
Quantum Error Correction
Decoders for the Toric Code

Nando Leijenhorst, 4582640

Bachelor Thesis,
Applied Mathematics and Applied Physics BSc,
Delft University of Technology

Delft, July 3, 2019
Supervisors:

Dr. M.P.T. Caspers
Dr. D. Elkouss Coronas

ii

Abstract

Quantum error correction is needed for future quantum computers. Classical error
correcting codes are not suitable for this due to the nature of quantum mechanics. There-
fore, new codes need to be developed. A promising candidate is the toric code, a surface
code, because of its locality and its high error correcting capability and thresholds (the
error probability below which increasing the size of the code decreases the failure rate).

This thesis provides an introduction to quantum error correction and the stabilizer
formalism, which is used to introduce the toric code. Several decoders are looked at,
including the Minimum Weight Perfect Matching (MWPM) decoder and a recently de-
veloped decoder, the Union-Find (UF) decoder [1]. The UF decoder is useful because
of its almost-linear time complexity, while only reducing the threshold by a marginal
amount compared to the MWPM decoder. In this thesis, the time complexity of the
weighted growth version of the UF decoder is analysed.

The toric code and the decoders have been implemented and simulated, and the
thresholds have been determined. For the MWPM decoder, the threshold was determined
to be 11.5 ± 0.2%, which is not in agreement with the threshold in literature of 10.3%
[2], and should not be possible according to the optimal threshold of about 11%. This
probably is a result of the low grid sizes (up to a gridsize of 11) of the code used due
to the time needed to simulate the MWPM decoder. For the UF decoder, the threshold
found was 9.7 ± 0.9%, which is in agreement with the threshold of 9.9% found by N.
Delfosse and N. Nickerson [1]. The time complexity of the UF decoder has also been
determined, and is indeed almost-linear as expected by the analysis.

iii

Contents

Abstract ii

1 Introduction 1

2 Theory of Quantum Error Correction 2
2.1 Linear Algebra . 2

2.1.1 Notation . 2
2.1.2 The tensor product . 3
2.1.3 The trace . 5
2.1.4 The spectral decomposition theorem 5
2.1.5 Commutators . 6

2.2 Postulates of Quantum Mechanics . 6
2.2.1 The density matrix . 8

2.3 Computation . 10
2.4 Quantum Channels . 11
2.5 Error Channels . 15

2.5.1 The bit flip channel . 16
2.5.2 The phase flip channel . 16
2.5.3 The depolarizing channel . 16
2.5.4 The erasure channel . 17

2.6 Error Correction . 17
2.6.1 The 3-bit repetition code . 18
2.6.2 The 3-qubit bit flip code . 19

3 The Stabilizer Formalism 24
3.1 The General Idea . 24
3.2 Group Theory . 24
3.3 Defining a Code . 25
3.4 Errors . 26
3.5 Logical Operators . 28
3.6 The Logical Basis States . 29
3.7 The Distance of a Quantum Error Correcting Code 29
3.8 The 3-qubit Bit Flip Code . 30

4 The Toric Code 31
4.1 The Relevance of the Toric Code . 31
4.2 The Stabilizers . 31
4.3 The Logical Gates . 33
4.4 Errors . 35
4.5 Error models . 35
4.6 The Threshold of the Code . 36
4.7 Decoding the Toric Code . 37

1

4.7.1 The optimal decoder . 37
4.7.2 Minimum Weight Perfect Matching 37
4.7.3 The Union-Find decoder . 39

5 Simulations of the Toric Code 49
5.1 The Setup for the Simulations . 49
5.2 Successful Corrections . 49
5.3 The Thresholds . 49

5.3.1 The MWPM algorithm . 50
5.3.2 The Union-Find decoder . 52

5.4 The Difference Between Odd and Even L 53
5.5 The Time Complexity . 54

5.5.1 The MWPM algorithm . 55
5.5.2 The Union-Find decoder . 56
5.5.3 Comparing the decoders . 56

6 Conclusion 58

References 59

A Short proofs and identities 60
A.1 Proofs related to the trace . 60
A.2 Identities . 61

B The Inverse Ackermann Function 62

C The Time Complexity of Appending Boundary Lists 65

1

1. Introduction

In the recent years, quantum computing has been developing quickly. Algorithms
for quantum computers have been developed, research centres all over the world are
developing qubits to make a reliable quantum computer.

A good quantum computer requires speed and accuracy. A problem related to the
accuracy is the noise. As the environment can destroy the states in a quantum computer,
one would like to have a completely isolated system. However, one would also like to do
computations, which need interactions from the environment. It is unavoidable at the
moment that this brings errors in the computer [3]. As accuracy is needed for reliable
results, these errors need to be corrected.

A good option for codes to correct the errors are surface codes. In this thesis, the
toric code of Kitaev [4] (a surface code) will be examined. Some of the properties which
make surface codes a good option are the locality (only interactions with neighbouring
qubits) and the high thresholds (the error probability below which increasing the size of
the code decreases the failure rate).

A decoder is needed to find a correction for an error. Of course, the threshold depends
on the decoder, as the decoder determines how to correct an error. As still speed is
required, the time complexity of the decoders is an important factor to consider. In this
thesis, a recently developed decoder is looked at, with almost-linear time complexity while
keeping a high threshold. This decoder is called the Union-Find decoder, a reference to
the used Union-Find data-structure algorithm [5]. In the original article, pseudo code
for one version of the decoder is given, but it is said that a different version (weighted
growth) has a better performance, with the main difference mentioned. In this thesis
the weighted growth version is implemented, and the time complexity is analysed and
simulated. The peeling decoder, needed in the Union-Find decoder, is also implemented.

In order to introduce the toric code and the Union-Find decoder, first an introduction
in the mathematics and quantum mechanics is given. General error correcting codes and
the errors they can correct are considered. In Chapter 3, the stabilizer formalism will
be introduced, which will be used in Chapter 4 to define the toric code, where we will
also see the decoders. After that, in Chapter 5, results of simulations are presented, to
examine the error correcting capabilities and the time complexity of the decoders.

This Bachelor thesis has been written as part of the double degree Applied Mathe-
matics and Applied Physics at Delft University of Technology.

2

2. Theory of Quantum Error Correction

In this chapter, the basic definitions which will be used in other parts of the thesis
will be discussed.

In order to be able to talk about quantum error correction, first the needed mathemat-
ical tools and the basis of quantum mechanics is discussed. After that, an introduction
to quantum computation will be given, as we need to understand what should ideally
happen with the states. For quantum error correction, a model for the errors is needed.
For this we need to understand quantum channels, introduced in section 2.4. With the
channels, we can give specific examples of error channels, like the bit and phase flip
channels.

That is the basis on which the quantum mechanics part of quantum error correction
is built. We will look at the basics of classical error correction, to see what the differ-
ence is with quantum error correction, after which the quantum error correction is fully
introduced.

2.1 Linear Algebra

In this thesis, the reader is assumed to know the basics of linear algebra, such as eigen-
values/vectors, projectors, the inner and outer product, and hermitian and unitary op-
erators. In this section, we will first introduce the notation which is used in the thesis.
Then the tensor product will be introduced, after which this section will finish with the
trace of an operator.

2.1.1 Notation

In this thesis, we will often use the bra-ket notation of Dirac to denote the state vector
of a system. In this notation, a vector ψ is written as |ψ〉 (the ‘ket’). The hermitian

conjugate of the vector is denoted as 〈ψ| = |ψ〉† (the ‘bra’). For example, if we take
vectors in C2,

|ψ〉 =

(
α
β

)
,

〈ψ| =
(
α∗β∗

)
,

where α∗ is the complex conjugate of α. The inner product between |φ〉 and |ψ〉 is
denoted as 〈φ|ψ〉. For vectors in C, this is an obvious notation, as the standard inner
product in C is defined as

〈φ|ψ〉 ≡ (|φ〉 , |ψ〉) = |φ〉† |ψ〉 = 〈φ| |ψ〉 , (2.1)

where (· , ·) denotes the inner product in C. We will write the hermitian conjugate of

an operator A as A†.

3

2.1.2 The tensor product

The tensor product is widely used in quantum mechanics to couple multiple quantum
systems, as will be seen later. In this section, we will not use the braket notations. Before
we define the tensor product, the required definitions will be given.

Definition 2.1. Let V be a vector space, and let K ⊆ V be a linear subspace of V .
Then for v ∈ V , the coset v +K is defined as

v +K = {v + w|w ∈ K} . (2.2)

Thus a coset is a way to identify multiple vectors as one. For example, let V be C2,
and K = {λ(1, 0)T |λ ∈ C}, with T being the transpose. Then (1, 1)T + K is the same

set as (3, 1)T +K, as are all vectors given by (λ, 1)T with λ ∈ C. Thus we identify each
(complex) plane as one element.

Definition 2.2. Let V be a vector space. Let K ⊆ V be a linear subspace of V . The
quotient space V/K is the vector space given by

V/K = {v +K|v ∈ V } , (2.3)

with addition and multiplication defined as

(v +K) + (w +K) = (v + w) +K ,

λ(v +K) = (λv) +K .

A quotient space can be used to reduce the dimension of a vector space, by using the
cosets defined above. Let us continue with our example. C2/K is the vector space in
which each plane is one element. As the first element ’does not matter’ anymore after
taking the quotient space, C2/K is isomorphic to C. Thus we reduced the dimension of
the vector space by taking a quotient space.

Now we work toward the tensor product by making a large vector space F , of which
we will use a specific quotient space to get the properties we need.

Definition 2.3. Let V and W vector spaces. Let F be the vector space spanned by
basis vectors (v, w) for v ∈ V and w ∈W . Thus

F = Span{(v, w)|v ∈ V,w ∈W} . (2.4)

For example, take V = C2 and W = C3. Then every combination of a vector
in V and W is a basis vector for F . Note that this is a very large vector space, as
(v1, w) + (v2, w) 6= (v1 + v2, w).

Definition 2.4. Let K ⊆ F be the subspace spanned by the following vectors:

∀v1, v2 ∈ V,w ∈W : (v1, w) + (v2, w)− (v1 + v2, w) , (2.5)

∀v ∈ V,w1, w2 ∈W : (v, w1) + (v, w2)− (v, w1 + w2) , (2.6)

∀λ ∈ C, v ∈ V,w ∈W : λ(v, w)− (λv,w) , (2.7)

∀λ ∈ C, v ∈ V,w ∈W : λ(v, w)− (v, λw) . (2.8)

4

Now we have all tools to define the tensor product between two vector spaces V and
W .

Definition 2.5. Let V and W be vector spaces. When using the definitions of F and
K as above, the tensor product between V and W is

V ⊗W = F/K . (2.9)

The elements are denoted as v ⊗ w ≡ (v, w) +K. v ⊗ w is called an elementary tensor.

Let us now try to get some properties of the tensor product. Let λ ∈ C, v, v1, v2 ∈ V ,
and w ∈W . Using the vectors in K, defined in equation 2.5 and 2.7, we get

v1 ⊗ w + v2 ⊗ w = ((v1, w) +K) + ((v2, w) +K)

= (v1, w) + (v2, w) +K

= (v1, w) + (v2, w)− ((v1, w) + (v2, w)− (v1 + v2, w)) +K

= (v1 + v2, w) +K

= (v1 + v2)⊗ w ,

and

λ(v ⊗ w) = λ((v, w) +K)

= λ(v, w) +K

= λ(v, w)− (λ(v, w)− (λv,w)) +K

= (λv,w) +K

= (λv)⊗ w .

So the tensor product is linear in the first argument. Repeating this for w gives us
linearity in the second argument.

As the superposition principle is often used in quantum physics, the linearity of the
tensor product is very useful.

Definition 2.6. Let V and W be vector spaces, with linear operators A and B acting
on V and W respectively. Then we define

(A⊗B)(v ⊗ w) = Av ⊗Bw , (2.10)

and, extending the definition to linear combinations of elementary tensors

(A⊗B)
∑
i

aivi ⊗ wi =
∑
i

aiAvi ⊗Bwi , (2.11)

and to linear combinations of operators(∑
i

ciAi ⊗Bi
)
(v ⊗ w) =

∑
i

ciAiv ⊗Biw . (2.12)

As we often use Cn as a vector space, we introduce the Kronecker product, which
assigns a matrix to a tensor product of matrices.

5

Definition 2.7. Let A be a n by m matrix, and B a p by q matrix. Then the Kronecker
product is

A⊗B =

A11B A12B . . . A1mB
A21B A22B . . . A2mB

...
...

. . .
...

An1B An2B . . . AnmB

 . (2.13)

The Kronecker product can be used to write out tensor product in a more intuitive
way. Equation 2.13 gives a way to represent the tensor product of operators as a matrix.

2.1.3 The trace

In this section, we will look at the trace of an operator, which will be used for the
quantum measurements. From here on, the braket notation is be used.

Definition 2.8. Let V be a vector space and A : V → V a linear operator. Let {|i〉} be
any orthonormal basis for V . The trace of A is

Tr(A) =
∑
i

〈i|A|i〉 . (2.14)

Theorem 2.1. Tr(A) is basis-independent.

The proof is added to the appendix, as it has no real significance. Note that this
theorem means that we can choose the basis which suits us best. Thus when calculat-
ing Tr(A |v1〉〈v2|), we can include |v2〉 in the orthogonal basis. Then Tr(A |v1〉〈v2|) =∑
i 〈ei|A|v1〉 〈v2|ei〉 = 〈v2|A|v1〉 〈v2|v2〉. If |v2〉 is a unit vector, which will often be the

case, this reduces to 〈v2|A|v1〉.
Consider two vector spaces V and W , and their tensor product V ⊗W . We may want

to go back to either of the vector spaces. This can be done with the partial trace.

Definition 2.9. Let V and W be vector spaces, and let |vi〉 ∈ V, |wi〉 ∈ W for i = 1, 2.
Then the partial trace is defined by

TrW (|v1〉〈v2| ⊗ |w1〉〈w2|) = |v1〉〈v2|Tr(|w1〉〈w2|) . (2.15)

This is then extended in a linear way as a map V ⊗W → V .

The partial trace is well-defined, which follows from the relations of the tensor product
(equation (2.5) - (2.8)).

2.1.4 The spectral decomposition theorem

An important theorem in Linear Algebra is the Spectral Decomposition Theorem. It will
be stated here because we will use it often, but as it is considered to be known; we will
not prove it.

Theorem 2.2. Let A be an operator on vector space V . Then A is normal if and only
if there exist a basis |i〉 for V such that A is diagonal with respect to this basis.

6

This theorem means that there are λi and |i〉 such that A =
∑
i λi |i〉〈i| if and only if

A is normal.
With this theorem, there is a natural way to define scalar functions on operators.

For polynomials we have: An =
∑
i λ

n
i |i〉〈i|

n
=
∑
i λ

n
i |i〉〈i|, and αA =

∑
i αλi |i〉〈i|, thus

for a general polynomial p, we have p(A) =
∑
i p(λi) |i〉〈i|. If we extend this to other

functions, this becomes for a general function f

f(A) =
∑
i

f(λi) |i〉〈i| (2.16)

Of course λi should be in the domain of f , thus for example
√
A is only valid for positive,

normal operators A.

2.1.5 Commutators

For scalars α and β, it is true that αβ = βα. For operators, this is not always the case.
To handle this, we define the commutator and anticommutator of two operators A and
B:

Definition 2.10. Let A and B be operators. The commutator of A and B is defined as

[A,B] = AB −BA . (2.17)

and the anticommutator of A and B as

{A,B} = AB +BA . (2.18)

If [A,B] = 0, A and B are said to commute. Similarly, if {A,B} = 0, A and B are said
to anticommute.

2.2 Postulates of Quantum Mechanics

In this section, the postulates of quantum mechanics will be introduced. We will use a
description of the postulates similar to the one in the book of Nielsen and Chuang [6].

Postulate 1. Let A be an isolated system. Then we associate a complex vector space
with inner product to A, which is called the state space. The system is described by the
state vector, which is a unit vector in the state space.

As can be seen, this postulate does not state which complex inner product space
should be used for an isolated system. Thus we can use any suitable inner product space
H, if we find a way to represent all possible states as unit vectors in H. This means that
we need an inner product space with the same dimension as our system.

An example of a system is a qubit. A classical bit can be in two states, |0〉 or |1〉. A
qubit can be in a superposition of two states, i.e. α |0〉 + β |1〉. However, as we need a

unit vector, |α|2 + |β|2 = 1. Note that this can be described as a vector in C2.

7

Later in this thesis, we will use a subspace of the state space of a large number of
qubits to encode a small number of qubits.

However, if we can only describe a state, we cannot do any computations. For that,
the second postulate is needed: what happens over time with the state of a system.

