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Abstract

Complex quantum systems, such as a quantum computer, will always be coupled in
some way to the environment. This can cause what’s called decoherence, a destruc-
tive process by which information is lost from the system into the environment. In
this bachelor thesis paper, we discuss decoherence-free subspaces within networks
of coupled quantum harmonic oscillators (or QHOs). We investigate where such
noiseless subspaces (or NSs) occur most frequently in an ensemble of Erdos-Renyi
networks, for which we do not yet consider the influence of the bath. We then
proceed by adding the bath into the equation, using some of the theory of open
quantum systems. Specifically, we derive the Lindblad master equation and show
its form for the case of our networks. Consequently, we simulate the behavior of the
moments of the position operators for the graphs with 3 nodes, both by means of
the full Lindblad equation, and by first tracing out those moments to obtain their
differential equations. We compare those two results to each other, and also look
back to the situation before adding the bath to see if the NSs are still present.
From the results of the simulations, we can conclude several things. Firstly, we
see that for ensembles with probability of connection p very close to either 0 or 1,
both to number of noiseless modes and the probability of finding at least one is
largest. This is credited to their relatively high degrees of symmetry. Secondly, in
the results of the density matrix and moment simulations, we see that, indeed, the
noiseless modes are preserved when considering the influence of the bath. Further-
more, we can conclude that simulation of the density matrix for the case of coupled
QHOs in a network is in many cases not stable; the cutoff at a finite level s needed
to simulate an otherwise infinite-dimensional operator leads to non-positivity of the
density matrix. Therefore, it is best to simulate the moments from their respective
differential equations, as opposed to the full Lindblad master equation. Finally, the
differential equations for the moments and their solutions show that there are indeed
noiseless clusters for eigenmodes perpendicular to the center of mass, as predicted.
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1 Introduction

Over the last few decades, the quantum computer has become an increasingly in-
teresting topic, thanks to the prospect of quick factorization algorithms like Shor’s
algorithm [1]. But there are still some problems that must be overcome before quan-
tum computers can be made [2], one of those being the problem of decoherence.
Decoherence is (naturally) the loss of coherence which, in turn, is when different
states in the system are in a definite phase relation to each other [3]. Normally,
quantum systems evolve in a unitary way, but decoherence can cause the system
(when viewed on its own) to evolve non-unitarily [4]. Decoherence happens when a
quantum system is embedded within an environment, which is typically the case for
all real applications. So our goal in this paper will be to investigate when such sys-
tems can stay coherent; specifically, we will investigate networks of coupled QHOs
(quantum harmonic oscillators) which are embedded in a bath of infinitely many
QHOs.

We will first look at the properties of a few simple networks of coupled QHOs,
for which we consider the environment to act on each node identically, and use this
approach to find in which type of network we can find such "noiseless clusters” the
most abundantly. However, since realistic quantum systems always entail some form
of dissipation when coupled to the environment, we need to look at these networks
from the perspective of the theory of open quantum systems. What this means is
that we will use the Lindblad master equation, which we will derive in the general
case, and we will look at its form when applied to the networks that we want to
investigate. We will then simulate the moments of the position operators as functions
of time in two separate ways: by simulating the Lindblad master equation on the
one hand, and by first finding differential equations for the moments and solving
those on the other hand. We will compare the results of these two approaches to
see if they match up.

The conclusion is that the simple approach, where we find differential equations
for the moments and solve those, gives better results than the full simulation of
the Lindblad master equation. This is a consequence of the cutoff at finitely many
levels of the QHOs, which likely results in coefficients which do not guarantee the
positivity of the density matrix. There are general constraints on those coefficients,
according to [5]; apparently, those conditions were not satisfied for this simulation.
Furthermore, we conclude from these simulations that the noiseless clusters for N =
3 are preserved when adding the dissipation of a heat bath.



2 Noiseless Clusters

The theory of this paper is based on the application of the theory of open quantum
systems to networks. We will first investigate networks in a setting where do not yet
explicitly consider the heat bath; this we will do in section 3. Specifically, we will
be looking at Erdos-Rényi graphs, which are a type of random graph with N nodes
which are connected with a probability of p. Examples of such networks can be
seen in the next section. In those networks we will apply the following Hamiltonian
which can also be found in [6]:

Z (w2 + 2k,,) ZZ)‘” — 0ij) (2.1)

=1 j=1

N)I»—t

This Hamiltonian is a sum of N harmonic oscillators and an interaction term.
Here we have p; and ¢; represent the momentum and position operators of node ¢ of
the graph; w; is the normal frequency of each individual node. The );; are the ele-
ments of the adjacency matrix of the graph, and the 0;; is just the Kronecker delta.
Finally, the k,, is a constant which is chosen in such a way that the whole Hamilto-
nian becomes positive-definite. A sufficient condition for this choice of k,, is slightly

larger than the maximum sum of couplings of any node (that is, max; (Z ;i Aij );

this results from the strict diagonal dominance criterion for positive definiteness.
So, the Hamiltonian consists of a diagonal term and the adjacency matrix.

We will assume that all the nodes are coupled in the same way to the same bath,
from which we can and will later derive that the bath acts on the center of mass,
Gem = .M | G, This means that if we find an eigenvector v = (v1,...v,) of the
Hamiltonian which are orthogonal to §.,, that is, ZN

n—1 Un = 0, then we have found
a noiseless cluster.

2.1 The case N =3

How do we find such noiseless clusters? By diagonalizing the Hamiltonian. We will
often make this assumption, that w; = w,Vi € {1,..., N}, since if every node has the
same base frequency, we only need to diagonalize the adjacency matrix, as the other
terms are already diagonal. It might be enlightening to look at this hamiltonian in
its quadratic form:

1
H== (p p+q" (W +2kn)q) + ¢ Ag

Here, A is the adJacency matrix, containing the A;;. We will look at a small
example to see how we can find noiseless clusters, in the case where N = 3. In
that case we have two options: a straight line or chain which we will call ms, and a
triangle which we will call m3. A graphical depiction is shown in figure 1.

The adjacency matrices are:

Ay =

o = O
_ O
S = O
=
w
|
_ _ o
— O
O =



(a)
(b)
Figure 1: Graphical depiction of my (a) and ms (b)

The diagonalization of these matrices can be done by hand, and for ms results
in the the eigenvectors (1,0, —1), (1, —v/2,1) and (1,v/2,1). In matrix form, they
are (after normalizing the eigenvectors):

1 V2 1
-7:m2 - \/§ 0 _\/§
1 V2 1

Of these, only ‘/75(1, 0, —1) represents a noiseless subsystem, since only that one
adds to 0.

On the other hand, A3 is a special case of a very interesting type of adjacency
matrices, namely the set of Laplacian matrices. Those are matrices whose rows (and
in this case by symmetry of the adjacency matrix also whose columns) add up to
the same number. This means that ¢.,, is an eigenvector of the matrix. This in turn
leads to the conclusion that all other eigenvectors are perpendicular to the center of
mass, so that there are automatically N — 1 noiseless subsystems.

It is now easy to see that As is indeed a Laplacian matrix, and so there are
2 noiseless subsystems. In fact, they are (1,—1,0) and (0,1,—1) or any linear
combination of these two.

2.2 More general cases

We want to get a better view of the proportion of noiseless clusters and its de-
pendence on the network topology (N and p). To this end, a simulation was run
to generate Erdos-Renyi networks and analyze them. An Erdos-Renyi network is a
type of random graph with node count N, and a probability of connection p for each
possible connection (for each set of two nodes). Thus for each N and p we create a
statistical ensemble G(N,p). Such a network can be connected (that is, consisting
of only one component) with a certain probability P.,.,(N,p), which is increasing
in p, and steepest at p. = In(N)/N [6]. In the simulation, the adjacency matrix was
diagonalized and the noiseless clusters (if present) were counted for N = 3, ..., 30,
and p attaining 75 equidistant points between 0 and 1. The result of this simulation
is shown in figure 2. All images were created with the use of Matplotlib [7].

