
A SYSTEMS ENGINEERING APPROACH TO
OPTIMISATION IN HYBRID RENEWABLE ENERGY

SYSTEMS

OPTIMISING ASSET CAPACITIES FOR ENECO’S DISTRICT HEATING NETWORK IN UTRECHT





A SYSTEMS ENGINEERING APPROACH TO
OPTIMISATION IN HYBRID RENEWABLE ENERGY

SYSTEMS

OPTIMISING ASSET CAPACITIES FOR ENECO’S DISTRICT HEATING NETWORK IN UTRECHT

Dissertation

To obtain the degree of Master of Science
At the Delft University of Technology,

To be defended publicly Friday December 13 at 11:00,

by

Pepijn GRIJPINK
Student number: 4953304



Thesis committee:

R.A. Hakvoort TU Delft
F.M. Brazier TU Delft
T. van Gils Eneco

Keywords: Optimisation, capacity planning, District heating, hybrid energy sys-
tems, thermal energy storage

Front & Back: Cover art that visualises the district heating network by Eneco

Copyright © 2024 by P.M. Grijpink

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


ABSTRACT

With the pressing need to address climate change and reduce greenhouse gas emissions,
governments around the world have set ambitious climate goals, necessitating a transi-
tion to renewable energy sources. In the Netherlands specifically, the government has
recognized the potential of district heating networks as a vital strategy for decarboniza-
tion, given that 81.5% of domestic energy consumption is dedicated to thermal loads.
The development of new energy assets, the integration of storage solutions, the use of in-
termittent renewable energy sources, and the inclusion of multiple energy carriers such
as fuels, power, and heat, collectively referred to as hybrid renewable energy systems,
have made the energy infrastructure more complex than ever before. The challenge lies
in understanding the implications of integrating diverse renewable assets and optimiz-
ing the system for both reliability and economic feasibility, as optimal sizing in hybrid
renewable energy systems remains insufficiently understood.

This study aims to answer the following research question: What is an effective approach
to capacity optimisation in renewable energy systems that integrate thermal and power
sources with hybrid energy storage?

This study adopts both qualitative and quantitative research approaches, employing
multi-actor analysis, system design, optimization techniques, and data analysis to de-
termine the optimal sizing of the identified system components. The study integrates
real-world data from Eneco’s district heating network in Utrecht, employing optimisa-
tion models to minimise costs while ensuring a reliable supply of heat for the connected
households. The research addresses sub-questions related to optimisation techniques,
hybrid system design, and operational performance.

The study results show that a systems engineering approach to capacity optimization
in hybrid renewable energy systems can provide robust solutions to the challenges of
balancing reliability, economic feasibility, and sustainability in energy infrastructure.
By taking an integrated approach that spans multi-actor analysis, system design, opti-
mization design, model development, and result analysis, relevant system components
can not only be identified but also capacity-optimized. Throughout the study we have
shown that single-layer optimisation using mixed integer linear programming provides
the most accurate results in diverse hybrid systems with complex asset dispatch. Fur-
thermore, we identified masked time resolution adjustment as the highest-performing
simplification technique, achieving a 91.58% reduction in solution time while showing
minimal differences in results compared to full optimization. For Utrecht’s district heat-
ing network specifically, we showed that a renewable hybrid system, relying on thermal
energy storage, power-to-heat, and CO2 compensated fuel-to-heat, is economically and
technically feasible up until an operational power-to-heat fraction of 85%.
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EXECUTIVE SUMMARY

The study results show that a systems engineering approach to capacity optimization
in hybrid renewable energy systems can provide robust solutions to the challenges of
balancing reliability, economic feasibility, and sustainability in energy infrastructure. By
taking an integrated approach that spans multi-actor analysis, system design, optimiza-
tion design, model development, and result analysis, relevant system components for
Eneco’s district heating network in Utrecht have been identified and capacity-optimised.

The multi-actor analysis reveals that Energy Production Utrecht (EPU) operates within a
highly complex decision-making environment influenced by high-power stakeholders,
including the municipality, local community, and grid operators. The most significant
dependency is between EPU and grid operators. Due to ongoing decarbonization ef-
forts, EPU is anticipated to rely more heavily on power-to-heat (P2H) in the future, ne-
cessitating larger grid connections throughout the city. The timing and method of P2H
implementation will either alleviate or exacerbate grid congestion. By operating P2H as-
sets during off-peak hours to generate heat, EPU can help alleviate grid congestion by
storing thermal energy in short-term storage assets for use during peak thermal demand
hours. This approach, in turn, reduces peak power demand. Conversely, if P2H assets
are used during peak power demand hours, EPU risks contributing to grid congestion.
To foster a mutually beneficial relationship, EPU and grid operators must maintain close
communication to support each other’s goals. Additionally, it’s essential to recognize
that persistent grid congestion has spurred new regulations, such as the ATR85/15 rule,
which allows grid operators to restrict power supply up to 15% of the time.

Following the actor analysis, system analysis was used to identify the relevant system
components. Currently, there are four thermal assets that can be integrated in EPU’s dis-
trict heating network: Combined Cycle Gas Turbines (CCGTs), peak boilers, Heat Pumps
(HPs), and E-boilers. While alternative thermal sources such as waste heat, biomass, and
geothermal have been evaluated, successful implementation of these assets has been
shown to be unlikely for various reasons. Additionally, we evaluated multiple storage
assets of which two have been included in the results: Tank Thermal Energy Storage
(TTES), and Aquifer Thermal Energy Storage (ATES). TTES is primarily used to balance
short term supply and demand and therefore used as a peak asset. ATES on the other
hand is used for seasonal thermal energy storage due to its favourable efficiency and
cost characteristics.

The optimisation design showed that for EPU, minimum cost emerges as the most im-
portant objective, constrained by emissions and reliability requirements. The optimi-
sation makes use of mixed integer linear programming, a computationally expensive
method that is guaranteed to find the global optimum. To alleviate some of the com-
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viii 0. EXECUTIVE SUMMARY

putational complexity, two simplification methods were applied to the model: k-means
clustering and masked time resolution adjustment. Comparison of optimisation results
show that masked time resolution adjustment yields the most accurate results while
achieving a 91.58% reduction in solution time.

To assess the operational performance of the optimization results, we used simulation
techniques to create a synthetic dataset comprising two years of hourly data. This syn-
thetic dataset was generated based on probabilistic patterns observed in the 2023 ther-
mal demand data. When evaluating the operational performance of the optimization re-
sults against the synthetic data, we found that none of the scenarios achieved the bench-
mark of a Loss of Heat Supply Probability (LHSP) of 0. Instead, LHSP averaged 0.041%
across the scenarios. This discrepancy is due to higher peak demand in the synthetic
dataset compared to the 2023 thermal demand used for system optimization. From this,
we conclude that optimization alone does not provide sufficient capacity to handle pe-
riods of exceptionally high demand. Therefore, EPU should ensure the availability of ad-
ditional peak capacity to maintain performance during unprecedented demand peaks.
This redundancy would not only support operational reliability during demand peaks
but also provide resilience during maintenance activities or asset failures.

From the research we can provide EPU with multiple strategic recommendations. The
first insight is that, given the regulatory environment and ongoing challenges surround-
ing grid congestion, the implementation of a hybrid system design—relying on power-
to-heat (P2H), fuel-to-heat (F2H), and fuel-to-power technologies—emerges as the most
resilient and adaptable approach from a multi-actor perspective. The optimisation re-
sults show that such a hybrid approach must rely on heat pump capacity ranging from
50 MWth to 132 MWth, CCGT capacity ranging from 177 MWe to 49 MWe, and peak boiler
capacity ranging from 32 MWth to 54 MWth. Additionally, EPU should incorporate ther-
mal energy storage, including ATES with a capacity of 100 MWth and a storage capacity
between 64 GWhth and 132 GWhth, as well as TTES with a capacity ranging from 42 MWth

to 52 MWth and a storage capacity between 259 MWhth and 318 MWhth.

Furthermore, we identified decentralised DHN operation as the most efficient applica-
tion of results. By placing assets in secondary locations, thermal loss during transport is
decreases, asset dispatch is simplified, and heat pump efficiency is increased. However,
decentralised operation would limit the reach of thermal assets, only allowing them to
supply heat to their specific network. It is currently unknown what locations have spa-
tial availability and what the grid capacity is for those locations. Therefore, EPU should
conduct further research into the placement of assets in secondary locations identify-
ing what locations are suitable. An alternative approach that can capture many benefits
of decentralized operation while limiting its drawbacks is lowering the temperature of
the primary grid. This approach would also decrease thermal losses and increase the
efficiency of heat pumps while allowing these assets to supply heat to all secondary net-
works. Furthermore, it would allow TTES assets to be placed in the primary grid, and
allow ATES operation with a heat exchanger rather than a heat pump, decreasing sys-
tem costs. However, a temperature reduction would also decrease grid capacity, as ther-
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mal demand is currently met through temperature regulation, potentially requiring ad-
ditional peak assets in secondary locations. Therefore, it is essential for EPU to conduct
further research into the possibilities of temperature decrease.

Finally, the results show that affordable and efficient seasonal thermal energy storage
plays a critical role in the success of district heating networks. Therefore, EPU should
initiate a pilot project for the implementation of seasonal storage using ATES.
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1
INTRODUCTION

As the world rapidly experiences the consequences of climate change, Eneco has com-
mitted to an ambitious mission of "green energy for everyone" by accelerating the en-
ergy transition and achieving complete climate neutrality by 2035 (Eneco, 2024f). This
accelerated transition has brought renewable energy sources (RES) into the spotlight.
However, despite renewable energy prices being cheaper than energy from fossil fuels,
as measured by the levelized cost of energy (LCOE), their variable nature poses chal-
lenges for maintaining a balanced grid (IRENA, 2023). In 2023, grid imbalances caused
electricity prices to be negative for a total of 316 hours, highlighting the challenges posed
by renewable sources and the need for effective integration strategies (Harreman, 2023).

Given the intermittent and volatile nature of RES, the focus within integrated renew-
able systems has shifted significantly toward the role of energy storage. (Huang et al.,
2024). Energy storage systems (ESS) can absorb energy during periods of surplus gener-
ation and subsequently release it when demand exceeds supply. This smooths the ran-
domness of renewable energy, reduces curtailment, and the need for backup systems to
meet peaks in demand (Wang et al., 2022). Each storage technology offers distinct advan-
tages and challenges, influenced by factors like round-trip efficiency and energy density
(Huang et al., 2024). Storage systems must be capital efficient, energy efficient and reli-
able. Currently, most energy storage solutions struggle to address multiple requirements
at once (M. Liu et al., 2023). Therefore, implementing a variety of storage systems in a
hybrid approach enhances system flexibility and economy by balancing out the short-
comings of each individual storage technology (Wang et al., 2022).

In the Netherlands, 81.5% of domestic energy consumption is dedicated to thermal
loads, underscoring the importance of thermal energy in the Dutch energy infrastruc-
ture (Luteijn & Wetzels, 2023). Given the high thermal demand, district heating networks
(DHNs) have become a crucial focal point for the Dutch energy transition and an integral
part of the government’s sustainability agenda. Recognizing their potential, the Dutch
government aims to double the number of households connected to DHNs, targeting an
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additional 500,000 households by 2030 (Rijksoverheid, 2023). DHNs are not only more
efficient, with 66% fewer emissions compared to domestic heating systems, but they also
serve as a crucial sink for surplus electricity. DHNs that integrate thermal energy storage,
known as district heating and storage networks (DHSNs), can store excess energy as ther-
mal energy. This capability allows DHSNs to contribute to grid balance, absorbing both
short-term and seasonal imbalances. Therefore, well-designed DHSNs that incorporate
hybrid energy storage systems play a crucial role in both decarbonizing household en-
ergy demand and alleviating grid congestion.

Another advantage of DHSNs is that thermal energy storage (TES) is cheaper than
battery energy storage (BES). While BES is effective, it is costly and depends on scarce re-
sources, presenting both economic and environmental challenges (Li et al., 2023). Con-
versely, TES utilizes abundant, environmentally friendly materials and offers a more
cost-effective solution. With capital costs between €0.1 and €20 per kWh, compared to
€225 per kWh for BES, TES presents a more economical solution while aligning more
with energy demand (Hauer et al., 2013; Huang et al., 2024). The ability to affordably
store large amounts of energy allows DHSNs to significantly accelerate the energy tran-
sition by integrating district heating networks (DHN) and power grids, providing crucial
flexibility. Electricity can be directly utilized to satisfy demand or converted into thermal
energy to be directly used or stored. By simultaneously balancing power and thermal
loads, DHSNs facilitate the widespread adoption of RES.

Recent research has shown that hybrid renewable energy systems, which integrate
both BES and TES, have the potential to nearly increase capacity factors twofold while
improving a range of economic indicators by 30%. (Hamilton et al., 2020). Integrating
hybrid ESS improves economic performance by 13.4% and reduces CO2 emissions by
24.6%, due to a 53.9% decrease in renewable energy curtailment. (Tooryan et al., 2020;
Wang et al., 2022). Nonetheless, the reliance on a singular RES within a renewable energy
system would demand an exceptional energy storage capacity, leading to high capital
expenses. To address this challenge, integrating solar, wind, and other renewable elec-
tricity and heat sources could potentially reduce the need for storage and, consequently,
lower overall system expenses. The sizing of system components can profoundly im-
pact the overall economic performance and reliability of hybrid renewable energy sys-
tems. According to T. Liu et al., economic performance is commonly evaluated using the
levelised cost of energy. On the other hand, system reliability is equally important, as
highlighted by the emphasis on the loss of power supply probability (LPSP) in numer-
ous studies (2022). Evaluating reliability requires simulation methods that create data
using predefined probability distributions for unpredictable factors such as renewable
energy generation and energy demand patterns (Zheng et al., 2018). Combined with
a hybrid RES approach, leveraging the synergies between thermal and battery energy
storage, could provide a valuable transition strategy towards an integrated hybrid en-
ergy system for Eneco (figure 1). However, the implications on hybrid system size and
scalability, particularly regarding costly energy storage, and the total performance of the
system remain insufficiently understood, warranting the adoption of an optimal system
sizing approach.
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1.1. BACKGROUND
Utrecht’s district heating network plays a crucial role in the city’s energy infrastructure,
providing efficient and reliable heating to residential and commercial buildings. This
chapter delves into the current state of this network, exploring its operational framework
and the diverse energy sources it employs. As Utrecht navigates the energy transition,
the integration of renewable energy sources has become increasingly significant. This
shift not only aims to reduce greenhouse gas emissions but also to enhance energy se-
curity and sustainability. Additionally, the chapter examines the existing thermal energy
storage solutions within the network, highlighting their role in balancing supply and de-
mand, and ensuring a stable energy flow. By providing this comprehensive background,
we lay the foundation for understanding the critical challenges and opportunities in op-
timizing Utrecht’s district heating system for a greener future.

1.1.1. DISTRICT HEATING NETWORK
The district heating network (DHN) is a crucial component of modern urban infrastruc-
ture, providing efficient and centralized heating solutions to residential and commercial
buildings. These networks are integral to government sustainability plans. By 2030, the
Dutch government aims to connect an additional 500,000 residential buildings to DHNs.
To support this goal, it has introduced a €150 million subsidy (Rijksoverheid, 2023).

Utrecht’s district heating network, spanning 1,258 kilometers of piping, is one of the
largest in the Netherlands (Nieuweweme & Hagenstein, 2024). It supplies roughly a quar-
ter of the city’s thermal energy demand, equivalent to 55,000 households, providing a
more sustainable alternative to in-home central heating. This sustainability is largely
due to the highly efficient power plants, achieving a 66% reduction in CO2 emissions
compared to domestic systems (Eneco, 2022).

The DHN can be divided into two closed-loop systems: the primary network and the
secondary network. In the primary network, water is heated using (waste) heat from one
of Eneco’s combined cycle gast turbines (CCGT). This network transports thermal energy
in the form of hot water (minimum 90°C) from the power plants to a heat transfer station
(WOS). Because the maximum flow of water volume is determined by the diameter of the
pipes and the speed of the pumps, thermal demand is met through temperature regula-
tion, raising the operating temperature during periods of high demand to a maximum of
120°C.

At the WOS, hot water enters a heat exchanger, transferring heat from the primary
network to the secondary network. The cooled water leaves the WOS and circulates back
to the power plant for another cycle. The secondary network transports the hot water
(70°C - 90°C) from the WOS to residential buildings in Utrecht and Nieuwegein, where
it flows through a heat exchanger to provide space heating or warm water. After which,
the cooled water flows back to the WOS for another cycle (Figure 1.1). Eneco’s DHN is
divided into four districts: Nieuwegein, Leidsche Rijn, Overvecht, and Utrecht City, each
containing one or more heat transfer stations.

1.1.2. THERMAL ENERGY SOURCES
While Eneco is working on improving the sustainability of their power and heat sup-
ply in Utrecht, at present the city relies heavily on fossil fuels. The two largest power



1

4 1. INTRODUCTION

Figure 1.1: A schematic representation of the DHN with the primary and secondary network separated by a
WOS

plants currently in operation are Lage weide 06 (LW06) and Merwedekanaal 12 (MK12)
(Table 1.1). Both are CCGTs that produce electricity and heat simultaneously with a re-
markably high efficiency of 85%. The high efficiency comes from utilizing what would
otherwise be waste heat from the electricity generation process for district heating. In
contrast, if the same installation were to only be used for electricity generation, it would
reach an efficiency of 54% (Van Tulder & van Gils, 2024). The process begins with the
fuel being combusted in gas turbine, generating kinetic energy, which is converted into
electricity by a generator. Simultaneously, the heat produced during combustion, which
would otherwise be wasted, is captured and used for district heating. This dual produc-
tion reduces fuel consumption and lowers greenhouse gas emissions, making CCGTs an
efficient and relatively environmentally friendly energy solution.

LW06 MK12

247 MWe 224 MWe

180 MWth 180 MWth

427 MWtotal 404 MWtotal

Table 1.1: The electric (MWe), thermal (MWth), and total (MWtotal) capacities of LW06 and MK12

In addition to the CCGTs Eneco operates three gas-fired boilers of 35 MWth each, two
biomass installations of 30 MWth each, two E-boilers of 10 MWth each, and one black-
start unit of 10 MWe to ensure backup power in case of blackout, all located at produc-
tion facilities LW and MK. In addition to these thermal energy sources, Eneco operates
three auxiliary gas plants located at various heat transfer stations to support peak de-
mand, providing an additional 238 MWth combined (Van Tulder & van Gils, 2024). Fur-
thermore, Eneco is currently testing their new aquathermal heat pump to extract waste
heat from the residual flow of wastewater treatment. Expected to generate 27 MW, the
largest heat pump of the Netherlands will provide heat to a total of 20.000 homes (Eneco,
2022). Therefore, while fossil fuels remain the primary energy source in Utrecht, Eneco
has been making strides in transitioning towards carbon-neutral assets. Currently, they
have a total of 80 MW of such assets, accounting for approximately 6.3% of Eneco’s over-
all energy supply in the city and 13.3% of heat supply.
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1.2. RESEARCH QUESTIONS AND OBJECTIVES
Recognising the importance of capacity optimisation within renewable energy systems,
the objective of this study is to adopt a standard approach to such optimisation prob-
lems. The adopted optimisation approach will be applied within the context of Utrechts
DHN to answer the following research questions:

What is an effective approach to capacity optimisation in renewable energy sys-
tems that integrate thermal and power sources with hybrid energy storage?

To answer this research question, the following sub-questions have been formulated:

1. What decision variables, and objectives, are identified in the literature, and what
are the trade-offs between them?

2. Which optimisation algorithms or combination of algorithms are identified in sci-
entific literature and what insights do they provide?

3. What system design considerations and trade-offs are important to the energy sys-
tem in Utrecht?

4. Which system components are of importance in Utrecht and what are their depen-
dencies?

5. Which level of resilience can be achieved and what is the comparative resilience
of a systems designed for multi-year reliability compared to those optimised for
typical day scenarios?
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As a result of the intermittency observed in renewable energy sources, the exploration of
various energy storage systems (ESS) has become increasingly important in scientific lit-
erature (Huang et al., 2024). Energy storage systems mitigate the variability of renewable
energy sources, reducing curtailment, and the need for backup systems to meet peaks
in demand (Wang et al., 2022). Each storage technology offers distinct advantages and
challenges, influenced by factors like round-trip efficiency and energy density (Huang
et al., 2024). ESS need to be capital-efficient, practical, energy efficient, durable, and
secure. Currently, most energy storage solutions struggle to address multiple require-
ments at once (M. Liu et al., 2023). Implementing a variety of ESS in a multi-storage
system enhances system flexibility, reliability, and economy by effectively balancing out
the shortcomings of each individual storage technology (Wang et al., 2022).

Recent research has shown that such hybrid renewable energy systems have the po-
tential to nearly increase capacity factors twofold while improving a range of economic
indicators by up to 30% (Hamilton et al., 2020). More specifically, recent research on hy-
brid integration of battery and thermal energy storage shows improved economy by bal-
ancing power and thermal loads simultaneously, thereby reducing grid electricity pur-
chases. Integrating hybrid thermal and power storage improves economic performance
by 13.4% and reduces CO2 emissions by 24.6%, due to a 53.9% decrease in renewable
energy curtailment (Tooryan et al., 2020; Wang et al., 2022).

Huang et al. (2024) identifies two approaches to optimization in energy systems:
single- layer optimization and two-layer optimisation. In the two-layer method, sizing
and operational dispatch optimizations are conducted sequentially using heuristic al-
gorithms like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). While
heuristic algorithms provide satisfactory solutions quickly, they don’t guarantee the global
optimum.

Conversely, the single-layer method integrates sizing and operational dispatch opti-
mization, using Mixed-Integer Linear Programming (MILP) to achieve globally optimal
solutions derived from real-time and forecasted data (Huang et al., 2024). This method
treats both size and operational parameters as variables optimized concurrently, often

7
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resulting in lower energy costs. However, computational challenges may arise with in-
creasing constraints and data, requiring the use of clustering techniques like k-means to
manage computational loads effectively by simplifying time series data. This approach
strives to balance computational efficiency with solution accuracy in complex, hybrid
energy systems (Huang et al., 2024).

Huang et al. (2024) present a model focusing on enhancing energy self-sufficiency
and minimizing annual total costs through a mix of technologies including photovoltaic
(PV), battery energy storage (BES), thermal energy storage (TES), and hydrogen energy
storage (HES). Implementing a Mixed-Integer Linear Programming (MILP) approach,
the research strategically optimizes the capacity configuration of these technologies over
a one-year period whilst optimising economic dispatch. Notably, Huang et al. incorpo-
rates annual hourly data clustered using k-means to simplify the problem space while
retaining critical temporal dynamics.

T. Liu et al. (2022) provide a noteworthy contribution through their exploration of
system configurations that incorporate an array of technologies including PV, concen-
trated solar power (CSP), electric heaters, TES, and BES. The study employs a logic-based
dispatch strategy coupled with the NSGA-II genetic algorithm to optimize system con-
figuration over a one-year time horizon. The primary objective of their optimization is to
enhance the economic performance of the renewable energy system, measured in terms
of Levelized Cost of Energy (LCOE) and Loss of Power Supply Probability (LPSP), which
are critical indicators of both cost efficiency and reliability. The decision variables in this
study include the capacity of the various technologies, expressed in MW for generation
capacities and MWh for storage capacities.

Tooryan et al. (2020) presents an optimisation model focusing on the integration of
multiple energy technologies, including wind power, PV, electric boilers, BES, TES, and
HES. The primary objective of this study is to minimize costs, greenhouse gas emissions,
and fuel consumption over a one-year period, employing a rule-based dispatch strategy.
This approach highlights the interplay and trade-offs between economic and environ-
mental performance in hybrid energy systems. To achieve these objectives, the authors
apply PSO, a technique well-suited for tackling the complex, multi-dimensional decision
variables such as the capacities of system components.

M. Liu et al. (2023) provides an analysis that integrates multiple energy technologies
including wind, PV, thermal energy, Compressed Air Energy Storage (CAES), BES, TES,
and HES. The study is driven by objectives to minimize both the costs associated with
energy production and the capacity of the storage systems utilized. To meet these goals,
Liu employs a genetic algorithm, a powerful tool for finding efficient solutions across
complex and diverse system configurations. The optimization is applied to yearly data,
although it is not specified whether the method consolidates this into a representative
’typical day’ approach, which is a common technique in long-term system studies to re-
duce computational demands while capturing critical variability. The decision variables
in this study focus on the capacities of the various technologies, which underscores the
strategic intent to optimize system sizing. The use of rule-based dispatch in conjunction
with genetic algorithms allows the study to address real-world operational challenges,
ensuring that the solutions are not only cost-effective but also viable under typical oper-
ational conditions.
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In the exploration of optimizing a diverse energy portfolio, Potrč et al. (2023) focuses
on an extensive array of energy sources including biofuel, PV, wind, geothermal, hydro,
nuclear, and fossil fuels, alongside various energy storage technologies such as CAES,
Phase Change Materials (PCM), Pumped Hydro Storage (PHS), BES, Thermal Chemical
Storage (TCS), and TES. The objective of this comprehensive study is to maximize sus-
tainability, defined through a holistic lens that incorporates economic, environmental,
and social factors. The approach employs MILP for both system dispatch and optimiza-
tion. The study spans a forward-looking time horizon towards 2050, segmented into
10-year intervals, with data granularity extending down to monthly, daily, and hourly in-
tervals. This long-term analysis is crucial for understanding the dynamics of energy pro-
duction and consumption transitions in response to evolving technological, economic,
and policy landscapes. Decision variables in the model are quantified in terms of the
output from each technology, measured in terawatt-hours (TWh), providing a clear met-
ric for assessing the contribution of each energy source to the overall system sustainabil-
ity.