Postulate 2. The evolution of an isolated system is described by a unitary transforma-
tion. That is, the state at a time t1, |ψ〉, is related to the state at a time t2,

∣∣ψ′〉, by a
unitary transformation U , which may only depend on t1 and t2:∣∣ψ′〉 = U |ψ〉 . (2.19)

Why is the transformation needed to be unitary? First of all, the resulting state
vector needs to be a unit vector as well. So for all states |ψ〉,〈

ψ′
∣∣ψ′〉 = 〈ψ|U†U |ψ〉 = 1 = 〈ψ|ψ〉 .

As this holds for all |ψ〉, U†U = I, thus U is unitary.
Before we have only seen how a state is described. But in quantum mechanics, we

cannot always observe the exact state. This is captured by Postulate 3:

Postulate 3. Let A be an isolated system with state space H. A measurement is
described by a set of measurement operators {Mm}, which act on H. An outcome
m is associated with each measurement operator Mm. Given a state |ψ〉 before the
measurement, the probability to get outcome m is

p(m) = 〈ψ|M†mMm|ψ〉 , (2.20)

and given that outcome m occurred, the post-measurement state
∣∣ψ′〉 is given by

∣∣ψ′〉 =
Mm |ψ〉√
〈ψ|M†mMm|ψ〉

. (2.21)

The measurement operators satisfy the completeness relation:∑
m

M†mMm = I . (2.22)

Note that the probabilities sum to 1, because of the completeness relation:∑
m

p(m) =
∑
m

〈ψ|M†mMm|ψ〉 = 〈ψ|
∑
m

M†mMm|ψ〉 = 〈ψ|ψ〉 = 1 .

A special case of measurements which is often used is the projective measurement.
Let M be a Hermitian operator (an observable). Let {Pm} be the projectors on the

eigenspaces with eigenvalue m, then M =
∑
mmPm. As Pm are projectors, P †m = Pm

8

and P 2
m = Pm. Thus when using these projectors in Postulate 3, the probability to get

outcome m is
p(m) = 〈ψ|Pm|ψ〉 , (2.23)

and the post measurement state, given that outcome m occurred, is given by∣∣ψ′〉 =
Pm |ψ〉√
p(m)

. (2.24)

Examples of observables for a qubit are the Pauli matrices. Take for example the
Pauli-Z matrix as M . Then in the computational basis,

Z =

(
1 0
0 −1

)
= 1

(
1 0
0 0

)
− 1

(
0 0
0 1

)
= 1 |0〉〈0| − 1 |1〉〈1| .

Let now |φ〉 = α |0〉+ β |1〉. Then

p(1) =
(
α∗ β∗

)(1 0
0 0

)(
α
β

)
= |α|2 .

Similarly, p(−1) = |β|2. And when outcome 1 occurs, the post measurement state is(
1 0
0 0

)(
α
β

)
√
p(1)

=
α

|α|

(
1
0

)
=

α

|α|
|0〉 .

Postulate 3 is vital for quantum error correction, as it provides a way to measure what
errors happened.

For quantum error correction, we need to couple multiple qubits to each other. This
is captured in Postulate 4, which incorporates the tensor product.

Postulate 4. The state space of a composite system is the tensor product of the state
spaces of the component systems. Let systems 1 to n be in states |ψ1〉 , . . . , |ψn〉. Then
the state of the composite system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉

As the notation with ⊗ might get tedious sometimes, we often denote |ψ〉 ⊗ |φ〉 as
|ψ〉 |φ〉 or as |ψφ〉.

2.2.1 The density matrix

Instead of using state vectors, we can also describe every Postulate with density operators
or density matrices. A density matrix describes a statistical state of a system. That is,
there are different states in which the system can be, each with a certain probability.
A useful concept is the ensemble of states, which is a way to define in which statistical
state a system is.

9

Definition 2.11. Suppose a system can be in the states |ψi〉, each with probability pi,
such that

∑
i pi = 1. Then the ensemble of states of this system is {pi, |ψi〉}i.

With the ensemble of states, we can define the corresponding density matrix.

Definition 2.12. Let {pi, |ψi〉}i be an ensemble of states of a system. Then the density
operator (or density matrix) for this ensemble is given by

ρ =
∑
i

pi |ψi〉〈ψi| . (2.25)

As an evolution of a state is given by a unitary operator U (Postulate 2), we can
write an evolution of the density matrix as

ρ′ =
∑
i

piU |ψi〉〈ψi|U
† . (2.26)

Similarly, we can rewrite the probability in the third Postulate:

p(m) = Tr
(
M†mMmρ

)
, (2.27)

and the post measurement density matrix

ρm =
MmρM

†
m

Tr
(
M†mMmρ

) . (2.28)

The following theorem gives two characteristics of a density matrix.

Theorem 2.3. An operator ρ is the density matrix of an ensemble {pi, |ψi〉} if and only
if it satisfies the following criteria:

1. Tr(ρ) = 1

2. ρ is positive

Proof. Let ρ be the density matrix of {pi, |ψi〉}i. Then Tr(ρ) =
∑
i pi Tr(|ψi〉〈ψi|) =∑

i pi = 1. And for any |φ〉, 〈φ|ρ|φ〉 =
∑
i pi 〈φ|ψi〉 〈ψi|φ〉 =

∑
i pi|〈ψi|φ〉|

2 ≥ 0.
Let ρ now satisfy the two criteria. Then ρ =

∑
i λi |i〉〈i| by the spectral decomposition

theorem, and
∑
i λi = Tr(ρ) = 1. Because ρ is positive, the λi are non-negative. So

0 ≤ λi ≤ 1, and thus ρ can be seen as an density matrix for the ensemble {λi, |i〉}.

After coupling two systems with ensembles {pi, |ψi〉}i and {pj ,
∣∣ψj〉}j , the resulting

system has the ensemble {pipj , |ψi〉 ⊗
∣∣ψj〉}). This means that the resulting density

matrix ρ can be written as the tensor product of the original density matrices ρi and ρj :
ρi⊗ ρj . Note that we can then use the partial trace to go back to uncoupled systems, as
TrB(ρA⊗ρB) = ρA Tr(ρB) = ρA for product states. For mixed states, it is less clear that
the partial trace is the right operation. Suppose we have coupled systems A and B with
ensemble of states {pi, |ψi〉}. The partial trace essentially takes each |ψi〉 of the coupled
system, and assigns a probability to the part in system A of this state, which is the trace
of the part of system B. This is what is wanted, as there is no extra information about
system B, so the probability for system B to be in a certain state is proportional to the
trace. Of course we can do this multiple times to couple more than two systems.

10

2.3 Computation

Now that we have discussed the basics of quantum mechanics, we will start with how we
describe computations. Classically, we compute things with bits, which can be either 0
or 1. Quantum mechanically, we can have states which represent the classical 0 or 1, but
also states which are a superposition of those states, as seen in some examples before.
We can define the state vector of a qubit as follows

Definition 2.13. The state vector of a qubit is given by a unit vector in C2.

The two standard basis vectors of C2 are usually denoted as |0〉 and |1〉, thus then the
state of a qubit is α |0〉+β |1〉. An example of a physical system with two basis vectors is
an electron, which can have spin up (|1〉) or spin down (|0〉), or a superposition of both.
There are many ways to make qubits, but these are not considered in this thesis.

To do quantum computations, we need to manipulate the qubit. As the second
Postulate says, this can be done by applying unitary operations. A few important unitary
operations on one qubit are the Pauli gates, which will be used often later on. They are
defined as follows:

X =

(
0 1
1 0

)
, (2.29)

Y =

(
0 −i
i 0

)
, (2.30)

Z =

(
1 0
0 −1

)
. (2.31)

The identity matrix I is sometimes also meant when referring to the Pauli gates. Here
the standard basis vectors are the computational basis, e1 = |0〉 and e2 = |1〉. It can
easily be checked that the Pauli gates are unitary. Note that we can rewrite any 2 × 2
matrix as a linear combination of the Pauli matrices (including I). Specifically, we can
write a density matrix ρ as

ρ =
1

2
(I + a1X + a2Y + a3Z) , (2.32)

with ai ∈ C for i ∈ {1, 2, 3}. An important property of the Pauli matrices is that they
either commute or anticommute. For example, [X,Z] = 2iY , but {X,Z} = 0.

Another important gate is the controlled NOT gate, or the CNOT gate. This is a
two-qubit gate, where the basis vectors of the second qubit (the target qubit) are flipped
for the |1〉 part of the first qubit (the control qubit). With multiple qubits, the basis
vectors are the tensor products of the standard basis vectors of one qubit. For example:

|10〉 = |1〉 ⊗ |0〉 =

(
0
1

)
⊗
(

1
0

)
=

0
0
1
0

 = e3 . (2.33)

11

Similarly, |00〉 = e1, |01〉 = e2 and |11〉 = e4, where ei is the i-th standard basis vector
of C4. With respect to this basis, the CNOT gate is then:

CNOT =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

 . (2.34)

As can be seen, |00〉 and |01〉 are mapped to |00〉 and |01〉, whereas |1i〉 is mapped to
|1〉 ⊗ X |i〉 (i ∈ {0, 1}). In the same way we can make a controlled U operator, by
replacing X by U . The matrix representation becomes then

cU =

(
I 0
0 U

)
=

1 0
0 1

0 0
0 0

0 0
0 0

u11 u12
u21 u22

 , (2.35)

where uij are the matrix elements of U .
After doing the computations, we may want to measure the outcome of the compu-

tations. This is often done by measuring in the computational basis, with projectors P0

and P1 defined below.

P0 = |0〉〈0| =
(

1 0
0 0

)
, (2.36)

P1 = |1〉〈1| =
(

0 0
0 1

)
. (2.37)

Note that Z = P0 − P1, thus measuring in the computational basis is the same as
measuring the Pauli Z operator. As seen in section 2.2, measuring |φ〉 = α |0〉 + β |1〉
results in |0〉 or |1〉, multiplied with a constant, with probability |α|2 and |β|2 respectively.

2.4 Quantum Channels

In this section, we will generalise Postulate 2, which introduced the evolution of a quan-
tum state. In order to do this, the density matrices will be used instead of the state
vectors. We will denote a quantum channel as Φ, and the result after a quantum channel
is applied on a state ρ by Φ(ρ).

Quantum channels will be used to describe the errors on qubits, and to provide a
theorem about which errors can be corrected.

At first, we will show what to expect of an evolution for an open system. This is
one of the possible definitions of a quantum channel, and leads easily to the Choi-Krauss
representation. However, we will use a different definition, which will be shown to be
equivalent.

Let us consider an open system, instead of a closed system like before. Then we can
regard this as the system itself, A, together with the environment, E. Thus the total
system is A ⊗ E, which is a closed system. So when using Postulate 2, an evolution of

12

ρ ⊗ ρe is given by U(ρ ⊗ ρe)U
†. But if we only want to consider the original system,

we need to take the partial trace as stated in section 2.2.1. So the resulting state is
Φ(ρ) = TrE(U(ρ⊗ ρe)U

†).
If we now assume that the environment is in a pure state, |e0〉, we can extend this to

a orthogonal basis for the environment, {|ek〉}. Using this basis, we can rewrite

Φ(ρ) = TrE(U(ρ⊗ ρe)U
†) (2.38)

=
∑
k

(
I ⊗ 〈ek| · |ek〉

)
(U(ρ⊗ |e0〉〈e0|)U

†) (2.39)

=
∑
k

(
I ⊗ 〈ek| · |e0〉

)
(U)ρ

(
I ⊗ 〈e0| · |ek〉

)
(U†) (2.40)

=
∑
k

EkρE
†
k . (2.41)

Here, Ek =
(
I ⊗ 〈ek| · |e0〉

)
(U). With this notation, we mean that I is applied on the

first vector space of the tensor product, our first system, and that 〈ek| · |e0〉 is applied on
the second vector space of the tensor product, the environment. This is the Choi-Krauss
representation, also known as the operator-sum representation.

Let us now define a quantum channel in a different way. What should be expected of
a quantum channel? First of all, we would want it to take density operators to density
operators. Recalling the criteria for being a density matrix, this translates to preserving
the trace (as Tr(Φ(ρ)) = 1 = Tr(ρ)) and the positivity of operators (ρ positive implies
that Φ(ρ) is positive). However, if we want to be able to represent measurements as
quantum channels, we can let the trace of the resulting state represent the probability
that process represented by the quantum channel occurs, thus 0 ≤ Tr(Φ(ρ)) ≤ 1.

Another thing we would expect of a quantum channel is that it does not matter
whether we make an ensemble of states before or after applying the quantum channel.
That is, it should be a convex-linear map:

Φ(
∑
i

piρi) =
∑
i

piΦ(ρi) . (2.42)

The last thing we need has to do with coupling systems. Let ρ1 and ρ2 be density
matrices of two systems, and let Φ be a quantum channel defined on the vector space
of ρ1. Then we would expect that if we apply the quantum channel after coupling
the systems would give a valid density matrix. Thus if we denote ρ = ρ1 ⊗ ρ2, then
(Φ ⊗ I)ρ = Φ(ρ1) ⊗ ρ2 should be a valid density matrix. This is the same as requiring
that Φ should be a completely positive map.

This is summarized in the following definition.

Definition 2.14. Let Φ be a map from set of density matrices of the input space Q1 to
the set of density matrices of the output space Q2. Then Φ is a quantum channel if it
has the following properties:

1. Tr(Φ(ρ)) is the probability that the process represented by Φ occurs. Thus 0 ≤
Tr(Φ(ρ)) ≤ 1 for any density matrix ρ ∈ Q1.

13

2. Φ is a convex linear map on the set of density matrices. Thus for probabilities {pi}:

Φ(
∑
i

piρi) =
∑
i

piΦ(ρi) .

3. Φ is a completely positive map. That is, for any system R coupled to Q,
(
I ⊗Φ

)
A

is positive for any positive operator A on R⊗Q. Here I is the identity map on R.

The next theorem shows that this definition is equivalent with the operator-sum
representation [6, Theorem 8.1] [7, Theorem 4.8].

Theorem 2.4. Let Φ be a map on Q. Then Φ is a quantum channel if and only if there
exist {Ek}k such that

Φ(ρ) =
∑
k

EkρE
†
k , (2.43)

with
∑
k E
†
kEk ≤ I

Proof. Let Φ(ρ) =
∑
k EkρE

†
k, with

∑
k Ek†Ek ≤ I. It can easily be seen that Φ is linear.

We also have Tr(Φ(ρ)) = Tr
(∑

k E
†
kEkρ

)
≤ Tr(ρ) = 1. So to prove that Φ is a quantum

channel, we only have to prove that Φ is completely positive.
Let |ψ〉 be a state of the combined system R ⊗ Q and assume A to be a positive

operator on R ⊗Q. Define |φk〉 = (I ⊗ E†k) |ψ〉. This is also a state of R ⊗Q. Then we
have

〈ψ|(I ⊗ Φ)A|ψ〉 = 〈ψ|
∑
k

(I ⊗ Ek)A(I ⊗ E†k)|ψ〉 (2.44)

=
∑
k

〈ψ|(I ⊗ Ek)A(I ⊗ E†k)|ψ〉 (2.45)

=
∑
k

〈φk|A|φk〉 ≥ 0 . (2.46)

So Φ is completely positive. Thus Φ is a quantum channel.

Now let Φ be a quantum channel. We will construct {Ek}k. Let {|ei〉}
n
i=1 be a basis

for Q. Define Bi,j =
∣∣ei〉〈ej∣∣, and T =

∑
i,j Bi,j ⊗Bi,j . Then we have

T 2 =
∑
i,j,k,l

(Bi,j ⊗Bi,j)(Bk,l ⊗Bk,l) =
∑
i,j,l

Bi,jBj,l ⊗Bi,jBj,l = n
∑
i,l

Bi,l ⊗Bi,l = nT .

