
User-Guided Vectorisation of Pixel Art
through Spring Simulation

Marko Matušovič1 Amal D. Parakkat1 Elmar Eisemann1

1TU Delft

Abstract
This research builds upon a previous method of vectorisa-
tion of pixel art by pixel neighbour connecting and bound-
ary energy minimisation. The downside of the previous
method is the lack of user input throughout the pro-
cess and possible divergence between the results and the
artist’s vision. The proposed method uses the first part of
previous method to connect neighbour pixels and contin-
ues with a spring simulation of the boundaries. A process
that can be heavily user-guided with adjusting the stiff-
ness of the springs. Results show the proposed method to
achieve higher variance in the results, possibly resulting in
output images closer to the artist’s vision. However, in-
troduce lengthy process for the user that can be removed
by providing higher level GUI.

1 Introduction
Sometimes seeing pixels is welcomed; So-called ”Pixel art”
is a popular type of digital art. It originated in early
video games. The first sprites appeared in video games
in the 1970s. The game Space Invaders contained black
and white sprites and was released in 1978 [1]. Shortly
after, the game Super Mario Bros. was one of the first
games to feature colour sprites, it was released in 1985
[2]. Since then computers gained the capability to display
high-resolution images, but pixel art is still used as an art
form. A benefit of pixel art is that it can be produced
quickly and only with few resources [3]. Pixel art has
become a distinct style and is still relevant in the present.

Raster images are described by a two-dimensional grid
with pre-defined dimensions. Every cell in the grid holds
information about the colour in that area, this cell is also
called a pixel and is usually a square. In most cases the
pixels of an image are not visible, however, when a raster
image is zoomed in substantially, the individual pixels can
become visible.

The counterpart to raster images are vector images.
Vector images are described by a set of shapes and curves.
Unlike raster images, they have no pre-defined resolution.
Vector images can be shown at any resolution, and because
a mathematical curve can be zoomed in infinitely, vector
images remain sharp at all scales. However, making vector
art requires more skill and effort.

The two premises: simplicity to create pixel art and
beauty of vector art, creates a need for a method of a
fast and low effort conversion of raster images into vector
images. There are many previous methods of pixel art
vectorisation, that perform well on their own. However,
methods for vectorisation of pixel art accept no user input
throughout the conversion. Given the base of art, this
vector output might not be equal to the one the artist
envisioned. If that is the case, the artist must then edit
the final vector image to achieve a fully satisfactory image.
Therefore, there is a need for a pixel art vectorisation
method, that can be guided by the user.

The inspiration for smoothening out the sharp edges
of pixel art came from soft body simulation. Soft bodies
tend to be round. The inner forces pull on the surface
and smoothen it. If the shapes in pixel art were modelled
as soft bodies and simulated, they would also smooth out
and create natural-looking curves.

The focus of this paper is to propose a new semi-
automatic method for the vectorisation of pixel art, based
on a previous method [4] and soft body simulation. The
research question is:

Can guided vectorisation of pixel art through spring
simulation produce high-quality vector art?

High-quality vector art is defined as an image in vector
format, whose curves appears smooth, but keeps sharp
corners. The research question will be answered through
a series of related sub-questions. How to structure the
spring architecture? How satisfactory are the results with
no user input? And what controls help artists achieve
their results?

2 Related Work
Many previous methods achieve sharper details of pixel
art images. Vectorisation is not the only way of achiev-
ing this result, the earlier methods include upscaling, or
super-resolution. A process of increasing the resolution of
raster images. This section will go over some of the most
successful methods of upscaling and vectorisation.

