realizations, with the color scale
indicating the Δ𝑆𝑇𝑀141,140 value on that location for 24 May 2020. The larger green and black
dots are the locations of the PS1 in both realizations. There are only two locations differing,
indicated by the arrows. Fig. 2.15 shows that the displacement differences are without doubt
spatially correlated. There seems to be a smooth signal that is forced through the PS1. Look-
ing at this signal, it is almost certainly related to the interpolation parameters obtained from
the semi-variogram during the APS estimation, as touched upon in section 2.1.6.

Figure 2.15: Difference in displacement estimates on 24 May 2020 comparing results from realization 140 and
141. The horizontal axis contains the azimuth number and the range number. The circles are the locations of the
PS1 and the arrows a different psc location. The spatial trend is clearly centered around these PS1 locations.

The total measured phase consists of various factors that need to be estimated to arrive
at a displacement phase, see Eq. (2.3). A change in atmospheric phase estimates directly
propagates to the displacement estimates. To investigate the underlying cause of the spa-
tial pattern, the intermediate atmospheric output is examined. The difference in atmospheric
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phase estimation of the two independent realizations is shown with the help of an Differential
Atmospheric Space-Time Matrix (ΔASTM141,140), which contains the same information as the
ΔSTM141,140 but then only for the atmospheric delay estimates. In Fig. 2.17 the ΔASTM141,140
is visualized in the same way as the ΔSTM141,140 and comparing this figure to Fig. 2.9, we can
state that the area-wide differences one epoch indicated by a green rectangle in the ΔSTM
visible in the ΔASTM as well indicated by the green rectangles.

A significantly changing atmospheric estimation of a date two years prior to the processing
date is, to say the least, unusual. Given that the APS estimation involves multiple steps, we
can formulate various hypotheses. Fig. 2.16 shows an overview of the main steps possibly
influencing the estimates of the APS, starting from a new SAR acquisition going through the
steps towards an atmosphere estimation. First, the addition of a new acquisition changes all
amplitude dispersions as an extra amplitude value is added to the time series. These changes
in NAD per PS lead to a possibly different set of PS1, and the estimated atmospheric phase
delay might change for the already existing locations as other parameters such as the velocity
and non-parameterized displacement have changed in the new batch estimated solution. A
new set of PS1 or new delay values cause a change in the experimental semi-variogram
of each atmosphere. Subsequently, different interpolation parameters are obtained from a
theoretical fit to the semi-variogram leading to a different interpolation when estimating the
delay for PS2. In the end, one new amplitude for a newly acquired acquisition can lead to
larger consequences during the estimation process.

Figure 2.16: Overview of the main flow of from the addition of an acquisition leading to changes in the APS
estimates. The top arrows describe the main concept flow supported by an explanation in the bracket below the
arrow.

One of the intermediate steps can not robustly withstand new input changes and the ex-
perimental semi-variogram is a possible explanation. Oliver & Webster (2015) conducted an
experiment comparing an experimental semi-variogram computed from data at 434 sampling
locations with 87 locations. Their findings demonstrated that the parameters derived from a
theoretical fit are unreliable for sparse datasets. In our case, with only 78 locations used for
constructing the experimental semi-variogram, a similar situation arises. This implies that the
obtained atmospheric interpolation estimates are not robust enough for monitoring purposes.

The range represents the distance from which two points are spatially uncorrelated. Look-
ing at the intermediate DePSI outcomes, we see that the range is sometimes taken as just
tens of meters. However, previous studies showed a correlation of several hundreds of kilo-
meters for the atmospheric delay (Li et al., 2019), which means that a range of less than 100
m is implausible. The same applies to the nugget and sill parameters. An implausible nugget
value could erroneously compel the smooth signal to assume the exact value at a PS1 location
as is probably the cause for the spatial pattern in Fig. 2.15.

Fig. 2.18 supports this hypothesis, while we can see the relation between the AWSTDs
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Figure 2.17: Absolute difference in estimated atmospheric delay of conjunct measurements from two realizations
140 and 141. The horizontal axis contains the date, starting from the 1st of March 2020 and the vertical axis rep-
resents an arbitrary point number (location). The green rectangles indicate the two most colorful epochs marking
two occurrences of Area-Wide Short-Term Deviations.
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from Δ𝑆𝑇𝑀141,140 (higher red dots) and the difference in nugget estimation between the two
realizations (blue vs. yellow line). As the location and the input value of PS1 are slightly
different, the atmospheric signal is modeled differently. The following changes in estimated
range and nugget are such large, the APS of PS2 will be sensitive to the kriging parameter
differences. In this case, the nugget estimated for a date in May 2020 changes from 𝒪 (10−3)
to 𝒪 (10−1). Not only slightly altered input values can pose a problem for the atmospheric
estimates. A change in PS1 locations could alter the atmospheric results even more as the
whole network and thus the experimental semi-variogram will be different. To get a better
feeling for the Kriging process, the atmospheric parameters will be extensively researched in
section 4.2.

Figure 2.18: Nugget values of the realizations 140 in blue and 141 in yellow together with the median estimated
displacement difference per epoch. The blue and yellow lines are almost identical apart from two epochs in May
2020 and Oct 2020. These epochs are in correspondence with the occurrence of the largest median estimated
displacement difference in red.

It could be thought that the AWSTDs are just a result of a more dynamic atmosphere on that
date which could be harder to capture correctly. However, repeating the analysis for the same
track using two different stacks, such as utilizing the time series from analysis ΔSTM131,130,
results in dissimilar epochs showing large differences. This indicates that the epochs found in
ΔSTM141,140 are not structurally more prone to atmosphere delays, but are incidents.

As previously mentioned, one of the possible causes for a change in APS estimation is a
change in PS1 locations. Fig. 2.19 shows the PS1 locations for three realizations (one extra
epoch per run). On some occasions, the coordinate of a PS1 just shifted slightly in azimuth or
range compared to the previous realization as can be seen at coordinate (32,58/59). It could
be the case that this location is a result of strong scattering from the same point as the area
from which information is received is larger than the actual pixel size. However, 2.20 shows
an example of the neighboring (1 azimuth difference) PS1 across two realizations, where the
amplitude signal is not coming from an identical scatterer. Looking at multiple amplitude time
series of neighboring locations it rejects this hypothesis of leaking. The choice for a different
location is also not driven by a different calibration time series as they do not differ significantly
as depicted in the right plot of Fig. 2.20. For this number of radar acquisitions in the processing,
a new overpass changes the amplitude dispersion in such a way that there is just a different
location with the lowest amplitude dispersion within a grid cell.
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Figure 2.19: Location of the first-order PS obtained processing three consecutive realizations 32, 33, and 34. Most
of the locations coincide, though a few slightly differ or do not appear at all in the different realizations.

Figure 2.20: Amplitude time series (left) and the corresponding calibration factors (right) for two psc coordinates
from a run of two neighboring PS1 in two different realizations. As the amplitude series do not contain the same
signal, it is very unlikely that they are coming from the same scatterer.
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Area-Wide Long-Term Deviation
The deviation category not visually apparent in the analyzed ΔSTM is the Area-Wide Long-
Term Deviation. However, the selection of a reference point will appear to cause overall dis-
placement differences mainly shorter stacks. All final displacement estimates are linked to
one single reference point as described in section 2.1.5. This means that all remaining dis-
placement artifacts in this reference point are propagated to all other displacement results.
Changing to another reference will thus influence all displacement estimates. The locations
of the reference point are shown to change a lot over the realizations 5 to 100, indicated by
Fig. A.1 with the locations and number of times that certain locations have been used as ref-
erence. The more acquisitions in a realization, the less often the reference location changes.
The changing reference can explain displacement deviations when visualizing a Differential
Space-Time Matrix as a different reference behavior translates to all PS.

Impact of unrepeatability
In the amplitude calibration process explained in section 2.1.3, the random function causes an
unrepeatable result primarily affecting shorter (fewer acquisitions) stacks. Since the calibration
values differ slightly due to this randomness when rerunning DePSI with the same input, other
PS are present in the first-order network. To investigate the direct impact, DePSI has been
performed three times with the same number of acquisitions, e.g. three times realization 32,
while changing nothing to the algorithm. Fig. 2.21 shows the locations of the three PS1 sets in
realization 32. It can be observed that the same acquisition stack as input does not lead to the
same result as the selection of PS1 differs, though only in 3 locations. While only one to three
locations differ from roughly 90 locations, one would not expect a significantly different result
in the atmospheric estimates. In Fig. 2.22 the atmospheric estimate differences are shown in a
ΔASTM32,32 for run versions 2 and 3 (only one different location). Clearly, the interpretation of
the atmospheric estimates on some epochs is affected severely, and with it the displacement
results as well.

Figure 2.21: Location of the first-order PS obtained from three runs on the same stack of acquisitions. Due to a
random function, different PS1 are selected while nothing changes in the input.

Unrepeatability is undesirable for monitoring purposes, thus a different method is needed
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for the amplitude calibration. Therefore, we choose to take fifty PS evenly with equal integer
step sizes apart from each other. This ensures a spread over the region and gives the same
result once one decides to rerun the process. Because repeatability is such a vital condition for
monitoring and our analysis, this measure is the only measure set up front for further analysis
in Chapter 4.

Figure 2.22: Difference in atmospheric estimates between two realizations having exactly the same input. How-
ever, randomness in the calibration step caused one PS1 to be different, already impacting the APS estimation.



3
Metrics Definition and Robustness Test

Recipe

To evaluate the robustness of the current algorithm, it is essential to employ metrics that can
effectively quantify and express the results. The visualizations created for ΔSTM and ΔASTM
serve as examples to visualize and weigh the displacement estimates. In the upcoming sec-
tion, the concept of robustness will be elaborated upon, followed by an introduction to the
metrics employed for quantifying this characteristic. Subsequently, a test recipe and output
graphs will be presented to facilitate the quantification, visualization, and interpretation of the
robustness. Lastly, the areas of interest will be introduced to provide context for the processed
outcomes.

3.1. Robustness
Robustness can be a bit of a vague concept and as robustness analyses are very context-
specific, wewill define the term inmore detail. In a scientific context, robustness can be defined
as the degree to which an estimator is resistant to perturbation and variations in the input
variables or conditions (Hampel, 1971). Besides, it gives a good indication that the obtained
parameter estimates are not overly dependent on specific assumptions, or constant conditions.
There are many assumptions or conditions that influence the outcome of DePSI. We primarily
center the attention on six conditions that have arisen as significant factors from Chapter 2.
The location of the reference point, the PS1 locations, atmosphere (Kriging) parameters, initial
displacement model, PS threshold, and the input radar acquisitions.

In the context of the monitoring with InSAR, we define robustness as the sensitivity to
the addition of one (or more) extra acquisition(s) for the displacement results of previously
estimated epochs. Robust results, in this context, imply an algorithm or process that mini-
mizes significant alterations to previously estimated displacements or other parameters when
integrating a new acquisition into the existing stack. The objective is to maintain stability in
previously derived results while still ensuring accuracy in the updated outcomes.

3.1.1. Robustness: Quantification
To comprehensively assess the displacement estimates, their robustness will be quantified us-
ing. Given that the three distinct error types cannot be adequately captured by a single metric,
this quantification approach involves the use of three core statistics. These statistics will be
further elaborated upon in the following subsection, resulting in a robustness vector with three
values for a single robustness test. Additionally, these core statistics will be complemented by
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additional metrics to provide a more comprehensive depiction of the three primary robustness
quantifiers. The algorithm will be tested by comparing all estimated displacement parameters
acquired. Comparing realization 𝑁 versus the independent preceding realization 𝑁 − 1. Re-
alization 𝑁 means there were 𝑁 SAR acquisitions in the DePSI stack input. The number of
conjunct point scatterers between two realizations is denoted by 𝑛𝑃𝑆,𝑥 with 𝑥 conjunct corre-
sponding epochs.

3.1.2. Robustness: Metrics
Statistics or metrics are needed to quantify the dissimilarities in the displacement estimates
from different realizations. With those statistics, one could see the development of the robust-
ness over the number of acquisitions in a realization. Adding a new acquisition to an existing
realization is expected to have less impact on the parameter estimates once the stack is al-
ready more numerous, while relatively less new information is added to better estimate the
APS for instance. In Fig. 3.2, an example of a conjunct PS in two realizations is given. Fol-
lowing the introduction of a statistic or metric, reference will be made to this figure to elucidate
its contribution to a metric. This will give a feeling for the introduced metric.

