
IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004 237

Single Electron Encoded Latches and Flip-Flops
Casper Lageweg, Student Member, IEEE, Sorin Coţofană, Senior Member, IEEE, and Stamatis Vassiliadis, Fellow, IEEE

Abstract—Single electron tunneling (SET) technology offers
the ability to control the transport of individual electrons. In
this paper, we investigate single electron encoded logic (SEEL)
memory circuits, in which the Boolean logic values are encoded
as zero or one electron charges. More specifically, we focus on
the implementation of SEEL latches and flip-flops. All proposed
circuits are verified by means of simulation using the SIMulation
Of Nanostructures package. We first present a generic SEEL
linear threshold gate implementation, from which we derive
a family of Boolean logic gates. Second, we propose Boolean
gate-based implementations of the latch, the latch, and
flip-flop. Third, we propose threshold gate-based implementations
of the same memory elements. Finally, we discuss the estimated
area, delay, and power consumption of the Boolean gate-based
and threshold gate-based implementations, and compare them
with other SET-based memory elements.

Index Terms—Coulomb blockage, digital circuits, logic circuits,
single electron tunneling (SET), threshold logic circuits.

I. INTRODUCTION

I T IS WIDELY known that the ever-decreasing feature size
and the corresponding increase in the number of transistors

per millimeters squared facilitated vast improvements in semi-
conductor-based designs. It is also understood that such im-
provement will eventually come to an end. There have been
reports [1] suggesting that the MOS transistor itself cannot be
shrunk beyond certain limits dictated by its operating principle.
In order to ensure further feature size reduction, possible suc-
cessor technologies with greater scaling potential such as single
electron tunneling (SET) [2], [3] are currently under investi-
gation [4]. SET circuits are centered around tunnel junctions,
through which individual electrons can be transported in a con-
trolled manner. Our current research focuses on the implementa-
tion of (digital) logic gates and memory elements in SET tech-
nology, using the SET tunnel junction’s ability to control the
transport of individual electrons. When applying the SET tech-
nology for the design of logic circuits, two main approaches
have been suggested thus far.

The first approach is to assume that the tunnel junction op-
erates as a switch, and use it to implement the SET equivalent
of the MOS transistor [5], [6]. In this approach, charge is trans-
ported through an “open” SET transistor until the transistor’s
source and drain voltage are approximately equal. Although this
has the advantage that existing MOS transistor-based designs

Manuscript received August 7, 2003; revised December 1, 2003. This work
was supported in part by the Delft Interfacultary Research Program NanoComp.

The authors are with the Electrical Engineering Department, Delft University
of Technology, Delft, The Netherlands (e-mail: C.R.Lageweg@ewi.tudelft.nl;
S.D.Cotofana@ewi.tudelft.nl; S.Vassiliadis@ewi.tudelft.nl).

Digital Object Identifier 10.1109/TNANO.2004.828526

can easily be ported to SET technology, it does not fully uti-
lize the potential of the SET technology. The main disadvan-
tage of this design style is that the current transport though an
“open” transistor still consists of a large number of individual
electrons “dripping” through the tunnel junctions. Given that
electron tunneling is a sequential process, this is obviously a
far slower process then the transport of just one single electron
through the same junction.

The second approach, generally referred to as single electron
logic, is to encode Boolean values directly as single electron
charges. One approach in this direction, as first suggested in
[7], is based on the physical transport of the charge from one
gate to another, such that Boolean input signals consist of the
presence of absence of the arriving charge. Another approach,
as first suggested in [8], is based on scaling down the charge
transport in SET transistor-based structures to a few electrons,
and confining charge transport within individual gates. When
charge transport is scaled down to just one electron, this ap-
proach leads to single electron encoded logic (SEEL) logic gates
and memory elements, in which the Boolean logic values 0 and
1 are encoded as a net charge of zero and one electron charge
only [8]. Typically, this charge is stored on the circuit’s output
node and the resulting voltage serves as input to the next gate,
although a wireless SEEL logic family has also been suggested
[9]. Our current research focuses on the implementation of logic
gates and memory elements in SET technology that operate ac-
cording to the SEEL paradigm.

In this paper, we investigate the implementation of
SET-based SEEL memory elements. We investigate circuits
consisting of SET tunnel junctions, capacitors, and voltage
sources only, and we are primarily interested in the switching
behavior that can be accomplished with such circuits. It is well
known that the switching behavior of SET circuits is, amongst
others, influenced by fabrication-technology dependent factors
such as random background charge (charge noise). However,
there is indication (see, e.g., [3]) that these effects may reduce
or disappear entirely in the future. Therefore, and in order to
keep the presentation as much as possible SET fabrication-tech-
nology independent, we ignore their effects on the switching
behavior of circuits that we propose in this investigation. All
our proposals are verified by simulation using the SIMulation
Of Nanostructures (SIMON) simulation package [10].

The main contributions of the paper can be summarized as
follows:

• presentation of a generic linear threshold gate (LTG) im-
plementation and a family of Boolean logic gates derived
from this gate;

• SET Boolean gate-based implementations of the reset–set
(–) latch, latch, and edge-triggered flip-flop;

1536-125X/04$20.00 © 2004 IEEE

238 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004

• proposals for threshold gate-based implementations of the
same memory elements;

• estimates for area, delay, and power consumption of the
Boolean logic gates, the Boolean gate-based memory ele-
ments, and the threshold gate-based memory elements, as
well as a comparison with earlier proposals.

The remainder of this paper is organized as follows. Sec-
tion II briefly presents the SET background theory, explaining
the charge transport behavior appearing in SET circuits, as well
as introducing a model for calculating the delay and power. In
Section III, we present the generic LTG and the family of SEEL
Boolean logic gates. Section IV investigates Boolean gate-based
implementations of the – latch, latch, and edge-triggered

flip-flop. In Section V, we propose threshold gate-based im-
plementations of the same memory elements. Section VI dis-
cusses the estimated area, delay, and power consumption of
these memory elements, and compares them with earlier pro-
posals. This paper then presents some final remarks in Sec-
tion VII.