Image Resampling The most usual method of achiev-
ing a different resolution of an original image is resam-
pling. In this case, the focus is on higher resolution.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

(a) (b) (c) (d) (e) (f)

Figure 1: Showcase of previous methods. (a) Nearest neighbour (b) hq4x (c) vector magic (d) vectorization.org (f)
Adobe Illustrator 2020 auto-trace (g) Depixelizing Pixel Art

The three most common approaches are presented here:
nearest neighbour, bilinear interpolation, bicubic inter-
polation. Nearest neighbour looks up the nearest pixel
from the original image and takes its colour value. This
method keeps the colour palette intact, on the contrary,
interpolation methods might result in pixels with colours
not present in the original image. These methods interpo-
late between four adjacent pixels to produce an estimate
of what a new pixel might be at that location. Bilinear in-
terpolation uses a linear transition, bicubic interpolation
uses 2nd order polynomial to calculate the new colour. In
practice, interpolation is usually not used for pixel art as
it results in blurry images, which is not desired appeal of
pixel art. Nearest neighbour is the only of these methods
used for pixel art as it preserves the hard edges.

hq4x In contrast to the methods in the previous para-
graph, there are also upsampling algorithms developed for
the sole purpose of upsampling pixel art. Among others,
hqx [5] is a family of upsampling algorithms: hq2x, hq3x
and hq4x. For every pixel, the similarity is determined
with all 8 adjacent pixels. Then, by pre-determined rules,
a pattern is applied to the pixel. Since this algorithm
only looks at a 3x3 neighbourhood at most, it does not
take into account what the image represents at a bigger
scale. Moreover, hqx [5] requires aliased input and pro-
duces anti-aliased output. Therefore, it cannot be applied
multiple times in succession and the maximum upscaling
factor is 4x.

Commercial methods There are multiple commercial
solutions for vectorisation. The source code is not avail-
able. However, the results can be obtained and compared.
The website vectorization.org [6] provides free vectorisa-
tion tool. The downside is that it only works with black
and white images. Adobe Illustrator has a built-in vec-
torisation feature: auto-trace [7]. It supports multicolour
images and has a broad use. Another solution is Vec-
tor magic [8], it is not optimised for pixel art. None of
the commercial solutions are optimised for pixel art and
therefore usually underperform.

Depixelizing Pixel Art A novel method of vectorisa-
tion of pixel art was proposed in the paper Depixelizing
Pixel Art [4]. Similarly to hqx [5] it compares all pixels
to their neighbours and determines connections, according

to these connections the pixels are reshaped. The bound-
aries are determined and through energy minimisation,
the curves are smoothened. The method also finds auto-
matically areas that should be sharper and areas where
round edges are desired. Moreover, it also focuses on de-
ciding which lines appear continuous in T and X cross-
ings. Another feature of this method is that when similar
colours appear in the image, the method tries to approx-
imate a gradient through the region so that it appears
smoother and can be merged into one shape.

Perception-driven semi-structured boundary vec-
torization This more recent work [9] is aimed at both
low resolution and high-resolution clip art. Pixel art is
therefore only a subset of the target group. This algo-
rithm uses an ML classifier to detect key points in the
input raster image, and then approximates a curve to con-
nect them. The highlight of this method is the regular-
isation of the curves, this step replaces multiple similar
shapes with one shape, such that the output vector image
appears simple and visually pleasing.

Polyfit This method [10] builds upon the Perception-
driven semi-structured boundary vectorization [9] algo-
rithm. It is also a boundary vectorisation with the use of
an ML classifier to detect edges. This method focuses on
accuracy, simplicity, continuity and regularity of images
to produce an output that is visually pleasing. In a user
study they evaluated that Polyfit[10] better aligns with
user expectations compared to both Perception-driven
semi-structured boundary vectorization [9] and Depixeliz-
ing Pixel Art [4].

All algorithms optimised for pixel art already perform
well, however, they allow for no user guidance through
the process, this can be a downside as the result might
not fully match the artist’s vision. While both the
Perception-driven semi-structured boundary vectorization
[9] and Polyfit [10] usually outperform Depixelizing Pixel
Art [4] both methods use machine learning in their pro-
cesses. For the scope of this paper our method is based
and compared directly to the method of Depixelizing Pixel
Art [4].

2

(a) input (b) find links (c) de-cross (d) make nodes (e) simulate (f) smoothen (g) sharpen (h) export

Figure 2: Overview showing individual phases in the process. Phases (c), (f) and (g) accept user input.