Research by Wang et al. (2022) addresses the complex challenge of optimizing en-
ergy systems that integrate diverse sources such as wind, photovoltaic, and fossil fuel
power plants, alongside BES and TES systems and heat pumps. The primary objective of
Wang’s study is cost minimization, which is tackled through a robust two-step optimiza-
tion process. Initially, the enumeration method combined with a genetic algorithm is
used to plan the number and location of energy resources. Subsequently, Mixed Integer
Non-Linear Programming (MINLP) is employed for the capacity optimization of these
resources. This approach allows for a nuanced exploration of spatial and quantitative
aspects of system design, ensuring that both the geographic distribution and the scale
of energy solutions are optimized for cost-effectiveness. The study utilizes a typical-day
scenario for modelling, thereby reducing computational requirements.

In a study conducted by Zheng et al. (2018), a comprehensive optimization approach
is utilized to enhance the integration of various renewable and storage technologies in-
cluding a biomass gasifier, PV, wind, TES, BES. The main objective of this research is
to minimize cost through a detailed analysis performed over a 27-hour time horizon.
Zheng employs a two-layer optimisation approach, optimising system sizing before op-
eration. The sizing optimisation focuses specifically on determining the optimal capac-
ities for wind and solar energy production, highlighting these as critical decision vari-
ables. These capacities are optimised through a brute force method, which, despite its
computational intensity, ensures a thorough exploration of all possible combinations of
system configurations. This approach, coupled with a linear constrained optimization
dispatch strategy, systematically evaluates how different configurations impact overall
system performance and cost-efficiency.

In his analysis, Hamilton et al. (2020) explores an approach to optimizing dispatch
in energy systems that integrate PV, CSP, TES and BES. The primary objective is to max-
imize profit, which is particularly challenging given the variability in energy production
and market prices. Hamilton employs MILP to optimize dispatch strategies, focusing
specifically on achieving the most profitable operation. The optimization covers a time-
horizon of two days, distinguished by varying time steps: the first day utilizes 10-minute
intervals, allowing for fine-grained adjustments in response to rapid changes in solar
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intensity and demand, while the second day uses one-hour timesteps, aligning more
closely with typical energy market trading intervals. This temporal differentiation in the
model is key to its computational efficiency, reducing solve time by 79%.

Research by Jacob et al. (2023) employs an approach to optimizing renewable energy
system that incorporates wind, biomass, PV, HES, TES, BES. The study aims to minimize
annual operational costs, using MILP to model and optimize the system’s performance.
The optimization is applied to hourly data over a full year, strategically clustered into
12 monthly periods each containing 136 hourly clusters to manage computational com-
plexity while capturing seasonal and hourly variability. The primary decision variable
in this optimization is the capacity allocation among the various technologies, which
is crucial for achieving an optimal balance between investment costs and operational
efficiency.

The findings from the reviewed literature align with a recent meta-analysis of 241
scientific studies focusing on the optimization of ESS sizing. According to Tahir (2024),
the majority of these studies (94%) utilized data spanning one year, with 81% contain-
ing hourly resolution. In terms of optimization scope, 94% of the studies focused on
single-day scenarios. Regarding the technologies studied, 65% of the papers focused on
optimizing the sizing of BES, while 29% examined hybrid systems combining different
storage technologies. Notably, 46% of these studies applied meta-heuristic optimization
methods, with Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) being
the most popular (Tahir, 2024). Additionally, 13% of the studies employed Mixed-Integer
Linear Programming (MILP) as their optimization technique.

2.1. KNOWLEDGE GAPS
Hybrid energy systems have become an important area of research over the past years
as they provide a promising solution to the challenges of the energy transition. How-
ever, despite significant advancements in recent years, there remain several knowledge
gaps that warrant attention. Within the reviewed literature, these knowledge gaps can
be categorized into three main areas.

Firstly, several studies overlook the potential application of TES for providing heat.
Instead, they concentrate on using TES primarily for power storage, often referred to
as Carnot batteries. However, by disregarding stand-alone TES solutions, these studies
overlook the fact that heat demand can be satisfied more affordably using stand-alone
TES systems. Therefore, hybrid renewable energy systems, particularly those that inte-
grate district heating networks for the provision of heat, are often overlooked in these
studies, despite their potential to offer more cost-effective and sustainable solutions for
meeting heat demand.

Secondly, several studies have performed incomplete optimisation by focusing solely
on emissions or capital expenditures, neglecting to consider the operational expendi-
tures. Additionally, some studies have failed to optimise system component sizing, in-
stead focusing on energy management within existing fossil- fuel-based infrastructure.
Thereby adopting a backwards looking approach rather than a forward looking one.

Thirdly, several studies have modelled an incomplete representation on the future
energy infrastructure by focusing on solely renewable electricity in the form of PV and
wind power. Thereby, failing to recognise that heat demand can also be satisfied through
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sustainable heat sources such as geothermal, biomass, and industrial waste-heat.
In addition to these three main knowledge gaps, there is very limited research per-

forming optimisation across larger datasets. Instead, most optimisation studies use ei-
ther average monthly or daily data, failing to design systems with reliable power supply
on smaller timeframes (Hamilton et al., 2020; Huang et al., 2024). To accurately optimise
system components for economy and reliability, it is important to model hourly or even
sub-hourly data that considers the time-of-production value of energy. However, opti-
misation of models with such high-fidelity energy generation, demand, and storage data
have been shown to be computationally expensive to solve (Hamilton et al., 2020). To
improve solution times, Hamilton et al. (2020) offer techniques that decreases solution
time by up to 93% for an annual model. While there are limited studies that do include
higher fidelity data, these are limited to a single year, potentially overlooking variations
in generation and demand patterns across multiple years. Finally, none of the studies
have been performed within the Dutch energy infrastructure. Therefore, due to varying
climate conditions, previous findings might not be directly generalised to the Dutch grid.

Following this analysis, we conclude that none of the reviewed studies evaluate hy-
brid energy systems that incorporate district heating networks with a forward-looking
asset analysis, high-fidelity data to accurately represent the time value of energy, and a
holistic objective approach. Due to these knowledge gaps, implications on hybrid sys-
tem size and scalability, particularly regarding costly energy storage, and the total per-
formance of the system remain insufficiently understood, warranting the adoption of a
comprehensive optimal system sizing approach from a systems engineering perspective.





3
THERMAL ENERGY STORAGE

Thermal Energy Storage is crucial for the energy transition in the Netherlands given its
high thermal demand. The integration of TES systems can adress both short-term and
long-term storage needs, making it a key component in managing energy requirements
efficiently. This chapter will examine the different categories of TES technologies and
further explore the ones that are technically feasible within Utrecht’s DHN. By exploring
different implementations of TES, we will demonstrate how these systems can provide
reliable energy solutions that are capable of handling both immediate fluctuations and
seasonal demands.

3.1. LATENT THERMAL ENERGY STORAGE
Latent thermal storage uses phase change materials (PCMs) that store or release heat at
a constant temperature during a phase change process (IRENA, 2020). This type of TES is
particularly beneficial for applications requiring consistent temperature control, as the
PCM maintains a constant temperature during the phase transition, providing a stable
thermal reservoir. One of the key advantages of latent heat storage is its high energy
density, as PCMs can store large amounts of thermal energy within a relatively small vol-
ume. A common example of latent heat storage is the application of ice-based thermal
energy storage systems in commercial air conditioning systems. During off-peak hours
when electricity demand is low, ice is produced using surplus energy and subsequently
stored. During high cooling demand periods, the stored ice is melted to provide cooling.
Despite its advantages, latent heat storage systems may be limited by the availability of
suitable PCMs and the need for careful thermal management to prevent phase separa-
tion or degradation of the storage material over time. Furthermore, the most suitable
PCMs are burdened by low thermal conductivity, which limits the charge and discharge
rate (IRENA, 2020).

While research on latent thermal storage has been increasing in recent years, its cost
is not competitive with sensible storage. Additionally, there are no commercially avail-
able large-scale latent storage technologies available. Therefore, while PCMs could be a
valuable technology for future DHNs, we will not consider them in this study.

13
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3.2. THERMOCHEMICAL THERMAL ENERGY STORAGE
Thermochemical storage involves the use of chemical reactions to store thermal energy.
According to IRENA (2020) this type of TES offers high energy density and the poten-
tial for long-term, loss free storage, making it particularly suitable for applications that
require large-scale energy storage over extended periods, such as seasonal storage (Fig-
ure 3.1). Thermochemical storage systems typically utilize reversible chemical reactions
that absorb heat when the reaction proceeds in one direction and release heat when the
reaction is reversed. One example of thermochemical storage is the use of metal ox-
ides, such as calcium oxide (lime), which can undergo exothermic reactions with water
to produce heat. During periods of excess energy supply, the metal oxide is heated and
chemically transformed into its dehydrated form, storing thermal energy in the form of
a solid. Later, when heat is needed, the dehydrated oxide is exposed to water vapour,
triggering an exothermic reaction that releases heat.

Although thermochemical storage offers significant advantages in terms of energy
density and long-term storage capability, it is often complex and expensive to imple-
ment, requiring careful control of reaction conditions and the use of specialized mate-
rials. Furthermore, the required materials are often highly reactive in nature, resulting
in corrosion and material degradation (IRENA, 2020). Due to these complexities, there
are currently no large-scale thermochemical thermal energy storage systems available
that could be implemented in DHNs. Therefore, while thermochemical systems could
be valuable for future DHNs, we will not consider them in this study.

3.3. SENSIBLE THERMAL ENERGY STORAGE
Sensible thermal energy storage relies on the heat capacity of various materials. In these
systems, energy is stored by raising the temperature of a material, such as water or rocks,
during times of surplus energy supply (IRENA, 2020). This type of TES is widely used due
to its simplicity, reliability, and cost-effectiveness. The stored heat can later be extracted
to meet heating demands. One clear example of sensible heat storage is the use of hot
water tanks in residential and commercial buildings. These tanks store hot water gen-
erated by solar panels or other RES during the day and release it for space heating or
domestic hot water use during periods of high demand. While sensible heat storage sys-
tems are relatively straightforward to implement and operate, they are limited by the
relatively low energy density of their storage materials, which may require large storage
volumes to meet high energy demands. The amount of energy stored (kWh) in a sensible
TES system is described in equation 3.1.

Q = mc∆T

3,6∗106 (3.1)

Where, Q represents the thermal storage in kWh, m the mass of the medium, c the
specific heat capacity of the medium, and ∆T the temperature change in kelvin. The
constant 3.6×106 converts the units to the desired form.

Sensible TES systems lose their thermal energy over time due to convection and con-
duction. Conduction is the transfer of heat within or between materials solid materials.
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Convection, on the other hand, is the transfer of heat by the movement of fluids. The
rate of energy loss from a sensible TES system in watts is described in equation 3.2.

qt = (U A)∆Tt (3.2)

Where U represents the overall heat transfer coefficient, A the surface area in m2,
and ∆Tt the temperature difference in Kelvin at time t.

From these equations, we can discover three important trade-offs. First, a larger tem-
perature difference allows for greater energy storage capacity, but also comes with higher
energy losses. Second, there exists a crucial relationship between the mass and surface
area of a system. As the mass increases, so does the surface area of a system. While a
high mass is necessary for a high energy storage capacity, a high surface area leads to
greater energy losses. Initially, this might seem like a trade-off between capacity and en-
ergy loss; yet the issue is more nuanced. Increasing an object’s mass increases its surface
area, but the ratio of surface area to mass tends to decrease. Therefore, a larger storage
volume will lose less energy as a percentage of the total storage capacity, even though
its absolute energy loss is higher. Finally, the loss of a sensible TES system is a function
of time. Therefore, a system will lose more thermal energy if the intended storage du-
ration is extended. In any thermal storage system, these trade-offs can be mitigated by
increasing the insulation (U ) albeit at the expense of increased system costs. According
to IRENA (2020), there are four primary sensible TES technologies available: water tank,
underground, Solid-state, and molten salt thermal energy storage (Figure 3.1).

Figure 3.1: An overview of different TES technologies sorted by operating temperature and storage duration
(IRENA, 2020)

3.3.1. TANK THERMAL ENERGY STORAGE
Tank Thermal Energy Storage (TTES) is a crucial technology in the TES field, offering
high efficiency for integrating renewable energy sources by utilizing water’s high specific
heat capacity to store and release thermal energy within insulated tanks. This process
utilizes the sensible heat of water, storing energy as the water heats and releasing it as the
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water cools. These systems, similar to residential hot water cylinders, consist of steel or
reinforced concrete tanks with insulation to minimize thermal losses. Heat exchangers
and pumps facilitate the efficient transfer and circulation of heat, regulated by a control
system to match demand.

A crucial aspect of TTES efficiency is thermal stratification, which maintains dis-
tinct temperature layers within the tank, allowing the hotter water at the top to be used
on demand without additional heating. This stratification enhances responsiveness,
conserves energy, reduces operational costs, and minimizes thermal losses by keeping
cooler water at the bottom, acting as a natural insulator for the water above. This effi-
cient layering ensures rapid and effective energy delivery and maintains overall system
efficiency (IRENA, 2020).

TTES systems utilize the high specific heat capacity of water to efficiently store and
release thermal energy, making them ideal for applications across residential and mu-
nicipal scales. These systems are characterized by their simplicity, which contributes
to their reliability, low maintenance, and cost-effectiveness. Additionally, the ability of
TTES to minimize energy losses through advanced insulation techniques and maintain
thermal stratification enhances their efficiency, making them a practical choice for in-
tegrating into district heating systems and aligning with sustainable energy goals. How-
ever, challenges such as limited storage capacity at standard pressure and the resulting
need for more complex, pressurized systems to achieve higher temperatures pose limi-
tations that require careful consideration.

3.3.2. SOLID-STATE THERMAL ENERGY STORAGE

Solid State Thermal Energy Storage (SSTES) offers a valuable solution for energy storage
in environments where space is limited or high temperatures are required. SSTES utilises
the heat capacity of solid materials such as rocks, ceramics, and composites, commonly
incorporating cost-effective and readily available materials like sand, concrete, and brick
due to their favourable thermodynamic properties (IRENA, 2020).

These systems function by absorbing and releasing heat through sensible heat stor-
age, where solid materials store energy as they warm up during periods of excess en-
ergy generation and release it when demand rises. Encased in well-insulated tanks,
SSTES stores energy within these solids, and when needed, transfers it via a working
fluid through a heat exchanger to the DHN, enhancing energy utilization and system
efficiency.

SSTES systems are particularly effective for industrial processes where high temper-
atures are required. Additionally, SSTES systems are suitable for applications where spa-
tial requirements pose significant constraints such as densely populated urban areas.
The high operating temperature allows SSTES to achieve a superior energy density over
traditional TTES, despite solids typically having a lower specific heat than water. The
simple structure of SSTES, including insulated tanks and simple heat exchange systems,
lends itself to reliability, reduced maintenance costs, and improved safety due to the
noncorrosive nature of materials like sand and their reduced risk of leakage. However,
SSTES’s high operating temperatures also lead to higher energy losses, though the low
thermal conductivity of materials like sand helps limit these losses over time by forming
an insulating layer around the hotter core. Additionally, SSTES can produce both direct
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heat and, at high temperatures, generate electricity, similar to combined heat and power
(CHP) systems, enhancing its overall application and exergy.

3.3.3. UNDERGROUND THERMAL ENERGY STORAGE
Underground thermal energy storage (UTES) refers to the storage of thermal energy in
various underground applications. Although UTES can be used for short-term storage,
it is usually intended for seasonal storage. There are four common types of UTES: tank,
borehole, aquifer, and pit. Each of these technologies has its own advantages and dis-
advantages. For seasonal applications, aquifer thermal energy storage (ATES) is not only
the most efficient technology, but also the cheapest (Pauschinger et al., 2018). Addi-
tionally, ATES has the lowest spatial requirements which could be an essential decision
criterion in densely populated urban areas. Furthermore, Eneco has already conducted
research on the feasibility of ATES implementation in Utrecht, revealing that the geologi-
cal conditions are exceptionally well-suited for ATES in the region (Remmelts, 2019). Due
to its favourable characteristics and existing research, this chapter will focus on ATES as
the primary underground storage technology (Figure 3.1).

Figure 3.2: Price curve for the four most common underground thermal energy storage technologies showing
the relationship between system size and costs (Pauschinger et al., 2018)

ATES is a sustainable technology that efficiently manages thermal energy by taking
advantage of natural underground water formations, known as aquifers, to store and
retrieve heat based on seasonal demands. This system is particularly advantageous in
areas with significant temperature variations between seasons. ATES systems can be im-
plemented in two configurations: high-temperature ATES (HT-ATES) and low-temperature
ATES (LT-ATES). Both variations operate by creating two wells within subsurface ground-
water layers contained by permeable rock, also called aquifers. One well stores thermal
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energy in the form of warm water, whereas the other stores cool water. During sur-
plus energy periods, excess heat is stored in the warm well and later extracted during
higher demand periods through a heat exchanger mechanism, improving energy usage
efficiency and reducing dependence on conventional sources (IRENA, 2020). As ATES
discharges, the temperature of the warm well decreases. To continue operations at a
consistent output temperature, ATES is often paired with a heat pump.

ATES is praised for its cost-effectiveness and minimal spatial impact, which makes
it suitable for seasonal energy storage in densely populated urban areas. Despite its ad-
vantages, the implementation and ongoing efficiency of ATES systems are heavily de-
pendent on local geological conditions. Moreover, system maintenance is crucial as
inefficiencies such as well clogging and material degradation can impact performance
over time (Pauschinger et al., 2018). Environmental concerns also exist, particularly the
potential alteration of local groundwater temperatures, which could affect ecosystems.
However, a study covering the period from 2016 to 2018 demonstrated minimal net im-
pact on groundwater temperatures, suggesting a balanced thermal input and output in
ATES systems (Fleuchaus et al., 2020). This finding underscores the potential of ATES
for sustainable energy management with proper regulatory compliance and ecological
monitoring.

3.3.4. MOLTEN SALT THERMAL ENERGY STORAGE
According to IRENA (2020), molten salt thermal energy storage (MSTES) is a valuable
technology primarily used in high-temperature applications, especially within concen-
trated solar power plants. In these systems, MSTES captures thermal energy during peak
sunlight hours and releases it during off-peak hours to ensure consistent power gen-
eration. MSTES operates by heating salts, to high temperatures. A standard MSTES
configuration uses a two-tank system: one tank stores “cold” molten salt, and the other
stores “hot” molten salt. When power generation is required, the hot molten salt is di-
rected through a heat exchanger to produce steam, which drives a turbine. Afterward,
the cooled salt returns to the cold tank. Despite its advantages, MSTES has several chal-
lenges. A primary issue is the risk of salt solidification, which can damage system com-
ponents and impact reliability (IRENA, 2020). Additionally, molten salts are corrosive
and require careful handling in highly controlled environments. The system is also con-
strained by the salts’ high freezing point, necessitating significant energy input to keep
the “cold” tank above freezing, which increases operational costs. Given these complex-
ities, MSTES is typically limited to short-term thermal storage applications for power
production, where its high temperature stability can offset these operational demands
(IRENA, 2020).
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This chapter outlines the methodological framework employed to address the optimi-
sation of hybrid renewable energy systems, focussing on multi-objective considerations
that integrate both thermal and power sources along with hybrid energy storage sys-
tems. The complexities inherent in designing such systems requires a robust analytical
approach that can navigate multiple objectives and conflicting constraints, which are
typical in the optimization of energy systems. The proposed approach is designed to
achieve a comprehensive understanding of the trade-offs and interactions between var-
ious system components and objectives. This involves a detailed system characterisa-
tion, the selection and implementation of suitable optimisation algorithms, and rigor-
ous system simulations. The overarching aim is to derive actionable insights that can
guide the real-world design of energy systems.

From the literature review it has become clear that there is no standardised approach
to multi-objective optimisation in hybrid renewable energy systems. Therefore, it is im-
portant to develop and adopt a standardised optimisation approach. In this chapter we
will describe and adopt such an approach for optimisation using learnings from the sci-
entific literature. From the literature, it has become clear that there are three key steps to
optimisation of energy systems: system design, model development, and optimisation
design.

The framework starts with the definition of the system design, encompassing the
scope, system boundaries, and the included system components and their dependen-
cies. Following this, the model development is elaborated in detail. This section en-
compasses various input data pertaining to individual system components, as well as
demand and supply profiles. These inputs serve as the foundation for the creation of
a mathematical model that accurately represents the dynamics and interactions within
the hybrid renewable energy system. Subsequent to model development, the optimisa-
tion design is discussed, including the objectives of optimisation and the identification
of key decision variables and constraints that influence system performance. There-
after, the selection process for the optimisation algorithms most suitable to our multi-
objective framework is detailed, with a discussion of their merits and limitations within
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the context of our specific application.
Following the optimization design, the analysis of results will be described, focus-

ing on the diverse outcomes across various scenarios. The optimised system configura-
tions will be subjected to testing under alternative situations with different supply and
demand profiles to evaluate the robustness of the configurations. This phase aims to
ensure that the proposed solutions maintain their efficacy and reliability under varying
conditions, thereby confirming their practical applicability and resilience in real-world
settings.

4.1. FRAMEWORK
Modern energy systems are increasingly complex due to the integration of renewable
energy sources, deregulated energy markets, evolving technology, and multi-actor dy-
namics. This complexity necessitates sophisticated optimization techniques to manage
energy generation, distribution, and consumption efficiently. Optimization strategies
can accommodate the unpredictability of renewable sources, such as wind and solar,
thereby supporting sustainable energy transitions. To ensure such optimisation can be
performed reliably and effectively, this chapter will describe a framework to capacity op-
timisation in energy systems. The framework consists of five crucial steps: multi-actor
analysis, system design, optimisation design, model development, and analysis of re-
sults (Figure 4.1).

Figure 4.1: Optimisation framework in four steps

The first step, multi-actor analysis, is essential to understanding the context and po-
litical complexities in which the system will be designed. By identifying and analyzing
key stakeholders, potential collaborations and threats can be uncovered.

Following this, system design is crucial for optimizing energy systems. The design
must consider not only technical aspects but also the political landscape revealed dur-
ing actor analysis to ensure a well-rounded solution that aligns with stakeholder inter-
ests and broader energy transition goals. A well-defined system design determines what
components like generation, transmission, distribution, and consumption are included
and how they interact with each other. A comprehensive understanding enables effec-
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tive identification of bottlenecks and opportunities for improvement within the system.
Additionally, a clear system design aids in predicting system behavior under various con-
ditions, facilitating better decision-making. It also ensures that the system can adapt to
changes in demand, regulatory requirements, and technological advancements. This
step requires careful consideration as an otherwise flawless optimisation, including the
wrong components, does not lead to the right strategic insights. Furthermore, optimiza-
tion design involves a number of careful considerations. It is crucial to clearly define the
objective, decision variables, algorithm, period, and potential scenarios. This requires
a detailed assessment of the factors that can be influenced by the problem owner, in
this case, Eneco. Following the optimization design, the system design can be translated
into an operational optimization model. This model requires detailed modeling of sys-
tem components, their interdependencies, and relevant data. Finally, after running the
model across different scenarios, the results must be analyzed. This analysis includes
testing the performance but also the robustness of the optimized setup under various
circumstances.

4.2. MULTI-ACTOR ANALYSIS
In the energy transition, a key challenge lies not only in the technical aspects but also
in the complexity of relationships between the various stakeholders involved. A multi-
actor analysis is essential to understanding how these stakeholders interact, influence
decision-making processes, and shape the outcomes of energy projects. By analysing
the actors and their relationships, we can identify potential conflicts, align incentives,
and foster collaboration, which is crucial for the successful implementation of energy
solutions.

4.2.1. STAKEHOLDER IDENTIFICATION

There are multiple important stakeholders included in EPU’s transition. In this chapter
we will discuss six of the most important stakeholders and their power and interest in
the transition to renewable thermal energy.

Energy production Utrecht
EPU is an important actor as it both owns and operates the DHN in Utrecht. EPU is
considered the problem owner, being the primary actor responsible for transitioning
Utrecht’s DHN, with the necessary means to do so. EPU’s primary objective is to be cli-
mate neutral by 2035 by providing renewable energy for everyone (Eneco, 2024f). How-
ever, as Eneco is a commercial entity, another key objective is to maximize profitability,
which often directly competes with the goal of climate neutrality. From the means-end
analysis, we can identify three primary actions to reach sustainability goals while con-
tinuing profitable business operations: investment in renewable energy infrastructure,
investment in power-to-heat, and investment in energy storage (Appendix B.2).

