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Executive Summary

Introduction In recent reports the Dutch network operators come to a number of con-
clusions regarding the electricity system and more specifically the distribution system.
First of all, a strong increase in electricity demand is envisaged due to usage for heat and
mobility. A trend that is already visible and that is expected to increase rapidly in the
near future. Second, local production of electricity (e.g. solar panels) is already really
taking off and will grow to substantial levels in the coming years. This will not only lead
to a changed ratio between central en decentral production of electricity, but also to high
peaks in local production that do not coincide with the demand for electricity on local
level. Based on these developments local electricity networks have to be prepared for
local production and supply of electricity and if possible for smart adjustments between
production and supply. Next to that, the network needs to be reinforced to be able to
distribute the higher loads related to the increase of electricity demand. Introduction of
storage units on local level could limit the investments needed for reinforcements on the
distribution system.

Based on these trends, the main research question is formulated as follows:

"What is the value of low-voltage electrical energy storage for a distribution system
operator (DSO)?"

Analysing the value of electrical storage, one can distinguish the value of deferring
investments in the distribution system on one hand and the possibility to use the storage
unit for trading on electricity markets on the other hand. This leads to three subques-
tions for answering the main research question, being:

1. What is the value of low-voltage electrical energy storage when only used to defer
investments by the DSO?

2. On which markets is it possible to trade with low-voltage electricity storage units?

3. What is the value of trading on these markets with low-voltage electricity storage,
constrained by the usage by the DSO?
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Methodology In line with the research questions a distinction has been made in the
approach between the research on the possibility to defer investments in the distribution
system and an analysis of the different electricity trading markets and the possibility of
trading on these markets with low-voltage storage units.

For the first part of the research an analysis has been made of the demand pattern
and peak pattern of five types of neighbourhoods, varying from 100% residential to nearly
100% non-residential connections. Insight in these patterns is required as they define
the capacity that is needed in substations, which transform the electricity from 10 kV
(medium-voltage) to 400 V (low-voltage) for neighbourhoods. Next to that, the devel-
opment of electricity demand is investigated, based on scenarios as used within Stedin.
Combining these two aspects gives insight in the expected deferral time for investments
in substations. Furthermore, the required investments are estimated and by using the
NPV method these deferred investments are translated into a value for the DSO.

For the second part of the research an analysis has been made of the six Dutch mar-
kets on which electricity is traded. This analysis also included the possibility to trade
on that markets with low-voltage storage units. From this analysis it appears that two
markets offer opportunities, being the Day-ahead market and the Secondary Reserve
market. For these market a trading model has been developed that was tested on a
trading period of one year for validation reasons.
This model is then used to determine the value of trading on mentioned markets with
low-voltage electricity storage units.

Conclusions The main conclusion of the research carried out is that at this point in
time the value of low-voltage electrical energy storage, obtained by deferral of invest-
ments and the use of storage facilities for trading purposes, does not outweigh the costs
of these facilities (batteries). However, with the expected price developments of batteries
the break-even point might come in sight in the next 5 to 10 years.

An analysis on demand pattern and peak pattern has been carried out for five differ-
ent neighbourhoods. The outcome of this analysis shows that existing substations, the
critical items in the low-voltage network in terms of capacity, are used at the moment at
between 50% and 75% of their maximum capacity and hence still have spare capacity for
future growth of electricity demand. This not only applies to the five neighbourhoods
investigated, but also to approximately 45% of all substations in Stedin’s network.

Growth scenarios as used by Stedin, taking into account further growth of electric-
ity demand due to usage for heating and mobility, show that the five neighbourhoods
reach their maximum capacity somewhere between 2022 and 2032. From that point in
time the investment in new transformers can be deferred by installing storage capacity
(batteries) to cover for peak load. For how long investments can be deferred depends
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on the existing load pattern and the growth scenarios. Future changes in load pattern
have not been taken into account. Per neighbourhood the deferral time is determined
and typically is between 2 and 7 years.

The investment costs for new transformers are in the order of magnitude of e50.000
per substation. Deferring these costs for the given deferral time leads to a value that
has been calculated using the NPV method with a discount rate of 5% to 10%. The
maximum "savings" that can be obtained are in the range of e24.000 to e37.000 and are
still well below the investment costs of batteries, that are in the order of magnitude of
e100.000. Figures vary per neighbourhood, depending on actual load pattern and type
of consumers (residential or non-residential). The conclusion for research subquestion
one is that using storage facilities solely for deferral of network investments does not
create a positive business case.

The storage units (batteries) can also be used for trading on the electricity market
and by doing so can add value to the overall business case. There are six electric-
ity markets in the Netherlands and from the analysis of these markets it is concluded
that two markets offer possibilities for trading with local storage units, being the Day-
Ahead market and the Secondary Reserve market. For the Day-Ahead the minimum
power offered is 100 kW. This threshold has been taken into account in the design of
the storage units. For the Secondary Reserve market there are no limitations for trading.

In order to simulate the trading on these markets a regression analysis has been
carried out on real market prices for a period of one year. The outcome of the analysis
shows an explained variance of 66%, which is considered accurate enough for the purpose
of this research. Furthermore, a trading model has been developed, using the outcome
of the regression analysis, to calculate the value of trading with the storage units in
the different neighbourhoods. These calculations show a value ranging from e5.500 to
e16.600 for the different neighbourhoods, depending on the availability of spare capac-
ity. In these calculations the constraints for trading, due to the fact that storage is first
used by the DSO for peak demand, has been taken into account.

The combined value of deferral of investment plus the value of trading show a band-
width of e30.000 to e51.000, which still does not outweigh the costs of storage units.
In the best case, just below 50% of the investment costs can be covered by the value
created. The prices of batteries however are expected, by both the industry and sci-
ence, to decrease by approximately 50% in 2025, compared to 2014. This would bring a
break-even within reach for certain neighbourhoods. Further usage of the storage units
for system services or locally balancing the network, as local production of electricity by
solar panels will increase, could create an additional values for the business case.

Next to conclusions for the business case of low-voltage storage, also conclusions
regarding the scientific added value can be drawn. The scientific added value of this re-
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search lies on one hand in the development of a quantitative methodology for adjusting
the design of the storage unit to the load characteristics in a specific neighbourhood.
The analysed load characteristics of different neighbourhood types in this research can
also be used for the determination of other benefits of local storage units. On the other
hand, the scientific added value lies in developing an methodology for combined and
related calculation of values created by both deferral of investment and trading on elec-
tricity markets. This novel methodology is applicable for other benefits of storage as well.

Recommendations From this research a number of recommendations have been for-
mulated:

1. More insight is required in actual load profiles and demand pattern. Obtaining
these data is now hampered due to privacy reasons. It is recommended to develop
a mechanism that can obtain, store and analyse information in an anonymous
way. This becomes even more important as local production will increase and will
change existing load profiles.

2. The price level of batteries (or other mechanisms for storage) play an important role
in the value analysis and is expected to go down substantially in the near future.
It is therefore recommended to monitor this development closely and define a price
level that would justify a pilot.

3. Define and develop a pilot for the most beneficial neighbourhoods to gain expe-
rience with local low-voltage electricity storage, that can be started as soon as
certain conditions are met (e.g. price level batteries).

4. Initiate further research towards additional values that can be created with the
storage units. These values can be either for the government (system services) or
for consumers (storing locally produced electricity).

5. Further testing of the decision logic behind the trading algorithm in order to in-
crease the reliability of the trading value and optimize the value of trading, taking
into account future electricity price developments.
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1 | Introduction

This introductory chapter will concisely cover trends in the electricity system, the prob-
lem statement, the research questions, relevance, goal, and outline for this thesis.

1.1 Trends in the electricity system
During the last decade, the share of renewable sources in the world’s electricity supply
has significantly increased. With this increase, both central and decentral, the inter-
mittent character of the electricity system also becomes more present. In order to keep
an affordable and reliable system, extra flexibility is needed. Many experts in this field
argue that storage of electricity would be a suitable option for this flexibility.

In a report supported by all Dutch network operators, a number of conclusions were
drawn regarding the future scenarios for the electricity system. One of them is that the
local demand for electricity will know a strong increase because of substitution for heat
and mobility. Regarding the production of electricity, the conclusion is drawn that the
fluctuations in supply will increase because of renewable sources. Decentral production
will increase and therefore decrease the demand for central production. Decentral pro-
duction has high peaks which do not coincide with the demand for electricity. Therefore,
also a demand for central reserve-capacity will still be present (Netbeheer Nederland,
2011).

Some forecasts for the development of networks are made in the same report. Lo-
cal networks have to be prepared for both supply and local production, as well as for
smart adjustment of supply and demand. Next to that a reinforcement of capacity is
needed, since the load will increase. However, if the supply and demand can be adjusted
smartly, this reinforcement can be limited. This smart adjustment requires significant
modification and acceptation on the consumer-level. This entails both investments in
electricity storage and demand response management. The reinforcement of local net-
works requires a reinforcement of regional networks as well (Netbeheer Nederland, 2011).

Research towards the benefits of storage facilities in the electricity system have shown
that using distributed storage systems can reduce costs for households (Ahlert and Block,
2010), that in-house electricity storage can reduce load (Klaassen et al., 2014), and that
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electrical energy storage (EES) can act as a normal reserve (Zakeri and Syri, 2014).
The current available technologies can be divided into five categories: pumped hydro,
compressed air energy storage, battery energy storage (multiple types), flywheel energy
storage, and hydrogen-based storage (Zakeri and Syri, 2015). Behnam Zakeri and Sanna
Syri have made a comprehensive overview of electrical energy storage technologies, both
in terms of technical characteristics and costs. They based their findings on 27 different
research projects towards electrical energy storage (Zakeri and Syri, 2015). Each of these
technologies have their own characteristics which influence the usability of these tech-
nologies for different goals. Apart from the goal for which different storage technologies
can be used, there must be a solid ’business case’ before any organisation will invest in
a storage facility.

In general, the business case of local electrical energy storage consists on one hand
of income that could be generated from trading on electricity markets, and on the other
hand of benefits from system services that could be performed. According to Eurelectric
(Union of the Electricity Industry), the system services include anti-islanding operation,
islanding operation, frequency control, security congestion management, firm capacity
management, power quality management, and demand side management (Eurelectric,
2012). Moreover, these two elements of the business case do not necessarily exclude each
other.

A distribution system operator (DSO) would most likely invest in local storage pri-
marily to defer network investments. However, as stated by James Eyer and his col-
leagues, in many cases local demand peaks coincide with system peak demand. Moreover,
there are most likely only a few hours per year when power is needed to defer network
investments, which means that in the remaining hours storage mechanisms could be used
for energy trading (Eyer et al., 2004). In another research, James Eyer concluded that
a suitable next step in this field of research is to tailor the storage design to specific
circumstances. This could be done by taking historic data and expectations for the
development of demand (Eyer et al., 2005). In other words, Eyer and his colleagues
conclude that a (quantitative) model would be an appropriate method.

1.2 Problem statement
The situation that leads to the problem is an expected growth of peak-demand for elec-
tricity, in combination with the legal obligation for distribution system operators to
always be able to deliver electricity. Networks are often not designed on the maximum
demand per household multiplied by the number of households in a specific area. The
design is done with a so-called "simultaneity factor", which indicates the amount of
households that are simultaneously demanding their maximum amount (determined by
the grid connection they have). If however the amount of for example electric vehicles
and electric stoves increase, this "simultaneity factor" probably will change - meaning
that the DSO has to increase network capacity.
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Distribution system operators are stimulated in the Netherlands to be economically
efficient, for example by the RPI-X regulation (Haffner, 2010). Therefore, a DSO wants
to keep investments in network capacity as low as possible, without loss of security of
supply. Within this line of reasoning, local storage of electricity could be an alternative
for investing in the grid (e.g. in transformers and cables). It is however unclear whether
a local storage unit is a better investment than a new transformer and/or cable. It
could also be beneficial for a distribution system operator to defer the investment in
grid capacity using local storage units.

Next to this benefit, Eurelectric (Eurelectric, 2012) describes three other short-term
benefits. These benefits are reliability and stability, providing interim power, and short-
term flexibility. Eurelectric stresses that the short-term benefits help to devise a strategy
for achieving the long-term goal, which is the development of a smart grid.

However, as stated before, a DSO is likely to invest only if the net present value
(NPV) is positive. The value of the mentioned benefits of storage is unclear, and re-
quires clarification to enable a DSO to take an substantiated decision in this respect.
The problem statement is therefore:

"The value of low-voltage electrical energy storage, when primarily used for deferral of
network investments and secondarily for other short-term benefits, is unclear"

1.3 Research question and subquestions
The problem statement leads to the following research question:

"What is the value of low-voltage electrical energy storage for a distribution system
operator?"

In order to answer this main research question, three subquestions have been defined:

1. What is the value of low-voltage electrical storage when only used to defer network
investments by the DSO?

2. On which markets is it possible to trade electricity with low-voltage electricity
storage unit?

3. What is the value of trading on these markets with low-voltage electricity storage,
constrained by the usage by the DSO?
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A number of explanations are needed because of these questions. In the first place,
the research question consists of three main elements: value, low-voltage storage, and
distribution system operator. All these elements need a definition. Next to that, the
second and third subquestion limit the scope of this research to a specific value of stor-
age. This scope will be explained as well.

A distribution system operator (DSO) in the Netherlands is responsible for the
medium- and low-voltage electricity grid (and often also the natural gas network, but
that is not part of this research). Whilst there is only one transmission system operator
in the Netherlands (TenneT - responsible for the high-voltage grid), there are multiple
DSOs. Each of them own a specific part of the grid and are in their area responsible
for the safety and reliability of the distribution. A DSO is also responsible for installing
new grid connections and for checking the consumption (Ombudsman Energie, 2016).
An important legal limitation of the activities of a DSO is caused by the unbundling of
the electricity sector. This separates the network operation from the production, deliv-
ery, and trade of electricity (NMa, 2006).

The second main element of the research question is low-voltage storage. This means
a storage unit connected to the low-voltage electricity grid after the transformer. The
low-voltage grid has a current of approximately 400 V.

1.4 Social and scientific relevance
The social relevance of this research lies in the first place in the role that storage plays
in the energy transition and in the insights created for DSOs. This research starts by
giving an overview of the potential benefits of local storage (decentralized storage) in
the research framework (chapter 2). One of the consequences of the energy transition is
a growing (peak) demand for electricity. All stakeholders in the value chain of electricity
(production - transport - distribution - consumption) have to cope with this growth,
preferably in an (economically) efficient way. Storage is considered an alternative com-
pared to reinforcement of the network for coping with this growth, and this research
provides insight in the economic efficiency of using storage. This means that the ben-
efits of deferring network investments are compared to the costs of installing storage
units.
This research creates a decision framework for DSOs for future investments, indicating
when storage is likely to reach a break-even point in terms of benefits and costs. When
the break-even point is reached, this research can be used as a base for designing the
storage units in terms of location (which neighbourhood), placement (location in specific
neighbourhood), capacity, and power.

The second social relevance is for electricity traders. This relevance for traders con-
sists of two elements. The first element is an analysis of the Dutch electricity markets,
including an overview of prerequisites for entering these markets. This analysis ex-

4



plains how these electricity markets function and what their characteristics are. This
is especially beneficial for organizations that are considering to commence in electricity
trading.
The second element is the statistical analysis of two Dutch electricity markets (only
these two are accessible for storage units), resulting in the design of a trading algorithm.
This analysis and the design of the trading algorithm can help incumbent traders to
understand electricity markets better and potentially to further optimize their trading
algorithms.

The scientific relevance of this research can also be divided into two main contri-
butions. The first contribution is the development of a quantitative methodology for
adjusting the design of the storage unit to the load characteristics in a specific neigh-
bourhood. Data of load profiles on such decentralized level in the electricity system was
not available (in the Netherlands) before as DSOs are not allowed to store this data for
privacy reasons. This data has recently become available and this research uses that
data for the calculation of the benefits of deferral of investments. This approach can be
used for other benefits of storage as well. Moreover, the method developed and used in
this research is one of the first to quantify the value of deferral of investments in the
distribution network.
The second contribution in developing an methodology for combined and related calcula-
tion of values created by both deferral of investment and trading on electricity markets.
In the first place, multiple scientific papers on trading on electricity markets are com-
bined to develop a trading algorithm and to assess the value of trading with storage
units. Second, this trading value is constrained by the usage of the DSO (for covering
peak demand), which means that the storage unit is sometimes not available for trading.
This creates a value of local storage units that consists of both the benefit of deferral of
investments and of the benefits of trading.

1.5 Research goal
The goal of this research is to create insights in the value of local storage based on a
holistic and quantitative approach. The goal is to give a substantiated order of magni-
tude for the value of local storage, which creates a basis for further research to quantify
more exact values.
The approach used in this research has two goals. In the first place it should serve as
a decision framework for DSOs to take further steps regarding using storage units in
their operations. Second, the methodology should be useable for the calculation other
benefits of storage as well.
Compared to the existing research on this subject, this research takes a step further in
quantifying the research that has been done so far in this field and be a stepping stone
for future research to add more benefits and/or further detail the methodology.
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As this research was conducted in cooperation with Stedin, a Dutch DSO, another
goal is to provide them with valuable insights.

1.6 Outline
The outline of this research is as follows. In chapter 2 the research framework and
methodology are described. In chapter 3 a storage unit is designed for five different
neighbourhoods. Chapter 4 gives an overview of the Dutch electricity markets and their
short-term forecastability. Chapter 5 describes how a trading algorithm can be designed
based on the analysis in chapter 4, and in chapter 5 this trading algorithm is also mod-
elled in R (statistical software package) and tested. Chapter 6 covers the conclusions
and recommendations.

Figure 1.1 gives an overview of the outline of this research. This figure clearly
indicates the two storylines of this research. This research delivers two different values,
namely the value for the DSO and the value of trading.
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Figure 1.1: Outline of this research
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2 | Research framework and
methodology

The previous chapter described the situation, problem statement, and research questions.
This chapter describes the framework and methodology used throughout this research.
This increases the scientific value of the research and creates more structure for the used
analyses.

2.1 Framework
The Dutch electricity system is originally a central-oriented system; centralized pro-
duction units deliver electricity via transmission and distribution networks to the end
consumer. However, in the last decade, a more decentralised view has been developed
among scientists but also among multiple industries. Consumers changed to prosumers,
meaning that they also produce electricity instead of solely consuming electricity, and
the growth in consumer-owned solar power is significant. This creates possibilities to
supply electricity on a local scale. Next to that an increasing demand for electricity is
expected due to usage for heating and mobility. Network operators foresee challenges in
their operations, as they need to cope with (expected) higher peak demands. Especially
DSOs have to cope with these demands.

The traditional approach of DSOs is to linearly increase their network capacity with
the (forecasted) peak demand. If a certain area is expected to reach its maximum ca-
pacity in the next year(s), the transformers and distribution lines are replaced with
equipment with higher capacity. However, DSOs are currently exploring alternatives
for this traditional approach. One of these alternatives is installing local storage units
to defer these traditional investments in their grid capacity. Among scientists this is
referred to as "Deferral investments T&D" (transmission & distribution assets).

More and more scientists and policy makers look at these local storage units in a
broader context, meaning that they acknowledge other benefits as well. A comprehensive
overview of these benefits is made by the Union of the Electricity Industry (Eurelectric,
2012). Eurelectric represents the common interest of the electricity industry at pan-
European level. The research was executed by 17 members of Eurelectric, originating
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from nine different countries. This overview can be found in figure 2.1.

Figure 2.1: Overview of benefits of local storage (Eurelectric, 2012)

The green elements of this chart represent the Energy Management benefits, defined
as "Decoupling the generation of electricity from its instantaneous consumption". The
blue elements represent the System Services, defined as "Any service that is able to im-
prove and support the quality of service and the security of supply in the electric power
system"(Eurelectric, 2012).

As this research is carried in cooperation with Stedin, a Dutch DSO, the first subject
for research is the deferral of investment in T&D assets, and specifically the distribution
assets.

Jim Eyer (2009) states that "In simplest terms, the T&D deferral benefit is the
avoided cost — the cost not incurred by utility ratepayers if the T&D upgrade is not
made.". He continues by saying that the distributed energy resources (DER) are well-
suited in the following circumstances:
"1. Peak demand on a T&D node is at or near the T&D equipment’s load carrying
capacity (limit) - resulting in a "hot spot", and
2. A relatively small amount of DER capacity located downstream (electrically) from
the hot spot can serve a portion of peak demand, on the margin, such that an upgrade
of the T&D equipment is deferrable"(Eyer, 2009)
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From these findings, it can be concluded that taking local characteristics into ac-
count is required to come to optimal solutions. Therefore, this research proposes a new
method for valuing T&D deferral by local storage units. This new method is based on a
design of the storage units tailored to the load profile in a specific neighbourhood. The
possibility for this new method arises from newly available data about the load in spe-
cific neighbourhoods. By law, DSOs are not allowed to store load data. However, in the
Netherlands, a number of projects are started recently where the DSO has permission
to store this load data. Based on information of these projects the design of storage
units is now possible. This enables more fact based and accurate conclusions about the
benefits of storage units used for T&D deferral.