3 Method
Our algorithm aims to convert a raster image of pixel art
to a vector representation. The process can be split into
four steps. The first step is called Clustering Neighbours
and is shown in Figure 2b and 2c. In this step, the pix-
els are grouped into areas that seem like one shape and
will be represented by one colour.It is based upon a pre-
vious method Depixelizing Pixel Art [4] mentioned in sec-
tion 2. The second step is called Generating Nodes and
is shown in Figure 2d. In this step, the borders around
the grouped pixels are converted to nodes. The third step
is called Simulating Springs and is shown in Figure 2e, 2f
and 2g. In this step the nodes are simulated with their
assigned spring stiffness, the user has an option to change
the stiffness of springs and change how many iterations
occur. The fourth step is called Exporting to SVG and is
shown in Figure 2h. In this step, the nodes are exported
to an SVG file as individual shapes.

3.1 Clustering Neighbours

In the first step of the method, pixels are segmented into
groups. Every two adjacent pixels, even diagonally ad-
jacent, are compared to each other and if their colour is
evaluated to be similar, a link between them is stored. A
link is defined as a set of two adjacent pixels. Links can be
directly adjacent, (horizontal and vertical) and indirectly
adjacent (diagonal). A problem arises when two diagonal
links cross through each other. A cross is defined as a
set of two links that intersect. All crosses must be dis-
ambiguated and one of the links must be removed. The
user can solve the crosses automatically or they can decide
which link to remove manually. After all crosses are sim-
plified to one diagonal link, groups are formed. A group is
defined as a set of pixels connected by links. Two groups
are mutually exclusive, they do not share any pixels, and
there are no links between them. This is the reason why
all crosses must be removed. The algorithm advances to
the next step only if there are no crosses present.

Colour comparison To avoid extensively user input,
the algorithm determines which pixels are initially con-
nected based on the similarity of the colour of adjacent
pixels. This comparison is evaluated as a distance be-
tween the colours against a threshold. The distance met-
ric is evaluated in HSV colour space. RGB (Red, Green,
Blue) colour space is the most common space, it is often

used when displaying images on computer screens, as pix-
els on screens are usually constructed from red, green and
blue channels. In contrast, HSV (Hue, Saturation, Value)
is closer to how people perceive colour [11]. In compari-
son to RGB, differences in HSV are perceived as linear by
human observers [12].

Reconnecting Neighbours After the initial links are
created with colour matching, the user is asked to remove
all crosses, if any are present, and optionally create new
links or remove existing links. This step allows the user
to determine which pixel groups are connected, and how
exactly they connect. The user interface consists of two
windows. The main window, shown in Figure 3, contains
the image with the links and crosses. By using the left and
right mouse button to click on two adjacent pixels, the
user can create or remove links. The secondary window,
shown in Figure 4, contains a guide. If there are no crosses
the user can choose to advance to the next step.

Figure 3: The main user interface windows for the first
step. Links are shown black, crosses are shown red.

Figure 4: The helper window for the first step.

Automatic Cross Removal To alleviate some work
from the user, the automatic cross disambiguation re-

3

moves most crosses. The algorithm is based on back-
ground - foreground segmentation. The foreground ele-
ment occurs more rarely and the background is dominant
[13]. In a given region around the cross, the pixels are
bucketed into different groups. Buckets with fewer pix-
els represent the foreground. The link representing back-
ground is removed as it is preferred to keep foreground
elements connected [4].

3.2 Generating Nodes

The second step generates nodes that are the base of the
architecture that will be simulated. First, the borders
of every group are determined. A border segment is de-
fined as an edge of two directly adjacent pixels from two
different groups. This is done by checking if two directly
adjacent pixels are in the same group, if not, a border seg-
ment between them is created. Nodes are placed on each
border segment in uniform distances, starting and end-
ing at the corners. The number of nodes along a border
is determined by a global constant (RESOLUTION). More
nodes increase the resolution of the output vector image,
fewer nodes shorten the runtime. A node is the smallest
element that interacts with other nodes through springs,
this behaviour is described in Subsection 3.3.

Figure 5: A group of a single pixel with nodes around it.
Edge nodes are blue, corner nodes are red.