(2.47)
Thus let |φ〉 be any eigenstate of T with eigenvalue λ. Then

λ2 |φ〉 = T 2 |φ〉 = nT |φ〉 = nλ |φ〉 . (2.48)

So λ2 = nλ, which means that λ ∈ {0, n} for all eigenvalues. Thus T is positive. As
Φ is completely positive, Φ(T) =

∑
i,j Bi,j ⊗ Φ(Bi,j) is also positive. By the spectral

decomposition theorem, we have Φ(T) =
∑
k |ψk〉〈ψk|, where |ψk〉 do not need to be

14

normalized. Note that because |ψk〉 ∈ Q⊗Q, we can write |ψk〉 =
∑
i |ei〉 ⊗

∣∣∣hki 〉. Now

define Ek =
∑
i

∣∣∣hki 〉〈ei∣∣∣.
We claim that Φ(ρ) =

∑
k EkρE

†
k. Note that we have |ψk〉〈ψk| =

∑
i,j

∣∣ei〉〈ej∣∣ ⊗∣∣∣hki 〉〈hkj ∣∣∣ =
∑
i,j Bi,j ⊗

∣∣∣hki 〉〈hkj ∣∣∣. Thus Φ(Bi,j) =
∑
k

∣∣∣hki 〉〈hkj ∣∣∣ for all i and j. So now

we have for all Bi,j∑
k

EkBi,jE
†
k =

∑
i,j,k

∣∣∣hki 〉〈ei∣∣∣Bi,j ∣∣∣ej〉〈hkj ∣∣∣ =
∑
k

∣∣∣hki 〉〈hkj ∣∣∣ = Φ(Bi,j) . (2.49)

As Φ is linear, we now have for any state ρ =
∑
i,j ρijBi,j that

Φ(ρ) = Φ(
∑
i,j

ρijBi,j) =
∑
i,j

ρijΦ(Bi,j) =
∑
ij

ρi,j
∑
k

EkBi,jE
†
k =

∑
k

EkρE
†
k . (2.50)

Thus our claim is true.
Lastly, we need to check that

∑
k E
†
kEk ≤ I. As Tr(Φ(ρ)) = Tr

(∑
k EkρE

†
k

)
=

Tr
(∑

k E
†
kEkρ

)
≤ 1 = Tr(ρ), this condition is also satisfied.

Note that in the proof, we only found one specific operator-sum representation. How-
ever, there are more representations possible, as stated in the next theorem [6, Theorem
8.2] [7, Theorem 4.17 (1), Proposition 4.18].

Theorem 2.5. Let Φ(ρ) =
∑n
k=1EkρE

†
k and Ψ(ρ) =

∑n
l=1 FlρF

†
l be quantum channels.

Then Φ(ρ) = Ψ(ρ) if and only if there exists a unitary matrix U such that Ek =
∑
l uklFl

for each k.

Proof. Suppose Ek =
∑
l uklFl for a unitary matrix U . Then we have that

Φ(ρ) =
∑
k

EkρE
†
k =

∑
k

∑
l

∑
m

uklFlρu
∗
kmF

†
m =

∑
k,l,m

uklu
∗
kmFlρF

†
m (2.51)

As U is unitary,

∑
k

uklu
∗
km =

(
u∗1m u∗2m . . . u∗nm

)

u1l
u2l
...
unl

 = 〈um|ul〉 = δl,m . (2.52)

Thus we have
Φ(ρ) =

∑
l,m

δl,mFlρF
†
m =

∑
l

FlρF
†
l = Ψ(ρ) . (2.53)

Let now Φ(ρ) = Ψ(ρ). Reversing the proof of Theorem 2.4 gives

Φ(T) =
∑
k

|φk〉〈φk| = Ψ(T) =
∑
l

|ψl〉〈ψl| . (2.54)

15

with T =
∑
Bi,j ⊗Bi,j , and Bi,j =

∣∣ei〉〈ej∣∣.
Let |σ〉 be orthonormal to all of the |ψl〉 states, thus 〈σ|Ψ(T)|σ〉 = 0. Then

0 = 〈σ|Ψ(T)|σ〉 = 〈σ|Φ(T)|σ〉 =
∑
k

〈σ|φk〉 〈φk|σ〉 =
∑
k

|〈σ|φk〉|
2
. (2.55)

Thus all |σ〉 which are orthogonal to |ψl〉 are orthogonal to all |φk〉. Thus we can write
|φk〉 as a linear combination of |ψl〉. Similarly, we can prove that we can write |ψl〉 as a
linear combination of |φk〉. Thus we have

|φk〉 =
∑
l

ukl |ψl〉 , (2.56)

and
|ψl〉 =

∑
k

vlk |φk〉 . (2.57)

So
|φk〉 =

∑
l

ukl |ψl〉 =
∑
l

∑
m

uklvlm |φm〉 . (2.58)

As |φk〉 are orthogonal,
∑
l uklvlm = δk,m. We also have that 〈φn|ψl〉 = vln. Similarly,

as |ψl〉 are orthogonal, 〈ψm|φk〉 = ukm. Taking this together gives

ukl = 〈ψl|φk〉 = 〈φk|ψl〉
∗

= v∗lk . (2.59)

Thus
δk,m =

∑
l

uklvlm =
∑
l

uklu
∗
ml , (2.60)

which means that U is unitary. So we have that |φk〉 =
∑
l ukl |ψl〉. As |ψl〉 =

∑
i |ei〉 ⊗∣∣∣hli〉 and |φk〉 =

∑
i |ei〉 ⊗

∣∣∣gki 〉, we have for each i that
∣∣∣gki 〉 =

∑
l ukl

∣∣∣hli〉. Thus

Ek =
∑
i

∣∣∣gki 〉 =
∑
i

∑
l

ukl

∣∣∣hli〉 =
∑
l

uklFl , (2.61)

which completes the proof.

Note that if we have two channels with operator elements {E1, . . . , En} and {F1, . . . , Fm}
(with n 6= m), we can use the theorem by appending zero operators (operators which do
nothing) to the shorter list to make sure that n = m.

2.5 Error Channels

In this subsection, some error channels will be introduced. The errors we will see are the
bit flip error, the phase flip error and the erasure error.

16

2.5.1 The bit flip channel

The intuition one should have for the bit flip channel is that the channel literally flips
the |0〉 state and the |1〉 state with a certain probability. Suppose we have a state ρ, then
the channel can be described as follows. There is a probability p for I to be applied (the
state remains the same), and a probability 1 − p for X to be applied. So the resulting
state should be

Φ(ρ) = pρ+ (1− p)(XρX) (2.62)

= p(IρI) + (1− p)(XρX) . (2.63)

This can be seen as the operator-sum representation with E0 =
√
pI and E1 =

√
1− pX.

2.5.2 The phase flip channel

The phase flip channel is similar to the bit flip error, except that the phase is flipped
with a probability 1− p instead of the bits. So the Pauli Z gate is applied instead of the
Pauli X gate. Thus

Φ(ρ) = pρ+ (1− p)(ZρZ) . (2.64)

So the operation elements of this channel are E0 =
√
pI and E1 =

√
1− pZ.

2.5.3 The depolarizing channel

The depolarizing channel replaces the state by a completely mixed state with a proba-
bility p. This completely mixed state is 1

2I, so the new state is

Φ(ρ) = (1− p)ρ+ p
I

2
(2.65)

However, we need to have the channel as sum of EiρE
†
i . It can be checked that

I

2
=

1

4
(ρ+XρX + Y ρY + ZρZ) . (2.66)

See Appendix A for a short proof. Using this, the channel can be rewritten as

Φ(ρ) = (1− 3

4
p)ρ+

p

4
(XρX + Y ρY + ZρZ) . (2.67)

Or, taking p′ = 3p/4:

Φ(ρ) = (1− p′)ρ+
p′

3
(XρX + Y ρY + ZρZ) . (2.68)

This can be interpreted as follows; with a probability 1− p′, the state is left alone, and
each Pauli gate is applied with probability p′/3.

17

2.5.4 The erasure channel

In the erasure channel, a qubit is completely removed from the allowed state space with
a probability p. This can be modelled by a channel Φ : Hd → Hd+1 as follows:

Φ(ρ) = (1− p)ρ+ p |e〉〈e| , (2.69)

with |e〉 a state orthogonal to all ρ ∈ Hd. In the qubit case, the dimension d of the input
space is 2.

It can be detected when a qubit comes in such a state, after which it can be replaced
by a completely mixed state, I/2. This can be rewritten using equation 2.66 to obtain a
random Pauli error. Note that this channel can be seen as a depolarizing channel with
the extra property that the place of the qubits which obtain an error is detected. This
is one of the channels which will be used as model for the toric code in chapter 4.

2.6 Error Correction

Before quantum error correction is introduced, a classical example of error correction will
be shown, and we will see why this cannot be done in the same way in quantum error
correction. After that, we will define what a quantum error correcting code is, and see
an example of it. Lastly, a theorem will be given about which errors can be corrected by
a code. But before we start with the classical example, some relevant definitions will be
given.

First of all, we need to define what a code exactly is.

Definition 2.15. An error correcting code is a linear subspace C of the vector space of
all possible bitstrings of length n, the length of the code. The rank k of the code is the
dimension of C.

To easily see how much errors a code can correct, we define the weight and the
hamming distance of a codeword.

Definition 2.16. The weight of a codeword x is defined as the number of bits that differ
from zero, and is denoted as w(x). The Hamming distance between two codewords x
and y is the number of elements in which they differ, denoted as d(x, y). The distance
of a code C is the minimum Hamming distance between any two codewords in C:

d(C) = min
x 6=y∈C

d(x, y) . (2.70)

If a code of length n and rank k has a distance of d, we call it a [n, k, d] code.

For example, the weight of (0, 1, 0, 1) is 2, and the Hamming distance between (0,1,0,1)
and (1,1,0,1) is 1. Note that as C is linear, d(x, y) = d(x + y, 0) = w(x + y), where we
add modulo 2. And x+ y is a codeword if x and y are codewords. Thus the distance of
a code C is also the minimum weight of all codewords:

d(C) = min
x6=y∈C

d(x, y) = min
x 6=y∈C

d(x+ y, 0) = min
x∈C

w(x) . (2.71)

18

The importance of the distance of a code is that it characterises how much errors the
code can correct. As we need to map error states e onto the codewords, the best guess
would be the codeword with the smallest Hamming distance to the error state. Thus
then we would be able to correct all errors on t bits if d(C) ≤ 2t+ 1.

Until now, all definitions have been about classical codes. They can be translated to
quantum codes, which will be done later.

2.6.1 The 3-bit repetition code

The classical example we will study is the 3-bit repetition code. Suppose we have a
(classical) channel, which can flip a bit with probability p. Let 0 and 1 be encoded by:

0 7−→ 000 = 0L , (2.72)

1 7−→ 111 = 1L . (2.73)

Then if we send one the encoded bits through the channel, say 0L, we can get one of the
following outcomes (allowing for permutations):

state probability

000 (1− p)3 ,
100 3p(1− p)2 ,
110 3p2(1− p) ,
111 p3 .

If we now decode the bits by choosing the bit which occurs most often (majority voting),
we get

state probability

0 (1− p)3 ,
0 3p(1− p)2 ,
1 3p2(1− p) ,
1 p3 .

Thus we have the wrong bit with probability 3p2 − 2p3, which is lower than p for p < 1
2 .

Thus this is indeed a better way to send the information over the channel, provided that
the probability of an error is small enough. As can be seen, the distance of the code is
3, because 0L differs on 3 places from 1L. As d(C) = 3 = 2t+ 1 for t = 1, we can indeed
only correct an error on 1 bit.

When trying to make a quantum error correcting code out of the 3 bit repetition
code, one could naively try the following. Let |ψ〉 be the state we would like to encode.
Classically, we make the encoded state by repeating the bit. So then we have

|ψ〉 7−→ |ψ〉 |ψ〉 |ψ〉 (2.74)

We have a problem now, because this is not possible in quantum mechanics. The no-
cloning theorem says that we cannot clone a state exactly.

19

Theorem 2.6. Then there is no unitary operation U on two qubits such that U |0〉 |ψ〉 =
|ψ〉 |ψ〉 for all one qubit states |ψ〉.
Proof. Suppose there exists such a unitary operator U . As we would then have for any
|ψ〉 that U |0〉 |ψ〉 = |ψ〉 |ψ〉, we have the following for |ψ〉 = |0〉 and |ψ〉 = |1〉:

U |00〉 = |00〉 , (2.75)

U |01〉 = |11〉 . (2.76)

But for |ψ〉 = α |0〉+ β |1〉, we have

U |0〉 |ψ〉 = |ψ〉 |ψ〉 (2.77)

by definition, and
U |0〉 |ψ〉 = α |00〉+ β |11〉 (2.78)

by linearity. As |ψ〉 |ψ〉 = α2 |00〉+ αβ(|01〉+ |10〉) + β2 |11〉 6= α |00〉+ β |11〉 for general
α and β, we have a contradiction. Thus such a U does not exist.

Suppose we did not have that problem. Then we would send the encoded bit through
a (quantum) channel. But what error could occur? Classically, we can only have 1 error,
but in quantum mechanics, the possible errors are in a continuous range. To see what
error occurred, we looked (classically) at the outcome, and decoded that with majority
voting. This would translate into measuring the states of the three qubits in a certain
basis. But as we have seen, this destroys the state itself, and the outcome is probabilistic.
Thus even if there was no error, we could have the outcomes 0, 1, 0 if the original state
was a superposition of |0〉 and |1〉. We cannot ever find projectors to decode it in the
right way for all states, as there always exists a state which encodes to a state with
non-zero parts for all basis vectors. So we can safely conclude that this will never work.
However, we can do it in a different way, for certain types of errors.

2.6.2 The 3-qubit bit flip code

Suppose the state which should be protected is |ψ〉 = α |0〉 + β |1〉, and it should be
protected against bit flip errors. That is, against the error |ψ〉 7→ X |ψ〉. We can encode
the state by α |000〉 + β |111〉. Note that this can be done by using two CNOT gates
(with the qubit we want to protect as the control qubit and two qubits in the state |0〉
as target bits), and that it is not the same as cloning an arbitrary state. Suppose this
is sent through a channel, where each bit can independently be flipped with probability
p. To correct a possible error, there is a two stage error correction. First we need to
know which error occurred. This is the error detection stage or the syndrome diagnosis
stage. In order to know which error occurred, the state is measured with a projective
measurement.

Define the following projectors:

P0 = |000〉〈000|+ |111〉〈111| , (2.79)

P1 = |100〉〈100|+ |011〉〈011| , (2.80)

P2 = |010〉〈010|+ |101〉〈101| , (2.81)

P3 = |001〉〈001|+ |110〉〈110| . (2.82)

20

It can be seen that P0 corresponds to no error, as this is the correct projector for our
original state. P1 to P3 correspond to a bit flip error on the first to last qubit respectively,
as they are the projectors for the state after a bit flip on the first to last qubit.

Suppose a bit flip error on the second qubit occurred. The state is then
∣∣ψ′〉 =

α |010〉+ β |101〉. For measuring the projectors, we assign the outcome i to projector Pi
for i ∈ {0, . . . , 3} (outcome 0 means that no bit has been flipped, the other outcomes give
the qubit which has been flipped). Recall that the probability of outcome i is given by〈
ψ′
∣∣Pi∣∣ψ′〉. As

〈
ψ′
∣∣P2

∣∣ψ′〉 = 1, the measurement outcome is 2 with certainty. Thus we
know that the second qubit has been flipped. Note that the post-measurement state is
the same as the state before the measurement, and that we did not get any information
about the encoded state itself, only about the error which occurred. Why can we now
find projectors which can help us, where we could not at first? Note that we first had
(α |0〉+ β |1〉)(α |0〉+ β |1〉)(α |0〉+ β |1〉), which has a non zero part for each of the eight
basis vectors. However, now we have α |000〉 + β |111〉, which has only non-zero parts
for two basis vectors. By each of the errors, these two basis vectors are mapped onto
two different basis vectors, which allows us to define projectors to measure the error
syndrome.

After the error detection, the recovery stage takes place. We know which error oc-
curred, thus we can invert the error. In the case of the bit flip code, this means applying
the Pauli-X gate on the right qubit.

As before, this works perfectly provided that there occurs only one error, which
means that the probability of a wrong correction is again 3p2 − 2p3, like the classical
3-bit repetition code.

Now we have seen an example of a quantum error correcting code, a definition will
be given.

Definition 2.17. A quantum error correcting code is a linear subspace C of the state
space of n qubits. A code encoding k qubits into n qubits is called a [n, k] code. The
linear subspace C is sometimes referred to as the codespace of a code.

All error-free encoded states are in the codespace of a quantum error correcting code.
So for the 3-qubit repetition code, C = Span{|000〉 , |111〉}.

Let us denote in the remaining part of the thesis the error channel by Φ, and the
recovery operation by R. To succesfully recover a state which lies in C, we need that

(R ◦ Φ)(ρ) ∝ ρ , (2.83)

where ∝ means that our corrected state is proportional to the original state. Thus
ρ′ = cρ ∝ ρ, with 0 ≤ |c| ≤ 1. As Φ is a quantum channel, which is not necessarily
trace preserving, we have ∝ instead of =. This translates into an equality when Φ is
trace preserving. To see which errors a quantum error correcting code can correct, there
exist the quantum error correction conditions which are stated in the next theorem [6,
Theorem 10.1] [7, Theorem 5.1].