The following statistics are going to be used throughout this thesis, where the first three
statistics form the robustness vector:

1. Fraction of points and measurements containing an ambiguous cycle difference
By quantifying the magnitude of the displacement difference between realization 𝑁 and
𝑁 − 1 at successive (incremental) epochs, one can detect the occurrence of an ambi-
guity difference, or cycle slip, between two time series. This step size or Incremental
Displacement Difference (𝐼𝐷𝐷) is calculated by:

𝐼𝐷𝐷𝑠𝑖 = |Δ𝑆𝑇𝑀𝑠
𝑖 − Δ𝑆𝑇𝑀𝑡

𝑖 | , (3.1)

where 𝑠 ∈ [0, 𝑁 − 2] and 𝑡 ∈ [1, 𝑁 − 1] indicate the epochs and Δ𝑆𝑇𝑀𝑖 the displacement
difference time series of a certain PS 𝑖. Fig. 3.1 shows an example for the construction
of the IDD using the schematic Δ𝑆𝑇𝑀8,7 from Fig. 2.7.
One could argue that a displacement difference larger than an ambiguous cycle (∼28
mm) is sufficient to detect cycle slips. However, this would not lead to the desired cycle
slip detection. To grasp the rationale behind this we revisit Fig. 2.11. Here, the dis-
placement on the third epoch was unwrapped differently. Thereafter, the displacement
estimates almost behaved identically. Simply using a boundary for the displacement
difference would flag almost all epochs, but this limits our information about the actual
occurrence of the cycle slip. Thus, it is chosen to look at this IDD to identify localized
short-term cycle slips.
With the incremental displacement differences, the cycle slips (𝐼𝐷𝐷𝑠𝑖 > 20 𝑚𝑚) are
counted and divided by the total number of points (𝑛𝑃𝑆) and incremental epochs (𝑥 − 1)
in realization comparison 𝑥 to get a quantitative idea of the localized short-term cycle
slips. Thus the Fraction of Ambiguous Measurements is given by:

𝐹𝐴𝑀𝑥 =
∑𝑛𝑃𝑆,𝑥𝑖=1 ∑𝑥−1𝑠=1 (𝐼𝐷𝐷𝑠𝑖 > 20)

(𝑥 − 1) × 𝑛𝑃𝑆,𝑥
, (3.2)

where 𝑥 represents the used realizations in the comparison (𝑁,𝑁 − 1), and 𝐼𝐷𝐷𝑠𝑖 the
absolute incremental displacement difference from epoch 𝑠 and for PS 𝑖. In Fig. 3.2,
the 𝐹𝐴𝑀100,99 would be 6/98 as there is a jump 6 times of the incremental displacement
estimates. The threshold value for identifying a cycle slip is set at 20 mm, rather than
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Figure 3.1: Schematic representation of the calculation of a Incremental Displacement Difference (bottom layer).
A red square indicates a high value and a blue square a low value for all epochs included in ten conjunct example
Point Scatterers (PS). The two top layers are the same ΔSTM8,7 but shifted one epoch apart.
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exactly at 27.7 mm directly as there are still other parameter estimations that cause a
difference. This could cause a different unwrapping to end up slightly below half a phase
length.
Instead of looking at cycle slips per measurement, we are interested in how many PS
contain at least one cycle slip. This leads to the definition of the Fraction of Localized
Short-Term Ambiguities:

𝐹𝐿𝑆𝑇𝐴𝑥 =
∑𝑛𝑃𝑆,𝑥𝑖=1 (𝐼𝐷𝐷𝑎𝑛𝑦𝑖 > 20)

𝑛𝑃𝑆,𝑥
, (3.3)

where 𝑥 represents the number of overlapping acquisitions in the comparison (𝑁,𝑁−1),
and 𝐼𝐷𝐷𝑎𝑛𝑦𝑖 the absolute incremental displacement difference from any epoch for PS 𝑖.
The example PS would thus count 1/1 in Fig. 3.2.

2. Fraction of points containing a long-term ambiguity difference
This statistic focuses more on the points where cycle slips are not incidents, the previ-
ously called localized long-term cycle slips. A PS is marked as a long-term cycle slip if
the median estimated displacement difference lies above one ambiguity level (27.7 mm).
The equation for this Fraction of Localized Long-Term Ambiguities (FLLTA) is thus:

𝐹𝐿𝐿𝑇𝐴𝑥 =
∑𝑛𝑃𝑆,𝑥𝑖=1 (median|Δ𝑆𝑇𝑀𝑖,𝑡

𝑥 | > 27.7)
𝑛𝑃𝑆,𝑥

, (3.4)

where 𝑥 represents the number of overlapping acquisitions in the comparison (𝑁,𝑁−1),
and Δ𝑆𝑇𝑀𝑖,𝑡

𝑥 the displacement difference of PS 𝑖 on epoch 𝑡. The PS in Fig. 3.2 has
a median that clearly lies below the 27.7 mm and therefore this example PS will have
contributed 0 out of 1 to the 𝐹𝐿𝐿𝑇𝐴.

3. Root Mean Squared Difference
The last statistic calculates the overall PS performance comparing realization 𝑁 with
𝑁−1, excluding the cycle slips. This is to avoid a low robustness bias to more numerous
stacks as the cycle slips dominate the statistic. Besides, they have already been ade-
quately addressed by the previous two metrics. The root-mean-squared error (RMSE)
is a well-established statistic to assess the performance of an algorithm, comparing es-
timates with a truth. Moreover, the statistic is also used to test an algorithm in terms of
robustness and sensitivity (Saha et al., 2014). There has been a debate on the use of
the mean absolute error (MAE) over the RMSE, but Hodson (2022) shows that RMSE
is optimal for normally distributed errors. The displacement differences mostly follow a
Gaussian distribution and therefore justify the use of the RMSE. In this case, we look at
differences instead of errors and therefore we define the statistic as Root Mean Squared
Difference (RMSD). The RMSD is defined as:

𝑅𝑀𝑆𝐷𝑁,𝑁−1 =
1
𝑥

𝑥

∑
𝑡=1

√
𝑛𝑝𝑠
∑
𝑖=1
(𝜑𝑁𝑖 − 𝜑𝑁−1𝑖 )2𝑡

𝑛𝑃𝑆
=
tr(√𝐴

𝑇𝐴
𝑛𝑝𝑠
)

𝑥 , (3.5)

where𝜑𝑁𝑖 represents the displacement phase of a single PS from realization N at location
𝑖 on epoch 𝑡, 𝑥 represents the number of conjuct epochs and 𝑛𝑃𝑆 the total number of
conjunct non-ambigous PS. This formula can be simplified by taking the trace of 𝐴𝑇𝐴,
where matrix 𝐴 represents our (𝑛𝑃𝑆×𝑥) Δ𝑆𝑇𝑀𝑥 matrix without ambiguous PS. The PS in
Fig. 3.2 contains cycle slips and will therefore be ignored in this statistic. Fig. 2.14 on the
other hand would contribute to the statistic while only containing some minor deviations.
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4. Fraction of PS containing a short-term ambiguity per epoch
To get more details about the ambiguities, the cycle slip occurrences per epoch are
registered to get an overview of which epochs often contain different unwrapping choices
and what the influence is on the other displacement results. The example PS in Fig. 3.2,
will contribute 1/𝑛𝑃𝑆,𝑥 to the two epochs around the three peaks in Jul, Oct, and Nov
2021 as the jumps (𝐼𝐷𝐷 > 20) concern those epochs.

5. RMSD per epoch
Similar to the case with the cycle slips, we gather more information about the RMSD
than a singular value per realization comparison. Consequently, the RMSD values per
epoch are stored for each realization comparison, yielding an RMSD vector denoted as
𝑅𝑀𝑆𝐷𝑣𝑒𝑐𝑡𝑜𝑟,𝑁−1, representing the sum of all differences on a single epoch in the com-
parison. The corresponding mathematical equation is:

𝑅𝑀𝑆𝐷𝑣𝑒𝑐𝑡𝑜𝑟,𝑁−1 =
√
𝑛𝑝𝑠
∑
𝑖=1
(𝜑𝑁𝑖 − 𝜑𝑁−1𝑖 )2𝑡

𝑛𝑃𝑆
= √diag

−1 (𝐴𝑇𝐴)
𝑛𝑃𝑆

, (3.6)

where𝜑𝑁𝑖 represents the displacement phase of a single PS from realization N at location
𝑖 on epoch 𝑡, and 𝑛𝑃𝑆 the total number of conjunct non-ambigous PS. This formula can be
simplified by taking the diagonal from the square matrix 𝐴𝑇𝐴, where matrix 𝐴 represents
our (𝑛𝑃𝑆×𝑥) Δ𝑆𝑇𝑀𝑥 matrix without ambiguous PS. The PS in Fig. 3.2 contains cycle slips
and will therefore be ignored in this statistic. If a dataset would consist of similar PS as
Fig. 2.14, one would see relatively high values in May 2020 and Dec 2020 indicating that
these epochs contained dynamic displacement estimates.

Figure 3.2: Example of a PS contributing to multiple metrics. The left plot contains the two individual estimated
displacement time series obtained from realizations 99 (red) and 100 (blue). The right plot contains the difference
in the estimated line of sight displacement. In this example, the PS is contributing to 1/𝑛𝑃𝑆 for the Fraction of
Localized Short-Term Ambiguities metric, 6/(𝑛𝑃𝑆 ×𝑛𝑒𝑝𝑜𝑐ℎ𝑠) for the Fraction of Ambiguous Measurements, but not
for the Fraction of Localized Long-Term Ambiguities metric.

With these statistics’ help, we can create multiple figures to assess the robustness of a
particular run and interpret the results in the blink of an eye.
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3.2. Test Recipe
To diagnose the impact of uncertainties and DePSI choices, multiple real-case simulations
are performed. In principle, we pretend to start with no acquisitions over the area of interest
and add one acquisition for every satellite overpass. Batch estimating a full new parameter
set, estimating new atmospheric delays, heights, displacements, etc. for each realization. As
it is impossible to construct a relative time series with limited acquisitions due to singularity
constraints in the spatial unwrapping process, we start with five acquisitions. This is the min-
imum amount to generate plausible results. The whole DePSI algorithm will be rerun when
a new acquisition (artificially) arrives and all the output is stored in a separate folder. This is
repeated until the one-hundredth acquisition has been added to the total stack. Hereafter, the
previously mentioned metrics can be calculated to make the graphs and interpret the results.

3.2.1. Proposed output
For the evaluation of the algorithm’s robustness, several figures will be generated. These
figures serve to test the robustness across multiple scenarios and DePSI settings. Addition-
ally, the fixed set of figures will be supplemented with figures specifically interesting for certain
cases or improvements. For instance, the spreading of PS1 can be interesting when compar-
ing the use of two different amplitude dispersion equations to construct a first-order network.
The main set of figures will consist of the following five visuals:

1. Figure containing the three discussed core robustness metrics over the number of acqui-
sitions 𝑁 in a realization (using statistics 1, 2 and 3). This will be called the Incremental
Robustness Metrics or 𝐼𝑅𝑀𝑦,𝑧 graph, where 𝑦marks the realization length when starting
the analysis and 𝑧 the final processed realization length.

2. Matrix of the displacement estimate difference of realization 100 and 99. As introduced
before this matrix will be called Δ𝑆𝑇𝑀100,99.

3. Matrix of the atmospheric estimate difference of realization 100 and 99. As introduced
before this matrix will be called Δ𝐴𝑆𝑇𝑀100,99.

4. Diagonal matrix of the short-term cycle slips per epoch over the number of acquisitions
𝑁 − 1 in a realization comparison (using statistic 4). This will be called the Ambiguity
Overview (AO).

5. Diagonal matrix of the 𝑅𝑀𝑆𝐷𝑣𝑒𝑐𝑡𝑜𝑟𝑠 over the number of acquisitions 𝑁−1 in a realization
comparison (using statistic 5). This will be called the RMSD Overview (RMSDO) graph.

All produced figures will be added to the appendices for each scenario and area, but only the
most significant ones will be added to the main text.