Other research towards the value of distributed energy resources for T&D deferral
has been done as well by Gil and Joos (2006). They were one of the first to quantify the
value of network capacity deferral. Their research focussed on distributed generation as
means of deferral. Using the net present value calculation method, Gil and Joos came
to the conclusion that the benefits of deferral depends on the timing of the planned or
scheduled upgrades (Gil and Joos, 2006). Zhang et al. (2010) used the same method
to evaluate the investment deferral caused by microgeneration for extra high voltage
distribution networks. Although the application differs, the applied method for calcu-
lating the benefits is the same - which is net present value. Also Zhang et al. come to
the conclusion that the location of microgeneration is of significant importance to the
benefits of that microgeneration (Zhang et al., 2010).

In 2016, Farah Abi Morshed in her thesis also uses net present value calculations
to determine the value of deferral of grid reinforcement by using demand-side flexibility
(Morshed, 2016). She concludes that flexibility steering can on average postpone grid
investment by 2 years. She does state that if grid investment postponement is feasible
from a technical perspective, it does not necessarily mean that it is advisable from a
financial perspective. Based on the outcomes of her analyses, she made the following
conclusions (Morshed, 2016):
"1. The financial savings of grid investment postponement by means of demand-side
flexibility is highly sensitive to the grid investment cost per kVA per household. Thus,
savings from grid investments might be more significant in rural areas in comparison to
urban areas.
2. The financial savings of grid investment postponement for the DSO are more signficant
in large districts in comparison to small streets because in the former, more investments
are needed to upgrade the city grid and its components.
3. Financial savings are more significant in areas where congestion is occasional and
temporary, in comparison to areas where congestion is persistent and severe, because in
the latter high flexibility ordering leads to high cost incurred that will probably outweigh
savings gained from grid investment postponement."
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Morshed’s research proves once more that the location of DERs significantly influ-
ences the benefit. In summary of all of the above-mentioned research projects, three
aspects become clear:

1. Local stored electricity can have a value for DSOs in terms of deferral
of grid investments;

2. Different locations of distributed energy resources in the grid can have
significantly different benefits;

3. The net present value method seems to be the most accepted method
for calculating the value of deferral of T&D investments.

The new research carried out in the framework of this thesis, incorporates and fur-
ther develops these three aspects. The design of the storage unit is tailored to specific
neighbourhoods, meaning that locational effects are incorporated in the value. More-
over, this research uses the accepted NPV-valuation to actually calculate the value of
distributed storage, which has not been done before. This represents the first research
question of this thesis.

The methodology described above is believed to be applicable to other benefits shown
in the figure 2.1 as well in the field of System Services (e.g. capacity management, con-
gestion management, frequency control, etc.). These benefits are shown on the vertical
axis in the diagram of figure 2.1 in the distribution column. However, this research
has not further investigated these benefits, but has taken another route, looking at the
possibilities and benefits on the horizontal axis. As local storage for peak demand is
only utilized for a limited number of hours per day and has a seasonal pattern, there is
remaining capacity that can be used for trading on the electricity market. Therefore,
the second part of this research is focussed on the possibilities of local storage units on
electricity markets. This includes research towards the accessibility of markets and the
value that can be obtained, taking into account the fact that storage is primarily meant
to be used by the DSO for peak demand.

As said in the introduction of this paragraph, the electricity system is originally
a central-oriented system. The centralised production mostly consists of large power
plants (coal and gas) and large wind farms. Decentralised energy resources have signi-
ficantly less power and capacity. However, the electricity markets are designed for the
large power plants. This is confirmed by the European Commission who reports a high
market concentration, with the three largest electricity companies covering 83% of the
retail market in 2012. The Herfindahl-Hirschman Index (HHI), a commonly accepted
measure of market concentration, was 2.338 (European Commission, 2014). A market
with an HHI higher than 1800 is considered highly concentrated (Diallo, 2015). One of
the new developments in the Netherlands is a market for smaller power outputs, named
Energy Trading Platform Amsterdam (ETPA). This development shows that there is a
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demand for a market place for smaller producers.

Witteveen (2016) described the Dutch secondary reserve capacity market as a monop-
sony, which is a single-buyer market. One of his conclusions is that "The presumed en-
tering of an additional producer in the market has a profound effect on the procurement
cost for the TenneT, as the entering of an additional producer decreased the procurement
with approximately 33 percent. This demonstrates how much there is to gain (and lose)
with respect to the amount of competition in this market" (Witteveen, 2016). From a
consumer-perspective, it would therefore be economically beneficial when an additional
producer would enter this market. However, the incumbent producers would most likely
not be too happy with that. Next to the likely unwillingness of incumbent producers for
an additional producer to enter the market, TenneT also put up a number of more tech-
nical entry prerequisites for trading. In this research, an overview of these prerequisites
is made based and elaborated upon in chapter 4.

Research towards actual trading on electricity markets with a distributed energy re-
source (DER) has been done before. For example Bai et al. (2015) looked at an Optimal
Dispatch Strategy (ODS) for a Virtual Power Plant (VPP). A VPP aggregates DERs
and can thereby take part in the electricity market in the form of a single plant (Bai et
al., 2015).

In another study, Xi et al (2013) concluded that there are "numerous issues and
nuances of storage that are not well addressed" by literature. They give three issues:
1) Most literature only considers one storage application instead of co-optimizing mul-
tiple storage values;
2) The negligence of price and system uncertainty;
3) Most literature considers ’utility-scale’ storage, meaning hundreds of MW. (Xi et al.,
2013)

They therefore describe an "SDP (stochastic dynamic program)model that co-optimi-
zes multiple storage applications while accounting for market and system uncertainty".
Their model is hour-based and incorporates their mentioned uncertainty. However, the
amount of uncertainty incorporated in their model is limited (Xi et al., 2013). Other
authors in this field also use an optimization algorithm, with or without a small amount
of uncertainty. Using an optimization algorithm means that the authors assume perfect
knowledge about future electricity prices. This research avoids making that assumption
by developing a forecasting algorithm for the electricity prices based on forecasted de-
mand. The model and input variables are based on prior research and elaborated upon
later in this paragraph.

Models for forecasting electricity prices have been made in literature. Rafal Weron
(2014) made an overview of electricity price models he found in literature and came to five
categories: Multi-Agent, Fundamental, Reduced-form, Statistical, and Computational
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Figure 2.2: Overview of electricity price models (Weron, 2014)

Intelligence. All the categories contain multiple subcategories. This is shown in figure
2.2.

This thesis is not aimed at evaluating all electricity price models, but to generate a
valid estimate of the value of trading. Therefore, only the "Statistical category" is used.
For this category, Weron concludes that "While the efficiency and usefulness of technical
analysis (statistical models) in financial markets is often questioned, the methods stand a
better chance in power markets, because of the seasonality prevailing in electricity prices
processes during normal, non-spiky periods" (Weron, 2014). Regarding regression mod-
els, he states that "Despite the large number of alternatives, linear regression models are
still among the most popular EPF (Electricity Price Forecasting) approaches" (Weron,
2014). Therefore, a linear regression model is used in this research for developing a
trading algorithm. In other research, explanatory variables, used as input for this linear
regression model, have been investigated before.

Mulder and Scholtens (2013) investigated numerous possible explanatory variables
for the electricity price on the Day-Ahead market. Their research indicated that the
variables demand, the gas price, and day of the week have the most explanatory power.
They suspected a strong link with the German market, but found that "conventional
power plants remain to be the marginal, price-setting power plants in the Dutch market".
They do state that their results may be affected by the amount of interconnector capac-
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ity available (Mulder, 2013). As their datasets date from 2011, it is worth investigating
these relations again. The variables to be taken into account in this research are there-
fore: Load forecast (Both Dutch and German), Residual load forecast (Both Dutch and
German), day of the week, and month of the year (e.g. seasonal influence).

In summary of this paragraph, the total framework and contribution of this research
is visualized in figure 2.3.

2.2 Methodology
The methodology used in this research in order to answer the research questions is de-
scribed in this paragraph. A large part of this research has a quantitative character.
The methods are discussed per research question. Table 2.1 gives the overview of the
methods used in this research to answer the research subquestions and thereby the main
research question. The research is divided in a qualitative part and a quantitative part.
This methodology is made for the two values to be delivered by this research, of which an
comprehensive graph can be found in chapter 1.6. As this research consists of a number
of different methodologies, the more detailed description of the steps taken is given at
the beginning of each chapter.

Subquestion Method Goal
Qualitative research 1 Desk analysis Determine price levels

battery & transformer
2 Literature review & Identify accessible

desk analysis markets
Quantitative research 1 Data analysis; Design neighbourhood

battery
1 Scenario analysis Determine deferral

time
2 Statistical analysis Forecast electricity

(regression) prices; Input
trading algorithm

3 Modelling Testing trading
algorithm

Table 2.1: Overview of research methodologies

2.2.1 Research subquestion 1

The first research subquestion, answered in chapter 3, concerns the value of a local stor-
age unit when only used for the DSO, e.g. for deferral of investments in the grid. This
question will be partly answered using desk analysis, but for a larger part using data
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Figure 2.3: Total research framework (Blue elements = from other literature, white
elements = contribution of this research)
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analysis. The desk analysis is aimed at determining the price of a new transformer and
the price of storage unit, given its capacity and power. The data analysis is used for
calculating the capacity and power of a storage unit, using the neighbourhood load pat-
tern as input. The storage unit is designed to support the transformer in times of peak
demand. Peak demand for the purpose of this research is defined as the demand above
the 75th quantile. Seasonal effect is also incorporated in this analysis. When the storage
capacity and power is known, the deferral time of the storage unit can be determined
using the growth scenarios defined by Stedin. This deferral time is used in the calcula-
tion of the Net Present Value (NPV) combined with the price of a new transformer to
determine the value of deferral of investment. This value is then compared to the price
of the storage unit. An overview of the method used for research subquestion 1 can be
found in figure 2.4.

Figure 2.4: Overview of methodology for research subquestion 1

2.2.2 Research subquestion 2

The second research subquestion is aimed at determining the accessibility of electricity
markets for local storage units. A literature review on documents provided by TenneT,
the Dutch Transmission System Operator (TSO), and documents provided by the Eu-
ropean Network of Transmission System Operators for Electricity (ENTSO-E), is used
for creating an overview of the Dutch electricity markets. The prerequisites to trade on
this market are used to determine the accessible markets for local storage units. The

17



accessible markets are then analysed, using both basic time series analysis and regression
modelling. This means that it will be assessed if either time of the day, or an explanatory
variable, or combination of both is better to design the trading algorithm. The overview
of the steps for research question 2 is given in figure 2.5.

Figure 2.5: Overview of methodology for research subquestion 2

2.2.3 Research subquestion 3

The third subquestion is aimed at determining the value of trading on the accessible
markets. The trading algorithm is then designed, based on a decision logic that results
from the analysis of the accessible markets. The trading algorithm is implemented and
tested in R. The algorithm forecasts the electricity prices based on the parameters from
the analysis of the accessible markets. The verification and validation is not aimed at the
trading algorithm, but at the testing environment. It is not the goal of this research to
create the most optimal trading algorithm - which is an research in itself - but to get an
indication what trading with local storage could realize in terms of revenue. It is however
important that the trading algorithm is implemented correctly in R (verification) and
that the testing environment reflects the environment of a ’real’ trader (validation). The
overview of the steps for research question 3 is given in figure 2.6.
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Figure 2.6: Overview of methodology for research subquestion 3
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3 | Value of low-voltage storage
to a DSO: postponing grid in-
vestments

As described in the previous chapters, local storage of electricity has value for a distri-
bution system operator. This value arises from the postponement of grid investments.
In this chapter, the value of this postponement of grid investments is determined. This
will answer the first research subquestion.

In order to determine the value of postponement of grid investments, a framework
is needed. This framework will be based on the netto present value (NPV) calculation
method. The calculation of a NPV consists of one or multiple cash flows (C ), the timing
of the cash flow(s) (t), and the discount rate (r). The formula of the NPV is:

NPV =
n∑

i=1

Ci

(1 + r)t
(3.1)

This chapter will determine the elements of formula 3.1. First an overview of the
Dutch electricity distribution system will be given to indicate where a DSO is able
to place storage mechanisms. Thereafter the exact placement in a neighbourhood is
described, as locating the storage unit in a neighbourhood proves to be the most suitable
(see 3.2.1). These two paragraphs combined determine which components of the grid
are being unburdenedd and thereby determine the value of the cash flow.

The timing of the cash flow (t in formula 3.1) is calculated in the paragraph 3.3.
This will be done by using scenarios developed by Stedin and using different storage
capacities. In paragraph 3.4 the netto present value of postponing grid investments is
calculated for different discount rates, and compared to the cost of a battery. In 3.5 the
conclusion will be given.

3.1 Description Dutch electricity distribution system

The Dutch electricity distribution system starts at the transformer (high voltage to
medium voltage) and ends just before the meter at the consumer. These networks are
operated by DSOs, and in the Netherlands, there are six different DSOs, covering various
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regions.

The main task of these DSOs is to distribute all demanded electricity to end-users.
They have to make sure that there is sufficient capacity in the medium-voltage and low-
voltage grid to supply this electricity. Figure 3.1 gives a simplified overview of the Dutch
electricity system.

Figure 3.1: Overview of the Dutch electricity system

A generation unit produces electricity, which is transported using the transmission
grid operated by TenneT. The voltage is high at this point in order to minimize trans-
mission losses. This high voltage is then transformed into medium voltage at a main
station and distributed to a distribution station. The transportation of electricity from
the main station to the distribution station is done at 50 kV. At the distribution sta-
tion, the voltage is decreases to 10 kV, which also classifies as medium voltage. The
distribution stations are often located near villages, from where the low voltage lines go

22



into the village. These lines reach local substations, where the electricity is once more
transformed, in this case to 400 V. From here, electricity lines reach houses, shops, and
small offices.

As can be seen in figure 3.1, there are other possible connections to the electricity
grid. These connections are meant for large consumers, such as heavy industry. Another
characteristic of the Dutch electricity grid is shown in figure 3.1, being the ring-structure
to ensure security of supply. Every part of the network has two ’paths’ through which it
can be reached. The network that is operated by a distribution system operator starts
at the main station and ends at the end-user.

3.2 Design of low-voltage electricity storage for postponing
grid investments

For the purpose of this research, two technical design elements of low-voltage electric-
ity storage are of importance: the placement and the size (power and capacity) of the
storage. The possible placements of storage units are limited to the network that is op-
erated by the DSO, as the storage unit’s main task is to defer investments in the network
operated by the DSO. A DSO is able to place a storage unit anywhere in the network
between the main station and the low voltage connection (see figure 3.1). However,
this research is limiting the placing of the storage unit to the low-voltage grid. This
limitation is not without reason: the Asset Management department at Stedin expects
that the substations and the underground low-voltage cables will be the first elements
of their network to have insufficient capacity in the future. Since they are obliged to
ensure sufficient capacity, they have to either replace these substations and cables, or
find an alternative for this replacement. Low-voltage electricity storage is considered an
alternative.
The size of the storage units depends on their placement (e.g. the network elements that
are unburdened) and the time period for which these elements need to be unburdened.
This time period also influences the NPV (formula 3.1), which creates a trade-off. More
insight in this trade-off is given in paragraph 3.2.2.

3.2.1 Placement

In the low-voltage grid, there are four conceptual alternatives for the placement of storage
units. These alternatives are at the substation, between the substation and the first
bifurcation, between the first and last bifurcation, and after the last bifucation. These
alternatives are visualized in figure 3.2.

The alternatives for placing storage units are evaluated in terms of their use (e.g.
grid components unburdened) and their main disadvantage for implementation. There
might be more criteria for evaluating the alternatives for placing, but these proved to
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Figure 3.2: Possible placements of storage in a neighbourhood

Placement Use Disadvantage
Substation Unburdening substation Limited space in station
Substation - bifurcation Unburdening substation and cable New location
Bifurcation - bifurcation Unburdening substation and cable Nuisance for consumers
After last bifurcation Maintain voltage quality No deferral of grid

investments

Table 3.1: Overview placements of storage, usage, and disadvantages

be unnessecary since one location will prove to be most suitable using these criteria.

The elements of this table will be explained per placement. If a storage unit is placed
at the substation, the substation is unburdened (or more specifically: the transformer in
the station is unburdened). The cable nor voltage quality is affected. The disadvantage
of placing the storage unit in a substation is that the space in the station is limited, and
therefore the capacity of the storage unit is limited. A lithium-ion battery for example
has an energy density of about 400 Wh/L, which means that a 200 kWh battery will
take up about 0,5 m3.
Placement of the storage unit between the substation and the first bifurcation will un-
burden the substation and a part of the cable. This is visualized in figure 3.3 (top). The
disadvantage of this placement is that the DSO has to obtain a new piece of land to
place the storage unit.
The third placement, which is inbetween bifurcations, will unburden a larger part of the
cable compared to the placement before the first bifurcation, and still unburdens the
substation. This is also visualized in the bottom overview of figure 3.3. The disadvan-
tage of this placement is nuisance for consumers. This nuisance arises from the storage
unit often having a container-like casing and the experience with large batteries being
that they make a ’humming’ sound when (dis)charging.
The last placement, after the last bifurcation, can be used to maintain voltage quality
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Figure 3.3: Current throughout a neighbourhood for two diffent storage locations

but not for unburdening grid components. This means that this location does not defer
grid investments.

The use of the second and third mentioned location might not be obvious at first.
Therefore, it will be explained here. The connections from the low-voltage cable to con-
sumers are in parallel, because all consumers want to have 400 volts arriving at their
home. This means that the voltage throughout the cables will be the same, but the am-
perage will change after each bifurcation. The amperage at the beginning of the cable
is equal to the sum of all amperages of each bifurcation. So, the amperage will decrease
after each bifurcation. This means that is it possible to unburden the transformer and
a part of the cable.

The effect of placing storage at the substation would be the same as placing it be-
tween the substation and the first bifurcation - apart from a few meters of cable that is
not unburdenend. The advantage of placing the storage unit at the substation is that
this substation is in possession of the DSO. The benefits of locating the storage unit at
the substation - namely unburdening the station and already owned ground - and the
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disadvantages of locating it next to consumers - namely the ’humming’ sounds that the
battery makes during charging - leads to the conclusion that the most suitable placement
of the battery is at the substation.

3.2.2 Capacity and Power

As described in 3.2.1, the most suitable placement of local storage units is at the substa-
tion. In this paragraph, the most suitable capacity and power of those storage units is
determined. The power of the storage unit depends on the power of the relevant substa-
tion, the time period for which the substation should be unburdened, and the expected
peak demand growth in the relevant neighbourhood. The capacity of the storage unit is
determined by the power of the storage unit times the expected time duration of peaks.
This can be translated into formulas 3.2 and 3.3. A factor that is not included in these
formulas is the amount of days per year that the peak demand reaches a certain height
that creates a necessity to use the storage unit. This means that it could be possible that
in the winter, the peak demand is very high - creating a need for using the storage unit
- but during summer, the peak demand stays below the substation’s capacity - meaning
that the storage unit could be used otherwise. This seasonal influence will be used to
determine suitable neighbourhood-types to place the storage.

Pstorage = Dpeak ∗ (1 + rt) − Psubstation (3.2)

Cstorage = Pstorage ∗ Dupeak (3.3)

P Power kW
C Capacity kWh
Dpeak Current peak demand kW
rt Expect growth rate for year t dimensionless
Dupeak Duration of peak demand h

To start with the only deterministic variable of both formulas (3.2 and 3.3): the
power of the substation. The most occuring values of power of substations are 250,
400, and 630 kVA. This is the apparent power, and the true power can be calculated
by multiplying it with the cosinus-phi value. This cosinus-phi value usually lies between
0.96 and 0.99. This results in a real power of a 630 kVA transformer of approximately
605 - 625 kW. It is worth mentioning that substations are able to ’run’ at 120% of their
maximum power for approximately three hours. However, this feature of the substations
is used for emergency situations and is therefore not considered in the furhter analysis.

In order to determine the peak demand and peak duration, load data is necessary.
However, in conversations with the Asset Management department at Stedin, it became
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clear that it is not allowed to store the load data per substation per minute or even per
hour, for privacy reasons. Stedin does possess the following data:

1) Data of the load per substation per five minutes. There namely exists one project
in their network where they have permission from the consumers to measure and store
this load data. This dataset is from 01-01-2016 till 01-10-2016.
2) Data on the peak demand as a percentage of the power of the anonymised substation.
The power of the substations is not available in this dataset. This dataset also contains
a growth scenario for four different types of neighbourhoods.

In order to be able to use the datasets, a number of wrongly measured values need
to be removed. These false measurements occur when the measuring equipment has a
malfunctioning. The ’clean’ datasets are used to determine the peak duration, the differ-
ence between weekdays and weekend, and the seasonal influence on the load. Moreover,
the effect of different ratios between residential and non-residential connections on the
peak duration and seasonal influence is tested. An overview of the used neighbourhoods
and graphs can be found in table 3.2.