Connecting Nodes The nodes generated along a bor-
der lie either on a corner of a pixel or on an edge of a pixel.
The two types are shown in Figure 5. The nodes along the
edge of a pixel are surrounded by two pixels. The nodes
are linked to each other and make a chain. Nodes placed
on the corner of a pixel are surrounded by four pixels. De-
pending on how these pixels are linked and grouped, nodes
can be connected to two, three or four other nodes, alter-
natively there can be two nodes in the same position each
connected to two other nodes. All situations are shown in
Figure 6.

If all four surrounding pixels belong to different groups,
a corner node is connected to all four edge nodes, see
Figure 6.a.

If the surrounding pixels belong to two groups, the
corner node is connected to only two edge nodes, see Fig-
ure 6.b for a situation with two pixels in each group. Note
that they must always be horizontally or vertically con-
tinuous, as two diagonally connected groups would make
a cross and all crosses were removed in the previous step.

Neighbour
Links

Original
Positions

Simulated
Positions

(a)
Four

Groups

(b)
Two

Groups

(c)
Three

Groups in
Line

(d)
Three

Groups in
Cross

Figure 6: Different ways of connecting edge nodes to cor-
ner nodes by the number of groups.

If the surrounding pixels belong to three groups, two
situations can occur, either the link does not go through
the corner node, in which case the link is vertical or hori-
zontal (see Figure 6.c), or the link goes through the corner
node and the link is diagonal (see Figure 6.d). In the lat-
ter case, the two diagonally connected pixels must share
some area and there cannot be any border between them.
This is solved by placing another corner node at the same
position. Both of them are connected to two edge nodes
forming an L shape. The nodes are connected in such a
way that the connections do not intersect with the pixel
link.

At the end of this step, every group is enclosed by
a path of nodes. The model contains information about
all nodes, how they are connected and which nodes are
associated with which groups.

3.3 Simulating Springs

In this step, the nodes are simulated, they undergo a tran-
sition to a minimum energy state, in which the paths ap-
pear smooth. A node is connected by a spring to all its
neighbours, and also to its original position. There are
three types of forces acting on a node, spring force from
all its neighbours, spring force from the origin, and an
area force. A node contains information about its original
position, its current position, neighbouring nodes, asso-
ciated area, neighbour spring stiffness and origin spring
stiffness. This section explains the individual forces, their
importance and interaction.

4

Forces Explained The springs between a node and
its neighbouring nodes act as a pulling force. Tension
in a path contract it to the shortest path, this makes it
straighten and results in a smooth curve. The spring from
a node to its origin is there to prevent the node from de-
viating too much from its origin. Additionally, every pixel
group encloses an area. This area is calculated every it-
eration and a force is applied to all nodes of the path
surrounding it trying to keep it at the same volume over
time.

Assigning Spring Stiffness All nodes are initialised
with preset spring stiffness. The neighbour spring stiff-
ness is the same for all nodes and is determined by a global
value (NEIGHBOUR_SPRING_STIFFNESS). The origin spring
stiffness varies along the border. It is the highest at the
centre of the edge and gets lower linearly towards the cor-
ner.

KO = max
!

0, KOE + (KOC − KOE) ·
""""

2 · i

N − 1 − 1
""""

#

(1)
Equation 1 shows the formula for calculat-
ing the origin spring stiffness KO. Where
KOE is the stiffness at the centre of an edge
(ORIGIN_SPRING_STIFFNESS_EDGE), KOC is the stiffness
at the corner (ORIGIN_SPRING_STIFFNESS_CORNER), i is
the index position of a node along a border, N is the
number of nodes along a border (RESOLUTION). Figure 7
shows the plot of this function for KOC < 0. Consider
a diagonal line made of pixels, a strong force on the
corners causes a staircase effect to show. This function
was chosen as it lowers the force on the corners of pixels,
hence reducing the staircase effect.

N − 10 [i](N − 1)/2

KOC

KOE

0

[KO]

Figure 7: Plot of the origin spring stiffness function.