3.2.2. Output interpretation
Before delving into the interpretation of case study findings, it is crucial to establish a com-
prehensive understanding of how to interpret the generated results. The first figure, the IRM
graph, contains the three core metrics of robustness. Ideally, all values should equal zero, re-
gardless of the realization comparison, indicating the absence of any displacement estimate
differences and hence a perfectly robust algorithm. However, this will not be the case in prac-
tice. It is important to note that the values themselves should not be interpreted in isolation but
rather in a broader context. While they offer valuable insights into variability and the presence
of ambiguities, they should not be used blindly for a direct comparison between two different
regions. By increasing the number of acquisitions as DePSI input we can uncover anomalies
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in the use of particular acquisitions and APS estimation as the three core robustness statis-
tics exhibit unexpected behavior such as clear distinct peaks in the number of ambiguities
compared to the other realization comparisons.

The ΔSTM100,99 and ΔASTM100,99 have extensively been explained in section 2.2.2. As
they only represent one realization comparison, one should not draw a hard conclusion based
only on these two acquisitions. Nonetheless, they do provide insight into the robustness of the
displacement estimates and the influence of the atmospheric estimates. If significant dissim-
ilarities in displacement are consequently observed in the same epochs in ΔSTM100,99 as in
ΔSTM100,99, it necessitates a closer examination of the APS estimation. Again, in a perfectly
robust situation, both matrices should comprise solely zeros.

The things standing out from the IRM and ΔSTM graphs can be further examined in the
Ambiguity Overview and RMSDOverview. Every realization comparison results in two vectors
with 𝑁 − 1 elements for the number of cycle slips or RMSD value per epoch respectively. As
we initiate the comparison with only five acquisitions, the initial vectors (resulting from the
comparison between realizations 5 and 6) will consist of five elements, corresponding to the
number of conjunct epochs (five). Incrementing the stack with one acquisition at a time results
in the growth of this vector by one epoch for each subsequent comparison. Visualizing this
progression in a graph produces a diagonally shaped matrix, as exemplified in the layout of
Fig. 3.3. The red pixels indicate the presence of a value in that pixel. A vertical column, as
highlighted by the green rectangle, represents the vector that is obtained for one realization
comparison. Of course, there are only statistics for the epochs present in that realization
comparison. A horizontal line, indicated by the blue rectangle, represents RMSD or ambiguity
fractions for the same epoch but originating from a different comparison. Similar to the vertical
columns, a statistic is only present if the comparison encompasses that epoch. Therefore, in
the blue example, a value for epoch number ten is present when comparing realization 10 and
11.
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Figure 3.3: Example of the layout of the Ambiguity Overview and RMSD Overview. The red squares indicate the
presence of a value in that pixel. A vertical column, as highlighted by the green rectangle, represents the vector
that is obtained for one realization comparison. A horizontal row, indicated by the blue rectangle, represents RMSD
or ambiguity fractions for the same epoch but originating from a different comparison.
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3.3. Areas of interest
Multiple different areas or area sizes in The Netherlands will be used to avoid a Taylor-made
solution only working for one specific region/landscape type. The first area of interest will be
a 1x1 km area over the city center of Amsterdam, which the current CAROLINE portal covers.
Subsequently, a 5x5 km Amsterdam area with the exact same center point as the CAROLINE
area will be used. For this, the ascending track 88 will be used. Finally, another area over
a rural region close to the ’Hondsbossche Zeewering’ near the coast, will be used in this
simulation as a counterbalance to the urban areas. The location at the coast can be seen as a
simulation that for instance would be used to monitor sea dikes. It is chosen to use an area of
1x1 km as well as a 5x5 km to ensure a reasonable ratio between the computational time of the
process, the number of point scatterers, and the capturability of spatially differing atmospheric
delays. The location of the Hondsbossche Zeewering is depicted in Fig. 3.4 together with the
boundaries of the 1x1 km and 5x5 km area. For this region, a descending track is chosen, to
get a better coverage of the sea defense itself. The 5x5 km area includes (parts of) villages,
whereas the 1x1 km area almost purely contains rural surroundings.

Figure 3.4: The 1 by 1 km and 5 by 5 km area of interest shapefiles around the Hondsbossche Zeewering.





4
Zero-state

In section 2.2.4 the possible causes for the ever-changing displacement results have been
touched upon. This chapter treats the results of robustness analysis for the current CARO-
LINE region, a 1 by 1 km region over the center of Amsterdam. Starting with a realization of
five acquisitions from 25March 2020, an acquisition is added one by one till the one-hundredth
acquisition is attained. The primary objective of this simulation is to explore the various under-
lying factors that may cause the observed variations in displacement estimates. Besides, zero-
state results are created to substantiate proposed improvements thereafter. Section 2.1.5 ad-
dressed the repeatability issue, which is the only measure taken upfront in all cases to avoid
randomness. Any interested party can replicate the analysis for their respective algorithm by
systematically varying the number of acquisitions used as input and subsequently applying the
same metrics for assessment. This approach allows for a comprehensive exploration of the
algorithm’s performance under different data conditions, enabling a nuanced understanding
of its robustness and efficacy across varying input scenarios.

Firstly, the robustness of the zero-state will be evaluated. To assess the robustness, we will
make use of the metrics and graphical representations introduced in the preceding chapter.
Secondly, the atmospheric estimation will be thoroughly examined, followed by a discussion on
the obtained zero-state robustness. By comprehending the factors contributing to the present
lack of robustness in displacement estimates, we propose potential improvements in the last
section.

4.1. Robustness zero-state
All corresponding figures for the basic DePSI algorithm not included in this section can be
found in Appendix A.1. Displacement estimate differences are still present when adding the
100th acquisition to the stack, see ΔSTM100,99 in Fig. A.2. The atmospheric estimates affect the
displacement estimates in some epochs structurally, see 3 October 2020, mainly originating
from the atmospheric estimates as observed from ΔASTM100,99 in Fig. A.3. The 𝐼𝑅𝑀5,100 in
Fig. 4.1 shows the robustness metrics.

The RMSD of the non-ambiguous PS seems to contain a somewhat downward trend with
the increasing number of acquisitions in the realization comparison which is as expected. The
higher the number of acquisitions present in a stack, the less impact we expected the ad-
dition of an acquisition to have. The fraction of PS containing at least one short-term cycle
slip (FLSTA,) as well as the fraction of localized long-term ambiguities (FLLTA) do not show
a downward trend and somewhat stabilize after 50 acquisitions. The overall trend and the
occurrence of some distinct peaks indicate no real global robustness improvement based on
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the ambiguities. In fact, the FLSTA seems to contain a structural jump from around 50 acquisi-
tions, where the values are significantly higher afterward. This will be further researched with
the help of the Ambiguity Overview. Running DePSI with five and six acquisitions only, proved
to produce unusable results while merely containing differences larger than a cycle slip when
adding new acquisitions, see the red upper left dots and crosses in Fig. 4.1. Thus, the runs of
potential improvements will only contain realizations with seven acquisitions or more.

The RMSD starts at around 3 mm at 7 acquisitions, whereafter the metric strongly decays
to around 0.5 mm at 30 acquisitions. From this point, there seems to be no real improvement
while the RMSD fluctuates around this 0.5 mm. One can interpret a single RMSD value as
the average degree of variability in a single displacement measurement when comparing two
realizations. The best robustness in terms of RMSD was obtained with comparisons of around
80 acquisitions with RMSD drops to 0.2 mm. However, some realizations further the RMSD
at least peaks to 0.8 mm multiple times which is four times more than just before. Further, the
red lines show some peaks as well. Overall the fraction of PS that contains at least one cycle
slip is around 1:10 with exceptional fractions up to 2:10. Meaning that almost 20% of the time
series contains a serious difference from the previous realization. The fraction of PS with a
long-term cycle slip is gradually increasing till some 50 acquisitions where it flattens off around
4:1000 PS. The summary of these statistics is displayed in Table 4.1.

Figure 4.1: Incremental Robustness Metrics graph of the zero-state, comparing the displacement estimates from
realizations 𝑁 and 𝑁−1. The black line shows the Root Mean Squared Difference, indicating the average degree
of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term
Ambiguities, and the solid dashed line the Fraction of Localized Long-Term Ambiguities. These lines show that
the robustness is not structurally improving as the number of acquisitions in the stack increases.

In Fig. 4.2 the Ambiguity Overview per epoch over the number of acquisitions in the com-
parison, 𝑁 − 1, is shown. The figure indicates on which dates and in which realizations cycle
slips occur. Clearly, two epochs catch the eye. From the 6th to the 12th of February 2021 and
the 12th to the 18th of February 2021, up to 10% of the PS contained an ambiguity difference
mainly adding acquisitions to realizations stacks 76 and 90-95. This indicates that 12 February
2021 proved to be inconsequent in the unwrapping choices over the number of acquisitions
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Table 4.1: Summary of the robustness statistics for the zero-state in Fig. 4.1

Statistic Trend over 𝑁 − 1 Average Peaks

MRF Decreasing till 30 acquisitions, thereafter wiggling 0.5 𝑚𝑚 1 𝑚𝑚
FAP Slightly increasing 6 ⋅ 10−2–1 ⋅ 10−1 2 ⋅ 10−1
FSAP Increasing till 50 acquisitions, thereafter wiggling 4 ⋅ 10−3 6 ⋅ 10−3

𝑁 in the realization stack. This is without exception the worst-performing date and causes an
unacceptable change in displacement estimates for monitoring.

The question that arises is what caused such a poor performance on one specific date.
Early February 2021, a snowstorm called Darcy passed over the Netherlands resulting in a
snow cover of multiple centimeters lasting several days (KNMI, 2021). In Fig. 4.3, the reper-
cussions of this snowstorm on the coherence between radar acquisitions are evident. The
radar acquisition during the snow period causes a low coherence with the other acquisitions,
thus impacting the unwrapping choices and thereby the displacement estimates and the over-
all robustness.

Figure 4.2: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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(a) (b)

Figure 4.3: Radar coherence over the Netherlands of an interferogram from 31 Jan to 6 Feb (a) and 6 Feb to 12
Feb (b) showing a relatively low coherence with the acquisition on 12 February.

4.2. Atmosphere zero-state
In Chapter 2, the atmosphere appeared to play a major role in the deviation type III, the Area-
Wide Short-TermDeviation in Fig. 2.17. The changing Kriging parameters in Fig. 2.18, seemed
to have a large effect on the robustness of the DePSI parameters. The zero-state robustness
analyses in the previous subsection reinforced this thought by the comparison of Δ𝑆𝑇𝑀100,99
and Δ𝐴𝑆𝑇𝑀100,99. Thus we expect to see a correlation between different atmosphere estima-
tions and the RMSD metrics. To get a better understanding of the atmospheric estimates and
interpolation consequences, the Kriging parameters are examined in more detail.

The atmospheric parameters have been estimated for each epoch per realization, meaning
we have around 90 estimates for the earlier dates (present in each DePSI output). In Fig. 4.4,
the boxplot for all three atmospheric Kriging parameters on 30 April 2020 is displayed. Both
the estimates from the zero-state 1x1km as well as the 5x5km are included. The 1x1km
parameter estimates show a wide range of parameter values, being extremely vulnerable to
input changes. The range changes from 50 m to several km and the sill and nugget show
significant differences as well just by adding extra acquisitions, but still considering the same
epoch and thus the same atmosphere. In section 2.2.4, we discussed that these values of
tens of meters are not in accordance with any theoretical physics and can be owed to the low
number of PS1 used for generating the semivariogram or the small extent of the processed
area which just equals 1 by 1 km. These parameters are estimated from a detailed variogram
supported by a low number of pairs. This makes it very vulnerable to outliers in the PS1
network and creates a non-interpretable experimental variogram as visualized in Fig. 4.5. On
the other hand, the 5x5 km estimates look way more robust. The range still shows some
spread but most values are based around the kilometer emphasizing that the values of around
100 m from the 1x1 km were very unlikely. The sill and nugget parameters are based around
a tight boxplot in the 5x5 km indicating better robustness.