Neighbourhood Residential Non-residential Percentage
connections connections residential

1 167 0 100%
2 158 1 99%
3 66 32 67%
4 11 32 26%
5 1 15 6%

Graph Use
Load characterisctics for all days of the week Peak duration and height
Load characteristics for weekdays Peak duration and height,

difference weekdays and weekend
Load characteristics for weekend Peak duration and height,

difference weekdays and weekend
Maximum load per day Seasonal effect

Table 3.2: Neighbourhood types and graphs used for the load analysis

The second available dataset (peak demand in percentage of substation’s power) is
used to determine the effect of local storage on the investments needed (e.g. replace-
ment of substations) in Stedin’s total network. The assumption is made that when the
peak demand reaches 100% of the substation’s power, it needs to be replaced. Stedin
developed a number of scenarios for predicting the peak demand in the coming 30 years
(till 2050). These scenarios are used to assess the years of deferral when a storage unit
is installed in the five neighbourhoods.
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In figure 3.4, the load of 167 residential connections, all attached to one substation, is
visualized. The load was measured once per five minutes from the period 01-01-2016 till
01-10-2016. This should result in 275 days of data, but at some instants, the meter was
malfunctioning. This results in 259 days of usable data. This data is used to calculate
the mean, maximum, minimum, and 25th to 75th quantile of the load per five minutes
of the day.

Figure 3.4: Load characteristics of substation 1 (167 residential connections) for 01-01-
2016 till 01-10-2016

Before conclusions can be drawn from this graph (figure 3.4), the two peaks need
to be addressed, as they fall outside the demand pattern. This is the peak at 7:30 and
at 23:50. To be more certain that these peaks are the results of a measuring error, the
exact measurements around these instants are shown in table 3.3.
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Timestamp S [kVA] Timestamp S [kVA]
2016-02-09 06:00:00 73.74 2016-01-27 22:15:00 154.82
2016-02-09 06:05:00 77.39 2016-01-27 22:20:00 149.98
2016-02-09 06:10:00 75.47 2016-01-27 22:25:00 158.46
2016-02-09 06:10:00 48.50 2016-01-27 22:26:00 148.70
2016-02-09 07:30:00 228.54 2016-01-27 23:50:00 300.52
2016-02-09 07:35:00 214.02 2016-01-27 23:55:00 200.61
2016-02-09 07:40:00 164.51 2016-01-28 00:00:00 154.68
2016-02-09 07:45:00 167.54 2016-01-28 00:05:00 147.07
2016-02-09 07:50:00 160.66 2016-01-28 00:10:00 134.11

Table 3.3: Timestamps and measured load for the two peaks in figure 3.4, showing the
errors in measurement

From the exact measurements in table 3.3 it was concluded that six data points are
not to be taken into consideration. These data points are at 06:10(2nd), 07:30 and 07:35
in the left column in table 3.3, and at 22:26, 23:50 and 23:55 in the right column. These
data points are either removed because they make no sense compared to previous and
subsequent data points, or because there shouldn’t be a data point at a specific time (the
measuring equipment should only measure every 5 minutes). Now that the dataset is
cleaned of wrongly measured values, the four graphs as described in table 3.2 are made.
These graphs are shown in figure 3.5. This process is executed for all five neighbour-
hoods, but not described repeatedly.

A number of patterns are visible in figure 3.5. First, the mean load pattern is de-
scribed. The mean load characteristics of all days of the week (top-left graph in figure
3.5, black line) show an abrupt increase around 07:00, most likely because people wake
up at that time. From approximately 08:00, the load starts to decrease, as people leave
their house to go to their work. Around 17:00 the load starts to increase and reaches
its maximum around 18:00, at which it remains till 20:00. Thereafter, the load starts to
decrease.

The maximum measured load follows the mean pattern of the load. The minimum
measured load however declines from 05:00 till 12:00, whereas the mean load has the
abrupt increase around 07:00. This can be explained by solar panels that are present in
this neighbourhood, which decrease the load on the substation by providing a part of
the demand for electricity.

The difference between weekdays and weekend is clearly visible in the graphs in figure
3.5. The increase in de morning is less abrupt, as people wake up later in the weekend
and more spread out over time. The mean load during the weekend is slightly higher
than during weekdays, as more people are home during the weekend. The peak around
18:00 till 20:00 is comparable for weekdays and weekend. It appears that the weekend-
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Figure 3.5: Corrected load characteristics of substation 1 (167 residential connections)
for 01-01-2016 till 01-10-2016

behaviour is more fluctuant because of the less smooth curves, but this is most likely
caused by the fact that the weekend-graph has less data points (as there are 5 weekdays
and 2 weekend-days per week).

The seasonal effect is shown in the bottom-right graph in figure 3.5. This graph
shows the maximum measured load per day, irrespective of the time of the day at which
this maximum occurred. The graph shows that the maximum load declines in the sum-
mer months and starts to go up again in August and September (unfortunately, the first
of October is the last date of the dataset). Another observation from this graph is that
the maximum load does not reach the capacity of the substation; the capacity of the
substation is 400 kVA and the maximum load was 280 kVA.

The graphs in figure 3.5 can be used to determine the peak duration and peak height.
The maximum load line (the red line) and the 75th quantile (top of the grey area) are
used to determine the peak duration and peak height. Looking at the seasonal effect
on the peak load and thereby taking into account that the previous analysis does not
cover the months October, November and December, it is concluded that for 4 months
the daily peak load is at its maximum. It is thereby assumed that the load in the three
missing months gradually increases to the load in January. For the other months, there
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is a daily peak load, but this load is significantly lower than during those 4 months
(November, December, January, February). This means that for this specific substation,
the peak load per day is for four months per year above 200 kVA and for eight months
per year substantially lower than 200 kVA. Therefore the storage is designed for the load
from the maximum value of the 75th quantile and the maximum value of the maxima.
This is visualized in figure 3.6 in the green area.

Figure 3.6: Load characteristics for all days of substation 1 (167 residential connections)
with indication for the capacity of the storage

This method for determining the peak height and peak duration ensures the follow-
ing. The starting point is the maximum of the 75th quantile. This means that at least
75% of the time, the load is lower than this value. This means that the substation needs
to have sufficient capacity at minimum 75% of the time. It is visible in the bottom-right
graph in figure 3.5 that in the months March to October the load is not higher than 200
kVA - which is approximately also the maximum of the 75th quantile. By designing the
storage this way, the high loads in the months December, January, and February are
captured by the storage unit, and from March onwards the storage unit can be used for
other purposes.

This design results in a peak duration of 285 minutes, or 4.75 hours. The peak height
is 72.1 kVA. This specific substation has a power factor of 0.99, which means that the
peak demand is 71.4 kW. This means that the storage unit should have a power of 71.4
kW and a capacity of 340 kWh.
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This analysis is executed for all mentioned substations. In figure 3.7 the same graphs
as in figure 3.5 are visualized. As the percentage of residential connections of the second
substation is nearly equal to the first substation, the load characteristics of substation
2 is also similar. This strengthens the analysis made for substation 1.

Figure 3.7: Load characteristics for substation 2 (158 residential connections, 1 non-
residential) for 01-01-2016 till 01-10-2016

Figure 3.7 visualizes that the second substation has the same load characteristics as
the first substation. These characteristics are a daily peak starting around 18:00 and
lasting for two hours till 20:00, no significant difference between weekdays and weekend,
and a large seasonal influence for the maximum load per day.
This neighbourhood however does have a number of differences with the first one. The
load increase in the morning (at 07:00) is less abrupt and the difference between the
mean load and the maximum load during peak (18:00-20:00) is larger. This last be-
haviour influences the necessary capacity of storage in the second neighbourhood. In
figure 3.8, the necessary capacity is visualized. The determination method for this ca-
pacity is equal to the method used for the first neighbourhood.
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Figure 3.8: Load characteristics for all days of substation 2 (158 residential connections,
1 non-residential) with indication for the capacity of the storage

In the second neighbourhood, there is a main peak, but also two small peaks during
the day. These smaller peaks are indicated by the green ovals. The storage is how-
ever not designed for these peaks, as they are too small to use the storage capacity for
(meaning that the storage can be used for other purposes during this time of the day).
Therefore, in this neighbourhood, the capacity of the substation itself needs to be higher
than the maximum of the 75th quantile. The peak height then becomes 58.2 kVA and
the peak duration is exactly 5 hours. The power factor of this substation is also 0.99,
which results in a necessary power of 57.6 kW and a capacity of 288 kWh.

The third neighbourhood has 66 residential connections and 32 non-residential con-
nections. This influences the load behaviour, as visualized in figure 3.9. Whereas the
load in the second neighbourhood is similar to the first neighbourhood, the third neigh-
bourhood differs from the first two. The load starts to increase around 06:00 and steadily
grows till 09:00 and from 09:00 till 11:00, the load decreasingly grows. Shortly after 11:00,
the load has another abrupt increase. After this increase, the load decreases for a short
period of time. Then it slowly increases till around 18:00. Thereafter it slowly decreases
till 21:00 and strongly decreases till 02:00, after which it remains constant till 06:00.
This load behaviour is also visible in the only-weekdays graph and in the weekend-only
graph. However, the weekend-only graph shows a larger 25th to 75th quantile. The sea-
sonal effect is visible for this neighbourhood, but the load has a more constant pattern
throughout the year compared to neighbourhood 1 and 2.
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Figure 3.9: Load characteristics for substation 3 (66 residential and 32 non-residential
connections) measured per 5 min for 01-01-2016 till 01-10-2016

A number of characteristics of the load of substation 3 need further explanation. The
first aspect that stands out is the abrupt increase around 06:00. It is not likely that this
increase is caused by one of the residential connections, as the previous neighbourhoods
(with a high share of residential connections) did not show this increase. Moreover, the
height of this increase (approximately 3.5 kW) combined with the regular occurrence
indicate that this peak is not caused by a household. After locating this substation (the
exact location can not be shared due to privacy reasons) it became clear that there are
two bakeries and a post office in this neighbourhood, which is a more likely explanation
for this abrupt increase 06:00.

Hereafter, the load steadily grows till 09:00, which suits the expected behaviour of
a neighbourhood with both residential and non-residential connections. The households
cause the first part of the growth and then the non-residential connections cause the
second part of the growth (from 08:00 onwards). The combination of residential con-
nections and non-residential connections causes the load to slowly increase from 09:00
till 18:00, with another abrupt increase around 11:15. This increase is caused by the
presence of multiple catering industries in this neighbourhood.
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Designing a storage unit for this neighbourhood is visualized in figure 3.10 and shows
a significant different design, namely a lower peak height but a higher peak duration.
For this neighbourhood, the storage mechanism would cover the peak load from approx-
imately 13:00 till 21:30. The peak duration is 510 minutes or 8.5 hours. The peak height
is 43.0 kVA. This results, with a power factor of 0.97, in a storage power of 41.7 kW and
capacity of 355 kWh. A storage unit with these characteristics will not cover the small
peak indicated by the green oval, for the same reason as in neighbourhood 2.

Figure 3.10: Load characteristics for all days of substation 3 (66 residential connections,
32 non-residential) with indication for the capacity of the storage

The fourth neighbourhood has the same amount of non-residential connections as the
third neighbourhood, but only 11 residential connections. This creates a different be-
haviour from the third neighbourhood. The top-left graph in figure 3.11 shows the load
characteristics for all days of the week, which has a large spread. This spread, as can be
seen in the top-right and bottom-left graph, is caused by the difference between weekdays
and weekend. During weekdays, the load starts to increase around 06:00 and increases
till 09:00. Then it remains approximately constant till 16:00, after which it increases to
its peak at 17:00. Thereafter, the load decreases, with a change in slope around 18:00.
The load during weekends however shows a significantly different behaviour. The load
decreases from 06:00 till 09:00, after which it remains constant till 11:00. Then the load
increases and decreases again. Then it remains constant till 14:30, when it increasingly
grows till 17:00 where the load reaches its peak. After a small ’valley’, the load remains
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at this peak-level till 21:00. Then it slowly decreases. The seasonal effect, visualized in
the bottom-right graph in figure 3.11, is hardly visible.

Figure 3.11: Load characteristics for substation 4 (11 residential and 32 non-residential
connections) measured per 5 min for 01-01-2016 till 01-10-2016

The peak around 06:00 on weekdays is most likely caused by a non-residential con-
nection starting early. The increase thereafter is a combination of residential connections
(households) waking up and non-residential connections starting up. The load, remains
constant as the non-residential connections have a constant load during the day. At
17:00, the peak is caused by the residential connections that have their peak there, as
visible in neighbourhoods 1 and 2.

The storage capacity for neighbourhood 4 is visualized in figure 3.12. In this neigh-
bourhood, the peak duration is 500 minutes or 8.3 hours. The peak height is 29.6 kVA.
The power factor is approximately 0.98, which results in a storage unit with a power of
29.0 kW and a capacity of 242 kWh.
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Figure 3.12: Load characteristics for all days of substation 4 (11 residential and 32
non-residential connections) with indication for the capacity of the storage

Figure 3.13 shows the load characteristics for substation 5, which has 15 non-residential
connections and 1 residential connection. This was the most suitable dataset available
for testing the characteristics of only non-residential connections.

In the top-left graph of figure 3.13, the load of all days of the week for substation 5
is visualized. This load remains constant during the night untill 05:00. Then the load
decreases slightly. Around 07:00, the load starts to increase untill 09:00, after which it
remains constant till 17:00, besides a small drop around 12:30. From 17:00, the load
decreases untill 23:00. For all days of the week, the load has a large spread. Looking at
the top-right graph, it is visible that the spread is significantly smaller for only weekdays.
During the weekend (the bottom-left graph), the load is low and fairly constant. The
seasonal effect (bottom-right graph) is negligible, but the week-weekend differences are
clearly visible.
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Figure 3.13: Load characteristics for substation 5 (15 non-residential and 1 residential
connections) measured per 5 min for 01-01-2016 - 01-10-2016

The load of substation 5 is what can be expected from a neighbourhood with solely
non-residential connections (apart from 1 connection). There is a large difference be-
tween weekdays and weekend, and even the lunch break at 12:30 is visisble. The decrease
around 05:00 is most likely caused by solar panels.

The necessary storage capacity for this substation is visualized in figure 3.14. The
load characteristics of this substation create a long peak duration, namely 565 minutes
or 9.4 hours. The peak height is relatively low, namely 25.1 kVA. Using the power factor
for this substation, which is 0.98, the necessary power for the storage unit is 24.6 kW
and the capacity is 232 kWh.
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Figure 3.14: Load characteristics for all days of substation 5 (1 residential and 15 non-
residential connections) with indication for the capacity of the storage

An overview of the storage units for all the neighbourhoods is visualized in table 3.4.
The storage power however does not coincide with the storage powers visualised in the
graphs for the five neighbourhoods. The storage powers are all set to 100 kW, as this is
the power needed in order to be able to trade on the electricity markets, which is further
explained in chapter 4.1. As this power is used in the rest of the research, the necessary
power is already incorporated here.

The goal of this paragraph was to determine the duration of peak demand and the
effect of the share of residential connections in a neighbourhood on the storage unit
needed in that neighbourhood. The results of this analysis are shown in paragraph 3.4.
In the first place, it is concluded that there’s a large difference in load characteristics
between residential and non-residential connections. This difference expresses mostly in
the duration of the peak and the absence of seasonal influence. These characteristics
implicate that neighbourhoods with lower shares of residential connections are more de-
pendent on the value of deferral for a sufficient business case. Dominantly residential
neighbourhoods have more opportunity to create additional value due to less usage by
the DSO.
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Neighbourhood Residential Peak Duration & Storage power & Seasonal
connections height capacity influence

1 100% 4.8 h 100 (71.4) kW Yes
72.1 kVA 340 kWh

2 99% 5 h 100 (57.6) kW Yes
58.2 kVA 288 kWh

3 67% 8.5 h 100 (41.7) kW No
43.0 kVA 355 kWh

4 26% 8.3 h 100 (29.0) kW No
29.6 kVA 242 kWh

5 6% 9.4 h 100 (24.6) kW No
25.1 kVA 232 kWh

Table 3.4: Storage design per neighbourhood. The storage power has two values: 100
kW necessary for trading on the electricity markets and between brackets the necessary
power for lowering peak demand.

3.3 Postponement value by storage units
In order to determine the value of postponing grid investments, the growth rate needs
to be incorporated as well (as is showed in formula 3.2). Stedin DSO has developed sce-
narios for the peak growth rate from 2016 till 2050, for four different area types (ranging
from rural to urban). As mentioned before, they also possess a dataset containing the
current peak load for all their substations, expresses in the percentage of the capacity
of that substation. This dataset is used to visualize their need for an alternative for
the investment in new substations (e.g. a new transformer in an existing station), as
many of their substations are expected to reach the point of maximum capacity in the
same year. The scenarios developed by Stedin are used to calculate the postponement
in years for the five used neighbourhoods of the previous paragraph. Thereafter, the
postponement time is used to calculate the value of deferral of investment by the local
storage units.

3.3.1 Postponement time

In figure 3.15, the current peak load and expected peak load for 2025 are visualized
in histograms. The current peak load dates from 2016, and shows a strong centering
between 0.5 and 0.75. Stedin has 9054 substations in their network, and 45% of them
currently have a peak load between 50% and 75% of their capacity. In 2025, most of these
substations will reach their maximum capacity. The histograms shows a peak between
1.0 and 1.1, meaning that a large number of substations have a peak load of 100%-110%
of their capacity and need to be replaced. The amount of substations that has to be
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replaced by 2025 is quite large compared to other years, namely 20%. So, in 2025, one
out of every five substations has to be replaced. The average amount of substations
that have to be replaced per year in the period 2016-2030 is 6.5% per year. Therefore,
when substations that are expected to have insufficient capacity in 2025 can be assisted
by a storage unit, the investments in new substations can be spread over a longer period.

Figure 3.15: Histograms of current and 2025 peak load for all substations controlled by
Stedin
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Stedin uses four scenarios, each for a different area type. These area types however
don’t indicate the ratio of residential versus non-residential connections, which means
it is not possible to determine which area type is suitable for which of the five neigh-
bourhoods analysed in this research. Therefore, all four scenarios are used to estimate
a range for the postponement time for the five neighbourhoods as defined in this chap-
ter. This creates an estimate for when the load in these neighbourhoods reaches the
substation’s capacity. The results are shown in table 3.5. Columns 2 and 3 indicate
the year in which the substation reaches its maximum capacity, excluding and including
storage. The fourth column gives the range for the years of deferral. The deferral time
is equal to the difference between the year to reach maximum capacity and the year to
reach maximum capacity with storage installed. In the calculation of this difference the
year-values that are used are within the same scenario.

Nbh Current peak Year to reach Year to reach maximum Deferral
load maximum capacity capacity with storage time [yrs]

1 0.75 2022-2023 2026 3-4
2 0.75 2022-2023 2027-2028 4-5
3 0.74 2022-2023 2025-2026 2-3
4 0.57 2026 2028-2031 2-5
5 0.41 2029-2032 2033-2039 3-7

Table 3.5: Effect of storage on year to replace substation (Nbh = Neighbourhood)

3.3.2 Valuation of deferral of investment

Comparing low-voltage electrical energy storage with replacement of transformers in
substations is not a matter of comparing investment costs as such of both alternatives,
as storage facilities do not replace the full function of the transformers, but are meant
to lengthen the lifetime of the substation by creating extra peak capacity. Moreover, the
storage units offer opportunities outside peak hours to generate additional value(s), for
example by trading on the electricity market.
The goal of this paragraph however is to determine the value solely of deferral of invest-
ments in new transformers in substations. For the calculation of this value the NPV
methods is used as introduced at the beginning of this chapter.

For replacement of a transformer in an existing substation the Asset Management
department at Stedin has estimated the costs at e40.000. As we are talking of replace-
ment by larger transformers, the costs of replacement are estimated at e50.000.

Determination of the discount rate is a discussion in itself. In a commercial environ-
ment investors will argue that the discount rate should equal the expected rate of return
on capital and could easily be in the range of 10% to 15%. For a DSO this would not be
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appropriate, but the discount rate should at least represent the average cost of capital
for the company and should indicate how much value an investment or project adds to
the company. For this research the discount rate is therefore set at a range between
5% to 10%. Based on the deferral times as calculate in paragraph 3.3.1., the estimated
investments and the discussed discount rates the savings are calculated and presented
in table 3.6 for the different neighbourhoods.

Discount rate → 5% 5% 7,5% 7,5% 10% 10%
Deferral → Low High Low High Low High
Neighbourhood↓ e e e e e e
1 6808 8865 9752 12.560 12.434 15.849
2 8865 10.824 12.560 15.172 15.849 18.954
3 4649 6808 6733 9752 8678 12.434
4 4649 10824 6733 15.172 8678 18.954
5 6808 14.466 9752 19.862 12.434 24.342

Table 3.6: Savings per neighbourhood for different interest rates

As the power and capacity of storage for the different neighbourhoods differ, also
the costs of the storage differs. The costs of the storage units are calculated based on
Ippolito et al., and are e280 per kWh and e266 per kW (Ippolito et al, 2014). The
results are shown in table 3.7 next to the possible savings for the same neighborhoods.
As battery techniques are at the moment an important area of research worldwide, it is
expected that prices for storage per kWh will go down considerably in the near future,
like for solar cells or wind energy in the last decade. Nykvist and Nilsson researched the
price trends in battery prices and the expected price trends in both scientific research as
industry reports (Nykvist and Nilsson, 2015). They report battery prices only per kWh,
whereas Ippolito et al. report both per kWh and per kW. Therefore, the ratio of 2014
price level and 2025 level reported by Nykvist and Nilsson is used to indicate expected
price developments of batteries. The research of Nykvist and Nilsson show an average
price in 2014 of e383 and an average price in 2025 of e214, meaning a decrease of 45%
(Nykvist and Nilsson, 2015). This decrease is taken into account in the conclusion and
recommendations.