Theorem 2.7 (Knill-LaFlamme). Let C be a quantum error correcting code, and let P
be the projector onto C. Let Φ be an error channel with operator elements {Ei}. Then
there exists an error correcting operation R which corrects {Ei} on C if and only if there

21

exists a hermitian matrix α such that

PE†iEjP = αijP (2.84)

These equations are called the error correction conditions.

Proof. Suppose there exists a hermitian matrix α such that the error correction conditions
are satisfied. We will now construct a recovery operation R.

Note that ρ =
∑
i pi |ψi〉〈ψi|, thus if we have for each |ψi〉〈ψi| that R(Φ(|ψi〉〈ψi|)) =

|ψi〉〈ψi|, then R(Φ(ρ)) = ρ follows from linearity. Also, as P is the projector onto C, we
have ρ = PρP for ρ in C.

As α is Hermitian (and thus normal), we know from the spectral decomposition
theorem that there exist a basis in which α is diagonal. Thus there exists a unitary
matrix U = (ulk)lk such that D = UαU† is diagonal. Define Fl =

∑
k ulkEk. Then we

know, as U is unitary, that Fl generate the same channel as the Ek by Theorem 2.5.
Note that we now have that:

PF †l FkP =
∑
i,j

PE†i u
∗
liukjEjP =

∑
i,j

u∗liαijukjP = dlkP , (2.85)

where the last equation holds because U†αU = D.
Note that this is a simplification of the quantum error correction conditions, because

D is diagonal. So now we have Φ(ρ) =
∑
l FlρF

†
l , with PF †l FkP = dlkP .

Note that we have

α⊗ P =
∑
i,j

|i〉〈j| ⊗ αijP (2.86)

=
∑
i,j

|i〉〈j| ⊗ PE†iEjP (2.87)

=
∑
i,j

(|i〉 ⊗ PE†i)(〈j| ⊗ EjP) (2.88)

=

PE
†
1

...

PE†n

(E1P . . . EnP
)
≥ 0 , (2.89)

because this holds for any matrix of the form A†A. As P is a projector, α ≥ 0. Thus
all eigenvalues are non-negative, which means that dii ≥ 0. Define Vi = 0 if dii = 0, and
Vi = 1√

dii
PF †i if dii > 0. So PVi = Vi. Then we have that

ViV
†
j =

1√
diidjj

PF †i FjP =
1√
diidjj

dijP . (2.90)

22

So if i 6= j, ViV
†
j = 0, and otherwise ViV

†
i = P whenever Vi 6= 0. Let Q = I −

∑
i V
†
i Vi.

Then

Q†Q = (I−
∑
j

V †j Vj)(I−
∑
i

V †i Vi) = I−2
∑
i

V †i Vi+
∑
i,j

V †j VjV
†
i Vi = I−

∑
i

V †i Vi = Q ,

(2.91)

because VjV
†
i = 0 if i 6= j. Note that we also have

ViQ
† = Vi −

∑
j

ViV
†
j Vj = Vi − ViP = 0 . (2.92)

Define R(ρ) =
∑
i ViρV

†
i +QρQ†. Then we have that

∑
i V
†
i Vi +Q†Q = I, thus R is

a trace-preserving quantum channel. We also have that

R(Φ(|ψ〉〈ψ|)) =
∑
i,l

ViFl |ψ〉〈ψ|F
†
l V
†
i +

∑
l

QFl |ψ〉〈ψ|F
†
l Q
† (2.93)

=
∑
i,l

1

dii
PF †i FlP |ψ〉〈ψ|PF

†
l FiP +

∑
l

QFlP |ψ〉〈ψ|PF
†
l Q
† (2.94)

=
∑
i,l

d2il
dii
δi,lP |ψ〉〈ψ|P +

∑
l

QV †l |ψ〉〈ψ|VlQ
† (2.95)

=
∑
i

diiP |ψ〉〈ψ|P ∝ |ψ〉〈ψ| , (2.96)

as VlQ
† = 0.

So R is indeed an error correcting operation for |ψ〉〈ψ|, and because of linearity also
for ρ.

Suppose now that there exists an error correcting operation R(ρ) =
∑
k RkρR

†
k, thus

R(Φ(ρ)) = ρ for all ρ in C. As P |ψ〉 = |ψ〉, we have:

R(Φ(ρ)) = R(Φ(PρP)) =
∑
i,k

RkEiPρPE
†
iR
†
k = cPρP , (2.97)

where the last equation is valid because R is a recovery operation. We denoted the pro-
portionality constant as c. As this are two different operator sum representations of (R◦
Φ), there exist a unitary matrix U such that RkEiP = uik

√
cP . Thus P †E†iR

†
kRkEjP =

ujku
∗
ikcP . As

∑
k R
†
kRk = I, summing over all k gives∑

k

P †E†jR
†
kRkEiP = P †E†jEiP =

∑
k

u∗ikujkcP = αijP , (2.98)

where α is hermitian because αij = c
∑
k u
∗
ikujk = c

∑
k ukju

∗
ik = α∗ji. So we indeed

found the error correction conditions.

However, as errors are continuous, we still cannot correct many errors. The following
theorem gives a much bigger class of errors which we can correct.

23

Theorem 2.8. Let C be a quantum error correcting code with recovery operation R.
Let Φ be an error channel with operator elements {Ei}, which can be corrected according
to the error correction conditions. Then the error channel Ψ with operator elements
Fj =

∑
i fjiEi can also be corrected by C.

Note that the Fj are linear combinations of Ei; they are not transformed with a
unitary matrix, which would give the same error channel.

Proof. Checking the error correction conditions gives

PF †i FjP =
∑
k,l

f∗ikfjlPE
†
kElP =

∑
k,l

f∗ikfjlαklP = βijP . (2.99)

As before, β is hermitian because βij =
∑
k,l f

∗
ikfjlαkl =

∑
l,k f

∗
ilfjkαlk =

∑
l,k fjkf

∗
ilα
∗
kl =

β∗ji, where we interchanged the summation over k and l and used that α is hermitian.
Thus the error correction conditions are satisfied, so we can correct Ψ.

24

3. The Stabilizer Formalism

In this chapter, the stabilizer formalism will be introduced. In short, the stabilizer
formalism is a way to describe a quantum error correcting code with much less information
than we did before. Recall that for the qubit bit flip code, we needed 4 projectors, and
the states on which |0〉 and |1〉 where mapped. We will see that we can reduce this to
only 2 stabilizer operators, and two logical operators which represent the Pauli X and
Z gate. The stabilizer formalism will be used to describe the toric code in Chapter 4.
The stabilizer formalism can also be used to efficiently simulate quantum error correcting
codes on a classical computer; this can be used to simulate errors on the toric code, and
see if the error correction works.

3.1 The General Idea

In this section, the general idea of a quantum error correcting code in the stabilizer
formalism will be explained.

With an error correcting code, we want to be able to correct errors, but we might
also want to do computations. In the stabilizer formalism, we encode |0〉 and |1〉 as +1
eigenstates of a group of operators (the stabilizers), and +1 or −1 eigenstates of another
operator, a so-called logical gate. All eigenstates of the stabilizers together form the
codespace. When a correctable error happens, this can be measured by measuring the
stabilizers, as it will make the state a −1 eigenstate of some stabilizers. After that, the
state can be corrected with a suitable operation.

As we also may want to do computations, there are logical gates which act on our
encoded states as if they were the original |0〉 and |1〉. For example, if we denote the
logical states as |0L〉 and |1L〉, the logical XL gate should take |0L〉 to |1L〉 as this is
what the normal X gate would do with |0〉 and |1〉. The logical gates should take states
from the codespace to the codespace, as we still want to be able to correct the state after
doing computations.

The main problem for correcting an error is that we should not accidentally apply
a logical gate to the state while correcting an error. For this we need a decoder, which
determines the correction operation to apply after the measurement.

3.2 Group Theory

Before we start with the stabilizer formalism, the start of group theory will be introduced.

Definition 3.1. Let G be a set. Then (G, ·) is a group with binary operation · if the
following hold:

G0: ∀g1, g2 ∈ G : g1 · g2 ∈ G

G1: ∀g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3)

25

G2: ∃e ∈ G : ∀g ∈ G : g · e = e · g = g

G3: ∀g ∈ G : ∃g−1 ∈ G : g · g−1 = e = g−1 · g

Definition 3.2. Let (G, ·) be a group. Then (F, ·) is called a subgroup of (G, ·) if F ⊆ G
and (F, ·) is a group.

In this thesis, the groups which will be used consist of operators, and the group
operation will be the composition in general. The group operation will not be mentioned,
as it is in general either clear from the context which operation it is, or we describe a
general group with ‘multiplication’ as group operation.

We will mostly use a subgroup of the Pauli group on n qubits. The Pauli group on one
qubit consists of all Pauli matrices with factors ±1 and ±i, with matrix multiplication
as operation. Thus

G1 = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} . (3.1)

The factors are needed to ensure that it is a group. The Pauli group on n qubits is the
group with all possible tensor products of elements of G1. We can describe a group with
generators.

Definition 3.3. A set H = {g1, . . . , gn} is said to generate a group G if all elements
in G can be written as a product of elements in H. The elements of H are called the
generators of G, which is denoted as G = 〈g1, . . . , gn〉.

3.3 Defining a Code

This is the basis needed for the stabilizer formalism. The idea of the stabilizer formalism
is that we can define a group of operators, the stabilizers of the code, which leave our
codespace invariant. Errors can change our codespace such that part of the stabilizers
will give a different outcome when measured, which allows us to correct the errors. First
of all, the definition of the stabilizers is needed.

Definition 3.4. Let g be an operator. Then g is called a stabilizer of |ψ〉 if

g |ψ〉 = |ψ〉 , (3.2)

and |ψ〉 is said to be stabilized by g.

With this, we can understand why the stabilizers are a group. First of all, if we have
two stabilizers, then g1g2 |ψ〉 = g1 |ψ〉 = |ψ〉, so the product is also a stabilizer (G0).
Secondly, I |ψ〉 = |ψ〉, so the identity operator is always part of the stabilizers (G2).
Lastly, if g is a stabilizer, the inverse is also a stabilizer because g |ψ〉 = |ψ〉 =⇒ |ψ〉 =
g−1 |ψ〉. So the inverse is part of the stabilizers (G3).

With a group of stabilizers, we can define a code.

Definition 3.5. Let S be a group of n-qubit operators. Then the code C stabilized by
S consists of all n-qubit states which are stabilized by all elements g ∈ S. S is called the
stabilizer of C. Thus C = {|ψ〉 |∀g ∈ S : g |ψ〉 = |ψ〉}.

26

Let S ⊆ Gn be the stabilizer of a code C. Let us look at the properties the elements
of S need to have for C to be non-empty.

First of all, suppose −I ∈ S. Then we need that − |ψ〉 = −I |ψ〉 = |ψ〉. So |ψ〉 = 0
is the only possible state. Thus for non empty codes, −I 6∈ S. Note that this means
that the Pauli matrices multiplied by i will not be in a stabilizer, as (±iP)2 = −I for an
arbitrary standard Pauli matrix P (X, Y or Z).

Now let g1, g2 ∈ S, and suppose they anticommute. Then for all |ψ〉 ∈ C

|ψ〉 = g1 |ψ〉 = g1g2 |ψ〉 = −g2g1 |ψ〉 = −g2 |ψ〉 = − |ψ〉 (3.3)

So if two stabilizers anticommute, we have as before that |ψ〉 = 0 is the only possible
state. So no elements should anticommute. As S ⊆ Gn, all stabilizers either commute
or anticommute, thus all elements of S need to commute. In general, the only elements
of S which will be needed are the generators of S.

3.4 Errors

As said earlier, errors can change the codespace such that the stabilizers will give a
different outcome when measured. We will only look at Pauli errors, as all other errors
can be written as a linear combination as Pauli errors. Thus if Pauli errors on n qubit can
be corrected, all errors on n qubits can be corrected. Let us look at how the codespace can
change. In short, there are three cases, because the errors either commute or anticommute
with the stabilizers.

1. The error E can anticommute with one or more generators. The state will become
E |ψ〉, and as gE |ψ〉 = −E |ψ〉 for anticommuting g, it is a −1 eigenstate of g.
Then the generators can be measured, and the generators which anticommute with
E will give outcome −1.

2. It can also be that E ∈ S. Then E leaves our codespace invariant, thus this ‘error’
is not an error for the code.

3. It can be that E 6∈ S, but that E commutes with all generators, and thus with
all stabilizers. This is a problem, because measuring the generators will not give a
different outcome, even though the state has changed.

The set of operators which commute with all elements in S is called the centralizer:

Definition 3.6. Let S be a subgroup of a group G. The centralizer of S is

C(S) = {g ∈ G|gs = sg for all s ∈ S} (3.4)

In our case, this can be shown to equal the normalizer of S.

Definition 3.7. Let S be a subgroup of a group G. The normalizer of S is

N(S) = {g ∈ G|gsg−1 ∈ S for all s ∈ S} (3.5)

Lemma 3.1. Let S be a subgroup of Gn with −I 6∈ S. Then C(S) = N(S).

27

Proof. Let g ∈ C(S). then for all s ∈ S, we have that gs = sg. Thus gsg−1 = s ∈ S. So
C(S) ⊆ N(S).

Let g ∈ N(S). Let s ∈ S arbitrarily. Suppose gs 6= sg. As our operators are Pauli
matrices, they either commute or anticommute. Thus gs = −sg. So gsg−1 = −s ∈ S.
But then we have −s ∈ S and s−1 ∈ S, so −ss−1 = −I ∈ S, which is a contradiction.
Thus gs = sg which means that g ∈ C(S). So N(S) ⊆ C(S).

With this lemma, it can be seen that the third case is when E ∈ N(S) \ S
The error cases are stated more clearly in the following theorem, which states which

errors can be corrected by a code.

Theorem 3.1. Let C be a code with stabilizer S ⊂ Gn. Let {Ej} ⊆ Gn be a set of Pauli

errors. Then {Ej} is a correctable set of errors for the code C if E†jEi 6∈ N(S) \ S for
all i and j.

Proof. Let P be the projection onto the codespace of C. We will check the error correction
conditions. First of all, suppose E†jEi ∈ S. Then PE†jEi = P , so PE†jEiP = P 2 = P .

Note that E†iEj = (E†jEi)
† ∈ S, so the coefficients for these errors are hermitian indeed.

Now suppose E†jEi ∈ Gn \N(S), and let g1, . . . , gn−k be generators for S. Then there

is at least one generator, say g1, which anticommutes with E†jEi. We can assume without

loss of generality that g1 is the only generator which anticommutes with E†jEi, because
if another generator gi also anticommutes, we can replace gi with gig1 (which commutes

with E†jEi) in the generator set. Note that as all our generators stabilize our codespace
(thus our codespace is the intersection of the +1 eigenspaces of the generators), we can
write P as follows:

P =
1

2n−k
Πn−k
l=1 (I + gl) . (3.6)

Using the anticommutivity of g1 with E†jEi, we get

PE†jEiP = P (I − g1)E†jEi
1

2n−k
Πn−k
l=2 (I + gl) = 0 , (3.7)

because P (I − g1) = 0, as we have (I + g1)(I − g1) = I + g1 − g1 − g
2
1 = 0. For the last

step, recall that g1 ∈ Gn, thus g21 = I. So the error correction conditions are satisfied,
thus {Ej} is a correctable set of errors for the code.

This theorem states which errors we can correct with a stabilizer code, but it does
not say how that can be done. So let us see what happens if an error E occurs which
anticommutes with a certain generator g. Note that we only consider Pauli errors and
generators. This means that we can write the projectors on the +1 and −1 eigenstates
of g as follows:

P± =
1

2
(I ± g) . (3.8)

Using this, it can be seen that the only possible outcomes of the measurements are +1
and −1, and the error state will be projected onto the corresponding eigenstate. Of
course, when an error anticommutes with g, we have gE |ψ〉 = −E |ψ〉, so then our error

28

state is already a −1 eigenstate and we will get −1 as outcome. So the outcomes of the
measurements of the generators give information about the error which occured. This is
why the outcomes are named the syndrome corresponding to the error:

Definition 3.8. Let S = 〈g1, . . . , gn〉 be the stabilizers for a code C. The syndrome σ,
or the syndrome corresponding to an error E σ(E), is the set of all generators which give
the measurement outcome −1.

After measuring the generators, the state still needs to be corrected. However, there
may be multiple errors which give rise to a certain error syndrome. A decoder is then
used to determine which correction will be done.