Investment in energy storage
Investment in energy storage is the most versatile action EPU can take to achieve its
goals. This investment would reduce peak demand, enabling more homes to connect to
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the DHN and driving business growth. It also supports the expansion of renewable en-
ergy capacity by mitigating the intermittency of RES while generating significant prof-
itability. Finally, as supply and demand become more balanced, energy prices would
stabilize, making energy more affordable for consumers.

Investment in renewable infrastructure
Investment in renewable infrastructure, particularly in district heating networks (DHNs),
would allow EPU to supply more homes, driving business growth. Additionally, it would
increase the share of renewable energy capacity, as DHNs emit fewer emissions than
traditional residential heating systems. Furthermore, DHNs enable large-scale seasonal
thermal energy storage, which further increases the renewable energy share during pe-
riods of low output from RES.

Investment in power-to-heat
Finally, investing in P2H would enhance EPU’s sustainability by increasing the renew-
able share in thermal production. Additionally, it boosts profitability, as P2H is highly ef-
ficient and allows for strategic heat production based on power prices, similar to demand-
side response. The combination of high efficiency and demand-side response helps
lower energy costs for consumers while contributing to a more sustainable energy sys-
tem.

National government (EZK)
The national government and in particular the ministry of economic affairs and cli-
mate (EZK) has set ambitious goals for the energy transition. The main objective of the
ministry of EZK is to create and maintain a sustainable and entrepreneurial economy
(Economische zaken en klimaat, 2024). The main objective is supported by multiple
sub-goals (Appendix B.3). One important sub-goal is the development of sustainable
infrastructure. Within this goal, district heating networks have become a crucial focal
point of the Dutch energy transition and an integral part of the sustainability agenda.
Recognizing their potential, the government aims to double the number of households
connected to DHNs, targeting an additional 500,000 households by 2030 (Rijksoverheid,
2023). Like the local government, the national government’s policy for renewable ther-
mal supply is based on three primary objectives: the supply must be renewable, afford-
able, and reliable. To achieve its goals, the government has several policy instruments at
its disposal, which are often more powerful than those available to local governments.
From the means-end analysis, we can identify three primary policy instruments: finan-
cial incentives, regulation, and public-private partnerships (Appendix B.3).

Financial incentives
The financial incentives is the most widely applicable policy instrument that the gov-
ernment has at its disposal. Financial incentives include subsidies, tax incentives, and
low-interest loans to stimulate investment and innovation in sustainable energy infras-
tructure, as well as carbon pricing to discourage investment in fossil fuel-based alterna-
tives.



4.2. MULTI-ACTOR ANALYSIS

4

23

Regulation
Another powerful policy instrument is regulation. Measures such as prohibiting the re-
placement of old gas infrastructure and banning new gas infrastructure in newly built
properties can force investment in renewable energy infrastructure. The government
can further enforce this by mandating a minimum percentage of renewable energy pro-
duction for energy companies. Additionally, renewable energy use can be promoted by
ensuring fair pricing for consumers, as seen with the Authority for Consumers and Mar-
kets (ACM), which sets price ceilings for district heating networks (DHNs).

Public-private partnerships
Finally, the government can introduce public-private partnerships in the form of joint
ventures to stimulate innovation in the energy sector by supporting energy startups. Fur-
thermore, such joint ventures could facilitate investment in areas where markets would
otherwise fail.

Municipality of Utrecht
The municipality of Utrecht has set an ambitious goal of becoming climate neutral by
2030. To achieve this, 10,000 properties must be decoupled from natural gas each year
(Gemeente Utrecht, 2017). The city’s main objective is to create a livable city for ev-
eryone (Gemeente Utrecht, 2024c). Heat provision is a top priority, as one-third of the
city’s emissions stem from thermal demand. In response, the municipality developed a
“thermal vision,” which outlines its strategy to transition to renewable thermal sources.
This vision is centered around three key objectives: the heat supply must be renewable,
affordable, and reliable (Gemeente Utrecht, 2017). To meet these goals, the municipal-
ity has several policy instruments at its disposal: permits, subsidies, and public-private
partnerships (Appendix B.4).

Subsidies
The most versatile policy instrument at the municipality’s disposal is subsidies. In the
context of the energy transition, the municipality can offer subsidies to support the ex-
pansion of the DHN and renewable energy capacity to meet its sustainability goals. Ad-
ditionally, the municipality can offer subsidies to citizens to encourage investment in
renewable energy solutions, such as PV and heat pump systems, or to help lower energy
costs.

Permits
Another powerful policy instrument is the issuance of permits. Through permits, the
municipality can prioritize developments that align with its sustainability goals. A re-
cent example is the municipality’s sale of land and the issuance of a permit to Eneco for
the construction of a tank thermal energy storage unit in Nieuwegein. Conversely, the
municipality can also withhold permits to block developments that do not align with its
objectives.

Public-private partnerships
Similarly to the national government, municipalities can form public-private partner-



4

24 4. METHODOLOGY

ships. This way, the municipality can stimulate sustainability projects in markets where
they would otherwise fail.

Grid operators
Grid operators (GOs) play a crucial role in the energy transition. As supply and demand
has become increasingly unbalanced due to intermittent renewable energy sources, grid
operators have faced rising grid congestion and challenges with frequency regulation.
Their main objective is to provide reliable grid connections, thereby facilitating the en-
ergy transition (TenneT, 2024a). They do so by ensuring the continuation of profitable
business operations and improving grid stability. From the means-end analysis, we can
identify three possible actions for GOs to reach their goals: investment in grid connec-
tions, demand-side response, and curtailment (Appendix B.5).

Demand-side response
Demand-side response (DSR) is a versatile solution for reducing grid congestion by bal-
ancing supply and demand, while also increasing profitability by avoiding costly main-
tenance and repairs caused by peak surges. Furthermore, it supports growth by enabling
more grid connections through reduced peak demand. GOs can implement DSR directly
via battery energy storage systems, which charge during high RES availability and dis-
charge during peak demand load. Additionally, GOs can require DSR for new connec-
tions or incentivise businesses with tariff discounts.

Curtailment
Curtailment is another possibility to improve grid stability and ensure growth. By re-
quiring RES connections to curtail their energy production during peak supply hours,
grid strain can be eased. Additionally, curtailment can be incentivised with tariff dis-
counts.

Grid investment
Another possibility is to invest in the grid by improving the capacity of its connections.
TenneT, the high-voltage transmission grid operator in the Netherlands, plans to invest
€111 billion in the grid in the coming years, aiming to double or even quadruple grid
capacity by adding 2,500 km of new transmission lines (Tennet, 2024). Such invest-
ment would increase the peak capacity and consequently allow for new connections and
growth.

Local community
Another important stakeholder is the local community in Utrecht. Not only are they
EPU’s customers, purchasing thermal energy through the district heating network, but
they can also present challenges during project development. Their primary goal is to
create and maintain an enjoyable living environment. Two key sub-goals to achieve this
include fostering a sustainable environment with access to renewable energy at afford-
able prices and developing vibrant outdoor spaces such as parks and recreational facil-
ities. From the means-end analysis, we can identify four possible actions for the local
community to reach its goals: local initiative, investment in PV, objection, and contract
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termination (Appendix B.6).

Local initiative
The most versatile option for the local community is to establish local initiatives. Doing
so, they can increase the availability of clean energy through self funded sustainability
projects. However, they can also take initiative for the creation and maintenance of green
spaces and recreational areas.

Investment in PV
In addition to establishing local initiatives, members of the local community can also in-
vest in private PV installations. This action would increase their renewable energy share
and decrease their energy prices.

Objection
Another powerful tool the local community has to achieve its goals is the ability to object
to certain developments. Objections can delay or even prevent the issuance of building
permits, giving the community a strong negotiating position and, in effect, making them
gatekeepers for developments in their neighborhoods. A recent example is the construc-
tion of the thermal storage in Nieuwegein, which incurred an additional €200,000 in
costs for covering the structure with artwork to help it blend into the surrounding en-
vironment (Janse de Jonge et al., 2022).

Contract termination
A very powerful, though not highly versatile, action available to the local community is
the option to terminate their thermal contract with Eneco to reduce energy costs. With
the widespread availability of efficient residential P2H technologies, such as e-boilers
and heat pumps, some community members may find investing in these technologies
more cost-effective than remaining a DHN customer. While there are contractual fees for
terminating a DHN connection, the 2015 Van den Brul case, where termination fees were
waived, sets a precedent that could make future contract terminations free of charge
(Geschillencommissie energie, 2014; Rechtbank Midden-Nederland, 2015).

Energy companies
Although Eneco is an energy company, it is still dependent on other energy providers.
To operate its CCGTs and peak boilers, EPU relies on a stable gas supply and the cor-
responding infrastructure. Additionally, as P2H assets take on a larger role in the dis-
trict heating network, EPU may increasingly rely on other renewable power providers
through power purchase agreements, or potentially become more dependent on hydro-
gen providers and infrastructure in the future. The primary objective of these energy
companies is to continue their business operations and maximize profitability. As power
is a commodity, the only means to reach this goal it through price mechanism.

4.2.2. POWER & INTEREST ANALYSIS

From this analysis, we can categorize all stakeholders into four groups based on their
power and interest in the decision-making process.
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• High power, high interest stakeholders are referred to as players. It is crucial to es-
tablish close collaboration and strong business relationships with them to ensure
their support and involvement.

• High power, low interest stakeholders are known as context setters. The problem
owner should regularly consult these stakeholders to ensure their plans and ideas
are considered, preventing potential sunk investments.

• Low power, high interest stakeholders are labeled as subjects. While it is important
to involve them in the decision-making process, their input is not decisive.

• Finally, low power, low interest stakeholders are referred to as the crowd. The
crowd is not actively involved in the decision-making process but should be kept
informed about developments.

As the final decision-maker on how its DHN transitions to renewable heat, EPU is a
very powerful actor with a high level of interest in the subject. However, it is important
to note that its solution space is constrained by the influence of other powerful actors.
The ministry of EZK has a strong interest in the national thermal transition as a whole,
but less so in the specific transition in Utrecht. Nevertheless, this actor is very power-
ful as national policies inevitably shape the political landscape in Utrecht and have the
potential to significantly impact local decision-making. The municpality of Utrecht has
a strong interest in the transition of the DHN and holds significant power to influence
the decision-making process. Grid operators wield significant power, as they determine
the maximum grid capacity available to EPU. They also have a high level of interest in
DHSNs, as these systems can both alleviate and exacerbate grid congestion. However, as
their operations span more than just Utrecht, their interest is not as high as that of other
high-interest actors. While the local community has relatively high power when it comes
to developments in their area, they hold less influence over decisions made at LW and
MK. They can however, choose to terminate their contract putting them in a position
of power. However, since decisions regarding the DHN ultimately have financial impli-
cations for the community, their interest in the transition is high. Energy companies’
interest in EPU’s transition is medium as they also have other clients that can drive prof-
itability. Eneco’s ability to build its own renewable energy assets, along with the option to
choose from various energy companies, strengthens its negotiation position. Therefore,
this group of actors is not particularly powerful.

Based on this categorization, the key stakeholders include four primary players—EPU,
grid operators, the Municipality of Utrecht, and the local community—one key subject,
energy companies, and one context setter, the national government (Appendix B.1). The
disproportionate number of players in the decision-making process adds complexity to
the thermal energy transition. This complexity requires careful consideration and clear
communication to ensure successful outcomes.

4.2.3. THREATS AND COOPERATION
Among the five high-power actors, there are multiple conflicting and complementary
goals, which present both risks and opportunities for strategic cooperation. To ensure
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successful outcomes, it is essential that Eneco actively manages these risks while foster-
ing close collaboration wherever possible.

National government
The incentives of the national government and EPU are largely aligned. The Ministry
of Economic Affairs and Climate aims to create a sustainable and entrepreneurial econ-
omy, while EPU seeks to increase renewable energy usage alongside profitable business
operations. This alignment creates opportunities for close collaboration, where Eneco
provides renewable energy and contributes to economic growth, while the government
may offer financial incentives. However, a small area of friction arises regarding afford-
able energy prices, as the government’s regulation, such as thermal energy price caps
and profitability limits, may conflict with Eneco’s profitability goals (ACM, 2024). The
new "Wet Collectieve Warmte" (WcW) bill could further complicate matters by shifting
control to municipalities, potentially lowering DHN tariffs and reducing EPU’s decision-
making influence. While still under review, the WcW could empower municipalities
with stronger regulatory authority over local heat systems and limit Eneco’s profitability
through cost-based pricing models, creating friction in an otherwise aligned relation-
ship (NPLW, 2024).

Municipality of Utrecht
Similarly to its relationship with the national government, EPU’s relationship with the
Municipality of Utrecht is largely mutually beneficial. The municipality aims to reduce
emissions and increase the use of renewable energy sources, goals that EPU supports
through its DHN. However, transitioning to carbon-neutral assets may require additional
space in the secondary DHN throughout the city, potentially conflicting with the munic-
ipality’s goal of maintaining vibrant, green public spaces. EPU has already addressed
this issue effectively, as seen with the Rijnsweerd thermal energy storage, which blends
seamlessly into its surroundings (Eneco, 2024g). To ensure future success, EPU must
continue fostering this collaborative approach to secure necessary building permits and
land acquisition.

Grid operators
As mentioned previously, the biggest challenge for grid operators is congestion caused
by imbalances between supply and demand. One solution is DSR, which shifts power
consumption to periods when supply is abundant. District heating and storage networks
support this by storing energy during peak supply hours, thus reducing grid congestion.
Furthermore, EPU’s power assets, such as LW06, MK12 and the BES system, provide elec-
tricity during peak demand, aiding frequency regulation. Additionally, EPU operates one
of the Netherlands’ four black-start units, enabling power plant restarts during outages.
These benefits lay the groundwork for a strong collaborative relationship with grid oper-
ators, who may offer tariff discounts in return for EPU’s DSR, frequency regulation, and
black-start services. Starting in April 2026, the ATR85/15 regulation will come into effect,
granting grid operators the authority to limit power delivery for up to 15% of the time to
alleviate grid congestion for specific contract forms (Netbeheer Nederland, 2024a). In
the event of capacity constraints, operators will provide 24-hour advance notice. Addi-
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tionally, this regulation incentivises DSR by offering time-based grid tariff discounts of
up to 65%, encouraging flexibility in energy consumption (TenneT, 2024b).

However, EPU’s Power-to-Heat assets could contribute to grid congestion during peak
thermal demand if it coincides with high power demand. This risk is somewhat miti-
gated by energy storage, which lowers peak thermal demand.

If EPU plans to increase reliance on P2H in the future, larger grid connections may
be required to support distributed P2H assets. Maintaining close collaboration with grid
operators and establishing bilateral agreements on capacity and congestion manage-
ment will be crucial.

Local community
The relationship between the local community and EPU is complex, offering both op-
portunities and risks that require careful management. While both parties value renew-
able energy sources, EPU’s focus on profitability may conflict with the community’s de-
sire for low energy prices. If this pricing risk is left unattended, community members
may terminate their DHN contracts and rely on residential P2H technologies, such as
e-boilers and heat pumps, leaving EPU with sunk investments. This risk is further exac-
erbated by the steep price decreases of residential P2H technologies, which are expected
to drop by an additional 20-25% by 2030, making the switch away from DHN a financially
viable option (Winskel et al., 2024). Additionally, the community values vibrant outdoor
spaces, which may conflict with the need for distributed energy assets. EPU can mitigate
this by incorporating green walls and biodiversity features, ensuring its assets enhance
rather than detract from these spaces. Finally, we identify an opportunity for coopera-
tion through the local community’s capacity to invest in photovoltaic (PV) systems and
establish local energy initiatives. Power generated from private or community funded
renewable energy projects can support EPU’s distributed P2H assets. This collaboration
is particularly advantageous, as utilizing locally generated power can further help reduce
grid congestion.

4.3. SYSTEM DESIGN
The first step in the optimisation of hybrid renewable energy systems is defining the
scope of the system design. This includes defining the physical and operational bound-
aries of the energy system, including thermal and power generation components, and
hybrid energy storage systems. Energy Production Utrecht (EPU), a subsection of Eneco,
is solely responsible for the operation of the DHN in Utrecht. Unlike their electricity-
generating assets, which are dispatched based on their ability to generate profits in elec-
tricity markets, the dispatch of thermal assets depends on thermal demand. The thermal
demand presents a boundary condition that must always be met. Utrecht’s DHN is di-
vided into four districts—Overvecht, Leidsche Rijn, Utrecht City, and Nieuwegein—along
with one central production location (EPU). Not all technologies are applicable at each
location, making the optimisation more complex and site-specific. As Eneco has com-
mitted to achieving carbon neutrality by 2035, the DHN will undergo a drastic shift in
terms of energy sources and storage. This optimisation study provides insight into what
such a renewable energy system might look like. Consequently, the scope of this optimi-
sation study focuses on EPU’s district heating network in 2035.
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The objective of this chapter is to provide an answer to sub-research question three and
four:

• What system design considerations and trade-offs are important to the energy sys-
tem in Utrecht?

• Which system components are of importance in Utrecht and what are their depen-
dencies?

4.3.1. ENERGY SOURCES
From the literature it becomes clear that PV and wind power are the most common gen-
eration assets, with 52% of studies evaluating a combination of the two (Tahir, 2024).
However, equal attention should be paid to alternative energy sources. Especially when
considering DHNs, direct thermal energy sources such as geothermal, waste heat, biomass,
and solar thermal energy should be considered. Therefore, careful analysis of the appli-
cable energy sources is of imperative importance.

Eneco plans to accelerate the energy transition and fully rely on carbon-neutral en-
ergy sources by 2035. By then, LW06 and MK12 will have reached the end of their op-
erational lifetimes, and the BWI is expected to follow suit by 2038. To bridge the gap
towards carbon neutrality, Eneco has identified two primary energy solutions along with
their anticipated capacities: power-to-heat (P2H) technologies, such as heat pumps and
electric boilers, and fuel-to-heat (F2H) options, including CCGTs and peak boilers.(Table
4.1).

Energy source Expected capacity

LW07 177 MWe + 136 MWth

Peak boilers 222 MWth

Heat pumps 89 MWth

E-boilers 20 MWth

Table 4.1: The electric (MWe) and thermal (MWth) capacities of different technologies by 2040

Fuel-to-heat
By 2033, Eneco expects to start the operation of its new CCGT; LW07. Although CCGTs
are not inherently renewable or carbon-neutral energy sources, there are several ways in
which they can contribute to a renewable energy system. First, it is important to high-
light the advantages of CCGTs, which are not only highly efficient but also offer flexibility
in dispatch independent from RES. This flexibility allows them to provide heat during pe-
riods of insufficient RES production, ensuring a constant and reliable heat supply. The
first way a CCGT can be used to contribute to a renewable energy system is by combin-
ing it with carbon capture and storage (CCS) technology. In such a setup, LW07 would
be carbon neutral regardless of operating on natural gas. The exhaust gases from LW07
would be routed through a CCS plant where greenhouse gasses are removed before en-
tering the environment. Another carbon neutral option is to use blue hydrogen to fuel
LW07. Blue hydrogen is made from natural gas in a process called steam reforming. This
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process releases greenhouse gas emissions which is why the production of blue hydro-
gen is combined with CCS technology to make it carbon-neutral. It is important to note
that, although both options are carbon-neutral, they are not considered renewable as
both require natural gas.

A renewable option would be to run LW07 on green gas, which is produced by fer-
menting organic waste. In coming years, the demand for green fuels, such as green gas
and green hydrogen, is expected to increase substantially as decarbonisation efforts in-
tensify (Pöcklhofer, n.d.). However, the production of green gas comes with its own chal-
lenges requiring either the production of "energy crops" or wide-spread collection of or-
ganic waste. Therefore, demand is expected to outgrow supply, increasing price. Another
renewable option is the use of green hydrogen to fuel LW07. However, the production of
green hydrogen is currently an inefficient process which makes it costly. Green hydro-
gen production occurs through electrolysis driven by RES, achieving an efficiency of up
to 75% (Mongird et al., 2020). The hydrogen is then compressed in order to be stored,
incurring an efficiency loss of up to 30% depending on the level of pressurisation (IEA,
2014). When the hydrogen is used in the CCGT, an additional 15% efficiency loss occurs,
resulting in a round trip efficiency of 42%. Fortunately, green hydrogen production is a
growing area of interest in the scientific literature, which could increase efficiency and
reduce costs in the future. Although multiple options are available, EPU expects to use
blue hydrogen, increasing its share in the gas mix by 20% annually from 2035, with the
aim of achieving 100% by 2040. LW07 is expected to produce 313 MWtotal of which 136
MWth.

In addition to primary thermal energy sources, EPU requires peak sources that can
be dispatched during abnormal peaks in thermal demand, such as cold winter morn-
ings. EPU expects to have 222 MWth of peak boilers to fulfill such demand. Similar to
CCGTs, there are multiple fuel options for these boilers: natural gas in combination with
CCS, green gas, blue hydrogen, or green hydrogen. Following a similar schedule to LW07,
EPU expects to run its peak boilers on 100% blue hydrogen by 2040.

Power-to-heat
In addition to LW07, eneco expects to supply a significant portion of the thermal demand
through P2H, which refers to the direct conversion of electricity to heat. The benefit of
P2H is that there are some highly efficient technologies that can use electricity to gener-
ate heat and that they can be powered by renewable electricity. The first technology is an
electric boiler that uses resistive heating to convert power to heat in a similar fashion to
domestic kettles. In such a system, nearly 100% of the energy is converted to heat. Eneco
has recently completed the build of two E-boilers with a combined capacity of 20 MWth.
Both are expected to continue operations well beyond 2040.

Another important P2H technology is the heat pump (HP). HPs use electricity to
transfer thermal energy from one source to another using a refrigeration cycle. HPs are
generally not evaluated for their efficiency but rather their coefficient of performance
(COP). Most HPs have a COP higher than three, meaning that for each MWe used, three
MWth is transferred into the DHN. Given the remarkable performance of HPs, it is no
surprise that EPU is expecting to be heavily dependent on HPs in the future, with 89
MWth coming from a combination of surface water and air-source heat pumps.
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Other thermal sources
Currently, EPU operates a biomass plant with an output of 60 MWth. However, biomass
is considered a pollutant-heavy fuel with high particulate matter emissions. Operating
a biomass plant requires extensive exhaust gas cleaning, which adds operational com-
plexity and increases the spatial footprint of the facility. Additionally, the plant relies on
a consistent biomass supply, and currently, only low-quality biomass is available, which
further reduces the plant’s overall efficiency. Due to these challenges, EPU does not plan
to invest further in biomass after the plant reaches its operational end-of-life in 2038.
Therfore, biomass as a direct thermal source is not included in the study.

Another potential direct thermal source is waste heat. However, as Utrecht lacks sig-
nificant industrial activity, the anticipated capacity for waste heat is relatively low. EPU
has investigated the feasibility of utilizing two waste heat sources in the future: an as-
phalt plant and a data centre. However, both options would require substantial invest-
ment while providing only 13 and 10 MWth, respectively. Consequently, these projects
are unlikely to be realized and are not included in this study.

Finally, geothermal energy could serve as a valuable direct thermal source. Recent re-
search indicates multiple potential locations within the city of Utrecht where geothermal
sources exceeding 5 MWth could be tapped (Böker & Leo, 2021). However, geothermal
energy has proven to be a politically sensitive topic. Research into geothermal poten-
tial has caused concern within the local community, likely due to fears associated with
underground technologies, stemming from the seismic activity linked to natural gas ex-
traction in Groningen. As a result, geothermal energy is unlikely to gain support from
the local community and has therefore been excluded from this study.

4.3.2. ENERGY STORAGE

Energy storage plays a crucial role in energy systems by mitigating the intermittency of
renewable energy sources, ensuring a consistent and reliable supply. In the literature,
BES systems are the most commonly researched with 65% focussing on them. However,
scientific interest in hybrid energy storage systems is growing with 29% research focused
on hybrid ESS. The growing interest in hybrid ESS is not surprising as implementing a
variety of ESS in a multi-storage system enhances system flexibility, reliability, and econ-
omy by effectively balancing out the shortcomings of each individual storage technology
(Wang et al., 2022). In the literature, the most researched storage technologies are battery
energy storage (BES), hydrogen energy storage (HES), thermal energy storage (TES), and
compressed air energy storage (CAES). These technologies might offer a good starting
point, but more in-depth analysis is required to make an informed decision on a per-
case basis.

Thermal energy storage
The most relevant storage technology for EPU is TES as it allows thermal supply and
demand to be balanced independent of RES availability. As mentioned in chapter 3,
there are many different thermal energy storage technologies, yet not all are suitable
for Utrecht’s DHN. Only sensible thermal energy storage is currently sufficiently devel-
oped and economically competitive for large-scale implementation in district heating
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networks. For EPU, it is crucial that thermal storage can absorb both short- and long-
term energy fluctuations and that the technology is energy-dense to minimise the use
of above-ground space, which is scarce in the densely populated city of Utrecht. Fur-
thermore, it is important that the technology can be implemented within the yet exist-
ing district heating infrastructure. Based on these requirements, we can conclude that
TTES, SSTES, and ATES are suitable for implementation in EPU’s district heating net-
work, while MSTES is not. MSTES is designed for shorter storage durations, typically
ranging a few hours, which does not provide the dispatch flexibility EPU requires. Addi-
tionally, MSTES is best suited for applications focused on power generation rather than
direct thermal energy delivery (IRENA, 2020). Among the suitable technologies, ATES is
best suited for seasonal thermal energy storage due to its low spatial requirement, high
efficiency, and low cost. However, ATES has a slow response time, making it unsuitable
for short-term supply and demand balancing. Therefore, ATES must be supplemented
with short-term thermal storage options, such as TTES and SSTES (Table 4.2).