As the Atmospheric Phase Screen estimation directly relates to the displacement esti-
mates, we expect atmospheric parameter alterations to manifest in the metric of the RMSD.
The query is to what extent these changing parameters exert an influence on the RMSD ro-
bustnessmetric. In Fig. 4.6, the figures for both the nugget parameter and the RMSDOverview
are put alongside. Each pixel in Fig. 4.6a corresponds to the estimated nugget value of the
atmosphere on a particular epoch (y-axis) present in realization 𝑁 (x-axis). Important to note
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is that the x-axis thus slightly differs compared to the RMSD Overview. The nugget values
are the result of each separate realization 𝑁. The RMSD is derived from the comparison be-
tween realization 𝑁 and its immediate predecessor, 𝑁 − 1. Therefore, for a specific example,
one should examine the nugget values of realization 76 and 77 and contrast them with the
RMSD vector 76 illustrated in Fig. 4.6b. Both are indicated by a vertically elongated green
rectangle. Comparing these rectangles, it becomes evident that the nugget values for almost
all epochs exhibit a sudden and substantial increase. This, in turn, leads to higher RMSD
values within the realization comparison, especially when contrasted with the ten consecutive
comparisons where the atmosphere parameters remain remarkably stable. Furthermore, the
most pronounced RMSD values can be directly related to the estimation of the APS estima-
tion. The horizontally elongated green rectangles indicated the pixels with the lowest RMSD
robustness. This pattern is consistent with the nugget values, which underwent changes on
the order of 100-fold across the indicated realizations. Hence, it is evident that the robustness
of atmospheric parameters is essential to improve the overall displacement robustness using
InSAR.

(a) Range (b) Sill

(c) Nugget

Figure 4.4: Boxplot of the Kriging parameters obtained from an experimental variogram estimating the APS of 30
April 2020 in 90 different realizations. Each subfigure contains one of the three parameters estimated for both the
1x1km as well as the 5x5km over Amsterdam showing a much wider range of estimates for the 1x1km area.

We have multiple options to improve the monitoring robustness by altering the atmosphere
estimation. Firstly, one could propose to stay with processing 1x1 km, but take measures
to improve APS robustness. These measures could include parameter constraints to avoid
implausible Kriging values, the use of a fixed set of PS1 to avoid a different input, and the
densification of the PS1 network to improve semivariogram certainty. Unfortunately, these
measures all have their own flaws. Parameters could or should be different for different regions
since the atmosphere in countries closer to the equator is different than in the Netherlands,
meaning that the constraining of parameters is a Taylor-made solution. Prescribing the PS1
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(a) Histogram (b) Experimental Variogram

Figure 4.5: Histogram of the distribution of PS1 pairs over the bins (a) side by side with the subsequently obtained
experimental variogram (b) by averaging the semivariogram values in each bin.

locations will make you very vulnerable for occasions where PS drop out as they have a too
high NAD. The densification of the PS1 network means that lower quality PS (higher NAD) are
used to estimate the APS. Secondly, it could also be decided to use parameters resulting from
APS estimations with a larger region such as the 5 by 5 km used in this example. This already
clearly improves the parameter robustness though it increases computational time/complexity.
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(a) (b)

Figure 4.6: Diagonal matrix for the Kriging nugget parameter per epoch in each realization 𝑁 (a) vs the diagonal matrix for the RMSD per epoch comparing acquisition
realization 𝑁 with realization 𝑁−1 (b). Moving horizontally, the same atmosphere (a) or displacement (b) is estimated but with a different DePSI input. A red pixel indicates
a relatively high value at that epoch for that realization (comparison) and blue a relatively low value. The green rectangles are aimed at linking excessive changes in both
plots either by comparing realizations (vertically elongated rectangle) or epochs (horizontally elongated rectangle).
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4.3. Discussion zero-state results
In the interpretation of the core robustness metrics in Fig. 4.1, the Incremental Robustness
Metrics graph, one could ask itself if it isn’t very trivial that the number of PS containing an
incidental cycle slip is slowly increasing as the number of epochs is increasing. Thus, there
is a higher chance for a cycle slip as it is partly coincidence-based if the value is close to a
different unwrapping value. However, this is not the aim of the study per se as the aim lies
more in making it insightful how robust the obtained results are and what could be the cause
for a large amount of false warnings. For this, the fraction of PS gives a better feeling than the
fraction of measurements as one is often considering a single PS displacement time series.
That there are some PS with a lot of cycle slips biasing the statistic is not interesting in that
case. Thus it is chosen to stick with the fraction of PS instead of the fraction of measurements
in the core robustness plot. Still, the fraction of measurement is at the base of the ambiguity
overview and is thus not lost.

4.4. Proposed improvements
Taking into account the deviation hypotheses and zero-state results, we have identified several
robustness weaknesses in DePSI. Therefore, the following nine measures are anticipated to
bolster the performance in terms of robustness:

1. Taking out randomness in the acquisition amplitude calibration
As described in Section 2.1.3, a degree of randomness is present in the acquisition
amplitude calibration process. It is imperative to mitigate this randomness and it will be
bypassed without question as a single irreproducible outcome is undesirable.

2. Prescribing a reference location
The displacement at the reference location has a cascading effect on the displacement
estimates of other PS. Maintaining consistency in the choice of the reference location
across different realizations is believed to improve robustness on those occasions where
a shift in reference location was present in the zero-state.

3. Atmospheric measures
In section Section 2.2.4, multiple hypotheses for the cause of a changing APS estimation
arose. Fig. 2.16 displayed an overview of the steps leading towards the APS estimation.
Similarly, an overview with the same steps is depicted in Fig. 4.7, this time together with
possible robustness improvements for each step.

Figure 4.7: Overview of themain flow of from the addition of an acquisition leading to changes in the APS estimates.
The top arrows describe the main concept flow supported by possible solutions to improve the robustness of that
step in the bracket below the arrow.

The following sub-measures are defined:
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3 a) Making use of the NMAD instead of the NAD
Both the mean and standard deviation are sensitive to outliers, which is the disper-
sion metric currently used in DePSI, see section 2.1.3. An alternative for the nor-
malized amplitude is the Normalized Median Absolute Deviation or NMAD which
is considered to be a more robust measure of dispersion (Leys et al., 2013). The
NMAD of an amplitude time series A is given by:

NMAD = MAD
median(𝐴) =

median (|𝐴𝑖 −median(𝐴)|)
median(𝐴) , (4.1)

where 𝐴𝑖 represents a single observation in the amplitude time series. This NMAD
has the potential to yield more robust results as new information is anticipated to
alter the location of PS1 less frequently. Consequently, increasing robustness of
both the atmosphere and displacement estimates.

3 b) Use a prescribed PS1 set
The first-order network appears to play a crucial role in parameter estimation. Forc-
ing a set of pixels to be used in the first-order network for each run could mitigate
fluctuations in APS estimates.

3 c) Constraining Kriging parameters atmospheric estimates
Besides the forcing of a constant PS1 set, another method to enhance the robust-
ness of APS estimation is the constraining of the Kriging interpolation parameters.
Our analysis of the 1x1 km region has revealed that these kriging parameters ex-
hibit excessive freedom and variability. By imposing constraints that restrict the
kriging parameters to a predefined realistic range, informed by results from the 5x5
km estimates or contextual data, we anticipate an improvement in APS robustness.

3 d) Enlargement of the processed area or PS1 densification
Section 2.2.4 suggested that the current area of interest contains an insufficient
number of PS1 to construct a reliable variogram for the estimation of the APS.
As an alternative to the previous measure, either the densification of PS1 or the
enlargement of the processed area could remedy this problem.

3 e) Using a more robust Kriging technique
The current Kriging parameter estimation proved to be a problem for the robustness
of the atmospheric estimation for the current use. As some bins representing the
experimental variogram contain few pairs, the estimator behaves poorly if outliers
are included (Genton, 1998). Thus, a different, more robust, equation opposed to
2.6 will be tested to get the parameters from a variogram. The equation for the
variogram is given by Hawkins & Cressie (1984):

2�̃�𝐶𝑟𝑒𝑠𝑠𝑖𝑒−𝐻𝑎𝑤𝑘𝑖𝑛𝑠(ℎ) =
med (|𝑍(𝑥𝑗) − 𝑍(𝑥𝑖)|

1/2)
4

0.457 , (4.2)

where where 𝑍(𝑥𝑗) and 𝑍(𝑥𝑖) are the atmospheric delay estimations of PS1 at lo-
cations 𝑥𝑗 and 𝑥𝑖 that are a distance ℎ = |𝑥𝑗 − 𝑥𝑖| apart.
Besides the new equation to calculate the experimental variogram per bin, the num-
ber of bins is considerably lowered. The semivariances are obtained from too few
comparisons leading to a ’noisy’ variogram (Oliver & Webster, 2015). Together,
these two adaptations should improve the APS robustness through more conse-
quent parameter estimations.
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4. Exclusion of low(er) coherent acquisitions
The zero-state appeared to be heavily influenced by a specific acquisition with low coher-
ence to the other acquisitions. This impact extended beyond the robustness of just that
epochwhile influencingmultiple other epochs aswell. Natural circumstances (weather/snow
complications) make it harder to construct a robust time series, thus raising the question
of whether to use these acquisitions after all in the analysis.

5. Expansion of the steady-state displacement assumption
Finally, it appeared in section 2.2.4 that the steady-state assumption might be the cause
for localized long-term cycle slips such as ambiguous drift. Therefore, the displacement
model assumption could be expanded by for instance including a seasonal cycle or a
second-order polynomial into the model to mitigate the occurrences of localized long-
term cycle slips.

An overview of all error types, together with their hypotheses and possible improvements
is depicted in Fig. 4.8. All proposed improvements will be tested to see their influence on the
atmospheric estimates, cycle slip appearances, and resulting displacement estimates in the
following chapter.
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Figure 4.8: Overview flow chart of all types of deviations in the displacement estimates together with the hypotheses and possible solutions to the problem.
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Improvements

In this chapter, the suggested improvements from section 4.4 will be tested to see the influence
on the robustness of the displacement estimates. This excludes the removal of randomness
in the calibration step as it was applied to the zero-state already. For the other improvements,
we will test them ceteris paribus. This means that improvement I will cause R effect, all other
things being equal (Schiffer, 1991).

5.1. Use of the NMAD
The PS1 network changes a lot in the zero-state due to the selection based on the Normalized
Amplitude Dispersion. The changing network caused APS estimates to change and with it the
displacement estimates. The NAD is sensitive to outliers, making new incoming amplitude
values change the selection of PS for the first-order network. The Normalized Median Abso-
lute Deviation is expected to be less sensitive to the addition of SAR acquisitions as stated
in section 4.4. Therefore, the use of the NMAD is anticipated to improve the displacement
estimates robustness.

All corresponding figures for the simulation with the use of the NMAD can be found in
Appendix A.2 in full size. It is important to note that the number of Point Scatterers present in
the analysis is slightly higher than in the zero-state simulation. This difference arises from the
use of a different amplitude dispersion metric, which necessitates distinct values for the PS1
and PS2 selection criteria. To link the NMAD to the NAD thresholds, formulas of Brouwer et
al. (2023) are used. For both NAD and NMAD, empirical formulas are deducted that facilitate
the translation of threshold values to the phase standard deviation 𝜎𝜙, representing the quality
of a PS. However, linking both dispersion methods is not perfect, given the empirical nature
of these formulas, leading to a disparity of roughly a thousand PS between the two analyses.

Looking at the differential matrices for the displacement and atmospheric estimates in
Figs. A.5 and A.6 one can see that the results have worsened dramatically as instead of
a few brighter epochs in the zero-state, the whole figure brightened. This is confirmed in the
𝐼𝑅𝑀7,100 graph in Fig. 5.1 where the robustness metrics with the NMAD are visualized together
with the metrics from the zero-state. The reference location changed more in this NMAD case
and the first-order network as well, worsening the robustness results. As a result, the NMAD
is not the preferred choice over the NAD.

5.1.1. Discussion NMAD
That the use of the NormalizedMedian Absolute Deviation did not work beneficially in hindsight
was to be expected. The aim was to get a more stable choice of reference PS or a stable set

53



54 5. Improvements

Figure 5.1: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations𝑁 and
𝑁−1 for the base algorithm (transparent lines) versus a case where the NMAD is used instead of the NAD (opaque
lines). The black line shows the Root Mean Squared Difference, indicating the average degree of variability in
a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term Ambiguities,
and the red dashed line the Fraction of Localized Long-Term Ambiguities. These lines show that the robustness
deteriorated for all three core metrics.

of PS chosen for the first-order network. However, this came at a cost. Instead of being robust
to amplitude changes, we should be sensitive to these changes concerning which points we
select in our atmosphere analysis. As F. Hu et al. (2022) showed, the amplitude can used to
test hypotheses on the behavior of the PS and if the same ps is still considered in the analysis.
In Fig. 5.2 a theoretical example of two PS is given that would be considered a very stable
point using the NMAD in contrast to the NAD. Estimating displacements for this PS will not be
desired as it appears that something has changed, while for PSI this stability is crucial (Amani
et al., 2021).