Let C be a code with stabilizer S = 〈g1, . . . , gn〉, and let {Ej} be a correctable set
of Pauli errors for C. Suppose that measuring the generators gives the error syndrome
σ. So for g ∈ σ, the measurement outcome is −1. If there exists a single error Ej which

gives rise to this error syndrome, we can simply apply E†j to correct the state, as we
assumed the errors to be Pauli errors. However, if Ej and Ei both give the same error
syndrome, which error do we need to correct? As for now, only correctable sets of errors
are used, it does not matter; both corrections will correct the error syndrome. This can
be seen by looking at the error correcting conditions for the stabilizer formalism. We
have E†jEi 6∈ N(S)\S, thus the total operation (the error Ei together with the correction

E†j) will be part of the stabilizer group, as it will commute with all stabilizers in S . If the
error correcting conditions do not hold, we cannot be sure of the correction needed. For
this we need decoders. This will be looked upon in the next chapter, where we examine
the toric code and decoders for it.

3.5 Logical Operators

After encoding the original state, there might still be computations which need to be
done. If the state needs to be decoded and encoded each time for applying a gate, this
can still result in errors which cannot be corrected. Therefore it is useful to be able to
apply certain gates on the encoded state, these gates are called logical gates. The logical
version of a gate U is denoted as Û . Together with the logical operators, the logical basis
states are defined (for one qubit these are |0L〉 and |1L〉), as the logical basis states follow
from the choice of Ẑ.

Let us now clearly state what a logical operator does. Suppose we have a code with
logical basis states |0L〉 and |1L〉 (the encoded states), and suppose we have an operator
U which can act on |0〉 and |1〉 (the non-encoded states):

U |0〉 = g(|0〉 , |1〉) (3.9)

U |1〉 = h(|0〉 , |1〉) . (3.10)

The logical operator Û should apply the same functions on the logical states:

Û |0L〉 = g(|0L〉 , |1L〉) (3.11)

Û |1L〉 = h(|0L〉 , |1L〉) . (3.12)

29

By convention, the logical Pauli gates are constructed from the same physical Pauli
gates. This ensures that the logical gates have the same commutation/anticommutation
relations. As the states in the codespace of a code C need to map to other states in
the codespace, the logical gates need to commute with all generators. This ensures that
applying a logical gate is not seen as an error. Note that we actually define logical
operators as ‘errors’ of case 3, which cannot be detected.

Let C be a code with stabilizer S = 〈g1, . . . , gn〉. Suppose we have defined a logical
operator Û . As Û |ψ〉 = Ûgi |ψ〉, we see that Ûgi acts identically on our codespace as Û .
Thus there are multiple correct choices for logical operators.

3.6 The Logical Basis States

Now that we have defined the logical operators and the stabilizers, we can look at what
the logical basis states need to be. In principle, these states do not have to be known to
use the code, but it can be good to see that they can be obtained.

To obtain the logical basis states, let us look at what properties they have. First
of all, let S be the stabilizer for a code C of which we want to obtain the basis states.
Suppose Ẑ and X̂ are the logical gates defined for this code. Then we know the following
for the logical basis states |0L〉 and |1L〉:

· ∀g ∈ S : g |iL〉 = |iL〉 for i ∈ {0, 1}

· Ẑ |0L〉 = |0L〉

· −Ẑ |1L〉 = |1L〉

So |0L〉 is the +1 eigenvector of all stabilizers and of Ẑ, and |1L〉 is the +1 eigenvector
of the stabilizers and of −Ẑ. This can be extended to encoding multiple qubits, as each
logical basis state will be a +1 eigenstate of either Ẑi or −Ẑi. The density matrix of a
basis state is then the projector onto the +1 eigenstate of the stabilizers and gates.

3.7 The Distance of a Quantum Error Correcting Code

The distance of a quantum code is related to the logical operators, as these are ‘errors’
which cannot be corrected. To define the distance, we first need to define the weight of
an operators:

Definition 3.9. Let A be an n-qubit operator. The weight of A is the number of qubits
on which A acts non-trivially.

For example, the weight of XIZ(= X ⊗ I ⊗Z) is two, and the weight of III is zero.

Definition 3.10. The distance d of a quantum code is the minimum weight of any
non-identity logical operator.

Similar to the classical code distance, a distance d means that we can correct errors
on up to (d− 1)/2 qubits. This can be understood with Theorem 3.1. Suppose we want

30

to be able to correct E1 and E2, and they both act on t different qubits. Then we need
to check that E†1E2 6∈ N(S)\S. Note that E†1E2 can have weight 2t. As there is a logical
operator with weight d, there is a part of N(S)\S with weight d. So we need that 2t < d,
or that d ≥ 2t+ 1, as in the classical code.

3.8 The 3-qubit Bit Flip Code

To make the stabilizer formalism more clear, we will describe the 3 qubit bit flip code
with it. Recall that the codewords of the code are:

|0L〉 = |000〉 (3.13)

and
|1L〉 = |111〉 . (3.14)

As can be seen, the operators that stabilize the code words are III, Z1Z2, Z2Z3 and
Z1Z3, which is a group. Only the generators are needed, so we choose for example Z1Z2

and Z2Z3. The error operators which could be corrected were X1, X2 and X3. It can
be checked that these errors can be corrected according to Theorem 3.1. Suppose that
X2 occurs, like in the previous example. Then both Z1Z2 and Z2Z3 anticommutate with
the error, so for both generators we get outcome −1. As X2 is the only error in our error
set which gives this outcome, we can correct it by applying X2 again.

Let us now look at the logical gates for the 3 qubit bit flip code. The Pauli X gate
takes |0〉 to |1〉 and vice versa, so X̂ should take |0L〉 to |1L〉 and vice versa. So we can
take X̂ = X1X2X3. Of course, we can make other logical X̂ gates by multiplying with
one of the stabilizers, but this is the conventional X̂ gate (composed of physical X gates).

The Pauli Z gate takes |1〉 to − |1〉, and leaves |0〉 as it is. So Ẑ should do the same for
the codewords |0L〉 and |1L〉. As |1L〉 = |111〉, we can either take Z1, Z2, Z3 or Z1Z2Z3.
Note that these gates can all be transformed into each other by applying stabilizers.

As Z1 has weight 1, which is the minimal weight for the logical operators, we cannot
correct all errors (d = 1 ≤ 2t + 1, so t = 0). This is true, as we cannot distinguish a Z
error on one qubit from applying the logical Ẑ gate.

As can be seen, all that is needed to describe the 3 qubit bit flip code in the stabilizer
formalism are the generators Z1Z2 and Z2Z3, and the logical gates X1X2X3 and Z1.
This is far less than describing the states and the projectors which we did before, where
we needed 4 projectors and 23 amplitudes for the basis vectors. In general, the number
of generators will only scale linearly with the number of qubits as proven in the book of
Nielsen and Chuang [6, Proposition 10.5]. Specifically, the number of stabilizers (m) is
related to the number of qubits encoded (k) and the number of used qubits (n) in the
following way: m = n − k. However, the description of the states and the projectors
will scale exponentially. Note that even though we may only need 2 logical states for
encoding 1 qubit, to describe those states we need the amplitudes of the 2n basis vectors
of the n-qubit vector space. Thus especially for large codes, the stabilizer formalism is a
huge improvement.

31

4. The Toric Code

In this chapter, the toric code of Kitaev [2] [4] will be described using the stabilizer
formalism introduced in the previous chapter. First of all, the advantages of the toric
code are described. Then we will define the stabilizers, after which the logical gates will
be introduced. Then the errors which will be used are described, after which we will
look at how we will decode the errors and what can go wrong in the decoding stage. In
this thesis, two decoders will be considered. First of all the Minimum Weight Perfect
Matching (MWPM) decoder, which is most commonly used. Secondly we will look at an
almost-linear time decoder which has recently been introduced as a good alternative [1].

4.1 The Relevance of the Toric Code

The toric code is a surface code, and as said in the introduction, surface codes have
certain useful properties. First of all, the locality. As we will see, every measurement
to determine the error only involves a small number of qubits (4 qubits). The locality
is needed for the first generation of quantum computers, as less distance between inter-
acting qubits means a smaller probability on errors. The second useful property is that
increasing the size of the code can reduce the logical error rate (the probability on ap-
plying a logical gate instead of correction) when the error probability is below a certain
value, the threshold. The threshold of the toric code is high compared to other surface
codes. Lastly, it is possible to do universal quantum computation; not only the logical X̂
and Ẑ gates are possible (which we define in the stabilizer formalism), but an arbitrary
gate can be approximated by using magical state destillation [8].

4.2 The Stabilizers

The toric code is defined on a L × L grid. The qubits are placed on the edges of the
grid, such that there are 2L2 qubits. This can be seen in Figure 1, where the qubits are
denoted by the circles. This grid is made ‘toric’ by identifying the qubits on the opposed
sides of the grid, thus using periodic boundaries.

For the toric code, there are two kinds of stabilizer generators: Plaquette operators
and Vertex operators. A plaquette operator consists of Pauli-Z gates applied on the
qubits on the edges of a plaquette. A vertex operator or star operator consists of Pauli-
X gates applied on the qubits of the edges touching the vertex. See Figure 1 for two
examples of the generators.

For the stabilizer formalism, we need to check that the generators commute, and
that they are independent. For if they are not independent, we can reduce the set of
generators by removing a stabilizer. Of course, when taking two plaquette operators V1
and V2 or two vertex operators P1 and P2, it is simple to check that they commute, as
they consist of commuting Pauli matrices. So let us consider a plaquette operator P and
a vertex operator V . There are two cases: either two qubits on which the operators work
overlap, or no qubits overlap. In the second case, the operators surely commute, as I

32

Z

Z Z

Z

X

X

X

X

Plaquette

Vertex

Figure 1: A 5 × 5 grid for the toric code. The circles represent the qubits. The grey qubits
represent the periodic boundary, they are identical with the qubits at the other side of the grid.
One vertex operator and one plaquette operator are drawn.

(which is applied on the other qubits) commutes with all operators. In the first case, we
need to check that X ⊗ X commutes with Z ⊗ Z. Recall that X and Z anticommute.
We have

(X ⊗X)(Z ⊗ Z) = XZ ⊗XZ = (−ZX)⊗ (−ZX) = (Z ⊗ Z)(X ⊗X) , (4.1)

so X ⊗X indeed commutes with Z ⊗ Z.
The last thing we need to check is whether the stabilizers are independent. Let us

see what happens if two of the same type of stabilizers are multiplied together. Suppose
P1 and P2 are multiplied together. If P1 6= P2, we can have that they overlap on 1 qubit
or that they do not overlap. The second case is the easiest, as all Z operators will be
applied. In the first case, the operator Z2 = I will be applied on the overlapping qubit.
This means that the Z operators will only be applied on the edge of our stabilizers, as
can be seen in Figure 2. One can either think of this as a concatenation of plaquettes,
with the Pauli Z gates applied on the edge, or as a closed loop of Pauli Z gates.

So for any amount of vertex operators, the Z operators will be applied on the edges of
the total stabilizer. However, there is no edge anymore if we take all vertex generators.
This means that no Z operator will be applied, so applying all generators equals the
identity operator. This can be seen in a different way too. Each qubit is part of two
vertex stabilizers, so if we multiply all vertex generators together, we have Z2 = I applied
on each qubit. Thus to make the generators independent, one generator needs to be left
out.

33

Z

Z

Z

Z

Z

Z Z

Z

Figure 2: A 5 × 5 grid for the toric code. The circles represent the qubits. The grey qubits
represent the periodic boundary, they are identical with the qubits at the other side of the grid.
The result of applying three neighbouring plaquette operators is drawn.

Exactly the same argument holds for the vertex stabilizers. This can be seen by
considering a shifted grid (the dashed grid in Figure 1). If the grid is shifted down and
right by half a stabilizer, the vertex operators and the plaquette operators are switched.
This shifted grid is called the dual grid. For a general surface code, the dual grid is
obtained by interchanging the plaquette and the vertex stabilizers (so drawing lines from
the plaquettes to eachother). For the toric code, the dual grid is equivalent to the original
grid, as the shape of the plaquette operators and the vertex operators does not change.
This symmetry in the operators can be used for the correction, as we can correct for errors
measured by the plaquette operators and for errors measured by the vertex operators
independently and in an identical way. Thus we can focus on one type of error, and the
corresponding type of stabilizers. In this chapter, the Z errors and the vertex stabilizers
are used, because this makes it easier to visualize the decoding of the code. The results
of this can be used to do the same for the X errors and plaquette operators, and applying
both an X and a Z error results in a Y error, which is thus corrected in the same way
as an X and a Z error.

4.3 The Logical Gates

Now that the stabilizers are defined, we need to find a set of logical gates. As can be
deduced from what was said before, if an operator touches a stabilizer (they overlap
on 1 qubit), they will follow the commutation relations of the operators applied on the

34

overlapping qubit. This means that, in order to commute, the logical gates can never
have a loose end, thus they need to be closed loops, like the stabilizers. However, they
cannot be part of the stabilizer. To make such a operator, we make use of the periodic
boundary conditions. The only closed loops which are not stabilizers, are the loops which
wind around the code. As we have m = 2L2 − 2 independent stabilizer generators, and
n = 2L2 qubits, the number of encoded qubits is k = n −m = 2. So the logical gates
needed correspond to X1, X2, Z1 and Z2, where the indices denote the qubit on which
they work. The logical gates can be seen in Figure 3. As seen in Chapter 3, if a logical
gate is multiplied by a stabilizer, it will still act as a logical gate. Thus every loop around
the torus (not only the four loops shown in Figure 3) corresponds to a logical gate.

Now that the logical gates are defined, the distance of the code can be found. As a
logical operator must wind around the code, it must apply an operation on at least L
qubits. This is the minimum weight, and thus the distance of the toric code is d = L.
Note that this intuitively means that increasing the size of the lattice might increase the
robustness of the code (errors on more qubits can be corrected). This is true for certain
regimes in certain error models, and will be looked upon later.

X X X

(a) The X1 logical gate.

X

X

X

(b) The X2 logical gate.

Z

Z

Z

(c) The Z1 logical gate

Z Z Z

(d) The Z2 logical gate.

Figure 3: A 3 × 3 grid for the toric code. The circles represent the qubits. The grey qubits
represent the periodic boundary, they are identical with the qubits at the other side of the grid.
The drawn loops are examples of the logical gates.

35

4.4 Errors

As seen in Chapter 2, linear combinations of correctable errors can be corrected. So if
an error correcting code can correct Pauli errors of weight n, it can correct all errors
of weight n. Let us now see what happens with the measurements of the generators
after a Pauli error occurred. Suppose a Pauli Z error occurs on one qubit. Then the
plaquette operators (which are made of Pauli Z operators) commute with this error, but
the neighbouring vertex operators (made of Pauli X operators) anticommute. So only
the two neighbouring vertex operators will give a measurement outcome of -1. Similarly,
if a Pauli X error occurs on a qubit, the vertex operators will commute, but the plaquette
operators anticommute. Thus X errors are measured on the plaquette operators. Lastly,
a Y error can occur on a qubit. As the Pauli Y operator anticommutes with both X
and Z operators, this will be measured by both the vertex and the plaquette operators.
Thus an Y error can be seen as an X and a Y error on one qubit (Y = iXZ).

Of course, multiple errors can happen next to each other. So suppose two Z errors
occur on the same vertex V . Then, as seen when checking whether the generators com-
mute, the errors will commute with V . Thus V will give the outcome 1 when measured.
However, the other vertices which are next to the errors will still give the outcome −1.
This can be seen as a ‘path’ of errors, where only the outer edges will determine the
syndrome. One consequence of this is that each error syndrome has multiple possible
errors, an example of this can be seen in Figure 4. As said before, we can do exactly the
same on the dual grid for X errors.

As the Pauli operators are self-inverse, an error E is corrected by applying it again.
However, as there are multiple possible errors which give the same syndrome, it is not
clear which error happened. Suppose E′ gives the same syndrome as E. Then the
operator L = EE′ commutes with all stabilizer generators. So L is either a stabilizer,
or L is a logical gate. In the first case, when applying E′ after an error E occurred, the
correction is successful. In the second case, it is not, as we have accidentally applied
a logical gate. To minimize the probability of the second case, a decoding algorithm is
used to determine the path to correct along. A few of these decoders will be explained
in section 4.7. In section 4.5, two different error models will be explained, which will be
used for the decoding.

4.5 Error models

The first type of error model considered here is the uncorrelated noise model, also known
as the independent noise model. The idea is that Pauli X errors and Pauli Z errors occur
independently of each other. They can also occur both on the same qubit, which can be
seen as a Pauli Y error. The errors occur with the following distribution:

I : (1− p)2 (4.2)

X : p(1− p) (4.3)

Y : p2 (4.4)

Z : p(1− p) (4.5)

36

Z Z

Z

Z

Z

Z

Figure 4: Two different errors with the same syndrome on a 4× 4 toric code. The thick vertices
represent the syndrome, the Z errors are shown on the qubits on which they occur. The thick
edges form the two different paths of the errors.

which is equivalent to two independent models, where for each model an error occurs
with probability p. In one model, the error is a Pauli X error, and in the other model
a Pauli Z error. All qubits follow this distribution. The symmetry in this model can be
used to simplify the decoding process, as we can consider the X and Z errors separately
and correct for them accordingly.