Technology Efficiency Spatial requirement Cost

TTES Middle Worst Middle
SSTES Worst Middle Worst
ATES Best Best Best

Table 4.2: The characteristics of different TES technologies in terms of efficiency, spatial requirement, and cost.
Best, middle, and worst scores indicate the order among the three technologies.

Battery energy storage
In addition to thermal storage, power storage is another useful technology, as it supports
both Power-to-Heat (P2H) applications and power trading. For EPU, BES is the most rel-
evant form of power storage. Although CAES systems have lower investment costs and
longer lifetimes than BES, their lower efficiency and energy density make them less fa-
vorable for EPU. Typically, CAES systems have a round-trip efficiency of 63%, compared
to more than 95% for BES systems (Salvini & Giovannelli, 2022). Furthermore, CAES sys-
tems have a volumetric energy density of 11,1 Wh/L, significantly less than the 450 Wh/L
offered by BES systems (Gao et al., 2023; Office of energy efficiency and renewable en-
ergy, 2022).

Hydrogen Energy Storage (HES) systems are another promising power storage tech-
nology. HES is particularly relevant for long-term power storage when used in combina-
tion with BES for short-term balancing (Li et al., 2023). However, HES systems typically
have lower roundtrip efficiencies, around 35%, and higher investment costs, approxi-
mately $349 per kWh (Mongird et al., 2020). In contrast, BES systems have efficiencies
of over 95% and lower costs, around $156 per kWh (BNEF, 2023). Because long-duration
thermal energy storage can be achieved more efficiently and affordably with ATES, and
short-term power storage can be achieved more efficiently and affordably with battery
storage, HES has not been included in this study.

4.3.3. SYSTEM CONFIGURATION
The discussed energy sources and storage technologies are integrated to provide ther-
mal energy to all 55,000 households connected to EPU’s district heating network. This
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study will consider two slightly different configurations of the DHN.

GridSync configuration
During real-world operations, Power-to-Heat (P2H) and Battery Energy Storage (BES) as-
sets are not directly linked to photovoltaic (PV) or wind parks but are instead connected
to the power grid. Consequently, the levelised cost of power for these assets is not deter-
mined solely by production costs; it is also subject to the dynamics of fluctuating market
prices. To address this, the study employs a system design referred to as the GridSync
(GS) configuration, which will serve as the foundation for this research.

In the GridSync configuration, thermal energy is supplied either directly by the Com-
bined Cycle Gas Turbine (CCGT) or through peak boilers. Alternatively, thermal energy
can be generated via P2H assets, which use electricity sourced from the CCGT or pur-
chased from the power grid. This thermal energy can then be stored in one of the ther-
mal energy storage systems or directly utilised to meet demand. Additionally, electricity
generated by the CCGT can be stored in the BES system, enabling it to power the P2H
assets at a later time. The BES system also participates in energy trading by charging
during periods of low power prices and discharging during periods of high prices. Simi-
larly, the CCGT has the capability to sell surplus power directly to the electricity market.
(Figure 4.2).

Figure 4.2: An overview of the GridSync configuration, which incorporates power markets through the power
grid, waste heat, a combined cycle gas turbine, power-to-heat assets such as heat pumps and resistive heating,
thermal energy storage, peak boilers, and a battery.

EcoPure configuration
The EcoPure (EP) design is similar to the GridSync design, with one key difference: in-
stead of sourcing electricity from the power grid at market prices, it relies solely on
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Figure 4.3: An overview of the EcoPure system configuration, which incorporates renewable energy sources,
power-to-heat assets such as heat pumps and resistive heating, thermal energy storage, peak boilers, CCGTs,
and a battery.

variable renewable energy sources, specifically solar and wind. This means that the
availability of power for the system depends entirely on the output of these renewable
sources. If solar and wind generation drop to zero, no power is available to run the sys-
tem. This setup aims to demonstrate how EPU’s District Heating Network (DHN) could
function if it relied exclusively on renewable power, highlighting the challenges and re-
quirements of such a transition. Flexible CCGTs and peak boilers are included as backup
options to ensure reliability when renewable energy is insufficient (Figure 4.3).

4.3.4. SPATIAL DESIGN

As mentioned previously, EPU’s district heating network is divided into four districts:
Nieuwegein, Utrecht City, Leidsche Rijn, and Overvecht. Currently, each district is sup-
plied by thermal energy from EPU, supplemented by distributed auxiliary plants. One
direct primary connection runs from EPU to Nieuwegein (175 MW), with branches to
Leidsche Rijn (110 MW) and Utrecht City (130 MW), along with direct primary connec-
tions to Utrecht City (130 MW) and Overvecht (130 MW). Finally, there is a connection
from Overvecht to Utrecht City with a capacity of 130 MW (Figure E.2). These are one-
way connections with fixed capacities determined by pipe diameter and pump speed.

Within EPU’s district heating network, not all technologies are applicable to all loca-
tions. The primary factor determining applicability is whether it concerns the primary
grid (EPU) or the secondary grid (the four districts). At EPU, all energy sources are avail-
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able, though not all storage technologies are feasible. The primary grid transports water
at 120°C, making atmospheric TTES unfeasible.

Conversely, secondary locations have access to all above-ground storage technolo-
gies, but not all energy sources are available and neither is ATES. CCGTs require both
extensive fuel infrastructure and large power grid connections. Currently, EPU is the
only suitable location, satisfying both requirements. Technically, both E-boilers and heat
pumps can be installed at secondary locations. However, heat pumps are more suited for
distributed thermal sources due to their higher thermal output relative to grid connec-
tion requirements. Heat pump installations, however, are large and require spatial analy-
sis near heat transfer stations, which is currently unavailable. Therefore, in the model, all
P2H assets are located at EPU. Additionally, since ATES requires a heat pump to function
optimally due to the secondary grid’s temperature fluctuations (72-92°C), this technol-
ogy is also limited to EPU. For Eneco, the BES’ primary use case in Utrecht is to store
power in order to supply the P2H assets. Therefore, BES is only placed at locations with
P2H assets. Finally, peak boilers are available at all secondary locations except for Leid-
sche Rijn which does not have a gas supply at the heat transfer station (Table 4.3).

Location CCGT peak boiler P2H TTES ATES SSTES BES

EPU X X X - X X X
Nieuwegein - X - X - - -

Leidsche Rijn - - - X - - -
Overvecht - X - X - - -
Utrect city - X - X - - -

Table 4.3: The placement of technologies across different DHN locations. X shows that a technology is present
at the corresponding location.

4.4. OPTIMISATION DESIGN
This chapter provides a comprehensive overview of the core components that shape the
optimization process: decision variables, objectives, and the optimization algorithm.
This chapter delves into the critical aspects of how these elements interact to achieve
optimal solutions. We begin by exploring the decision variables, which represent the ad-
justable parameters within the model that drive the optimization outcomes. Next, we
define the objectives, which establish the goals of the optimization, such as minimiz-
ing cost or maximizing efficiency. Finally, we discuss the optimization algorithm, the
computational method used to navigate the complex landscape of potential solutions
and identify the optimal set of decision variables. Together, these components form the
foundation of our optimization approach, guiding the model towards achieving the de-
sired outcomes efficiently and effectively.

The objective of this chapter is to provide an answer to sub-research question one and
two:

• What decision variables and objectives are identified in the literature and what are
the trade-offs between them?
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• Which optimisation algorithms or combination of algorithms are identified in sci-
entific literature and what insights do they provide?

4.4.1. DECISION VARIABLES
In optimization, decision variables are the key elements that determine the outcome of
the optimization process. They represent the choices or quantities that can be adjusted
within the model to achieve the desired objective, such as minimizing cost or maximiz-
ing efficiency. The values of these variables are not fixed but are instead determined
through the optimization process, guided by the objective function and subject to a set
of constraints. In this chapter, we will explore the specific decision variables used in our
model, detailing their roles and how they interact to influence the overall system perfor-
mance. Understanding these variables is crucial for comprehending the optimization
strategy and its practical implications in the context of the problem at hand.

From the literature, we can identify three primary categories of decision variables.
Most optimisation studies in renewable hybrid energy systems optimise the capacity of
system components (Literature review). However, some studies also focus on the opti-
misation of the dispatch strategy or network analysis, optimising the location of assets in
the DHN. Component capacity emerges as the most relevant decision variable for EPU
given their commitment to achieving net zero emissions. This means that for energy
sources their energy capacity in kW is optimised while for storage technologies both the
energy capacity in kW and storage capacity in kWh are optimised. Such optimization
of component capacity is crucial as it addresses the fundamental aspect of how a re-
newable energy system could be structured and operated effectively. The uncertainty
surrounding the practical and cost-effective implementation of such systems makes it
important to focus on accurately sizing system components. This ensures that energy
production not only aligns with sustainability goals, but also remains economically vi-
able. Understanding the optimal capacity needed for each component will help EPU
navigate the complexities of transitioning to a renewable infrastructure while balancing
cost, efficiency, and reliability.

4.4.2. OBJECTIVES
From the literature review (Chapter 2), we can identify three primary objectives for opti-
misation in energy systems: cost, emissions, and reliability. Although, for each of these
objectives, there are multiple key performance indicators which can be optimised, there
are some industry standard measures. Cost is most often assessed based on the levelised
cost of energy (LCOE) which takes both capital expenditures and net present operational
expenditures into account to calculate a per-unit energy cost:

LCOE =
∑n

t=1
It+Mt+Ft

(1+r )t∑n
t=1

Et
(1+r )t

(4.1)

Where It is the investment cost in year t, Mt the maintenance cost in year t, Ft the fuel
cost in year t, Et the energy delivered in year t, and r the discount rate.

According to T. Liu et al. (2022), the reliability of an energy system is commonly mea-
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sured by the loss of power supply probability (LPSP). LPSP is a measure used to quantify
the reliability of a power supply in meeting load demands. It refers to the fraction of
total demand that remains unmet within a specified time period. Essentially, LPSP rep-
resents the percentage of time the power supply does not meet load demand, indicating
the reliability of the system to maintain power supply.

LPSP =
∑n

t=1|min(0,St −D t )|∑n
t=1 D t

(4.2)

Where St is the power supply and D t is the demand at time t.

Finally, the environmental impact of an energy system is most commonly measured
in carbon dioxide (CO2) equivalent greenhouse gas emissions. This metric takes into ac-
count not only CO2 but also other greenhouse gases such as methane (CH4), converting
their impact into a CO2-equivalent value based on their global warming potential. By
using CO2 equivalents, we can provide a comprehensive assessment of the total green-
house gas emissions associated with an energy system, facilitating better comparisons
and decision-making regarding sustainability and environmental responsibility.

Multi-objective optimization involves optimizing two or more conflicting objectives
simultaneously, which can be complex and computationally intensive. This complexity
can be transformed into a simpler single-objective optimization problem by formulating
some of the objectives as constraints. In this approach, also known as the ε-constraint
method, one primary objective is selected for optimisation, while the other objectives
are converted into constraints with acceptable threshold values (Nikas et al., 2022). For
example, in an energy system design, minimising cost could be the primary objective,
while emission levels and energy security are treated as constraints that must not ex-
ceed certain limits. This transformation simplifies the optimization process, making it
computationally less demanding and easier to solve using traditional single-objective
optimization techniques. The benefits of this method include reduced computational
resources, a clearer focus on the most critical objective, and simpler interpretation and
implementation of results (Nikas et al., 2022).

Instead of treating cost, emissions, and energy security as separate objectives, the
demonstrated optimization will focus on minimizing cost while converting emissions
and energy security into constraints, thereby implementing the ε-constraint method.
Given Eneco’s commitment to achieving climate neutrality by 2035, the design space has
been limited to sustainable energy assets only, ensuring that all solutions align with this
environmental goal (Chapter 4.3.3). Additionally, since the loss of energy supply would
mean that customers would not be able to heat their homes, a crucial constraint will
be that supply must always exceed demand. By prioritising cost reduction within these
strict sustainability and security parameters, we aim to develop an efficient, environ-
mentally friendly, and dependable DHN for Utrecht.

The total cost of an asset over its lifetime consists of two components: capital expen-
ditures (CAPEX) and operational expenditures (OPEX). CAPEX can be defined as:

C APE X = ca Ic,a + va Iv,a (4.3)
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Where ca is the energy capacity of asset a in kW, Ic,a the investment cost of each unit of
energy capacity for asset a, va is the storage capacity of asset a in kWh, and Iv,a is the
investment cost of each unit of storage capacity for asset a.

The OPEX over the lifetime of an asset is the net present value of all O&M expendi-
tures and can be defined as:

OPE X =
n∑

t=1

faC APE X +ba,t −Ra,t

(1+ r )t (4.4)

Where fa is a factor which expresses O&M expenditures as a percentage of CAPEX for
asset a, ba,t is the fuel cost of asset a at time t , Ra,t is the revenue generated by asset a at
time t , and r is the interest rate.

The objective of the optimisation is to minimise the total cost across all assets and
can be described as:

Minimize
∑
a

(
ca Ic,a + va Iv,a +

n∑
t=1

fa(ca Ic,a + va Iv,a)+ba,t −Ra, t

(1+ r )t

)
(4.5)

Subject to:

0 ≤ ca ≤ ca,max ∀a ∈ {1,2, . . . , a}

0 ≤ va ≤ va,max ∀a ∈ {1,2, . . . , a}

St ≥ D t ∀t ∈ {1,2, . . . ,T }

Where ca,max is the maximum energy capacity of asset a, va,max is the maximum storage
capacity of asset a, D t is the total thermal energy demand at time t, and St is the total
thermal energy supply at time t defined by:

St =
∑
a

pth,t ,a (4.6)

Where pth,t ,a is the thermal energy production of asset a at time t .

Trade-offs
When discussing the optimization objectives, we can identify some clear interdependen-
cies and trade-offs between cost, emissions, and reliability. These objectives are often in
tension with one another, requiring careful balancing to achieve an optimized energy
system.

1. Cost & Emissions: Minimizing costs often involves trade-offs with emissions, as
lower-cost options may include fossil-based generation that increases carbon out-
put. In contrast, while renewable energy sources reduce emissions, they often
require higher upfront capital investments and introduce variability due to their
dependence on weather conditions, such as wind and sunlight. This variability
necessitates costly energy storage solutions to ensure a stable energy supply.
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2. Reliability & Emissions: Ensuring a reliable supply of energy may sometimes re-
quire fossil-based backup systems that can quickly ramp up in response to de-
mand. Renewable sources, though lower in emissions, may not always provide
sufficient reliability due to their intermittent nature. As a result, achieving high re-
liability while minimizing emissions is challenging without substantial storage or
flexibility options, which themselves impact costs.

3. Cost & Reliability: While minimizing costs is desirable, maintaining high reliability
often requires additional investments in backup capacity or energy storage. Re-
dundancies and storage systems that improve reliability can significantly increase
both CAPEX and operational expenses. Thus, reducing costs can lead to reduced
reliability if the system lacks sufficient backup or flexibility to handle demand fluc-
tuations.

Therefore, the presented optimization, with constraints on emissions and reliabil-
ity, will inherently result in higher total system costs compared to a system with more
relaxed emissions and reliability requirements.

4.4.3. OPTIMISATION ALGORITHM
There are two general approaches to optimization in energy systems: single- layer op-
timization and two-layer optimisation. In the two-layer method, sizing and operational
dispatch optimizations are conducted sequentially using heuristic algorithms (Huang et
al., 2024). The most frequently used heuristics are Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) due to their favourable trade-off between solution time and
performance (Tahir, 2024).

Genetic algorithms are powerful evolutionary optimization techniques that mimic
natural selection (McCall, 2005). They are widely used to find near-optimal solutions
within complex optimization problems where traditional methods may struggle due to
the computational complexity (McCall, 2005). According to McCall, GAs initiate with a
randomly generated population of candidate solutions, referred to as individuals. These
individuals are iteratively improved through a predefined number of iteration cycles.
Each individual possesses unique ’genes,’ which represent different configurations of
decision variables. During each iteration, the performance of each individual is eval-
uated based on the objective function, with those showing the highest fitness values
selected for reproduction. Consequently, better-performing individuals have a higher
probability of progressing to subsequent generations. During reproduction, selected in-
dividuals exchange genetic information through a process called crossover, analogous
to biological reproduction, allowing the algorithm to efficiently navigate undiscovered
areas of the solution space. Additionally, the population undergoes mutations, which
help maintain diversity and prevent premature convergence on local optima (2005).

The benefit of GAs is that they can handle complex, non-linear, and non-convex op-
timisation problems with multiple local optima (Biswas, 2022). Furthermore, they are
computationally efficient as they can explore large solution spaces efficiently and they
are parallelizable further reducing the solution time for complex models (Biswas, 2022).
However, the implementation of GAs does not guarantee finding the local optimum and
does not allow for the simultaneous optimisation of dispatch strategy.
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Similar to GAs, PSO is a meta heuristic inspired by nature. It simulates the social
behaviour of bird flocking, with each candidate solution represented as a particle navi-
gating the solution space (Wahab et al., 2015). The particles explore the solution space
by adjusting their positions according to the most optimal position they have individ-
ually discovered and the most favourable position identified by the swarm as a whole.
According to Gad (2022), PSO has several advantages, including simplicity, ease of im-
plementation, quick solution time, and the ability to handle non-convex and non-linear
optimization problems. However, PSO can get stuck in local optima and may face chal-
lenges with high-dimensional optimisation problems. (Chun-Wei Lin et al., 2024).

Conversely, the single-layer method integrates sizing and operational dispatch opti-
mization, using Mixed-Integer Linear Programming (MILP) to achieve globally optimal
solutions based on real-time and forecasted data. This method treats both size and oper-
ational parameters as variables optimized concurrently, often resulting in better perfor-
mance. However, computational challenges may arise with increasing constraints and
timeseries data, requiring the use of clustering techniques like k-means to manage com-
putational loads effectively. This approach strives to balance computational efficiency
with solution accuracy in complex, hybrid energy systems (Huang et al., 2024).

For EPU, the system optimisation will be performed to determine the optimal size
of system components. Consequently, the storage capacity of storage technologies and
energy capacity of energy sources will be optimised to achieve the lowest overall sys-
tem costs. Due to the large number of system components and their complex depen-
dencies and interactions, a rule-based asset dispatch approach is unlikely to accurately
reflect optimal system operations. Therefore, a two-layer optimisation approach would
most likely deviate significantly from the global optimum making a single-layer optimi-
sation using MILP more appropriate. However, the proposed system design integrates
both short- and long-term energy storage necessitating the implementation of extensive
time series data to accurately reflect seasonal energy flows. Combined with the exten-
sive constraints required for modelling system behaviour, this makes solving the prob-
lem computationally expensive. Therefore, the proposed single-layer approach might
require techniques to alleviate some of the computational complexities.

4.5. MODEL DEVELOPMENT
In this chapter, we delve into the development of a comprehensive model for a Hybrid
Renewable Energy System in Utrecht. This involves a detailed examination and model-
ing of each component within the system, ranging from generation units such as solar,
wind, and CCGTs, to various storage systems including batteries and thermal storage,
and finally, the load profiles that these systems aim to support.

Accurate modeling and simulation of an HRES require specific data inputs. We will
begin by specifying the necessary data such as historical RES patterns, load demands,
and cost details, which are crucial for realistic simulations and forecasting. Understand-
ing these requirements helps in designing a model that not only reflects theoretical ca-
pabilities but also practical viability.

Furthermore, we will develop detailed models for each system component. This in-
volves understanding the individual characteristics and performance metrics of genera-
tion and storage units, as well as how these components can be optimised for cost effi-
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ciency.

4.5.1. DATA REQUIREMENTS
The model requires five primary input datasets. In this section, we will first discuss three
datasets concerning renewable generation profiles, followed by consumption data, and
finally, data on power markets.

Power generation
The three generation datasets from the National Energy Dashboard (NED) show the ag-
gregate energy production from PV, onshore, and offshore wind energy in the Nether-
lands for 2023. (NED, 2024). In order to use the data in the model, each of these datasets
has been pre-processed to show generation in kWh per m2. From the generation profiles,
it becomes apparent that a combination of PV and wind provides a well-distributed en-
ergy generation throughout the year. Photovoltaic power tends to peak in the summer
due to high solar irradiance, while wind power peaks in the winter when PV generation
is at its lowest (Figure 4.4).

Figure 4.4: Daily normalized total power generation from wind and PV, 2023.

Furthermore, the data indicates that both the offshore and onshore wind profiles are
very similar (Figure A.2 & A.3). However, offshore wind generally generates more power
compared to onshore wind. Specifically, onshore wind generates an average of 0.10 kW
per m2, while offshore wind produces an average of 0.12 kW per m2. This difference is
statistically significant, with a p-value smaller than 0.01. Similarly, the complementary
nature of PV and wind observed in their annual generation profiles extends to daily fluc-
tuations. While PV power typically peaks around noon and operates only during sunlight
hours, wind energy offers a more consistent output across the entire day (Figure A.4).
This variation showcases the benefits of diversifying across multiple renewable energy
sources.

Thermal demand
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In addition to generation profiles, the model requires thermal demand data for EPU’s
district heating network. Due to the Dutch climate, thermal demand varies significantly
across seasons. During winter, thermal demand surges and becomes highly volatile as
outside temperatures drop. In contrast, during summer, thermal demand stabilizes at a
much lower level (Figure 4.5).

Figure 4.5: Hourly Thermal Demand Averaged Over 8-Hour Intervals in kWhth, 2023.

From May until October, the mean thermal demand is 57.511 kW, with lows and highs
reaching 33.188 kW and 130.000 kW, respectively. Conversely, from November until April,
the mean thermal demand is 147.617 kW, with lows and highs reaching 51.158 kW and
346.330 kW, respectively. On a daily timeframe, thermal demand typically peaks in the
morning between 7 and 9 AM, presumably due to space heating and hot water usage. Af-
ter this morning peak, thermal demand decreases to a baseline level throughout the day,
then rises again in the evening between 5 and 8 PM. Following the evening peak, demand
gradually decreases, reaching its lowest point after midnight (Figure A.5). Utrecht’s DHN
is divided into four districts: Nieuwegein, Utrecht city, Leidsche Rijn, and Overvecht. Ac-
cording to Eneco, Utrecht city accounts for 52% of the total demand, Leidsche Rijn for
19%, Nieuwegein for 18%, and Overvecht for 11% (Eneco, 2024b). Consequently, the de-
mand dataset has been split into four subsets to represent the demand for each district.

Power market
As mentioned in chapter 4.3.3, EPU’s power-to-heat assets are connected to the power
grid. Therefore, the cost of thermal energy is partly dependent on market prices for elec-
tricity. These market prices are dependent on supply and demand and can be highly
volatile accross multiple different markets. One such example of a power market is the
imbalance market which is used to balance power supply and demand on a minute-
by-minute time frame. Another market is the automatic frequency restoration reserve
(aFRR) which is used to maintain the 50 Hz frequency of the Dutch power grid (Tennet,
2022). It is in these markets where DHSNs can participate to actively balance supply and
demand. During periods of excess power generation, power prices on the imbalance and
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aFRR market can become deeply negative. In such periods, P2H and BES assets can be
used to respectively generate heat or store electricity. If such a drop in power prices does
not coincide with thermal demand, the thermal energy from P2H assets can be stored in
the various TES technologies. Conversely, when power prices increase due to a lack of
supply or a surge in demand, BES systems can profit by selling their power back to the
grid. However, the small time frame and high volatility of these markets make it impos-
sible to forecast long term power prices. A more stable power market is the day-ahead
market. The day-ahead market operates via a blind auction conducted once daily to de-
termine the hourly power prices for the next day based on supply and demand forecasts
(EEX Group, 2024). Therefore, similarly to the imbalance markets, day-ahead prices fluc-
tuate throughout the day. However, prices are not affected by short term power imbal-
ances as they are fixed on an per-hour basis. Although it seems unintuitive due to their
scheduled nature, day-ahead prices can still turn negative as a result of supply and de-
mand imbalances. This can be caused by high RES feed-in or inflexible power sources
such as nuclear plants (EEX Group, 2024). Due to the larger time frames and more pre-
dictable nature of day-ahead prices, Eneco has developed day-ahead forecasts based on
various scenarios, which we will incorporate into the optimization model. These fore-
casts are based on three scenarios: global transition, local independence, and stated
pledges.

Global transition scenario
The Global Transition (GT) scenario envisions a pathway to carbon neutrality by 2050,
with an Intermediary goal of at least a 55% reduction in emissions by 2030 (Entsog &
Entso-e, 2022). This scenario emphasizes the deployment of diverse renewable and low-
carbon technologies, many of which are centralised, alongside the use of global energy
trade to accelerate decarbonisation. Economies of scale drive large cost reductions in
renewable technologies, while the import of decarbonised energy from cost-effective
sources is also seen as a practical approach (Entsog & Entso-e, 2022).

