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ABSTRACT
One of the main challenges of multi-agent learning lies in estab-

lishing convergence of the algorithms, as, in general, a collection

of individual, self-serving agents is not guaranteed to converge

with their joint policy, when learning concurrently. This is in stark

contrast to most single-agent environments, and sets a prohibitive

barrier for deployment in practical applications, as it induces un-

certainty in long term behavior of the system. In this work, we

propose to apply the concept of trapping regions, known from qual-

itative theory of dynamical systems, to create safety sets in the

joint strategy space for decentralized learning. Upon verification

of the direction of learning dynamics, the resulting trajectories are

guaranteed not to escape such sets, during the learning process. As

a result, it is ensured, that despite the uncertainty over convergence

of the applied algorithms, learning will never form hazardous joint

strategy combinations.
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1 INTRODUCTION
In the recent years, enormous progress has been made for single

agent planning and learning algorithms, with agents matching or

exceeding human performance in various tasks and games [5, 7].

The vast success of single agent learning can be partially explained

by robustness and strong convergence properties of the underlying

algorithms in their basic form, such as Q-learning [9] or policy gra-

dients [8]. Despite wide interest, the same cannot be however said

for multi-agent learning. Even most basic models, e.g. replicator

learning for normal form games, exhibit nonconvergence, cyclic

or even chaotic behavior [6]. Even worse, it has been shown that

in decoupled learning systems, there can be no learning rule that

guarantees convergence to a Nash equilibrium [3]. These noncon-

vergent examples have also been found in more practical learning

problems, such as Generative Adversarial Networks [4]. The lack

of convergence guarantees in such general settings forms a major

obstacle for introduction of online learning systems in practical

applications, as it introduces a lot of uncertainty over what will
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be the state of the system, if learning is left unsupervised. Can we

nevertheless still establish a type of safety certificates, that would

allow us to conclude that simultaneous learning will not spin out

of control?

In this paper, we suggest a novel approach to address issue. We

start from the realization, that convergence is often not absolutely

necessary for reliability. From systems designers perspective, it is

often enough to know that learning has rough stability guarantees

– that is, that agents will not leave a predetermined region of the

strategy space during learning. We propose a method of a priori
verifying these constraints, by establishing trapping regions; regions
of strategy space, which learning trajectories will never escape. The

idea behind this concept is simple: a candidate set for a trapping

region is formed by the constraints imposed by practical, problem-

dependent safety considerations. By verifying whether such set is

forward-invariant for the joint learning operator, we obtain a yes–

or–no answer on whether it is safe to allow concurrent multi-agent

learning, without breaking these constraints.

This manuscript is an extended abstract. The complete version

of the paper can be found online [2].

2 PRELIMINARIES
We consider decentralized learning schemes for groups of 𝑛 agents

that can be represented compactly by discrete adaptive dynamics

of the form:

𝑥𝑡+1 := 𝑥𝑡 + 𝛾𝐹 (𝑥𝑡 ) (1)

with 𝐹 = [𝐹1, . . . , 𝐹𝑛]𝑇 and 𝑥 = [𝑥1, . . . , 𝑥𝑛]𝑇 , where 𝑥𝑖 ∈ 𝑋𝑖 ⊂ R𝑘𝑖
represents a point in the strategy space of a given agent 𝑖 (e.g.

weights in a neural network or ratios of playing a mixed strategy),

and the parameter 𝛾 ∈ R+ denotes the adaptation rate. Throughout

this paper, we assume that the learning operators are continuous,

and we denote by𝑁 =
∑
𝑖 𝑘𝑖 the dimensionality of the joint learning

space. The maps 𝐹𝑖 : 𝑋𝑖 → R𝑘𝑖 represent the learning operators, i.e.
the outputs of the algorithms of each agent based on the inputs.

Joint strategy sequences {𝑥𝑡 }𝑡 which satisfy (1) will be referred to

as the learning trajectories.
An equilibrium for the system (1) is a point in the joint strategy

space 𝑥∗ ∈ R𝑁 such that 𝐹 (𝑥∗) = 0. In general multi-agent setting,

learning schemes given by systems of form (1) do not necessarily

converge to equilibria, and can have complicated, even chaotic

dynamics, andmight not converge to equilibria at all, as for instance

in relatively simple two-player games [6].

3 TRAPPING REGIONS
In what follows, we will denote by int𝑋 and 𝜕𝑋 respectively the

topological interior and boundary of a set 𝑋 , and by diam(𝑋 ) the
diameter of a set 𝑋 .
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Algorithm 1 Trapping region verification via binary space parti-

tioning.

Inputs: Learning dynamics 𝐹 ,

T = [𝑥11− , 𝑥11+ ] × · · · × [𝑥𝑛𝑘𝑛− , 𝑥
𝑛𝑘𝑛
+ ] – a candidate for the trapping

region,

𝐿 – upper bound for Lipschitz constant of 𝐹 over T.
Returns: Is T a trapping region?