In the second model (the Quantum Erasure Channel(QEC)), the errors occur accord-
ing to the erasure channel, as seen in section 2.5. Recall that this channel erases a qubit
with a probability p. This can be detected, and the erased qubit is replaced with a qubit
in a completely mixed state, which can be seen as a random Pauli error. As said before,
this channel can be seen as the depolarizing channel with the extra property that the
place of the errors is known. Thus the place of the errors is known, but it is not known
which Pauli error occurs. In practice, the error can for example be induced by the loss
of a photon, which can be detected. We call the set of qubits on which an erasure error
occurred an erasure.

4.6 The Threshold of the Code

As seen earlier, the distance of the toric code is equal to the lattice size. Thus errors
on more qubits can be corrected if the lattice size is increased. However, with the error
models seen above, the number of qubits on which errors occur increases too. For low
error rates, increasing the lattice size indeed increases the robustness of the code (the
errors have a higher chance to be corrected without applying a logical gate), but for high
error rates this is not true anymore. The transition point for these behaviours when L
goes to infinity is called the code threshold. This can depend on how the syndrome is
decoded, thus a threshold always corresponds to a code and a decoder. When a new
decoder is defined, the most important properties are the speed of the decoder and the
threshold. For if the speed is low, the decoder reduces the speed of the computations

37

which need to be done. And if the threshold is low, the computations must be done
with greater care in order to be correct. These two properties will be analysed in the
next chapter, where the result of simulations of two of the decoders described below are
shown.

4.7 Decoding the Toric Code

As said earlier, decoding a syndrome is essentially finding paths between the generators
with outcome −1. Of course, this can be done in many ways. In this thesis, we will
consider three decoding algorithms. First of all, the optimal decoder will be explained,
but we will see that this has an exponential time complexity. As the time complexity
plays an important role in determining which decoder to use, we will also look at two
faster decoders, with a high threshold; an algorithm for the Minimum Weight Perfect
Matching (MWPM) problem, and the Union-Find decoder, a recently developed decoder
which can run in almost-linear time.

For the decoding, the error models explained in section 4.5 will be used. For most
decoders, we will use the uncorrelated noise model; i.i.d. Pauli X and Z errors on each
qubit. For the peeling decoder, an intermediate result for the Union-Find decoder, the
quantum erasure channel will be used.

4.7.1 The optimal decoder

Let us consider an arbitrary syndrome σ for the toric code. What should an optimal
decoder do? It gives a correction such that no logical gate is applied with the highest
probability. So it should compute for all errors the probability of occurrence, and whether
they are equivalent up to a stabilizer, or that they differ by a logical gate. This results
in 4 equivalence classes per type of error, each with a certain probability of occurrence.
It then returns the equivalence class with the highest probability (or an error from this
class). If the class is chosen with the error in it, the correction is successful, otherwise
a logical gate is applied. This decoder is optimal, because the error has the highest
probability to be in the class which is returned.

The threshold of the optimal decoder is approximately pth = 11%, obtained by map-
ping the toric code to the random-bond Ising model [9]. This threshold is optimal, so
why is the optimal decoder not widely used? As said earlier, there are two important
properties of decoders which should be considered. The threshold, but also the time
complexity of the decoder. The threshold may be optimal, but the time complexity is
nowhere near optimal. As the number of possible errors corresponding to a syndrome
scales exponentially, the time complexity of the optimal decoder is at least exponential.
This is why other decoders are considered, with a lower threshold but with a better time
complexity.

4.7.2 Minimum Weight Perfect Matching

The second decoder looked at is related to the Mimimum Weight Perfect Matching
(MWPM) problem, and can be implemented in polynomial time, considerably better

38

than the exponential time complexity of the optimal decoder. The MWPM problem is a
problem in graph theory, which can be used to decode a syndrome by finding the most
likely error. To state the problem, first some definitions are needed.

Definition 4.1. A graph G consists of a set of vertices (nodes) V and a set of edges
which connect the vertices.

Definition 4.2. Given a graph G = (V,E). A matching M ⊆ E is a set of pairwise
non-adjacent edges, thus no two edges have the same vertex as endpoint.

Definition 4.3. Given a graph G = (V,E) and a matching M. M is a perfect matching
if every vertex is incident to an edge e ∈M .

An example of a graph with a matching can be seen in Figure 5a, and a perfect
matching in Figure 5b.

a

b c

d

e

f

(a) A matching M in a graph.
The thick lines are the edges in M .

a

b c

d

e

f

(b) A perfect matching M
′

in a graph.
The thick lines are the edges in M

′
.

Figure 5: An example of a graph with matchings. The circles are the vertices, the lines are the
edges.

With these definitions, the problem statement is as follows:

Problem 4.1 (Mimimum Weight Perfect Matching). Given a graph G = (V,E) with
edge weights ce for e ∈ E, find a perfect matching M ⊆ E of minimum weight

∑
e∈M ce.

One can convert a grid with errors to a complete graph, where the generators with
outcome −1 are the nodes. The edges between the vertices have the length of the
shortest path (i.e. with the least number of qubits) between those generators. This
is the Manhattan distance, which is the sum of the horizontal distance and the vertical
distance. For example, if all generators have coordinates in Z2, the distance between
(4, 2) and (1, 3) is |1− 4|+ |3− 2| = 3 + 1 = 4.

An example is shown in Figure 6. As the probability of a certain error with weight m
is pm(1−p)n−m with n the total number of qubits, the most likely error is the error with
the least weight (assuming the probability of an error is smaller than 1/2), thus we need
to match every vertex to another vertex, such that the total length of the edges is the
smallest, which is exactly the MWPM problem. The MWPM problem can be solved with
for example Edmund’s Blossom algorithm. The original algorithm has a time complexity

39

X

X

X

X

(a) An example of a syndrome, with the
shortest paths from one generator to the
others. The other shortest paths are omit-
ted for clarity. The solution from the
MWPM problem is shown as thick dashed
lines, with the operators to correct the syn-
drome applied on the qubits.

2

3

2
3

2

4

(b) The syndrome converted to a graph,
with the shortest paths as edge weights.
The vertices represent the generators. The
thick lines are the solution of the MWPM
problem.

Figure 6: An example of syndrome converted to a graph, with the solution in both the grid and
the graph.

of O(|E||V |2), which has been improved up to O(|E|
√
|V |), where |E| is the number of

edges and |V | the number of vertices [10]. As we use a complete graph, this is equal
to O(|V |2

√
|V |) = O(n2

√
n) (the number of vertices is the size of the syndrome, which

is linear in the number of qubits). Finding the paths takes O(n2) time, as we need
calculate the paths between every pair of generators in the syndrome. Thus the total
time complexity is still O(n2

√
n).

4.7.3 The Union-Find decoder

The fastest known algorithm for the MWPM problem still has a time complexity of
O(|E|

√
|V |) = O(n2

√
n) where n is the number of qubits. To reduce this time complexity,

an algorithm has been developed with a time complexity of O(nα(n)) [1], where α is an
inverse ackermann function, which is smaller than 3 for any practical input size (see the
appendix for the exact definition). The algorithm in this thesis is the weighted growth
version of the decoder described in [1], as this has a higher threshold than the original
version. It should be noted that it has small differences with the algorithm fully described
in [1], as the weighted growth version is not fully described. The name is a reference
to the main part of the algorithm, the use of the Union-Find data-structure algorithm
developed by Tarjan [5].

40

To get an almost linear time complexity, the syndrome is first reduced to an erasure
syndrome, which can be decoded in linear time. First of all, the peeling decoder for the
erasure syndrome will be explained.

The peeling decoder

Let ε be an erasure, and σ the corresponding syndrome. Recall that we defined an
erasure to be a set of qubits on which an erasure error occurred. By measuring the
stabilizer generators, we obtain the syndrome σ; all generators which anticommute with
the erasure errors. Note that every generator in the syndrome has at least one erased
qubit next to it. As the only errors occur in the erasure, we must have that for every
pair of generators in the syndrome, the path of errors must be in the erasure. This is the
main idea of the peeling decoder [11]. The peeling decoder reduces the size of the erasure,
while keeping the syndrome adjacent to the erasure by applying corrections (or keeping
track of on which qubits corrections should be applied). This is possible, as elements
of the syndrome can be moved around by applying corrections on the qubits next to it
(the edges in the erasure). At last, the erasure is completely removed, and there is no
syndrome anymore. Thus the error is corrected.

To find a correction fast, we construct a spanning forest of the erasure in the first
step to avoid cycles. After that, we loop over the leaves (step 3, the leaf is picked in step
4) and either add the incident edge to a set C (the set of qubits on which a correction is
needed, initialized in step 2) or not, depending on whether the leaf is in the syndrome or
not, as each node in the syndrome should have at least one erased qubit next to it. This
is explained in more detail in the boxed text. Every leaf edge encountered in the loop will
be removed from the erasure in step 5, which will lead to more leaf edges, and eventually
the whole erasure will be removed. In the last step, an error is returned, which consists
of Z errors on all qubits on the edges of C.

This will give a set C which would generate the syndrome σ if the errors would be
applied on all edges in C, as shown in the next subsection.

Adding an edge to C

Let us now look more closely at when an edge is added to the set C. As the set C
contains all edges on which an error will be applied, adding an edge to the set C is
the same as (virtually) applying an error to the qubit on that edge. Applying an
error on an edge (u, v) will flip the outcome of the generators u and v, thus this is
the same as flipping the u and v in the syndrome (if a node is in σ, it will remove
the node from σ, and if the node is not in σ, it will add the node). The syndrome
need to be kept adjacent to the erasure, as otherwise we cannot apply a correction
on an erased qubit to correct the syndrome. So if the pendant vertex of the edge u
is not in the syndrome, we must not add the edge to C, whereas if it is, we need to
add it to C to remove the u from the syndrome. Of course, we then also need to flip
the node at the other side of the edge in σ to keep correctly track of the syndrome.
This is done in step 6 to 8.

Note that we either add 1 node to and remove 1 node from σ, or we remove two nodes

41

from σ. In each case, the number of elements remains the same parity (even or odd).
As we need to remove the syndrome, the number of elements of σ in each connected
component needs to be even at the start. This is always the case if we consider perfect
measurements, as all errors either add or remove an even number of generators to or
from σ, or they replace a generator. See Algorithm 1 for the pseudo code of the peeling
decoder. In the algorithm, it is said that a syndrome of a Z-error is required. The
algorithm for X-errors is completely analogous, where the dual grid is considered. As
said in section 4.5, a Y error will be seen and corrected as an X error and a Z error on
the same qubit.

See Figure 7 for an example of the peeling decoder.

Algorithm 1 The peeling decoder as described in [11]

Require: A surface G = (V,E, F), an erasure ε ⊆ E and the syndrome σ ∈ V of a
Z-error

Ensure: A Z-error P such that P ⊂ ε and σ(P) = σ.
1: Construct a spanning forest Fε of ε.
2: Initialize C by C = ∅.
3: while Fε 6= ∅ do
4: Pick a leaf edge e = {u, v} with pendant vertex u
5: Remove e from Fε
6: if u ∈ σ then
7: remove u from σ, add e to C and flip v in σ
8: end if
9: end while

10: return P =
∏
e∈C Ze.

The correctness of the peeling decoder

Consider now the error constructed by the algorithm. Does this error indeed correct the
syndrome, as it should? Suppose the syndrome is adjacent to the erasure in a certain
iteration of the loop, where e = {u, v} is picked as leaf edge. If u ∈ σ, then after the
iteration, u 6∈ σ. Thus after the iteration, the syndrome is still adjacent to the erasure.
The only thing left to prove is that the final iteration completely removes the syndrome.
Let us now consider one of the trees which are part of the spanning forest. As noted
before, adding an edge to C maintains the parity of the connected component. In the
last iteration, the last edge of a tree is picked. As the parity is of the number of elements
of σ was even at the start, it is still even in this iteration. There are only two possible
members of the syndrome; the two nodes incident to the edge. Suppose they are both in
the syndrome. Then the condition of the if statement in step 6 is True, thus both nodes
are flipped in σ (removed). Thus the error is corrected. Suppose the nodes are both not
in the syndrome. Then the condition is False, thus the nodes are not flipped, and the
syndrome remains empty, in which case the error is also corrected. As the parity is even,
it cannot be that only one of the two nodes is in the syndrome. As this holds for all trees
in the spanning forest, the total error is corrected.

42

The time complexity of the peeling decoder

Constructing a spanning forest takes linear time, and the loop is over every edge in the
forest, which is also linear. The actions inside the loop can be done in constant time if a
list of leaves is precomputed or if the forest is stored in a suitable way. Thus the peeling
decoder has a linear time-complexity (linear in |ε|, thus linear in the number of qubits
n).

Making the erasure

The remaining part of the decoder is making an erasure ε from our syndrome σ. For
a good performance, we want the smallest distance between each two generators in the
syndrome in the erasure.

The idea is to iteratively grow the erasure, until it is correctable with the peeling
decoder. As noted before, the peeling decoder can be used when the syndrome has an
even number of elements in each connected component of the erasure. Let us name these
connected components of the erasure clusters. To start, each generator is a cluster itself.
In every step of the algorithm, we grow the clusters with an odd number of g ∈ σ by
half an edge on the boundaries, and merge them when they meet. When two clusters
with an odd number of g ∈ σ (two ‘odd clusters’) meet, the merged cluster will have an
even number (an ‘even cluster’), which is correctable for the peeling decoder. To grow
a cluster, we run over all vertices at the boundary of the cluster, and add half an edge
to the edges next to these vertices. For an example, see Figure 8. The algorithm can
be easily extended to the combination of erasure errors and Pauli errors by adding the
erasure to the initial clusters.

The data structures

Let us first describe the data structures used. The items which need to be stored are the
nodes (in clusters) and the edges (to see how far they are grown). In addition, we will
store a list of boundary nodes for each cluster, to speed up the growing of the clusters.

The clusters are stored as trees. At the start, one random node of the cluster is
assigned to be the root of the tree, and all other nodes are made children of that node.
In the case there is no erasure at the start, all generators are the roots of their own
cluster. Note that in the case of only Pauli errors, without erasure, all nodes are clusters
on their own, with themself as root. Storing the clusters can easily be done by using a
dictionary in Python, by taking a node as key and the parent of that node as value (the
root has itself as value).

The edges are stored in a lookup table, in which is stored whether they are not grown
(value 0), half grown (1) or fully grown (2).

The complete algorithm

The pseudo code of the algorithm can be seen in Algorithm 2, and will now be explained
step by step.

The first step of the algorithm, is to initialize the clusters, the lookup table for the
edges and the boundary lists.

43

(a) An erasure error. The erased
qubits are depicted as thick edges.
The black nodes represent the syn-
drome of vertex generators.

(b) A spanning tree of the erasure

u

v

(c) The first step of the peeling de-
coder. The edge (u,v) will be removed
from the erasure. The set C is still
empty, because u 6∈ σ.

uv

(d) The second step of the peeling
decoder. The edge (u, v) will be re-
moved. Because u ∈ σ, the edge is
added to the set C, v is added to σ
and u is removed from σ.

Figure 7: An example of decoding an erasure with the peeling decoder. The edges correspond
to the qubits. The thick edges represent the erasure, the black nodes represent the syndrome.

44

(a) A syndrome. All generators in the syn-
drome are the initial odd clusters.

(b) The odd clusters grow half an edge.

(c) The odd clusters grow another half
edge, and meet.

(d) The clusters merge and form an even
cluster. The peeling decoder needs to be
applied to find the correction.

Figure 8: A simple example of growing the clusters with the Union-Find decoder. The black
nodes represent the syndrome, the thick lines represent the (growing) erasure. (Here, the clusters
are both grown in one step; in the actual algorithm, they are grown one by one. It can be checked
that it does not matter in this case.)

45

The growing consists of multiple steps. First of all, always the cluster C with the
smallest boundary list is grown. This cluster is picked in step 4 in the algorithm. Which
cluster this is can be determined by making use of a priority queue, with the length of the
boundary list as primary priority (actually the inverse priority, a smaller boundary lists
means a higher priority), and the entry number as secondary priority to let the clusters
grow more evenly. Without the secondary priority, a cluster will be grown multiple times
in a row while there are multiple clusters of the same size. This can be seen as growing
full edges instead of half edges, and will reduce the performance of the decoder.