The lifetime of the storage units is based on a Tesla Powerwall, which has a guaran-
teed lifetime of ten years. Assuming a lifetime of a battery of ten years, the batteries
can be used in two different neighbourhoods within their lifetime. This means that for
neighbourhoods one to four, the value can be doubled. For neighbourhood 5, this line
of reasoning can’t be accepted, as the doubling of the maximum deferral period (and
therefore the maximum savings) exceeds the ten-year mark. The maximum possible
savings are shown in table 3.7.
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Neighbourhood Max. savings[e] Costs[e]
1 31.698 121.800
2 37.907 107.240
3 24.868 126.000
4 37.907 94.360
5 24.342 91.560

Table 3.7: Savings and costs per neighbourhood

Table 3.7 clearly shows that the savings by investment deferral are significantly lower
than the costs of a storage unit capable of deferring these investments. An additional
benefit is therefore necessary in order to come to a positive business case. Neighbour-
hood 1 and 2 seem to be most suitable for generating an additional benefit, as they have
a relatively short peak duration (see table 3.4) and a clear seasonal pattern.

3.4 Conclusion
The goal of this chapter is to determine the value of local storage units when used for
deferral of investments. The first conclusion is that local storage can be best placed in
a substation, as this ground is already owned by the DSO and it causes no nuisance for
consumers.

The type of neighbourhood most suitable for local storage units is a neighbourhood
with a high share of residential connections. These neighbourhoods namely show a clear
peak in the demand during the day around 18:00 till 20:00, but also have a clear seasonal
effect. This seasonal effect creates the possibility to use the storage unit for other means
as well and therefore generate a second value. The peak duration in the five neighbour-
hoods, with connections ranging from 100% residential to almost 100% non-residential,
varies from 4.8 hours to 9.4 hours. The peak height respectively varies from 72 kVA to
25 kVA.

The current peak load in most neighbourhoods in the network operated by Stedin
is approximately 50% to 75% of the substations’ capacity. The growth scenarios from
Stedin indicate that these substations therefore have sufficient capacity till 2025. At that
time, most of the existing substations have to be replaced. Installing storage to support
the transformer in the substation can defer the investment needed for the replacement
by 3 to 7 years.

The savings by deferring the investment needed for replacement are in the order of
magnitude of e24.000 to e38.000. The storage unit needed to defer this investment
costs around e100.000. This leads to the conclusion that there is no feasible business
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case at this moment for installing a storage unit solely for deferring network investments.
Additional benefits are required to come to a more feasible business case. This benefit
can be found in selling electricity at times when the DSO has no need for the capacity
of the storage unit. Storage units in residential neighbourhoods offer possibilities in this
respect.
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4 | Trading on electricity markets

In the previous chapter, it became clear that an additional benefit of low-voltage elec-
tricity storage is required to achieve a positive business case. The additional benefit
for this research is trading, since it appears that the storage is not used constantly for
unburdening the transformer in the substation. This chapter gives an answer to the
question which markets are accessible for these storage units. First, all the Dutch mar-
kets are analysed. This analysis is then used to determine the markets accessible for
local electricity storage. Then, the behaviour of the accessible markets is analysed using
statistical analysis.

4.1 Overview of Dutch electricity markets
There are six electricity markets in the Netherlands, of which five are covered in this
chapter. The sixth market is the Future market, where deals are made to produce or
consume electricity a couple years later than the deal-date. Since storage can’t hold
electricity that long, this market is not relevant and not considered in this research. The
other markets are the Day-ahead & Intra-day market, both operated by APX group,
and the Primary, Secondary, and Tertiary reserve market, all operated by TenneT.

4.1.1 Day-Ahead market

On the day-ahead market, as the name implies, buyers and suppliers of electricity can
place their bids until 12:00 a.m. on the day before delivery. The market is then cleared,
based on these bids with technical price limits of -500 e/MWh and +3000 e/MWh.
The market is organised by power exchange APX and coupled with markets in northern,
western and southern Europe. Market coupling is a method of congestion management
which essentially means that the market operator buys electricity in the cheaper market
and sells that electricity in the more expensive market (De Vries, 2016).

For trading on the day-ahead and intra-day markets a fee must be paid. This consists
of an entrance fee (e5000), membership fee (e28.500), technology fee (e5000) and a fee
per MWh. The fee per traded MWh is e0.095 for the intra-day market and e0.07 for
the day-ahead market (APX group, 2016). Next to these membership fees, the suppliers
of electricity to the market must comply with a number of (technical) specifications.
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In the first place, they must be accepted as a balance/program responsible party by
TenneT. Second, the minimum duration of a product on the market is one hour. Last,
the products on the market are traded in units of 100 kW or a multiple thereof(APX
group, 2016(4)).

The amounts traded on the day-ahead market vary from 2800 to 4000 GWh per
month (APX group, 2016(1)). The prices vary from 20 to 100 e/MWh, with an average
of 45 e/MWh (APX group, 2016(2)). These numbers are based on monthly averages
from September 2015 till June 2016.
One could expect the fluctuations in the day-ahead market to increase due to for exam-
ple higher penetration of renewable energy sources. In order to determine whether there
are more fluctuations, a boxplot is shown in figure 4.1. This figure shows per year, for
every hour of the day (Day-ahead prices are determined per hour), what the amount of
fluctuation is. The red line is drawn at 50 e/MWh. The boxplots in figure 4.1 don’t
show outliers, meaning that the extreme prices are not visible.

Figure 4.1: Day-Ahead price per hour of the day per year (red line indicates 50 e/MWh)

This graph clearly indicates that the fluctuation and the price of electricity has de-
creased in the last years. This needs to be taken into account in the conclusions regarding
the value of trading with storage units.
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4.1.2 Intra-Day market

The intra-day market arranges the final adjustment between the amount of electricity
procured and effective demand or between the amount of electricity sold and effective
generation. This can be done up to 5 minutes before time of delivery on the APX market.
The prerequisites for trading on this market are equal to the prerequisites for trading
on the Day-Ahead market.

The amounts traded on the intra-day market vary from 36 to 138 GWh per month.
The prices vary from 27 to 51 e/MWh, with an average of 31 e/MWh (APX group,
2016(3)). The amounts traded and price of electricity on this market are clearly lower
than on the Day-Ahead market. In conversations with Eneco, it became clear that trad-
ing on the Intra-day market is done via bilateral contracts. Since the value of these
contracts is very sensitive for competition, they were - obviously - not willing to share
their data. For this research it means that this market could not be further investigated.

4.1.3 Primary Reserve market

Despite the two mentioned markets for equalizing supply and demand, there still exists a
possibility of imbalances because of power outages or forecast errors. In order to balance
supply and demand at all times, the transmission system operator (TSO) uses balancing
energy. Three kinds of reserves can be distinguished: primary reserve, secondary reserve,
and tertiary reserve (Frontier economics, 2015). The order of activation of the different
reserve capacities is shown below.

Figure 4.2: Time schedule of activation of reserve capacities (Primary, Secondary, and
Tertiary Control Reserve) (Consentec, 2014)

Primary reserve or primary control is automatically used to stabilize frequency dis-
ruptions within 30 seconds. The primary control reserve is procured once per week,
partly in an auction with the German TSOs and partly in a separate Dutch auction. In
total these two auctions provide at least the required 96 MW of primary reserve capacity
for the Netherlands (Frontier economics, 2015). The required amount of primary reserve
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is determined every year by the ENTSO-E (European Network of Transmission System
Operators for Electricity). The required amount of primary reserve is in proportion to
the amount of production in the control area of the relevant TSO (Transmission System
Operator). The minimum bid on the auction is 1 MW and the producing unit needs
to be able to be activated by an automated control mechanism, which is operated by
TenneT (TenneT, 2013).

The determination of the required amount of primary reserve is done by ENTSO-E
on basis of generated electricity in a control area (in this case: the Netherlands) divided
by the sum of generated electricity of the control areas in the synchronous area (in this
case: regional group continental Europe). The Netherlands is also part of the voluntary
regional group northern Europe, which concentrates its efforts on the impacts of high
voltage direct current interconnectors, which connect the Dutch market to the English
and the Norwegian market (ENTSO-E, 2004).

The reimbursement for primary reserve is based on having capacity ready to be
activated, so the payment is per MW and not per MWh. The offers on the auction
with other TSOs vary from 1 to 60 MW (average 6 MW), and from 1660 to 6600
e/MW (average 2900 e/MW) (Regelleistung.net, 2016). The offers on the separate
Dutch auction vary from 2 to 55 MW (average 7,5 MW), and from 2000 to 5800 e/MW
(average 3060 e/MW)(Regelleistung.net, 2016(1)).

4.1.4 Secondary Reserve market

Whereas primary reserve re-establishes the system frequency to a common level for the
synchronous area, the secondary reserve or secondary control re-establishes the system
frequency to the set-point value (50 Hz)(ENTSO-E, 2004). Suppliers of secondary re-
serve are called by TenneT to increase supply (or reduce demand) or decrease supply (or
increase demand) when the system balance in the Netherlands is over- or under-balanced.
It is important to mention that the secondary reserve capacity in the Netherlands consists
of "regelvermogen" (control capacity) and "reservevermogen" (reserve capacity). The lat-
ter is activated either when TenneT assumes that the first can’t cover the demand for
secondary control or when TenneT assumes that the first one becomes too expensive.
Any producers or consumers larger than 60 MW are obliged to offer any power that they
can produce/consume more/less as "reservevermogen" (DTe & TenneT, 2004).

Secondary control consists of automatic generation control, which modifies control-
lable load up to 15 minutes after an incident using secondary control reserves. The total
necessary capacity of the control reserves can be determined using multiple methodolo-
gies (specified by ENTSO-E), due to different characteristics and patterns of generation
(ENTSO-E, 2004). TenneT does not specify which method they use, but it is likely
that they use either the empiric noise management sizing approach or probabilistic risk
management sizing approach. The third possible approach is largest generation unit or
power feed-in, which determines the size of the control reserve using the assumption
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and expectation of the largest possible generation incident. Since the secondary control
capacity is approximately 400 MW in the Netherlands and the largest plant is more than
1 GW, TenneT probably does not use the third method. The first two methods calculate
the secondary control size using respectively the maximum anticipated consumer load
and the individual distribution curve of the power imbalance (which includes a number
of factors which all relate to generation (capacity)) (ENTSO-E, 2004).

There are a number of requirements for secondary reserve units. In the first place
they must be controllable by TenneT’s national FrequencyPowerRegulation ("Frequen-
tie VermogensRegeling") and have a minimal size of 4 MW and a maximal size of 200
MW. In addition, it must be adjustable in discrete steps of 1 MW. Next to that, the
ramp up and ramp down speed must be at least 7% per minute in order to achieve full
deployment within 15 minutes. The last requirement is a reaction speed of 30 seconds
(TenneT, 2014). Secondary reserve capacity is traded on a market where TenneT is the
only buyer (single buyer market). A part (250 MW) of the need for secondary reserve
is covered with yearly contracts with suppliers. This means that these suppliers must
have capacity available for secondary control for all PTU’s (ProgramTimeUnit, "PTE"
in Dutch) in a that year (DTe & TenneT, 2004). The rest of the need for secondary
reserve is traded from one week before delivery until 14:45 on the day before delivery.
Adjustments can be made until one hour before delivery (TenneT, 2012).

TenneT publishes all the total volume of the secondary control bids and the price of
the most expensive bid at 100 MW, 300 MW, 600 MW, and the maximum necessary
capacity. TenneT also publishes the "balance delta" with prices, which means the actual
used secondary reserve and the price against which it is used. It is unclear whether
these data include the 250 MW of yearly contracts. The amount of ramp up power
lies between 0 and 500 MW, with an average of 25 MW. The amount of ramp down
power lies between 0 and 525 MW, with an average of 27 MW. The ramp up reserve lies
between 0 and 125 MW, with an average of 0,12 MW (since it not frequently used). The
ramp down reserve lies between 0 and 120 MW, with an average of 0,04 MW. The prices
for ramp up power/reserve lie between 0 and 660 e/MWh, with an average of 51. The
prices for ramp down power/reserve lies between 92 and -430 e/MWh, with an average
of 18 . A negative price means that TenneT pays this Balance Responsible Party (BRP).
Both prices can be negative, but the ramp down price is more often negative because
that basically means that there’s more electricity available on the grid.

4.1.5 Tertiary Reserve market

Tertiary reserve is deployed when the grid frequency is not restored after 15 minutes
(Frontier Economics, 2015). Requirements for tertiary reserve are that the time between
the call by TenneT and the actual availability must be known (with a maximum of 3
days) (TenneT, 2004). The value of the contracts for tertiary reserve capacity is not
published by TenneT. This makes it harder to determine the value for low-voltage elec-
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tricity storage. That fact, combined with the requirement of being always available for
TenneT during the contract period, indicates that this market is not where low-voltage
storage units will gain a lot of value.

4.1.6 Summary of markets

In tables 4.1 to 4.3, a comprehensive overview of the analysis of the Dutch electricity
markes is given.

Overview Dutch electricity markets - part 1
Market
(Dutch
name)

Time of
trading

Platform Volumes Prices

Day-Ahead
(Spotmarkt)

Trading untill
12:00 AM on
the day before
delivery

APX market 2.800 - 4.000
GWh per
month

20-100
e/MWh
(average 50
e/MWh)

Intra-Day
(Spotmarkt)

Trading untill
5 min before
delivery

APX market;
Elbas market

36 - 138 GWh
per month

27-51 e/MWh
(average 31
e/MWh)

Primary
Reserve
(Primaire
reserve)

Cleared once
per week

TenneT;
Regelleistung

102 MW
capacity
stand-by at all
times

1700 to 6600
e/MW/week
(average bid
3300
e/MW/week)

Secondary
Reserve
(Regel- en
reserve-
vermogen)

Trading from
1 week before
delivery until
14:45 on day
before delivery

TenneT
(Single Buyer
market)

Unknown Ramp-up: 0
-660 e/MWh
(av. 51)
Ramp-down:
-430 - 92
e/MWh (av.
17)

Tertiary
Reserve
(Noodvermo-
gen)

Yearly tender;
Quarterly
tender

TenneT 350 MW
capacity
stand-by at all
times

Unknown

Table 4.1: Overview of Dutch electricity markets - part 1
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Overview Dutch electricity markets - part 2
Market Prerequisites for trading Miscellaneous
Day-
Ahead &
Intra-Day

1. Program Responsible Party con-
tract;

2. Minimum duration is 1 hour;
3. Trading in multiples of 100 kW

1. Entrance fee - e5000;
2. Member fee - e28.500;
3. Technology fee - e5000;
4. Day-Ahead - 0.07 e/MWh
5. Intra-Day - 0.095 e/MWh

Primary
reserve 1. Instantaneous frequency 49,2 -

50,8 Hz;
2. 50% evenly activated in 15s, and

linear increase to 100% activated
in 30s;

3. Minimum of 1 MW; only integer
values; pooling is possible; sym-
metric power (both ramp up and
ramp down);

4. Minimum control range of 2% of
nominal power (with a minimum
of 100 kW for a pool-unit);

1. No costs of trading;
2. Development: TenneT is

looking into lowering mini-
mum amount of 1 MW to
allow smaller parties to join
this market, as well as lower-
ing duration of supply from
30 min to 15 min;

Table 4.2: Overview of Dutch electricity markets - part 2
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Overview Dutch electricity markets - part 3
Market Prerequisites for trading Miscellaneous
Secondary
reserve 1. Must be controllable by Frequen-

cyPowerRegulation;
2. Continuously adjustable in dis-

crete steps of 1 MW;
3. Ramp up/down speed of at least

7% per minute to achieve full acti-
vation in 15 minutes;

4. Reaction speed of 30 seconds;
5. Minimum of 4 MW and maximum

of 200 MW;

1. No costs of trading;
2. Contracts for this market are

for 1 quarter. Reimburse-
ment for capacity -> value
unclear

Tetiary
reserve 1. Reserve must be available within

15 minutes;
2. Company supplying reserve must

be reachable by phone 24/7;
3. Sufficient metering in order to con-

trol supply (5-minute values);
4. Minimum of 20 MW (pooling is

possible);
5. Power must be available exclu-

sively for TenneT;

1. No costs of trading
2. Administratively not possi-

ble to join both secondary re-
serve as tertiary reserve

Table 4.3: Overview of Dutch electricity markets - part 3

4.2 Accessible markets
An overview of the analysis of the markets, described in the previous paragraph, can be
found in table 4.1, 4.2 and 4.3. From these overviews, the markets accessible for local
storage units are determined. Moreover, from these overviews and analysis of prices and
amounts, it is concluded that two markets are most suitable for trading.

The first market that is excluded is the tertiary reserve market. Within this research,
the trading is an additional value - the first value being decreasing peak load for the
DSO. As a tertiary reserve unit must be exclusively available for TenneT, this is can’t be
combined with creating benefits for the DSO. Moreover, as table 4.3 shows, it is admin-
istratively not possible to trade both on this market and the secondary reserve market.
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On the secondary reserve market, higher prices can be expected, meaning a higher profit
when traded upon with storage (see table 4.1). Also, as the tertiary reserve market
consists only of bilateral contracts between suppliers and TenneT, the information that
is publicly available is very limited. Therefore, this market will not be analysed further
in this research.

The second market that is excluded from further research is the Intra-Day market.
The Intra-Day market namely consists mostly of bilateral contracts - again making the
amount of public information very limited. Moreover, the Day-Ahead market is likely
to have a higher revenue and has higher amounts traded (see table 4.1).

The third market that is excluded is the Primary Reserve market. This market would
be accessible with a pool of storage units and have a promising revenue. However this
market demands that offered capacity can be used for ramping-up and ramping-down.
Moreover, it is unknown beforehand when the offered capacity is claimed by TenneT.
This means in the first place that only half of the available capacity can be offered, as
the storage units must half-charged at all times. Second, this value is not combinable
with lowering peak demand for the DSO.

This leaves two markets for further research: the Day-Ahead market and the secon-
dary reserve market.

One of the prerequisites for being able to trade on the Day-Ahead (and Intra-Day,
but this market is already exempted from analysis) market is to trade in 100 kW or
multiples of 100 kW. The storage units as designed in chapter 3 (see table 3.4) however
have a power of less than 100 kW, making them ineligible for the Day-Ahead market.
Therefore, these systems need to be redesigned to 100 kW power output, making them
slightly more expensive. The Secondary Reserve market has a minimum power as well,
namely 4 MW. On the Secondary Reserve market, in contradiction to the Primary Re-
serve market, pooling is not mentioned anywhere in the documents provided by TenneT,
indicating that this is not allowed on this market. However, in conversations with Jules
Energy (Dutch organisation that trades local produced electricity for consumers) it be-
came clear that for receiving a capacity-reimbursement there is a minimum of 4 MW,
but for on-the-spot trading on this market is allowed with lower capacities.

4.3 Price trends on Dutch electricity markets
This section describes price trends on Dutch electricity markets. This analysis is ought
to serve as input for the design of a trading algorithm, which is done in the next chap-
ter. The markets that are analysed are the markets accessible for local storage units,
namely the Day-Ahead market and the Secondary Reserve market. The structure of this
section is as follows. First, the Day-Ahead market is analysed and thereafter the Secon-
dary Reserve market. This structure is similar to the point in time at which the traded
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electricity is activated: first on the Day-Ahead traded electricity (e.g. scheduled) and
then the Secondary Reserve (second balancing mechanism). All markets are analysed
on short-term basis for the period 18 of July 2015 till 18 of July 2016.

The three markets are analysed using different methods, as they operate differently
as well. The Day-Ahead market is analysed using regression analysis, as described in
the research framework in chapter 2.1.

The analysis of the Secondary Reserve market has a different character. As batte-
ries in neighbourhoods are not going to have a capacity of 4 MW, the trading on the
Secondary Reserve market has to be done on-the-spot. This means that at any minute
during the day trading can be done on the Secondary Reserve market. However, as the
settlement is done per 15 minutes, the decision to trade or not should be done not per
minute but per 15 minutes. The first thing that is analysed is if a time series can be fit
to the Secondary Reserve market, as it would be most useful to forecast this market well
in advance, since a trade-off between this markets and other markets must be made. If
a time series can’t be fitted, the forecast error (both load and renewable production) is
used to explain the Secondary Reserve market. Last, the relation between the first or
first two minutes and the rest of the quarter is checked.

4.3.1 Day-Ahead market

The Day-Ahead market is analysed using regression analysis. However, before the regres-
sion analysis is executed, the relation between the explanatory variables and the price is
checked, as regression analysis measures linear dependency. The short-term price trends
on the Day-Ahead market will be analysed on basis of auto-correlation, correlation with
(forecasted) (residual) load, and correlation with renewable energy production. There
are also clear relations between the Dutch market and other markets, such as the Ger-
man market (Mulder, 2013).