Calculating Area Force The area is represented as a
closed path around a pixel group. Every group has always
one area associated with it. This area is essentially an ir-
regular polygon with known vertex positions. The area is
calculated with Gauss’s area formula, also called shoelace
formula [14]. The initial area is stored and every iteration
the current area is calculated. Moreover, every area also
contains information about its centre position. This po-
sition is calculated as a centre of mass, an average of all
node positions.

!FA =
$

!PN − !PAC

%
·
&

1 −
'

A

A0

(
(2)

The area force acting upon a node is determined by a
vector from the centre of the area to the current node
position scaled by a value correlating to the fraction of
the area. This equation is shown in Equation 2, where for
a given node and an area, !PN is the current position of
the node, !PAC is the position of the area centre, A is the
current area, A0 is the initial area and !FA is the resultant
force to be applied to the node. The square root is present
to compensate for the correlation between an area and its
radius. (r2 ∼ A) In this formula, the vector (!PN − !PAC)
is similar to radius r. The resultant force !FA is added to
the current position of the node !PN .

Figure 8: Area with a path at 80% scale that needs to be
push back at 100%.

Calculating Neighbour Force Equation 3 shows the
formula for calculating the neighbour spring force !FNi for
a given node N and its neighbour Ni.

!FNi =
$

!PNi − !PN

%
· KNi (3)

In this formula, !PNi is the position of the neighbour node
and Kni is the neighbour spring stiffness of the neigh-
bour node. The difference between the position vectors
results in a vector from the current node to the neighbour
node, this vector is multiplied by the spring stiffness of
the neighbour node to get the neighbour force acting on
the node.

Calculating Origin Force Equation 4 shows the for-
mula for calculating the origin spring force !FO for a given
node N .

!FO =
$

!PO − !PN

%
·
""" !PO − !PN

""" · KO (4)

In this formula !PO is the origin of the node. The difference
between the position vectors results in a direction vector
from the current position of the node to its origin, this
vector is multiplied by its magnitude and the origin spring
stiffness. The reason for multiplying by its magnitude is
that the resultant force is relatively small for nodes close
to their origin, however, it is large for nodes far from their
origin. This is introduced to further reduce the staircase
effect as discussed in Assigning Spring Stiffness.

One iteration Every iteration all forces for each node
are calculated, scaled by a step size, and added to the
current position of the node.

!F = !FO +
)

i∈Ns

!FNi +
)

i∈As

!FAi (5)

5

Equation 5 shows a formula for summing together all
forces, where Ns is a set of all neighbour nodes and As is
a set of all areas related to the node. An example of all
forces acting on a node can be seen in Figure 9.

⃗F N1⃗F N2

⃗F O

PO

PN
PN1

PN2

PACi

⃗F Ai

Figure 9: A node with two neighbours, showing all forces
acting on it.

Simulation The simulation consists of many consecu-
tive iterations. The step size of one iteration is deter-
mined by the magnitude of the largest force !Fmax. Equa-
tion 6 shows the formula for calculating the step size S.
From the relation, the step size will always be at most
Smax (MAX_STEP_SIZE) and in a case the magnitude of
the largest force is high, the step size will be smaller.

S = Smax/ max
$

1,
""" !Fmax

"""
%

(6)

The simulation has two progress modes, simulating for
a fixed number of iteration steps and simulating until
a minimal energy state is reached. An iteration step
(ITERATION_STEP) is a value that dictates how many iter-
ations of which step size can be executed. Every iteration
the step size is summed. When the sum reaches the itera-
tion step, the simulation ends. Figure 10 shows the differ-
ence between various iteration steps. The second progress
mode compares the magnitude of !Fmax to a threshold
(ITERATION_THRESHOLD). The simulation reaches an end
if the magnitude is below this threshold. It is up to the
user to decide if they want the automatic approach, or if
they find more or fewer iteration steps necessary.

(a) I=0 (b) I=2 (c) I=20

Figure 10: Nodes after being simulated for various number
of iteration steps

Adjusting Springs The user can adjust the individual
spring stiffness to obtain a result more in line with their
vision. The user can switch between editing the neighbour
spring stiffness and the origin spring stiffness. The nodes
are coloured by the spring stiffness, as seen in Figure 11.