Local independence scenario
The Local Independence (LI) scenario envisions a pathway to carbon neutrality by 2050,
with an Intermediary goal of at least a 55% reduction in emissions by 2030 (Entsog &
Entso-e, 2022). This scenario is propelled by societal commitment to attaining energy
self-sufficiency through abundant local renewable energy sources. It reflects a shift in
lifestyle and a decentralized push for decarbonization, driven by initiatives from citizens,
communities, and businesses, with support from authorities. As a result, renewable en-
ergy production in Europe is maximized, and energy imports are significantly reduced
(Entsog & Entso-e, 2022).

Stated pledges scenario
The Stated Pledges (SP) scenario describes a pathway aligned with national energy and
climate policies that are based on European targets, aiming to achieve carbon neutrality
by 2050 and a 55% reduction in emissions by 2030 (Entsog & Entso-e, 2022).

The three price curves are generated by a complex model that considers historical
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weather patterns, projected renewable energy share, fossil fuel prices, and power de-
mand. The SP scenario exhibits the highest reliance on renewable energy sources, with
123 GW sourced from solar and wind. In comparison, the LI and GT scenarios are fore-
casted to have 108 GW and 79 GW, respectively (Table 4.4).

Scenario Solar capacity Wind capacity Total

Global transition 50.78 27.77 78.55
Local independence 73.71 34.55 108.26

Stated pledges 84.41 38.96 123.37

Table 4.4: The installed renewable energy capacity in GW for solar power, wind power, and combined total

None of the scenarios predict negative power prices in 2035, underscoring the im-
proved grid balance achieved through energy storage and demand-side response mech-
anisms. However, power prices in 2035 still exhibit the expected volatility and patterns
associated with an increasing reliance on renewable energy. On average, power prices
are at their lowest from 7:00 AM to 4:00 PM across all three scenarios, due to high solar
production (Figure: 4.6). Unsurprisingly, the average daily prices for the SP scenario are
the lowest, as this scenario has the highest total renewable capacity.

Figure 4.6: Normalised average daily power prices for 2035 across all scenarios

Similarly, the fluctuations observed in daily power prices extend to annual fluctua-
tions. Average weekly power prices reach their lowest during the summer months, when
solar irradiance is at its peak, and climb higher during the winter, when the installed
solar capacity produces less energy (Appendix A.6). However, due to the combination of
solar and wind power, power prices still reach lower points during winter, offering strate-
gic opportunities for energy storage systems to charge.
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Fuel markets
In addition to the power market, the fuel markets play a critical role in EPU’s operations.
This research focuses on two key fuel markets: Hydrogen (H2) and Natural Gas (NG).
Both fuels are utilized by the CCGT and peak boiler technologies for heat and power
generation.

Similar to the power market, fuel prices fluctuate based on the time of consumption,
though price volatility in these markets tends to be less pronounced. The price of blue
hydrogen is determined on an hourly basis and has been forecasted by Eneco for 2035,
with an average projected cost of 11.5 cents per kWh (Figure A.7).

In contrast, natural gas is not carbon neutral, which necessitates the purchase of
EU Emission Trading System (ETS) credits. ETS is a cap-and-trade system which limits
the total amount of emissions that can be produced by an industry (European Commis-
sion, n.d.). Companies are allocated or must purchase ETS credits, each representing the
right to emit one tonne of CO2 equivalent emissions. Currently, the cost of ETS credits
is around €70 per tonne of CO2, with prices expected to remain stable until 2030, before
rising to approximately €100 per tonne by 2035 as regulations become stricter (Enerdata,
2023). It is important to note that purchasing carbon offsets does not exempt companies
from ETS obligations since 2020 (European Commission, 2021). ETS credits must still be
acquired to cover the generated emissions.

To calculate the necessary adjustments for natural gas prices, we first established
a baseline using historical data. The NG price profile was calculated as the monthly
median from January 1990 to September 2024 (FRED, 2024). The median provides a
more accurate representation of typical NG price trends by smoothing out the impact of
abnormal price spikes, such as those caused by the Russia-Ukraine war. The historical
mean price over this period is €0.016 per kWh.

Looking ahead, the International Energy Agency (IEA) projects NG prices to range
between $4.3 and $6.9 per MMBtu across three different scenarios for 2030, with a me-
dian expectation of $6.5 per MMBtu, which equates to approximately €0.022 per kWh
(IEA, 2023). As a result, the historical NG price profile has been adjusted to align with
these future projections.

Natural gas used in the Netherlands results in 2.085 kg of CO2 equivalent emissions
per m3 (Anthesis, 2023). Given that natural gas produces 9.77 kWh of energy per m3, this
equates to approximately 0.21 kg of CO2 emissions per kWh of natural gas consumed. In
addition to purchasing ETS credits, Eneco can utilize the carbon offset market to neu-
tralize the carbon footprint associated with natural gas consumption and achieve CO2

neutrality. Bloomberg identifies three potential scenarios for the development of the
carbon offset market, each with varying prices and dynamics.

Voluntary market scenario
In this scenario, the supply of carbon offsets is projected to be nearly four times greater
than demand, resulting in a low price of just $13 per ton and valuing the market at a mod-
est $15 billion by 2030. By 2035, the price is expected to rise to $18 per ton, and by 2050,
it is projected to reach $35 per ton. This situation presents a significant challenge for
the market: the abundance of cheap, low-quality offsets could discourage critical invest-
ment in high-integrity solutions, such as direct air capture (DAC), ultimately impeding
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progress toward meaningful emissions reductions (Bloomberg, 2023). In this scenario,
the average NG price throughout the year would be €0.047 per kWh.

Bifurcation market scenario
In this scenario, the carbon offset market is likely to split into two segments once stake-
holders establish a definition for “high-quality” offsets. A smaller, less liquid market for
high-quality offsets would emerge, with prices peaking at $38 per ton in 2038, though
still insufficient to drive investment in technology-based removals like DAC. Meanwhile,
a larger, low-quality market would persist, with prices reaching only $22 per ton by 2050,
exacerbating existing issues in today’s market (Bloomberg, 2023). In this scenario, Eneco
would opt for high-quality carbon offsets to stay aligned with their sustainability goals,
with costs expected to reach $37 per ton by 2035 (Bloomberg, 2023). This choice reflects
a commitment to higher standards, even as the market for low-quality offsets remains
cheaper, reinforcing Eneco’s focus on integrity and meaningful carbon reduction. In this
scenario, the average NG price throughout the year would be €0.051 per kWh.

Removal market scenario
In a removal-focused scenario, offset prices would gradually rise to new highs, allowing
buyers time to adapt. This market, centeres entirely on carbon removals such as refor-
estation, agriculture, and direct air capture (DAC) (Bloomberg, 2023). The removal-only
market keeps supply and demand in a tight balance until 2050, with a brief period of
undersupply from 2037 to 2044. Prices would climb to $42 per ton by 2030, spike to $195
per ton in 2035, and $254 per ton by 2037, before settling at $95 per ton in 2050. On aver-
age, the price per ton is projected to be $127, which is used as the basis for this scenario
(Bloomberg, 2023). In this scenario, the average NG price throughout the year would be
€0.068 per kWh.

Data shifting
It is crucial that the optimization accurately reflects the seasonal energy flows within
the system. Typically, seasonal thermal energy storage is charged during the summer
months, when thermal demand is at its lowest and power generation from PV is at its
highest, and discharged during the winter. To capture this behavior in the model, all
datasets are adjusted to start in May and end in April.

4.5.2. MODELLING OF SYSTEM COMPONENTS

The optimization model presented in this research was created using Python, with Cal-
liope — a free and open-source Python library designed to model energy systems. Cal-
liope "focuses on flexibility, high spatial and temporal resolution, the ability to execute
many runs based on the same base model, and a clear separation of framework (code)
and model (data). Its primary focus is on planning energy systems at scales ranging from
urban districts to entire continents. In an optional operational mode it can also test a
pre-defined system under different operational conditions" (Calliope, 2023). Addition-
ally, Calliope (2023) supports modeling to generate alternatives (MGA). MGA emphasizes
generating alternatives that vary widely while staying within a predefined range from the
optimal objective outcome.
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Calliope utilizes the widely adopted Pyomo optimization package as its back-end
but organizes the coding process into a more intuitive structure. In Calliope, each as-
set is categorised as a "technology," which is further divided into four types: supply,
transmission, conversion, and storage. Supply technologies draw resources from out-
side the system and convert them into energy carriers, such as power or heat. Transmis-
sion technologies are responsible for transporting energy from one location to another.
Conversion technologies transform one type of energy carrier into another, and storage
technologies store a predefined energy carrier for later use. The technology class and
energy carrier determine the logic governing the energy flow between different assets.
Power from a supply technology can only be transferred to assets that accept power as
their input, such as power storage or P2H conversion technologies. Similarly, heat can
only be directed to assets that accept heat as their input, such as thermal storage or de-
mand. More generally, the output carrier of a given technology can only be transferred
to another technology that accepts the same carrier as its input (Figure E.1).

Photovoltaic
PV technology is used in the EP configuration and is defined as a supply technology. It
utilizes the PV generation profile dataset as its resource, converting this into the power
carrier within the model. The primary objective of the EP system design is to determine
the required RES and storage capacity needed to operate Utrecht’s DHN entirely on re-
newable power. Consequently, the maximum PV capacity and available physical area are
not constrained.

To connect PV power to the grid, the direct current (DC) must first be converted to
alternating current (AC) by an inverter. These inverters typically achieve efficiencies be-
tween 95.5% and 98.5% (Grab et al., 2022). In the optimization model, the inverter loss
is assumed to be 3%, corresponding to an efficiency of 97%. Recent research indicates
that the economic lifespan of PV systems ranges from 15 to 20 years. As noted by Tan
et al. (2022), photovoltaic modules typically have a technical lifespan of 25 years, based
on performance warranties guaranteeing 80% of the initial peak capacity after 25 years
of use. However, factors like "climate conditions, societal behavior, fiscal policies, and
technological advancements" can result in earlier replacement (Tan et al., 2022). There-
fore, the economic lifespan of PV panels in the model is set to 20 years.

In addition to these technical characteristics, the model also considers the costs as-
sociated with PV. Currently, the capex of fixed-axis PV sits at €616 per kW (BNEF, 2023).
However, it is expected that this will drop to $4401 per kW in 2035 (BNEF, 2023). Annual
Operational and Maintenance (O&M) expenditures are generally 1.1% of capex for PV
(Ramasamy et al., 2021). The discount rate for all technologies including PV is set to 9%,
Eneco’s standard rate. In the model, PV is not able to export its power as it can produce
electricity cheaper than market prices, making the optimisation unbounded.

Wind turbines
Wind turbines are another technology used in the EP configuration, and are defined as
a supply technology. There are two different instances: offshore and onshore turbines.

1All dollar values have been converted in the model to euros using the exchange rate of 1.09 EUR/USD as of 16
October 2024.
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Each instance uses its own dataset as a resource, which is then converted into the power
carrier within the model. Similar to PV, there is no constraint on the maximum capacity
for both onshore and offshore wind power. Like PV, wind turbines generate DC power,
which needs to be converted to AC before being fed into the grid. The inverter loss is as-
sumed to be 3%, corresponding to an efficiency of 97%. The industry-standard lifetime
assumption for wind turbines is typically between 20 and 25 years. However, in practice,
offshore wind turbines can last up to 35 years once operational, and onshore wind tur-
bines can also exceed a lifespan of 30 years (Bills, 2021). To remain close to industry stan-
dards, we assume the lifespan of both onshore and offshore wind turbines to be 25 years.
While onshore and offshore wind power are similar in terms of technical characteristics,
they exhibit significant financial differences. In 2022, the total capex for onshore wind
was $1750 per kW, whereas offshore wind had a considerably higher capex of $2700 per
kW (BNEF, 2023; Stehly et al., 2023). The capex for offshore wind is expected to drop by
1.09% anually until 2028 (BNEF, 2023). Assuming the same cost reduction trend contin-
ues until 2035 and applies to onshore wind as well, we forecast the capex to be $1517 per
kW for onshore wind and $2341 per kW for offshore wind. O&M expenditures for land-
based wind are expected to be $28 per kW annually in 2035 which amounts to 1.6% of
capex (NREL, 2023a). O&M expenditrues for offshore wind are expected to be $105 per
kW annually in 2035 which amounts to 4.5% of capex (NREL, 2023b). In the model, wind
power is not able to export its power as it can produce electricity cheaper than market
prices, making the optimisation unbounded.

Battery energy storage
BES is defined in the model as a storage technology that can store the power carrier. BES
is present in both the EP and the GS configuration but serves slightly different purposes
in both. In the EP configuration, batteries are primarily used to balance supply and de-
mand, whereas in the GS, batteries can also be utilized to generate profit through trading
on the power market. Similar to PV and wind power, BES systems use DC, which needs
to be converted to AC when connected to the power grid. The round-trip efficiency of
battery storage is reduced by inverter inefficiencies and heat generated by the batter-
ies during charging, resulting in a round-trip efficiency of 85% (Cole & Karmakar, 2023).
The storage loss is assumed to be zero, and the battery lifetime is expected to be 15 years
(Cole & Karmakar, 2023).

Since the battery is a profit-generating asset, in cases of highly volatile day-ahead
prices, its profitability could potentially exceed the interest rate of 9%. In such sce-
narios, the optimization could become unbounded, as increasing the battery capacity
would result in perpetually higher profitability. To prevent this, the maximum storage
capacity and energy capacity is constrained to the peak demand of 350 MWh and 350
MW respectively. However, because the model operates on hourly time steps, the energy
output is inherently limited by the storage capacity, ensuring that no more energy can
be discharged than the battery’s total capacity. E.g., a BES system with a storage capacity
of one MW will have an energy capacity of no more than one MW. The model optimizes
both capacities, necessitating a cost for each. According to an NREL report, the expected
2035 capex are €206 per kWh and €280 per kW. (Cole & Karmakar, 2023). The reported
O&M expenditures for BES systems vary widely, ranging from 1% to 10% of CAPEX an-
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nually. In the model we will use the median value of 3.96% (Cole & Karmakar, 2023).

Heat pump
Heat pumps are an important technology present in both system configurations. They
are a conversion technology that can convert the power carrier into the heat carrier in
the model. The performance of heat pumps is generally described by its COP. According
to Eneco, their grid-scale air source heat pumps have an average COP of 3 throughout
the year (Eneco, 2024b). Therefore, they can convert each kWh of power into 3 kWh of
heat. The maximum capacity is not constrained in the model. Air to water heat pumps,
such as the ones used in EPU’s DHN, typically have a lifespan of 16 years (Toleikyte et al.,
2023). According to EPU, these heat pumps cost €1600 per kW with O&M expenditures
of 3% of CAPEX (Eneco, 2024d).

E-boiler
Similar to heat pumps, E-boilers are present in both system configurations and are a
conversion technology that converts the power carrier into the heat carrier. E-boilers
are less efficient compared to heat pumps with a 97% (Manni et al., 2022). These assets
have a lifespan of 20 years and relatively low CAPEX of €400 per kW, with O&M expendi-
tures amounting to 3% of CAPEX annually (Eneco, 2024c, 2024d).

Tank thermal energy storage
The TTES system is defined as a storage technology that stores the heat carrier. Eneco
has recently built 15,826 m3 of TTES volume across four separate storage vessels. To-
gether, they can store 610 MWh of thermal energy and can deliver 100 MW to the DHN
(Janse de Jonge et al., 2022). According to EPU, the capex for these storage assets is €35,6
per kWh with a lifetime of 20 years (Janse de Jonge et al., 2022). No cost for the energy
capacity is defined. Therefore, the ratio of energy capacity to storage capacity is lim-
ited to a maximum of 0.164 (100/610). Due to the limited operation time of these tanks,
EPU does not have available data on the thermal loss. However, according to nPro, TTES
systems larger than 3000 m2 lose on average 15% in 30 days which equates to an expo-
nential decay of 0,023% per hour (nPro, n.d.). Similarly to the thermal loss, there is no
empirical data on the maintenance expenditures. However, the expected maintenance
cost over the system’s lifetime is two million, which is roughly 0.5% of CAPEX annually
(Janse de Jonge et al., 2022).

Aquifer thermal energy storage
Recent research by Eneco has identified that the ground beneath Utrecht is particularly
well suited for ATES systems, which are modeled as a storage technology using heat as
its energy carrier. The study evaluated multiple ATES configurations with capacities up
to 1.9 million m³ and 50 MW of which 2 could be located at EPU. It concluded that at
location LW, the levelised cost of heat is lowest for a system with a storage capacity of
1.9 million m³ and an output capacity of 35 MW (Remmelts, 2019). The evaluated high-
temperature ATES stores water at 85°C, equating to 85.4 kWh per cubic meter. Therefore,
the maximum storage capacity per ATES system is 162.26 thousand MWh, resulting in a
combined capacity of 325 MWh with a total energy output of 100 MW.
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Due to the temperature difference between the storage (85°C) and the DHN (120°C),
a heat pump is used to extract thermal energy from the ATES system, which costs €210
per kW. The storage itself costs €0.15 per kWh, and operating expenses amount to 8.8%
of capital expenditures annually (Remmelts, 2019). Although these OPEX might seem
high compared to other assets, it is important to note that this also includes the cost of
power to operate the extraction heat pump.

The expected lifetime of the heat pump is 16 years, while the storage system has an
expected lifetime of 30 years. In the optimization model, a weighted average lifetime of
24.5 years (based on CAPEX costs) is used (Remmelts, 2019; Toleikyte et al., 2023).

Recent studies show that ATES systems can store energy for up to four months with a
thermal recovery efficiency of 68% (Sommer et al., 2014). Remmelts’ findings align with
this, indicating efficiencies between 67% and 80%, depending on the location and sys-
tem design (Remmelts, 2019). For the optimization model, a 70% efficiency over four
months is assumed, corresponding to an exponential decay rate of 0.012% per hour.

It is important to acknowledge the inherent limitations of modelling an ATES sys-
tem in this manner. In the model, the output heat pump is not represented as a sep-
arate asset. Instead, the electricity costs associated with the heat pump are included
in the operational and maintenance expenditures. This approach reduces accuracy in
two significant ways: the model does not account for the power demand required when
thermal energy is extracted from the ATES, which would occur during real-world opera-
tions, and it assumes a constant average power price rather than incorporating variable
power prices, which better reflect actual market dynamics. Despite these limitations, the
simplification offers notable advantages. Modelling the extraction heat pump as a sep-
arate asset would require an additional energy carrier (ATES-Heat) and introduce more
complexity to the model. This increased complexity would significantly affect solution
time, particularly due to the additional energy carrier. As such, this simplification aims
to strike a balance between real-world accuracy and model efficiency.

Peak boiler
Peak boilers are essential for providing supplemental thermal energy during peak hours
when standard assets may not produce enough to meet demand. Additionally, they of-
fer a cost-effective solution for creating redundancy, which is invaluable during main-
tenance on other assets. These conversion technologies operate by converting the fuel
carrier into heat with an efficiency of 90% (Lara, 2022). They have a capital cost of 200
per kW, a lifespan of 30 years, and annual operational expenditures amounting to 3% of
CAPEX (Eneco, 2024d).

Combined cycle gas turbines
Combined Cycle Gas Turbines (CCGTs) are another conversion technology capable of
converting fuel into both heat and power. This dual functionality allows CCGTs to gen-
erate profit on the power markets by exporting electricity when prices are high. The re-
sulting thermal energy can either be directly supplied to the DHN or stored for later use.
By 2035, CCGTs are expected to achieve a power generation efficiency of 51% and pro-
duce 0.77 kWh of thermal energy per kWh of power (BNEF, 2023; Eneco, 2024a). LW07 is
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planned to have a maximum power capacity of 177 MW and will be capable of deliver-
ing 136 MW of thermal energy. Capital expenditures are €1,000 per kW, with operational
expenditures amounting to 3% of CAPEX annually, and a lifetime of 30 years (Eneco,
2024d).

Solid state thermal energy storage
The final storage technology in the model is SSTES, which stores the high-heat carrier.
The storage unit costs 85 per kWh and has a lifetime of 30 years. Thermal loss is 1% per
day, corresponding to an exponential decay of 0.042% per hour. Eneco’s SSTES systems
are designed for 13-hour storage, meaning each kWh of storage provides 0.077 kW of
energy capacity.

The charge/discharge cycle is modeled through two technologies: SSTES-charge and
SSTES-discharge. The SSTES-charge technology is a power-to-heat conversion system,
operating at 95% efficiency. Its CAPEX is 2,099.50 per kW, with a 15-year lifetime and
annual OPEX of 3% of CAPEX. The SSTES-discharge technology converts the high-heat
carrier back into heat to supply to the DHN. While it shares the same 15-year lifetime
as the charge technology, it incurs no additional costs. This is because the charge and
discharge functions are part of the same asset, and costs are only allocated to the charge
technology to avoid double counting.

Fuel and power supply
The fuel- and power supply are represented as supply technologies importing the fuel
and power carriers, respectively. These technologies introduce energy into the system at
a predefined cost. The power supply operates based on power price curves, dictating the
cost of electricity entering the system. Similarly, the hydrogen supply follows fuel price
curves, determining the cost of fuel provided to the system. Both are already present
at EPU and therefore do not require investment. However, both have yearly associated
costs. The power connection incurs a monthly cost of €4 per kW, which equates to €48
per kW per year. Additionally, there is a variable cost of €0.0148 per kWh (Stedin, 2023).
For the fuel supply, there is a yearly transport cost of €27.91 per m3/h of capacity. Ad-
ditionally, there is a periodic charge of €1.09 per m3/h of capacity annually. Combined,
this equates to €2.97 per kW per annum (Stedin, 2024).

Heat transmission
The heat transmission technology is defined as a transmission technology that facilitates
the one-way transport of heat between locations. It transfers the heat carrier across the
system, ensuring that heat is distributed efficiently from supply points to demand points
without a return flow. Each transmission line has a predefined capacity (Figure E.2). As
these lines are already in place, there are no investment costs associated with them.

4.6. ANALYSIS OF MODEL OUTPUT
As outlined in Chapter 4.5.1, there are three scenarios for power prices and four scenarios
for fuel prices, resulting in a total of 12 scenarios when each power price scenario is com-
bined with each fuel price scenario. Additionally, these scenarios are modelled across
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two system configurations, bringing the total to 24 model runs. The GridSync configura-
tion is used to determine the capacities of P2H and F2H technologies, and these capacity
outcomes are then applied in the EcoPure configuration to calculate the required RES
capacity.

4.6.1. SYNTHETIC DATA

After optimising for the different capacities, it is crucial to assess the system’s reliability
under varying demand profiles, as ensuring that thermal demand is consistently met is a
key priority for EPU. To evaluate reliability, Zheng et al. (2018) utilized Monte Carlo sim-
ulations to account for uncertainties in weather conditions. In the optimization model
presented in this study, fluctuations in thermal demand can significantly affect system
performance. Therefore, synthetic datasets will be generated from observed data using
Monte Carlo simulation techniques to capture these variations.

The process begins by focusing on a single month. First, a daily demand profile is
established for that month, calculated as the average hourly demand across all days.
This results in a representative demand profile that reflects typical daily energy use for
that specific month. Next, a probability distribution is developed to capture variations
in the total daily demand for the month. This is done using Gaussian kernel density
estimation (KDE), which is applied to the observed total daily demand values, creating a
KDE that represents the likely range of daily demand totals. To simulate synthetic days,
random draws are taken from the KDE, one for each day of the month. Each simulated
daily demand value is then distributed according to the representative daily demand
profile, resulting in a set of synthetic demand values that vary day-to-day but follow the
typical hourly pattern. This process is repeated for each month of the year, resulting
in 12 different KDEs and corresponding synthetic demand profiles. The outcome is a
dataset that captures potential variations in thermal demand throughout the entire year,
allowing for a robust evaluation of system reliability under a wide range of conditions.

However, this approach does not account for the serial correlation typically observed
in thermal demand profiles, which are largely influenced by external temperatures. To
address this, we calculated transition probabilities based on observed data to reflect the
likelihood of consecutive high or low demand days. Specifically, for each day where
demand exceeds the mean of its corresponding KDE, we determined the probability
that the following day would also have above-average demand. Similarly, for days with
demand below the mean, we calculated the probability that the next day would also
have below-average demand. The results indicate that the probability of a high-demand
day being followed by another high-demand day is 80%, while the probability of a low-
demand day being followed by another low-demand day is 86%. Both probabilities are
statistically significantly different from 0.5 (p < 0.01), which would be expected in the
absence of serial correlation. Therefore, the random draws from the KDE have been ad-
justed to account for these probabilities. That is, if the preceding day had above-average
demand, there is an 80% chance that the next random draw is taken from the right side
of the KDE, ensuring that it simulates a higher demand. This adjustment simulates the
serial correlation observed in the data, maintaining the natural tendency for consecu-
tive high or low demand days. The operational performance of each of the optimisation
results is then evaluated against a synthetic dataset spanning 2 years of data.
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4.6.2. MODEL SIMPLIFICATION
From the literature review we can identify that most optimisation studies in energy sys-
tems make use of representative days to manage computational complexity. The most
adopted approach in energy systems is K-means clustering due to its computational
efficiency for large datasets with multiple dimensions. However, the use of represen-
tative days does inherently reduce the accuracy of the data and therefore reduces the
accuracy of results. To evaluate the performance loss from a model that implements
representative days, we will run the GTremoval model both over the full and a clustered
dataset. To determine the optimal number of clusters, we employ the widely used elbow
method. This approach involves executing the k-means algorithm for various values of
k (referring to the number of clusters) and evaluating the resulting within-cluster sum of
squares (WCSS). By plotting the WCSS against the corresponding values of k , an “elbow
point” can be visually identified, indicating where the reduction in WCSS diminishes as
additional clusters are added.

