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Abstract

Real-world phenomena have traditionally been modelled in a GIS in two and three dimensions. However, power-
ful insights can be gained by the integration of additional non-spatial dimensions, such as time and scale, in a
higher dimensional spatial model. While this theory is conceptually sound, there is a lack of understanding of its
consequences when applied to real world geographic information. In this paper we therefore analyse these con-
sequences, as well as the techniques that are necessary in order to extract meaningful 2D/3D information from it,
which can be used with existing algorithms and software.
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1 Introduction

There is substantial interest in the use of higher-
dimensional (≥4D) digital objects that are built from
real-world data. Within GIS, such objects can be pro-
duced when existing 2D/3D data is integrated with tem-
poral information [17] or scale [20], among others. If
these characteristics are considered as fully independent
spatial dimensions (axes), objects in higher dimensional
space are created. This powerful technique, explained
fully in Section 2, is more complex than other repres-
entations [3, 13, 18], but it is easily extensible to in-
tegrate other dimensions, and preserves all topological
relationships within and between objects down to the
vertex level. Doing so makes it possible to store con-
tinuously changing objects in time and scale, as well
as other complex object relationships, and at the same
time reduces redundancy and helps to avoid inconsist-
encies [19].

Conceptually, these objects are hypervolumes of ar-
bitrary shape. They can be closed (bounded) or open
(unbounded), connected or not, with flat or curving
boundaries, with or without holes, of equal or different
dimension than the space they are contained in, orient-
able or unorientable, etc. However, in practical terms
we are mostly interested in relatively simple orientable
objects with flat geometry (polytopes), possibly with
holes and possibly open (to support objects extending

to infinity e. g. in time), in Euclidean space of the same
or higher dimension than the objects. This is but an ex-
tension to higher dimensions of the typical objects cur-
rently found in 2D/3D GIS. We have therefore limited
our scope to this class of objects, and within this paper,
we will therefore only be concerned with them.

Since it is difficult to visualise and analyse objects
in more than three dimensions, we are also interested
in extracting 2D or 3D objects from a higher dimen-
sional representation. This is easily done at a concep-
tual level by computing the intersection of two sets of
objects. However, computing these intersections for the
general case is extremely difficult and computationally
expensive. In fact, to the best of our knowledge, there
is no software that is able to compute the intersection
of two arbitrary polytopes in more than three dimen-
sions. We have therefore defined a simplified ‘slicing’
operation for this purpose—a limited form of point set
intersection—which could realistically be implemen-
ted, and is covered in detail in Section 3.

The goal of this paper is to establish a foundation
for handling n-dimensional (nD) spatial information in
a GIS context: a description of the nD geometries in-
volved and how to reduce its dimensionality to 2D/3D.
For this, we describe the necessary concepts, terms
and definitions, both those common in 2D/3D GIS, and
those derived from geometric modelling and mathemat-
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ics (especially topology), and present their significance
in the frame of reference of higher dimensional GIS. We
finalise by showing some examples in Section 4, and
our conclusions and plans for future work in Section 5.

2 Higher dimensional spatial models

To understand what we mean by considering all char-
acteristics as independent (orthogonal) dimensions, let
us first consider a case with 2D space, and time as the
third dimension. At any one point in time, an object
would be represented as a polygon in 3D space, parallel
to the 2D space plane (x,y) and orthogonal to the time
axis. Every object existing (and not moving or chan-
ging shape) during a time period would then be prism
shaped, with identical base and top facets parallel to the
2D space plane and the other facets orthogonal to it. An
example of this situation is shown in Figure 1.

Figure 1: A 2D space (x,y) + time (vertical axis) view
of the footprint of two separate buildings at time t0,
which were connected by a corridor (red) from time t1
to time t2 and then became disconnected again when
the corridor was removed until time t3. The moments
in time are shown along the thick line representing the
front right corner of the right building.
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Extending this to a 4D representation of 3D space and
time, every 3D object at one point in time would be a
(3D) polyhedron in 4D space, and an object that exists
for a period of time would be a polychoron, i. e. the
four-dimensional analogue of a polygon/polyhedron. If
this object is not moving or changing shape, it would
take the form of a prismatic polychoron, i. e. the four-
dimensional analogue of a prism.