A helper window, shown in Figure 12, is shown with in-
structions and information about the brush type, size and
strength.

(a) neighbour spring stiffness (b) origin spring stiffness

Figure 11: The main user interface window for the second
step. The two figures show various types of springs.

Figure 12: The helper window for the second step.

3.4 Exporting to SVG

In the last step, the simulated paths are stored in an
SVG format as n-sided polygon, where n is the number
of nodes enclosing an area. Areas are coloured by the
average colour of a group.

Evaluating Z Order Most of the areas are non-
intersecting, however, if an area is fully enclosed by an-
other area, the outer area will cover the inner area. To
prevent this from happening, the outer area is drawn first,
then the inner area is drawn on top of it. The order of
drawing is determined by the size of the areas, as an inner
area is always strictly smaller than the outer area.

Colour Averaging Since the user gets a choice to con-
nect pixels that might have different colours, the colour of
the resulting group is not guaranteed to be the same. The
resulting colour of the group is calculated as an average
of colours of all pixels in the group. Each colour chan-
nel is averaged individually over all pixels in a group. The
RGB colour space is used, as this is the input colour space
and using other colour spaces does not provide a signifi-
cant advantage. The result is a colour best estimating all
pixels in a group.

6

4 Implementation
The method was implemented in C++ using OpenCV to
read the image and provide GUI. Table 1 shows the time
measured for Figure 13.a when skipping all user input.
The algorithm was run on MacBook Pro 13” 2018 with 2.3
GHz Quad-Core Intel Core i5 CPU, Intel Iris Plus Graph-
ics 655 1536 MB GPU and 16 GB 2133 MHz LPDDR3
RAM. Table 2 shows the list of all parameters used dur-
ing the implementation.

Segment Time Percentage
Determine Neighbours 0.2 ms 0.03%
Find Crosses 1.5 ms 0.22%
Make Groups 0.5 ms 0.08%
Find Borders 0.7 ms 0.11%
Connect Paths 16.2 ms 2.45%
Find Areas 366.6 ms 55.57%
Simulate 272.5 ms 41.31%
Export to SVG 1.6 ms 0.24%
Total 287.5 ms 100.00%

Table 1: Timing of the algorithm on Figure 13.a, per in-
dividual segment, with user input ignored.

Parameter Value
RESOLUTION 5
NEIGHBOUR_SPRING_STIFFNESS 1.5
ORIGIN_SPRING_STIFFNESS_EDGE 0.2
ORIGIN_SPRING_STIFFNESS_CORNER -0.1
MAX_STEP_SIZE 0.1
ITERATION_STEP 0.5
ITERATION_THRESHOLD 0.03

Table 2: Parameters used in implementation.

5 Results
Our algorithm was applied to a selected batch of images
from Depixelizing Pixel Art [4] and compared to their re-
sults. Figure 13 and Figure 14 show the original input,
comparison results from Depixelizing Pixel Art [4] and
our results. Additionally, Figure 14 also shows a second
variation of our results, the difference was achieved with
various user input. More results can be found in the ap-
pendix. This section also highlights the improvements of
our method.

Match to Base Method Our method is based on that
of Depixelizing Pixel Art [4], therefore it is critical for our
method to produce no worse results. Consider Figure 13,
our results look similar to the comparison results. It shows
that with our method artist can achieve almost identical
results. The only difference being a gradient through an
area of similar colour, this feature was omitted in this
paper.

(a)

(b)

(c)

(d)

(e)

Original Comparison Our Result

Figure 13: Our results with comparison to the original
and results from Depixelizing Pixel Art [4].

More Options Artists using our method can achieve
various results from the same input. Since our method
works with user input, artists can decide and guide the
process until the resulting image better represents their vi-
sion. In Figure 13.a in the comparison image, most white
areas appear round except one on the top left. In our
result, this area is round too. In Figure 13.b the com-
parison result has a few features which might not appear
natural, in our result these were changed: the upper hand
is not connected with the hat but rather with the sleeve,
the lower hand does not have a hole in it, the shoe is
disconnected from the red area on the pants.