II. BACKGROUND OF SINGLE ELECTRON TUNNELING

A tunnel junction can be thought of as a leaky capacitor. The
transport of charge through a tunnel junction is referred to as
tunneling, where the transport of a single electron through a
tunnel junction is referred to as a tunnel event. Electrons are
considered to tunnel through a tunnel junction strictly one after
another. We assume that all conditions are met such that charge
quantization is observable and that tunnel events
due to thermal energy can be ignored . Under
these conditions, the critical voltage across a tunnel junction
is the voltage threshold that is needed across the tunnel junction
in order to make a tunnel event through this tunnel junction pos-
sible.

For calculating the critical voltage of a junction, we assume a
tunnel junction with a capacitance of . The remainder of the
circuit, as viewed from the tunnel junction’s perspective, has an
equivalent capacitance of . Given the approach presented in
[11], we calculate the critical voltage for the junction as

(1)

In the above equation, as well as in the remainder of this dis-
cussion, we refer to the charge of the electron as

. Strictly speaking, this is incorrect, as the charge of the
electron is, of course, negative. However, it is more intuitive to
consider as a positive constant for the formulas that determine
whether or not a tunnel event will occur. We will, of course, cor-
rect for this when we discuss the direction in which the tunnel
event takes place.

Generally speaking, if we define the voltage across a junction
as , and assuming the conditions stated above, a tunnel event
will occur through this tunnel junction if and only if

(2)

If tunnel events cannot occur in any of the circuit’s tunnel junc-
tions, i.e., for all junctions in the circuit, the circuit
is in a stable state. For our research, we only consider circuits

where a limited number of tunnel events may occur, resulting in
a stable state. Each stable state determines a new output value
resulting from the distribution of charge throughout the circuit.

The transport of an electron through a tunnel junction is a
stochastic process. This means that we cannot analyze delay in
the traditional sense. Instead, assuming a nonzero probability
for charge transport , the switching delay of a
single electron transport can be calculated based on an error
probability that the desired transport did not occur as

(3)

where is the tunnel resistance (though depending
on the physical implementation this value is typically assumed).
The error probability will determine the reliability of the
circuit. Given that the switching behavior is stochastic in nature,
the error probability cannot be reduced to zero. It is, therefore,
assumed that an error correction mechanism will be present in
the form of hardware or data redundancy in order to achieve the
desired accuracy.

When charge transport occurs through a tunnel junction, the
difference in the total amount of energy present in the circuit
before and after the tunnel event can be calculated by

(4)

Therefore, the energy consumed by a single tunnel event oc-
curring in a single tunnel junction can be calculated by taking
the absolute value of . In order to calculate the power con-
sumption of a gate, the energy consumption of each tunnel event
is multiplied by the frequency of switching. The switching fre-
quency, in turn, depends on the frequency at which the gate’s
inputs change and is input data dependent, as a new combina-
tion of inputs may or may not results in charge transport.

In addition to the switching error probability, as described
in (3), there are two fundamental phenomena that may cause
errors: thermally induced tunneling and cotunneling. Given a
maximum acceptable switching error probability, we must en-
sure that both the thermal error probability, as well as the cotun-
neling error probability are of the same order of magnitude or
less. For any temperature , there exists a nonzero prob-
ability that a tunnel event will occur through a junction (even
if). The error probability due to thermal tun-
neling can be described by a simple formula as

(5)

For a multijunction system in which a combination of tunnel
events lead to a reduction of the energy present in the entire
system, there exists a nonzero probability that those tunnel
events occur simultaneously (even if for all individual
tunnel junction involved). This phenomenon is commonly re-
ferred to as cotunneling [12], [13]. Although a detailed analysis
of cotunneling is outside the scope of this paper, we remark
that several means are available to reduce the cotunneling
error probability. First, the ratio of cotunneling rate to desired
tunneling rate can be reduced linearly by increasing the tunnel
resistance of the tunnel junctions involved in cotunneling.
The main problem of this approach is that it also linearly

LAGEWEG et al.: SINGLE ELECTRON ENCODED LATCHES AND FLIP-FLOPS 239

Fig. 1. LTG. (a) Gate symbol. (b) SET generic circuit implementation.

increases the switching delay, as stated in (3). Second, each of
the individual junctions involved in the cotunneling process
can be replaced by junctions separated by islands.
Although such an approach results in an exponential decrease
of the cotunneling probability, it also approximately results
in a linear increase in the delay time as an electron must now
tunnel through times as many junctions as before. Third,
resistors can be added between the SET circuit and supply
voltage lines, as demonstrated in [14]–[16]. This method can
reduce the cotunneling rate without significantly increasing the
delay. This is due to the fact that the delay added by a resistor is
on the scale. Thus, assuming, for example,
and F, we find that the delay added by the
resistor is s. Given that for the structures we
propose in this paper the switching delay s, the
additional delay due to the cotunneling suppressing resistors
would be negligible. Although the circuits discussed in the re-
mainder of this paper do not contain such resistors, cotunneling
suppressing resistors of appropriate value can be appended
to our designs in order to reduce the cotunneling error to the
acceptable error probability.

III. BUILDING BLOCKS FOR SINGLE ELECTRON LOGIC

When designing memory elements in SET technology, the
most straightforward implementation method is utilizing ex-
isting Boolean gate-based memory elements, as found in most
textbooks on logic design (see, e.g., [17] and [18]). Such an
approach, however, requires an SET-based family of Boolean
logic gates. Thus, we first introduce a generic threshold gate
scheme. We next present a family of Boolean logic, consisting
of AND, OR, NAND, and NOR gates, which is derived from the
generic threshold gate. The Boolean logic gates, as well as the
threshold gates themselves, serve as building block for the –
latch, latch, a flip-flop proposed in Sections IV and V.

A. Threshold Logic Gates

Threshold logic gates are devices that are able to compute any
linearly separable Boolean function given by

if
if

(6)

(7)

where are the Boolean inputs and are the corresponding
integer weights. The LTG (see Fig. 1(a) for the gate symbol)

performs a comparison between the weighted sum of the in-
puts and threshold value . If the weighted sum of
inputs is greater than or equal to the threshold, the gate pro-
duces a logic 1. Otherwise the output is a logic 0. A generic
threshold gate scheme [19], which is displayed in Fig. 1(b), has
been proposed. The circuit operates as follows. The input volt-
ages (weighted by their input capacitors) are added to

, while the input voltages (weighted by their input capac-
itors) are subtracted from . The critical voltage of the
tunnel junction acts as the threshold value. The bias voltage
weighted by its input capacitor adjusts the threshold value
to the desired value. If the voltage across the junction is less
then , no charge transport can occur and the circuit’s output
remains “low.” If , one electron tunnels through the
junction (from node to node), resulting in a “high” output.
This scheme can, therefore, be used as a basis for implementing
LTGs with both positive and negative weights.