The auto-correlation of the Day-Ahead price has been researched before by others.
Mohsenian-Rad and Leon-Garcia calculated the correlation of a price with past prices
at different days (Mohsenian-Rad, 2010). A clear peak in correlation is visible at 7 days,
14 days, 21 days, and so on. This means that a there’s a strong relation between prices
on the same day of the week. Also Mulder (Mulder, 2013) shows a correlation between
average daily Day-Ahead prices on the Dutch market. Therefore in this research, it
seems logical to create an Auto-Correlation Function (ACF) plot of hourly Day-Ahead
market prices.
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Figure 4.3: ACF plot for hourly APX prices

This figure shows for "lags" 0 till 170 the correlation coefficient for the APX Day-
Ahead price. The lag can be interpreted as follows. If the lag is 1, the auto-correlation
function tests the correlation between the first and second value, between the second
and third value, and so on. If the lag is two, the function tests the correlation between
the first and third value, between the second and fourth value, and so on. The results
of these tests are then visualised in these plots.
The plots also include a blue horizontal dashed line, in this case very close to the 0.0
value. This line indicates the 95%-significance of the correlation coefficient. If the cor-
relation coefficient is higher than the significance line, the auto-correlation for that lag
is significantly non-zero.

From the ACF plots, a number of conclusions can be drawn. A number of peaks are
visible. These are located at very low lags (i.e. 0,1,2), and around 24 and multiples of
24. The high correlation coefficient at low lags can be explained that the price on the
Day-Ahead market is very similar to the price in the hour(s) before. The most likely
explanation for the peaks around 24 and multiples of 24 is that prices each day at the
same hour are similar.

Another explanation for high correlation coefficients in the ACF plot is that the
correlation coefficients at higher lags are influenced by the high correlation coefficients
at lower lags. A solution for this phenomenon is using the Partial Auto-Correlation
Function (PACF). The PACF is more suitable to estimate the significant lags (Reinsel
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et al., 2015). The PACF plot for the Day-Ahead market can be found in figure 4.4.

Figure 4.4: PACF plot for hourly APX Day-Ahead prices (no value at lag = 0)

Figure 4.1 shows the adjusted correlation coefficient for lags 1 till 170. The PACF
has no value at lag 0. Also in figure 4.4, the blue line indicates the significance of the
coefficient. The adjusted correlation coefficient indicates that the only significant values
are at lag 1 and multiples of 24. The same explanation as at the ACF can be applied
here as well, namely that the price at each day at the same time is similar.

Next to the correlation of Day-Ahead prices with itself, there are also other ex-
planatory variables for the price on the Day-Ahead market. One example of this is the
forecasted load, since the trade on the Day-Ahead market takes place on the day be-
fore the actual delivery. The relation between the forecasted load and the price on the
Day-Ahead market for the period 18-07-2015 till 18-07-2016 is shown below.
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Figure 4.5: Scatterplot of hourly APX Day-Ahead price and forecasted load with regres-
sion line

This figure shows the relation between the average load per hour and the price on the
Day-Ahead market for that hour. The red line is the regression line. A clear correlation
between the forecasted load and the market price is visible. The most logical explanation
for this is simple market economics: if the demand is higher, the price goes up. The
correlation coefficient is approximately 0.49 with a very low p-value (<2.2e-16).

Another explanatory variable is the residual forecasted load, as the amount of elec-
tricity produced by solar panels and wind turbines is likely to influence the price on the
market. A higher production by renewables means that less thermal power plants are
needed, which can result in a lower price. The relation between the forecasted residual
load and the Day-Ahead price is shown in figure 4.6. In this research, residual load is
equal to the total load minus the amount of electricity produced by PV panels and on-
and offshore wind turbines.
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Figure 4.6: Scatterplot of hourly APX Day-Ahead price and forecasted residual load
with regression line

Figure 4.6 is very similar to figure 4.5, but the x-axis has shifted around 2000 MW.
This is the caused by subtracting the forecasted production by renewables. The correla-
tion coefficient is approximately 0.53 with a very low p-value (<2.2e-16). The correlation
between the forecasted residual load and the Day-Ahead market price is higher than the
correlation between the forecasted load and this price.

The analyses of the correlation between the Day-Ahead price and forecasted (resi-
dual) load is executed with load and production data from ENTSO-E (European Network
for TSOs) and market price data from APX group (operator of Day-Ahead market).
It could however be that market participants are able to make better forecasts than
ENTSO-E and national TSOs. In order to test if this is the case, the relation between
the actual (residual) load and the market price is shown below.
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Figure 4.7: Scatterplot of hourly APX Day-Ahead price and actual load with regression
line

In this plot the relation between the APX Day-Ahead price and the actual load in
the Netherlands is visible. It looks very similar to the relation between the Day-Ahead
price and the forecasted load, but the correlation coefficient is slightly lower, namely
0.46. This coefficient differs from the value calculated by Mulder and Scholtens (Mul-
der, 2013), as they report a correlation coefficient of 0.048. This difference most likely
occurs because they use a logarithmic scale to calculate the correlation and because they
use a daily average instead of an hourly average.

In figure 4.8 the correlation between the Day-Ahead price and the actual residual
load is shown. Residual in this case means the total load minus the production of elec-
tricity by PV panels, onshore wind, and offshore wind. The correlation coefficient is
0.53, which is equal to the correlation between the Day-Ahead price and the forecasted
load.
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Figure 4.8: Scatterplot of hourly APX Day-Ahead price and actual residual load with
regression line

In table 4.4 are some more descriptive statistics to decide which of the correlations
can be used as input for the design of the trading algorithm. In the first place, the corre-
lation with the Day-Ahead price is shown. These correlations are mentioned before, but
this gives a comprehensive overall view. Next to the correlation, the relative standard
error (RSE) is calculated. The relative standard error is the standard error divided by
the mean. A lower relative standard error indicates a more precise model. Last, the R
squared is shown. This indicator can be interpreted as the amount of variance in the
Day-Ahead price that is explained by the regression line.

Input parameter Correlation with APX price RSE R2

Forecasted load 0.49 9.45 0.24
Forecasted residual load 0.53 9.22 0.28
Actual load 0.51 9.31 0.26
Actual residual load 0.57 8.90 0.33

Table 4.4: Correlation, Residual standard error, and R squared of different input pa-
rameters with the APX Day-Ahead price for 18-07-2015 till 18-07-2016
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From this table a number of things become clear. In the first place, the actual (re-
sidual) load is more explanatory for the Day-Ahead price than the forecasted (residual)
load. This is notable, as the trade on the Day-Ahead market takes place on the day(s)
before actual delivery. This means that this trade has to be done on basis of load fore-
casts. Therefore, one would expect the forecasted (residual) load to be more explanatory.

The second conclusion is that the residual load, either forecasted or actual, is a bet-
ter indicator than the total load. This makes sense as the intermittent character of
renewable production makes it more difficult for parties to bid renewable capacity on
the Day-Ahead market.

The next step in the regression analysis is to calculate regression values and to
stepwise add explanatory variables to the model. The stepwise-addition of explanatory
variables means that each step the variable with the highest significant beta-value is
added to the regression model, after which the betas and significances of not (yet) in-
cluded variables are calculated again. This is repeated till no explanatory variable with
significant beta value exists. The explanatory variables that are used in the regression
analysis are shown in table 4.5.

Explanatory variable Variable type
Dutch Forecasted Load Ratio
Dutch Forecasted Residual Load Ratio
German Forecasted Load Ratio
German Forecasted Residual Load Ratio
Month Ordinal
Day of the week Ordinal

Table 4.5: Explanatory variables used in the regression analysis

The choice was made to exclude the actual (residual) load, as this value can not be
used for forecasting the electricity price, since the actual load value is not known be-
forehand. The forecasted load however is known beforehand and at the time of bidding.
Therefore, this value is more suitable to use as a basis for placing bids on the Day-Ahead
market. As can be seen in table 4.5, most variables are ratio-variables. However, month
and day of the week are ordinal variables. These variables are not usable in a regression
analysis. The months for example are converted to numbers, January being 1, February
being 2, etcetera. SPSS considers these numbers as February being twice the value of
January, which is nonsense. Therefore, the month values are converted to dichotomous
variables. This means that 11 new variables were created, which have either value 1 or
0. The first variable is equal to 1 if the month equals January, and 0 if the month is
not January. This is repeated for all months. The same process is done for the different
days of the week.
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Before the beta values of different explanatory variables can be calculated, it must
be checked if these variables are correlated, as they need to be independent in order
to continue with the regression analysis. The correlation matrix is shown in figure 4.6.
This matrix shows that the Dutch Forecasted Load (DFL) has a high correlation with
the Dutch Forecasted Residual Load (DFRL) and the German Forecasted Load (GFL).
Therefore, the DFL is not used in the regression analysis, as the use of this explanatory
variable is likely to increase the variance of the beta-coefficients by the model, making
these coefficients more unstable and more difficult to interpret (Frost, 2013). When DFL
is removed, the highest correlation is 0.742, which is low enough to consider adding the
remaining variables to the regression model.

Cor matrix DFL DFRL GFL GFRL Weekday Month
DFL 1 ,953 ,810 ,525 ,049 -,007

(,000) (,000) (,000) (,000) (,504)
DFRL ,952 1 ,742 ,620 ,061 -,013

(,000) (,000) (,000) (,000) (,225)
GFL ,810 ,742 1 ,620 ,098 ,001

(,000) (,000) (,000) (,000) (,949)
GFRL ,525 ,620 ,620 1 ,128 -,018

(,000) (,000) (,000) (,000) (,102)
Weekday ,049 ,061 ,098 ,128 1 -,005

(,000) (,000) (,000) (,000) (,609)
Month -,007 -,013 ,001 -,018 -,005 1

(,504) (,225) (,949) (,102) (,609)

Table 4.6: Correlation (Pearson) matrix for explanatory values. Significance is shown
between brackets. D=Dutch, G=German, F=Forecasted, R=Residual, L=Load

The next step is to fit a regression model using the stepwise method. The first model
uses the monthly dichotomous variables and the second model uses the weekdays di-
chotomous variables.

The results of the first model can be found in figure 4.9. As can be seen, 14 variables
have been included in the final model, of which 11 monthly indicators. The final model
has an R square of 0,655, which means that the explained variance is 66,5%. In table
4.7 the beta-coefficients for the different explanatory variables can be found. The order
of the variables in this table is equal to the order in which these variables were added to
the regression model.
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Model Summaryo 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

1 ,559a ,312 ,312 8,98202 ,312 3964,983 1 8734 ,000 

2 ,623b ,388 ,388 8,47399 ,076 1079,637 1 8733 ,000 

3 ,667c ,445 ,445 8,07048 ,057 896,092 1 8732 ,000 

4 ,714d ,510 ,509 7,58518 ,065 1154,099 1 8731 ,000 

5 ,748e ,559 ,559 7,19476 ,049 974,272 1 8730 ,000 

6 ,762f ,581 ,581 7,01164 ,022 462,945 1 8729 ,000 

7 ,780g ,609 ,609 6,77321 ,028 626,390 1 8728 ,000 

8 ,789h ,622 ,622 6,65774 ,013 306,371 1 8727 ,000 

9 ,798i ,636 ,636 6,53464 ,014 332,891 1 8726 ,000 

10 ,800j ,639 ,639 6,50730 ,003 74,483 1 8725 ,000 

11 ,802k ,644 ,644 6,46626 ,005 112,106 1 8724 ,000 

12 ,805l ,648 ,647 6,43090 ,004 97,205 1 8723 ,000 

13 ,807m ,652 ,651 6,39357 ,004 103,138 1 8722 ,000 

14 ,810n ,655 ,655 6,36223 ,003 87,160 1 8721 ,000 

a. Predictors: (Constant), GFL 

b. Predictors: (Constant), GFL, MonthV2 

c. Predictors: (Constant), GFL, MonthV2, MonthV3 

d. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL 

e. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4 

f. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5 

g. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1 

h. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6 

i. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6, DFRL 

j. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6, DFRL, MonthV10 

k. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6, DFRL, MonthV10, MonthV8 

l. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6, DFRL, MonthV10, MonthV8, MonthV9 

m. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6, DFRL, MonthV10, MonthV8, MonthV9, MonthV11 

n. Predictors: (Constant), GFL, MonthV2, MonthV3, GFRL, MonthV4, MonthV5, MonthV1, MonthV6, DFRL, MonthV10, MonthV8, MonthV9, MonthV11, 

MonthV7 

o. Dependent Variable: Price 

 
 

It is important to notice that these beta-coefficients are the unstandardised. There-
fore, coefficients for GFL, GFRL, and DFRL are relatively low compared to the monthly
values. The coefficient for the 12th month is processed in the constant.

The last step in the regression analysis is to analyse the residuals of the model, which
should ideally approach a normal distribution. These residuals are shown in figure 4.10.
The residuals of the fitted model seem to be approximately normally distributed.

Figure 4.9: Model summary for the first model, which includes DFRL, GFL, GFRL, and
Monthly indicators



Figure 4.10: Histogram of residuals of the first model, which includes DFRL, GFL,
GFRL, and Monthly indicators

The same process is executed for different days of the week. The results are shown on
the next page. This immediately shows that the explained variance is significantly lower
compared to the model with the montly variables. Therefore, this model is not further
analysed, as the model with the monthly variables has a better chance of predicting the
correct price on the Day-Ahead market.

Then, the model with monthly variables and weekdays variables are combined, in
order to assess if that increases the explained variance. However, this results in an ex-
plained variance of 0,66. This is not a large increase compared to the monthly variables
only model, but increases the complexity of the trading algorithm. Therefore, the model
is limited to the monthly variables and the GFL, GFRL, and DFL. This model is verified
and validated in appendix II.
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Model Summaryj 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 Sig. F Change 

1 ,559a ,312 ,312 8,98202 ,312 3964,983 1 8734 ,000 

2 ,612b ,374 ,374 8,56745 ,062 866,709 1 8733 ,000 

3 ,620c ,384 ,384 8,49856 ,010 143,165 1 8732 ,000 

4 ,623d ,388 ,388 8,47276 ,004 54,246 1 8731 ,000 

5 ,624e ,389 ,389 8,46873 ,001 9,312 1 8730 ,002 

6 ,624f ,389 ,389 8,46501 ,001 8,673 1 8729 ,003 

7 ,625g ,390 ,390 8,45965 ,001 12,068 1 8728 ,001 

8 ,625h ,391 ,391 8,45466 ,001 11,314 1 8727 ,001 

9 ,626i ,392 ,391 8,44820 ,001 14,354 1 8726 ,000 

a. Predictors: (Constant), GFL 

b. Predictors: (Constant), GFL, GFRL 

c. Predictors: (Constant), GFL, GFRL, DFRL 

d. Predictors: (Constant), GFL, GFRL, DFRL, WeekdayV1 

e. Predictors: (Constant), GFL, GFRL, DFRL, WeekdayV1, WeekdayV3 

f. Predictors: (Constant), GFL, GFRL, DFRL, WeekdayV1, WeekdayV3, WeekdayV4 

g. Predictors: (Constant), GFL, GFRL, DFRL, WeekdayV1, WeekdayV3, WeekdayV4, WeekdayV6 

h. Predictors: (Constant), GFL, GFRL, DFRL, WeekdayV1, WeekdayV3, WeekdayV4, WeekdayV6, WeekdayV5 

i. Predictors: (Constant), GFL, GFRL, DFRL, WeekdayV1, WeekdayV3, WeekdayV4, WeekdayV6, WeekdayV5, WeekdayV2 

j. Dependent Variable: Price 

 
 

Figure 4.11: Model summary for the second model, which includes DFRL, GFL, GFRL,
and Weekday indicators



The beta-coefficients for the first model, which as the highest explained variance,
are shown in table 4.7. This model, as said, has as explanatory variables the German
Forecasted Load, the German Forecasted Residual Load, the Dutch Forecasted Residual
Load, and indicators for 11 months, with the effect of month 12 processed in the con-
stant. These beta-coefficients are used in the trading algorithm in chapter 5.

Variable Beta Variable Beta
(Constant) -4,686 MonthV6 -1,067
GFL 0,00032 DFRL 0,00090
MonthV2 -10,336 MonthV10 6,180
MonthV3 -9,178 MonthV8 6,051
GFRL 0,00023 MonthV9 5,322
MonthV4 -7,076 MonthV11 4,526
MonthV5 -3,367 MonthV7 3,071
MonthV1 2,696

Table 4.7: Unstandardised beta coefficients. All coefficients have a significance of 0,002
or lower.

4.3.2 Secondary Reserve market

The Secondary Reserve market is the second market analysed in this research. The pro-
vision of data for the Secondary Reserve market is sufficient to analyse it. Contradictory
to the Day-Ahead market, this market needs to be forecasted both in terms of price as
in terms of demand. The Secondary Reserve market is analysed using three analyses.
The first analysis is, just as for the Day-Ahead market, a regression analysis. However,
due to the purpose that this market serves, namely restoring the frequency on the grid
when imbalances occur, using the load as an explanatory variable is non-logical. The
explanatory variable that is used is the forecast error, both for load as for renewable
production, as these forecasts are most likely to cause imbalance that has to be restored
by the Secondary Reserve market. The second analysis is to check if the time of the day
is a good explanatory variable for the amount and/or price. The third analysis checks to
what extent the first value of a quarter is explanatory for the rest of that quarter. The
time instant quarter is chosen as the Secondary Reserve market is cleared per quarter.

As said, the factor that is expected to be most explanatory for the amount of im-
balance is the height of the forecast error. The forecast error in figure 4.12 is a sum of
four factors. The assumption is made that most error in plant production is caused by
renewable plants - for the Netherlands that is solar and wind. So, the difference between
the total forecast of solar, onshore wind, and offshore wind and the actual production
by those production types is calculated. From this amount, the load forecast error (fore-
casted load minus actual load) is subtracted. The load forecast error is subtracted from
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the production forecast error, because when the load is higher than forecasted, but the
production is also higher than forecasted, this has an equalizing effect. The calculation
of the forecast error is visualized in figure 4.12.

Figure 4.12: Calculation of the forecast error

The total forecast error per quarter is compared to the average amount sold on the
Secondary Reserve market and visualized in figure 4.13. A number of observations can
be made from this graph. In the first place, there’s no real correlation between the
forecast error and the amount traded on the Secondary Reserve market. A correlation is
namely always linear, and the data points are spread in a circle or star shape. The second
observation is that the amount traded on the Secondary Reserve market is usually in the
hundreds of megawatts, but the forecast error is in the thousands of megawatts. The last
observation is that the forecast error is usually positive, whereas the amount traded on
the Secondary Reserve market is more equally distributed between positive and negative.
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Figure 4.13: Relation between forecast error and amount traded on Secondary Reserve
market. Data is for 18-07-2015 till 18-07-2016 and measured per 15 minutes

The first observation, which is that there is no correlation between the forecast error
and the demand on the Secondary Reserve market, is valuable to analyse further as this
contradicts with the hypothesis that the forecast error creates imbalance. Therefore, the
next step is to analyse if the time of the day is relevant for the amount of imbalance.

To check if the time of the day has a relation with the amount traded on the Se-
condary Reserve market, a graph of the mean amount traded on the Secondary Reserve
market per minute of the day is made. This means that for every first minute of every
day between 18-07-2015 till 18-07-2016 the mean of the traded amount is calculated.
Then the mean of every second minute of every day in the same period and so on. As
there are 1440 minutes in one day, there are 1440 means calculated and visualised in
figure 4.12.
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Figure 4.14: Average amount traded on the Secondary Reserve market per minute of the
day, for 18-07-2015 - 18-07-2016

Figure 4.14 shows that the amount traded on the Secondary Reserve market is on
average mostly not equal to zero. This is not what would be expected of this market.
The expectation would be that it is equal to zero for a large number of data points, as
the amount of imbalance is caused by unpredictable events with an equal chance of pos-
itive or negative imbalance. Moreover, there is a pattern noticeable, especially between
23:00 and 04:00. The pattern is an oscillating behaviour. This is an indication that the
time of the day has an influence on the amount traded on the Secondary Reserve market.

The same process as used for the Day-Ahead market is applied for the secondary re-
serve market. There are 1440 minutes in one day, which means that 1440 variables need
to be created that have either value 1 or 0. However, 1440 dummy variables in SPSS
is too much for the computational means available during this research. Therefore, the
analysis for the influence of the time of the day is done per 15 minutes, as the Secondary
Reserve market reimbursement is also done per 15 minutes. This means, as there are 96
quarters in a day, that 95 dichotomous variables are created.

The results of these regression analyses are shown in table 4.9. This table shows
that a regression model is not a suitable method for forecasting the Secondary Reserve
market, as the explained variance is at maximum 10,2%. Moreover, none of the models
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incorporate all 95 quarter-variables, which indicates that time of the day is not a suitable
explanatory variable in a regression analysis.