You will notice that this figure closely resembles the one in [6]. So what can be
seen in this image? One thing that is apparent is the tendency for noiseless clusters
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Figure 2: The fraction of noiseless subsystems out of the total (b) and the
probability to find at least one noiseless subsystem (a), depending on the number of
nodes in the network N and the probability of connection p. The green line in (b)
corresponds to p. = In(N)/N, the line along which the slope of the function P.,u,

18 steepest.

to be located in either high or low probability regions. For low p, this results from
a high probability of finding small clusters like the ones for N = 3 that we saw, and
both of those had a noiseless subsystem.



3 The Lindblad master Equation

Up until now, we've considered the adjacency matrix and its eigenvectors to see
if we can find eigenvectors that sum up to 0; the noiseless eigenvectors. But this
is a rather simple view of the matter; we would like to go a bit more in-depth by
considering how exactly the bath acts on the system. To do this, we need what is
called the Lindblad master Equation. It looks like this:

d/;_it) — ilH, p(1)] — iZiFn([Qn, (P p(O)}] = [Pas { Q. p()}])

#0, (100 [Qupl0)] = gl Proplel]) (3.1

We want to derive this equation; the meaning of all these symbols will become
clear through the process of derivation. This derivation will follow [8] and [9]. To
do so, we need to understand how open quantum systems work in general. Let
us start from the ground up, beginning with the basics of quantum mechanics (a
short review), an overview of density matrices, completely positive trace-preserving
(CPT) maps, and finally the derivation of the Lindblad equation.

3.1 Basics

We’re working in a Hilbert space, as always in quantum mechanics, and we denote
it by H. In this Hilbert space we have our kets: [¢) € H. Every ket has a bra, its
dual vector: (¢|. Together they form the scalar (inner) product: (¢|¢) € C.

We have operators which can act on the kets, and we have a notation for the space
of bounded operators: B : H — H. We have a very special type of operator in this
space, namely those formed by an outer product: |¢)(¢|, with (|1)(¢])p = (p|p)|?).
When it comes to operators, there are a few concepts that we care about:

e Hermitian conjugate: for an operator A, its Hermitian conjugate is AT such

that (AT¢|y) = (¢|Ay) for any |¢) and |¢)).

e Unitary operators: an operator U is unitary if UUT = UTU = 1, the identity
operator.

e Hermitian operators: an operator H is Hermitian if H' = H.

e Positivity: an operator P is positive, and we write P > 0 like one might
expect, if Vi) € H we have (¢|Ply) > 0.

e Commutators and anti-commutators: in quantum mechanics, we often make
use of the following two operations on operators, namely the commutator

[A, B] = AB — BA and the anti-commutator {A, B} = AB+ BA. If A and B
commute, these are equal to 0 and 2AB, respectively.



e Trace: for an operator A, we can find its trace Tr[A] by looking at it in a
certain basis and adding the diagonal elements of the matrix representation in
that basis. The choice of basis doesn’t matter; this we will see this next.

The last one we will look at and describe in a bit more detail, as we will need it
plenty of times. The trace has the following properties:

e The cyclic property: for any two operators P, P, € H, the cyclic property
says that TI'[Plpg] = TI'[PQPl].

e Basis invariance: the trace is independent of the choice of basis with which
we determine the matrix representation. This is pretty important to have a
well-defined trace.

We will prove both of these statements:

Proof. In both cases, take a basis [1),...,|n); let’s denote the matrix representation
of A and B by the same letters:

Al Bl
A:[al an}: ,B:[bl bn]: .

e We will actually calculate Tr[ BT A]:
i,J
_ZA Bl => ( j|ABT|j> Tr[AB"]
j

The second formulation follows quite trivially from the first.

e Let B be the change of basis operator, we can derive that Tr[BAB™!| =
Tr[B~'BA] = Tr[A], so that indeed our choice of basis doesn’t matter.

3.2 Density matrices

With this information refreshed, we will jump onwards to density matrices. A
density matrix is used to describe mixed states; let us examine n states [¢1), ..., [¢,)
which each occur with probability p; respectively. Then we define the density matrix
as follows:

p= sz|¢z><¢z| (3.2)

The density matrix has two very interesting properties, which we will see more
of later:



e Unit trace: Tr[p] = 1. To see this, calculate the trace in the [¢), basis:
Trlp] = >, (Wjlply) = 225 2, pilwi|a) (Yilwby) = >, pi = 1 by orthonormality

and because the probabilities must add to one.

e Hermitian: the density matrix is Hermitian; this follows from the fact that

(i) (Wal)" = @l i) = 90} (8.

e Positivity: the density matrix is positive-semidefinite (and so the correspond-
ing density operator is positive). This follows directly from the definition
(equation 3.2); to see this, just multiply on the right by [;).

The density matrix can also be used to calculate the expectation values of oper-
ators. For a given operator A, the expectation value is given by
(4) = Tr[Ay] (3.3)

This we will not derive (although it isn’t so difficult); instead, we will move
forwards by seeing how the density matrix combines with the Schrodinger equation
to get the Von Neumann equation. The Schrodinger equation is as follows:

d
ih=—[¥(1)) = H[(2)) (3.4)

From now on we will choose the units in such a way as to make h = 1. We can
then combine the two equations to find an expression for the derivative of p:

p= o Lot 1) D00) = S ol - o)

7

— —i(Hp— pH) = —i[H, p] (3.5)

Where we used (amongst other things) the fact that H is Hermitian. This
equation is called the Von Neumann equation. Now we want to apply this equation
to a system with its environment. To achieve that we describe our full Hamiltonian
in terms of tensor products. If we have N subsystems (N nodes) then the full
Hamiltonian is given by

H=HI9H, 1 ®...0HN

In a similar way, the full density matrix for N mixed states is given by p =
p1®...R py. We also define the partial trace. In the case of two nodes a and b
with density matrices p, and py:

Trp[pa @ po] = pa Tt pp = pa

In this way we can regain the density matrix of a single system from the combined
density matrix of many systems. More generally, the partial trace is defined as

Z Cijkz|bk><bl|]

Try, Z cijrilai)(aj| @ |bg) (i ] Z|aZ (a;| Tr

,5,k,1



3.3 CPT-maps

We must define yet another concept: that of CPT-maps. This stands for Completely
Positive, Trace-preserving Maps. This is because we want to know which types of
maps will preserve the properties of a density matrix (unit trace, positivity, and
Hermicity). Firstly, we should know what a positive map is:

Definition 3.1. A map V is positive if VA€ B(H): A>0 = VA >0.

The properties of a CPT-map are then as follows:
e Trace-preserving: V is trace-preserving if Tr[VA] = Tr[A],VA € O(H).

e Completely positive: V is completely positive if Vn € N the following holds:
Y ® 1, is positive.

The definition for completely positive and positive are not the same, see [8]. We
need complete positivity because there might be subsystems whose density matrix
should still be positive.

3.4 Microscopic Derivation

Now we want to apply our acquired knowledge to the system of which we want
to know the Lindblad master Equation. We will describe our system with this
Hamiltonian:

Hr=H®1lp+1ls@Hp+ H =H®1lp+1s@Hp+ Y _ Si®E, (3.6)

We will look at the system in the so-called “interaction picture”. This means
that every operator O has a corresponding time-dependent operator O(t), given by
O(t) = eI+ Qe iH+Hp)t ~ Notice that H + Hp commutes with e {H+He) go
that H + Hg does not change in the interaction picture. After this switch, the time
evolution of the density matrix is given by

Prit) [ ). o] (3.7)

Integrating this results in the following equation:

o) = pr(0) = [ [0, 0] s (38)

The annoying this about this is that pp(t) still depends on previous values of pr.
If we now fill in 3.8 into 3.7, we get the following:

dpr(t Th o s - X
20 — il r0)] [ [0, ) o)) s
0
The full density matrix is still present in this equation, but we’re only interested
in the density matrix of the system itself, p. So we use the partial trace like we
introduced it earlier:




dp(t) _ [dﬁT“)} = i Teg [ 1(1). pr(0)] - /0 T [113(0) [ 11(5), (5] s

dt dt
(3.9)
We will now make a few more assumptions: we choose pr(0) = p(0) ® pr(0);
that is, the system and its environment are initially uncorrelated. Furthermore, we
assume a particular shape for the density matrix of the environment: pz(0) = e~ H#5.