Sharp Corners Our method can produce results with
sharp corners. Consider Figure 13.c, in our result the tip
of the sword is pointy. In Figure 13.e the keyhole on the
chest keeps its shape and its sharp corners.

Different Styles Our method provides the possibility
for artists to come up with various styles. Figure 14 shows

7

(a)

(b)

Original Comparison Our Result 1 Our Result 2

Figure 14: Two styles of our results with comparison to
the original and results from Depixelizing Pixel Art [4].

an alternative styles of results. Figure 14.a shows an in-
vader with prolonged eyes and sharp tentacles. Figure 14
shows a keyboard with square keys and round shades in-
side of them. Note that the comparison result for the
keyboard mixes square keys in the top row with round
keys in the middle rows. Our results can achieve both
square and round keys and give the choice to the user.

6 Responsible Research
This section will go over the main aspects of responsible
research related to this paper, namely: reproducibility and
disclosure of data.

Reproducibility The method was implemented in
C++, the code is available by request to the responsi-
ble professor. Results with no user input will be identical.
Since the application works with user input throughout
the process, the results can differ. To reproduce follow
the instructions for human interference as described in
section 3 and the user annotations in the appendix.

Disclosure of Data The method proposed in this pa-
per builds upon a previous method, therefore the results
are compared to the previous method. A selected batch
is shown in the results section. A full comparison of all
results can be found in the appendix. The intended use of
the application is for artists to quickly change pixel art to
a sharper representation in vector format. Additional pur-
pose can be for computer games, however as this method
works best with user input, it must be pre-processed.

7 Discussion
This section will discuss the relevance of this paper to the
present research and its contributions. It will also address
the limitations and outline the potential future work to be
researched.

Relevance and Contribution A semi-automatic vec-
torisation of pixel art with the ability to guide the method
can be a great addition to any digital artist’s tool. An-
other use is for computer games, there are many computer
games with pixel art. The sprites could be converted to

vector art to give a game a modern feel. Moreover, while
it is not the intended use, there are many old galleries with
low-resolution raster images which would benefit from vec-
torisation as the converted vector images could be used
where higher resolution is required. A new feature our
method can achieve is a morph animation from the origi-
nal pixel art to the output vector image. Simulating the
nodes from the origin and taking a snapshot of each iter-
ation, produces an animation.

Limitations Due to the time restriction of the research
project this paper was a part of, not all features were
pursued. The nodes in the output SVG image are con-
nected by straight lines and are therefore visible. Higher
RESOLUTION parameter helps hide them. However, there
are different downsides to high node count. Since the SVG
stores positions of all nodes, the file size tends to be quite
large. A significant limitation is the lack of the gradient
feature of the previous method [4], our method compen-
sates by averaging the colours. Another limitation is the
lack of advanced GUI. Our GUI provides the ability to edit
the spring stiffness of individual nodes, but sometimes the
process is lengthy. Moreover, in some cases our method
relies on some user input and cannot be fully automatic,
this makes the process even longer.

Future work The next steps for this research are to
convert the high number of nodes into a smaller number
of curves, such as Bézier curves or B-splines. Moreover,
the curves can be replaced with standard shapes such as
circles or boxes. Additionally, the method would benefit
from more automatic features, which would pre-process
the spring stiffness, further simplifying the artists work.
Further, the UI can be improved to provide editing possi-
bilities for the shapes as a whole, the back-end implemen-
tation supports this but the GUI does not.

8 Conclusion
This paper builds upon an already efficient method of vec-
torisation of vector art and proposes an alternative solu-
tion to smoothing out the curves. The spring architec-
ture with the neighbour and origin spring forces and area
pressure force proves to be a reliable back-end with po-
tential for further research. Our method accepts various
user input and demonstrates the possibility to replicate
the results of Depixelizing Pixel Art [4]. However, the im-
plementation is lacking features to be able to operate fully
automatic. With user input the results can better fit the
artist’s vision as our method provides more options to edit
the shapes, resulting in a larger pool of attainable results.
A user-guided vectorisation through spring simulation can
produce high-quality pixel art.