Such threshold gates, however, do not operate correctly in
networks due to the passive nature of the circuit. It was found
[20] that augmenting the output of each threshold gate with an
SET buffer/inverter consisting of two SET transistors, as dis-
played in Fig. 2, results in correctly operating threshold gate
networks. The buffer can also function as a standalone inverter

240 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004

Fig. 2. SET buffer/inverter circuit implementation.

gate. Therefore, threshold gates can also be augmented with two
cascaded buffers, such that both the normal and inverted output
are available. Both the generic threshold gate and buffer operate
in accordance with the SEEL paradigm, i.e., charge transport
due to switching activity is limited to one electron. Note that
the buffer/inverter can be augmented with strip resistors in order
to suppress cotunneling. Referring to Fig. 2, this is achieved by
adding strip resistors between junction 1 and and between
junction 4 and ground, as suggested in [16].

The implementations proposed in this paper are intended to
be general, i.e., independent of a manufacturing process. There-
fore, we only estimate the area of circuits in terms of the number
of required circuits element. By circuit elements, we refer to
the number of capacitors and tunnel junctions required for each
implementations. In the remainder of this paper, we assume
that Boolean input/output signals correspond with the following
voltages: V, V, where
acts as a unit for capacitance. For the circuit simulations, it is
assumed that aF, resulting in mV. For
threshold gates, we assume the following circuit parameters:

, . The remaining circuit parame-
ters of the threshold gates depend on the required input weights
and threshold value of specific gates.

For the buffer/inverter, the following circuit parameter ratios
are assumed: , , ,

, , . Given the
methodology described in Section II and assuming aF,
the calculated area, delay, and energy consumption per (output)
switching of the buffer/inverter are summarized in Table I. Note
that there exists a tradeoff between the gate’s switching delay
and corresponding switching error probability. If, for example,
one chooses , the corresponding delay would be

ns.

B. Boolean Logic Gates

Given that the basic Boolean logic functions AND, OR, NAND,
and NOR can be specified in the form of (6) and (7), we can im-
plement the AND, OR, NAND, and NOR gates as instances of the
generic threshold gate circuit (displayed in Fig. 1) augmented

TABLE I
AREA, DELAY, AND POWER CONSUMPTION FOR BUFFER/INVERTER GATE

with a buffer/inverter (displayed in Fig. 2). In theory, the thresh-
olds are integer numbers. However, if the threshold, for ex-
ample, is (being an integer value), this implies that the
gates function correctly for any value in the interval

. In order to maximize robustness for variations in pa-
rameter values, we replace the threshold value by the av-
erage . The correctness of the above can easily be
verified. Consequently, the threshold equations of the two-input
AND, OR, NAND, and NOR gates can be written as

(8)

(9)

(10)

(11)

The threshold gate-based implementations of the Boolean
gates all have the same basic circuit topology (for a general
case, see Fig. 1) consisting of a bias capacitor , a tunnel junc-
tion with capacitance , and an output capacitor . The AND

and OR gates contain two input capacitors
for positively weighted inputs, while the NAND and NOR gates
contain two capacitors for negatively
weighted inputs. Additionally, each of the threshold gates is
augmented with an output buffer. Given that the buffer inverts
its input, the logic function performed by the buffered threshold
gate is the inverse of that performed by the threshold gate
itself. For example, a buffered AND gate implements the NAND

function. For the remainder of this discussion, when referring
to a logic function such as AND, we imply the logic function
performed by the entire gate (threshold gate output buffer).

For the buffered Boolean logic gates, the following circuit
parameter ratios are assumed: ,

, , ,
,

, ,
, . The circuit

parameters for the buffer are as specified in Section III-A.
The buffered Boolean gates have been verified by means of

simulation using the single electron device and circuit simu-
lator SIMON [10]. The simulation results are depicted in Fig. 3.
As can be observed, each of the gates correctly implements the
specified logic function.

Given the circuit parameters ratios for the AND, OR, NAND,
and NOR gate described above and assuming aF, we
calculated the area, delay, and energy consumption per (output)
switching of each of the gates. The combined results are sum-
marized in Table II. Note that there exists a tradeoff between the
gates’ switching delay and the corresponding switching error
probability. If, for example, one chooses for the
two-input AND gate, the corresponding delay would be

LAGEWEG et al.: SINGLE ELECTRON ENCODED LATCHES AND FLIP-FLOPS 241

Fig. 3. Simulation results for buffered two-input AND, OR, NAND, and NOR

gates.

TABLE II
AREA, DELAY, AND POWER CONSUMPTION FOR TWO-INPUT BUFFERED

AND, OR, NAND, AND NOR GATE

ns. We emphasize that these gates were neither optimized
for delay, nor for power consumption. Also, given the capacitor
ratio’s and voltage levels, which were used for the two-input
buffered Boolean gates, reducing the unit for capacitance
by one order of magnitude has the effect of reducing delay by
one order of magnitude (for a given switching error probability)
while increasing power consumption by one order of magnitude.

IV. BOOLEAN GATE-BASED MEMORY ELEMENTS

Here, we investigate Boolean gate-based implementations of
the – latch, latch, and flip-flop. Each of these imple-
mentations is based on the family of SEEL Boolean logic gates
discussed in Section III-B and is discussed in detail below.

A. – -Latch Implementation

The – latch is a memory element with two inputs (and
) and two outputs (and). The behavior of the – latch,

summarized in Table III, is as follows. If and are both zero,
the – latch holds the current output values. If and

, the output is set to (and). If
and , the output is reset to (and

). The remaining input combination should be
avoided during normal operation, as for Boolean gates-based
implementations, it typically results in unstable output values.