Why is only the smallest odd cluster is grown?

Taking the length of the boundary list as priority means growing the cluster with
the smallest boundary size. To understand this, we can look at the possible error
chains. As only odd clusters are grown, we cannot make pairs of the whole syndrome
inside the cluster. Thus there is at least one error chain which exits the cluster,
as we need to pair at least one syndrome point in the cluster with a syndrome
outside the cluster. Growing a cluster means that we add edges to the erasure,
of which at least one is correct (at least one error chain). However, for a cluster
with a bigger boundary size, there are more incorrect edges which are added to the
erasure, which can reduce the performance of the decoder (the threshold will be
lower). Thus growing the cluster with the smallest boundary size gives a higher
performance than growing all clusters at once.

After picking the smallest cluster C, we run over the boundary list of C in step 5,
and grow each incident edge that is not fully grown yet (adding 1 to the value). In this
step, we save all edges which are grown to full length. Thus if the value of the edge was 1
before the growing, and is 2 after the growing. For these edges (step 6 in the algorithm),
we check whether the incident nodes are part of a different cluster. If so, the clusters are
merged.

The merging of the clusters together with checking if nodes are from different clusters
is done with a Union-Find algorithm. This has an almost linear time complexity.

The Union-Find algorithm and its time complexity.

R. Tarjan [5] developed a Union-Find algorithm for merging n clusters (Union(u,v),
where u and v are the nodes of the clusters which need to be merged) and de-
termining in which cluster a node is m times (the function Find(u) where u is a
node). It has a time complexity of O(mα(m,n)) [5], with average time complexity
of O(α(m,n)) per operation, where α(m,n) is a version of the inverse Ackermann
function defined in the appendix. As the Union-Find decoder has m ≥ 2n, we use a
one-variable version of the inverse Ackermann function with α(n) = α(2n, n). The
two important ideas by which the union-find algorithm obtains this time complexity
are the following. First of all, the height of the trees is decreased by path compres-
sion (every time the function Find(u) is called, all nodes on the path to the root
are made children of the root) or similar methods (path splitting or path halving).

46

Secondly, the smaller cluster is always merged into the bigger cluster (union by
size). This ensures that the least amount of nodes have a longer path to the root.

To merge correctly, the boundary lists also need to be fused. This is done in step 7
by appending the boundary list of the smaller cluster to the boundary list of the larger
cluster, as they are merged this way.

After the merging, the boundary lists of the clusters which have been changed must
be cleaned up by removing all nodes which are not in the boundary anymore. This is
done in step 8 of the algorithm.

At last, the priority queue must be updated. This can be done by adding the roots
of all clusters which are grown or merged. This may result in duplicates, which is not
a problem if we check several things before growing the cluster corresponding to a root.
The things to check are the following:

• Is the root actually a root? If this is not the case, the cluster has been merged,
and it is probably not the cluster with the smallest boundary list anymore.

• Does the priority correspond to the boundary list of the cluster? If this is not the
case, the cluster has been merged, the root is still the same but it is not the smallest
odd cluster anymore (it can even be that it is not odd anymore).

• Is the cluster of the given root still odd? It can be the case that the cluster has
merged, kept the same root, but became even.

Note that in each case, the root should not have the highest priority; it is either not
the root of a cluster, a duplicate, or the root of an even cluster.

Another way the problem of duplicates could be solved is to check for each element
which will be added whether it already is in the queue, and replace it if it is. However,
this would require looping over the queue after every growth round (which has O(n)
elements), instead of checking a few cases in constant time, and is thus not desirable.

At the end of the algorithm, when all clusters are even, the edges which are fully
grown are given as erasure to the peeling decoder, which will give a correction for the
original syndrome.

The time complexity

The key point of the algorithm is the growing and merging of the clusters. Before that,
the clusters need to be initialized, which can easily be done in linear time. After the
growing is finished, the peeling decoder is applied, which also has a linear time complexity.
It remains to show that the growing and merging of clusters has a time complexity of
O(nα(n)), where n is the number of qubits.

Let us analyse the algorithm step by step. How often do we need to grow a cluster?
The shortest Manhattan distance between two clusters is less than or equal to L = O(

√
n)

(L/2 vertically and L/2 horizontally). In each step, the radius of a cluster grows by 1
edge (half an edge at each side), thus all clusters meet after O(

√
n) growth steps or less.

Thus all steps in the loop should have a time complexity of O(
√
nα(n)) or less.

In step 4, we can use a priority queue (for example implemented as a heap), which
can be updated in constant time.

47

Algorithm 2 The Union-Find decoder, similar to Algorithm 2 in [1].

Require: The syndrome σ ⊂ V of a Z-error PZ
Ensure: A Z-error P such that σ(P) = σ.

1: Initialize the cluster trees, Support and the boundary lists for all clusters.
2: Initialize the list of odd cluster roots L
3: while L 6= ∅ do
4: Pick the root of the smallest odd cluster Cs, s ∈ L.
5: For each v in the boundary of Cs, grow all edges by half an edge. If the edge gets

fully grown, add the edge to the fusion list F .
6: For each edge {u, v} in F , if Find(u) 6= Find(v), merge the clusters of u and v.
7: For all merged clusters, append the boundary list of the smallest cluster to the

boundary list of the largest cluster.
8: For final cluster, update the boundary list by removing all nodes which are not

part of the boundary anymore.
9: Append the roots of the odd merged clusters to L.

10: end while
11: Apply the peeling decoder with ε = {e ∈ E|e is fully grown} as erasure

In step 5, we loop over the boundary of a cluster. Each node can be at the boundary
for at most two rounds of growth. Thus the total time complexity of this step is O(n).
So there are on average O(

√
n) boundary points per iteration.

In step 6, we loop over a subset of the edges found in step 5, so the loop has time
complexity O(

√
n). For these edges, we need to call the Find function, and possibly the

Union function. As we need to call Find at least two times for every Union, m ≥ 2n. Thus
these functions have a cost of O(α(n)), so step 6 has a time complexity of O(

√
nα(n))

per iteration of the outer loop.
In step 7, we need to append the boundary list for the smaller cluster to the larger

cluster for each pair of merged clusters. The time complexity depends on the number of
elements in the to be appended list, thus we can calculate the total number instead of
calculating the average number per iteration. As always the smallest cluster is merged
into the larger one, the final cluster size is at least double the size of the smallest cluster.
This means if an element g is followed, the size of the cluster scales faster than 2k, where
k is the number of times the cluster merged to another cluster (so only the merges where
the boundary list with g is appended to another boundary list). Note that in most cases,
this will be much smaller. As the maximum size of a cluster is n, k scales with log2(n).
Thus the number of times an element is merged is in worst case O(log(n)). However,
only the boundary points are merged. For a cluster of size N (N elements), the number
of boundary points is on average O(

√
N). Let us consider the worst case, where we start

with all generators as their own cluster, in such a configuration that they merge each time
in pairs, thus the size of the clusters is 2k with k the number of merges. In each round

of merges, there are n/2k clusters to be merged, each with
√

2k boundary points. As
the boundary lists of only one of each pair of clusters is merged to the other, we overall
obtain a factor 1/2, which does not matter for the order of the time complexity. As seen
before, the clusters can be merged log2(n) times, thus the total number of boundary

48

points which are merged is the result of the following sum:

log2(n)∑
k=1

n

2k
·
√

2k = n

log2(n)∑
k=1

(1√
2

)k
(4.6)

Using the identity
∑N
k=1 r

k = 1−rN+1

1−r , we obtain:

n

log2(n)∑
k=1

(1√
2

)k
= n

1− 1√
2

log2(n)+1

1− 1√
2

=
n
√

2√
2− 1

− n√
2− 1

2−1/2 log2(n) (4.7)

=
n
√

2√
2− 1

−
√
n√

2− 1
= O(n) (4.8)

Thus step 7 has a total time complexity of O(n). Note that this is only the case when
log2(n) ∈ Z. It is still true when log2(n) 6∈ Z, as shown in the appendix. This can be
done far easier when all clusters are grown at the same time. In that case, each point
can only be part of a boundary in 2 growth steps, thus the complexity is O(n).

In step 8, the boundary lists need to be updated. This is done by looping over the
used boundary lists, which takes O(

√
n) time.

Finally, in step 9, the roots of the merged clusters are appended to the list L. As we
only grow one cluster each time, all merged clusters merge into one cluster. Thus after
one iteration, the final number of odd merged clusters is 0 or 1 (the cluster can be even
or odd). Thus appending the root of this cluster to the list is O(1).

Thus the bottleneck of the algorithm is step 6, which gives a total time complexity
of O(nα(n)) (

√
n from the outer loop,

√
n from the inner loop and α(n) from the Union

and Find operations).

49

5. Simulations of the Toric Code

In this Chapter, the results of simulating errors and decoding it with the algorithms
described in Chapter 4 will be given. With these results, the threshold of the algorithms
is obtained.

5.1 The Setup for the Simulations

In order to determine the threshold of the code with the different decoders, it was sim-
ulated in Python1. The toric code and the decoders were programmed, and then used
to simulate errors and corrections for different lattice sizes L and different probabilities
on Pauli X errors px. Only the Pauli X errors were simulated, as the Pauli Z errors
would give the same result. For each combination of L and px, an error was simulated
a number of times. With these simulations, the threshold was determined by fitting a
curve to the data points around px = 0.1, of the function [12, Equation 2]:

psucc = A+Bx+ Cx2 +DL−1/µ (5.1)

where x = (px − pth)L1/ν . Everything except psucc (the success rate) and px is a fitting
parameter.2

The simulations can be timed to approximate the time complexity. Only the decoding
stage has to be timed, as this is the only part that will happen for an implementation
in a quantum computer. The simulations were done in Python, on a laptop with a 1.90
GHz AMD Quad Core A10-7300 processor.

5.2 Successful Corrections

As the fitting depend on the success rate, we need to determine when a correction is
successful. The errors are known, because they are simulated. Thus to see when a
correction is successful, we need to check whether the combination of the error and the
correction is equivalent to a logical gate, because applying a logical gate creates an error
in the computational state. As the logical gates are loops around the torus, we only need
to check if an odd number of qubits has been flipped in the first row and the first column
corresponding to an X̂1 and an X̂2 gate. The Ẑ gates do not have to be checked, as we
only consider X errors in the simulations.

5.3 The Thresholds

As the distance of the Toric Code depends on the size L of the grid, it is natural to
think that the percentage of correct corrections per error rate depends on L. A way to

1
The code is available on Github: https://github.com/nanleij/The-toric-code.git

2
In the original article where the fitting is introducted, psucc is replaced by pfail [13]. This does only

matter for the constants, as pfail = 1 − psucc.

https://github.com/nanleij/The-toric-code.git

50

determine this is to simulate the code with a certain error rate for multiple L. This is
done with the MWPM algorithm and with the Union-Find decoder.

5.3.1 The MWPM algorithm

In Figure 9, the resulting graph for L ∈ {3, 5, 7, 9} is plotted for the MWPM algorithm3.
The horizontal axis represents the probability px on a Pauli X error on each qubit. The
vertical axis shows the percentage of error-free corrections. The different lines represent
the different values of L.

Figure 9: Results of simulation of the Toric Code with the MWPM decoder for multiple odd L
from px = 0.05 to px = 0.20 with a 95% confidence interval as error bar.

As can be seen, the lines cross each other around px = 11%. However, because of
finite size effects, the threshold should be a bit lower, which is in agreement with the

3
The MWPM algorithm was not implemented, a function of the Python package ‘NetworkX’ was

used instead [14]

51

threshold commonly found in literature of 10.3% [2]. Fitting the curve given in equation
5.1 to the data for L ∈ {5, 7, 9, 11} and for px = 0.095 to px = 0.112 gives a threshold
of pth = 0.115 ± 0.002, where the error is given by the standard deviation. This is in
disagreement with our expectations and the threshold of 0.103% found in literature.

In Figure 10, the fitted curve with the rescaled data points can be seen. As the curve

is defined with x = (px−pth)L1/ν (the rescaled error rate), this is shown on the horizontal
axis. The curve has an offset depending on L, thus to get one curve instead of one for
each L, the offset is subtracted from the success probability for each data point, to get the
modified success probability. Note that there are many points lying relatively far from
the curve, an indication that the fit is not very good. There are multiple possible reasons
for the disagreement. First of all, because the simulations were done on a laptop with
a 1.9GHz processor, the possibilities for simulating high grid sizes L were very limited.
For L = 11, the time needed was already about a day for 10.000 simulations per data
point, and it would be much higher for large L because of the time complexity.

Figure 10: The fitted curve to the data of the MWPM decoder, together with the rescaled data
points for L ∈ {5, 7, 9, 11} and px = 0.095 to px = 0.112. On the horizontal axis, the rescaled

error rate (px−pth)L
1/ν

is shown. The vertical axis represents the modified success probability.
The different colors represent different grid sizes L.

52

5.3.2 The Union-Find decoder

Let us now look at the curves for the Union-Find decoder. As this decoder runs much
faster than the MWPM decoder, it was possible to simulate it 10.000 times per data
point for L = 41. In Figure 11, the graph for the simulations of the Union-Find decoder
of L ∈ {9, 17, 25, 33, 41} is plotted, with on the horizontal axis the probability px between
0.09 and 0.12. The vertical axis shows as before the percentage of error-free corrections.

Figure 11: Results of simulation of the Toric Code with the Union-Find decoder for L ∈
{9, 17, 25, 33, 41} from px = 0.05 to px = 0.20 with a 95% confidence interval as error bar.

Fitting the curve of equation 5.1 to the data gives a threshold of pth = 0.097± 0.009,
which is in agreement with the result found by N. Delfosse and N. Nickerson [1] of
pth = 0.099. In Figure 12, the fitted curve is shown, with the rescaled data points.

As the curve depends on L, the term DL−1/µ was subtracted from the percentage of
successful corrections to retrieve one curve, instead of one curve for each L.

53

Figure 12: The fitted curve to determine the threshold, together with the rescaled data points
for L ∈ {17, 25, 33, 41} and for px = 0.09 to px = 0.11. On the horizontal axis, the rescaled error

rate (px − pth)L
1/ν

is shown. The vertical axis represents the modified success probability.

5.4 The Difference Between Odd and Even L

Let us look at the same plots, but now for even and odd L. In Figure 13, the plots are
shown. As can be seen, for even L the number of error-free corrections goes to 100%
when px goes to 1, whereas for even L it goes to 0%. This can be explained by how we
determined if a correction was correct. If there is an X error on every qubit, there is no
error detected, as every generator will commute with the error (an even number of X
errors next to a generator always commutes with the generator). The error can be seen

as applying the logical gate XL
1 X

L
2 , which will be equal to the identity if and only if L is

even. Thus for odd L, px = 1 means that pcorr = 0, and for even L pcorr = 1. For small
deviations, the code corrects toward errors on all qubits, thus the graph should be about
(anti) symmetric around px = 0.5. A consequence of the difference between even and

54

odd L is that two fitting parameters, D and µ, are different depending on the parity of
L [13]. The reason only odd L are considered in the rest of the simulations is that these
differences do not matter for the threshold, and considering only one parity decreases
the number of fit parameters by 2.

Figure 13: Simulations for even and odd L. As can be seen, for even L the graph is about
symmetric, and for odd L it is about antisymmetric. For each data point, 2000 simulations were
done.

5.5 The Time Complexity

As one of the biggest advantages of the Union-Find decoder is the time complexity, it
is natural to check if it indeed runs in almost linear time. This was done by simulating
the decoder for certain probabilities px 10.000 times, for different L. Then the total time
needed for the decoding per L was plotted versus the number of qubits n = 2L2. This

55

was done for both the MWPM algorithm and the Union-Find decoder4.

5.5.1 The MWPM algorithm

The MWPM decoder is fully based on the MWPM algorithm, which has at least a time
complexity of O(n2

√
n). Knowing this, it is not really necessary to test the implemen-

tation used, as it will be worse than the Union-Find decoder. However, it is good to
compare the decoders when used for the same error probabilities. In Figure 14, the
time needed for simulations with the MWPM algorithm is plotted, with the time on the
vertical axis and the number of qubits n on the horizontal axis. Each line represents a
different probability on an error px, starting at 0.01 for the lowest line, running up to
0.05 for the highest line, with a spacing of 0.01.

Figure 14: The time needed for 10.000 simulations (per data point) of the MWPM algorithm,
the total time plotted versus the number of qubits. The different lines represent different px,
ranging from 0.1% (the lowest line) to 0.5% (the highest line).

4
The peeling decoder was also implemented, as it is needed for the Union-Find decoder. However, the

time complexity is not determined; if the time complexity is not linear, this will be noted when looking
at the time complexity of the Union-Find decoder.