5.2. Use of a fixed reference point
The constantly changing reference point (see Fig. A.1) in the zero-state was a likely explana-
tion for part of the erroneous epochs as the displacement of a reference PS is propagated to
all other PS. Therefore, a single stable reference location coming from a run with ∼50 acqui-
sitions is forced into all runs. All corresponding figures for the simulation with one single fixed
reference location/pixel can be found in Appendix A.3 in full size.

In comparison to the basic algorithm, where the choice of reference is unconstrained, the
Δ𝑆𝑇𝑀 heatmaps for the atmospheric and displacement estimates (Figs. A.12 and A.11) appear
nearly identical. This is expected since the reference point remained unchanged between the
analyses with 99 and 100 acquisitions in the zero-state as well. In the Incremental Robust-
ness Metrics plot in Fig. 5.3, there is an observable improvement in terms of RMSD for all
realization comparisons where the reference location differed from its predecessor, indicated
by the yellow dots atop the zero-state RMSD values.

The RMSD improvement underscores the importance of the use of a single reference loca-
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Figure 5.2: Amplitude time series of a theoretical PS having a very low amplitude dispersion in the sense of the
Normalized Median Absolute Deviation, but a high dispersion in terms of the Normalized Amplitude Dispersion.
This shows that although the NMAD is a more robust measure, it is not the optimal choice for selecting coherent
PS.

Figure 5.3: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁 − 1 for the base algorithm (transparent lines) versus a case where a certain location is forced to function
as reference PS (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average
degree of variability in a single displacement estimate, the solid red line represents the Fraction of Localized
Short-Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. The yellow dots
indicate the occasions that the basic algorithm switched reference locations in the zero-state. The number of cycle
slips remains unchained whereas the RMSD shows a significant improvement in those realization comparisons.
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tion for robust monitoring. The reference location switch especially impacted those realizations
of lengths 20–30 where the RMSD is up to halved, meaning an enormous increase in robust-
ness and therewith a decrease in false warnings. Thus, one should consider which location to
select as a reference when setting up a monitoring system. However, this reference should not
just be kept blindly as the reference is of such importance that the displacement propagates
into the other PS. Ideally, one should for instance use an Integrated Geodetic Reference Sta-
tion (IGRS) while we can keep track of the stability of the reference. Moreover, the reference
motion can be filtered out as we know the actual displacement of the IGRS through GNSS
(Kamphuis, 2019).

On the other hand, the issues related to cycle slips appear to be largely unchanged. Upon
reviewing both the Ambiguity Overview and the RMSD Overview in Figs. A.14 and A.15, it is
evident that the least robust epochs continue to be primarily influenced by the snow acquisition
on 12 Feb 2021.

5.3. Exclusion low coherence acquisition(s)
The zero-state results in chapter 4 showed that a large portion of the cycle slips could be traced
back to an acquisition with low coherence to other acquisitions due to snowfall. Although still
leading to plausible displacement estimates, the result was not in accordance with the other
displacements. Therefore, a possible solution to improve overall robustness is to exclude this
date from the processed stack.

By definition of repeatability, the robustness metrics remained unchanged till the 50th ac-
quisition. As illustrated in Fig. 5.4, the opaque zero-state and solid exclude date metrics mirror
each other since the excluded date was absent in those realizations. Post the excluded acqui-
sition, a slight improvement is observed in terms of the robustness metrics for both short-term
and long-term cycle slips. The improvement is mainly visible around 70 and 90 acquisitions in
the comparison where the solid red line of the zero-state previously exhibited distinct peaks.
From the Ambiguity Overview in Fig. A.20, it is discerned that there is no longer an outstanding
epoch, indicating an overall improvement in robustness based on a decrease in ambiguous
measurements. Nevertheless, sporadically high values are still visible in both RMSD and am-
biguities. The RMSD occasionally improved, but instances of worsening are observed, with
two prominent peaks that can be attributed to a changing reference. To improve the RMSD,
we have to dive deeper into the robustness of the APS.

5.4. Atmosphere robustness improvements
As lined out in section 4.2, the atmosphere appeared to be a major cause of frail results.
Thus, multiple measures were proposed to improve this robustness in section 4.4. The fol-
lowing subsections will cover the use of a prescribed PS1 network, the constraining of Kriging
parameters, the use of a larger area of interest, the densification of the PS1 network, and the
usage of a different equation to estimate the variogram.

5.4.1. Use of a prescribed set of first-order network PS
Given that the use of the NMAD did not improve robustness in the first-order network selection
and, consequently, the RMSD robustness, the algorithm will be provided with a prescribed
network of points randomly taken from a run with around 45 acquisitions. This approach aims
to stabilize the displacement estimates. All corresponding figures for the simulation with the
use of a prescribed subset of PS1 can be found in Appendix A.5.1 in full size.

When using a fixed set for the PS1 locations, the first results were auspicious when look-
ing at the displacement and atmospheric matrices, see the Δ𝑆𝑇𝑀100,99 and Δ𝐴𝑆𝑇𝑀100,99 in
Figs. A.22 and A.23. The Δ𝑆𝑇𝑀100,99 shows that realizations 99 and 100 almost produced the
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Figure 5.4: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁 − 1 for the base algorithm (transparent lines) versus a case where a SAR acquisition with relatively low
coherence has been excluded in the analysis (opaque lines). The black line shows the Root Mean Squared Differ-
ence, indicating the average degree of variability in a single displacement estimate, the solid red line represents
the Fraction of Localized Short-Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term
Ambiguities. The number of cycle slips slightly decreased in the realization comparisons previously containing
distinct peaks.
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same displacement estimates apart from one epoch. The Δ𝐴𝑆𝑇𝑀100,99 subsequently confirms
that this is still caused by a different atmospheric estimate as the most erroneous epoch is the
same as for the displacements and of similar magnitude.

In Fig. 5.5, the robustness improvement with a prescribed set of PS1 locations is clearly
evident compared to the base algorithm (opaque vs transparent lines). Particularly noteworthy
is the significant improvement in the result for RMSD and the localized short-term cycle slips
(FLSTA). The occurrence of at least one cycle slip in 1 PS in 10, it decreased to 1 PS in 20,
meaning that monitoring results will be less sensitive to false warnings. This improvement
suggests that maintaining a fixed PS1 network is highly beneficial for PS situated around the
unwrapping boundary and the counteracting of erroneous epochs.

Figure 5.5: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations𝑁 and
𝑁−1 for the base algorithm (transparent lines) versus a case where a prescribed set of locations is used for the PS1
network (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average degree
of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term
Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. The metrics significantly
decrease (improve) apart from some distinct peaks around 80 acquisitions.

Despite the overall improvement with a prescribed PS1 set, a few realization comparisons
exhibit worse results than the zero-state, particularly noticeable around the 80th acquisition.
Here, an RMSD of 1 mm is observed, contrasting with the 0.2 mm recorded a few realization
comparisons earlier, indicating a fivefold difference. The peaks after 90 acquisitions are ex-
plained by a changing reference location. However, the peaks around 80 acquisitions present
a different scenario. In this instance, fluctuations occurred in the presence of PS1, as depicted
in Fig. A.24 illustrating the consistency of the PS1 network. While the value is mostly equal to
100%, as we force a certain set to be used, some PS disappear from the first-order network.
Most likely, a point from the network did not meet the NAD threshold value set in the parame-
ter file. This is precisely what happens around realization comparison 80. The disappearance
of one or two points from the PS1 network leads to completely different Kriging parameters,
akin to the sudden jumps in nugget values seen in Fig. 4.6b. These changing parameters
contribute to a different APS and consequently a less robust displacement estimation.

Ultimately, the adoption of a predetermined set of PS1 locations demonstrated significant
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benefits for the robustness of the APS and, thus, the InSAR displacement estimates. Nev-
ertheless, the inconsistency in the PS1 network heavily impacts the robustness, highlighting
the need for an alternative solution to mitigate vulnerability to disappearances in the first-order
network.

5.4.2. Kriging parameter restriction
Amore subtle measure to increase the robustness of the atmospheric estimates is to constrain
the Kriging parameters. Section Section 4.2 showed that the 1x1 km region over Amsterdam
resulted in improbable Kriging parameters based on the results from the 5x5 km region. There-
fore, it is thought that robustness could be increased by restricting the range, sill, and nugget
based on the more probable results of the 5x5 km area. Based on the consideration of all pos-
sible parameter values in the 5x5 km case, the parameters are constrained as in Table 5.1.
The range and nugget do not contain an upper constraint as they are deemed unnecessary.

Table 5.1: Imposed Kriging parameter constraints to improve the APS robustness

Parameter Lower constraint Upper constraint

Range 300 m −
Sill 10−2 rad 10 rad
Nugget 5 ⋅ 10−2 rad −

The robustnessmetrics from imposing the parameter constraints are shown in Fig. 5.6. The
robustness improved again though less drastically than for the fixed PS1 network. All metrics,
both the ambiguity as well as the RMSD, somewhat decreased from the zero-state indicating
an improvement in robustness. However, the improvement is not to such an extent that it
completely solves the problems causing low atmospheric robustness. For that cause, further
constraints on the parameters should be considered. Previous studies have demonstrated
that the use of weather research and forecasting (WRF) can enhance InSAR displacement
estimates (Jung et al., 2014). Even so, without contextual data, it is challenging to implement
accurate constraints that do not falsely limit atmospheric estimation. Therefore, there is a
need to enhance information about the atmosphere in a different manner.

5.4.3. First-order network densification
A possible way to strengthen the robustness of the atmospheric phase estimates is the den-
sification of the PS1 network. More PS in the first-order network are believed to lead to a
more robust empirical variogram as elaborated on in section 2.2.4. However, there should
be enough reliable PS available to base the APS estimates upon. To ensure this, the NAD
threshold for a PS1 point is kept similar as in the zero-state. The applied change lies in the
PS1 selection grid size which is set to 50 m, while it had been previously set at 100 m.

All corresponding figures for the simulation with the use of a PS1 selection grid size of 50
m can be found in Appendix A.5.3 in full. The robustness metrics are illustrated in Fig. 5.7.
It is evident that the RMSD and ambiguities worsened more than they improved in the first
40 acquisitions. Conversely, the RMSD tends to improve after 40 acquisitions. Although the
improvement is not to the extent observed in the fixed PS1 case, the adaptation is more sub-
tle. There is a modest improvement in the fraction of short-term cycle slips which exhibits a
decrease on average, yet peaks of similar magnitude are occurring elsewhere. This approach
does not appear to be a comprehensive solution, as the primary issue of volatile kriging pa-
rameters persists similarly to the zero-state, as previously depicted in Fig. 4.6. However, it
could be an improvement together with another measure to stabilize the parameter estimates.
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Figure 5.6: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁 − 1 for the base algorithm (transparent lines) versus a case where the Kring parameters are constrained
to values that have been deemed probable (opaque lines). The black line shows the Root Mean Squared Differ-
ence, indicating the average degree of variability in a single displacement estimate, the solid red line represents
the Fraction of Localized Short-Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term
Ambiguities. Overall, the metrics show a slight decrease (improvement).

Figure 5.7: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations𝑁 and
𝑁−1 for the base algorithm (transparent lines) versus a casewhere the PS1 network has been densified by lowering
the PS1 selection grid size (opaque lines). The black line shows the Root Mean Squared Difference, indicating
the average degree of variability in a single displacement estimate, the solid red line represents the Fraction
of Localized Short-Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities.
Overall, the metrics show a slight decrease (improvement).
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5.4.4. Robust Kriging mechanism
The newly proposed robust variogram estimation mechanism in section 4.4 is believed to
stabilize the atmospheric estimation and thereby improve the displacement robustness. All
corresponding figures are shown in Appendix A.5.4 in full.