Another relevant application is the integration of
scale as a spatial dimension. This concept is introduced
in [11] in the variable-scale geo-information technique,
and it is shown in Figure 2. Such approach enables the

generation of an infinite number of continuous levels of
detail, and provides a more consistent structure. The
integration of scale can extend this concept to higher
dimensions, e. g. to 4D in 3D city modelling [15, 16].

Figure 2: A 3D representation of 2D space (horizontal
plane) and scale (vertical axis). The vertical edges con-
necting corresponding features have been omitted for
legibility reasons. Adapted from [11].

An d-dimensional spatial model is thus defined by a
set of spatial objects embedded in d-dimensional space.
This notion has been extensively studied and is univer-
sally used in GIS for d ≤ 3, but its logical consequences
in d ≥ 4 have not been sufficiently explored. In partic-
ular, the distinction between the dimension of a spatial
object and that of the space it is embedded in is not
widely used or known in the GIS domain1. Even worse,
4D is often used as a catchphrase for 3D + time model-
ling, regardless of whether time is actually treated as
an additional spatial dimension or not, and generally
without creating any 4D objects.

To understand the difference between the dimension
of a spatial object and that of the space it is embed-
ded in, it is useful to consider the manner in which a
topology-based approach is used in geometric model-
ling. In such an approach, two semi-independent mod-
els are used:

• A combinatorial or topological model that de-
scribes the topological relationships between and

1See Gold [7] for an exception
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within spatial objects. To do this, certain as-
sumptions about the topology of the objects are
made, e. g. homeomorphism of an n-dimensional
cell (n-cell), representing the topology of an n-
dimensional spatial object, to an n-dimensional
ball.

• An embedding or geometric model that describes
how these objects are embedded into geometric-
ally defined space. Analogously, assumptions
about the geometry of the objects are made as well,
e. g. a closed polytope having no self-intersections.

For instance, a cube could be represented in a com-
binatorial model as a 3-cell in a cell complex, described
by its boundary of six 2-cells, each of those with a
boundary composed of four 1-cells, each of them with
a boundary composed of two 0-cells. A corresponding
simple embedding model could relate each vertex (0-
cell) to a tuple of coordinates and assume a linear geo-
metry. More complex embedding models could contain
explicit equations of curves, surfaces, etc.

The distinction between the combinatorial and em-
bedding models is useful from a scientific perspective
since it separates the problems of the fields of geomet-
ric modelling and computational geometry [10]. When
creating higher dimensional spatial models, the dimen-
sion of the spatial objects is given by the combinatorial
model used, while the dimension of the space is given
by its embedding model. Using this distinction, subtle
differences can be recognised between different data
models. For instance, both the winged-edge [1] and the
facet-edge [4] data structures can be used to describe
three dimensional models (sets of objects embedded in
three dimensional space), but while the former is ac-
tually a 2D data model representing the (2D) manifold
surface of the 3D objects within the model, the latter is
a 3D data model fully capable of storing more complex
objects and volume-volume relationships.

Since different combinatorial models are usually able
to represent mathematically different classes of objects,
giving a precise definition of the dimension of a com-
binatorial model is complex and out of the scope of
this paper. For the purposes of this discussion, we will
therefore simplify it by assuming that an n-dimensional
model is able to store every possible spatial object of
dimension n.

The dimension of a spatial object a, dim(a) ∈ N, is
then given by the minimum dimension of a combinat-
orial model that is able to store it. Meanwhile, the di-
mension of a set of spatial objects A = {a0,a1, . . . ,an}

is given by the minimum dimension of a combinatorial
model that is able to store all of these objects and the to-
pological relationships between them, and is thus given
by dim(A)= max(dim(a0),dim(a1), . . . ,dim(an))+
ad j, where ad j = 1 if any two spatial objects of the
highest dimension in the model are adjacent2, ad j = 0
otherwise. Since this might be difficult or expens-
ive to compute, one can safely assume dim(A) ≤
max(dim(a0),dim(a1), . . . ,dim(an))+1 instead.

This reinforces the intuitive notion of the dimension
of a set of isolated points being zero, line segments one,
polygons two, polyhedra three, and so on, regardless
of the dimension of the space they are embedded in.
At the same time, this definition also clarifies dubious
cases, such as a polyline being of dimension two or a
planar partition of dimension three, not surprising con-
sidering that a (non self-intersecting) polyline is akin to
an open polygon, or a planar partition an open polyhed-
ron. Note however that this also entails that a single line
segment implicitly described by its endpoints can have
dimension zero, a polygon one, a polyhedron two, and
so on. A single point cannot be implicitly described by
its (null) boundary, and thus still has dimension zero.