While not as prevalent in the reviewed scientific literature, Calliope offers an alterna-
tive approach to reduce solution time through masked time resolution adjustment. This
method involves resampling data into larger time steps in selected areas while main-
taining full resolution in unmasked, critical areas. Unmasking is achieved by evaluating
input data, such as thermal demand, and selecting a preset number of high-demand
days to retain at full resolution. To assess this simplification technique, the model will
be configured to keep the 15 highest-demand days at full hourly resolution, while the re-
maining data is resampled into 6-hour time steps. This adjustment reduces the number
of data points from 8,760 to 1,760, significantly enhancing computational efficiency.





5
RESULTS & DISCUSSION

This chapter presents the results of the optimisation process for the two system config-
urations: GridSync and EcoPure. In total, 12 scenarios were considered for each config-
uration, combining three power price scenarios with four fuel price scenarios. Through
the analysis, it became apparent that the optimisation results are most consistent across
the different power price scenarios within each fuel price scenario. As a result, the opti-
misation outcomes will be discussed primarily by fuel scenario, with comparisons made
across both configurations where relevant.

The objective of this chapter is to address sub-research question 5:

• Which level of resilience can be achieved and what is comparative resilience of a
system designed for multi-year reliability compared to those optimised for typical
day scenarios?

5.1. GRIDSYNC SYSTEM CONFIGURATION
The results indicate that the voluntary and bifurcation scenarios produce very similar
outcomes, relying primarily on fuel as the main energy source. In contrast, the removal
scenario shows a hybrid approach, utilizing both fuel and power-to-heat (P2H) tech-
nologies. The hydrogen scenario, on the other hand, results in an almost all-electric
system, relying predominantly on P2H and using fuel only to meet peak demand. There-
fore, the results for the voluntary and bifurcation scenarios will be presented together,
while the removal and hydrogen results will be presented separately. Furthermore, bat-
tery and solid-state thermal energy storage capacities are optimized to zero across all
scenarios, as they are outcompeted by the more cost-effective ATES and TTES solutions.
Consequently, these technologies will not be discussed further.

5.1.1. SCENARIO: VOLUNTARY & BIFURCATION
In the voluntary and bifurcation scenario, CO2-compensated natural gas prices average
€0.047 and 0.051 per kWh over the year, making it more competitive than the average
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power prices of €0.085, €0.081, and €0.054 for the LI, GT, and SP scenario, respectively.
As a result, the optimisation outcomes indicate that EPU should primarily rely on natural
gas as its energy source in the voluntary and bifurcation scenarios. Specifically, in the LI
and GT scenarios, the optimisation results show a complete reliance on natural gas, with
no capacity allocated to power-to-heat (P2H) systems. Conversely, in the SP scenario,
power prices are not only lower but also more volatile due to the higher penetration of
renewable energy sources. This volatility creates strategic opportunities throughout the
year, allowing EPU to take advantage of exceptionally low power prices. As a result, in
the SP scenario, the optimisation suggests a combination of P2H and natural gas as the
most effective energy strategy. However, P2H remains a small fraction of the overall op-
erational thermal energy supply, with fuel still playing a significant role.

Storage
Across all three power scenarios, the optimised capacity for aquifer thermal energy stor-
age (ATES) shows consistent results, ranging from 86 MW to 90 MW, with storage capac-
ity varying from 38.6 GWh to 64.4 GWh. In contrast, tank thermal energy storage (TTES)
shows much lower and less consistent optimised energy and storage capacities, ranging
from 5.6 MW to 50.2 MW and 34 MWh to 306 MWh, respectively.

Technology LIvol GTvol SPvol LIbif GTbif SPbif

ATEScapacity 90.0 87.3 86.0 89.6 87.1 85.9
ATESstorage 47,056.8 44,323.4 51,844.9 46,086.4 38,604.8 64,440.6
TTEScapacity 50.2 43.0 5.6 50.1 41.8 9.7
TTESstorage 305.9 262.2 34.0 305.6 255.0 59.2

Table 5.1: The optimised energy (MW) and storage (MWh) capacity for each storage technology across three
different power scenarios for the voluntary (vol) and bifurcation (bif) fuel scenario.

Power technology
As previously mentioned, the SP scenario is the only one that integrates power-to-heat
technology, with 11 MW provided by heat pumps and 63 MW by E-boilers in the vol-
untary scenario, and 28 MW provided by heat pumps and 59 MW by E-boilers in the
bifurcation scenario.

Technology SPvol SPbif

Heat pump 10.9 28.1
E-boiler 63.0 58.7

Grid supply 68.6 69.9

Table 5.2: P2H results vol & bif scenario

The optimised energy capacity in MW for each power technology across three different
power scenarios

Fuel technology
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Across all scenarios, the CCGT is optimised to the maximum of 177 MWe providing an
additional 136 MWth. Furthermore, across all power scenarios peak boilers are included
ranging from 65 to 113 MW to satisfy peaks in thermal demand.

Technology LIvol GTvol SPvol LIbif GTbif SPbif

CCGT 177e 177e 177e 177e 177e 177e

Peak boiler 99.7 110.9 82.9 100.3 112.5 65.2
Fuel supply 457.9 470.3 439.2 458.5 472.0 419.5

Table 5.3: The optimised energy capacity in MW for each fuel technology across the three different power
scenarios

Economic performance
When evaluating the economic performance of the system, three key indicators are con-
sidered: levelised cost of heat (LCOH), capital expenditures (CAPEX), and the objective
value. The first indicator, levelised cost of heat, represents the average cost per kWh of
heat produced, accounting for all system costs and revenues over the system’s lifetime.
From the results, it becomes clear that as power prices decrease, the LCOH increases.
The voluntary results show a LCOH of €0.01, €0.016, and €0.034 for the LI, GT, and SP
scenario, respectively. The bifurcation results show a LCOH of €0.019, €0.024, and €0.038
for the LI, GT, and SP scenario, respectively.

Regarding CAPEX, the optimisation results for the LI and GT scenarios are very sim-
ilar, showing almost identical results. However, the SP scenario is significantly more ex-
pensive due to the inclusion of high-cost assets such as HPs and E-boilers. It is important
to note that CAPEX only reflects the upfront investment costs and does not account for
operational expenditures (OPEX). The results show CAPEX ranging from €25.2 to €35.6
million .

The objective value, in contrast, incorporates both CAPEX and OPEX. The results in-
dicate that in some scenarios, the objective value is lower than the CAPEX, meaning the
net present value of operational cash flows over the system’s lifetime is negative. Con-
cluding that the revenues from power sales exceed operational costs in those scenarios.
In the other scenarios, the objective value is higher than the CAPEX, signifying that the
net present value of operational cash flows is positive. Concluding that operational ex-
penditures exceed revenues from power sales. The results show the objective value rang-
ing from €11.2 to €41.6 million.

Cost LIvol GTvol SPvol LIbif GTbif SPbif

LCOH 0.010 0.016 0.034 0.019 0.024 0.038
CAPEX 25.32 25.30 32.44 25.30 25.21 35.60

Objective 11.16 17.58 36.33 20.01 26.16 41.60

Table 5.4: The levelised cost of heat (in EUR), and CAPEX and objective value (in million EUR).

Operational performance
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As mentioned previously, the voluntary and bifurcation scenarios mostly rely on fuel as
its main energy source with the CCGT providing between 45% and 79% of all thermal
thermal supply. The peak boiler, provides between 11% and 26% of all thermal supply.
In the SP scenario, P2H is included with heat pumps providing between 8% and 20% of
supply and E-boilers between 24% and 28%.

Across the two fuel scenarios peak thermal capacity ranges from 376.2 MW to 423.1
MW. However, the capacity from storage assets is not certain as the state of charge might
constrain capacity during certain periods. Therefore, a more reliable indicator of peak
thermal capacity is the flex-capacity, which excludes storage assets, showing what ther-
mal capacity is always dispatchable. Flex-capacity ranges from 236 MW to 327.5 MW.
Peak thermal demand for the simulated data is 390.4 MW. Therefore, only the SP sce-
narios have enough thermal capacity to cover demand. However, none of the scenarios
have enough flex-capacity to fulfil simulated thermal demand with the maximum unmet
demand ranging from 38.9 MWh to 88.1 MWh. Consequently, the loss of power supply
probability (LPSP) ranges from 0.023% to 0.063%.

KPI LIvol GTvol SPvol LIbif GTbif SPbif

Heat pump (%) 0 0 8 0 0 20
E-boiler (%) 0 0 28 0 0 24

CCGT (%) 79 75 47 79 74 45
Peak boiler (%) 21 25 18 21 26 11

Thermal capacity (MW) 376.2 377.5 384.7 376.3 377.7 383.9
Flex-capacity (MW) 236.0 247.2 293.1 236.6 248.7 288.3

LPSP (%) 0.063 0.054 0.023 0.063 0.053 0.024

Table 5.5: The operational KPIs across the different scenarios.

5.1.2. SCENARIO: REMOVAL & HYDROGEN

In the removal scenario, CO2-compensated natural gas prices average €0.068 per kWh
over the year, making it more competitive than the average power prices of €0.085 and
€0.081 for the LI and GT scenarios, respectively, but less competitive than the average
power price of €0.054 in the SP scenario. However, the higher volatility in power mar-
kets creates strategic opportunities throughout the year, enabling EPU to capitalize on
low power prices through power-to-heat technology. As a result, the removal scenario
follows a hybrid approach, relying on both fuel and power technologies as the most ef-
fective energy strategy. Conversely, the hydrogen scenario demonstrates an almost com-
plete reliance on power-to-heat technologies, as the forecasted average blue hydrogen
price of €0.115 is not competitive with any of the power scenarios.

Storage
Across all three power scenarios, the optimised capacity for aquifer thermal energy stor-
age remains consistent at 100 MW, with storage capacity ranging from 63.5 GWh to 132.2
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GWh in the removal scenario, and from 105.0 GWh to 172.0 GWh in the hydrogen sce-
nario. In contrast, the optimised capacity for tank thermal energy storage is significantly
lower, ranging from 42.4 MW to 52.4 MW, with storage capacity varying from 258.8 MWh
to 319.3 MWh across both fuel scenarios.

Technology LIrem GTrem SPrem LIhyd GThyd SPhyd

ATEScapacity 100 100 100 100 100 100
ATESstorage 63,633.4 63,506.1 132,240.8 110,169.0 104,989.2 171,988.4
TTEScapacity 50.1 42.4 52.2 52.2 52.4 52.2
TTESstorage 305.5 258.8 318.4 318.5 319.3 318.4

Table 5.6: The optimised energy capacity (MW) and storage capacity (MWh) for each storage technology across
three different power scenarios

Power technology
As previously mentioned, all power scenarios in both the removal and hydrogen fuel sce-
narios incorporate power-to-heat technologies. In the removal scenario, the optimised
heat pump capacity ranges from 49.9 MW to 131.9 MW, whereas in the hydrogen sce-
nario, the heat pump capacity ranges from 151.7 MW to 161.7 MW. E-boilers are not
included in any of the scenarios.

Technology LIrem GTrem SPrem LIhyd GThyd SPhyd

Heat pump 49.9 66.5 131.9 160.2 161.7 151.7
E-boiler 0 0 0 0 0 0

Grid supply 16.6 22.2 44.0 53.4 53.9 50.6

Table 5.7: The optimised energy capacity in MW for each power technology across three different power sce-
narios

Fuel technology
The optimised capacity of the CCGT is where the removal scenario and the hydrogen sce-
nario start to deviate. In the removal scenario, EPU partially relies on CCGT technology,
with capacities ranging from 49.0 MW to 177 MWe, whereas in the hydrogen scenario,
this technology is not included. Conversely, both fuel scenarios still rely on peak boilers
to satisfy peaks in thermal demand. The optimised capacity for peak boilers ranges from
32.3 MW to 71.8 MW.

Economic performance
For the removal scenario, LCOH shows very similar results across the power scenarios
ranging from €0.054 to €0.056. For the hydrogen scenario, LCOH is more variable across
the power scenarios ranging from €0.056 to €0.068.

Across both fuel scenarios, CAPEX shows very similar results ranging from €35.2 mil-
lion €41.7 million. The objective value, in contrast, incorporates both CAPEX and OPEX
and ranges from €58.1 million to €75.9 million.
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Technology LIrem GTrem SPrem LIhyd GThyd SPhyd

CCGT 177e 177e 49.0e 0 0 0
Peak boiler 40.0 32.3 53.9 63.3 61.8 71.8
Fuel supply 391.5 383.0 155.9 70.4 68.7 79.7

Table 5.8: The optimised energy capacity in MW for each fuel technology across the three different power
scenarios

Cost LIrem GTrem SPrem LIhyd GThyd SPhyd

LCOH 0.054 0.056 0.055 0.068 0.067 0.056
CAPEX 35.2 38.4 40.7 41.5 41.7 40.9

Objective 58.1 60.8 61.9 75.9 74.3 64.1

Table 5.9: The levelised cost of heat (in EUR), and CAPEX and objective value (in million EUR).

Operational performance
Operationally, the results show a clear distinction between the removal and hydrogen
scenario. In the removal scenario, fuel remains the main energy source, with CCGT tech-
nology providing 66% of the thermal energy supply in the LI scenario and 57% in the GT
scenario. In the SP scenario, however, P2H becomes more important with 89% of ther-
mal supply coming from heat pumps. Conversely, in the hydrogen scenario, P2H is the
most important energy source across all power scenarios with 99% of thermal supply
coming from heat pumps.

The total thermal peak capacity across both fuel scenarios is very similar ranging
form 375.7 MW to 377.6 MW and flex-capacity ranging from 223.5 MW to 235.2 MW.
In all scenarios, the LPSP is higher than zero, ranging from 0.056 to 0.067, due to peak
capacity being lower than peak demand in the synthetic data.

KPI LIrem GTrem SPrem LIhyd GThyd SPhyd

Heat pump (%) 31 42 89 99 99 99
E-boiler (%) 0 0 0 0 0 0

CCGT (%) 66 57 10 0 0 0
Peak boiler (%) 3 2 1 1 1 1

Thermal capacity (MW) 376.3 377.6 375.7 375.7 375.8 375.7
Flex-capacity (MW) 226.2 235.2 223.5 223.5 223.5 223.5

LPSP (%) 0.063 0.056 0.067 0.067 0.067 0.067

Table 5.10: The operational KPIs across the different scenarios.

5.1.3. DISCUSSION

From the results, it becomes clear that the power and fuel prices together influence the
asset mix for EPU. Generally, we observe that as power prices decrease relative to fuel
prices, the system increasingly relies on power-to-heat technologies. Conversely, when
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power prices rise relative to fuel prices, the system shifts toward fuel-based technologies.
This relationship can be quantified by examining the power-to-fuel price ratio.

Power technology
To understand how the power-to-fuel price ratio affects the installed capacity we made
use of regression analysis. The regression analysis reveals a statistically significant neg-
ative relationship between power/fuel inputs and the adoption of power-to-heat (P2H)
technologies (Appendix C.1). That is, as power/fuel levels increase, the implementation
of P2H technologies decreases. This relationship is robust, as indicated by an R2 value
of 0.95, suggesting that 95% of the variation in P2H adoption is explained by changes in
power/fuel inputs. Additionally, the model’s F-test p-value is less than 0.01, confirming
the statistical significance of the regression model and the strong explanatory power of
the independent variable. Within P2H technology, heat pump (HP) capacity scales lin-
early with total P2H capacity (R2 = 0.93 with p < 0.01) while E-boiler capacity does not
(Appendix C.2). The division of P2H capacity across HPs and E-boilers can be explained
by their characteristics. Heat pumps are more expensive than E-boilers, with CAPEX of
1600 per kW compared to 400 per kW for E-boilers. However, HPs are also more efficient,
realising a coefficient of performance of 3 compared to 0.97 for E-boilers. These charac-
teristics make HPs better suited for continuous operation, whereas E-boilers are more
suitable for intermittent use to meet peaks in demand. E-boiler capacity is only larger
than 0 between a power-to-fuel ratio of 0.794 and 1.191. This can be explained by the
fact that between these ratios, power is intermittently cheap enough to use it as a peak
source, but not yet cheap enough to use it as a baseload source. However, once power
does become cheap enough relative to fuel prices, inclusion of E-boilers is no longer re-
quired as the more efficient HPs can take over continuous operation.

Fuel technology
Conversely, the regression analysis indicates a statistically significant positive relation-
ship between power/fuel inputs and the adoption of fuel-to-heat (F2H) technologies
(Appendix C.3). That is, as power/fuel levels increase, the implementation of F2H tech-
nologies also increases. The model demonstrates a strong explanatory power, with an
R2 value of 0.84, indicating that 84% of the variance in F2H adoption is accounted for
by power/fuel levels. The F-test p-value is less than 0.01, confirming the statistical sig-
nificance of the regression model and the strong explanatory power of the independent
variable. Between a power-to-fuel ratio of 0.739 and 1.059, the installed CCGT capacity
increases linearly from 0 to the maximum of 177 MWe. The peak boiler capacity exhibits
a second-degree polynomial relationship with the power-to-fuel ratio with an R2 value
of 0.64 and p < 0.05 (Appendix C.4). This regression indicates an overall positive correla-
tion with the power-to-fuel ratio, though capacity slightly decreases in the range where
the CCGT scales up.

Storage
Both the P2H and F2H technologies increase flex-capacity in the system, which can
be used to explain the storage capacity of tank thermal energy storage (Appendix C.5).
The regression analysis with TTES storage capacity as its dependent variable and flex-
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capacity as the independent variable indicates a statistically significant negative rela-
tionship. The model demonstrates a strong explanatory power, with an R2 value of 0.96
and an F-test p-value of less than 0.01, confirming the statistical significance of the re-
gression model. These results can be attributed to the characteristics of TTES, which
make it most suitable for balancing short-term supply and demand. Consequently, as
flex-capacity increases, the system relies less on TTES for short-term peak supply. The
short-term nature of TTES is evident in the model’s behaviour, which shows high volatil-
ity in its state of charge (Appendix C.10). Furthermore, the results show that ATES capac-
ity is optimised close to the maximum energy capacity of 100 MW across all 12 scenar-
ios with storage capacity showing more variation ranging from 38.6 GWh to 172.0 GWh.
These large energy and storage capacities can be attributed to two key factors. First,
ATES is highly cost-effective compared to other forms of thermal energy storage, with
a cost of 0.15 per kWh. Second, ATES demonstrates remarkable efficiency for long-term
storage, with only a 30% thermal loss over a four-month storage period. These character-
istics make ATES ideal for seasonal thermal energy storage, justifying the need for large
storage capacity. The seasonal nature of ATES is evident in the model’s behaviour, with
its state of charge increasing during low-demand periods and decreasing during high-
demand periods (Appendix C.11). The total ATES storage capacity, can best be explained
by the operational fraction of HPs (Appendix C.6). Given that renewable feed-in is typ-
ically higher during the summer months, power prices tend to be lowest at that time.
During these periods of low power prices, HPs can be used to generate inexpensive ther-
mal energy, even when there is no immediate demand. This thermal energy can instead
be stored in seasonal aquifer thermal energy storage, thus requiring a larger storage ca-
pacity. The regression model demonstrates a strong explanatory power, with an R2 value
of 0.83 and an F-test p-value of less than 0.01, confirming the statistical significance of
the model.

Economic performance
The results of economic performance show that in some scenarios the objective value is
lower than capital expenditures. This only occurs in scenarios where the power-to-fuel
ratio is above 1.588, signifying that fuel is much cheaper than power. In these scenarios,
the CCGT generates sufficient revenue from power sales to offset all other operational
expenditures, resulting in a net negative operational cost. Furthermore, we can explain
the levelised cost of heat (LCOH) with the power-to-fuel ratio (Appendix C.7). The re-
gression shows a statistically significant negative relationship with an R2 = 0.79 and a
p-value smaller than 0.01. Similarly to the results observed in the objective value, this
result can be explained by the revenue from CCGT operation. As the power-to-fuel ratio
decreases, CCGT capacity declines, reducing the ability to offset operational expendi-
tures with revenue from power sales and consequently increasing the LCOH.

Operational performance
The primary indicator of operational performance is the loss of heat supply probabil-
ity (LHSP). Since EPU is solely responsible for providing thermal energy to households
connected to the district heating network, their main objective is to achieve an LHSP of
0. However, across all operational model runs, the LHSP is greater than 0 due to peak



5.2. ECOPURE SYSTEM CONFIGURATION

5

63

demand in the synthetic data exceeding peak demand in the observed 2023 data used
for optimisation. The LHSP can be explained by two factors: the total thermal capacity
and flex-capacity as a percentage of peak demand (Appendix C.8 & C.9). The multiple
regression model demonstrates strong explanatory power, with an R2 value of 0.99 and
p-values for both coefficients below 0.05.

5.2. ECOPURE SYSTEM CONFIGURATION
In the EcoPure system configuration, power comes directly from three renewable sources
(RES): photovoltaic, and offshore and onshore wind. To optimise the capacity of these
renewable energy sources, the results from the GridSync system configuration are used
as a starting point to answer how much renewable power capacity would be required to
fully rely on direct renewable power. In all scenarios where P2H is optimised to be 0,
the renewable power sources are also 0 and will therefore not be discussed. Therefore,
within the voluntary and bifurcation scenarios, only the SP power scenario will be dis-
cussed. Conversely, all power scenarios will be discussed for the removal and hydrogen
scenario.

Renewable energy sources
From the results, we can observe that the installed capacity of RES is most consistent
across power scenarios with exception of the hydrogen fuel scenario. Across the volun-
tary, bifurcation, and removal scenarios, the optimised peak capacity of PV ranges from
62.6 to 76.90 MW and onshore wind ranges from 21.79 to 47.82 MW for the SP power sce-
nario. In the removal fuel scenario, all power scenarios include P2H and therefore rely on
RES. Within this scenario, PV capacity ranges from 23.3 to 30.96 MW and onshore wind
ranges from 21.79 to 28.68 for the LI and GT power scenario. None of these scenarios
include offshore wind.

Conversely, the hydrogen scenario does include offshore wind and shows very dif-
ferent results. Across the hydrogen scenario, the optimised PV capacity is much lower,
ranging from 5.53 to 9.88 MW while offhore wind shows comparatively high results rang-
ing from 8,159.92 to 9,052.08 MW.

RES SPvol SPbif LIrem GTrem SPrem LIhyd GThyd SPhyd

Photovoltaic 90.68 87.8 23.22 30.96 62.07 9.88 8.99 5.53
Onshore wind 6.58 18.62 21.99 28.68 56.89 0 0 0
Offshore wind 0 0 0 0 0 8,989.08 9,052.08 8,159.92

Table 5.11: Peak capacity for the renewable energy sources across the different scenarios in MW

Economic performance
The results indicate that the LCOH increases across each subsequent scenario, demon-
strating a positive correlation with fuel prices and a negative correlation with power
prices—except in the hydrogen scenario. In the voluntary, bifurcation, and removal sce-
narios, the LCOH ranges from 0.036 to 0.059. However, in the hydrogen scenario, the
LCOH shows a significant rise, with values ranging from 1.65 to 1.91.
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Both CAPEX and the objective value follow a similar pattern, remaining relatively
stable across the voluntary, bifurcation, and removal scenarios, but showing a substan-
tial increase in the hydrogen scenario. In these first three scenarios, CAPEX ranges from
33.89 to 49.70 million euros, rising sharply to range 1903.40 to 2107.85 million euros in
the hydrogen scenario. Similarly, the objective value ranges from 38.67 to 65.18 million
euros in the initial scenarios and increases to 1904.40 to 2108.98 million euros in the hy-
drogen scenario.

RES SPvol SPbif LIrem GTrem SPrem LIhyd GThyd SPhyd

LCOH 0.036 0.041 0.052 0.054 0.059 1.9 1.91 1.65
CAPEX 33.89 38.64 38.63 42.90 49.70 2093.31 2107.85 1903.20

Objective 38.67 43.51 56.10 58.4 65.18 2094.49 2108.98 1904.40

Table 5.12: The levelised cost of heat (in EUR), and CAPEX and objective value (in million EUR)

Operational performance
For the EcoPure system configuration, thermal peak capacity and flex capacity remain
unchanged from the GridSync configuration, as the optimised capacity of thermal assets
is replicated. Additionally, we assume that the Loss of Power Supply Probability (LPSP)
remains consistent in the EcoPure configuration. If the installed wind and solar capacity
is insufficient to power the P2H assets, EPU can still rely on its grid connection to meet
demand. Thus, assuming EPU prioritises thermal supply over its goal of 100% renewable
power, the LPSP would not fall below the levels observed in the GridSync configuration.

From the results we can observe that the output from P2H technologies as a percent-
age of total thermal supply, ranges from 23% to 43% across the voluntary, bifurcation,
and removal scenarios, except for SPrem, which exhibits an operational fraction of 85%.
In the hydrogen scenario, P2H is almost entirely responsible for thermal supply with the
operational fraction at 99% across all power scenarios.