56

Figure 15: The time needed for 10.000 simulations (per data point) of the Union-Find decoder,
the total time plotted versus the number of qubits. The different lines represent different px,
ranging from 0.1% (the lowest line) to 0.5% (the highest line).

5.5.2 The Union-Find decoder

As the decoder theoretically runs in almost linear time in the number of qubits, the
resulting plot should be a straight line for each px (α(2n, n) is constant between n = 16
and n = 216). This is indeed the case, as can be seen in Figure 15. The same error
probabilities as before were used, but it was possible to use higher grid sizes L, up to
L = 45.

5.5.3 Comparing the decoders

It should be noted that the MWPM algorithm already takes almost 600 seconds to run
10.000 simulations for px = 0.05 and L = 14, whereas the Union-Find decoder uses about
half that time for L = 41 with the same px. As noted before, for higher probabilities

57

of error px, the time needed for the MWPM grows must faster per L, whereas it looks
more linearly spaced for the Union-Find decoder. It is interesting to look further at how
the average time needed depends on the probability instead of on the number of qubits,
as this can also be important for determining how whether decreasing the error rate in
a quantum computer is worth it. If the time needed increases fast for increasing px (for
example quadratically or exponentially), this is sooner the case than when it increases
slowly (for example linearly).

For the MWPM algorithm, the time needed to complete the algorithm completely
depends on the size of the syndrome. Increasing L for a certain px increases the number
of syndrome points, but increasing px for a certain L increases it also for low px, as each
qubit with an error will add generators to the syndrome. For higher px however, it is
more likely that adding an error on a qubit replaces a generator in the syndrome, instead
of adding new ones. Thus only for low px, the time complexity in px will be similar to
the time complexity in the number of qubits n.

For the Union-Find decoder, the time needed is less directly related to the number of
generators in the syndrome. However, for low px the errors will be relatively far apart.
This means that most odd clusters will only need to grow half an edge, so the time
needed increases linearly with the number of initial clusters (the number of generators
in the syndrome). Thus for low px, the time complexity will be about linear in px.

58

6. Conclusion

This thesis provides an introduction in quantum error correction, in specific for codes
described with the stabilizer formalism. The toric code was examined, and multiple
decoders were looked at. The Minimum Weight Perfect Matching decoder and the Union-
Find decoder [1] were implemented in Python 3, and simulations were done to determine
the threshold and the time complexity of the decoders.

The threshold determined through the simulations were 0.115±0.002 for the MWPM
decoder and 0.097 ± 0.009 for the Union-Find decoder. The threshold for the MWPM
decoder is not in agreement with earlier results of 0.103 [2], possibly because of the grid
sizes used. The threshold for the UF decoder is in agreement with the result of 0.099
found by N.Delfosse and N. Nickerson [1].

The time complexity of the weighted growth function of the Union-Find decoder
was analysed, and found to be O(nα(n)), where α(n) is an inverse of the Ackermann
function. This is in agreement with the sketch of the analysis of the version without
weighted growth [1], even though there are significant differences in the way to prove it.
This was tested with simulations, and found to be correct.

Small errors were made during the implementation of the Union-Find decoder, which
were not found at first because the errors were made during optimizations after the
testing. This can be prevented next time by extensive testing after each optimization or
addition to the code.

For further research, it would be interesting to look at the time complexity in the
probability on errors px. For low px, this is expected to be similar to the time complexity
in the number of qubits n, but for large px this could be different. Another option for
further research is implementing the decoder for faulty measurements, and look at the
time complexity in the amount of rounds of correction.

59

References

[1] Delfosse, N., & Nickerson, N. H. (2017). Almost-linear time decoding algorithm for
topological codes. arXiv:1709.06218v1

[2] Browne, D. (2014). Topological Codes and Computation. Lecture Notes, University of
Innsbruck, Innsbruck, Germany.

[3] Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79

[4] Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals of
Physics, 303(1), 230

[5] Tarjan, R. E. (1975)Efficiency of a Good But Not Linear Set Union Algorithm. Jour-
nal of the ACM, 22(2), 215225.

[6] Nielsen, M., Chuang, I. (2010). Quantum computation and quantum information.
Cambridge: Cambridge University Press.

[7] Paulsen, V. (2016).Entanglement and Non-Locality. Lecture Notes, Department of
Pure Mathematics and Institute for Quantum Computation, University of Waterloo,
Ontario, Canada.

[8] Bravyi, S., & Kitaev, A. (2005). Universal quantum computation with ideal Clifford
gates and noisy ancillas. Physical Review A, 71(2).

[9] Dennis, E., Kitaev, A., Landahl, A. and Preskill, J. (2001). Topological quantum
memory. Journal of Mathematical Physics, 43(9), 44524505

[10] Micali, S., & Vazirani, V. V. (1980). An O(
√
|V |·|E|) algoithm for finding maximum

matching in general graphs. In 21st Annual Symposium on Foundations of Computer
Science (sfcs 1980). IEEE.

[11] Delfosse, N., & Zémor, G. (2017). Linear-Time Maximum Likelihood Decoding of
Surface Codes over the Quantum Erasure Channel. arXiv:1703.01517

[12] Anwar, H., Brown, B. J., Campbell, E. T., & Browne, D. E. (2014). Fast decoders
for qudit topological codes. New Journal of Physics, 16(6)

[13] Wang, C., Harrington, J., & Preskill, J. (2003). Confinement-Higgs transition in a
disordered gauge theory and the accuracy threshold for quantum memory. Annals of
Physics, 303(1), pp. 3158

[14] Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure,
dynamics, and function using NetworkX. in Proceedings of the 7th Python in Science
Conference (SciPy2008), Gel Varoquaux, Travis Vaught, and Jarrod Millman (Eds),
(Pasadena, CA USA), pp. 1115

[15] Tarjan, R. E., & van Leeuwen, J. (1984). Worst-case Analysis of Set Union Algo-
rithms. Journal of the ACM, 31(2)

60

A. Short proofs and identities

A.1 Proofs related to the trace

In section 2.1.3, the trace was introduced. The following theorem was given, but not
proven:

Theorem A.1. Tr(A) is basis-independent

Here we will give the proof. To simplify it, we first prove the following:

Lemma A.1. The following holds for any orthonormal basis and operators A and B on
vector space V :

Tr(AB) = Tr(BA) . (A.1)

Proof. Let {|i〉} be an orthonormal basis. Then, as
∑
i |i〉〈i| = I, we have

Tr(AB) =
∑
i

〈i|AB|i〉

=
∑
i

∑
j

〈i|A|j〉 〈j|B|i〉

=
∑
j

∑
i

〈j|B|i〉 〈i|A|j〉

=
∑
j

〈j|A|j〉

= Tr(BA) .

Now we will prove Theorem 2.1.

Proof. Let {|vi〉} and {|wi〉} be any two orthonormal bases for V . Then there exists a
unitary operator U for which

|wi〉 = U |vi〉 . (A.2)

Using the lemma, we can write:

Trv(A) = Trv(AUU
†)

= Trv(U
†AU)

=
∑
i

〈vi|U
†AU |vi〉

=
∑
i

〈wi|A|wi〉

= Trw(A) .

61

A.2 Identities

In section 2.5, the depolarizing channel was rewritten using the following equality.

I

2
=

1

4
(ρ+XρX + Y ρY + ZρZ) . (A.3)

Here we will prove that this holds for arbitrary 1-qubit density matrices ρ. First of all,
define the following function:

E(A) =
1

4
(A+XAX + Y AY + ZAZ) (A.4)

Using X2 = Y 2 = Z2 = I, we know that E(I) = I Using this and the anticommutation
relations, it can be easily seen that E(X) = E(Y) = E(Z) = 0. For example, as X, Y,
and Z pairwise anticommute, we have

E(X) =
1

4
(X +X3 + Y XY + ZXZ) (A.5)

=
1

4
(X +X −XY Y −XZZ) = 0 . (A.6)

Recalling equation 2.32, an arbitrary density matrix can be written as

ρ =
1

2
(I + a1X + a2Y + a3Z) . (A.7)

With these results and with the linearity of the function, we can write for arbitrary ρ:

1

4
(ρ+XρX + Y ρY + ZρZ) = E(ρ) (A.8)

=
1

2
(E(I) + a1E(X) + a2E(Y) + a3E(Z)) (A.9)

=
I

2
, (A.10)

which is what was needed.

62

B. The Inverse Ackermann Function

When computing the time complexity of the Union-Find decoder, an inverse of an
Ackermann function was used. The inverses used in the article which introduced the
Union-Find decoder [1] and in the article which analysed the union-find algorithm [5] are
slightly different, as are the used Ackermann functions. The Ackermann function used
in the time complexity of the Union-Find decoder is the following [1]. Let the function
A1 : N0 × N0 → N0 be defined by the following relations:

∀j ∈ N0 : A1(0, j) = 2j , (B.1)

∀i ∈ N0 : A1(i, 0) = 0 , (B.2)

∀i ∈ N0 : A1(i, 1) = 2 , (B.3)

∀i ≥ 1, j ≥ 2 : A1(i, j) = A1(i− 1, A1(i, j − 1)) . (B.4)

The used inverse is a one variable function, defined as follows:

α1(n) = min{i|A1(i, 4) ≥ log2 n} . (B.5)

Tarjan used the same Ackermann function in his original paper about the union-find
algorithm, but a different inverse. In his second paper, the function was slightly modified.
Let A2 : N× N→ N be defined by the following relations:

∀j ≥ 1 : A2(1, j) = 2j , (B.6)

∀i ≥ 2 : A2(i, 1) = A(i− 1, 2) , (B.7)

∀i, j ≥ 2 : A2(i, j) = A2(i− 1, A2(i, j − 1) , (B.8)

with the inverse
α2(m,n) = min{i|A2(i, bm/nc) > log n} , (B.9)

where b·c denotes the floor function.
The union-find algorithm was proven to have a worst case time complexity of Θ(mα2(m,n))

for m ≥ n, when using m finds and n unions. As the difference between log2(n) and
log(n) is only a small factor compared to the growth of the Ackermann functions, we will
look at log2(n) for both inverses.

In the Union-Find decoder, one has to call the find function maximal twice as much
as the union function, as every two times the find function is called, it is decided on the
outcome of that whether the union function is called. The functions are calledO(n) times,
thus we are interested in α1(n) and α2(2n, n). Thus the inverse ackermann function used
in this thesis is α(n) = α2(2n, n). Note that in the description of Algorithm 2 in [1], the
find function is called at least 4 times for every union function, thus α2(4n, n) is also
interesting. So in order to compare the functions, we need the ranges for these functions
have certain values.

For the definition of α1(n), we need A1(i, 4). Using the equation B.4, we obtain
A1(1, j) = A1(0, A1(1, j − 1)) = 2A1(1, j − 1), thus (using the base case, equation B.3)
A1(1, j) = 2j .

63

Using equation B.4, we also calculateA1(2, j) = A1(1, A1(2, j−1)) = A1(1, A1(1, . . . 2)) =

22
2

2

with j two’s.
This gives

A1(0, 4) = 8 , (B.10)

A1(1, 4) = 24 = 16 , (B.11)

A1(2, 4) = 22
2
2

= 216 = 65336 , (B.12)

A1(3, 4) = A1(2, A1(3, 3)) = A1(2, A1(2, A1(3, 2)))

= A1(2, A1(2, A1(2, A1(3, 1)))) = A1(2, A1(2, A1(2, 2))) (B.13)

= A1(2, A1(2, 4)) = a1 = 22
2

with 65336 two’s .

This number is bigger than the number of atoms in the universe (about 1080 ≈ 2265 �
265336), so for any physical grid of qubits, α1(n) ≤ 2. (recall that log2(n) was used in
the definition of α1.

For α2(2n, n), we need A2(i, 2). Similar to A1, we have: A2(2, j) = A2(1, A2(2, j −
1)) = ... = A2(1, A2(1, ..., A2(1, 2)) = 22

2

with j + 1 two’s. So we have:

A2(2, 2) = 22
2

= 16 , (B.14)

A2(3, 2) = A2(2, A2(3, 1)) = A2(2, A2(2, 2)) = A(2, 16) = 265336 . (B.15)

As before, 2A2(3,2) is much larger than the possible number of qubits, thus α2(2n, n) ≤ 3.
For α(4n, n), we need A2(i, 4). Similar to before, we have:

A2(1, 4) = 24 = 16 , (B.16)

A2(2, 4) = 22
2
2

= 65336 . (B.17)

Thus we have again that α2(4n, n) ≤ 2. Let us summarize the results in the following
table.

Table 1: Values for the Ackermann functions.

i \ function A1(i, 4) A2(i, 2) A2(i, 4)
1 16 4 16
2 65336 16 65336

3 265336

As can be seen, the relevant values of α1(n) and α2(4n, n) are about the same (the
ranges in n differ by a factor log(2), because of the difference in the definition)1 , and
α2(2n, n) is only slightly shifted (3 instead of 2 for n > 216, 2 instead of 1 for 24 < n <
216). In conclusion, the difference in the definition of the inverse Ackermann function
does not matter for the results.

1
This is most likely the reason why the (easier) one-variable definition was used instead of the two

variable definition. However, it is the same because the find function is at least 4 times used each
time the union function is used. One can argue that the last two times the Find functions is used are

64

unnecessary. The first two times, there is checked whether nodes are in the same cluster. When they
are not, the clusters of the nodes are merged. The third time, the boundary lists of the smaller cluster
are appended to the boundary list of the larger cluster. Find is used to determine again which clusters
were merged, but this is unnecessary as one can do this immediately after the union, when the roots are
still available. The last time, the roots in the initial list are replaced by the new roots, where the new
roots are found by using Find for each old root. This is also unnecessary, as one can keep track of the
new roots when merging the clusters.

65

C. The Time Complexity of Appending Bound-
ary Lists

In section 4.7, the time complexity of the Union-Find decoder has been determined.
For one step (step 7), it was done in the special case that n = 2m for some m ∈ N. The
sum which had to be calculated was the following:

log2(n)∑
k=1

n

2k

√
2k , (C.1)

because each cluster can at most merge in log2(n) rounds, has at least a size of 2k (thus

there are n/2k clusters), and a boundary of about
√

2k. For n = 2m with m ∈ N, this
was computed to be O(n). When n 6= 2m for some m ∈ N, the upper bound of the sum is
not an integer anymore, so it will differ slightly. However, it is at least smaller than the
same sum with dlog2(n)e as upper bound, where d·e denotes the ceiling function. Here
we will show that this is still O(n).

n

dlog2(n)e∑
k=1

(1√
2

)k
= n

1− 1√
2

dlog2(n)e+1

1− 1√
2

= n

√
2√

2− 1
− n√

2− 1
2−1/2dlog2(n)e (C.2)

Take m = 2dlog2(n)e, then m ≥ 2log2(n) = n. Thus

n

√
2√

2− 1
− n√

2− 1
2−1/2dlog2(n)e = n

√
2√

2− 1
− n√

2− 1
2−1/2 log2(m) (C.3)

= n

√
2√

2− 1
− n
√
m(
√

2− 1)
(C.4)

Note that n ≤ m ≤ 2n, thus m = O(n). Thus n/
√
m = O(

√
n), and the total sum

is O(n) − O(
√
n) = O(n). So the statement that step 7 is O(n) is still true when

log2(n) 6∈ N.

	Abstract
	Introduction
	Theory of Quantum Error Correction
	Linear Algebra
	Notation
	The tensor product
	The trace
	The spectral decomposition theorem
	Commutators

	Postulates of Quantum Mechanics
	The density matrix

	Computation
	Quantum Channels
	Error Channels
	The bit flip channel
	The phase flip channel
	The depolarizing channel
	The erasure channel

	Error Correction
	The 3-bit repetition code
	The 3-qubit bit flip code

	The Stabilizer Formalism
	The General Idea
	Group Theory
	Defining a Code
	Errors
	Logical Operators
	The Logical Basis States
	The Distance of a Quantum Error Correcting Code
	The 3-qubit Bit Flip Code

	The Toric Code
	The Relevance of the Toric Code
	The Stabilizers
	The Logical Gates
	Errors
	Error models
	The Threshold of the Code
	Decoding the Toric Code
	The optimal decoder
	Minimum Weight Perfect Matching
	The Union-Find decoder

	Simulations of the Toric Code
	The Setup for the Simulations
	Successful Corrections
	The Thresholds
	The MWPM algorithm
	The Union-Find decoder

	The Difference Between Odd and Even L
	The Time Complexity
	The MWPM algorithm
	The Union-Find decoder
	Comparing the decoders

	Conclusion
	References
	Short proofs and identities
	Proofs related to the trace
	Identities

	The Inverse Ackermann Function
	The Time Complexity of Appending Boundary Lists