Explained Explanatory Explained Variables
variable variables variance included
Ramp-up power Quarters(95) 6,6% Quarters (64)

RPFE, LFE, TFE RPFE, TFE
Ramp-down power Quarters(95) 7,8% Quarters (76)

RPFE, LFE, TFE RPFE, LFE
Ramping power Quarters(95) 10,2% Quarters (67)

RPFE, LFE, TFE RPFE, LFE
Ramp-up price Quarters(95) 8,2% Quarters (61)

RPFE, LFE, TFE RPFE, TFE
Ramp-down price Quarters(95) 1,8% Quarters (24)

RPFE, LFE, TFE RPFE, TFE

Table 4.8: Overview of explained variance by regression model for different aspects of
Secondary Reserve market. RP = Renewable Production, L = Load, T = Total, FE =
Forecast Error

As the explained variance in the regression analysis is too low to use for the trading
algorithm, another method is necessary to decide whether or not to trade on the Secon-
dary Reserve market. This method is to use quantiles to decide per quarter per day of
the week to trade - or not to trade. In the trading algorithm, the forecasted values of the
Secondary Reserve market must be compared to the Day-Ahead market, in order to be
able to make a decision to bid on which market. This is done for the demand and for the
price. For the quantiles, a probability must be chosen. This probability is set at 70%,
as this is roughly the same certainty as the regression model used for the Day-Ahead
market. The results of this analysis can be found in Appendix II. These values are used
for the trading algorithm.

4.4 Conclusion
The goal of this chapter was to give an overview of the Dutch electricity markets, evalu-
ate which of those markets are accessible for local stored electricity, and last, if and how
the accessible markets can be forecasted.

There are six Dutch electricity markets. The futures market, traded upon years in
advance, is not considered in this research. The other five markets are all designed for
a different purpose. The first (meaning the earliest to trade upon) is the Day-Ahead
market. As the name implies, trading on this market can be done till 12:00 on the

72



day before delivery. Thereafter, the Intra-Day market is traded upon. On this mar-
ket, trading can be done till 5 minutes before delivery. The trading on the Intra-Day
market takes place mostly via bilateral contracts. After these markets, there are three
markets, all operated by TenneT, designed to keep the electricity grid balanced. The
Primary Reserve market is cleared once per week, meaning that bidding on this mar-
ket means being able to supply primary reserve capacity for one week. The primary
reserve capacity is designed to maintain an equal frequency throughout continental Eu-
rope. There are two auctions to ensure sufficient primary reserve capacity. The first
auction is shared with the German TSOs, and the second is a separate Dutch auction.
The reimbursement on this market is for having a certain amount of capacity ready at
all times during that specific week, but there is no reimbursement for supplied electricity.

If the frequency is not restored automatically or by the primary reserve capacity, the
secondary reserve capacity restores the frequency back to 50 Hz. The Secondary Reserve
market is operated by TenneT and is only meant for the Netherlands. There are two
possibilities to trade on this market. The first is having a contract which obliges a party
to offer a certain amount of capacity. These parties receive a reimbursement for that
capacity, and for the supplied electricity. The other option is to offer capacity whenever
a party wants to. These parties only receive reimbursement for the supplied electricity.
The last reserve mechanism in the Netherlands is the tertiary reserve capacity, also re-
ferred to as emergency-power. This market is the most non-transparent of all markets.
There is no official data known about this market about reimbursements. It is however
clear that TenneT claims complete access to the capacity, which makes it impossible to
combine with the value for the DSO.

Two of these five markets are analysed further, being the Day-Ahead market and
the Secondary Reserve market. The other markets are rejected for trading with storage
units and therefore exempted from further analysis. The Intra-Day and Tertiary Reserve
market both have insufficient supply of data to analyse trends on these markets, and
the other markets showed more potential in terms of expected revenue. The reason for
rejecting the Primary Reserve market is that one of the prerequisites states that the
offered power is for both ramp-up and ramp-down demand, creating the necessity for
storage units to be ready for both types of demand. The impact of this is that only
half of the capacity of storage units can be used, as the units should be able to both
deliver as store electricity at the same time. This reduction of capacity, combined with
the absence of data on demand per week for ramp-up or ramp-down (reimbursement is
for offered capacity, not for supplied electricity), leads to the conclusion that this market
is not attractive for local storage units.

The Day-Ahead market can be forecasted quite well using a regression model. Ex-
planatory variables in this model are the Dutch forecasted residual load, the German
forecasted load, the German forecasted residual load, and a monthly variable to cope
with seasonal effects. This model explains 66% of the variance. Using weekdays as an
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input instead of months has significantly less explained variance (39%), and using week-
days as an addition to the month-model didn’t have an increase large enough to consider
making the trading algorithm more complex.

The validation of the regression model indicated that the regression model is valid
for the purposes of this research. The of the model residuals reflect a normal distribu-
tion well. The cross-validation executed for the months July, August, and September
2016 indicated that the regression model forecasts the electricity prices too high. This
is an error to be accounted for when designing an algorithm to be used in a real trading
environment. The values used to forecast the electricity prices do however still explain
55% of the variance, and have a primarily one-sided bias, meaning that they can still be
used for the purpose of this research, namely getting an indication what profit can be
made by trading on electricity markets with local electricity storage.

The Secondary Reserve market is attempted to forecast using regression analysis
with as explanatory variables the load forecast error, renewable production forecast
error, total forecast error, and the time of the day. However, these explanatory variables
at best reach 10% explained variance. Therefore, this market is analysed using quantiles
per quarter of the day. These values are used for the trading algorithm.
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5 | Value of trading with local
storage

The previous chapter identified the Day-Ahead market and Secondary Reserve market as
being the most suitable markets for trading, using local stored electricity. This chapter
takes that information and the forecast formulas/values and transforms them to a trading
algorithm. Then, this trading algorithm is tested on the same dataset that was used to
determine these forecasting elements. In order to check if the trading algorithm is not
only suitable to use for that specific time period (18-07-2015 - 18-07-2016), it is tested
on a couple months more. This assesses the value of trading with local storage. The
validation of the R-model is done in this chapter, but the verification can be found in
Appendix IV.

5.1 Conceptual design of trading algorithm
This paragraph designs the trading algorithm for trading both on the Day-Ahead mar-
ket and the Secondary Reserve market. This means that a decision has to be made how
much capacity to offer on each market, and for what price. This decision becomes more
complex by the fact that the DSO has to be able to use the battery as well (see chapter
3, figures 3.5 and 3.7).

The general decision steps that have to be taken are shown in figure 5.1. The first
step is to check for ramp-down demand on the Secondary Reserve market. The second
step is to check for a negative price for that ramp-down demand. These two steps are in-
corporated in the algorithm first, because a negative imbalance price means that a party
can get paid to supply less electricity, or demand more electricity. In the case of local
storage, this means receiving reimbursement for charging the battery. This creates ’dou-
ble’ profit: first receiving reimbursement for charging the battery, storing the electricity
for a period of time, and then receiving reimbursement for supplying the electricity.

The next step in the trading algorithm is to use the regression values for the Day-
Ahead market and quantile values for the Secondary Reserve market and using those
values to compare expected prices on those markets. Obviously, if there is one market
with a significantly higher price than the other, all available capacity is bid on this mar-
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ket. If however the prices are within a certain range, it seems wise to spread the available
capacity over the markets, as the prices are subject to a certain level of uncertainty.

The last step is to check real-time if there is a negative price on the Secondary Reserve
market. As said, negative prices on that market create double profit and it is possible
to bid real-time on this market. This is however only possible if there is capacity left
from the bids that have already been made.

Step 1 Check for ramp-down demand on SR market
Step 2 Check for negative ramp-down price
Step 3 Compare DA-price, ramp-up price and positive ramp-down price
Step 4 Bid on markets with highest forecasted price
Step 5 On actual time of delivery: check for negative SR prices

Table 5.1: General decisions for trading algorithm. DA=Day-Ahead, SR=Secondary
Reserve

The five general steps in table 5.1 are translated into the conceptual scheme of the
trading algorithm. This is shown in figure 5.1. The first step of the scheduling algorithm
is to check if there are any PTU’s expected with ramp-down demand. If so, the next
check is if the price is then expected to be negative. If those PTU’s exist for the following
day, then buying (e.g. charging) is scheduled. As explained, this is the first step of the
trading algorithm as these moments cause double profit.
After the scheduling of ramp-down demand, or if no ramp-down demand is needed,
the scheme continues with forecasting the rest of the prices: Day-Ahead, and ramp-up,
and positive ramp-down prices. Then, using a yet to be determined buy threshold and
sell threshold, the amount of PTU’s to sell and PTU’s to buy are determined. Those
thresholds can be used later in this research to experiment with. The next step in the
bidding process is to determine the minimum of on one hand the PTU’s to buy plus the
ramp-down scheduled, multiplied by the efficiency of the system, and on the other hand
the PTU’s to sell plus the current charge in the battery. This minimum makes sure that
the buy (charge) minus the loss due to transforming is equal to the sell (discharge). The
minimum is then used to finalize the schedule, working from most profitable to least
profitable PTU’s (above/below the threshold).

During the day, there are some checks in order to make sure that the schedule can
always be followed. It could namely happen that a bid was placed, but that that bid
didn’t win because it was too high or too low. In this case, no trade takes place.
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Figure 5.1: Conceptual scheme for the scheduling element of the trading algorithm
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5.2 Implementing trading algorithm in R
The conceptual trading algorithm is implemented in R. This paragraph describes the
process of this implementation, in terms of input data, variables needed, the time in-
stant chosen, actions per time instant, and output of the model.

The input data and origin is shown in table 5.2. One thing that immediately stands
out is that the frequency of the data differs quite a lot. This creates the need for a
decision for a time instant to use in the model, and thereby having to transform some
variables to another frequency. The units are all based on Megawatt, which makes them
easier to use in the model.

Data Unit Data frequency Origin
Day-Ahead market Price: e/MWh Per hour APX/Eneco
Secondary Reserve market RU-price: e/MWh Per minute TenneT

RU-demand: MW
RD-price: e/MWh
RD-demand: MW

Load forecasts MW Per quarter ENTSO-E
(German & Dutch)
Renewable production MW Per quarter ENTSO-E
forecasts (solar,wind
onshore, wind offshore)
Day-Ahead forecasting [dmnl] Irrelevant This
values Research
Secondary Reserve [dmnl] Per weekday This
forecasting values per quarter research

Table 5.2: Input data for testing the trading algorithm (RU = ramp-up, RD = ramp-
down)

The variables created for the model and their use are shown in table 5.3. The table
indicates the type of variable and describes the function of the variable. The bid per-
centage is a constant that is used to adjust the bid from the forecasted market price.
This variable is only used for the Day-Ahead market. For buying on this market, the
bid is increased by this percentage, to increase the chance of placing a winning bid. For
selling on this market, the bid is decreased by this percentage. The buy threshold and
sell threshold are variables that indicate the maximum buying price and the minimum
selling price. These are typically variables to test the model with. Then there are four
variables rewritten at the beginning of each day. These variables are used to indicate
for both markets at which quarter that day there will be electricity sold or bought. The
decision logic for these variables is described in figure 5.1.
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Variable name Variable type Description
BidPercentage Constant Margin that can be used to adjust the bid

from the expected market price in order to increase
chance to win bid

BuyThreshold Constant Maximum price to buy electricity
Charge Array(35232) Charge of the battery per quarter
DAbuyvector Array(96) Array rewritten each day when to buy

on Day-Ahead market
DAsellvector Array(96) Array rewritten each day when to sell

on Day-Ahead market
Efficiency Constant Battery-system overall efficiency
ForecastMatrix Matrix Matrix containing forecasted values for

(35232x6) both markets
MonthIndices Array(12) Array with the monthly indices for the

price-forecast of the DA market
PriceAmountMatrix Matrix Matrix containing all real values for

(35232x10) both markets
Profit Array (35232) Profit made by trading
SellThreshold Constant Minimum price to sell electricity
SRbuyvector Array(96) Array rewritten each day when to buy

on Secondary Reserve market
SRsellvector Array(96) Array rewritten each day when to buy

on Secondary Reserve market

Table 5.3: Most important variables in the trading model

5.3 Running and testing the algorithm
This paragraph gives an overview of the designs of the experiments that are run with the
trading model, and use the outcomes of those experiments to verify the working of the
model. There are four constants in the model that can be adjusted: the bid percentage,
the buy threshold, the sell threshold, and the efficiency of the battery. This last variable
is used as a constant in the model. The experimental set-up for these variables is given
in table 5.4. The model is checked on logical outcomes in terms of profit and the charge
profile of the battery.

The complete overview of the experiments can be found in Appendix III. The most
important results are shown in this paragraph. The first observation from the results of
the experiments is that the bid percentage has a strong influence on the amount of bids
that are accepted. This also significantly increases the profit made in one year. The
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Constant Low Medium High
Bid percentage [%] 0.8 1.0 1.2
Buy threshold [e/MWh] 15 20 30
Sell threshold [e/MWh] 30 35 45

Table 5.4: Design of experiments to run with the model

buy threshold increases the profit made in one year as well, but does not increase the
amount of bids per year. The sell threshold hardly has any influence on the profit nor on
the accepted bids. The maximum profit that can be made in one year with this trading
algorithm is e54.386. With the scenarios tested, the maximum profit occurs when the
bid percentage is on 1.2%, and the buy- and sell-threshold on respectively e15/MWh
and e30/MWh.

When the three tested constants in the model are all on their lowest value as shown
in table 5.4, the model shows a difference in number of trades per month and therefore
profit per month. In the months January till June, the number of trades significantly
increases and therefore the profit increases. This effect is either caused by the low bid
percentage or by the low buy threshold, as increasing the sell threshold has no significant
influence on the number of trades executed throughout the year.
Increasing the bid percentage has a strong influence on the behaviour of the model. The
higher the bid percentage, the more trades are executed in the year and the more profit
is made. In other words, if the bids have more safety margin to increase the chance of
being a winning bid, the more trades are indeed winning.
If the buy threshold is increased to medium, the seasonal influence on the number of
trades is still present, but less compared to the all-low scenario. When the buy threshold
is increased to high, the seasonal influence is hardly present. In other words, if the mi-
nimum buying price is high enough, the seasonal influence is decreased and the number
of trades throughout the year is increased, generating more profit. This is probably
caused by the decision logic, that prioritizes charging the battery using the Secondary
Reserve market. On this market, the profit increases during charging due to the negative
electricity price. Therefore, if the buy threshold, which is used for positive electricity
prices, is increased, there is less electricity bought on the Day-Ahead market and more
electricity ’received’ via the Secondary Reserve market.
The sell threshold has no influence on the model behaviour compared to the all-low
scenario. This indicates that the minimum price for scheduling selling is less influen-
tial than the maximum price for scheduling buying for the profit made. This could be
explained by the bid percentage. The experiments run for testing the sell threshold all
use the same bid percentage, namely the low bid percentage. This percentage decreases
the height of the bids on the market. This bid percentage probably reduces the effect of
changing the sell threshold, which is why the results are comparable.
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5.4 Validation of the model
The validation of the model is aimed at determining that the model reflects the reality
of a trader in the Netherlands. This means that the variables used to forecast the prices
have to be available at time of trading and that the efficiency losses are representative
for a real battery system. The decision logic and trading algorithm itself allow room
for improvement, and suggestions to act on these points of attention are included in the
conclusion paragraph under recommendations. This paragraph is checking the circum-
stances created in the model and compares them to a real trading environment.

The first step is to check the constants in the model. The efficiency of the battery
system is set at 70%. This is caused by losses in the battery system. First, the alter-
nating current is transformed to direct current, as a battery can only be charged with
direct current. Then the electricity is stored for an unknown time, and then the elec-
tricity has to be converted to alternating current again to be supplied to the grid. If
at each of those steps there is a loss of 10%, the total efficiency comes down to 72.9%,
which is rounded to 70% to be safe. The capacity and power of the battery in the model
is 10 MWh and 4 MW. As it is not clear in what neighbourhoods trading is most ben-
eficial, an average of all five neighbourhoods was taken. The average capacity installed
in the five neighbourhoods in this research is 291 kWh. Assuming 35 neighbourhoods
to be equipped with storage units, the total capacity available comes to approximately
10 MWh. All neighbourhoods have a storage unit with a power of 100 kW, which is ap-
proximately 35% of their capacity. For the total capacity of the 35 neighbourhoods, this
would be 3,5 MW. However, the model has difficulties with using the 0.5 MW, which is
why the power was increased to 4 MW. The rest of the constants are part of the trading
algorithm and can therefore be used for optimizing the financial result of trading, but
are not part of this validation.

The next point of validation is the forecasting element of the algorithm. If the model
represents reality well, the input for the forecasted prices should be available at time of
bidding. The forecasting of the Day-Ahead market is done on the basis of monthly indi-
cators, and on the Dutch and German load forecasts. These load forecasts are provided
by ENTSO-E and are known a week in advance. The trading on the Day-Ahead market
can be done till 12:00 AM on the day before delivery. It can be concluded that the load
forecasts are available at time of bidding.

The last part of the validation concerns the beta-values. This is where a limitation
of the research becomes clear. The beta-values and monthly indicators are calculated for
the period 18-07-2015 till 18-07-2016. The trading is done in the same period. Of course,
it is not possible for a trader to calculate the beta values of prices yet to come. The
beta-values were validated in the validation of the regression analysis, but this remains a
limitation. This choice was made in order to have a consistent time frame for which this
research presents prices, national load characteristics, and neighbourhood load charac-
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teristics. This neighbourhood load dataset is the first constraining factor. The dataset
that Stedin made available for this research is from 01-01-2016 till 01-10-2016. The sec-
ond constraining factor is that since 01-01-2017, Stedin is no longer part of Eneco Group ,
who provided the data of the Day-Ahead market. Therefore, the time period chosen was
the only possible time period for analysing all the data over an almost equal time period.

5.5 Value per neighbourhood
The value of trading is determined in the model for a pool of storage units, but per
neighbourhood this value has to be determined. There are four factors to take into ac-
count in this determination. First, the seasonal influence that is or is not present in the
neighbourhood. Second, the hours per day that the DSO would need the storage unit.
Third, the presence of difference between weekdays and weekend. Fourth, the different
capacities of storage units per neighbourhood. This is summarized per neighbourhood
in table 5.5.

Nbh Seasonal DSO usage Weekdays DSO usage
influence [Hours/day] vs weekend [%]

1 Yes 4.75 No 10%
2 Yes 5 No 11%
3 No 8.5 No 71%
4 No 8.3 Yes 49%
5 No 9.4 Yes 55%

Table 5.5: Neighbourhood characteristics used for determination of value of trading; see
chapter 3.2 for origin of these characteristics (Nbh = Neighbourhood).

For neighbourhood 1, there is a seasonal influence present. This means that for three
months per year, the DSO would need this storage unit for 4.75 hours per day. In the
other months, the storage unit can be used completely for trading. In the three months
that the DSO needs the storage unit, it is assumed that the hours needed for charging
the storage unit is equal to the hours that the DSO needs it. Therefore, in 25% of the
year, the storage unit can not be used for 9,5 hours per day, which is 40%. This results
in a total usage by the DSO per year of 10%.
For neighbourhood 2, there is also a seasonal influence present. This means that for
three months per year, the DSO would need this storage unit for 5 hours per day. The
same line of reasoning as for neighbourhood 1 is applied here. Therefore, in 25% of the
year, the storage unit can’t be used for 10 hours per day, which is 42% of the day. This
results in a total usage by the DSO per year of 11%.
For neighbourhood 3, there is no seasonal influence present. There is also no significant
difference between weekdays and weekend. Therefore, the DSO would need this battery

82



every day of the year for 8,5 hours. If the hours for charging are also included, the
storage unit can’t be used for 17 hours per day. This means that for 71% of the time,
the storage unit is needed completely for the DSO.
For neighbourhood 4, there is no seasonal influence present. However, there is a signif-
cant difference between weekdays and weekend. This means that the DSO needs the
storage unit every weekday of the year, for 8.3 hours per day. Therefore, in 71% of the
year, the storage unit can’t be used for trading for 16.6 hours per day, which is 69% of
the day. This results in a total DSO usage per year of 49%.
Neighbourhood 5 also has no seasonal influence and a significant difference between
weekdays and weekend. The DSO would need the storage unit 71% of the year, for 18.8
hours per day, which is 78%. This results in a total DSO usage of 55% per year.

These values are used to calculate the 10 MWh trading value to the values for the
individual neighbourhoods. This is visualized in table 5.6. The trading usage is equal to
1 minus the DSO usage. The storage lifetime used throughout this research is 10 years.

Nbh Capacity Trading Value Value
[kWh] availability [e/year] [e/ storage lifetime]

1 340 90% 1.664 16.640
2 288 89% 1.394 13.940
3 355 29% 559 5.590
4 242 51% 671 6.710
5 232 45% 567 5.670

Table 5.6: Trading values per year and per storage lifetime for the different neighbour-
hoods (Nbh = Neighbourhood).

5.6 Conclusion
This chapter described the design of the trading algorithm and the process of imple-
menting the trading algorithm in R in order to test it. The basis of the design comes
from chapter 4, which has designed methods to forecast the electricity markets.

With the trading algorithm designed in this research, the profit that can be made
with a storage unit of 10 MWh and 4 MW with trading on both the Day-Ahead market
and the Secondary Reserve market is calculated at approximately e54.000 per year. The
profit is maximized when the thresholds for buying and selling are relatively low, namely
respectively e15 and e30. The margin used for adjusting the bid is at 1.2, meaning a
20% deviation from the expected market price in order to have more chance of placing
a winning bid. With these settings, the number of trades executed in one year is also
higher compared to other model settings. This indicates that the most profit is generated
when the number of trades is attempted to be maximized, instead of trying to maximize
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the profit made per trade.

