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A B S T R A C T   

It is known that quantitative measures for the reliability of software systems can be derived from software 
reliability models. And, as such, support the product development process. Over the past four decades, research 
activities in this area have been performed. As a result, many software reliability models have been proposed. It 
was shown that, once these models reach a certain level of convergence, it can enable the developer to release the 
software. And stop software testing accordingly. Criteria to determine the optimal testing time include the 
number of remaining errors, failure rate, reliability requirements, or total system cost. In this paper we will 
present our results in predicting the reliability of software for agile testing environments. We seek to model this 
way of working by extending the Jelinski-Moranda model to a ‘stack’ of feature-specific models, assuming that 
the bugs are labelled with the feature they belong to. In order to demonstrate the extended model, several 
prediction results of actual cases will be presented. The questions to be answered in these cases are: how many 
software bugs remain in the software and should one decide to stop testing the software?   

1. Introduction 

Digitization and connectivity of lighting systems has seen an expo-
nentially increasing impact in the last years within the lighting industry 
[1,2]. The impact is far beyond the impact on single products and ex-
tends to an ever-larger amount of connected systems. Continuously, 
more intelligent interfacing with the technical environment and with 
different kind of users is being built-in by using more and different kind 
of sensors, (wireless) communication, and different kind of interacting 
or interfacing devices, see Fig. 1. When the number of components and 
their interactions significantly increase, so-called large or complex sys-
tems are formed. The commonly used description of a large or complex 
system is given as [1,2]: 

A complex system: a system composed of interconnected parts that as 
a whole exhibit one or more properties (behavior among the possible 
properties) not obvious from the properties of the individual parts. 

With the increasing amount of complexity, it is imperative that the 
reliability of such systems will enter a next frontier. 

The trend towards controlled and connected systems also implies 
that other components will start playing an equal role in the reliability of 
such systems. Here, reliability needs to be complimented with avail-
ability and other modelling approaches are to be considered [3]. In the 

lighting industry, there is a strong focus on hardware reliability, 
including going from component reliability to system reliability. How-
ever, in the controlled and connected systems, software plays a much 
more prominent role than in even sophisticated “single” products such 
as color-adjustable lamps at home, streetlights, UV sterilization lights 
and alike. In these systems, availability is more strongly determined by 
software reliability than by hardware reliability [3]. In a previous study, 
the reliability of software was evaluated using the Goel-Okumoto reli-
ability growth model [4]. It is known that different models can produce 
very different answers when assessing software reliability in the future 
[5]. A significant amount of research has been performed in the area of 
reliability growth and software reliability, that considers the process of 
finding (and repairing) bugs in existing software, essentially during a 
test phase [6 – 11]. A typical assumption is that the development of the 
software has finished, except for the bugs that have to be detected and 
repaired [5,8,12]. The software reliability models then answer questions 
such as: what is the number of remaining bugs?, how many would we 
find if we spend a specified number of additional weeks of testing, etc. 
[13,14]. In a more recent study Rana et al. [15] demonstrated the use of 
eight different software reliability growth models that were evaluated 
on eleven large projects. Prior classification of the expected shape was 
proven to improve the software reliability prediction. 
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In many software developments companies, software is developed in 
a cadence of sprints resulting in biweekly releases in the so-called Scaled 
Agile Framework (SAFe) [16]. This means there is a second reason why 
bugs are found, apart from finding them by doing tests, namely, new 
bugs are introduced because new features are added to the software 
continuously. An important class of software reliability growth models is 
known as General Order Statistics (GOS) models [17,18]. The special 
case in which the order statistics come from an exponential distribution 
is known as the Jelinski-Moranda model [19]. The main assumption for 
this class of models is that the times between failures of a software 
system can be defined as the differences between two consecutive order 
statistics. It is assumed that the initial number of failures, denoted by a, 
is unknown but fixed and finite. In this paper, we seek to model this way 
of working by extending the Jelinski-Moranda model to a ‘stack’ of 
feature-specific models, assuming that the bugs are labelled with the 
feature they belong to. The feature-specific model parameters can be 
considered as random effects, so that differences between features are 
modelled as well. In order to demonstrate the extended model, two use 
cases will be presented. Here, we model the software testing phase to get 
a detailed sense of the software maturity. Once software is deemed 
mature enough by the organization, it is released to the end-users. The 
new, operational use of the software is different from testing phase, and 
this phase is not being modelled. The questions to be answered in the 
two cases are: how many software bugs remain in the software and 
should one decide to stop testing the software [20,21]? This paper builds 
up the mathematical model that describes the number of bugs detected 
in every time interval (sprint), specified per software feature. We derive 
a way to evaluate the likelihood function, which is used in the next 
section on estimation. We set out with the model with only one feature, 
which is a variant of the Jelinski-Moranda model but adapted for the 
counts per sprint. We need expressions for conditional probabilities 
based on recent history, where only the cumulative counts turn out to be 
important. We extend the results to multiple features, where we shift the 
time axis as different software features are completed at different times. 
We conclude by describing how all ingredients are combined to the 
likelihood function. 