Analyzing the robustnessmetrics in Fig. 5.8 reveals the notable improvement achievedwith
the introduction of the new variogram equation. The primary enhancement is evident in those
comparisons where Kriging parameters previously underwent sudden jumps in value, such
as realization comparison 76 (highlighted by the green patch in Fig. 4.6) or the comparisons
around 95. In both cases, the peak fraction of PS with a cycle slip as well as the RMSD
were close to halved. Instead of approximately 1:5 PS with a cycle slip, the value became
1:10 points at the peak, signifying an increase of 1500 PS that unwrapped consequently, a
major difference. Fig. A.40 displays the new nugget value heatmap, demonstrating a more
consistent estimate in nugget value for the same dates (horizontal lines). Incidental outliers
are present, suggesting that further improvement in APS robustness would still be beneficial
for enhancing the robustness of displacement results.

Figure 5.8: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations𝑁 and
𝑁−1 for the base algorithm (transparent lines) versus a case where amore robust experimental variogram equation
has been used (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average
degree of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-
Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. Overall, the metrics
show an improvement.

5.4.5. 5x5 km region
The zero-state APS estimation showed that the area is too small to properly digest an atmo-
spheric signal over the 1 by 1 km region. Besides, the other proposed improvements regarding
a more robust atmosphere fell short. Therefore, a 5 by 5 km region is processed over the same
center point to see the difference a larger area of interest would make. The dataset contained
almost 270,000 PS2 in realization 100, considerably increasing the computational time. The
DePSI process took almost six hours for this realization whereas it previously had cost just 10
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minutes for the 1 by 1 km area. The increasing number of PS with a factor of around 18 came
at a computational cost of factor 36.

The full result for the zero-state of the 5 by 5 km region over Amsterdam can be seen in
Appendix A.5.5. The robustness metrics are shown in Fig. 5.9, where a few things stand out.
The largest difference is in the fraction of PS with a long-term cycle slip (FLLTA, red dashed
line). Instead of some 3 in 1000 points, it is more to 1 in 100 points for the 5 by 5 km region. A
likely explanation is the inclusion of far more dynamic objects in the area of interest. The area
covers large water bodies such as the rivers IJ and Amstel. Besides, some larger parks such
as the Vondelpark andWesterpark are included as well in the region while the 1 by 1 km region
only contained some smaller canals, but mostly constructions. The different land use types
will be further discussed in section 5.8.1, where the land use types are linked to robustness.
As mentioned previously, the robustness metrics should therefore not be compared 1 to 1
over different regions or with different acquisition inputs (tracks, dates, asc/dsc). However,
the trends and behavior can be compared.

Figure 5.9: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁 − 1 for the base algorithm (transparent lines) versus the 5 by 5 km region over Amsterdam (opaque lines).
The black line shows the Root Mean Squared Difference, indicating the average degree of variability in a single
displacement estimate, the solid red line represents the Fraction of Localized Short-Term Ambiguities, and the
red dashed line the Fraction of Localized Long-Term Ambiguities. The RMSD decreased whereas the fraction of
ambiguities increased.

In contrast to the long-term cycle slips, the fraction of PS containing a short-term cycle slip
as well as the RMSD (solid black line) exhibit comparable orders of magnitude in both areas.
The FLSTA (solid red line) contains less distinct peaks due to a more robust APS estimation.
While peaks in the RMSD share similar magnitudes in the 5 by 5 km region, the average value
often resides significantly lower due to less volatile atmosphere estimation, as indicated by
the Kriging nugget values in Fig. A.47. The nugget values are consistently estimated due to a
better interpretable variogram.

Fig. 5.10 portrays the same estimated atmosphere, containing the same number of acquisi-
tions as the variogram shown in Fig. 4.5. The extended area of interest results in a substantial
increase in the number of pairs, contributing to a more robust variogram. Consequently, a var-
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iogram model with meaningful parameters can be fitted through the experimental variogram.
Only the tail of the variogram appears a bit noisy due to a scarcity of data points. This chal-
lenge could be counteracted by implementing a cutoff value for those bins containing a low
number of pairs.

(a) Histogram (b) Experimental Variogram

Figure 5.10: Histogram of the distribution of PS1 pairs over the bins (a) side by side with the subsequently obtained
experimental variogram (b) by averaging the semivariogram values in each bin. The experimental variogram
contains a clear signal in contrast to the variogram in Fig. 4.5

The peaks in the RMSD in the Incremental Robustness Metrics of Fig. 5.9 graph are again
explainable by a changing reference PS emphasizing the need for a consequently chosen
reference or known reference displacement. The Ambiguity Overview in Fig. A.45 shows that
two dates trigger the majority of short-term cycle slips instead of one date. Apart from the
snow acquisition (12 Feb ’21), the 16th of August 2020 is volatile as well. That evening, a
heavy thunderstorm passed over the area (KNMI, 2020) causing a convective atmosphere. A
strong convective event causes single-epoch delays to have higher uncertainty (Mulder et al.,
2022). We can see this as the date is the most abruptly changing date in the Kriging nugget
heatmap, shown in Fig. A.47. Interestingly enough, this date changes the most after the snow
acquisition is added to the stack for the first time in the realization comparison.

To make a less biased comparison between both areas, the boundaries of the 1x1 km
region are used to extract PS from the 5x5 km region situated within the 1x1 area of inter-
est. Subsequently, a second robustness plot is made in Fig. 5.11 exclusively containing the
metrics for the 1x1 km area of interest but derived from processing the 5x5 km region. This
figure substantiates our hypothesis that processing a larger region has a positive effect on the
robustness. Both, the number of cycle slips and the RMSD improve, ignoring the realization
comparisons affected by a change in reference location. These metrics demonstrate a notable
reduction, up to a factor of three in the extreme cases. From a monitoring perspective, this
implies a strong reduction of false warnings in the automated detection of anomalies.

All in all, processing a larger area of interest improved the RMSD results due to a more
robust atmospheric estimation. However, it also comes at a high computational cost and it
could therefore be argued whether this is the most efficient measure to take if only interested
in the monitoring of a small(er) area.

5.4.6. Discussion and conclusion atmospheric robustness
Upon comprehensive evaluation of measures on the APS robustness, we can conclude that
a 1 by 1 km in principal is inadequate for properly capturing an atmospheric signal consistent
with the theoretical physics. Nevertheless, specific interventions successfully mitigated some
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Figure 5.11: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and𝑁−1 for the base algorithm (transparent lines) versus 1 by 1 km obtained from processing the 5 by 5 km region
over Amsterdam (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average
degree of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-
Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. The short-term cycle
slips and RMSD metrics improved significantly.

major associated problems. The use of a fixed set of PS1 network, on average, demonstrated
the most favorable impact on the robustness considering the three main metrics. However,
this solution came at the cost of diminished resilience to alterations affecting a point in the
PS1 network. Furthermore, this strategy entails the repetition of solutions from a designated
PS1 set without discerning their efficacy. Consequently, prescribing a fixed set of PS1 is
discouraged, as it imposes limitations on adaptability, prioritizing the stability of results over
the generation of superior and more plausible results.

The imposition of constraints on the Kriging parameters, the densification of PS1, and the
usage of a more robust variogram estimation all lead to a modest enhancement in the ro-
bustness. However, none of these approaches appears to be the definite breakthrough to
mitigate the problems without accompanying drawbacks. The restriction of parameters is a
Taylor-made solution that needs to be re-evaluated when estimating each individual APS to
be effective. Densification of the PS1 network improves the variogram robustness by incor-
porating more data points, yet does not weigh up to the use of a larger region that more com-
prehensively captures the atmospheric behavior. The application of a robust Kriging method
incorporating a median function to construct the variogram is advised, although it does not
solve the problem sufficiently. This underscores the importance of critically reviewing the in-
terpretability of the utilized variograms.

Employing a larger region for atmospheric processing yielded the most promising results.
In the absence of hard constraints or a Taylor-made solution, the robustness significantly im-
proved. The primary drawback is the computational cost, albeit this could be minimized by
selectively using the larger area for atmospheric purposes without necessitating comprehen-
sive processing of the entire expanded region. Consequently, it is recommended to adopt an
area of interest larger than roughly 10 km2, as smaller regions are anticipated to yield sub-



5.5. Expansion steady state 65

optimal results. Further research could be undertaken to explore and optimize the ideal area
of interest for capturing the atmospheric signal with maximum robustness.

5.5. Expansion steady state
One of the hypotheses for the long-term cycle slips was the influence of the initial displacement
model, which is currently a simple linear model as pointed out in section 2.2.4. As a seasonal
cycle is quite common in the InSAR results for an urban area following temperature changes
(Lyu et al., 2020), we expand the initial model by adding a sinusoidal with a period of one year.
As the 1 by 1 km region over Amsterdam contains a very low number of PS in the long-term
cycle slips category, the 5 by 5 km area over Amsterdam is used to see the influence as one
is less sensitive to the coincidence of single PS.

The robustness results for the inclusion of a seasonal cycle in the initial displacement
model are depicted in the Incremental Robustness Metrics in Fig. 5.12. This plot indicates
that the number of long-term cycle slips did not decrease incorporating an initial deformation
assumption containing a seasonal cycle. In fact, there seems to be no significant change at all.
The attempt to enhance the robustness of the temporal unwrapping process by expanding the
initial displacement assumption did not yield improvement. Evidently, improving unwrapping
robustness is not a straightforward task, and reducing unwrapping uncertainty appears to be a
challenging task. While alternative initial displacement models such as second-order polyno-
mials could be explored, such improvements would need to be grounded in the existing litera-
ture which is not the case. On the contrary, multiple studies exist that propose improvements
for both the temporal (Caro Cuenca et al., 2011) and spatial (Yu & Lan, 2016) unwrapping
robustness. Exploring and implementing these methods may offer more promising insights to
reduce the fraction of localized long-term cycle slips and thus enhance monitoring certainty.

Figure 5.12: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁− 1 for the base algorithm (transparent lines) versus a case where the initial displacement model has been
extended (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average degree
of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term
Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. All metrics remain virtually
equal.
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5.6. More strict PS2 NAD threshold
A very theoretically simplistic way to improve the average robustness is to use a stricter NAD
threshold, thus using relatively better points based on the amplitude dispersion. A drawback
of this measure would be the spatial resolution. Instead of ∼ 15000 𝑝𝑠/𝑘𝑚2 in the zero-state
one would keep close to half the PS (∼ 7000 𝑝𝑠/𝑘𝑚2) for realization 100.

Fig. 5.13 shows the spectacular robustness improvement for the displacement results.
The fraction of PS with a long-term or short-term cycle slip is reduced with a factor of 3. The
fraction of PS containing a short-term cycle slip is 1:20 at its peak where it had been 1:5 in the
zero-state. On the other hand, the improvement in RMSD is insignificant, indicating that the
erroneous epochs are not affected at all. This again proves that the causes for this error type
lie in the APS estimation which is not affected by a changing PS2 network threshold.

Figure 5.13: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁−1 for the base algorithm (transparent lines) versus a case where the NAD (amplitude dispersion) threshold
for PS2 has been lowered (opaque lines). The black line shows the Root Mean Squared Difference, indicating
the average degree of variability in a single displacement estimate, the solid red line represents the Fraction of
Localized Short-Term Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. The
twometrics considering cycle slips show a spectacular improvement while the RMSD remains (almost) unchanged.

In the end, this measure shows that the amplitude dispersion threshold should be critically
reviewed based on the allowable number of misinterpretations and the area of interest for
monitoring. In this 1 by 1 km area over Amsterdam, there is still a reasonable amount of
PS left. However, implementing such a strict threshold over a rural region such as at the
Hondsbossche Zeewering would lead to very few PS and thus no monitoring at all.

5.7. Combination of improvements
In the previous sections, measures were evaluated individually. Some proved to enhance the
robustness of the displacement estimates. Now, a combination of the working improvements is
performed to check the overall robustness improvement that can be made. For computational
purposes, it is decided to only use a 5 by 5 km area for the estimation of the Kriging parameters.
Before and after, only the 1 by 1 km will be used for the other parameter estimations.
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The following five measures are now implemented simultaneously:

• A prescribed reference location.

• Kriging parameters obtained from the 5 by 5 km region.

• 12 February 2021 is excluded.

• The amplitude dispersion threshold for PS2 is lowered to 0.4.

• The PS1 network is densified.