Start:
1: for agent i in 1:𝑛 in parallel do
2: for coordinate j in 1:𝑘𝑛 in parallel do
3: for direction in {left,right} in parallel do
4: if direction is left then
5: SETS_TO_CHECK = {T𝑖 𝑗

𝑙
}, 𝛿 = −1

6: else
7: SETS_TO_CHECK = {T𝑖 𝑗𝑟 }, 𝛿 = 1

8: while SETS_TO_CHECK ≠ ∅ do
9: 𝑆 = SETS_TO_CHECK.POP()

10: 𝐶 (𝑆) = baricenter(𝑆)
11: if 𝛿𝐹𝑖 𝑗 (𝐶 (𝑆)) ≥ 0 then
12: return false
13: else if 𝛿𝐹𝑖 𝑗 (𝐶 (𝑆)) + 𝐿 diam(S)/2 ≥ 0 then
14: 𝑆1, 𝑆2=SPLIT(𝑆) // binary partitioning

15: SETS_TO_CHECK.PUSH(𝑆1, 𝑆2)

16: return true

Definition 1. c.f. [1]. Let T ⊂ R𝑁 be a compact subset of the
joint strategy space, and let 𝛾 > 0. If

𝑥 + 𝛾𝐹 (𝑥) ⊂ intT, ∀𝑥 ∈ T, (2)

then we call T a trapping region (for the system (1), with learning
rate 𝛾 ).

In practice, verification of condition (2) can be reduced to evalu-

ation on the boundary of T.

Lemma 1. Given a compact set T, if 𝛾 > 0 is sufficiently small, and
for all 𝑥 ∈ 𝜕T we have

𝑥 + 𝛾𝐹 (𝑥) ∈ intT, (3)

then T is a trapping region.

Learning trajectories starting in the trapping regions are guaran-

teed to never leave it; furthermore, existence of a convex trapping

region guarantees the existence of a learning equilibrium within.

Theorem 1. Let T be a trapping region. Then
(1) Any learning trajectory (1) that starts in T never leaves T,
(2) If T is convex, then there exists a learning equilibrium 𝑥∗ ∈

intT.

4 EXAMPLE
In this Section we will provide examples of application of Algo-

rithm 1 to a toy system with known dynamics. Two other applica-

tions, in traffic management, and in the Cournot model of economic

competition, can be found in the full version of the paper.

Our system exemplifies the convergence problem in multi-agent

learning, but where trapping regions can be readily constructed.

Both agents use gradient descent on their respective loss functions,

with a fixed step 𝛾 , which leads to following update rules

𝜓𝑡+1 := 𝜓𝑡 − 𝛾 (4𝜓3

𝑡 + 𝜖\𝑡 ),
\𝑡+1 := \𝑡 − 𝛾 (4\3𝑡 − 𝜖𝜓𝑡 ).

(4)

This system in fact has the same update rules as the famously

non-convergent Dirac-GAN example in [4] with Wasserstein loss

function, where both the generator and the discriminator apply an

𝐿4 regularization term weighted by factor inversely proportional

to 𝜖 . The dynamics of (4) are surprisingly complicated. It possesses

a single equilibrium (𝜓, \ ) = (0, 0). For joint optimization, the

equilibrium is always locally unstable, and the learning trajectories

starting from its near proximity diverge from it until they enter a

cyclic regime. For initial conditions of larger norm, they converge

towards the cyclic attractor, and never reach the equilibrium; in

fact none of the other trajectories does. On the other hand, it is

easy to find trapping regions. We report that by Algorithm 1 we

have successfully established existence of various trapping regions

for different values of 𝜖 :

• T = [−0.1, 0.1]4 and 𝜖 ∈ {0.01, 0.02, 0.03, 0.04};
• T = [−0.2, 0.2]4 and 𝜖 ∈ {0.05, 0.1, 0.15}.

For this particular system, we can also prove the existence of

an 𝜖-parameterized family of trapping regions theoretically, by the

following proposition:

Proposition 1. The square given by [−
√
𝜖,
√
𝜖]2 is a trapping

region for step size 𝛾 > 0 small enough. As a consequence, trajectories
never leave [−

√
𝜖,
√
𝜖]2, and there is an equilibrium inside [−

√
𝜖,
√
𝜖]2

(it is in fact the global Nash equilibrium (0, 0)).

T

\

𝜓

Figure 1: Trapping region in a regularized Dirac-GAN learn-
ing system.

5 CONCLUSIONS
In this paperwe have applied algorithms for verification of existence

of trapping regions to partially circumvent the problem of non-

convergence in multi-agent learning. We have also demonstrated

an application of the theory to a simple, non-convergent Generative

Adversarial Network.
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