R !
Tr [e_HEﬁ] , where 8 = 1/kgT. This immediately implies that [HE,,@E(O)} =0,

this will be of use to us later. Now we can simplify the first term of the right hand
side of 3.9:

N

Teg | Hi(1), pr(0)| = 3 (Si(0p(0) Tei | E:(8)p(0)] = p0)Si(t) Trie | p(0) Ex(0)] )

(3.10)
Here we make yet another assumption: that (E;) = Tr[F;pg(0)] = 0. This as-
sumption is justified; if it isn’t true, then we can slightly adjust the full hamiltonian:
Hpy=(H+ ) (E;)S;))+Hg+H], where H = _. 5, ® (E; — (E;)). So, we have now
set the expectation value of the interaction Hamiltonian to zero without changing
the dynamics of the system; we have only added a constant to it. Due to the cyclic
property of the trace (Tr[AB] = Tr[BA]), all of equation 3.10 is equal to 0. So we
are left with:

dfl—iw ) _/t - [ﬁh(t), [HI(S),[;T(S)HdS (3.11)

0

Here we still see the full density matrix p; we want to work towards an expression
with only p. So we must make a stronger assumption: that the system is always
uncorrelated with its environment, i.e. pr(t) = p(t) ® pg(0). This is called the Born
approximation, and it results in:

P — [ s, [0 565) © u(0)] s (3.12)

Alas, we are not yet done. We want to make the equation Markovian; this means
that we don’t want the expression on the right to contain any information about the
time or about previous values of . In this case, the expression still contains the time
t, which means that it is not Markovian. To ensure that it becomes Markovian, we
first replace p(s) by p(t) and we change the variable of integration: s — ¢t — s. The
boundaries of integration do not change as a result of this. So we can now interpret
s as a measure of how far we should look back in time to account for memory effects
[10]. Now we apply the Markov-approximation: we assume that we can use oo as the
upper bound of integration; this is equivalent to assuming that the memory effects
amount to 0 in the full integral. Then we get the following:

%t) _ /0 Ty, (), A1t — ), () @ pe(0)] | ds (3.13)
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This is known as the Redfield equation. Of course, we still have a number of steps
to go, as this equation does not guarantee positivity of the density matrix. So we
must apply what’s called the rotating wave approximation. First we do need to write
the equation in another basis, namely the basis of eigenvectors of the superoperator
HA = [H, A]. Thus we write

Si =Y Si(w) (3.14)

Where the following holds for S;(w):
[H, Si(w)] = —wSi(w) (3.15)
The adjoint of such an operator is also an eigenvalue of the same superoperator:
[H, sj(w)] S [Sj(w), HT] — _[H, $;(w)]! = wS!(w) (3.16)

We now want to go back from the interaction picture to the Schrodinger picture.
To that end, we take a look at Sj, = e S e We will first rewrite this with the
use of equation 3.15. We look at Sy H™:

SeH" = (S HYH™ ' = (SpH — HSy, + HS,)H" ™' = ([Sy, H] + HS;,) H"™*
= WSk + HS)H" ' = (wl+ H)(S,H" ") =...=
= (wI + H)”Sk

Now we can find a nice expression for S, and therefore also for H(t):

t) = Z gk(t) X Ek(t> == Z(eitHSke_itH) X Ek<t)

k,w

— Z( ZtHZ S H") ® Ey(t)

_ Z(
= Z itH —th —zth ) ( ) Ze—itwsk(w) ® Ek(t) (317)

k,w

wl + H)”Sk> ® Ey(t)

In a similar way we find:

Hy(t) = e"™S}(w) ® E[(t) (3.18)

k,w

We now expand all the commutators of the Redfield equation (3.13):
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bt) = — Trp [ / (0 Hy(t — 5)p(t) ® p(0)ds — / " Hi(0)5(0) © pr(0) it — 5)

/ it — $)p(t) © i (0) i (t)ds + / " () ® pe(0)E (¢ — ) (1)
(3.19)

Filling in 3.17 and 3.18 into 3.19 is quite a lot of work; we will only look at the
first term. Note that we fill in the first representation (3.17) whenever we encounter
an H(t — s), and we the second representation (3.18) for H(t):

e [ B0t - 930) @ ps(0)

~ Ty, / (Z Sl E,i<t>> (Z eI (W) @ Bift - s>> (0(t) @ ﬁE<o>>ds]

w'k

—Try / TY e (5w $i@)p)) © (BB - $)ps(0))ds

L w,w’ k,l

= 3 IS (W) Syw)pl) - T / "Bl Bt — $)p0)ds

w,w’ k,l

= ) eI (W) S (W) Siw)p(t)

w,w’ k,l

Where we have defined:

Ta(w) = / ey [E,i(t)El(t - s)ﬁe(o)] ds (3.20)

0
In a similar way we work out the other terms to come to:

P = D (¢ Duw) [Suw)(t). S| + =T ()| Siw), HOSLW)) )

w,w’

k.l
(3.21)
Now we can finally apply the rotating wave approximation: we assume that all
the terms with w’ # w contribute insignificantly to the sum, seen as they oscillate
much faster than the typical timescales of the system. The equation then becomes
as follows:

p(t) = D (Tulw) | Si(@)p(t), Sw)] + Ti(w) |Siw), 0S[@)| ) (3.22)

Wi
This was the last approximation; from now on we only need to rewrite it before
we can call it the Lindblad equation. First we separate the hermitian and non-
hermitian parts of I'y;:
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() = 37() + im(e)

2im(w) = Fi(w) — I (w)
Yri(w) = Fr(w) + T (w)

If we fill these in, we arrive quite readily to this equation:

s +§;m( )(0)S}w) - 5{ sl >sz<>,a<>})

w,k,l

Where Hr, = 3, Ti(w)SH(w)Si(w). This extra Hamiltonian is called the
“Lamb shift” Hamiltonian. If we now transform back to the Schrodinger picture,
we only receive an extra H in the commutator:

p(t) = —ilH + Hyop(0)] + 3 (@) (sl<w>p<t>5£<w> ~ {sl@)siw), p<t>})

(3.23)
This equation also has a name: the Markovian master equation. This is not
yet the final result; it is not yet in Lindblad form. We now want to remove the
non-diagonal terms (S;pSy with [ # k) from the equation. And this is possible:
the coefficients 7y, form a positive matrix by Bochner’s theorem [11], so it can be
diagonalized.
This step will be explained in more detail in section 3.5, where we’ll also apply the
equation to the specifics of our situation, the Erdos-Renyi networks. The equation
we now get, the Lindblad master equation, is as follows:

90 = il + Hewp0] + 3 Liwlplo) 1) = 5{LiIL). 0} ) = £ot0)

(3.24)
In many cases [8] there is only one relevant frequency, and then we can perform
one more step to simplify the equation:

) = 01+ Hao 0]+ 3 (Br)2] = 5 {200} ) = £00) (329
The L;’s in this equation are called the “Lindblad operators”.