2. Mathematical derivations and approach 

Full details for the mathematical derivations can be found in [22]. 
The basic concept includes that a software tool has bugs, which are 
detected at time Ti after testing starts at time 0. Ti is independent and 
exponentially distributed, i.e., Individual bugs are found independently 
following an exponential distribution. To model agile software devel-
opment, where new functionality is added after each sprint (taking say 
two working weeks), we consider software as a set of features: one 

feature can be considered a single part of the software, or the result of a 
single “sprint” of development. Bugs are found and fixed for the existing 
features (the latest and earlier features), and new features can be added 
at later points in time. This way, you can track and predict the remaining 
number of bugs for the current set of features (or any other interesting 
set of features). We use a Bayesian setup [23,24] that allows us to 
combine the bugs originating from different features. We implemented 
our Bayesian approach in the Stan modelling framework [25] to esti-
mate the software reliability model for multiple features. We do not 
employ strong priors although that would be possible, e.g., expressing a 
prior belief of the degree to which added features are similar to each 
other in total number of bugs af or the speed at which bugs are found, bf . 
For a feature f, given values for (af, bf), the setup from above is in essence 
a Jelinski–Moranda model. The values (af, bf) are considered random, 
unknown parameters, having the same role as random effects in a (non) 
linear mixed effects model following some distribution. In a Bayesian 
context, the af, bf can be considered priors with associated hyperpriors. 
In our setup, af and bf are modelled as independent truncated normal 
distributions, where the truncation are at 0 to ensure positive af and bf. 
Both distributions have a mean and standard deviation parameter, 
although they are not equal to the expected value and standard devia-
tion due to the truncation. Their posterior distributions give some 
insight to which extent features are different in size and complexity (in 
terms of speed of finding bugs). The reading of input data, pre- 
processing the data, fitting the Stan model, and inspecting conver-
gence and results are done using Python. The Stan website (mc-stan.org) 
states “Stan is a state-of-the-art platform for statistical modeling and 
high-performance statistical computation.” The website offers an 
extensive amount of documentation and examples. The Stan language 
requires specification of a model in terms of different concepts which are 
briefly described below. The model is applied in the situation that we 
have observed a number of sprints with counts to which we fit the data. 
The key Stan model components are as follow:  

• Input data: detect the upper bounds for Number of bugs found in the 
time interval (N) and the Cumulative number of bugs detected (C) 
and time point at which a feature starts.  

• Parameters: total bugs remaining, the bf; the hyperpriors for the 
truncated normal distributions of a f and bf.  

• Transformed parameters: af is considered a transformed parameter, 
calculated from a combination of data and a model parameter. 

• Model: distributions for af and bf, hyperpriors for these, and a spec-
ification of log likelihood contributions by a double for-loop over 
features and over sprints, where the feature starting sprints are used. 