The trading algorithm is designed as follows. The first step in the algorithm is to
check for a negative prices on the Secondary Reserve market, as that provides for a ’dou-
ble’ profit. Then the other prices are forecasted. If the forecasted price is high enough
to sell or low enough to buy, bids are placed on the Day-Ahead market. The model then
checks if the bids was equal to or higher than the market price for buying electricity, or
if the bid was equal to or lower than the market price for selling electricity.
The testing of the trading algorithm indicated that the profit increases when the num-
ber of trades per year are maximized, and not when the profit per trade is increased.
Therefore, the most profit is made when the thresholds for buying and selling are low,
but the safety margin that is used for placing the bids is high. This creates an increase
in trades per year and therefore creates an increased profit.

The value of trading per year per neighbourhood ranges from e1.664 in neighbour-
hood 1 with 100% residential connections to e567 in neighbourhood 5 with 6% residential
connections. The difference in trading value between neighbourhoods is caused by the
necessary usage by the DSO during peak demand. In residential neighbourhoods, this
peak demand has a clear peak during the day and a clear seasonal influence. The neigh-
bourhoods with dominantly residential connections are therefore able to trade 90% of
the time. The dominantly non-residential neighbourhoods have a longer peak duration
and no seasonal influence, but do have a significant difference between weekdays and
weekend. This means that the storage units in those neighbourhoods are available for
trading only 50% of the time. The storage unit in neighbourhood 3, with 67% residential
connections, is available for trading only 29% of the time. This low availability is caused
by a long peak duration, no seasonal influence, and no clear difference between weekdays
and weekend.
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6 | Conclusions and recommenda-
tions

This chapter gives an answer to the research questions. First, the final conclusions of
the research are given. Then, the recommendations for DSOs and for further research
are discussed. Thereafter, the limitations of this research are given. The last paragraph
of this chapter is a discussion on the uncertainties in this research.

6.1 Conclusions
A strong increase in electricity demand is envisaged due to usage of electricity for heating
and mobility. This will not only lead to an increase of the overall load on the grid, but
also to an increase of peak demand. Stedin, as distribution system operator, expects the
substations to be the first elements in the network to have insufficient capacity to cover
these increased peak demand. High investments will become necessary to replace trans-
formers in these substations to increase the capacity to required levels. An alternative
could be to install storage units that lower the peak demand on the current transformers.
By doing so, they can create the possibility to defer investments in new transformers
for a certain period of time. This alternative has led to the main research question, being:

"What is the value of low-voltage electrical energy storage for a distribution
system operator?"

First investigations into this research question have pointed out that the storage fa-
cilities are not constantly required for peak shaving and hence could have an additional
value for e.g. trading. Based on these findings three research subquestions are defined,
being:
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1. What is the value of low-voltage electrical storage when only used to
defer network investments by the DSO?

2. On which markets is it possible to trade electricity with low-voltage
electricity storage unit?

3. What is the value of trading on these markets with low-voltage electric-
ity storage, constrained by the usage by the DSO?

Before answering the main research question first the three subquestions will be
elaborated upon and conclusion will be drawn.

Deferral of investments To determine the value of deferral of investments the defer-
ral time has been estimated. To this end first the existing demand pattern and seasonal
influence of five different neighbourhoods have been analysed. Neighbourhoods that vary
from 100% residential to nearly 100% non-residential. From this analysis it can be
concluded that the substations in these neighbourhoods run at this moment
at 50% to 75% of their maximum capacity and still have spare capacity for
future growth in electricity demand. This conclusion does not only apply to the
substations in the five neighbourhoods in this research, but to nearly half (approx. 45%)
of the 9000 substations run by Stedin.

Using the growth scenarios as defined by Stedin, it is expected that replacement
of transformers has to be done between 2022 and 2023 for the dominantly residential
neighbourhoods (1, 2 and 3) in this research and between 2026 and 2032 for the domi-
nantly non-residential neighbourhoods. Based on the existing demand pattern and peak
pattern per neighbourhood the deferral time is then calculated using the same growth
scenarios. This leads to the conclusion that the deferral time varies for the
different neighbourhoods from 2 years at the lower end to a maximum of 7
years (see table 6.1). The high value for the non-residential neighbourhood (5) can be
explained by the fact that replacement only has to take place between 2029 and 2032,
which introduces larger uncertainties within the scenarios used.
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Value of low-voltage electricity storage for DSO
Nbh Percentage Deferral time Max. Battery

residential Savings costs
1 100% 3-4 years e31.698 e121.800
2 99% 4-5 years e37.907 e107.420
3 67% 2-3 years e24.868 e126.000
4 26% 2-5 years e37.907 e94.360
5 6% 3-7 years e24.342 e91.560

Table 6.1: Value of low-voltage electricity storage for the DSO (Nbh = Neighbourhood).

The deferral time is the basis for the calculation of the value of deferring the invest-
ment in new transformers. The costs for such replacement are estimated at e50.000
per substation, as we are talking of replacement by larger transformers. Using the NPV
method the calculated values for deferring these investments amount to a maximum of
e24.000 to e38.000 (rounded figures). The lower end of the values is significantly lower
due to shorter deferral times and lower discount rates. Regadering subquestion 1,
the conclusion can be drawn that the value of deferral of investment is sub-
stantial, but lower than the investment costs. Using storing facilities solely for
deferral of network investment does not lead to a positive business case (details per
neighbourhood are given in table 6.1.). Other values are required to fill the gap.

Electricity trading markets The second research subquestion is aiming at determin-
ing the accessible markets for storage units to get involved in trading on the electricity
markets. There are six electricity trading markets in the Netherlands of which four are
considered not to be accessible or attractive for trading with local storage capacity.
The first market that can be rejected is the Future market, as on this market elec-
tricity is traded years in advance which is not relevant for this research. Therefore, this
market is not analysed further.
Local storage units comply with the prerequisites for trading on the Intra-day mar-
ket, but trading on this market is mostly done by bilateral contracts, which limits the
availability of data. As far as data is available it indicates that prices on this market
are comparable with prices on the Day-Ahead market, but that the volume of electricity
traded per month is lower. For these reasons this market is not considered further and
the focus has been on the Day-Ahead market.
One of the main prerequisites for trading on the Primary Reserve market is the
minimum power offered of 1 MW. It is however allowed to offer power on this market
with a ’pool’ of (storage) units. Therefore this market in principle offers opportunities.
The reason for rejecting this market is that one of the other prerequisites states that
the offered power is for both ramp-up and ramp-down demand, creating the necessity
for storage units to be ready for both types of demand. The impact of this is that only
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half of the capacity of storage units can be used, as the units should be able to both
deliver as store electricity at the same time. This reduction of capacity, combined with
the absence of data on demand per week for ramp-up or ramp-down (reimbursement is
for offered capacity, not for supplied electricity), leads to the conclusion that this market
is not attractive for local storage units.
For the Tertiary Reserve market the limiting prerequisite for storage units is that the
offered capacity must be available at all times, as this market provides the last available
power before the grid goes down. As the business model for this research also consist of
a value for the DSO, and TenneT claims exclusiveness over the tertiary reserve capacity,
this market is considered inaccessible.

Having rejected four electricity markets leads to the conclusion for re-
search subquestion 2 that out of the six markets two are considered accessi-
ble, being the Day-Ahead market and the Secondary Reserve market.

Trading on the Day-Ahead market takes place on the day before delivery, a short
term and volatile market. The prerequisite for this market is that the minimum power
offered is 100kW. This prerequisite has been taken into account in the design of the
storage units and the costs in table 6.1 represent the costs of the increased power of the
storage units.
The other accessible market is the Secondary Reserve market. This market is op-
erated by TenneT with the purpose to balance the grid when imbalance occurs and the
primary reserve capacity proves to be insufficient to restore the balance. Trading on the
Secondary Reserve market is also possible without a bidding-contract, meaning that a
trader can trade at any given time.

Value of trading with local storage units The third research subquestion concerns
the value of trading with local storage units. In order to answer this question insight
is required in the predictability of the mentioned two accessible markets. The regres-
sion model developed for forecasting the electricity prices on the Day-Ahead market
include four different explanatory variables. These variables are the Dutch forecasted
residual load, the forecasted German load, the German forecasted residual load and
monthly indicators for seasonal influences.From this test is can be concluded that
the developed model explains 66% of the variance and is considered accurate
enough for the purpose of this research. The model was also tested with indicators
for different weekdays, but the monthly indicators proved to be a better time-component
to incorporate in this model.
The Secondary Reserve market is difficult to explain by the variables used in this re-
search. The nature of this market is to balance the grid after an imbalance has occurred.
It was assumed that the forecast error would be a good explanatory variable for the vol-
ume that is traded on this market. The forecast error however proved to have no clear
relationship with the amount traded on this market. Therefore, weekly trends on this
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market are used to determine the prices that can be obtained. This is considered a valid
approach as bidding on this market is not done on contracts in advance, but traders can
accept prices at any given time.

An algorithm was designed for trading on both the Day-Ahead market and the Se-
condary Reserve market. This algorithm uses the outcome of the regression analysis to
forecast the Day-Ahead market, and uses the weekly trends of the Secondary Reserve
market. The algorithm is tested in R on real electricity prices in a time span of one
year (18-07-2015 till 18-07-2016) using a 10 MWh and 4 MW battery. This capacity and
power reflect 35 neighbourhoods being equipped with a storage unit that can be used
for trading.

The model is used to calculate the possible trading value for the different neighbour-
hoods in this research, taking into account the lifetime of the batteries that is set at ten
years and the availability of battery capacity after usage of the batteries by the DSO
for peak shaving (expressed in a percentage trading availability, see table 6.2). From
these calculations it can be concluded that using storage units for trading
on the electricity market does add value to the business case ranging from
e5.600 to e16.600 (details per neighbourhood are given in table 6.2). As expected
the neighbourhoods with a high share of residential connections have the highest trading
values, as load profiles for these neighbourhoods offer the best possibilities for trading,
having a clear peak demand during the day and a clear seasonal influence.

Trading value of low-voltage electricity storage
Nbh Percentage Trading Trading

Residential availability value [e]
1 100% 90% 16.640
2 99% 89% 13.940
3 67% 29% 5.590
4 26% 51% 6.710
5 6% 45% 5.670

Table 6.2: Trading values over storage lifetime for the different neighbourhoods (Nbh =
Neighbourhood).

Concluding this part of the research it should be kept in mind that DSOs in the
Netherlands are, by law, not allowed to enter into production, trading or delivering of
electricity. Hence realising the calculated trading value requires a change in law or an-
other solution whereby a related party, that co-operates with the DSO, actually carries
out the trading. This legal aspect is not part of this research and is separated from the
value determination.
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Main research question Answering the main research question requires the deter-
mination of the total value that can be obtained by low-voltage electrical energy storage
facilities. The combined values that can be obtained are presented in table 6.3.

Combined value of low-voltage electricity storage
Nbh Percentage Max. Trading Total Costs

Residential savings [e] value [e] value [e] [e]
1 100% 31.698 16.640 48.338 121.800
2 99% 37.907 13.940 51.847 107.420
3 67% 24.868 5.590 30.458 126.000
4 26% 37.907 6.710 44.617 94.360
5 6% 24.342 5.670 30.012 91.560

Table 6.3: Trading values per storage lifetime for the different neighbourhoods (Nbh =
Neighbourhood).

From this table, it can be concluded that the overall value of low-voltage
energy storage is substantial, but does not yet outweigh the costs of these
storage units. At best, the benefits cover just below 50% of the investment costs. For
other neighbourhoods, this percentage can be even lower. In general, neighbourhoods
with a high percentage of residential connections offer the best possibilities to create
additional value on the electricity markets because of their load profile and hence offer
the best business case.

An important factor to be taken into consideration for the conclusion of this research,
as it may influence a future final outcome of the business case, is that this research did
not include other possible values of local electricity storage. There are two stakeholders
that were not included in this research that can benefit from these storage units.
The first would be the consumers. A trend that is visible in the Netherlands is an
increasing production of electricity by consumers, mostly by solar panels. One of the
characteristics of solar panels is that they have a peak production during the afternoon,
when demand is low, and during the summer months, when overall the consumption
of electricity is low (seasonal influence). It can therefore be expected that in the near
future the local production of electricity will outgrow the local demand for electricity in
the afternoon, starting in the summer months. As soon as this is the case consumers
can benefit from local storage if that storage is used to balance production and demand
on local scale.
The second stakeholder that can benefit from these storage units is the government (in-
cluding DSO). The storage units can contribute to this security by delivering system
services, as for example the so-called islanding of neighbourhoods. This islanding means
that a neighbourhood has sufficient own electricity (production) to be disconnected from
the main grid for a couple of hours. Storage units with the size as designed in this re-

90



search would be able to do so.

Conclusions regarding scientific contribution The scientific contribution of this
research lies on one hand in the development of a quantitative methodology for adjusting
the design of the storage unit to the load characteristics in a specific neighbourhood.
On the other hand, the scientific contribution lies in developing an methodology for
combined and related calculation of values created by both deferral of investment and
trading on electricity markets. This novel methodology is applicable for other benefits
of storage as well.

This research used actual neighbourhood load data to design the storage unit for
specific neighbourhoods, as previous research indicated that the different locations of
DERs in the grid significantly changes the benefits of those DERs. This research also
showed that different locations of storage units have significantly different benefits, us-
ing the ratio between residential and non-residential connections in a neighbourhood. It
can be concluded that the neighbourhoods used in this research differ in terms of peak
height, peak duration, and seasonal influence. The conclusions made regarding these
load characteristics of these neighbourhoods can also be used for the determination of
other benefits of local storage units, which can be found in figure 2.1.

The second contribution, being combining multiple views in order to determine the
monetary value of storage units, showed that it is possible to use a battery for multiple
purposes, thereby creating multiple benefits. Supported by the analysis of neighbour-
hood load profiles, it was shown that the usage by the DSO significantly differs per neigh-
bourhood, ranging from 10% to 71% of the time (see table 5.5). Therefore, the availabil-
ity for creating additional benefits also differs per neighbourhood. Neighbourhoods with
a higher share of residential connections have more availability for additional benefits
compared to neighbourhoods with dominantly non-residential connections. Moreover,
it was shown that multiple markets in the Netherlands are accessible for local storage
units, although the high market concentration reported by the European Commission
(2014).

The results of this research are also to be compared to results of other research used
to develop the scientific framework for this research. This means that the conclusions of
this research can strengthen or contradict conclusions from other research.

Zhang et al. (2010) concluded that the benefits of microgeneration in the grid dif-
fered per location (their research considered nodal pricing). Their conclusion is that the
biggest microgeneration-capacity should be located at the node with the highest long-
term nodal price. This long-term nodal price can be best explained as the extra costs
that occur due to earlier need for network reinforcement because of the addition of 1 kW
in demand. Their research therefore indicated that microgeneration has the most value
at locations in the network where reinforcement is most expensive.

91



This research is different, as DSOs in the Netherlands don’t use the nodal pricing method.
However, this research assumed that the reinforcement of the grid is equally expensive
for all neighbourhoods. Combining the conclusions of this research with the conclusions
of Zhang’s research, a DSO in the Netherlands could consider nodal pricing in order to
be able to better determine where storage units have the most value. This insight in
nodal prices doesn’t mean that a DSO has to change the current tariff structure, but is
meant for optimizing the value of the storage units.

This research relates to the research towards flexibility steering. Flexibility steering
is aimed at stimulating consumers (mostly by price incentives) to use electricity dur-
ing off-peak hours. Morshed (2016) came to the conclusion that flexibility steering can
postpone investments in the grid by up to 2 years. In this research, the postponement
comes to 2 to 7 years. However, this research used load growth scenarios developed by
Stedin, whereas Morshed’s research uses three load scenarios, being 0.35%, 1.5%, and
-1% increase per year. These scenarios differ from the growth scenarios used in this
thesis and are expected to be the explanation for the difference in deferral time between
this thesis and Morshed’s research.
Morshed’s research also states that "financial savings are more significant in areas where
congestion is occasional and temporary" (Morshed, 2016). This conclusion can be con-
firmed be this research by the trading values, which are highest in neighbourhoods with
dominantly residential consumers. These neighbourhoods have the shortest peak com-
pared to the other neighbourhoods. Moreover, they also have a clear seasonal influence,
which is absent in the other neighbourhoods. Morshed’s research also considers these
economic aspects, which explains this relation.
However, when the value for the DSO is considered, this research comes to a different
conclusion. This research indicates that the value for the DSO is not necessarily related
to congestion being occasional and temporary. If only the value of deferred investment is
compared to the investment costs of the storage unit, neighbourhoods with dominantly
non-residential consumers have the best business case.

6.2 Recommendations
Based on the outcome of this research, a number of recommendations can be made. The
first part of the recommendations are for the (Dutch) government and DSOs, and the
second part of the recommendations concerns further research.

The first recommendation is to be able to obtain and store data on load profiles in
the Netherlands. This research was constrained by the fact that limited data about load
profiles in neighbourhoods was available. Currently, only a few neighbourhoods in the
Netherlands are equipped with terminals that measure and store data about the load.
In other neighbourhoods, Dutch law forbids to do so. This data and neighbourhood
characteristics can contribute to optimizing the operations of a DSO, but can also con-
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tribute to scientific development. As far as changes in law are required, it should be
kept in mind that changing law takes multiple years.

The second recommendation for DSOs is to monitor the prices of batteries and the
prices of electricity. At this moment, batteries are still too expensive to use for the
purposes as described in this research, but in the future these prices are expected to
decrease considerably. DSOs should start monitoring these prices now to get insight in
the developments of these prices. Moreover, if a DSO wants to start a pilot with local
storage units, a price level of batteries for the start of this pilot should be defined. If
the DSO intends to develop local storage as a mean of deferral, a pilot project should be
defined and developed for the most beneficial neighbourhoods to gain experience with
local low-voltage electricity storage, that can be started as soon as certain conditions are
met (e.g. price level batteries). For the value of trading, the current electricity prices
are used, but prices could change due to the changes in the electricity sector because
of the ongoing transition towards sustainability. Changes in these electricity prices also
change the value of trading with storage units.

Further research should focus mainly on two aspects. The first aspect is that there
are additional values that can contribute to the business case of local electricity storage.
As described before, these additional values can be for consumers and/or for the gov-
ernment. Further research should be aimed at assessing these values and the possibility
to combine these additional values with the values presented in this research. For exam-
ple, one value for consumers can be to store their produced electricity during moment
of surplus, so consumers can use this electricity later. However, if the storage unit is
completely filled for the expected usage by the DSO for peak demand, it is not possible
to store the surplus of locally produced electricity. The additional values for consumers
and government could create a more feasible business case. This further research should
include the value of local electricity storage in the transition from using both gas and
electricity to using only electricity, and in projects such as energy-neutral households
("Nul op de meter").

The second element for further research is the improvement of the decision logic
behind the trading algorithm. The decision logic in this research is suitable for trading
on the electricity markets, but alternatives for this trading algorithm can be made and
tested in order to determine the optimal value of trading with the storage units. There
are a two main proposals for modifications of the trading algorithm on the basis of this
research. The first modification is to change the priority that is given to either of the
two accessible markets. The current algorithm gives priority to the Secondary Reserve
market, but the priority could also be divided between the two markets or be given to
the Day-Ahead market. The second modification is to change the forecasting method
of the markets, especially the Secondary Reserve market. The current trading for the
Secondary Reserve market is based on weekly trends, which could be improved by more
complex mathematical methods for forecasting.
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6.3 Limitations
This research has a number of limitations because of the chosen methods and the as-
sumptions that had to be made. The available data was also a limiting factor for this
research, which is already transformed to a recommendation for DSOs (first recommen-
dation in the previous paragraph).

The first limitation of this research concerns the validation of the model for testing
the trading algorithm. The current model is trading on the Day-Ahead market in the
time period 18-07-2015 till 18-07-2016, which is the same time period for which the re-
gression analysis of the Day-Ahead market was conducted. The outcome of the model
could be more valid if the model trades on the Day-Ahead market for a different period
than for which the regression analysis is conducted. This choice was made because the
available dataset for the load profiles was from 01-01-2016 till 01-10-2016. As the value
of trading is constrained by the DSO usage, and the DSO usage is determined by those
load profiles, the choice was made to model the trade algorithm in the same time period.
The limitations on the validation were reduced by cross-validating the results of the
regression analysis for a different time period of three months.

The second limitation of this research concerns the assumption that the load in-
creases over time, but that the load profile remains the same. The load profile could
change because of an increase in use of electric vehicles and the upcoming trend to use
heat pumps instead of natural gas for heating, but also because of the increasing local
production by solar panels. The assumption for constant load profiles was made due to
the scope of this research. Determining the development of load profiles in the future
are a study in itself. The dataset concerning the load profiles is relatively new to the
scientific field, which means that research based on data measured at this level in the
electricity system (e.g. neighbourhood level) is not a widely investigated field. There-
fore, forecast of the load profiles on neighbourhood level is also not a scientific field that
could be used as a basis for this research.