KPI SPvol SPbif LIrem GTrem SPrem LIhyd GThyd SPhyd

Heat pump (%) 8.64 21.79 32.51 43.27 85.36 99.16 99.19 99.18
CCGT (%) 49.35 47.84 63.44 54.47 14.13 0 0 0

E-boiler (%) 14 13.7 0 0 0 0 0 0
Peak boiler (%) 27.75 16.67 4.05 2.26 0.51 0.84 0.81 0.82

Table 5.13: The operational KPIs across the different scenarios.

5.2.1. DISCUSSION
From the results we can observe that the installed RES capacity tends to increases with
the total P2He capacity (Appendix C.12). However, we can also observe that this rela-
tionship follows different trajectories across fuel scenarios. In the voluntary, bifurcation,
and removal scenario, RES capacity increases linearly with P2H to a max of 118.96 MW.
The model demonstrates a strong explanatory power, with an R2 value of 0.93, indicat-
ing that 93% of the variance in RES capacity is accounted for by P2H capacity. The F-test
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p-value is less than 0.01, confirming the statistical significance of the regression model
and the strong explanatory power of the independent variable. However, this model does
not have strong explanatory power when applied to the hydrogen scenario which shows
much higher RES capacity at similar P2H capacities. Therefore, another variable must be
responsible for the discrepancy across fuel scenarios. Thermal supply from P2H as a per-
centage of total thermal supply seems to be responsible for the discrepancy. Although
peak P2H capacity shows a similar range across all natural gas scenarios, P2H is respon-
sible for a much higher percentage of total thermal supply in the hydrogen scenario. A
regression model shows a positive correlation between the operational P2H fraction and
installed RES capacity with an R2 value of 0.72 and a p-value smaller than 0.01 (Appendix
C.13). However, visually we can observe a break in the regression around an operational
P2H fraction of 85% warranting the implementation of a chow test. The Chow test shows
an F value 876.3 with a p-value < 0.01 indicating strong statistical evidence to reject the
null hypothesis, which states that there is only one consistent regression model across
the entire range of data. This implies that there is likely a structural break at an opera-
tional P2H fraction of 85%, beyond which the required RES capacity begins to increase
much more rapidly (Appendix C.14 & C.15).

This result is also reflected in the system’s economic performance. Across all scenar-
ios, the CAPEX and consequently the objective value is higher compared to the GridSync
configuration. This is unsurprising, as additional investments are required not only for
P2H, F2H, and storage assets but also to achieve the necessary RES capacity. When
analysing the LCOH, we observe that in the voluntary, bifurcation, and removal scenar-
ios, the results is only slightly higher compared to the GridSync scenario and even lower
in the LIrem and GTrem scenarios. This indicates that, although upfront investment costs
are higher, the long-term benefits of RES capacity remain financially viable. However,
due to the rapidly increasing RES capacity requirements beyond an operational P2H
fraction of 85%, systems with a higher fraction become financially unfeasible. This is
reflected in the hydrogen scenario, where the LCOH ranges from 1.65 to 1.91.

When comparing the operational results from the EcoPure system configuration to
those from the GridSync configuration, we observe that the output from P2H technolo-
gies, as a percentage of total thermal supply, remains largely unchanged. However, in
the voluntary and bifurcation scenarios, the distribution of thermal supply across fuel
technologies shifts, with a greater proportion coming from the peak boiler. This can be
explained by the availability of inexpensive renewable power during periods when mar-
ket prices would otherwise be high. As a result, the CCGT operates less frequently to
supply power for the P2H assets, reducing its operational fraction. Conversely, the in-
flexibility of RES may require P2H to scale down during periods of low RES supply, with
peak boilers stepping in to meet demand.

Finally, we observe that only the hydrogen scenario includes offshore wind, while
all other scenarios rely on a mix of PV and onshore wind. Offshore wind is included in
the hydrogen scenario, despite its higher cost, due to its typically higher average capac-
ity factor—an increasingly important factor as a greater portion of operations relies on
power.
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5.3. MODEL SIMPLIFICATION
As mentioned in the Methodology, we will evaluate the comparative performance of two
simplification methods; k-means clustering and masked time resolution adjustment. To
evaluate the results, we will make use of the GTrem scenario.

5.3.1. K-MEANS CLUSTERING
In the reviewed literature, the most used technique for model simplification is the use
of representative days through k-means clustering. To re-run the GTrem model with the
use of representative days, we first evaluated the required number of clusters through
the elbow-method. Visually, we can identify an elbow point at a k value of six. A Chow
test, comparing the WCSS curve before and after the elbow point shows an F value 15.28
with a p-value < 0.01 indicating strong statistical evidence to reject the null hypothesis,
which states that there is only one consistent regression model across the entire range of
data. This implies that there is likely a structural break at a k value of 6.

Running the optimisation model with 6 representative days significantly improves
solution time, reducing it from 273 seconds for a full-range optimisation to just 5 sec-
onds, a 98.17% reduction. This result demonstrates that clustering is indeed an effective
method for reducing solution time. However, the loss of high fidelity in input data for
optimisation does impact performance. The difference in optimised capacities ranges
from 0% to -21.44%, with an outlier at the peak boiler capacity, which shows a reduction
of -100%. For storage capacity, differences range from -21.44% to 27.26%.

Technology Full dataset Clustering Difference

ATEScap 100,000 92,379 -7.62%
Heat pump 66,526 53,877 -19.01%

TTEScap 42,448 33,348 -21.44%
CCGT 177,000 177,000 0%

Peak boiler 32,335 0 -100%

ATESstor 63.506.054 80.820.903 27,26%
TTESstor 258,829 203,342 -21.44%

Table 5.14: The optimized capacities for both the full optimization and the clustered optimization, along with
their respective differences.

The largest discrepancy between full optimisation and the representative-day model
appears in operational performance, with the LPSP increasing from 0.056% to 0.5%, an
792.86% increase.

KPI Full dataset Clustering Difference

Thermal capacity 377,599 315,893 -16.34%
Flex capacity 235,151 190,167 -19.13%

LPSP (%) 0.056 0.500 792.86%

Table 5.15: Operational KPIs for the full and clustered optimisation, along with their respective differences
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5.3.2. MASKED TIME RESOLUTION ADJUSTMENT
The second model simplification evaluated is masked time resolution adjustment. This
approach results in a substantial reduction in solution time, decreasing from 273 sec-
onds to 23 seconds, a reduction of 91.58%. The differences in optimized capacities com-
pared to the full optimization are minimal, ranging from 0% to 1.8%, with a single outlier
of -4.69% observed in peak boiler capacity. For storage capacities, the differences are
similarly minor, with ATES showing a deviation of -1.47% and TTES showing a deviation
of 0.63%.

Technology Full dataset Adjustment Difference

ATEScap 100,000 100.000 0%
Heat pump 66,526 67.721 1.8%

TTEScap 42,448 42.716 0.63%
CCGT 177,000 177,000 0%

Peak boiler 32,335 30.820 -4.69%

ATESstor 63.506.054 62.575.126 -1.47%
TTESstor 258,829 260.465 0.63%

Table 5.16: The optimized capacities for both the full optimization and the masked time resolution adjustment
optimization, along with their respective differences.

Due to the small variations in optimized capacities, the system’s total thermal ca-
pacity deviates by only -0.01%, with flex capacity showing a -0.14% difference. Conse-
quently, the Loss of Power Supply Probability closely matches the full optimization, with
a value of 0.054, 3.57% lower than that observed in the full optimization.

KPI Full dataset Adjustment Difference

Thermal capacity 377,599 377.548 -0.01%
Flex capacity 235,151 234.831 -0.14%

LPSP (%) 0.056 0.054 -3.57%

Table 5.17: Operational KPIs for the full and masked time resolution adjustment optimisation, along with their
respective differences

5.3.3. DISCUSSION
As observed in the comparison, k-means clustering provides a rapid and effective ap-
proach, yielding satisfactory results. However, the clustered model particularly struggles
to estimate the required capacity for the peak boiler accurately. When clustering demand
days with k-means, the centroid of the high-demand cluster represents the average de-
mand of those days, leading to an averaging effect that can smooth out peak values. Con-
sequently, the centroid’s demand is often lower than the actual peak demand observed
on individual high-demand days. This smoothing effect reduces the apparent need for
peak boilers to handle extreme values, resulting in a tendency for clustering to underes-
timate the required capacity for peak assets. This underestimation is reflected not only
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in the peak boiler capacity but also in the TTES capacity, as both are critical peak assets.
To address this shortcoming, one possible solution is to account for the real observed

peak demand by adding sufficient peak capacity to meet these extreme demands to clus-
tered results. While this approach would improve solution time, it’s important to note
that it would result in a higher objective value compared to a full optimization, achieving
only a near-optimal solution. Applying this method for the observed maximum demand
of 390 MW in the synthetic data, we can add the cheapest peak source until flex-capacity
and thermal capacity reach a value where the expected LPSP equals 0.

However, the full optimization does not achieve a Loss of Power Supply Probability
of 0. To enable a fair comparison between the adjusted approach and the full optimiza-
tion, we will adjust the peak boiler capacity so that the thermal peak capacities in both
the full and clustered optimizations are equal, resulting in a comparable LPSP of 0.056.
To achieve this, an additional 61.7 MW would need to be added to the clustered op-
timization results, incurring an additional cost of 12.3 million euros. Consequently, the
adjusted clustering approach has approximate capital expenditures of 49.6 million euros
and an objective value of 66.8 million euros, which are 22% and 10% higher, respectively,
than those of the full optimization.

Compared to k-means clustering, the masked time resolution adjustment method
yields results that more closely align with the full optimization. This can be attributed
to the inherent nature of energy system optimization, which often faces bottlenecks.
When optimization is constrained to achieve an LPSP of 0, outcomes are largely dic-
tated by high-demand periods, as supply must meet demand during these peak times.
The masked time resolution adjustment approach takes advantage of this characteris-
tic by maintaining full resolution in high-demand periods, where accurate modelling is
critical, while reducing the resolution in lower-demand periods that have less impact on
results. Therefore, this strategy achieves highly accurate results while still significantly
reducing solution time. However, because masked time resolution adjustment retains a
larger input dataset compared to k-means clustering, the solution time is longer. While
k-means clustering provides a solution in 5 seconds, masked time resolution adjustment
requires 23 seconds, showing a trade-off between solution time and accuracy.
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FROM ANALYSIS TO APPLICATION:

RESULTS FROM A MULTI-ACTOR

PERSPECTIVE

As outlined in Chapter 5, the optimisation results encompass a range of configurations,
from entirely fuel-based systems to hybrid systems, and finally to (almost) fully electric
systems. These outcomes stem from an optimisation model designed to prioritise the
lowest cost, with each resulting system design having distinct implications for the multi-
actor environment. Therefore, the objective of this chapter is to interpret the optimisa-
tion outcomes through a multi-actor perspective, examining how the broader decision-
making environment influences each result.

6.1. EMISSION POLICY
In the voluntary and bifurcation scenarios, the optimisation model indicates an almost
complete reliance on CO2-compensated natural gas. Four out of six power scenarios ex-
hibit a 100% operational fuel-to-heat fraction, while the remaining two scenarios demon-
strate fractions of 65% and 56%, respectively. While these outcomes ensure the lowest
lifecycle costs in their respective scenarios, relying so heavily on natural gas might prove
politically complex. Both the national government and the municipality of Utrecht have
set ambitious sustainability goals, aiming to be climate neutral in 2050 (Rijksoverheid,
2024b). While using CO2 compensated natural gas is technically climate neutral, it still
causes local emissions. Furthermore, a recent analysis has shown that up to 90% of cur-
rently traded carbon credits do not deliver meaningful carbon reductions (Greenfield,
2023). According to Bloomberg (2023), both the voluntary and bifurcation scenarios
could lead to deceptive decarbonisation efforts by companies as they could offset their
CO2 emissions cheaply with low-quality offsets while continuing to invest in fossil fuel
based technologies. The persistence of local emissions, coupled with the potential for
misleading decarbonisation efforts facilitated by the carbon credit market, may prompt
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the introduction of more stringent emission policy. One way the government could pre-
vent these issues is by setting a cap on local CO2 emissions. Such regulations are already
being implemented in the transportation sector, restricting access for high-emission ve-
hicles to specific areas (Gemeente Utrecht, 2024a). Vehicles using CO2-compensated
diesel or gasoline are not exempt from these rules, as the primary objective is to reduce
local emissions rather than offset total emissions. It is plausible that similar regulations
could be extended to other sectors, such as energy and industry, potentially impacting
EPU’s operations and strategic decisions. Therefore, while the voluntary and bifurcation
scenarios technically provide a pathway for EPU to become climate neutral, increasingly
stringent regulation poses a risk to the successful implementation of these optimisation
results.

Conversely, the hydrogen scenario relies heavily on power-to-heat technologies, with
99% of the energy supply coming from heat pumps. As a result, EPU would not con-
tribute to local emissions in the city of Utrecht. However, the results also indicate that
such a system cannot be economically sustained solely by renewable power from solar
and wind, forcing EPU to depend on more flexible power sources. By 2035, it is plausi-
ble that the Dutch power grid will have integrated sufficient flexible renewable energy
capacity, such as power storage, geothermal, or nuclear energy. Nevertheless, it is also
likely that a portion of EPU’s power imports will originate from non-renewable sources.
Should the government implement more stringent climate policies, this reliance on non-
renewable power could pose a risk to the successful implementation of these optimisa-
tion results.

6.2. GRID CONGESTION
The multi-actor analysis showed that power grid operators currently are facing the chal-
lenge of grid congestion due to increasingly unbalanced supply and demand. As a result,
it has become increasingly difficult to get a large grid connection. According to Netbe-
heer Nederland, the waiting list for large grid connections grew to 19,400 applications by
February 2024, with approximately half originating from the demand side and the other
half from the supply side (2024b). Therefore, relying more heavily on power-to-heat can
provide its challenges in the context of grid congestion. As mentioned earlier, the district
heating network can both provide a solution to or worsen the problem of congestion de-
pending on system design and dispatch strategy. If EPU wants to successfully rely on
power-to-heat in the future it is imperative that these challenges are considered during
the implementation of optimisation results.

Successful implementation of power-to-heat (P2H) technology is heavily dependent
on the integration of thermal energy storage. This combination enables P2H assets to
be dispatched during off-peak hours or periods of supply-side congestion, thereby facil-
itating demand-side response strategies. By operating P2H assets during off-peak hours
and storing the generated thermal energy for later use, EPU can mitigate demand-side
congestion caused by its power consumption. Conversely, P2H assets can also support
grid stability by absorbing surplus power during supply-side congestion. This benefit
becomes especially apparent when considering the PV installations owned by the local
community in Utrecht. This dual capability establishes a mutually beneficial relation-
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ship between EPU and grid operators. On one hand, EPU contributes to grid stability;
on the other, it can capitalize on favourable market conditions. In return, grid operators
could offer tariff discounts of up to 65% as outlined in the new ATR85/15 regulation, fur-
ther incentivizing EPU’s role in balancing the grid (Netbeheer Nederland, 2024c).

Eneco has already demonstrated the application of such system thinking in previ-
ous projects, with the Ivy Apartments in Nieuwegein serving as a notable example. To
address the challenges posed by the long waiting list for large grid connections, the 99
apartments are equipped with a heat pump, and a combination of tank thermal energy
storage and aquifer thermal energy storage (Eneco, 2024e). In the summer, the building
is cooled using groundwater, which is subsequently warmed and stored underground
to satisfy heating demands during the winter. This approach enables the operation of
a smaller heat pump, effectively mitigating power grid congestion. Additionally, the in-
clusion of tank thermal energy storage enhances congestion management by providing
short-term load balancing.

In the removal and hydrogen scenarios, the optimisation model recommends a heat
pump capacity ranging from 50 to 162 MW. While such capacity might initially seem in-
feasible due to ongoing congestion issues, it is important to consider that the required
grid connection is three times smaller than the heat pump’s thermal capacity, thanks to
their typical coefficient of performance of three. Currently, EPU already operates two
10 MW E-boilers, resulting in a total power grid connection of 20 MW. It is important to
highlight that the advantage of a smaller grid connection relative to thermal output is
not observed with E-boilers. With the required grid connection for heat pumps falling
between 17 MW and 54 MW, this capacity appears highly feasible from a multi-actor per-
spective—especially if the proposed demand-side response methods are implemented.
It is important to note, however, that such an implementation could adversely impact
dispatch flexibility for EPU. While the ATR85/15 contract offers a 65% discount on grid
tariffs, which is advantageous for EPU, it also grants grid operators the ability to restrict
power supply for up to 15% of the time. As a result, EPU may need to supplement its
system with additional fuel-based peak assets to ensure reliability.

Finally, EPU’s role in frequency regulation and congestion management within the
Dutch power grid is evident through its electricity-generating assets such as the CCGT
and battery energy storage. The results indicate that sourcing more than 85% of en-
ergy demand from renewable power sources becomes economically unfeasible. Con-
sequently, if EPU transitions to an all-electric system, 15% of its power demand would
need to be met by flexible energy sources. However, the optimisation results in the hy-
drogen scenario, which assume constant grid power availability, suggest a full reliance
on P2H. This finding underscores potential challenges not only in achieving climate pol-
icy targets, as discussed earlier, but also in frequency regulation. If similar conclusions
are drawn by other actors within the Dutch power grid, it could result in a significant
reduction in the installation of flexible CCGT capacity, leaving a critical gap in meeting
energy demand. Paradoxically, while the findings highlight the need for flexible power
capacity, they also suggest that EPU might not install such capacity themselves. This
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could signal a shift in the future profitability of CCGT assets—from power sales (kWh) to
compensation for providing flexible capacity (kW). Thus, implementing an all-electric
district heating network (DHN) poses not only regulatory risks but also risks of under-
valuing the economic potential of flexible power assets. The multi-actor analysis em-
phasizes that maintaining some flexible power capacity, currently provided by CCGTs,
should remain a key consideration in the design and deployment of large-scale energy
systems.

6.3. SPATIAL REQUIREMENTS
To support the energy transition within Utrecht’s district heating network, EPU may
need additional asset locations across the city. While EPU, the Municipality of Utrecht,
and the local community share aligned goals regarding the energy transition, tensions
could arise due to competing priorities. The municipality and local community highly
value creating and maintaining a livable urban environment, including preserving recre-
ational green spaces. EPU’s need for decentralized energy assets throughout the city
could conflict with this shared objective. The local community holds significant influ-
ence in this matter, as their objections could block the issuance of building permits for
new infrastructure. This highlights the importance of EPU designing future-proof, de-
centralized assets that align with the goals of maintaining and enhancing green urban
spaces rather than detracting from them. One effective strategy is to integrate green and
biodiverse features into the design of energy assets (Appendix B.7). Research indicates
that urban greenery positively impacts community well-being. For example, increased
urban greenery has been shown to significantly improve self-reported happiness levels
(Veenhoven et al., 2021). Additionally, proximity to green walls has been found to reduce
heart rate and blood pressure while boosting α brain wave activity, which is associated
with relaxation and improved focus (Ma et al., 2024). Such benefits to the local com-
munity could foster support for new asset development in their neighborhoods, reduc-
ing opposition to building permits. Moreover, integrating greenery into energy assets
aligns with the municipality’s biodiversity and environmental goals (Gemeente Utrecht,
2024b). Beyond fostering community approval, these assets can enhance air quality, re-
duce noise pollution, and improve the urban environment’s thermal resilience, creating
a mutually beneficial outcome for EPU, the local community, and the city of Utrecht.



7
LIMITATIONS

Throughout this research, various assumptions were made to develop the optimization
model, interpret results, and formulate recommendations. While these assumptions
were necessary to simplify complex systems and ensure the feasibility of the analysis,
they also introduced several limitations. These limitations have implications for the
generalizability, accuracy, and applicability of the findings. The goal of this chapter is
to outline these limitations and discuss their impact on the study’s outcomes. By do-
ing so, it provides essential context for interpreting the results and drawing conclusions,
ensuring a balanced and transparent evaluation of the research.

7.1. INPUT DEPENDENCY
The first limitation to discuss is the dependency of the results on the input dataset, in-
cluding thermal demand, power prices, and fuel prices. Since the optimisation model
relies on a single year of thermal demand data—specifically from 2023—the results are
applicable only to similar demand profiles. This limitation is particularly relevant for re-
liability metrics, as the model enforces a constraint ensuring that supply always meets
or exceeds demand, effectively achieving 100% energy security in the optimisation re-
sults. If future thermal demand deviates significantly from the 2023 profile, the recom-
mendations may no longer generalise to such systems, potentially compromising energy
security in cases of higher demand.

The dependency on fuel and power prices presents another key limitation. As the
energy transition progresses rapidly, assumptions made in this research about pricing
curves may no longer hold. For instance, demand shocks in gas prices, as seen during
2022 due to the Russia-Ukraine war, can drastically alter optimal system design. More-
over, the future trajectory of the Dutch energy infrastructure remains uncertain. Recent
shifts in government policy have reintroduced nuclear power as a priority, with plans
to sustain the current 485 MW capacity and explore the construction of two additional
large nuclear facilities (Rijksoverheid, 2024a). If these plans are realised, the share of
nuclear energy in the Dutch energy mix could more than triple to 13% (Rijksoverheid,
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2024a). This increase in baseload power generation would likely have a profound impact
on the price assumptions used in this study. Finally, power price assumptions are based
on Eneco’s forecasts of installed renewable energy capacity. Any deviation from these
projections—whether through underachievement or overachievement—could signifi-
cantly influence future power prices and, consequently, the outcomes of the optimisa-
tion model.

Additionally, another limitation lies in the relationship between power and natural
gas prices. In this research, power prices were forecasted independently of natural gas
prices. While this assumption holds in scenarios where the majority of future power
generation is sourced from renewables such as wind and photovoltaic (PV) systems, it
may not remain valid if the energy transition progresses more slowly than anticipated.
In such a scenario, natural gas prices could have a much stronger influence on power
prices due to continued reliance on gas-fired power generation. This interdependency
could significantly impact the accuracy of the forecasts and, consequently, the optimi-
sation results.

Another limitation related to the model input is the exclusion of auxiliary power mar-
kets. In this research, only the day-ahead power market was considered. However, in
real-world operations, revenue-generating assets such as BES systems and CCGTs derive
a significant portion of their profitability from auxiliary markets, including imbalance
and frequency regulation markets. By omitting these markets, the model may underesti-
mate the economic performance and potential revenue streams of these assets, thereby
affecting the optimisation outcomes.

Finally, this study does not include a sensitivity analysis of individual asset parame-
ters. As discussed during the optimisation design phase, a single-layer MILP algorithm
was chosen to run the optimisation model. While this approach guarantees finding the
global optimum, it is computationally intensive. Given the extensive number of assets
included and the substantial amount of input data required per asset, conducting a com-
prehensive sensitivity analysis was computationally infeasible within the scope of this
research. Consequently, the specific impact of variations in individual asset parameters
remains insufficiently explored.

7.2. MODELLING ASSUMPTION
In addition to the dependency on input variables, several assumptions were made dur-
ing model development. One notable limitation is the implementation of the ATES sys-
tem, which was modeled without explicitly including a heat pump. Although the model
accounts for the power costs associated with heat pump operation within its operational
expenditures, these costs are approximated as a percentage of the capital expenditures,
based on Eneco’s prior research into high-temperature ATES systems. Consequently, the
ATES system’s power consumption is calculated using a fixed average power price rather
than leveraging variable market pricing, which may impact the accuracy of the results.

Another assumption in the model is that asset capacities are treated as continu-
ous variables. While this approach significantly improves solution time and provides
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valuable insights, it may present challenges when implementing results exactly as sug-
gested, as real-world investments often involve standardized capacities for assets such
as CCGTs, which are only available in specific sizes.

While the model accounts for Utrecht’s various districts to accurately represent ther-
mal losses during transport, the recommendations in this research are based on the as-
sumption that EPU’s network operates as a single location. This simplification highlights
the need for future research into the optimal placement of assets within the network.

Finally, the model assumes 100% operational availability of all assets. In practice,
however, assets may experience downtime due to unexpected failures or scheduled main-
tenance. By not accounting for such downtime, the model’s recommendations could
face challenges in guaranteeing energy security if asset failures were to coincide with pe-
riods of high demand.

7.3. TECHNOLOGICAL ADVANCEMENTS
During the system design phase, this study focused on identifying commercially avail-
able and economically competitive technologies that could be implemented at scale
within EPU’s district heating network. The accelerating pace of the energy transition
in recent years has driven rapid innovation in energy technologies. A notable example is
the exponential decline in battery energy storage costs, spurred by the mass adoption of
electric vehicles. This rapidly evolving technological landscape introduces a key limita-
tion: technologies currently excluded from this study may become commercially viable
in the near future.

One significant area affected by this limitation is the selection of thermal energy
storage systems. At present, only sensible thermal energy storage systems are deemed
commercially viable for large-scale deployment. However, latent and thermochemical
thermal energy storage systems, due to their advantageous properties, are gaining sub-
stantial attention in energy research. If ongoing advancements address their current
challenges, these technologies could emerge as superior TES solutions, fundamentally
altering the system design framework considered in this research.