The bug reports may come from different sources (implemented 
regression tests and tests by the team). Only bugs of sufficient severity 
are considered in the predictions. To handle the various sources we 
simply took the aggregate counts per sprint as input, assuming that the 
total number of tests in a sprint was comparable, we get a discrete time 
axis that was reasonably close to both test effort and calendar time. 
Ticket data were fed into the code, where we distinguished tickets with 
severity levels S (high) and A (low). We used JIRA [26] output of bug 
data, a typical one is shown in Fig. 2. Pick-and-mix was used for ticket 
severity allocation. These tickets either had the allocation open or 
closed. Open means the issues were being solved, closed means it was 
solved. Recurring tickets were treated as a new open ticket which can be 
closed as soon as it is known to be recurrent. Ticket severity is denoted as 
S, A, B, C, or D. S are issues seen as a blocker that need immediate 
attention. A is seen as critical, B as major C and D as minor severity 
levels. We have only analyzed the closed tickets. Fig. 2 depicts the full 
flowchart of the process: from tickets to dashboard values. Actual sprint 
dates have an equal length for each sprint of two weeks. The outcome is 
produced automatically. 

Fig. 1. The growing population with increased urbanization results in the need 
to focus on energy efficiency and sustainability thereby increasing digitalization 
and rapidly evolving technologies containing software. 
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3. Results 

As a real application case, we took connected lighting products that 
enables you to harness the Internet of Things to transform your building 
and save up to 80% on energy. LED luminaries with integrated sensors 
collect anonymous data on lighting performance and how workers use 
the workplace. This enables you to optimize the lighting, energy uses, 
cleaning, and space usage to improve efficiency, reducing energy usage, 
and cost. Workers can use software apps on their smartphones to book 
meeting rooms, navigate within the office and personalize the envi-
ronment around their workstation further improving productivity and 
employee engagement. These smart lighting system with open API in-
tegrates seamlessly with the IT system and enables a variety of software 

applications to create a more intelligent work environment for both 
building operations managers and employees. 

In total, we analyzed 8 connected lighting system projects with the 
developed tool. All these projects are still in the development phase and 
follow clear software quality principles. In total, it concerns approxi-
mately 10.000 software tickets or bugs. Fig. 3 depicts the ticket distri-
butions when classified as high (A + S tickets) and low (B + C + D) 
tickets. The variation per project is clear, tickets classified as high cover 
approximately 12% of all, and low about 88%. This was to be expected 
as severe tickets should appear less then less severe ones. 

Predicted results of 4 projects, 1, 4, 6 and 7, are depicted in Fig. 4. It 
shows the cumulative growth of severe (orange – red) and less severe 
(blue – green) tickets as function of sprints (in this case weeks). For 

Fig. 2. Flowchart for automatic generation of software reliability predictions. The Phyton code is assessed through the Qt based tool, mathematical details are 
thoroughly described in [22]. 

Fig. 3. Ticket distributions for the 8 analyzed projects.  
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projects 4 and 6 no signs of maturity is near, for projects 1 and 7, 
maturity is in sight. The predicted data is shown in Table 1. This table 
depicts the average values of predicted nr of tickets in coming sprints. 
Some projects are seeing maturity that are those with a low nr of 
remaining bugs after 10 sprints such as project 1. Most projects are 
seeing good levels of maturity for high severity tickets. Project 5 is the 
exemption, with still a large amount of severe tickets remaining in the 
code. Again, all projects are still in the development stage. The predicted 
values presented in Table 1 can serve for decisions to be taken if the 
software can be launched into the market. Also, this data can be used to 
allocate manpower for further code development and/or enhancement. 
Question remains for all these projects: can we take that decision? 

As a final remark notice that by implementing the software reliability 

tooling and metrics, the number of bugs or tickets observed in the per-
formance of the software in actual applications was reduced by 40%. 
This can be seen as a major achievement. 