A Boolean gate-based implementation of the – latch usu-
ally consists of two cross-coupled gates that form a feedback
loop. An – -latch implementation based on NOR gates is de-
picted in Fig. 4. The circuit operates as follows. When and

TABLE III
FUNCTIONAL TRUTH TABLE OF THE R–S LATCH

Fig. 4. Boolean gate-based R–S-latch implementation.

are both zero, the two gates behave as chained inverters and
form a bi-stable element (where and , and

and are stable states). If while ,
the output of the upper NOR gate is forced to zero, resulting in

and (similar for and , resulting
in and). If , the output of both NOR

gates is forced to zero. If both inputs are then dropped to zero
simultaneously (forming a bi-stable element), the circuit either
switches to , or , , and may even
oscillate between these two solutions. Given that this behavior
is unpredictable, this input combination should be avoided.

A NOR gate-based – -latch implementation that consists of
the buffered Boolean logic gates discussed in Section III-B has
been verified by means of simulation (using SIMON) using the
following circuit parameters: " " V, " "

mV, aF, aF, aF,
aF, aF, aF,

aF, aF, aF. Other
simulator parameters include a tunnel resistance
and an operating temperature K. The simulation results
are depicted in Fig. 5. The first two bars represent the inputs
and , and the bottom two bars represent the outputs and

. Initially, the inputs are and , while the
outputs are and . When the input becomes
one, the outputs are set to and . These output
values are memorized when returns to zero. Likewise, when

becomes one, the outputs are reset to and ,
which is memorized when return to zero. Next, and are
both set to one, as a result of which the outputs and are
both set to zero. When and are then simultaneously set to
zero, the simulator evaluates possible tunnel events until all are
resolved, which, for this simulation, resulted in the displayed
output values and . We, therefore, conclude that
the circuit correctly implements the behavior described above
in Table III.

B. -Latch Implementation

The latch is a memory element with two inputs (and)
and two outputs (and its complement). The behavior of

242 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004

Fig. 5. Simulation results of Boolean gate-based R–S latch.

TABLE IV
FUNCTIONAL TRUTH TABLE OF THE D LATCH

Fig. 6. Boolean gate-based D-latch implementation.

the latch, summarized in Table IV, is as follows. If the input
, the latch holds the current output values. If the input
, the latch is transparent and the output follows the input

(and follows the complement of). Unlike the –
latch, the latch does not have an unspecified or forbidden
input combination.

A possible -latch implementation based on Boolean logic
gates is depicted in Fig. 6. The circuit operates as follows. The
cross-coupled NAND gates form an – latch, where

corresponds with the hold function. When , the inputs
of the – are both one regardless of the value of , and the

– latch holds its current output values. If , the inputs of
the – have complementary values, and the output becomes
follows the value of .

A -latch implementation consisting of the buffered Boolean
logic gates discussed in Section III-B has been verified by means
of simulation (using SIMON) using the following circuit pa-
rameters: " " V, " " mV,

aF, aF, aF, aF,
aF, aF, aF,
aF, aF. Other simulator parameters

Fig. 7. Simulation results of Boolean gate-based D latch.

TABLE V
FUNCTIONAL TRUTH TABLE OF THE POSITIVE EDGE-TRIGGERED D FLIP-FLOP

include a tunnel resistance and an operating tem-
perature K. Note that the inverter gate is a standalone
buffer. The simulation results are depicted in Fig. 7. The first
two bars represent the inputs and , and the bottom two bars
represent the outputs and . Initially, the inputs are
and , while the outputs are and . When

becomes one, while remains zero, the outputs remain un-
changed. Once is set to one, the output follows the values
of until is dropped to zero. At that point, the last values of

are memorized. The same can be observed when becomes
one again. We, therefore, conclude that the circuit correctly im-
plements the behavior described above in Table IV.

C. Edge-Triggered Flip-Flop Implementation

An edge-triggered flip-flop is a memory element with two
inputs (and) and two outputs (and its complement

). The behavior of the positive edge-triggered flip-flop
is as follows, and as summarized by Table V. When the input

transitions from 0 to 1 (a rising or positive edge on the time
graph), the flip-flop samples the current value of and copies
this value to the output . For all other input combinations,
including a negative-edge clock transition from 1 to 0, the circuit
holds its current output values.

A possible implementation of the positive edge-triggered
flip-flop consists of combining two latches, as depicted in
Fig. 8. The circuits works as follows. The first latch is referred
to as the master and the second one is referred to as the slave.

LAGEWEG et al.: SINGLE ELECTRON ENCODED LATCHES AND FLIP-FLOPS 243

Fig. 8. D-latch-based positive edge-triggeredD flip-flop.

Fig. 9. Boolean gate-based negative edge-triggeredD flip-flop.

When , the master latch follows , while the slave
latch holds its current output values. When becomes one,
the master latch closes (holding its current output values) and
transfers its output value to the slave latch, which is now
transparent. However, since the output of the master latch is now
constant, the slave’s output remains constant regardless of the
current value of . If then switches back to zero, the slave
latch holds its current output values. The positive edge-triggered
flip-flop can be modified into a negative edge-triggered design
by removing the first inverter in the clock path.

In Section IV-B, we discussed the Boolean gate-based
latch. Given that this -latch implementation requires four
NAND gates and two inverters, the flip-flop depicted in Fig. 8
would require a total of eight NAND gates and six inverters.
However, there are faster and smaller Boolean gate-based
implementations that specifically make use of the – -latch
“unstable” output values (such as and for
the cross-coupled NOR gate-based – latch). One such im-
plementation, realizing a negative edge-triggered flip-flop,
is based on three NOR gate-based – latches. This flip-flop
implementation requires a total of five two-input NOR gates and
one three-input NOR gate, as depicted in Fig. 9.

The negative edge-triggered flip-flop has been imple-
mented using the buffered Boolean logic gates discussed in
Section III-B. All circuit parameters of the two-input NOR

gates are equal to those used in Section IV-A to implement
the – latch. The three-input NOR gate was also derived as
an instance of the generic threshold gate (as a three-input OR

gate) and then augmented with a static inverting buffer. Given
the same methodology as described for the two-input gates in
Section III-B, we calculated (three-input NOR ,

Fig. 10. Simulation result of Boolean gate-based negative edge-triggered D
flip-flop.

while all other circuit parameters remain as used for the
two-input NOR.