3.5 Application

Now we have seen the Lindblad equation in its full generality; however, we still don’t
know how to apply it yet to our situation. We wish to find the jump operators for our
networks, and in order to get there we will redo some of the steps of the derivation
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that we just saw. We begin by formulating the Hamiltonians of our system, of the
bath, and their interaction, using the same definitions as in [6]. For the system
Hamiltonian we have

N N N
~ 1 R R L
i=1 i=1 j=1
Here \;; is an element of the adjacency matrix.
For the bath Hamiltonian, (aka the environment Hamiltonian) we take an infinite
collection of harmonic oscillators:

H —1§: KL ke (3.27)
E_Qa:1 Ma Voo :

And finally, the interaction Hamiltonian:

N 0o
H[:_ﬁ'dcm®B:_ﬁZdn®ZAaXa (328)
n=1 a=1

We will rewrite this in terms of the normal modes of the adjacency matrix. The
normal modes are contained in the rotation matrix F [6], and originate from the
diagonalization of the adjacency matrix:

H = %(PTP +Q"DQ) = %(pr +q" Mgq) (3.29)

Where M is the matrix with all the couplings between the various coordinates,
like in equation 2.1. Also, P, @), p, and ¢ are vectors containing all the position and
momentum operators in the mode and node basis, respectively. So it must hold that
D = FTMUF. Tt is clear now that D is a diagonal matrix, and we call its elements
Q2. So now we write: Q = F7q, that is ¢ = FQ. So we get:

N N
Hi=—V7) kQu®B=) S ®E (3.30)
n=1 n=1

Here we have defined that &, = Zgzl Fmn, and S; = —ﬁann. Now we
have created the same form as in 3.6. We define the constants T',, = k27 and
D, = K28, coth(£2,/2T), where we chose units such that kg = 1. If we plug
all this information into the general form of the Lindblad master equation, we will
arrive at the Lindblad master equation for our networks:

dz_it) — —i[H, p(t)] — EDW% {P. p(t)}] = [Pn, {Qun p(t)}])

#0100 [Qup0)] = gz P [P0

n

This, however, we will not derive.
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4 Methods

Now that we have fully derived the Lindblad master equation, we want to connect it
to the simpler situation in section 2 to check if that was justified. From the Lindblad
master equation, we can calculate the moments of the position and momentum
operators in the mode basis. In theory, this can be done in two ways: by directly
calculating p from equation 3.1, or by first tracing that equation to find a different
set of differential equations for both the first order: (Q,) and (P,), and for the
second order: (Q,Qum), (P,Pn) and ({Q., Pn}). We can solve those differential
equations — to some degree analytically, and numerically otherwise — and thus
find the moments of the position operators, which we are most interested in. We
will begin by looking at the direct simulation, and then consider the set of differential
equations for the moments, followed by their analytic solutions.

4.1 Density matrix

For the direct simulation, we need to consider what the shape of the superoperator £
is for the density matrix in the normal mode basis, that is, the basis of eigenvectors
of the Hamiltonian. The first term can be found most easily, as it only contains
a commutator with the Hamiltonian. Now we must really solve the Schrodinger
equation in order to find the eigenstates of the Hamiltonian.

We use the typical approach with the quantum ladder operators. We won’t show
the details of the derivation, but instead assume that the reader knows a little bit
about quantum harmonic oscillators. We define

Q0. P.
\/ 5@ +zm (4.1)

Now we can see that the Hamiltonian can be written as

N

N
H=> "o (Ain + %) => (Ni + %) (4.2)
=1 i=1

Where N; = Al A;, and, like one might expect: N;|n), = n|n),. So now we know
the energy eigenvalues. :

N

1
Hlning...nn) = Eny ny.ony|nine...ny) = Z Q; (nZ + 5) Ining ... ny)  (4.3)
i1

We see that the Hamiltonian is now diagonal, which is good, because that’s what
usually happens when you successfully diagonalize an operator.

From now on, to keep the notation a bit more concise, we will abbreviate
(ny,n9,...,ny) = n, with n € Ny = N, where Ny includes 0. In that nota-
tion, we have Hn) = Q" (n+ 1)|n) = E,un). We now want to calculate the first
term of the Lindblad equation:
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—i[H,pl=—i ) pamlH )] =—i Y pom|n)(m|(Ea — Em)  (4.4)

nmeN nmcN

Now we bravely soldier on to find the superoperator £. In the next few terms of
the Lindblad master equation, we see position and momentum operators. We must
express these in terms of the ladder operators:

_ ! i
Qn = R (A, + Al) (4.5)

S

=

P, =—i (A, — Af) (4.6)

_n
2
Let’s find the matrix representation of the ladder operators in the basis of Hamil-
tonian eigenstates. For a single node, it is as follows:

0 -
Vi 0 o 0 .- 8\{;\% 0
0 v2 ... 0 --

S . VA= ¢ o :

0 0 - n - QQQ.:.ﬁ

0
A= .

And @ and P are defined as in 4.5 and 4.6. For multiple nodes, we simply realize
that A; only acts on node ¢ and leaves all other nodes unchanged; in mathematical
terms this amounts to a tensor product with several identity matrices. If we let
1., be equal to a matrix of size N x N with 1s on the diagonal (like a countably
infinite-dimensional identity matrix), then for N nodes, an operator A; (where we
can fill in either ) or P for A) is defined as:

A =12"® A 1201 nc{0,...,N -1}

You may have noticed that our matrices contain considerably more numbers
than we would like to if we wish to actually implement it in a computer (specifically,
infinitely many more), so at some point we must decide a maximal state to consider.
In fact, let’s do that now. We choose a maximal state number s, so that we have N
nodes, s states that any one node can occupy, s basis vectors of our Hamiltonian,
and so (sN )2 = 52V elements of the density matrix; so, we now use 1, instead of
1., and we cut off our P and () matrices to be s X s matrices.

There is, however, one problem that arises when we cut off these states. Let’s
take a look at the position and momentum operators for example, and in particular,
we want to calculate the commutator [@, P]. From our knowledge of quantum
mechanics, we expect to find [@, P] = il,. But this is not the case:
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100 ... 0
010 ... 0

@ Pl=if 0 01 0 (4.7)
000 ...1-s

So we see that this matrix looks very much like we’d expect, aside from the very
last component, which actually decreases linearly with s. This is a problem; it means
that as we try to simulate the density matrix with greater and greater accuracy, we're
actually decreasing the accuracy because of the decreasing last component of the
commutator. As far as could be discovered within the scope of this project, there is
no easy fix for this problem that allows the simulation of the full Lindblad master
equation; however, we can make an assumption which is justified in certain cases,
namely that D,, = 0 for each n. We will see in section 4.2.1 that this simplification
is justified as long as we only look at the first order moments of the position and
momentum operators. This simplification allows the simulation to stay stable for
about a dozen seconds. After that, the fastest decaying modes will quickly become
unstable.

The parameters that we can vary to improve the duration in which the simulation
is accurate are the time step dt and the maximal state number s. As it turns out,
choosing a high s causes the graph to be more accurate for low ¢, but less accurate
for high t; this can be compensated by choosing a very narrow dt. A rule of thumb
that was used in the simulations of this project was to choose dt such that the
first iteration preserves the properties of a density matrix (positive-semidefiniteness,
Hermicity, and unit trace); of course, a certain tolerance for error is required to
account for floating point errors. The specifics of the implementation can be found
in section A of the appendix.

We are not yet ready to simulate the density matrix; we need to have some initial
conditions as well. Calculating these is not super straightforward, seen as we want
our initial condition to be a valid density matrix; that is, it must have unit trace
and be Hermitian and positive. If we want our initial condition to have a nonzero
expectation value for, let’s say, all the (); operators, then we must first figure out
what it looks like for one node. The claim is that an operator of a similar shape as
the position operators themselves suffices for this purpose. What’s also nice is that
the Hermitian requirement is instantly fulfilled. Specifically, we define:

010 ... 00

101 ... 00

1 010 ...00
P00 5 r (48)

000 ... 01

000 ... 10

Where the notation pg: means: an s x s-matrix (for s-levels), and for 1 node,
such that Qo (that is, the first coordinate, since arrays begin at zero) has nonzero
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eigenvalue. In general we define (note the use of A®* as the k-th tensor power of

A):

poy =157 ® poy @ 12N, ief0,...,N—1} (4.9)

And we will use ), pon in the construction of our initial condition. This is not
yet positive, and it doesn’t have unit trace, but we solve this by putting a 2 on the
main diagonal, and then dividing by 2N s.

Now we are ready to simulate the density matrix. See section 5 for the results.