Meanwhile, the dimension of a space S in which the
objects are embedded is also dim(S) ∈ N, and is given
by the dimension of the embedding model used. In a
strict sense, the dimension of this model can be defined
in terms of the dimension of the vector space defined in
it. In the most common case, where it consists of a tuple
of coordinates in a coordinate system whose axes are
linearly independent, the dimension of the embedding
model is the simply given by the number of coordinates
used. Thus, when Rd is used3, in practice it means that
dim(Rd)= d.

It is worth noting that the dimensions of the objects
and the space are independent of each other. As men-
tioned previously, topological models of one dimension
lower than their corresponding geometry can be used,
generally by representing an object implicitly by its
boundaries. This saves on memory when the highest
dimensional topological relationships are not required.
On the other hand, it is also possible to have topological
models of higher dimension than their actual geometric
embedding, such as when 3D models are displayed on
screen (or on paper), and are thus given a 2D geometry.

2Adjacency between n-dimensional objects being defined as (n−
1)-adjacent.

3Conceptually Rd is often used, but due to limitations inherent in
computer representations, most likely something else is used when it
is actually implemented [8].
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However, this imposes considerable constraints, such as
not being able to visualise the higher dimensional prim-
itives, e. g. when drawing a 3D object in a 2D perspect-
ive view in a piece of paper, not all of its facets can be
seen at the same time. For most GIS applications the
dimension of the space is thus higher or equal to that of
the objects within it.

3 Reducing the dimension of spatial ob-
jects

Starting from a higher dimensional spatial model where
a set of higher dimensional spatial objects are stored,
being able to extract meaningful 2D/3D objects is a
valuable operation. These simpler types are both easier
to visualise and are possible to use with existing al-
gorithms and software. In order to reduce the dimen-
sion of spatial objects, (point set) intersections of the
original data in the model and purposefully designed
lower dimensional objects can be used. This procedure
works in a analogous manner as the generation of 2D
cross-sections from 3D objects, such as is commonly
done with isolines from elevation data.

In the most general form, any two sets of objects A,B
can be intersected (∩), resulting in a new set of objects
A∩B, such that dim(A∩B)≤ min(dim(A),dim(B)).
Since the intersection result is, by definition, the com-
mon part of the two sets of objects, it cannot be of a
higher dimension than the lower dimensional set. In
fact, it can be of a lower dimension than both, since
they can touch at a lower dimensional primitive, e. g. a
common point edge, or polygon. When the objects are
disjoint, A∩B is empty (∅) and its dimension is not well
defined, although 0 [12] and−1 [6] can be arguably jus-
tified mathematically, based on different definitions of
the topological dimension of a set. Note however that
even in the case of the intersection of two single ob-
jects, the result might not be a single object, i. e. single
polytopes are not closed under the intersection operator.
This is the reason why for our purpose, intersection is
best treated directly based on sets of objects.

Computing the intersection of two arbitrary sets of
objects is a very complex problem. This can be some-
what ameliorated by restricting the objects that are al-
lowed, such as for the convex case [9]; or by using tech-
niques to subdivide the objects into more manageable
ones, such as constrained triangulations [14] or the al-
ternate hierarchical decomposition [2]. However, these
techniques fail to fully overcome what is still an intric-

ate problem with a very high computational complexity.
Even in the convex case, it is likely analogous to the
problem of computing an arrangement of hyperplanes,
which is O(nd−1) in the worst case [5], with n the total
number of faces ((d − 1)-cells) in the two objects to-
gether.

Since we are mostly interested in very specific cases
of intersections, this problem can be often avoided by
using the properties of the particular objects that need
to be intersected. For this, we have defined the ‘sli-
cing’ operator. Slicing is an intersection where a higher
dimensional set of objects, generally consisting of a
spatially indexed and rather large data set, is intersec-
ted with another lower-dimensional object—often half-
open, box-shaped and parallel to an axis—which we
have dubbed as the ‘slicing element’. The end result is
then often given in terms of the lower dimensional space
induced by the slicing element itself, which is equival-
ent to an orthographic projection of the intersection to
a coordinate system describing the vector space where
the slicing element lies. An example of slicing is shown
in Figure 3.