4. Discussion & conclusions 

Software failures differ significantly from hardware failures. They 
are not caused by faulty components or wear-out due to e.g. physical 
environment stresses such as temperature, moisture, and vibration. 
Software failures are caused by latent software defects. These defects 
were introduced in the software while it was created. However, these 
defects were not detected and/or removed prior of being released to the 
customer. In order to prevent that these defects are noticed by the 
customer; a higher level of software reliability has to be achieved. This 
means to reduce the likelihood that latent defects are present in released 
software. Unfortunately, even with the most highly skilled software 
engineers following industry best practices, the introduction of software 
defects is inevitable. This is due to the ever-increasing inherent com-
plexities of the software functionality and its execution environment. 
Here, software reliability engineering may be helpful, a field that relates 
to testing and modelling of software functionality in a given environ-
ment of a particular amount of time. But certainly, there is currently no 
method available that can guarantee a totally reliable software. In order 
to achieve the best possible software, a set of statistical modelling 
techniques are required that:  

• Can assess or predict the to-be-achieved reliability. 

Fig. 4. Predicted tickets as function of sprints (weeks) for projects 1, 4, 6 and 7. Blue lines concerns low severity tickets orange lines the high ones. Future tickets are 
given in green and red. 

Table 1 
Predicted nr of tickets for coming sprints. Average values ± standard deviation.  

Project Predicted nr of tickets 

High (A + S) Low (B + C + D) 

+1 sprint +10 sprints +1 sprint +10 sprints 

1 0.3 ± 1.7 1.4 ± 2.6 2.4 ± 3.6 11.9 ± 8.1 
2 0.7 ± 2.3 3.2 ± 4.8 2.6 ± 3.4 12.7 ± 8.3 
3 1.0 ± 3.0 5.1 ± 5.9 5.2 ± 4.8 25.8 ± 11.2 
4 0.5 ± 1.5 2.4 ± 3.6 14.7 ± 7.8 71.0 ± 20.0 
5 3.9 ± 4.1 19.3 ± 9.7 8.1 ± 5.9 39.9 ± 14.1 
6 0.6 ± 1.4 2.9 ± 4.1 15.0 ± 8.0 75.2 ± 18.8 
7 0.2 ± 0.8 0.8 ± 2.2 5.2 ± 4.8 25.1 ± 10.9 
8 0.2 ± 0.8 1.0 ± 2.0 2.2 ± 3.8 10.5 ± 7.5  
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• Based on the observations of software failures during testing and/or 
operational use. 

In order to achieve these two requirements, many software reliability 
models have been proposed. It was shown that, once these models reach 
a certain level of convergence, it can enable the developer to release the 
software. And stop software testing accordingly. Criteria to determine 
the optimal testing time include the number of remaining errors, failure 
rate, reliability requirements, or total system cost. Typical questions that 
need to be addressed are:  

• How many errors are still left in the software?  
• What is the probability of having no failures in a given time period?  
• What is the expected time until the next software failure will occur?  
• What is the expected number of total software failures in a given time 

period? 

Certainly, the question on “How many errors are left” is something 
completely different from “What is the expected number of errors in a 
given time period”. One cannot estimate the first directly, but you can 
estimate the second. In our approach, we are content with “expected 
number of errors that a long testing period would yield”. 

In this paper we presented an approach to predict software reliability 
for agile testing environments. The new approach divers from the many 
others in the sense that it combines features with tickets using Bayesian 
statistics. By doing that, a more reliable number of predicted tickets 
(read: software bugs) can be obtained. The developed system software 
reliability approach is applied to 8 software development projects, to 
demonstrate how software reliability models can be used to improve the 
quality metrics. The new approach is carved down in a tool, pro-
grammed in Python. The outcome of the predictions can be used in the 
Quality dashboard maturity grid to enable a better judgement of 
releasing the software or not. The strength of the software reliability 
approach is to be proven by more data and comparison with field return 
data. The outcome is satisfactory as a more reliable number of remaining 
tickets was calculated. As prominent advantage we note that divergence 
of the proposed fitting procedure is not an issue anymore in the new 
approach. 

Following is recommended for the future developments of the pre-
sented approach:  

• Gather more data from the software development teams. 
• Connect to the field quality community to gather field data of soft-

ware tickets.  
• Make software reliability calculation part of the development 

process 
• Automate the Python code such that ticket-feature data can be im-

ported on-the-fly.  
• Include machine learning techniques and online failure prediction 

methods, which can be used to predict if a failure will happen 5 min 
from now [27].  