We have simulated the negative edge-triggered flip-flop
circuit using the simulation package SIMON. The simulation re-
sults are displayed in Fig. 10. Starting from the top of this figure,
the first row represent the input data signal . The second row
represents the clock signal . The third and fourth bars rep-
resent the two outputs and of the flip-flop. Initially,
the inputs are and , while the outputs are

and . When the input changes to one,
the output remain unchanged. The same applied when the input

changes to one. The input is sampled for the first time
when changes back to zero (a negative-edge), resulting
in and . These output values are memorized
until is sampled again during the next negative-edge transi-
tion of , at which point the outputs become and

. We, therefore, conclude that the negative edge-trig-
gered flip-flop operates correctly, sampling the input (and
updating outputs and) only on the negative edge of the
clock signal .

V. THRESHOLD GATE-BASED MEMORY ELEMENTS

In previous sections, we have examined Boolean gate-based
implementations of the – latch, latch, and edge-triggered

flip-flop, and verified by means of simulation that they operate
according to their specified logic function. However, each of the
Boolean logic gates that were utilized for these implementations
(except for the inverter) is derived from a generic threshold gate
design. It is known that any Boolean logic function can also be
realized by a network of threshold logic gates [21]. Moreover,
when comparing the Boolean gate-based realization with the
threshold gate-based realization of the same logic function, the
thresholdgate-baseddesignhas,atmost,thesamenumberoflogic
gates and the same network depth. Here, we, therefore, discuss
threshold logic gate-based implementations of the same three
memory elements that were implemented in Boolean logic gates
in the above section: the – latch, latch, and edge-triggered

flip-flop. Each of the utilized threshold gates has been derived
from the generic threshold gate design.

244 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004

A. – Latch

In Boolean logic, the logic function of the Boolean gate-based
– -latch implementation discussed in Section IV-A can be

expressed as

(12)

(13)

Examining the Boolean gate-based – -latch implementation,
we observe the following. The input combination
that results in unstable behavior is a side effect of cross-cou-
pled NOR gate-based implementation. If we implement an –
latch without cross-coupling gates, the problem regarding the
unstable behavior will be resolved. For a Boolean gate-based
design, this would results in an increase in the number of re-
quired gates. However, for a threshold gate-based design, the
opposite occurs: an – latch can be implemented at the cost
of one threshold gate only as

(14)

(15)

We first verify that (14) and (15) correctly implement the spec-
ified function of the – latch. When , we find

(hold). When and , we find
(set). When and , we find (reset). When

, we find (hold). In all cases, the output
is the complement of . Therefore, we conclude that these

logic equations describe the behavior of an – latch without a
forbidden input combination (both and
correspond with the hold function).

Examining (14), we observe the following. A Boolean gate-
based implementation of this equation costs three two-input OR

gates and one three-input AND gate and would result in a logic
network with a depth of two. However, a threshold gate-based
implementation of this logic equation would require only one
three-input threshold gate implementing

(16)

The correctness of the above can be easily verified. Additionally,
given that , we arrive at the final form

(17)

As stated earlier, the threshold gates derived from the generic
threshold gate scheme require an output buffer for correct op-
eration in a network structure. Given that the applied buffer in-
verts its input signal, we can place two inverter/buffers in series,
such that both and its logic complement are available.
We, therefore, propose an – -latch implementation that con-
sists of a three-input threshold gate and two buffer/inverters, as
displayed in Fig. 11. The threshold logic gates-based implan-
tation has the additional advantage that it does not have a for-
bidden input combination. In this case, both and

can be used to hold the current output values.
We have verified the proposed – -latch implementation by

simulation using the single electron device and circuit simulator
SIMON [10]. Simulation results were obtained using the fol-
lowing circuit parameters for the threshold logic gate:

, ,

Fig. 11. Threshold gate-based R–S-latch implementation.

Fig. 12. Simulation results of threshold gate-based R–S latch.

, , . For the buffer/inverter, the
following circuit parameters were used: aF,

aF, aF, aF,
aF. Other simulator parameters include a tunnel resis-

tance and an operating temperature K.
The simulation results are displayed in Fig. 12. Initially, the in-
puts are and , while the outputs are and

. When the input becomes one, the outputs are set to
and . These output values are memorized when

returns to zero. Likewise, when becomes one, the outputs
are reset to and , which is memorized when

return to zero. Next, and are both set to one, as a result
of which the outputs and remain unchanged as this input
combination now also corresponds with the hold function. Like-
wise, when and are simultaneously set to zero, the output
also remain unchanged. We, therefore, conclude that the circuit
correctly implements the behavior of the – latch without the
additional disadvantage of unstable behavior.

B. Latch

In Boolean logic, the logic function of the Boolean gate-based
-latch implementation (see Section IV-B) can be expressed as

(18)

(19)

The above equations can easily be verified. If , then (18)
becomes (hold). If , then (18) becomes

(transparent). In all cases, the output is the
complement of .

Examining (18) in detail, we observe that this equation (in the
form of) cannot be implemented by a single
threshold gate. A single threshold gate can only make a linear
separation between points in the input space. Fig. 13 depicts the
set of possible input combinations for as a cube. The

LAGEWEG et al.: SINGLE ELECTRON ENCODED LATCHES AND FLIP-FLOPS 245

Fig. 13. Solution space of Y = A � B + A � C .

combinations that result in are displayed as solution
points. In order to be a linearly separable solution space, all
solution points should be separable from the remaining points
by a single plane. As this cannot be realized, functions in the
form of cannot be implemented by a single
threshold gate.

Given that at least two threshold gates are required to imple-
ment the logic function stated in (18), we split this equation in
two parts, which each can be implemented as a single threshold
gate as

(20)

(21)

One can verify the validity of this by straightforward substi-
tution. Each of these two equations can now be specified as a
single threshold equation

(22)

(23)

The conversion of the Boolean logic equations into their
threshold logic counterparts can be verified as follows. The first
equation only results in when both and are one and,
thus, implements a Boolean logic AND. Likewise, the second
equation only results in when or when both

and are one. As stated earlier, the threshold gates derived
from the generic threshold gate scheme require an output buffer
for correct operation in a network structure. Given that the
applied buffer inverts its input signal, we modify the threshold
equation of such that it calculates .
In this way, the combined result of the threshold gate and its
buffer/inverter is a buffered gate that calculates . Thus, we
propose the -latch implementation depicted in Fig. 14.