This operation can be expressed as follows. Given
a data set object A ∈ x1× x2× x3, where dim(A) = 3
and a specific value c of x3 along which we want
to slice it, it is possible to generate the slicing ele-
ment B : x3 = c, where dim(B) = 2. The result is
given by A∩ B ∈ x1 × x2 × x3, where dim(A∩ B) =
min(dim(A),dim(B))= 2, and it can be expressed as
a two dimensional object in the space x1× x2 induced
by the slicing element B.

4 Example

Consider now what would happen in a practical ex-
ample using a four dimensional model with 3D space
and scale (level of detail), as shown in Figure 4. The
model consists of a single 4D object representing a
house at different levels of detail along the scale axis
(l). Every d-dimensional primitive in the house is thus
a (d+1)-dimensional one in the model, stretching from
the minimum level of detail where it is visible up to
the maximum level of detail, its geometry becoming in-
creasingly complex and joined appropriately. For in-
stance, the vertex at the apex in the front of the house
is a (poly)line connecting the apices at different scale
levels. Similarly, the edge between the roof of the house
and its façade is a (set of adjacent) planes joining these
edges at different scales. For this paper we ignore how
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Figure 3: Slicing a prism with a plane in 3D space. The data set object (blue prism) is sliced with the plane x3 = c
(green slicing element), which is an open range along both x1 and x2, and orthogonal to the axis x3. The resulting
object (red) is a triangle in 3D space. This triangle can also be expressed as a triangle in the 2D space x1× x2
induced by the slicing element.
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these are joined, but work is ongoing to achieve this
purpose. An alternative view is considering that a 3D
object at a fine level of detail (l3) has been generalised
(using generalisation algorithms) in several steps up to
a coarse level of detail (l1), and these have been joined
appropriately. By slicing this space-scale 4D object, it
is possible to generate 3D models at intermediate levels
of detail, such as the house at an arbitrary value, e. g.
l = l2.

Figure 4: A schematic view showing the results of sli-
cing a 4D model consisting of 3D space (x,y,z) and 1D
scale l (red axis). The model contains a house at levels
of detail ranging from coarse (l1) to fine (l3) An inter-
mediate level of detail can be obtained from the model
by slicing it at the scale value of l = l2 and projecting it
to the hyperplane of the slicing element.
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Unlike other models with fixed representation levels,
there are an infinite number of differently detailed 3D
models that can be extracted from this 4D one, allowing
for smooth zooming operations [20] or obtaining levels
of detail that are optimised for the screen in which they

are viewed.

5 Discussion

The simple example from the previous section does not
show all the advanced capabilities that can be achieved
using a true 4D spatial model. For instance, using a sli-
cing element with linear geometries, but that is not or-
thogonal to the scale axis, it is possible to obtain mixed-
scale levels of detail for applications where different
levels of detail across the view are required, e. g. having
more detail close to the viewer or in an area where a de-
tailed simulation is needed (perspective view). Slicing
with multiple disjoint planes (a discontinuous embed-
ding) can generate views of the same object at different
levels of detail or points in time. Animations can be
generated by moving the slicing element along a mean-
ingful path. Advanced representation can be obtained
using curving objects, such as bell shaped surfaces for
mixed scale that depends on the distance to the viewer.

These possibilities are currently difficult to visualise,
but we believe their implementation to be within reach,
and the capabilities offered by true higher dimensional
models open new and concrete possibilities for analysis.
Having access to the full topological information means
that the connectivity between in within objects is never
lost, e. g. an object disappearing and then reappearing
in time, which allows for topological queries along all
dimensions and avoids expensive computations to de-
termine whether two objects are actually the same. For
these reasons, the concepts presented in this paper are
important as a foundation for the manipulation of higher
dimensional spatial information.
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pological relationships for spatiotemporal objects.
Geoinformatica, 15:633–661, 2011.

[18] P. van Oosterom. Variable-scale topological data
structures suitable for progressive data transfer:
The GAP-face tree and GAP-edge forest. Carto-
graphy and Geographic Information Science, 32
(4):331–346, 2005.



AGILE 2013 – Leuven, May 14-17, 2013

[19] P. van Oosterom and M. Meijers. Vario-scale data
structures supporting smooth zoom and progress-
ive transfer of 2D and 3D data. In F. Schröder,
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