• Investigate the used of other SRGM models, including multistage 
ones, or those that can distinguish development and maintenance 
software defects [14,15].  

• Not focus on a specific software reliability model but rather assess 
forecast accuracy and then improve forecasts as was demonstrated 
by Zhao et al. [28].  

• Classify the expected shape of defect inflow prior to the prediction 
[15]. 
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C. Höglund, Selecting pm nhu8io0software reliability growth models and 
improving their predictive accuracy using historical projects data, J. Syst. Softw. 
98 (2014) 59–78. 

[16] M. Xie, G. Hong, C. Wohlin, Modeling and analysis of software system reliability, 
in: W. Blischke, D. Murthy (Eds.), Case Studies in Reliability and Maintenance, 
Wiley, New York, 2003, pp. 233–249, chapter 10. 

[17] D. Miller, Exponential order statistic models of software reliability growth, IEEE 
Trans. Softw. Eng. SE-12 (1986) 12–24. 

[18] H. Joe, Statistical inference for general-order-statistics and nonhomogeneous- 
poisson-process software reliability models, IEEE Trans. Softw. Eng. 15 (1989) 
1485–1490. 

[19] Z. Jelinski, P. Moranda, Software reliability research, in: W. Freiberger (Ed.), 
Statistical Computer Performance Evaluation, Academic Press, 1972, pp. 465–497. 

[20] S.R. Dalal, C.L. Mallows, When should one stop testing software? J. Am. Stat. 
Assoc. 83 (1988) 872–879. 

[21] S. Zacks, Sequential procedures in software reliability testing, in: Recent Advances 
in Life-Testing and Reliability, CRC, Boca Raton, FL, 1995, pp. 107–126. Version 
April 21, 2020 submitted to Mathematics. 

[22] W.D. van Driel, J.W. Bikker, M. Tijink, A. Di Bucchianico, Software Reliability for 
Agile Testing, Accepted for publication in Mathematics, 2020. 

[23] S. Basu, N. Ebrahimi, Bayesian software reliability models based on martingale 
processes, Technometrics 45 (2003) 150–158. 

W.D. van Driel et al.                                                                                                                                                                                                                           

http://www.scott-project.eu
https://doi.org/10.1007/978-1-4614-3067-4
https://doi.org/10.1007/978-3-319-58175-0
https://doi.org/10.1007/978-3-319-58175-0
https://doi.org/10.1007/978-981-10-0715-6
https://doi.org/10.1007/978-981-10-0715-6
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0025
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0025
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0030
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0030
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0035
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0035
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0040
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0040
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0045
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0045
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0045
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0050
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0050
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0050
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0055
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0055
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0060
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0060
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0060
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0065
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0065
https://doi.org/10.1007/1-84628-295-0
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0080
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0080
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0080
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0085
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0085
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0090
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0090
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0090
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0095
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0095
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0100
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0100
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0105
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0105
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0105
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0110
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0110
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0115
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0115


Microelectronics Reliability 119 (2021) 114074

6

[24] B. Littlewood, A. Sofer, A Bayesian modification to the Jelinski-Moranda software 
reliability growth model, Softw. Eng. J. 2 (1987) 30–41. 

[25] Team, T.S.D, Stan Python Code, Available online, https://mc-stan.org/, 2018. 
(Accessed 15 November 2018). 

[26] Atlassian, JIRA Software Description, 2020. 

[27] F. Salfner, M. Lenk, M. Malek, A survey of online failure prediction methods, in: 
ACM Computing Surveys, 2010, pp. 12–24, 433 42. 

[28] X. Zhao, V. Robu, D. Flynn, K. Salako, L. Strigini, Assessing the safety and 
reliability of autonomous vehicles from road testing, in: 30th International 
Symposium on Software Reliability Engineering (ISSRE) 436 2019, 2019. 

W.D. van Driel et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0120
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0120
https://mc-stan.org/
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0130
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0135
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0135
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0140
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0140
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0140

	Prediction of software reliability
	1 Introduction
	2 Mathematical derivations and approach
	3 Results
	4 Discussion & conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References