4.2 Moments

Now we will consider the equations for the moments rather than the full Lindblad
equation. Like in [12], we only look at the first and second order moments of the
operators (), and P, ; this will suffice for Gaussian states. We will derive these from
3.1 in the normal mode basis. One thing we will use very often is the following
equality:

[AB,C] = ABC—CAB = ABC— ACB+ACB—CAB = A[B,C]+[A,C]B (4.10)

And similarly,

[A, BC] = ABC—BCA = ABC—BAC+BAC—BCA = |A, BJC+B|A,C] (4.11)

Let’s also quickly make a list of a few “standard” commutation relations we will
need:

e [P, H|=—iQ2Q,

e [Q,, H|=1iP,
. [Pn, Q7] = [Pos Qul@n + Qu[ P, @n] = —2iQy

4.2.1 First order

So now let’s start with 4(Q,,):

Q) = Tr{Quf] = ~i TXQuIH, ] -
ST Qu( @ (P )] — [P 1@ 0}

m

| D@ (@ oot = P Pl | (012
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We will now look at these terms separately and without any of the prefactors,
going from the back to the front, and we will see that many terms drop out. First
we consider m = n:

The term with only @, drops out trivially by the cyclic property of the trace,
and so let’s consider the middle line. We expand all the commutators, distribute

the @,, implement the cyclic property to put the p at the end and go back to an
expectation value to get:

(QuQnPr + PuQnQp — QnQn P, — PrQnQn)+
(Pa@QnQn + QuPrQn — QuPQn — QuQnFy)
=([Pn, Q7)) = —2i(Qu)
We see that with the appropriate prefactors this results in —iFn - =2i(Qn) =
—30,(Qy). Furthermore, since m #n = [Qy, Q] = [Qn, Pn] = 0, we sce that

everything for m # n cancels to 0. Now we still have to look at the first term with
the system Hamiltonian; the commutator of (), and H is known. So we derive:

i TH{Qu[H. pl] = i Te[QuHp — HQup) = i([H.Q.)) = (P.)

So now we can finally write:

d 1
73 {@n) = {Pa) = STa{@n) (4.13)

The derivation for the moment of momentum is very similar. This time, the part
with only momenta drops out trivially, so we look at the left term on the bottom
row:

Tr[Po[Qn; [Qn, pll] = Tr[PaQn@np — PuQnpQn — Pa@npQn + PrpQnQn]
:<PnQnQn - QnPnQn - (QnPnQn - QnQnPn)>
=([Pn, @u]Qn — Qu[Pn, Qul]) = (—iQn + Qui) =0

For the first two terms:

PnPnQn_QnPnPn+PnPnQn+QnPnPn>
=([P, Q) = —2i(F)

With the right prefactor, this becomes a —%I’n<Pn>. From the Hamiltonian we
get a —Q2(Q,,), and the result of the derivation is as follows:

d

, 1
() = —02(Qu) — 5Tu(P2) (4.14)
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4.2.2 Second order

We also want to know the second order moments, namely %(Qn@m), S {(P.Py,) and
L({Qn, Pn}). Let’s start with Q,Q,, and look at the Hamiltonian term:

The next two terms can be calculated fairly simply by realizing that all the n
operators commute with all the m operators except in the case m = n, so aside from
then, we can always move one of the two to the front. So we get a term for n and
for m:

Z Fz<Qan[sz {Pz; p}]> = <QanFn[Qm {Pna p}] + QanFm[Qma {Pma P}]> =
_2i<FnQan + FanQm> = _Qi(rn + Fm)(Qan)

With the appropriate prefactor of —%, this becomes —%(Qn@n) When
n = m, it turns out we get —FMQ%), Wthh is actually the same as the other
expression. We move on to the last two terms. For m # n we can use the same trick
as last time, and everything drops out. For m = n the (), term drops out because
everything commutes, so we only have to look at the P, term (and let’s leave out
the n indices since it’s all the same and because we want to be lazy efficient):

TF[QQ[P’ [P7 p]H =Tr [QQPQ - QQPpP — (QQPpP _ szPQH
<QP PQ*)P — P(Q*P — PQ?))
= ([[@*, P, P]) =2i([Q, P]) = —2

With the right prefactor of 2 0 it becomes — 2Q2 Since this term only appears
for m = n, we add a d,,,. Then the full final expression becomes

r, +F (5nm

d

Now we want to take a look at %(Pan); it’s a very similar derivation. In the
first step, we can swap all the P, for the @),,. The only other thing that changes
is the constant; instead of the [Q,, H] = iP, we get [P,, H = —iQ2Q,. So the
Hamiltonian term is given by —(Q2Q, P, + Q2 P,Q.).

For the second row, we have the same situation as last time; when m # n, we
can always move one of the operators to the front, and for m = n the expression
turns out to be the same. So we get exactly the same as in 4.15 but with the @,,’s
replaced by P,: —%(PHPM.

For the last row, the situation is again very similar to the last derivation: for
n # m it’s all zero (always has been), and for n = m we get a constant term (this



20

time without the 92 and with the opposite sign). The full expression for the second
order momentum moment is thus as follows:

| S i Onm
ot mp P+ D, =" (4.16)

Now we go for the mixed second order moment 4%({Q,, Py}). For the Hamil-
tonian term, the same strategy as in the second order position case will work; we
replace Q),, by P,, and get

~i Te[Qn Pl H, p]] = —H{Qn[Prn, H] + [Qn, H]Pr) = (~5,Q0nQ + PuPry)

For the opposite case with P,,@,,, we get the exact same thing, because @, P,
always commute with Q,,, P, respectively, both for m = n and for m # n. So, in
the final result, an extra two will be added in front.

For the second row we will again make use of the fact that for m # n we can
move one of the operators to the front. But now instead of @, @Q,, or P, P,, we will
get {Qn, P}, as one might expect. So we have another term —%({Qm P.}).

The final row of the final moment; for n £ m, everything drops out by the same
reasoning as we have used many times before. For n = m we do have to be a bit
more careful. If we investigate the @), term, we see that after adding @),, P, in front
of it, it quickly reduces to this form:

Since [P,,@,] is a constant. The reverse order drops out in a similar way. Now
for the P, (and final!) term. In fact, we don’t even need to think about this
anymore, since it’s the same as what we just did, except with the P,’s and @Q,’s
swapped. So we can finally write down the equation for the mixed second order
moment:

D@Ly ()

%<{Qna Pm}> = 2<Pn7 Pm> - 293n<Qan> -
Actually, we aren’t quite finished; both equation 4.15 and 4.16 contain @, F,,
and P,Q,,, and we would like to rewrite those to only contain {Q,, P,,} so that we
end up with three equations that only depend on each other. For n # m we can
easily see that since [Qn, Pn] = 0, {Qn, Pn} = 2Q, Py, = 2P,,Q,,. For n = m we
can see that we can also compress the swapped operators into one anti-commutator.
The final set of second order moments becomes as follows:
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d 1
E<Qan> :_<{Qm Pm} + {Pn’ Qm})
F +F . Onm

— 5 @nQm) — 29% (4.18)
(PP ——<92{@n, Pu} + QP Qu))
—@(Rﬁm) + Dn%m (4.19)
{Qu o) =2{Po Pr) — 202,(Qu Q)
Q. P (1.20)

4.3 Exact solutions

4.3.1 First order

An observant reader may have already noticed that the first order equations (4.13
and 4.14) are analytically solvable. We will first solve these, so that we can under-
stand the results when we move on to the simulations of the moments. We first add
the two equations together in such a way as to cancel the @, terms (here we will
once again leave out the n and ignore the expectation value brackets):

1. 1 1 1 2
QQQ—§FP=QQP—2—/P6+§F6+ZF2P=(92+I>P5w2P (4.21)

Note that we could also solve these differential equations with the standard
methods, such as with matrix exponentials. However, for this section and the next,
a more explicit strategy was taken because it requires less effort in this specific
case. Now we can plug Q2@ into the equation for P, which we get by differentiating
equation 4.14:

.. . 1. 1 . 1_ . :

P=-0%) - 5PP = —§FP — WP — 5FP = —w?P-TP
Putting everything on the left, we can now write down the characteristic equa-
tion: A2 + '\ + w? = 0. Solving this gives \ = g +4€), and so we can find our total
solution. The (),, moment will not be derived, but as it turns out, it solves the exact

same differential equation, and so it is of the same form. Here we will also add the
indices again:

(Po(t)) = e_r"t/Q(an sin(Q,t) + by, cos(2,t)), ne{l,...,N} (4.22)
(Qn(t)) = e 2 (¢, sin(Qt) + dy, cos(Qt)), ne{l,...,N} (4.23)
Here a,, b,, ¢, and d, are yet to be determined by the initial conditions. We

could probably express two of these constants in terms of the other two, but we
won’t, seen as we’ll only be looking at one of these two moments.
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4.3.2 Second order