We have verified the proposed -latch implementation by
simulation. For , we used the following circuit parameters:

, ,
, . For , we used ,

, ,
, , and . For the buffer/inverter,

the same circuit parameters were utilized as in Section V-A. The
simulation results are displayed in Fig. 15. As can be observed,
the output follows , while , and retains its last value
while , thus correctly implementing the latch.

C. Edge-Triggered Flip-Flop

A common implementation of an edge-triggered flip-flop
is a cascade of two latches, as depicted in Fig. 8, such that the
output of the first latch serves as the input of the second
latch. The input of the first latch is connected to ,
while the input of the second latch is connected directly to

Fig. 14. D-latch implementation.

Fig. 15. Simulation results of threshold gate-based D latch.

. This results in a positive edge-triggered flip-flop. Note
that a negative edge-triggered flip-flop can be implemented
by exchanging the input connections of the two latches.

Examining Fig. 8, we observe that the input signal of the
first latch operates on the inverted clock signal .
If we adjust the threshold-based implementation of the latch
such that it implements the Boolean function

instead of the function specified by (18), we require one
less inverter block. The resulting threshold gate-based equations
are

(24)

(25)

Given that for threshold equations , one can verify
the correctness of the above equations. As the applied buffer
inverts its input signal, we again modify the threshold equation
of such that it calculates . In this way,
the combined result of the threshold gate and its buffer/inverter
is a buffered gate that calculates . Resulting, we propose the
threshold logic gate-based positive edge-triggered flip-flop
implementation depicted in Fig. 16. Note that is the output
of the first latch.

We have verified the proposed flip-flop implementation
by simulation using the SIMON simulator. For , we used
the following circuit parameters: ,

, , , . For
, we used , ,

, , and .
The circuit parameters for and , as well as those of the
buffer/inverter, are equal to those used for the latch described
in Section V-B. The simulation results are displayed in Fig. 17.
The output of the first latch is only displayed for refer-
ence. Initially, the output is zero. The first rising edge of
samples , resulting in . This value is retained until
the second rising edge samples , resulting in .

246 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004

Fig. 16. Positive edge-triggered D flip-flop implementation.

Fig. 17. Simulation results of threshold gate-based positive edge-triggeredD
flip-flop.

VI. DISCUSSION

Here, we present the estimated area, delay, and switching en-
ergy consumption of the memory element implementations dis-
cussed in Sections IV and V. The estimated total area of the im-
plementations is expressed in circuit elements (capacitors and
junctions). Given our aim to remain fabrication-technology in-
dependent, we cannot estimate the exact layout dimensions. As
such, the estimated area only serves as a comparison metric of
the different implementations.

The estimates for switching delay and energy consumption
strongly depend on the chosen unit capacitance . In this paper,
we assume a unit capacitance aF. Although this choice
is arbitrary, it is a commonly assumed value that is also used
in other publications on SET-based logic (see, for example,
[22]). There is also a tradeoff between the switching delay and
corresponding switching error probability. When, for example,
a larger switching error probability is acceptable or a smaller
unit capacitance is selected, the delay of the individual Boolean
and threshold logic gates can be dramatically reduced. The
switching delay as a function of the switching error probability

is depicted in Fig. 18(a). Note that the gate delay has
been normalized for the error probability .
Likewise, Fig. 18(b) depicts the switching delay as a function
of the unit capacitance and is normalized for F.
From Fig. 18(a) and (b), one can, for example, deduce that,
compared to the normalized values, choosing
and aF results in .

We can estimate the area, switching delay, and switching en-
ergy consumption of the Boolean gate-based memory element
implementations discussed in Section IV by adding the results
obtained for the individual gates. The area, switching delay,
and switching energy consumption of the inverter gate and the
two-input buffered Boolean logic gates are presented in Table sI
and II, respectively. Given this approach, the obtained results
for the Boolean gate-based implementations are presented in
Table VI. For the threshold gate-based implementations, a sim-
ilar approach is applied. We first calculate the area, switching
delay, and switching energy consumption of the individual
threshold gates (using the same methodology as applied for the
Boolean gates). We then add the results of the individual gates
in order to obtain the area delay and power consumption of the
threshold gate-based implementations, which are presented in
Table VII. The delay calculations of the – latch and latch
are based on the critical path from the inputs to the output. The
delay calculations of the flip-flop are based on the critical
path from the clock input to the outputs. The switching
energy calculations are based on all individual gates of the
memory elements switching their output values.

When comparing the Boolean and threshold gate-based im-
plementations of the individual memory elements, we observe
the following. The threshold logic-based implementations of
the three memory elements each require less circuit elements
to implement then their Boolean gate-based counterparts. Also,
the threshold gate-based implementations result in less delay,
while still consuming less power then their Boolean counter-
parts. This, in general, suggests that, for SEEL, threshold gate-
based implementations of logic circuit are a promising alterna-
tive to Boolean gate-based implementations.

As stated earlier in Section II, in addition to the switching
error probability, there are two fundamental phenomena that
may cause errors: thermally induced tunneling and cotunneling.
Given a maximum acceptable switching error probability, we
must ensure that both the thermal error probability, as well as the
cotunneling error probability, are of the same order of magni-
tude or less. The thermal error probability is a function of the op-
erating temperature and the energy per switching event .
Given our choice for the unit capacitance , we find
that eV for each individual gate. Assuming,
for example, a maximum acceptable thermal error probability

, we find a maximum operating temperature
K. This suggests that, for room-temperature operation,

we require at least F, as well as further design opti-
mizations. Likewise, we must ensure that the cotunneling error
probability is or less. Given the experimental results
with strip resistors reported in [16], we can assume that a strip
resistor is sufficient to achieve this accuracy. The
addition of such a strip resistor would not result in a significant
increase of the delay. Given our choice of circuit parameters and
assuming an ideal resistor, the capacitive load in parallel with
the strip resistor is of F. Hence, the added delay
would only be s. We can, therefore, assume
that delay added by the strip resistor can be neglected.

Earlier proposals for SET-based memory elements can be
divided in two main categories. The first category consists of
memory cell designs based on the quantum dot or floating gate

LAGEWEG et al.: SINGLE ELECTRON ENCODED LATCHES AND FLIP-FLOPS 247

Fig. 18. Normalized gate delay: (a) versus error probability and (b) versus unit capacitance.