Another potential disruption could arise on the energy supply side. This study incor-
porates combined cycle gas turbines (CCGTs), a proven and widely adopted technology
for combined power and heat production. CCGTs offer operational flexibility, capable
of utilizing a range of fuels such as natural gas and hydrogen. However, hydrogen adop-
tion is still in progress, and the planned hydrogen pipeline network does not include
Utrecht due to its limited industrial activity, complicating hydrogen adoption in the re-
gion (Gasunie, 2024).

A promising alternative to CCGTs is the reversible Solid Oxide Fuel Cell (SOFC). Like
combined cycle turbines, SOFCs can utilize diverse fuels, including natural gas and hy-
drogen, to produce heat and power with an efficiency of 90% (Siemens, 2023). However,
SOFCs offer an additional advantage: their reversible nature enables them to function as
a key component in hydrogen energy storage systems. This means that SOFCs can not
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only generate power and heat from hydrogen but also produce hydrogen from power
(Siemens, 2023). Such dual functunality would provide enourmous benefits to EPU.
Especially considering the multi-actor environment, SOFCs could provide a promising
combined heat and power source that can contribute significantly to congestion man-
agement, creating hydrogen during supply-side congestion and subsequently using it to
generate power and heat during demand-side congestion. While this technology is not
yet commercially available, significant ongoing research suggests that it could become
viable in the near future, offering a transformative solution for district heating networks
and broader energy systems.
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CONCLUSION AND STRATEGIC

RECOMMENDATIONS

The presented research aimed to identify an effective capacity optimisation approach in
hybrid renewable energy systems from a systems engineering perspective and apply it to
Eneco’s district heating network in Utrecht. This chapter presents the conclusion of the
research and follows with strategic recommendations based on the findings. Thereby,
the objective of this chapter is to answer the main research question:

What is an effective approach to capacity optimisation in renewable energy systems
that integrate thermal and power sources with hybrid energy storage?

8.1. CONCLUSION
The presented research adopts a systems engineering perspective on optimization in
hybrid energy systems, highlighting the importance of integrated system analysis from
a multi-actor, technological, and institutional perspective. The first step in the optimi-
sation approach is to define the system design guided by multi-actor analysis. From the
multi-actor analysis, it has become apparent that Energy Production Utrecht (EPU) is in-
volved in a complex decision making process influenced by multiple high-power, high-
interest actors; the municipality of Utrecht, the local community, and grid operators. The
outcome of this analysis, showing both opportunities for cooperation and threats, con-
strains the technological design space. For example, although recent research suggests
that geothermal energy is likely accessible in the city of Utrecht, opposition from the
local community makes successful implementation unlikely (Böker & Leo, 2021). The
system design space is further constrained by the already existing technological land-
scape and its associated requirements such as temperature, thermal carrier, dispatch
flexibility, and storage duration. Based on the analysis, we conclude that the following
assets are suitable for implementation in EPU’s district heating network: combined cycle
gas turbines, peak boilers, heat pumps, e-boilers, and energy storage solutions. The en-
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ergy storage options include aquifer thermal energy storage (ATES), tank thermal energy
storage (TTES), solid-state thermal energy storage (SSTES), and battery energy storage
(BES). These assets can be directly implemented in the district heating network and can
al be sustainable sources of heat and/or power. Additionally, EPU will need a power grid
connection to supply its power-to-heat assets and/or to sell excess generated power, as
well as a fuel connection to supply its fuel-based assets.

Following the system design phase, the process moves into the optimization design
phase, where the objectives, decision variables, and optimization algorithm are defined.
From the reviewed literature, we can identify three primary objectives in energy systems:
reliability, cost, and emissions. For EPU, all three objectives are crucial. First, main-
taining low costs is essential for ensuring profitable business operations. Reliability is
equally important, as EPU is solely responsible for supplying thermal energy to house-
holds in Utrecht; any supply interruption would leave these households without heating
and hot water. Finally, emissions reduction is a key priority for EPU, aligning with their
goal to achieve “renewable energy for everyone” (Eneco, 2024f). To reduce computa-
tional expense associated with multi-objective optimization, the emissions and reliabil-
ity objectives have been translated into constraints, allowing the objective function to fo-
cus solely on cost. The objective of minimum cost, is achieved through adjustment in the
decision variables. From the reviewed literature, we identified three primary decision
variables; asset capacity, dispatch strategy, and network location. For EPU, the required
asset capacities emerge as the most relevant decision variable. Finally, the optimisa-
tion algorithm is selected. From the reviewed literature, we can identify two algorithm
approaches: single-layer optimisation, and dual-layer optimisation. In single-layer opti-
mization, both asset capacity and dispatch strategy are optimized simultaneously using
mixed integer linear programming (MILP), which ensures a global optimum. In con-
trast, dual-layer optimization addresses these components sequentially, defining a rule-
based dispatch strategy before applying a heuristic algorithm, such as genetic or parti-
cle swarm optimization, to determine asset capacities. While dual-layer optimization
achieves only a near-optimal solution, it offers faster solution times than the computa-
tionally intensive MILP approach. The system design for EPU’s district heating network
is complex, involving multiple assets for both electrical and thermal energy, further com-
plicated by seasonal variations in energy flows. Therefore, it is unlikely that a rule-based
dispatch strategy would accurately reflect the optimal dispatch, potentially impacting
the results negatively. For this reason, the presented optimisation model makes use of
the MILP algorithm.

Following the optimisation design, the system design must be converted to a func-
tional optimisation model. The identified system components must be modelled given
available information and the data that functions as input is collected. In the case of
EPU’s district heating network, input data includes the thermal demand, power prices,
and fuel prices. The optimization model for EPU is developed in Calliope, an open-
source Python tool that leverages the widely used Pyomo optimization package as its
back-end while organizing the coding process into a more intuitive structure. Following
model development the optimisation is performed across a range of scenarios. Two of
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the primary data inputs, power prices and fuel prices, are combined in different config-
urations to create a total of twelve scenarios.

Following optimisation, the optimisation results are analysed for their operational
performance. According to Zheng et al. (2018) it is important that simulation techniques
are used to evaluate the reliability of optimisation results by creating new data from ob-
served probability distributions. Therefore, we generated two years of synthetic data
based on probabilistic patterns observed in the 2023 thermal demand data. Analysis of
operational performance of the optimisation results across this dataset shows the loss of
heat supply probability (LHSP) ranging from 0.023% to 0.067%. Concluding that optimi-
sation alone, does not guarantee performance across varying demand inputs. Therefore,
additional peak capacity should be added to the optimised asset capacity results to en-
sure operational reliability. Furthermore, we can conclude that as the operational power-
to-heat fraction increases, the required capacity of renewable energy sources (RES) also
rises. The results indicate that up to an operational power-to-heat fraction of 85%, it is
economically feasible to meet the entire power demand with renewables. However, be-
yond this threshold, the necessary RES capacity increases sharply, rendering full reliance
on renewable power economically unfeasible.

Additionally, the comparative performance of two model simplification techniques,
k-means clustering and masked time resolution adjustment, has been evaluated. K-
means clustering offers a substantial 98.17% reduction in solution time. However, due
to reduced data accuracy, this method negatively impacts operational performance, with
the loss of heat supply probability (LHSP) increasing from 0.056% to 0.500%, represent-
ing a 792.86% increase. Conversely, the masked time resolution adjustment method
yields a lower solution time reduction of 91.58% but more closely mirrors the results
from full optimization. Consequently, operational performance improves, with an LPSP
of 0.054%, a 3.57% improvement. Concluding that masked time resolution adjustment
presents a more favourable trade-off between solution time and model performance.

Finally, we evaluated how scenario inputs affect optimisation outcomes with the use
of regression models. To quantify the scenario inputs for average power and fuel prices,
we used a power/fuel price ratio (PF ratio). The results show that:

• As the PF ratio increases, meaning that power becomes more expensive relative
to fuel, the reliance on power-to-heat assets reduces. Conversely As the PF ratio
increases, the reliance on fuel-based assets increases.

• As the PF ratio increases, the levelised cost of heat decreases due to the CCGT’s
ability to generate revenue in the power market.

• The Loss of Heat Supply Probability (LHSP) is a function of thermal peak capacity
and flex capacity as a percentage of peak demand, with LHSP decreasing as these
capacities increase.

Concluding, this research shows a systematic approach to optimisation in hybrid re-
newable energy systems in five steps; multi-actor analysis, system design, optimisation
design, model development, and analysis of results. Each of these steps has adopted



8

80 8. CONCLUSION AND STRATEGIC RECOMMENDATIONS

techniques from the reviewed scientific literature, presenting an integrated approach to
optimisation from a systems engineering perspective.

8.2. STRATEGIC RECOMMENDATION

In addition to addressing the main research question and identifying an effective ap-
proach to optimizing hybrid energy systems, this research offers strategic insights for
EPU. Five primary insights have been identified surrounding: The multi-actor environ-
ment, capacity distribution, district heating network temperature, seasonal storage, and
required asset capacities. Each of these insights will be discussed in more detail in this
chapter.

8.2.1. MULTI-ACTOR ENVIRONMENT

Chapter 6, interprets the optimisation results through a multi-actor lens, addressing im-
plications for emissions policy, grid congestion, and spatial requirements. It showed
that scenarios relying fully on CO2-compensated natural gas achieve low costs but face
political and regulatory challenges due to persistent local emissions and concerns over
low-quality carbon offsets. In contrast, a power-to-heat (P2H) based system minimizes
local emissions but depends on non-renewable power imports, which may conflict with
future climate policies. Furthermore, Power-to-heat (P2H) technologies come with the
challenge of contributing to grid congestion. Combining them with thermal energy stor-
age, is vital for managing this congestion by enabling demand-side response and sta-
bilizing power supply. Lessons from projects like the Ivy Apartments demonstrate the
feasibility of integrating P2H within congested grids. However, reliance on all-electric
systems demands flexible power sources and raises concerns about underutilized po-
tential of flexible fuel-based assets like CCGTs.

To ensure the successful implementation of optimisation results, it is essential for
EPU to consider these factors. The most resilient system design, from a multi-actor per-
spective, involves implementing a hybrid approach that incorporates both fuel-based
and P2H assets. By avoiding reliance on a fully electric system, EPU can draw power
from renewable energy sources while maintaining operational flexibility through fuel-
based assets. This flexibility, enabled by the use of diverse fuels, also ensures resilience
against potential changes in climate policy. Moreover, the multi-actor analysis high-
lights that resilience is not solely dependent on fuel-to-heat technologies but also on
fuel-to-power assets, such as combined cycle gas turbines. These technologies play a
crucial role in managing grid congestion and supporting frequency regulation within
the Dutch power grid, while simultaneously providing a flexible thermal source for the
district heating network. Concluding that a hybrid system design, integrating power-
to-heat, fuel-to-heat, and fuel-to-power assets, offers the most resilient implementation
option within a complex regulatory and multi-actor environment. This approach en-
sures flexibility, adaptability to policy changes, and alignment with broader energy and
grid stability goals.
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8.2.2. CAPACITY DISTRIBUTION

Another insight is that, although this study presents the optimization outcomes as single
assets, their capacity could be distributed across the district heating network (DHN) in
various configurations. The model assumes that CCGT operation always occurs at max-
imum efficiency, regardless of capacity factor. However, in practice, a CCGT’s efficiency
declines the further it operates from its designed full load (Koeneke, 2024). Therefore,
while incurring higher capital expenditures, installing multiple smaller CCGTs rather
than one large CCGT based on observed load factors could increase efficiency, decrease
net operational expenditures, and improve the lifecycle business case.

Furthermore, the dispatch of thermal assets is highly complex due to asset charac-
teristics, varying thermal demands across regions, and transportation time. The most
effective distribution approach is to establish a decentralized DHN. By positioning as-
sets at different heat transfer stations instead of at EPU, several benefits can be achieved.
Firstly, decentralization reduces transport time by bypassing the primary grid, thus low-
ering thermal losses during transport. Moreover, this reduction in transport time allows
for a shorter forecasting window for thermal demand, simplifying asset dispatch. Addi-
tionally, the secondary grid operates at a lower temperature, enhancing the efficiency of
assets like heat pumps. However, decentralized operation also limits thermal load distri-
bution: assets placed in secondary grids can only supply thermal energy to their specific
networks, whereas assets in the primary grid can support all secondary networks. To
achieve a decentralised district heating network, EPU should conduct research into spa-
tial availability and available power grid capacity at secondary locations.

8.2.3. LOWERING TEMPERATURE

Lowering the temperature of the primary grid is an alternative approach that can cap-
ture many benefits of decentralized operation while limiting its drawbacks. Although
this approach wouldn’t reduce transport duration, it would decrease thermal losses dur-
ing transport. Lowering the primary grid temperature would also increase the efficiency
of heat pumps connected to it while allowing these assets to supply heat across all sec-
ondary grids. Another advantage of temperature reduction is that it enables TTES sys-
tems to be located in primary grid locations, extending their reach across the network.
Additionally, it allows ATES systems to operate without a heat pump by using heat ex-
changers instead, reducing system costs. However, a temperature reduction would also
decrease grid capacity, as thermal demand is currently met through temperature regu-
lation, potentially requiring additional peak assets in secondary locations. Therefore, it
is essential for EPU to conduct further research into the possibilities of temperature de-
crease.

8.2.4. SEASONAL STORAGE

Another key insight is the critical role of affordable and efficient seasonal thermal en-
ergy storage for the success of district heating networks. Implementing large-scale sea-
sonal thermal energy storage enables EPU to capitalize on seasonal fluctuations in en-
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ergy markets and reduce pricing risk. The average optimized ATES storage capacity is
78 GWh, which, at a capacity of 100 MW, equates to 782 hours or approximately 33 days
of continuous full-load operation. Therefore, EPU should initiate a pilot project for im-
plementing large-scale seasonal thermal energy storage using high temperature ATES. If
such a pilot project were to yield unexpected negative results, it is important to acknowl-
edge that decentralized low-temperature ATES, as implemented in the Ivy apartments,
could still play a significant role in meeting overall thermal demand. Additionally, un-
successful outcomes from the pilot would justify further exploration of alternative large-
scale seasonal thermal energy storage technologies.

8.2.5. ASSET CAPACITIES
Finally, the evaluation of the twelve scenario results reveals a diverse range of asset mixes,
spanning from a complete reliance on fuel-based assets to a full dependence on P2H as-
sets. This variation raises the critical question: which scenario should EPU plan for?
Drawing on insights from the multi-actor analysis, we recommend implementing a hy-
brid system design. This approach aligns with our analysis regarding the carbon market,
where the prevalence of low-quality offsets may prompt regulatory changes favouring a
shift towards the removal scenario.

Therefore, the recommendation for EPU based on this research is to implement the hy-
brid results from the removal scenario with heat pump capacity ranging from 50 MWth

to 132th MW, CCGT capacity ranging from 177 MWe to 49 MWe, and peak boiler capacity
ranging from 32 MWth to 54 MWth. Additionally, EPU should incorporate thermal en-
ergy storage, including ATES with a capacity of 100 MWth and a storage capacity between
64 GWhth and 132 GWhth, as well as TTES with a capacity ranging from 42 MWth to 52
MWth and a storage capacity between 259th MWh and 318 MWhth. Finally, we would like
to reaffirm that the optimisation model is based on the assumption of 100% operational
availability of assets. As such, the recommendations provided serve as a baseline system
design. To guarantee energy security in the event of asset failures or maintenance, it is
crucial to incorporate additional peak capacity into the system.
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EPILOGUE

During my MSc dissertation on optimization in renewable energy systems, I encoun-
tered numerous opportunities for both professional and personal growth. One of the
most significant areas of development has been my in-depth understanding of district
heating networks (DHNs) and optimisation problems. Through my research, I uncov-
ered an unexpected yet crucial insight: DHNs have a substantial role to play in alleviating
grid congestion, a factor I had not anticipated at the beginning of my research journey.

Beyond technical learning, this dissertation process has been a period of personal growth.
It allowed me to connect and apply a wide range of skills and knowledge gained through-
out my MSc program, unifying them into a single project. Additionally, my experience
working within an organization, interacting with colleagues, and presenting complex
concepts effectively to different audiences helped improve my communication skills, an
area I have greatly valued developing.

The broader implications of this research for the energy sector became increasingly ev-
ident throughout the project. My findings indicate that a system entirely reliant on di-
rect power from renewable energy sources (RES) is economically unfeasible, largely due
to the intermittent nature of RES. However, by incorporating storage solutions and fuel
sources—such as green hydrogen generated from RES—the model demonstrated that
large-scale renewable energy systems can achieve operational efficiency and sound eco-
nomic results. For Utrecht specifically, the findings suggest that achieving a carbon-
neutral DHN by 2035 is feasible and would contribute significantly to emission reduc-
tion targets in the region.

Looking forward, the research in this field is likely to evolve alongside technological
advancements that influence system design. For example, high-temperature fuel cells
could eventually take over the functions of combined cycle gas turbines (CCGTs), while
also providing flexibility in the fuels they utilize. These reversible technologies can cre-
ate power and heat from fuel and, conversely, generate fuel (such as green hydrogen)
from power. Although not currently economically viable, such technologies could re-
shape the design and operation of renewable energy systems in the future. Additionally,
rapid changes in energy policies, as demonstrated by the recent WcW (Law on Collective
Heat) and ATR85/15 regulations on power grid availability, reflect the evolving regula-
tory landscape that will continue to shape system design and operational strategies.

It is also important to acknowledge the limitations of this study, which naturally prompt
areas for future research. For instance, the research did not incorporate a detailed net-
work analysis to identify optimal locations within the DHN for distributed assets. Such
an analysis would enhance our understanding of how to maximize the network’s effi-
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ciency and potential for distributed generation, indicating a valuable direction for fur-
ther study.

Finally, I would like to extend my deepest gratitude to my supervisors from TU Delft and
Eneco, as well as my extended colleagues at Eneco. Their invaluable insights and guid-
ance have greatly enriched this research and contributed immensely to my professional
and personal development.



GLOSSARY

The aim of this chapter is to identify and further explain terms used in the research.

RES: Renewable Energy Sources (RES) often refer to electricity generated from renewable
sources such as wind and photovoltaic. However, the term can also encompass other
renewable energy sources, including geothermal energy, biomass, and more.
ESS: Energy Storage Systems (ESS) refer to any technology capable of storing energy.
The storage medium can vary, encompassing electrical, thermal, or mechanical energy
forms.
EPU: Enery Production Utrecht (EPU) is the subsection of Eneco responsible for opera-
tion of the district heating network in Utrecht

DHN: District Heating Networks (DHNs) are networks that directly supply thermal en-
ergy to households. Additionally, the study mentions District Heating and Storage Net-
works (DHSNs) which refer to DHNs that also include thermal energy storage.

TES: Thermal Energy Storage (TES) refers to storing energy in the form of heat. Within
the TES field, several technologies have been identified, including Aquifer Thermal En-
ergy Storage (ATES), Solid-State Thermal Energy Storage (SSTES), Tank Thermal Energy
Storage (TTES), and Molten Salt Thermal Energy Storage (MSTES).

P2H: Power-to-heat (P2H) technologies can convert power directly into heat. Imple-
mentations of P2H include Heat Pumps (HPs) and Electrode Boilers (E-boilers).

F2H: Fuel-to-Heat (F2H) technologies convert various fuels, such as natural gas or hy-
drogen, directly into heat. Examples of F2H implementations include Combined Cycle
Gas Turbines (CCGTs) and peak boilers. CCGTs could also be classified as Fuel-to-Power
(F2P) technologies, as they generate both heat and power from fuel.

LCOE: The Levelized Cost of Energy (LCOE) represents the cost per unit of energy, cal-
culated by considering all expenditures and energy generated over the system’s lifetime.
In this research, the Levelized Cost of Heat (LCOH) is also referenced, applying the same
concept specifically to thermal energy.

LPSP: The Loss of Power Supply Probability (LPSP) is a measure of operational reliabil-
ity, representing the percentage of energy demand that could not be met. In this re-
search, the Loss of Heat Supply Probability (LHSP) is also referenced, applying this con-
cept specifically to thermal energy.
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Figure A.1: Photovoltaic generation profile in kWh/m2 for 2023
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Figure A.2: Onshore wind power generation profile in kWh/m2 for 2023

Figure A.3: Offshore wind power generation profile in kWh/m2 for 2023
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Figure A.4: Average hourly generation of PV, offshore wind, and onshore wind in kWh/m2 for 2023

Figure A.5: The average daily thermal demand on an hourly time frame in 2023



A

96 A. APPENDIX A: DATA REQUIREMENTS

Figure A.6: Normalized average of weekly power prices in 2035, calculated across all scenarios.

Figure A.7: Normalised average weekly hydrogen prices for 2035
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Figure B.1: A visual representation of the power and interest of different actors in the decision-making process,
including EPU, the national government (Gov), the municipality of Utrecht (Mun), grid operators (GO), the
local community (Loc), and energy companies (Pow).
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Figure B.2: The goal tree for Energy Production utrecht and the means to achieve its goals.
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Figure B.3: The goal tree for the Ministry of EZK and the means to achieve those goals in the context of the
energy transition.
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Figure B.4: The goal tree for the municipality of Utrecht and the means to achieve its goals

Figure B.5: The goal tree for the grid operators and the means to achieve their goals
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Figure B.6: The goal tree for the local community and the means to achieve their goals.
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Figure B.7: Illustration of a distributed energy asset, specifically a tank thermal energy storage system, featur-
ing an integrated green wall for enhanced environmental and aesthetic benefits.
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Figure C.1: A linear regression analysis with the total power-to-heat (P2H) capacity as its dependent variable
and the power/fuel price ratio as its independent variable.

Figure C.2: A linear regression analysis with the total heat pump capacity as its dependent variable and the
power-to-heat capacity as its independent variable.
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Figure C.3: A linear regression analysis with the total Fuel-to-heat (F2H) capacity as its dependent variable and
the power/fuel price ratio as its independent variable.

Figure C.4: A linear regression analysis with the total peak boiler capacity as its dependent variable and the
power/fuel price ratio as its independent variable.
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Figure C.5: A linear regression analysis with TTES storage capacity as its dependent variable and the thermal
flex-capacity as its independent variable.

Figure C.6: A linear regression analysis with ATES storage capacity as its dependent variable and the opera-
tional P2H fraction as its independent variable.
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Figure C.7: A linear regression analysis with LCOH as its dependent variable and the power / fuel price ratio as
its independent variable.

Figure C.8: A linear regression analysis with loss of heat supply probability (LHSP) as its dependent variable
and total thermal capacity as a percentage of peak demand as its independent variable.
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Figure C.9: Regression output from the regression with LHSP as its dependent variable and total thermal ca-
pacity and flex capacity as a percentage of peak demand as its dependent variables

Figure C.10: The state of charge of the Tank Thermal Energy Storage (TTES) over time
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Figure C.11: The state of charge of the Aquifer Thermal Energy Storage (ATES) over time

Figure C.12: A linear regression with required renewable energy sources (RES) capacity as its dependent vari-
able and total power-to-heat (P2H) capacity as its independent variable for the bifurcation and removal sce-
narios.
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Figure C.13: A linear regression with required renewable energy sources (RES) capacity as its dependent vari-
able and the operational P2H fraction as its independent variable for across all scenarios.

Figure C.14: A partial linear regression with required renewable energy sources (RES) capacity as its dependent
variable and the operational P2H fraction (up to 85%) as its independent variable.
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Figure C.15: A partial linear regression with required renewable energy sources (RES) capacity as its dependent
variable and the operational P2H fraction (From 85% up to 100%) as its independent variable.
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When discussing validation of an optimization model, demonstrating that the results
align with logical and expected trends is a key step in building confidence in the model.
In this case, two regressions were performed to analyze the relationships between the
power-to-fuel price ratio and the installed capacities of power-to-heat (P2H) and fuel-
to-heat (F2H) technologies (Appendix C.1 & C.3).

The first regression demonstrates that as power becomes more expensive relative
to fuel, the optimization model results in less installed P2H capacity. Conversely, the
second regression shows that as fuel becomes cheaper relative to power, the installed
F2H capacity increases. These findings align with intuitive and theoretical expectations:
when power prices rise compared to fuel, the economic incentive to rely on P2H tech-
nologies diminishes, while cheaper fuel prices make F2H technologies more attractive.

This alignment between the model’s outputs and logical market behavior serves as
evidence of model validity. By producing results that reflect realistic decision-making
patterns in energy system design, the model demonstrates its ability to provide credible
and consistent outcomes under varying input conditions. These relationships not only
validate the model’s internal logic but also enhance its credibility for supporting strate-
gic decisions in energy system planning.

Furthermore, we can validate model behaviour through the first law of thermody-
namics which states that energy can neither be created nor destroyed. Therefore the
model must show identical energy inflows and outflows which is the case in the pre-
sented optimisation model (Figure D.1).
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Figure D.1: Validation dataset illustrating equal energy inflows and outflows across all timesteps in the model
output.
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Figure E.1: A visual representation of energy flow in the optimization model: Blue blocks represent assets that
use power as their input carrier, while orange blocks represent assets that use heat as their input carrier.

Figure E.2: The spatial configuration of the DHN in Utrecht, connecting EPU with the different districts:
Nieuwegein (NG), Leidsche Rijn (LR), Overvecht (OV), and Utrecht city (UC). For each district, the total ther-
mal losses during transport along the shortest route are presented.
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