For the second order terms we can also make a few simplifications, and for the terms
with n = m, we can even find a very neat set of equations. We will begin with the
case n = m. Let us rename some of our moments: o, = (Q2), op, = (P7), and
R, = ({Qn, P,}). We will also (like usual) drop all the subscripted indices for even
more compactness. The moments now look like this:

D

) 2
- _ _ =
o Log+R 502

D
6% = —To%—Q*R + 5
R =-TR +20% — 20°0},

Now we perform a rather clever (if I may say so myself) trick: we notice that we
can cancel the R on the right side if we add 63, and 63 with the right prefactors. In
particular, we define two new functions U = Q%03 + 03 and V = Q%0 — 0% and
find the corresponding set of differential equations:

U=-TU
V=-TV+20°R—D
R=-TR-2V

Let us appreciate for just a moment how amazingly that turned out! We have
an analytically solvable differential equation for U (in fact one of the easiest kinds
of differential equations), and the other two equations together closely resemble the
ones we solved in subsection 4.3.1. The only difference is that now there is an extra

constant —D in the equation for V. In any case, let us begin by solving the equation
for V:

U(t) = Upe (4.24)

For the other two equations, we will make a few of the same steps as with the
first order equations:

20VR+TV = 20°TR — 20°TR — 40°V —T?V —I'D = —(4Q*> + )V —T'D

Again, we will plug R into V:

V=202R-TV =-2IV - (402 4+T%)V —T'D = —2I'V — 4’V —T'D

The characteristic equation for the homogeneous problem is now A\2+2F\+4w? =
0, which is just the same as before, but with an extra factor 2 before both the I'
and (2 constant. So the homogeneous solution becomes:
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Vi(t) = e M (asin(2Qt) + bcos(262t))

Finding the particular solution of this differential equation isn’t difficult: it’s
simply the constant —I'D/4w? = —T'D/(4Q? 4+ T'?).
—-I'D Tt sin(20) Q
V(t) = 122 + e (asin(2Qt) + bcos(262)) (4.25)
Now we want to take a moment to transform back to the moments with which
we started. Similarly to last time, we will not derive R(t) here, as it follows a very
similar differential equation as V'(¢). We will also add back the indices for good
measure. This goes quite naturally:

<Q )) = (U +V,) =

r,D
Upno + an sin(2Q,t) + by, cos(20,t)) — ﬁ) (4.26)

(Pa(t)) = (U Vo) =

r,D
fl"n nt/n
( nO — Cp, SlIl(2Q t) dn COS<2Qnt)) + m) (427)

l\D|H

{Qn, P} (1)) = % + e Tt (e, sin(2Qt) + focos(20,1))  (4.28)

All of these equations are valid for n € {1,...,N}. Again, the constants
Gy, ..., fn can be determined with the initial conditions. To put into words what
these equations mean: the variances of the position and momentum operators are
a decaying (exponential) term added to an exponentially decaying sinusoidal added
to a constant shift.

One thing we need to consider is the requirement that variances are always
positive. Is this requirement met by the solutions as given in equations 4.26 and
4.277 As it turns out, it is not. If we look at the limit of ¢ — oo for (Q%(t)), we
see that the limit is negative. This is not a good thing. In practice, that constant
will often be very small compared to the other term, but the fact remains that the
variance in the limit equals a negative constant. How it is possible that this constant
is negative is unknown; further research is required to discover which approximation
leads to this. Interestingly, in this supplementary info [12], equation 4.18 contains
a plus sign, instead of a minus sign; that would lead to a positive constant.

We want to also take a quick look at what happens for ¢ — oo when I';, = 0: we
see that the variance then oscillates like a sinusoidal (with an added constant).

For the case m # n (the cross-correlations), we cannot make quite the same
simplifications as we did for m = n; the result of this is that we will not solve this
case analytically and that the graphs of those are also going to turn out a little more
intricate.
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5 Results

In this section, we display all the output resulting from the simulations of some of the
equations that we saw in the previous sections. We will begin with the simulation
of the Lindblad master equation (3.1), from which we can calculate the density
matrix and the moments (using 3.3) directly. Consequently, we will calculate those
same moments using the differential equations described in section 4.2; we will solve
those differential equations numerically and hopefully see the similarity with the
first approach.

5.1 Density matrix

In a Python program, a simulation of the Lindblad master equation was run for
N =3 and s = 11, using RK4, the classic Runge-Kutta method. The network that
was used is the moy network, a.k.a. the chain with three nodes. We also take D,, = 0
for all n, and simulate 150 steps over a duration of 7.5 seconds. As initial conditions,
a density matrix was created with expectation values 0 for all the momenta, and for
the position operators: ((Q1), (@2), (Q3)) = (0.1713,0.1515,0.1373). The result is
shown in figure 3.

The graphs of the solutions (in color) seem to come very close to the expected
solution (dotted black line). The expected solution was calculated by equation 4.13.
The reason for the deviation in the graph of mode 1, which becomes more prominent
near the end of the graph, is due to the instability caused by implementing a maximal
state number. The number of steps (150) is also relatively low; this was done to
suppress the running time of the program, which is not to be underestimated for
s = 11. To make this simulation more accurate, it might be advisable to get a more
powerful computer than the laptop that was used in this project, or to use some
kind of simplifications or optimizations to allow for larger s and larger dt without
costing too much time.

Nonetheless, one can see that for low I',, the simulation is very close to the
expectation, and even for higher I',, it closely approximates the expected graph. To
get a better idea of how closely they resemble, we plot the graphs of the difference
between the found and expected solution, divided by the maximum value that the
expected solution attains, similarly to a relative error. This is shown in figure 4.

The errors for (Q2) and (Q3) look quite nice (if it’s even possible to say an error
looks nice); they follow an increasing sinusoidal with the same frequency as the
original graphs. The error in (Q);) is a lot less predictable; this is most probably a
consequence of the fact that I'y is considerably larger than I'y and I's.

5.2 Moments

Again in Python, a different simulation was run to see visually how the differential
equations for the moments play out, in the first order (4.13, 4.14), and in the second
order (4.18 - 4.20). Using the RK4 once again, the solution to the differential
equations were numerically approximated. Because this simulation is considerably
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Figure 3: The moments of the position operators in the mode basis of the my
(chain) network, as obtained by solving the Lindblad master equation (3.1) under
the following assumptions: the mazimal state number for each oscillator is s = 11,
and D,, = 0. The simulation was run for t ranging between 0 and 7.5 seconds, with

150 steps. Also shown is the expected solution, as calculated by equation 4.13.

lighter on the computer, several networks were investigated, with various sets of
parameters. The code for these is also given in section A of the appendix.

5.2.1 First order, homogeneous w

First, we look at the network msy, the chain with N = 3 nodes, initially considering
only the first order moments. For the initial conditions we take

((p1), (p2), (p3), (@1), {(g2), (g3)) = (0.5,1,—1,—1,0,1), and we set 1 = w; = wy = ws,
and v = 0.07w,. Notice that the initial conditions are all in the node basis. We also
use a time scale from 0 to 75 seconds, and 15000 steps within that time frame. The
results of this simulation are shown in figure 5.

What do we see here? That there is one noiseless mode (mode 2, as we expected)
and that one of the nodes (node 2, this is a coincidence) synchronizes very quickly.
The other modes are subject to noise, and especially mode 3, which isn’t noiseless
but has a long decay time, causes node 1 and 3 to exhibit the behavior of a beat
tone, i.e. two frequencies superposed onto each other. This eventually becomes a
single frequency in the high limit for ¢. Furthermore, although node 2 seems to be
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Figure 4: The error in the moments of the position operators in the mode basis of
the my (chain) network relative to the maximum of the expected solution. The
same assumptions and parameters were used as for the previous image.

more coherent than node 1 and 3, it is actually the one which dies down in the limit
as t — oo. A graph to prove these last two claims can be found in figure 11 of the

appendix, section C.
To get a better idea of the ratios of the between the decay times of the nodes,

we can look at the factor I';:

(14 ¥2)? 203.995
[ = y((Fri+ Fai+Fsi)? i € {1,2,3}) = 0.07w, 0 =103 0
(1- %5)2 6.005

So the third mode decays around 34 times slower than the first mode; this follows
from the exact solution of the differential equation in 4.23.