TABLE VI
AREA, DELAY, AND POWER CONSUMPTION OF BOOLEAN

GATE-BASED IMPLEMENTATIONS

TABLE VII
AREA, DELAY, AND POWER OF THRESHOLD GATES-BASED IMPLEMENTATIONS

principle (see, for example, [23]–[25]). Most designs can be
thought of as a three-terminal device. The gate terminal can
be utilized to tunnel charge to or from the quantum dot. The
presence or absence of this charge changes the conductivity be-
tween the source and drain connection. These designs typically
transport larger amounts of charge, require a reset (dynamic
memory), and require signal amplification. Such designs are in-
tended for large-scale memory arrays, such as dynamic random
access memory (DRAM), and cannot be compared with the pro-
posed memory elements. The second category is based on mul-
tiple tunnel junctions (MTJs) (see, for example, [26]–[28]). An
MTJ consists of a chain of tunnel junctions and can be through
of as a two-terminal device. MTJ designs typically operate on a
three-phased control input. If the control input is set to “enable,”
the data input determines if charge transport occurs through the
first junction of the MTJ. If charge transport does occur, it re-
sults in a chain of tunnel events, until the charge has been trans-
ported through all junctions. Once the charge transport sequence
has been completed, the control input can switch to a “mem-
orize” voltage (commonly 0 V) and no further charge trans-
port can occur. The control signal must switch a “reset” voltage

in order to reset the MTJ after each utilization. Charge trans-
port through the MTJ can also be limited to one electron, re-
alizing single electron memory. A delay of 10 ns has been re-
ported for an MTJ-based DRAM cell with similar sized capac-
itors as applied in our examples [27]. An MTJ-based majority
gate with an “enable” duration of 3.7 ns and a logic cycle time
of 15–20 ns has also been reported [22]. Comparing MTJ-based
proposals with our proposals, we can conclude the following.
The MTJ-based design require a comparable number of circuit
elements (ten elements for a two-input majority gate [22] versus
14 elements for a two-input Boolean or threshold gate). How-
ever, MTJ-based designs require more complicated control logic
(three control voltage levels versus a single dc voltage) then our
designs. Finally, the proposed threshold gate-based memory el-
ements have less delay then reported MTJ-based designs, while
realizing more complex functionality (latch and flip-flop versus
DRAM cell and majority gate).

VII. CONCLUSIONS

SET technology offers the ability to control the transport of
individual electrons. In this paper, we have investigated SEEL
memory circuits in which the Boolean logic values are encoded
as zero or one electron charges. More specifically, we focused
on the implementation of SEEL latches and flip-flops. All
proposed circuits were verified by means of simulation using
the simulation package SIMON. We first presented a generic
SEEL LTG implementation from which we derived a family of
Boolean logic gates. Second, we proposed Boolean gate-based
implementations of the – latch, -latch, and flip-flop.
Third, we proposed threshold gate-based implementations
of the same memory elements. Finally, we discusses the
estimated area, delay, and power consumption of the Boolean
and threshold gate-based implementations, and compared them
with other SET-based memory elements.

ACKNOWLEDGMENT

The authors would like to thank Prof. Y. V. Nazarov for useful
discussions, as well as the anonymous reviewers of this paper’s
manuscript.

248 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 2, JUNE 2004

REFERENCES

[1] Y. Taur, D. A. Buchanan, W. Chen, D. Frank, K. Ismail, S. Lo, G. Sai-Ha-
lasz, R. Viswanathan, H. Wann, S. Wind, and H. Wong, “CMOS scaling
into the nanometer regime,” Proc. IEEE, vol. 85, pp. 486–504, Apr.
1997.

[2] A. Korotkov, “Single-electron logic and memory devices,” Int. J. Elec-
tron., vol. 86, no. 5, pp. 511–547, 1999.

[3] K. Likharev, “Single-electron devices and their applications,” Proc.
IEEE, vol. 87, pp. 606–632, Apr. 1999.

[4] “Technology roadmap for nanoelectronics,”, [Online]. Available:
http://www.cordis.lu/esprit/src/melna-rm.htm, published on the Internet
by the Microelectronics Advanced Research Initiative (MELARI
NANO), a European Commission (EC) Information Society Technolo-
gies (IST) program on Future and Emerging Technologies, 1999.

[5] A. Korotkov, R. Chen, and K. Likharev, “Possible performance of ca-
pacitively coupled single-electron transistors in digital circuits,” J. Appl.
Phys., vol. 78, pp. 2520–2530, Aug. 1995.

[6] J. R. Tucker, “Complementary digital logic based on the “Coulomb
blockade”,” J. Appl. Phys., vol. 72, no. 9, pp. 4399–4413, Nov. 1992.

[7] K. K. Likharev and V. Semenov, “Possible logic circuits based on the
correlated single-electron tunneling in ultrasmall junctions,” in Int. Su-
perconductive Conf. Extended Abstracts, 1987, p. 182.

[8] Y. N. Nazarov and S. V. Vyshenskii, “SET circuits for digital appli-
cations,” in Single-Electron Tunneling and Mesoscopic Devices. ser.
Electron. Photon., H. Koch and H. Lubbig, Eds. Berlin, Germany:
Springer-Verlag, 1992, vol. 31, pp. 61–66.

[9] A. Korotkov and K. Likharev, “Single-electron-parametron-based logic
devices,” J. Appl. Phys., vol. 84, no. 11, pp. 6114–6126, Dec. 1998.

[10] C. Wasshuber, H. Kosina, and S. Selberherr, “SIMON—A simulator
for single-electron tunnel devices and circuits,” IEEE Trans. Computer-
Aided Design, vol. 16, pp. 937–944, Sept. 1997.

[11] C. Wasshuber, “About single-electron devices and circuits,” Ph.D. dis-
sertation, Elect. Eng. Dept., Tech. Univ. Vienna, Vienna, Austria, 1998.

[12] D. V. Averin and A. A. Odintsov, “Macroscopic quantum tunneling of
the electric charge in small tunnel junctions,” Phys. Lett. A, vol. 140, no.
5, pp. 251–257, Sept. 1989.

[13] D. V. Averin and Y. V. Nazarov, “Virtual electron diffusion during
quantum tunneling of the electric charge,” Phys. Rev. Lett., vol. 65, no.
19, pp. 2446–2449, Nov. 1990.