The robustness results for the combination of these fivemeasurements are depicted in Fig. 5.14.
The core robustness metrics show a very significant improvement compared to the base
DePSI algorithm. The Root Mean Squared Difference deprecated by a factor of 5 on av-
erage, the Fraction of Localized Short-Term Ambiguities by a factor of 4.5, and the Fraction of
Localized Long-Term Ambiguities by a factor of 3.5 on average. After around 30 acquisitions,
the RMSD is at a lower value than the lowest point in the base algorithm. After realization
comparison 30 the improvements are only minor. Thus, it seems like 30 SAR acquisitions
could be used as a rule of thumb as initialization for monitoring. The Ambiguity Overview and
RMSD Overview show no real extremes.

Figure 5.14: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁−1 for the base algorithm (transparent lines) versus a case where several improvements have been imple-
mented (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average degree
of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term
Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. All metrics significantly
improve by several factors.
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5.8. Hondsbossche Zeewering
As introduced before, an area of 1 by 1 km and 5 by 5 km will be used over a rural dike
area, the Hondsbossche Zeewering to avoid a Taylor-made solution over an urban area. The
different areas of interest boundaries are depicted in Fig. 3.4. Here we see that the 1x1 km
(red) area almost solely consists of countryside. Besides the dike itself, a few roads and
houses are included but no more construction than that. On the other hand, the 5x5 km area
(black outline) covers two villages. Thus, we expect to see this in the robustness metrics as
constructions are believed to produce more consistence results (Perissin & Wang, 2011).

Using the same DePSI settings as for the zero-state over Amsterdam does not lead to
a proper result for the 1x1km after realization 25. The reason is a too sparse PS1 network.
Only some 8 PS present in the 1x1 km had a low enough amplitude dispersion value to be
accepted in the first-order network leading to the breakdown of the process, reinforcing the
idea of processing a larger area of interest. Using a higher threshold value for the first-order
network leads to the results shown as the transparent lines in Fig. 5.15. These results show
very little robustness, looking at the number of short-term and long-term cycle slips, meaning
that the displacement estimates are very rapidly changing with a different stack as DePSI input.
Without question, these results would be useless for monitoring purposes as the number of
false warnings would be unworkable.

Figure 5.15: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁 − 1 for the base algorithm (transparent lines) versus the 5 by 5 km region over the Hondsbossche Zeew-
ering (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average degree
of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term
Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. The 1 by 1 km results lead
to unsatisfactory robustness whereas the 5x5 km looks promising.

The 1x1 km area appeared too small for such a rural area with little construction. Thus, it
would be interesting to see if a 5 by 5 km region around the Hondsbossche Zeewering does
lead to satisfactory results. The number of PS, present in the PS2 network lies around 100,000
instead of 8000. The robustness metrics of the 5x5 km region are represented by the opaque
lines in Fig. 5.15. The solid red dots show that the number of PS with a short-term cycle slip
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deprecated from 80-90 % towards 30-40 %, comparing the 1x1 km results with the 5x5 km
results. The number of long-term cycle slips even further reduced from around 1 in 10 to 1 in
40 PS and the same holds for the RMSD, which asymptotically declines to a value of 0.2 mm.

As mentioned before, these robustness metric values are not one-to-one comparable with
the results previously obtained over Amsterdam as other acquisitions and area layouts make
this impossible. In the 5 by 5 km, it was apparent that using an area containing more water and
natural surroundings negatively influences the overall robustness performance. Therefore, the
coming subsection will research the robustness of various land use types.

The Ambiguity Overview in Fig. B.5 shows that the cycle slips are more spread out over
different epochs than was the case for Amsterdam. There are more groups/clusters of epochs
(horizontal rows) that stand out. Only one cluster around February 2021 has a plausible cause
as that was the snow period over the Netherlands. However, the more acquisitions included in
the realizations, the lower the number of ambiguous measurements. There are a few realiza-
tion comparisons (around 75) that contain higher values in both the RMSD overview and the
Ambiguity Overview. Fig. 5.16 depicts the range values of the experimental variogram. Here,
a consistent parameter estimation till realization 75 is visible. Suddenly, the range contains
jumps in estimation value and mostly much shorter ranges are estimated. This negatively af-
fects the RMSD and the number of cycle slips. Thus, the proposed improvements over the
Amsterdam region are implemented to see the impact on the robustness of the Hondsbossche
Zeewering region.

Figure 5.16: Diagonal matrix for the Kriging range parameter per epoch (individual atmosphere) in each realization
𝑁. Moving horizontally, the same atmosphere is estimated but with a different DePSI input. A red pixel indicates a
relatively high value at that epoch for that realization (comparison) and blue a relatively low range. From realization
75, there is more variability in the estimated atmospheric range leading to higher RMSD values.
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5.8.1. Area types breakdown
A large advantage of the 5x5 Hondsbossche area is the variety in the type of area. On the one
hand, we have the sea, coast/beach, and sea defense itself. On the other hand, we have a
large area with meadows, agriculture, and even villages and other developments. If one only
cares about monitoring the sea defense, one would not care that the meadows show very little
robustness. Therefore, parts of the 5 by 5 km area are assigned to specific land cover types,
sea, sea defense, meadows, or urban, based on their coordinates. Because the land cover
types are present in the same process, we can make a fair comparison in the PS robustness
of different area types. Calculating the robustness metrics for each land use class separately
leads to the results in Fig. 5.17.

The top left plot shows the number of conjunct PS in each class. The backscattering
amplitudes from open water rarely form a coherent series as the sea slopes fluctuate randomly
averaged over a pixel with each acquisition (Karvonen et al., 2005). This causes the chance
for a sea pixel to pass the NAD threshold to decrease as the time series gets longer, e.g. more
acquisitions are acquired. Comparing realizations 20 and 21, almost ten thousand conjunct PS
are present in contrast to the twenty PS comparing realizations 99 and 100. The other classes
contain less and less PS as well while more acquisitions make amplitude time series changes
more likely. However, the urban area shows the least decrease in PS as the amplitudes are
most consistent in an area with constructions.

(a) Number of PS (b) Root Mean Squared Difference

(c) Fraction of Localized Short-Term Ambiguities (d) Fraction of Localized Long-Term Ambiguities

Figure 5.17: Comparison of the robustness metrics for different land coverage types around the Hondsbossche
Zeewering.
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The top right plot shows the development of the RMSD, the bottom left the FLSTA, and the
bottom right the FLLTA over the realization comparisons. For all metrics, the robustness of the
urban land cover type was the best, and the water class the worst albeit the order of magnitude
differs significantly. The RMSD for these two classes differ by a factor of two, the FLSTA differs
by a factor of three, and the FLLTA by a factor of ten. This shows that a low robustness result
over a processed area does not per se mean that the displacement estimates are unusable
for monitoring purposes. The robustness metrics of the sea defense follow closest to the
robustness of the urban region indicating promising robustness. In the end, this again proves
that one should not fixate on the robustness values but rather look at their implementation and
the limitations of the InSAR displacement results in their case.

5.8.2. Improvements Hondsbossche Zeewering
Given the successful outcomes of the improvements implemented in the 1 by 1 km region
over Amsterdam, the same enhancements are applied to the Hondsbossche Zeewering area.
Using the 5 by 5 km region already demonstrated its beneficial impact compared to the 1
by 1 km approach, which led to suboptimal results. Now, the same additional measures as
implemented in section 5.7 are included. The only difference lies in the excluded dates since
the descending track contains different overpass dates. Consequently, the snow acquisitions
excluded are the ones on 9 February 2021 and 15 February 2021.

The Incremental Robustness Metrics are depicted in Fig. 5.18. The robustness again sig-
nificantly improves, while the RMSD, FLSTA, and FLLTA decrease by a factor of 1.5, 6, and
7, respectively. The improvement in RMSD is less pronounced since the primary improve-
ment in the Amsterdam region proved to be the use of a larger area, a measure that was
already implemented for the Hondsbossche Zeewering. Monitoring results obtained from the
improved algorithm now substantially reduce the likelihood of misinterpreted situations arising
from suboptimal utilization of InSAR capabilities.

Figure 5.18: Incremental Robustness Metrics graph, comparing the displacement estimates from realizations 𝑁
and 𝑁 − 1 for the base algorithm (transparent lines) versus the 5 by 5 km region over the Hondsbossche Zeew-
ering (opaque lines). The black line shows the Root Mean Squared Difference, indicating the average degree
of variability in a single displacement estimate, the solid red line represents the Fraction of Localized Short-Term
Ambiguities, and the red dashed line the Fraction of Localized Long-Term Ambiguities. All metrics significantly
improved.
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Upon reflection on the different land use types, it is observed that the proportions between
the various polygons remain essentially unchanged, with the urban polygon being the most
robust and the sea polygon the least. However, the values have decreased as the overall ro-
bustness improved. The most notable change lies in the number of PS present in the polygon
due to a more stringent NAD threshold, illustrated in Fig. 5.19. This threshold severely affected
the Sea polygon which did not contain more than 1 PS after 50 acquisitions in the compari-
son. Besides, the Meadows polygon was heavily affected while the urban polygon now has
a considerably higher number of PS compared to the Meadows polygon. The sea defense
only retains a few points, indicating a significant reduction in spatial coverage. Ultimately, this
graph emphasizes the importance of balancing (un)certainty versus the spatial density of the
displacement measurements, depending on the specific objectives of a monitoring campaign.

Figure 5.19: Number of Point Scatterers in each polygon, represented by a color, over the number of SAR acquisi-
tions in the comparison after implementing the proposed improvements over the Hondsbossche Zeewering area.



6
Conclusions & Recommendations

In this study, the primary aim was to give insight into issues regarding the automatic monitoring
of civil infrastructure with InSAR. Moreover, we aimed to create certain metrics to assess the
robustness of the obtained displacement estimates quantitatively. The corresponding main
research question is:

How can we assess the robustness of InSAR time series processing?

By means of three core metrics, we can express robustness quantitatively. Assessing the
robustness of the current operating DePSI algorithm reveals that this algorithm is not suitable
to be used as the basis for automatic monitoring. Displacement estimates changed to such
an extent that these estimates can not be used to detect point anomalies reliably.

As the metrics identify possible fallacies in the algorithm, assessments on the robustness
of InSAR algorithms are highly recommended. Furthermore, there are several measures and
considerations to be taken into account when further developing an automatic monitoring sys-
tem/algorithm. These considerations will be further elaborated upon by answering the intro-
duced subquestions. The fundamental first question is whether there were significant discrep-
ancies at all:

When measurement updates arrive, do the InSAR time series parameter estimates change?
If yes, what types of displacement estimate differences occur, and what is their impact?

In the first place, we show that the current displacement estimates may indeed significantly
change by varying the input. Using batch estimated results with a subsequent set of SAR ac-
quisitions, named a realization, the conjunct epochs and conjunct Point Scatterer were com-
pared. The estimates also changed when batch estimating the same stack input of SAR acqui-
sitions due to randomness in the amplitude calibration of the algorithm. This causes changes
in the first-order network to which the displacement estimates are very sensitive. Thus, it is
needed to use a robust amplitude calibration procedure. By studying the Differential Space-
Time Matrix, we distinguished four main ’deviation’ categories.

The first, least occurring category, is the localized long-term deviation. To this category
belongs the most severely changing displacement time series of PS that contain such little
resemblance in a realization comparison that the median difference exceeds the value of a
single ambiguity cycle, named drifting PS. This category mostly originates from a different
integer unwrapping.

The second category comprises PS with a localized short-term deviation. The most se-
vere form is the occurrence of an incidental ambiguity. Estimates that already lie close to a
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different integer cycle interpretation are unwrapped differently at that epoch due to a difference
in the atmospheric estimate, non-parameterized displacement estimate, or a different choice
of reference PS. All these things change as a result of one extra measurement influencing
the amplitude dispersion and thereby working through the first-order network set, atmosphere
parameters, initial displacement model, and unwrapping choices.

The third category is the category of area-wide short-term deviations. This is mostly visible
at specific epochs that contain a significant displacement estimate difference across the board
relative to the other displacement differences. This is mostly due to a different Atmospheric
Phase Screen estimate.

A changing reference PS(1) lies at the base of the last category. The area-wide long-
term deviation can occur as the reference phase propagates through all other (relative) phase
estimates.

These ’problems’ are shown not only by examples but also by quantification and visualiza-
tion, leading to an answer to the second subquestion:

How can we quantify the robustness of InSAR displacement estimates?