5.2.2 First order, inhomogeneous w

Now it might be interesting to look at what changes when the node frequencies are
different with respect to each other. We set 1 = wy = wy/1.2 = w3/1.8, similarly to
[13], and keep all other parameters the same. The result of this is shown in figure 6.

What we see here in a way resembles figure 5, and in a way also differs. There
are now no more noiseless modes, which means that in the end, all the nodes will
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Figure 5: A simulation of the first order moments of the position operators in the
my (chain) network. An set of graphs is included both for the normal mode basis
(a) — where the red graphs are subject to noise, but the light green graph is
noiseless — and in the original (node) basis (b). Both are shown as a function of
time; 15000 steps were taken over a duration of 75 seconds.

decohere. The reason for this is that with a non-constant w, the eigenspace of the
adjacency matrix and that of the system Hamiltonian no longer coincide, and so
the noiseless eigenvector that we found in the simple case is no longer necessarily
noiseless.

What we do see, however, is that node 2 decays very slowly; in fact, if we calculate
[’ (numerically) for this case, we will find

1.5402
r'=10"' 0.0605
0.4993

This time, the ratio of I'y over the maximum (I'y), is around 1/25. We will
consider this mode to be quasi-noiseless. The existence of a quasi-noiseless mode
implies the possibility for nodes to stay coherent for a long time, even if not forever.
Both node 1 and 2 are an example of this; they appear to stay coherent for the full
75 seconds.

5.2.3 Second order, homogeneous w

We will go one step further and also investigate the correlations between @), and @),,.
For that we have also simulated equations 4.18, 4.19 and 4.20. We would like to find
out several things: do the results of the simulation match up with the theoretical
predictions we made in subsection 4.3.27 How does a mode being noiseless affect
the behavior of the variances? These questions will be answered in this subsection.

Using the same program as last time (with some modifications), a simulation
was run to find the correlations of the position operators in the mode basis. Once
again, we look at the ms network. In order to answer the first question, we will
plot U, = (Q2Q, + B,) for n € {1,2,3}. We use the idealized case with 1 =
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Figure 6: A simulation of the first order moments of the position operators in the
my (chain) network. Again, the normal modes are shown in (a) — this time there
18 a new color: orange, which represents a quasi-noiseless mode — and the node
basis in (b). Both are shown as a function of time; again, 15000 steps were taken
over a duration of 75 seconds.

w;, Vi € {1,2,3}. For initial conditions, we take (P?(0)) = 1,Vi € {1,2,3}, and
(P1P)(0)) = —((P1P5)(0)) = —((P,P5)(0)) = —1. We also have a new parameter,
the temperature of the bath T'; this we set to T' = 10w,. The result of this plot is
shown in figure 7a.

In this image, the solid colored lines are the solutions obtained by RK4, ap-
plied to the differential equations. The dotted black lines are the analytic solutions
of equation 4.24. Aside from making it unlikely that mistakes were made in the
derivation of subsection 4.3.2, figure 7a isn’t very interesting, so let’s move on to
the actual moments that we care about. They are shown in the grid in figure 7b.
One can see here that the variances of each mode subject to noise, decays. All the
cross-correlations disappear in the end. That is not necessarily the case; in the case
of the ms network, there are two noiseless modes, and the cross-correlation between
them does not disappear (this is shown in subsection B of the appendix).

We want to take a slightly more detailed look at each of the second order mo-
ments. Therefore, all six simulations have been shown again in figure 8.

Here you can see that for the modes with noise, the variances also decay to
zero, whereas the variance of the noiseless mode is periodic without decay. For
the cross-correlations, we also see some interesting behavior; the cross-correlation
between ()7 and ()9 dies out very quickly, and similarly for the correlation between
()1 and @3, but the one between ()5 and ()3 doesn’t visibly die out within the scope
of this simulation. However, when running the simulation for much longer (around
900 seconds), it becomes clear that it also decays (this image has been included in
section C of the appendix, see figure 13). In the case of the m = 3 network, which
has two noiseless modes, the cross-correlation between those does not die out, as
can be seen in figure 10b.
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Figure 7: (a) A simulation of the moment U = (Q2Q,, + P,) in the my (chain)
network (in color), as a function of t, ranging from 0 to 45 in 15000 steps. The
shown graphs are all exponentials, as the expected graphs (black dotted line)
perfectly match the solutions. Since mode 2 is noiseless, its graph is a constant 1
(an exponential, starting at 1, with no decay). Also shown is (b), the auto- and
cross-correlations of the moments of the position operators, as a function of t.
This time, t goes from 0 to 15, to prevent the images from becoming cluttered.

5.3 Discussion

We would like to shortly discuss the results that we have acquired to investigate
whether they meet our expectations, beginning with figures 3. We can see that
the simulated graph closely approximates the expected solution that we calculated
explicitly, although looks are slightly deceiving here; we can see from the relative
error graph in figure 4 that the error is not insignificant, even in the very beginning.
The reason for the instability is, as said, attributed to the cutoff; this is supported
by the fact that the positivity of the density matrix is always lost at the same point
in time for the same network parameters and the same s. That is, changing the time
interval dt — as long as it is not too large — has no effect on the time at which p is
no longer positive. That is why, in these simulations, the full time interval had to
be taken smaller. It is also why the only assertion made in this simulation was that
one iteration preserves the positivity of p. The unit trace and Hermitian property
were at all times preserved.

We also look at figure 5. For the mode graphs (5a), we can say that they indeed
look as we expected; two of the nodes decay, and one mode is noiseless, just like
we saw in section 2.1. For the node graphs (5b), we expect the noiseless mode

‘/75(1, 0,—1) to span the first and third component; for ¢ < 75 this is not yet quite
evident, but figure 11 shows that indeed, node 2 decays, whereas node 1 and 3
synchronize in the limit.

In figure 6, the assumption we did in section 2.1 that w; = w clearly breaks
down, and so does the noiseless mode. What we do see is that the relative I'’s are
somewhat preserved; mode 1 decays the fastest, then mode 3, and finally mode 2.

Since we don’t have the noiseless cluster \/75(1,0, —1) anymore, we don’t know a
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Figure 8: (a) A simulation of the variances of the position operator (Q?) in the
my (chain) network, as a function of t, ranging in 15000 iterations from 0 to 45.
This time, the expected graphs were omitted, seen as they once again perfectly
matched the solution to the differential equations. Also shown is (b), the
cross-correlations of the position operators, as a function of t, with the same
settings as in (a).

priori which nodes will stay synchronized for the longest; as it turns out, they are
1 and 2; this can already be seen in 6b, and is shown in greater detail in figure 12
in section C of the appendix.

Now we move on to the second order, homogeneous w network. As we could see,
the U graph looks perfectly as expected (in figure 7a), and so do the variances of the
position operators (in figure 8a). With the right initial conditions, they seem to stay
positive although in reality they tend to a negative constant (as the theory predicts).
These graphs make it evident once again that mode 2 is the only noiseless mode,
as the variances of the other decay to a constant. For the cross-correlations, we see
(figure 13) that all of the cross-correlations decay to zero; this can also be expected,
as there is only one noiseless mode. Specifically, they are all the correlation between
a noiseless mode (which does not decay) and a mode that is subject to noise (which
does decay) or between two noisy modes. And we know that such a correlation is
condemned to evanescence.

So it seems that all the results for the moments simulations based on the assump-
tion of Gaussian states can be understood and explained, aside from the negative
limit for long durations.
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6 Conclusion

What can we conclude from all of these results? The first conclusion, going back to
section 2, is that noiseless clusters are most prevalent for probabilities close to either
0 or 1; that is, when the networks are either highly connected or highly disconnected.