[14] S. V. Lotkhov, H. Zangerle, A. B. Zorin, and J. Niemeyer, “Storage capa-
bilities of a four-junction single-electron trap with an on-chip resistor,”
Appl. Phys. Lett., vol. 75, no. 17, pp. 2665–2667, Oct. 1999.

[15] A. B. Zorin, S. V. Lotkhov, H. Zangerle, and J. Niemeyer, “Coulomb
blockade and cotunneling in single electron circuits with on-chip resis-
tors: Toward the implementation of the R pump,” J. Appl. Phys., vol. 88,
no. 5, pp. 2665–2670, Sept. 2000.

[16] S. V. Lotkhov, S. A. Bogoslovsky, A. B. Zorin, and J. Niemeyer, “Op-
eration of a three-junction single-electron pump with on-chip resistors,”
Appl. Phys. Lett., vol. 78, no. 7, pp. 946–948, Feb. 2001.

[17] R. Katz, Contemporary Logic Design. Redwood City, CA: Ben-
jamin/Cummings, 1994.

[18] J. Wakerly, Digital Design: Principles and Practices, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2001.

[19] C. Lageweg, S. Coţfană, and S. Vassiliadis, “A linear threshold gate im-
plementation in single electron technology,” in IEEE Computer Society
VLSI Workshop, Apr. 2001, pp. 93–98.

[20] , “Static buffered SET based logic gates,” in 2nd IEEE Nanotech-
nology Conf., Aug. 2002, pp. 491–494.

[21] S. Muroga, Threshold Logic and Its Applications. New York: Wiley,
1971.

[22] T. Oya, T. Asai, T. Asai, T. Fukui, and Y. Amemiya, “A majority-logic
device using and irreversible single-electron box,” IEEE Trans. Nan-
otechnol., vol. 2, pp. 15–22, Mar. 2003.

[23] S. Banerjee, S. Huang, and S. Oda, “Operation of nanocrystalline-sil-
icon-based few-electron memory devices in the light of electron storage,
ejection and lifetime characteristics,” IEEE Trans. Nanotechnol., vol. 2,
pp. 88–92, June 2003.

[24] K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T.
Kobayashi, T. Kure, and K. Seki, “Single-electron memory for
giga-to-tera bit storage,” Proc. IEEE, vol. 87, pp. 633–651, Apr. 1999.

[25] L. Guo, E. Leobandung, and S. Chou, “A silicon single-electron tran-
sistor memory operating at room temperature,” Science, vol. 275, pp.
649–651, 1997.

[26] I. Karafyllidis, “Design and simulation of a single-electron random-ac-
cess memory array,” IEEE Trans. Circuits Syst. I, vol. 49, pp.
1370–1375, Sept. 2002.

[27] Z. Durrani, A. Irvine, and H. Ahmed, “Coulomb blockade memory
using integrated single-electron transistor/metal–oxide–semiconductor
transistor gain cells,” IEEE Trans. Electron Devices, vol. 47, pp.
2334–2339, Dec. 2000.

[28] K. Katayama, H. Mizuta, H. Muller, D. Williams, and K. Nakazato, “De-
sign and analysis of high-speed random access memory with coulomb
blockade charge confinement,” IEEE Trans. Electron Devices, vol. 46,
pp. 2210–2216, Nov. 1999.

Casper Lageweg (S’00) was born in Haarlem, The
Netherlands. He received the M.Sc. degree in elec-
trical engineering from the Delft University of Tech-
nology (T.U. Delft), Delft, The Netherlands, in 1998,
and is currently working toward the Ph.D. degree in
computer engineering ath T.U. Delft.

He was with Hewlett-Packard Laboratories,
Bristol, U.K. He is currently with the Computer
Engineering Laboratory, T.U. Delft. His research
interests include nanotechnology, nanoelectronics,
SET, logic design, computer arithmetic, computer

architecture, integrated circuits, and physical design.

Sorin Coţofană (M’97–SM’00) was born in Mizil,
Romania. He received the M.S. degree in computer
science from the Politehnica University of Bucharest,
Bucharest, Romania, in 1984, and the Ph.D. degree in
electrical engineering from Delft University of Tech-
nology (T.U. Delft), Delft, The Netherlands, in 1998.

For a decade, he was with the Research and
Development Institute for Electronic Components
(ICCE), Bucharest, Romania, where he was involved
with structured design of digital systems, design
rule checking of integrated-circuit layout, logic

and mixed-mode simulation of electronic circuits, testability analysis, and
image processing. He is currently an Associate Professor with the Electrical
Engineering Department, T. U. Delft. His research interests include com-
puter arithmetic, parallel architectures, embedded systems, nanotechnology,
reconfigurable computing neural networks, computational geometry, and
computer-aided design.

Stamatis Vassiliadis (M’86–S’92–F’97) was born in
Manolates, Samos, Greece.

He is currently a Chair Professor with the Elec-
trical Engineering Department, Delft University of
Technology (T.U. Delft), Delft, The Netherlands. He
has also served on the electrical engineering facul-
ties of Cornell University, Ithaca, NY, and the State
University of New York (SUNY), Binghamton, NY.
For a decade, he was with the Advanced Worksta-
tions and Systems Laboratory, IBM, Austin TX, the
Mid-Hudson Valley Laboratory, Poughkeepsie, NY,

and the Glendale Laboratory, Endicott, NY. While with IBM, he was involved in
numerous projects regarding computer design, organizations, and architectures
and the leadership to advanced research projects. A number of his design and
implementation proposals have been implemented in commercially available
systems and processors including the IBM 9370 model 60 computer system,
the IBM POWER II, the IBM AS/400 models 400, 500, and 510, Server models
40S and 50S, the IBM AS/400 Advanced 36, and the IBM S/390 G4 and G5
computer systems. Six of his patents have been rated with the highest patent
ranking at IBM, and in 1990, he was awarded the highest number of patents
at IBM (70). His research interests include computer architecture, embedded
systems, hardware design and functional testing of computer systems, parallel
processors, computer arithmetic, neural networks, fuzzy logic and systems, and
software engineering.

Dr. Vassiliadis is a member of the IEEE Computer Society. He was the re-
cipient of numerous awards including 24 levels of Publication Achievement
Awards, 15 levels of Invention Achievement Awards, and an Outstanding In-
novation Award for Engineering/Scientific Hardware Design in 1989.