The four deviation categories are captured in three core metrics to express the robustness.
The metrics are designed to separately capture ambiguities from the moderate displacement
differences. To achieve this, we compute the fraction of PS exhibiting a structural drift/ambiguous
offset in the Fraction of Localized Long-Term Ambiguities, the fraction of PS featuring at least
one incidental ambiguity cycle difference in the Fraction of Localized Short-Term Ambiguities,
and the Root Mean Squared Difference off all Point Scatterers not in either of two other cate-
gories. The use of more than one metric is imperative as reliance on a singular metric would
be susceptible to bias introduced by the length of a time series. Longer time series inherently
accumulate larger deviations as the phases build upon each other in time.

In our experiment, we start with five acquisitions incrementally incorporating one acquisi-
tion for each subsequent batch estimation, progressing until the 100th acquisition is included.
The robustness assessment using the three primary metrics is facilitated by comparing realiza-
tion 5 with realization 6, 6 with 7, and so forth, up to realization 99 with 100. This comparison
is presented in an Incremental Robustness Metrics graph (page 42), offering insights into the
robustness development concerning the number of acquisitions in a realization.

The metrics are not to be interpreted as individual values but rather in a global context.
They are meaningful, though biased with the length of time series as the chance of a localized
short-term ambiguity is larger with more epochs. Therefore, it is more useful to detect notable
peaks relative to metric values from other realization comparisons suggesting low robustness
and indicating substantial variability in displacement estimates across different inputs. The
more detailed Ambiguity Overview (see page 43) can subsequently help to identify possible
causes.

For the zero-state, the currently used DePSI version, often at least 10% of all selected
PS had an ambiguously interpreted estimate, meaning that at least one single displacement
differed around 28 mm just by varying the input acquisitions. However, some peaks reached
the 20%. For the non-ambiguous PS, the introduced RMSD appeared to be around 0.5 mm.
A detailed examination of the zero-state reveals the answer to the third subquestion:

What is the cause for these displacement estimate differences?

There is not just one cause for the different displacement estimates, given that the estimation
process involves multiple distinct steps influenced by numerous variables. A notable observa-
tion was the impact of a low-coherence acquisition caused by snowfall, leading to an excessive
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number of cycle slips as illustrated in Fig. 4.2 on page 43. Consequently, careful consider-
ation is essential in deciding whether to incorporate a newly acquired SAR acquisition in the
analysis. This decision-making process can be achieved by using contextual weather data.

The primary contributor to the area-wide short-term zero-state displacement deviations is
the Atmospheric Phase Screen estimation. Abruptly changing Kriging parameters, employed
for spatial interpolation around the PS1 network, exhibit a strong correlation with the largest
RMSD values shown in Fig. 4.6. This means that the atmospheric signal of previously esti-
mated epochs is modeled very differently severely changing obtained displacement estimates.
This is strange and undesired as a new acquisition should not be able to largely influence the
atmospheric interpretation of an acquisition one year ago. Further investigations indicate that
there are two primary causes at the core of the atmospheric estimation challenge.

Firstly, a 1 by 1 km area proves inadequate for capturing an atmospheric signal accurately,
as the obtained interpolation parameters do not follow our physical understanding of the at-
mosphere. This advocates for a preference towards a larger area of interest to model the
APS.

Secondly, the variogram should bemore critically evaluated andmore robustly constructed.
At the moment, due to sparse bins, a sparse PS1 network, and a variogram calculation that is
not robust, an uninterpretable experimental semi-variogram arises, resulting in three parame-
ters that are not in line with our physical understanding of the atmosphere. Coupled with the
suboptimal Gaussian filter process to separate the non-parameterized displacement from the
residual phase at the PS1 locations described in section 2.1.6 on page 11, there exists a need
of re-evaluating the Atmospheric Phase Screen estimation to improve robustness of DePSI.

6.1. Recommendations
The first recommendation is a trivial though most important outcome of this research. It could
be that InSAR users blindly trust their results as if they are quite certain about the outcome.
However, we show that blind trust in the result is impossible. Therefore, it would be beneficial
to perform a similar robustness analysis for other InSAR algorithms as proposed in the test
recipe in section 3.2, batch estimating with varying input. This will not only give insight into the
robustness of achieved results but can also explain the causes of anomalies in the monitoring
results. Moreover, it can also help decide what threshold or other settings to use for a desired
output certainty.

The zero-state results lead tomeasures that possibly enhance the robustness, see Chapter
5. From the critical evaluation of the different measures, we have several recommendations
to answer the last subquestion:

What are the requisites to obtain robust and repeatable displacement estimates for
monitoring civil infrastructure with InSAR?

The repeatability requirement can be effectively addressed by mitigating a function using ran-
domness in the algorithm, achieved through adjusting the calibration step where this was
explicitly used. This measure guarantees consistent results in case of the repetition of the
same experiment by any individual.

On the other hand, ensuring a more robust outcome using InSAR requires more advanced
adjustments. A perfectly robust system is unachievable, but also unwanted due to the in-
herent imperfections in our initial predictions. The main problems or uncertainties lie in the
unwrapping and atmosphere. A more robust unwrapping approach is a challenging task re-
quiring more thorough research. On the other hand, much of the lack of robustness in the
atmosphere is now caused by the well-described shortcomings in our algorithm, outlined in
section 2.2.4 on page 24.
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Most of the proposed measures regarding robustness, made based on the deviation hy-
potheses, indeed enhance the robustness of InSAR results. However, some improvements
do not contribute to an increase in the robustness. These improvements are the use of the
Normalized Median Absolute Deviation instead of the NAD and the enrichment of the initial
displacement model. An alternative measure to the enrichment of the initial displacement is
interesting for future research as the solution to mitigate Localized Long-Term Deviation is still
unknown.

The following recommendations are made to avoid an outcome depending on the moment
of processing as much as possible:

• One single fixed pixel/location should be chosen to serve as a reference throughout the
whole monitoring timespan. Ideally, this reference is combined with a second measure-
ment technique such as GNSS to filter and subtract the reference displacement signal
from all other displacement estimates. An example of such a combination is achieved
with an IGRS.

• To adequately capture the atmospheric signal, it is recommended to use a sufficiently
large area of interest, which can be verified through the following steps:

1. Conduct a robustness test, as outlined in the test recipe on page 36, to compare
the ΔASTM𝑥 with ΔSTM𝑥. A strong resemblance of the atmospheric differences in
the displacement estimates indicates low atmospheric robustness.

2. Examine the changes in spatial interpolation parameters to see the variability in the
estimation.

3. Critically evaluate the semi-variogram ofmultiple atmospheres to seewhether these
make sense and align with our physical understanding of the atmosphere.

• A more robust Kriging (semi-)variogram equation using a median instead of a mean
operation is preferred as this makes the theoretical fit more robust for changes in input.

• To achieve a balance between precision, spatial coverage, and the desired level of un-
certainty, careful consideration should be given to selecting an appropriate amplitude
dispersion (NAD) threshold. This threshold is mainly depending on the goal of a cer-
tain monitoring mission. If we are interested in monitoring a specific dike, we need to be
more certain of our result compared to the monitoring of a large gas field. If the expected
chances of an ambiguity mistake are known, we can relate that to the margin of error in
flagging anomalous locations.

• As shown throughout the whole study, batch estimating is far from ideal. It does provide
useful recommendations to improve robustness stacks, but recursive updating of the
parameters has the future. To achieve this, research is needed to decide on the most
robust implementation of recursively updating. For instance, are we going to update
with every acquisition or after three acquisitions? And what do we choose as a first-
order network for the atmosphere, do we stick with a fixed set of points, and how do we
deal with points that seem to change based on their amplitude behavior?

Performing the proposed test recipe also gives insight into whether a stack contains enough
acquisitions to be used as a basis for recursive monitoring. Given the experiments performed
in this study, this number lies around 30 acquisitions.



6.2. Future perspective for monitoring with InSAR 77

6.2. Future perspective for monitoring with InSAR
Based on this study, should one be skeptical about the use of InSAR displacement time series
for monitoring purposes? Our findings suggest that InSAR retains significant potential for
monitoring, particularly for global assessments of cities or larger areas using a PSI approach.
In scenarios like the gas fields in Groningen, where a few anomalous point scatterers may
exist, their impact is negligible as the main signal of the entire area remains distinguishable.
However, challenges persist in using InSAR for point-level detection of anomalous behavior,
such as monitoring specific structures like quay walls or dike segments. Further developments
are needed to overcome these challenges for more localized monitoring applications.
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A.1. 0-state

Figure A.1: Locations and number of occurrences of the reference point when the choice of reference is unre-
stricted.
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Figure A.2: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.3: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.4: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁 to
𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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A.2. NMAD

Figure A.5: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).



88 A. Case study figures Amsterdam

Figure A.6: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.7: Locations and number of occurrences of the reference point when the choice of reference is unre-
stricted.

Figure A.8: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁 to
𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure A.9: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.10: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.3. Fixed reference point

Figure A.11: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.12: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.13: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).



A.3. Fixed reference point 95

Figure A.14: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.15: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.4. Exclusion frail image(s)

Figure A.16: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.17: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.18: Locations and number of occurrences of the reference point when the choice of reference is unre-
stricted.

Figure A.19: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure A.20: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.21: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.5. Atmospheric robustness

A.5.1. Prescribe set of first-order network PS

Figure A.22: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).



A.5. Atmospheric robustness 103

Figure A.23: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.24: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure A.25: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.26: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.5.2. Kriging parameter restriction

Figure A.27: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.28: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.29: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.30: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.5.3. First-order network densification

Figure A.31: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.32: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.33: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure A.34: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.35: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.5.4. Robust Kriging

Figure A.36: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.37: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.38: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.39: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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Figure A.40: Heatmap for the nugget values for each epoch over the number of images in realization 𝑁.
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A.5.5. 5x5 km region

Figure A.41: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 1st of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.42: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.43: Locations and number of occurrences of the reference point when the choice of reference is unre-
stricted.

Figure A.44: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure A.45: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.46: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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Figure A.47: Heatmap for the nugget values for each epoch over the number of images in realization 𝑁.
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A.6. Expansion steady state

Figure A.48: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.49: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.50: Locations and number of occurrences of the reference point when the choice of reference is unre-
stricted.

Figure A.51: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).



130 A. Case study figures Amsterdam

Figure A.52: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.53: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.7. More strict PS2 NAD threshold

Figure A.54: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.55: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).



134 A. Case study figures Amsterdam

Figure A.56: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.57: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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A.8. Combination of improvements

Figure A.58: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 25th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure A.59: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 25th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure A.60: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁
to 𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure A.61: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure A.62: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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Case study figures Hondsbossche

Zeewering

B.1. 5x5 km without improvements

Figure B.1: Locations and number of occurrences of the reference point when the choice of reference is unre-
stricted.
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Figure B.2: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 28th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure B.3: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 28th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure B.4: Figure containing the share of identical PS1 locations over the number of realizations comparing 𝑁 to
𝑁 − 1 (blue line) and 𝑁 to the starting set (yellow line).
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Figure B.5: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure B.6: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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B.2. 5x5 km with improvements

Figure B.7: Absolute Differential Space-Time Matrix containing displacement estimate differences of two Space-
Time Matrices obtained from processing the conjunct pixels and epochs in two realizations. The horizontal axis
contains the epoch number, starting from the 28th of March 2020 and the vertical axis represents an arbitrary point
number (location).
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Figure B.8: Absolute Differential Atmospheric Space-Time Matrix containing atmospheric delay estimate differ-
ences of two Space-Time Matrices obtained from processing the conjunct pixels and epochs in two realizations.
The horizontal axis contains the epoch number, starting from the 28th of March 2020 and the vertical axis repre-
sents an arbitrary point number (location).
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Figure B.9: Ambiguity Overview for the occurrence of cycle slips in the displacement estimates per epoch, com-
paring acquisition realization 𝑁 with realization 𝑁−1. Moving horizontally, the same epoch is compared but with a
different DePSI input. A vertical column contains the cycle slips of one realization comparison. Dark red indicates
many cycle slips on that epoch and dark blue indicates almost no cycle slips.
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Figure B.10: RMSD Overview for the detailed version of the displacement estimates per epoch, comparing acqui-
sition realization 𝑁 with realization 𝑁 − 1. Moving horizontally, the same epoch is compared but with a different
DePSI input. A vertical column contains the RMSD of one realization comparison. Dark red indicates large dis-
placement estimate differences on that epoch and dark blue indicates almost no difference.
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