Furthermore, we conclude that it is much more efficient and sensible to calculate
the differential equations for the moments, and then simulate those, rather than sim-
ulation the full Lindblad master equation. This is because the simplified approach
gives the expected results, which can be fully explained by the knowledge of noiseless
clusters that we built up in section 2. In fact, the graphs of the simpler approach are
more stable than the graphs of the full simulation. Furthermore, it doesn’t require
simulation the full density matrix, which consists of very many elements even for a
very humble choice of node count N and maximal state s, whereas for the simplified
approach, only one number per desired moment suffices to contain all the necessary
information.

Also, the simulation of the second order moments was not possible using the
direct simulation because of the instabilities cause by cutting of the matrices at
finite values. A suggestion for further research could therefore be to investigate
methods to stabilize the the terms of the Lindblad master equation with the D,, as
a prefactor. An alternative to manually simulating the Lindblad master equation is
to use [14] or by solving the Fokker-Planck equations [15].

From the simulation of the moments only, we can conclude that the existence
of noiseless modes does indeed follow from the Lindblad master equation, and that
exactly those modes which we expected to be noiseless are noiseless. One thing
that is still unclear is why the theory predicts (and the simulations confirm) that
the position variances tend to a negative constant in the limit of ¢ — oo. This
might also require more investigation, namely to find out where this sign comes
from, whether it’s a mistake or a result of an approximation in the derivation of the
Lindblad master equation.
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Appendix

A Code

The code for all of the simulations which were run over the course of this project
are included in this GitHub repository, specifically in the subfolder Python. The
simulation that generated figure 2 is in NoiselessSubsystems.py, for figure 14 in
NoiselessSizes.py. Both of those files also use code from the file common.py. The
simulations of the moments can be found in DensitySims.py and MomentSims.py,
for the direct (Lindblad) simulation and for the simplified (Moments only) simu-
lation, respectively. These last two files also implement moments_common.py for
the definitions of many constants, some functions, and the RK4 integration routine
and moments_plotter.py to generate the figures. The density simulations also use
operators.py for the definitions of all the P, and (), operators, the superoperators,
the (anti)commutator and density_initial.py for the initial conditions of p.

The repository contains other directories as well; for example, JARs contains the
Java program which was made to generate the images in figure 1. Images contains
all the images of this paper and more. Finally, Maple contains two related Maple
worksheets; one of those was used to diagonalize some of the adjacency matrices,
and the other was used to demonstrate that cutting off the position and momentum
operator leads to an instability in their commutator (equation 4.7).

B Moments of the m3; network

Simulations were also run for the mg network to compare the two networks. Ini-
tially, the simulation was run with constant parameters (w; = wy = wg = 1),
and with the same initial conditions as in the first order homogeneous case (5.2.1):

((p1), (p2), (p3), (q1), {q2), {gs)) = (0.5,1,—1,—1,0,1) and v = 0.07ws.

0 10 20 30 1 0 10 20 30 1

(Q2)
(g2)

(a) (b)

Figure 9: The first order moment simulations for the ms network in the mode
basis (a) and in the node basis (b). Now there are two noiseless modes which span
all three nodes of the graph. Once again, time ranges from 0 to 45 in 15000 steps.
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Figure 10: (a) A simulation of the variances of the position operator (Q*) in the
ms (triangle) network, as a function of t, ranging in 15000 iterations from 0 to 45
and (b), the cross-correlations of the position operators, as a function of t, with
the same settings as in (a).

C Decay of the moments

Several of the operator moments have been claimed to be subject to decay, but don’t
visually decay in the time period of the simulation. Therefore, a set of images has
been included for a longer range of values of t. For example, in section 5.2.1 was
claimed that node 2 decays, whereas node 1 and 3 eventually synchronize. An image
to support this claim can be found in figure 11. Also, in section 5.2.2 was said that
all nodes decay; the graph in figure 12 supports this claim. Finally, in section 5.2.3,
it was mentioned that the cross-correlation between ()5 and ()3 also decays, despite
there not being any visual indication that this is indeed true. Therefore, another
image has been included in figure 13. These images can all be found on the next

page.

D Extra information on noiseless clusters

Connectedness

Going back to the analysis of networks that we performed in 2, we might also be
interested in the quantity of connected components in each network, to get an idea
of the type of networks which contain NSs. We want to state and prove the following
theorem about the number of connected components in a graph, and consequently
we want to apply this theorem to count the number of connected components in a
graph which contains a NS. The theorem is as follows:

Theorem 1. For an arbitrary graph G, the number of connected components s is
equal to the dimension of the null space of the Laplacian matrixz L:

s = dim Null(L)
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Figure 11: The same simulation as 5b, but now with t increasing in 15000 steps
from 0 to 750. Indeed, the second node vanishes for large t, and the first and third
node slowly converge to a single sinusoidal.
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Figure 12: The same simulation as 6b, but now with t increasing in 15000 steps
from 0 to 750. Now all nodes vanish for large t, but the first and second node decay
the slowest.
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Figure 13: The same simulation as 8b, but now with t increasing in 15000 steps
from 0 to 700. Indeed, the third cross-correlation decays.
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Let’s prove this. We will begin with a definition to make the proof easier.
Definition 6.1. A subgraph G; of G will be called isolated when

Here G4.N is the set of nodes of Gy. (L;; = Lj; is always the case, this follows from
the symmetry of the adjacency matrix.)

Intuitively: there are no connections between (G; and the nodes outside of Gj.
With that definition, the following theorem will become easier to prove:

Theorem 2. Let Gy a subgraph of G which is isolated within G. Enumerate the

nodes G.N: 1,...,n. Take the vector a with elements
. 1, i€ G.N
a; =1qg, n(1) =
G (i) {0, otherwise

Then the following holds: La = 0. The converse is also true: La=0 = G is
isolated.

Proof. 7 = 7: we look at the i-th component of La;

[La]z = Z Lm-ai

Now we see immediately for i € G.N \ G1.N that a; = 0, so from now on we
assume that ¢ € G1.N. Then we get:

[La]z - Z Lian — dia; = Z Ly;a, — Z Ly - 1= Z L, 1—L,,=0

n#i n#i n#i neG1.N\{i}

7 <= ": we use the contraposition. Assume 3i € G;.N : 3j € X = G.N\G;.N :
Lij = Lj; # 0. Then for component 7 of La it holds that:

n n#i
= Z Lypi — Ln; + Z — Ly
neG1.N\{i} neX\{i}
= Y “Luy<-Ly=-1<0
neX\{i}

So La # 0, so the converse has also been proven. O]

We now know that a component is isolated <= we can find a “special vector”
in the null space of L. Furthermore, for two subgraphs of G it holds that those
“special vectors” are orthogonal <= the two subgraphs are disjoint: this follows
trivially from the definition of those special vectors (if there is a component for which
those “special vectors” are both unequal zero, then the nodes of those subgraphs
are automatically not disjoint). Now the proof of theorem 1 follows almost directly
from this observation.
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Cluster sizes

We might also want to investigate the sizes of clusters in which we can find noiseless
clusters. In order to do that, we count the number of noiseless clusters for each NS
size and each component size out of the total of 5000 tries, and, using the parameters
N =15, p = 0.05, we got to the image displayed in figure 14.

sF 05 sk : : ‘ 0.16

e
o
L
o
-
w

o

o
e
=
S

Probability
(=]
£
T
Probability
o
=
5]
o
=
N

10

o
o
=]

0F

o
N
e
=
o

@ @
5 0.0 & 0.00 r .
@ T T @
2 0 5 10 15 2 0 5 10 15 0.08
NS Size NS Size
0.2
0.06
5F 5
0.04
01
. 0.02
. . . " " .
0O 5 10 15 0o 00 5 10 15 0.00
Component size Component size
(a) (b)

Figure 14: The number of times a noiseless cluster was found for each value of
the component size and the NS size, both ranging from 1 to 15, out of 5000
Erdos-Renyi networks with N = 15. For the probability of connection we chose
p=10.05in (a) and 0.80 in (b). It’s meant to be similar to figure 3 in [6], but it’s
not quite the same.

This image doesn’t look quite like it should yet, according to figure 3 in [6], and
it was included simply for the sake of completeness.
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