References
[1] B. Wirtz, “Video games history: From magnavox

odyssey to wii, there’s no stopping the gam-
ing industry.” https://web.archive.org/web/

8

20210426234123/https://www.gamedesigning.
org/gaming/history/, 2020. [Online; accessed
3-June-2021].

[2] C. Plante, “When was super mario bros. re-
leased in the us? nobody knows!.” http:
//web.archive.org/web/20201109022733/https:
//www.theverge.com/2015/9/14/9324833/
super-mario-brothers-30th-anniversary-date,
2015. [Online; accessed 3-June-2021].

[3] D. Silber, Pixel Art for Game Developers. Boca Ra-
ton: CRC Press, 2015.

[4] J. Kopf and D. Lischinski, “Depixelizing pixel art,”
ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2011), vol. 30, no. 4, pp. 99:1 – 99:8, 2011.

[5] M. Stepin, “Hqx.” http://web.archive.org/web/
20070717064839/www.hiend3d.com/hq4x.html,
2003. [Online; accessed 3-June-2021].

[6] Spikerog, “Vectorization.org.” https://www.
vectorization.org. [Online; accessed 3-June-
2021].

[7] Adobe Inc., “Adobe illustrator.” https://adobe.
com/products/illustrator. version CC 2020
(24.1).

[8] C. L. Ventures, “Vector magic.” http:
//vectormagic.com/. [Online; accessed 3-June-
2021].

[9] S. Hoshyari, E. Alberto Dominici, A. Sheffer,
N. Carr, D. Ceylan, Z. Wang, and I.-C. Shen,
“Perception-driven semi-structured boundary vector-
ization,” ACM Transaction on Graphics, vol. 37,
no. 4, 2018.

[10] E. Alberto Dominici, N. Schertler, J. Griffin, S. Hosh-
yari, L. Sigal, and A. Sheffer, “Polyfit: Perception-
aligned vectorization of raster clip-art via intermedi-
ate polygonal fitting,” ACM Transaction on Graph-
ics, vol. 39, no. 4, 2020.

[11] G. G. Marcu and S. Abe, “New HSL and HSV color
spaces and applications,” in Imaging Sciences and
Display Technologies (J. Bares, C. T. Bartlett, P. A.
Delabastita, J. L. Encarnacao, N. V. Tabiryan, P. E.
Trahanias, and A. R. Weeks, eds.), vol. 2949, pp. 252
– 263, International Society for Optics and Photonics,
SPIE, 1997.

[12] F. Garcia-Lamont, J. Cervantes, A. López, and
L. Rodriguez, “Segmentation of images by color fea-
tures: A survey,” Neurocomputing, vol. 292, pp. 1–27,
2018.

[13] H. Garain, Utpal, Paquet, Thierry, “On foreground -
background separation in low quality document im-
ages,” International Journal of Document Analysis
and Recognition (IJDAR), vol. 8, p. 47, Feb 2006.

[14] W. Lim, “Shoelace formula: Connecting the area of
a polygon and vector cross product,” Mathematics
Teacher, vol. 110, pp. 631–636, 04 2017.

9

https://web.archive.org/web/20210426234123/https://www.gamedesigning.org/gaming/history/
http://web.archive.org/web/20201109022733/https://www.theverge.com/2015/9/14/9324833/super-mario-brothers-30th-anniversary-date
http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html
https://www.vectorization.org
https://adobe.com/products/illustrator
http://vectormagic.com/

Appendix
All Results with User Annotations

Input Image Neighbour Links Neighbour Spring
Strength

Origin Spring
Strength Our Result Depixelizing Pixel

Art Result

ABC

Bowser

Chest

Dolphin

Ghost

10

Input Image Neighbour Links Neighbour Spring
Strength

Origin Spring
Strength Our Result Depixelizing Pixel

Art Result

Invader: Style 1

Invader: Style 2

Keyboard: Style 1

Keyboard: Style 2

Mario

11

Input Image Neighbour Links Neighbour Spring
Strength

Origin Spring
Strength Our Result Depixelizing Pixel

Art Result

Help Sign

Mushroom

Salamando

Sword

Yoshi

12