6.4 Discussion on uncertainties
The results of this research are influenced by a number of assumptions that have been
made. This paragraph covers the most important assumptions and explains how changes
in these assumptions affect the result of this research.

As said, the main conclusion of this research is that the overall value of low-voltage
energy storage is substantial, but does not yet outweigh the costs of these storage units.
At best, these storage unit cover just below 50% of the investment costs, but projections
for future battery prices indicate that by 2025 the battery costs have declined sufficiently
for creating a break-even business case. This is an optimistic calculation for the benefits
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of storage. The values presented in table 6.3 are namely subject to a number of as-
sumptions. These assumptions influence the trading value, the DSO value (and thereby
the total value), and the costs. The assumptions that influence the conclusions of this
research are visualized in figure 6.1 and are covered in the remainder of this paragraph.

Figure 6.1: Overview of assumptions an their relation with the main conclusion of this
research

The DSO values are calculated from the highest possible deferral time. In chapter
3, the range for the deferral times per neighbourhoods is given. The purpose of this
research is to investigate if a business case is feasible in the most favourable scenario,
which is the reason for reporting the maximum values in this chapter. However, for
every year less deferral time, the DSO value decreases with approximately e2.500.

Another assumption is that storage units have a lifetime of ten years, and can consec-
utively serve two neighbourhoods. This means that the DSO-values for neighbourhoods
1 to 4 are doubled, as the lifetime of the storage unit allows to use that storage unit
two times. In neighbourhood 5, this is not feasible, as the highest deferral time in this
neighbourhood is already more than half of the storage lifetime, being seven years. If the
storage lifetime decreases, the value for the DSO and the trading value both decrease.
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The DSO value decreases by 50% if the lifetime of the storage is no longer sufficient
to be used two times. For trading, the benefits decrease linearly per year by e500 to
e1500. The exact decrease in trading value per neighbourhood can be found in table 5.6.

The DSO values are calculated using the NPV-method, which uses a discount rate.
The values presented in table 6.3 are determined with a discount rate of 10%. This
discount rate is common in the industry, but one could argue that a DSO has lower
discount rates as they are semi-governmental. If the discount rate is lowered to 5%, the
value for the DSO decreases. This has a major effect on the value for the DSO, espe-
cially since discounting has to be done every year. If the discount rate is decreases from
10% to 5%, the decrease in DSO value over a period of five years would be 21%. Over a
period of ten years, the decrease in DSO value because of this lower discount rate is 37%.

One important assumption for the trading value is that the DSO needs the complete
power and capacity of the battery from the day the storage unit is installed. In reality,
the peak gradually increases, meaning that in the first part of the deferral time the DSO
would not need the full capacity and power of the battery. This means that the value of
trading could be higher compared to the values shown in table 6.3.

In this research, the assumed grid investments are an average of the complete net-
work operated by Stedin. In reality, grid investments differ per neighbourhood. The
higher the grid investments, the more feasible the business case of the storage units.
The relation between grid investment costs and DSO benefit is linear, meaning that
twice the investment costs lead to twice the benefit for the DSO.

For the calculation of the investment costs the price of the battery is assumed. For
the calculation of the costs of the battery, the price level as observed in 2014 is used. As
said, the price of batteries is expected to decrease in the coming years, which will make
the business case for low-voltage electricity storage more feasible. A significant decrease
in battery prices justifies a re-assessment of the business case. Both industry and science
envisage a decrease in battery price by 2025 of approximately 50%, which is sufficient to
create a feasible business case for neighbourhoods 2 and 4. A decrease in costs of 75%
would be sufficient to create a feasible business case for all neighbourhoods.

Future electricity prices influence the trading value of storage units. As storage units
have to buy and sell electricity, the absolute height of electricity prices is irrelevant.
The volatility of the electricity price however is relevant. The higher the volatility, the
higher the difference between buy- and sell-prices, the higher the trading value of the
storage units. Volatility is expected to increase due to increased peak demand and local
production, which has a positive influence on the business case.

The last aspect to take into account is the speed of the energy transition. The effect
of the energy transition can have different effects on the business case of local storage
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units. On one hand, the energy transition is characterized by an increase in intermittent
renewable energy sources and an increased domestic utilization of electricity. This cre-
ates a more volatile production of electricity, and a more volatile demand for electricity.
This increases the trading value of the storage units, as the electricity prices can be
expected to be more volatile as well.
Another characteristic of the energy transition is the increased domestic production of
electricity. If the domestic production in a neighbourhood increases to a level that there’s
a regular surplus of electricity, the value of storage units for the DSO increases. The
storage units can namely be used in that scenario for avoiding having to transport the
surplus of electricity to the medium-voltage grid.
However, another trend that is visible is that consumers attempt to be more self-
sufficient. A number of companies have responded to this trend by offering domestic
electricity storage units. If more households install their own storage units, the benefit
for the DSO decreases, as the neighbourhood storage units then become redundant to
some extent. It is therefore unsure how the speed of the energy transition influences the
business case of the storage units.

Future research should focus on the reduction of mentioned uncertainties to come to
more valid estimates of the presented business case.
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8 | Appendix I: Verification and
validation of regression anal-
ysis

The goal of the verification of the regression analysis is to prove that the executed anal-
ysis was done right. This is done by explaining all the steps that have been taken during
the analysis, what programs were used, and which transformations of data had to be
done. Before the detailed description of the steps is given, it is worth mentioning that
every step in the analysis has been checked multiple times for modelling errors. Mod-
elling errors are after all the primary concern of verification. Also, the importing of data
in the different computer software has been checked for faults.

The first step was to receive the right data. The data necessary for this analysis
were the Day-Ahead price data, the Dutch load forecast, the Dutch renewable produc-
tion forecast, the German load forecast, and the German renewable production forecast.
Table 6.3 indicates where the data was retrieved, what the unit of measurement is, and
what the frequency of measurement is. The overview of the datasets in the table indi-
cates that the difference in measurement frequency of the datasets creates the need for
re-calculating the four latter variables.

Variable Source Measurement unit Measurement
frequency

Day-Ahead price APX/Eneco e/MWh Per hour
Dutch load forecast ENTSO-E MW Per quarter
Dutch renewable ENTSO-E MW Per quarter
production forecast
German load forecast ENTSO-E MW Per quarter
German renewable ENTSO-E MW Per quarter
production forecast

Table 8.1: Overview of data used for regression analysis
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Figure 8.1: Data streams for regression analysis

The second step was to load the data in R. R is an open-source software that is very
strong with statistics. In R, the four latter variables in the table above were transformed
to hourly averages. This was done by averaging the quarterly values. These values were
thereafter stored in a new Excel file and loaded into SPSS from that Excel-file.

In SPSS, executing a regression analysis can be done by the built-in function, found
under analyze > regression > linear regression. Under the Plots-interface the histogram
and normal probability plot can be selected. The Day-Ahead price is loaded in the de-
pendent variable, and the explanatory variables are loaded in the independent variables.
The selected method is Stepwise.

The validation of the regression analysis is aimed at determining that the comput-
erized model (regression model) used for the analysis is representative for the system.
The system in this case is the relation between the explanatory variables (4 load vari-
ables, 11 month variables) and the price of electricity on the Day-Ahead market. The
validation of the model in this research is done using two methods. First, the residuals
are analyzed. The residuals are the differences between the forecasted electricity price
and the observed electricity price at that time. Ideally, these residuals are normally dis-
tributed. Second, the regression model is cross-validated for the period 19-07-2017 âĂŞ
01-10-2016. Ideally, the regression model would be cross-validated for another complete
year. However, the dataset of the Day-Ahead prices ends at 01-10-2016. The origin of
the data is already confirmed in the table in the verification of the regression analysis.

The analysis of the residuals can be added in the SPSS model fit. The first graph
used for this analysis is a histogram of the standardized residuals. The histogram shows
that the residuals reflect a normal distribution, with a mean of nearly 0 and a standard
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Figure 8.2: Histogram of residuals of regression analysis

deviation of 1,00. The histogram indicates a positive kurtosis and a positive skewness.
The kurtosis is the centrality of the peak, which is not further assessed in this research.
The skewness however is an indication to be investigated further.

The skewness is further investigated by plotting the forecasted prices against the ob-
served prices. The histogram indicates a positive skewness, meaning that the observed
price is expected to be higher than the forecasted price. The graph below shows for
all quarters the forecasted price and the observed price. This graph shows a number
of outliers. Almost all of these outliers are positive outliers, meaning a higher observed
price than forecasted price. These outliers explain the positive skewness indicated by
the histogram. The red line in the picture is the 45-degree line, meaning that all values
on that line indicate the same forecasted price as the observed price.

The second part of the validation is the cross-validation of the regression-indicators
for another time period. As mentioned before, the dataset for the Day-Ahead prices
has data until 01-10-2016. Therefore, the beta-values are tested for the data between
19-07-2016 till 01-10-2016. The first step in the cross-validation is to transform the load
and renewable production data for both the Netherlands and Germany to hourly aver-
ages. Then, the beta-values from the original regression analysis are used to forecast the
Day-Ahead prices in the new time period. Last, R is used to calculate the R-squared
from the forecasted prices relative to the real prices. This R-squared is 0.55, whereas the
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Figure 8.3: Relation between forecasted prices and observed prices. Red line is at x=y
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Figure 8.4: Relation between forecasted prices and observed prices for cross-validation.
Red line is at x=y

value from the regression analysis was 0.66. The forecasted prices compared to the real
prices are visualized below. The red line in the picture is the 45-degree line, meaning
that all values on that line indicate the same forecasted price as the real price. As most
points are right from the line, it can be concluded that the forecasted prices are often
higher than the real price.

The three months used in the cross-validation are July, August, and September. For
these three months, the monthly indicators from the original regression analysis were
respectively 3.071, 6.051, and 5.322. These values indicate that the electricity price is
expected to be higher in these months compared to the average price during the year.
These factors are taken into account in the calculation of the forecasted price.

It is concluded that the regression model is valid for the purposes of this research.
The model explains 66% of the variance and the residuals reflect a normal distribution
well. The cross-validation executed for the months July, August, and September 2016
indicated that the regression model forecasts the electricity prices too high. This is an
error to be accounted for when designing an algorithm to be used in a real trading envi-
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ronment. The values used to forecast the electricity prices do however still explain 55%
of the variance, and have a primarily one-sided bias, meaning that they can still be used
for the purpose of this research, namely getting an indication what profit can be made
by trading on electricity markets with local electricity storage.
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Appendix II: Values for trading on
Secondary Reserve market

In this Appendix, the results of the quantile-analysis of the Secondary Reserve market
is presented. First, the calculation method is described, and then per day per quarter
the values for amount, ramp up price, and ramp down price are given.

The input for this analysis is the "Balansdelta" for 18-07-2015 till 18-07-2016, down-
loaded from the TenneT-website. This dataset provides per minute of each day the ramp-
up imbalance, ramp-down imbalance, ramp-up price, ramp-down-price and a number of
other variables of no interest for this research. The ramp-down imbalance is subtracted
from the ramp-up imbalance for the purpose of this research, which is why there is only
one ’amount’ column in the results.

The total imbalance is then averaged per quarter, as the reimbursement is per quar-
ter as well. However, for the prices, not the averages are taken. The reimbursement for
ramp-up is namely the highest price per 15 minutes, and for ramp-down the lowest price
per 15 minutes. Then for each quarter of each day, the values are columnized. This
creates the possibility to calculate the 70%-quantile, which is shown in figure 10.1. The
results of these quantiles can be found in the coming pages.

Figure 8.5: Calculation method for quantile-values
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Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 3,91 37,34 21,78 49 41,00 55,21 20,23

2 59,41 46,26 22,57 50 27,52 39,18 21,37

3 4,87 35,24 22,43 51 18,99 35,11 20,57

4 1,75 29,47 22,02 52 2,32 28,37 20,91

5 2,12 34,49 23,15 53 36,96 45,40 20,52

6 17,67 38,32 20,37 54 20,61 40,02 16,31

7 1,31 23,08 20,91 55 15,87 37,22 19,79

8 -1,36 0,00 21,89 56 4,36 30,67 20,04

9 6,28 44,25 22,17 57 12,73 35,53 20,76

10 37,71 35,68 21,51 58 7,71 35,61 19,51

11 2,81 24,36 20,95 59 15,65 36,42 17,86

12 -0,08 0,00 24,33 60 17,29 25,57 19,26

13 -2,32 31,37 22,78 61 -2,25 25,86 23,75

14 5,43 32,02 17,09 62 0,97 29,37 22,08

15 12,11 28,66 16,68 63 0,11 10,30 20,55

16 2,27 24,99 21,88 64 0,85 25,45 23,26

17 0,00 25,90 22,78 65 0,00 26,52 23,20

18 2,40 34,12 20,67 66 0,00 29,06 21,28

19 5,87 28,52 18,65 67 1,17 26,45 20,40

20 8,23 23,83 18,83 68 5,35 35,91 18,79

21 3,25 28,20 19,35 69 3,81 0,00 19,39

22 0,05 24,63 23,05 70 3,49 25,07 26,42

23 0,00 20,88 20,04 71 15,11 34,50 21,15

24 0,19 22,26 20,93 72 58,12 46,18 0,00

25 0,97 8,74 21,23 73 43,68 40,24 21,34

26 0,00 0,00 23,04 74 9,08 31,02 21,73

27 3,56 28,67 17,55 75 22,35 29,76 16,28

28 13,89 35,23 16,26 76 31,72 39,24 6,31

29 0,00 24,20 19,74 77 37,69 52,31 15,93

30 -6,64 0,00 20,27 78 17,32 36,27 20,43

31 0,00 27,57 21,28 79 7,47 27,57 24,61

32 19,36 32,54 18,67 80 19,13 37,99 17,07

33 5,67 24,67 16,77 81 26,33 42,00 22,68

34 0,00 28,97 20,57 82 8,17 30,23 23,72

35 10,13 39,19 22,20 83 2,93 25,71 19,85

36 48,75 41,91 18,55 84 0,59 0,00 21,34

37 16,87 39,26 20,73 85 9,85 40,97 26,02

38 1,32 31,99 18,49 86 8,92 28,52 21,03

39 13,40 38,75 20,24 87 0,00 0,00 21,20

40 58,68 55,56 18,83 88 -0,21 0,00 22,78

41 38,44 43,12 24,51 89 9,60 43,92 21,97

42 8,04 33,07 22,43 90 29,64 44,99 23,12

43 16,05 40,05 19,99 91 3,07 22,65 22,03

44 17,55 38,82 22,37 92 -2,76 0,00 23,11

45 21,64 38,77 22,32 93 11,33 81,28 22,47

46 14,77 36,28 21,10 94 37,57 42,14 20,13

47 25,15 31,63 21,48 95 0,00 20,02 20,56

48 25,69 32,85 20,40 96 0,00 8,45 19,53

Saturday values



 

Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 15,85 59,96 19,92 49 29,76 41,23 19,05

2 33,08 41,05 24,45 50 12,76 31,79 18,79

3 -4,93 0,00 21,29 51 17,12 25,75 18,46

4 -9,36 0,00 19,11 52 5,63 29,92 20,00

5 6,61 49,31 20,48 53 4,96 36,05 21,54

6 61,28 57,68 15,72 54 3,88 32,11 19,42

7 1,28 24,08 21,06 55 8,03 28,84 15,44

8 -1,47 0,00 22,07 56 9,60 34,36 17,91

9 0,33 38,20 22,97 57 4,36 28,69 20,09

10 31,49 38,95 19,50 58 18,39 36,46 17,17

11 10,47 29,40 20,71 59 16,61 27,38 17,68

12 3,93 26,75 19,30 60 9,08 33,52 15,68

13 12,88 39,55 20,52 61 3,32 31,50 16,93

14 24,44 36,48 16,68 62 2,55 25,31 20,35

15 16,29 26,80 19,87 63 6,59 27,59 19,34

16 -0,37 0,00 21,83 64 4,91 32,93 15,41

17 -0,55 28,17 20,23 65 4,53 26,64 22,06

18 9,15 27,47 17,98 66 1,75 25,62 19,76

19 3,56 26,95 19,46 67 9,35 29,26 21,90

20 4,09 26,33 18,02 68 45,63 38,49 19,78

21 6,61 35,59 19,49 69 8,24 27,09 18,62

22 20,05 31,75 20,72 70 0,51 29,75 23,71

23 6,25 23,53 21,80 71 31,19 43,39 0,00

24 5,44 26,13 11,89 72 84,21 45,57 0,00

25 10,13 27,44 15,10 73 41,49 41,39 19,47

26 5,36 24,87 21,50 74 6,04 34,76 23,58

27 4,24 28,38 20,04 75 15,69 38,69 19,59

28 3,19 25,41 19,94 76 28,71 43,26 20,27

29 5,28 27,13 19,05 77 23,12 38,02 20,87

30 0,40 24,67 20,78 78 20,96 35,85 22,87

31 18,91 32,22 19,99 79 20,65 37,25 23,42

32 41,96 39,06 11,66 80 27,36 39,24 23,82

33 25,97 31,98 18,02 81 56,67 52,99 20,87

34 1,11 27,21 21,27 82 33,80 35,22 23,55

35 23,48 38,92 17,23 83 8,20 26,53 18,38

36 75,15 41,39 0,00 84 11,07 30,01 18,11

37 24,83 30,63 21,47 85 26,01 50,11 19,75

38 0,00 28,90 21,05 86 28,99 39,04 20,70

39 9,16 35,14 20,14 87 3,59 26,80 20,60

40 45,65 38,88 6,47 88 13,51 32,52 18,31

41 44,76 39,12 18,97 89 35,71 50,85 19,46

42 3,03 27,15 20,55 90 49,56 45,04 19,48

43 11,36 34,86 17,46 91 3,32 24,72 20,77

44 26,60 36,56 19,77 92 -3,45 0,00 22,14

45 24,88 35,34 18,38 93 36,85 123,22 22,09

46 0,63 20,13 19,90 94 29,87 40,20 19,37

47 2,92 31,58 21,66 95 0,03 0,00 20,71

48 22,61 39,29 19,11 96 -22,59 0,00 18,76

Sunday values



 

Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 8,67 108,52 21,14 49 35,33 53,16 19,86

2 32,48 37,96 20,39 50 4,17 30,64 24,35

3 -1,07 0,00 22,30 51 1,11 27,45 24,10

4 -19,91 0,00 20,35 52 0,11 24,52 24,14

5 -3,35 41,41 19,77 53 9,79 42,77 21,54

6 15,88 35,22 21,43 54 22,88 42,79 22,65

7 0,00 0,00 20,77 55 10,55 34,61 23,21

8 -2,28 0,00 19,81 56 4,97 33,03 21,90

9 -2,33 34,49 20,78 57 12,31 37,97 24,66

10 6,89 30,72 22,33 58 14,91 43,50 20,97

11 0,45 21,39 21,36 59 12,88 30,71 20,93

12 -0,48 0,00 21,89 60 12,72 26,55 21,54

13 -0,32 27,42 20,63 61 18,88 38,71 20,97

14 0,31 24,75 19,78 62 18,35 38,35 21,46

15 0,00 0,00 20,05 63 19,71 36,49 22,11

16 0,00 0,00 17,71 64 15,12 33,79 23,12

17 0,00 24,98 19,76 65 9,88 33,11 23,92

18 0,00 20,99 18,36 66 8,68 34,86 23,22

19 0,00 0,00 20,88 67 19,43 38,99 20,94

20 -0,08 0,00 21,60 68 44,65 46,22 23,16

21 2,56 36,01 23,28 69 17,64 35,13 23,03

22 -0,24 0,00 22,14 70 17,88 46,42 22,01

23 -0,32 23,38 20,15 71 34,21 40,87 20,22

24 0,00 7,12 19,39 72 47,20 54,54 0,00

25 0,69 36,03 22,38 73 32,33 44,37 22,78

26 0,00 25,43 21,38 74 6,07 34,57 22,51

27 5,95 34,93 22,40 75 11,51 40,46 23,48

28 33,40 39,00 15,70 76 20,08 40,22 20,47

29 12,56 37,46 15,28 77 69,79 64,67 20,10

30 7,31 37,73 19,51 78 27,19 41,34 18,62

31 44,15 56,81 19,92 79 28,25 39,94 20,61

32 108,85 84,97 0,00 80 18,84 43,00 20,92

33 26,25 27,94 23,62 81 33,76 44,96 24,85

34 1,11 41,42 26,37 82 24,07 37,88 21,60

35 42,12 64,10 21,09 83 9,15 25,75 23,32

36 85,89 71,15 0,00 84 13,31 30,04 25,02

37 40,91 43,99 22,41 85 35,85 55,99 20,97

38 6,33 28,45 21,32 86 40,65 45,34 19,99

39 11,92 44,20 24,25 87 5,00 24,11 21,66

40 21,17 44,98 22,59 88 0,00 28,16 25,64

41 64,79 58,13 18,27 89 27,63 150,93 22,78

42 23,55 41,33 20,18 90 96,53 122,62 19,99

43 25,61 41,46 20,61 91 7,15 26,69 20,62

44 14,48 35,33 20,21 92 -0,92 0,00 22,28

45 52,16 45,20 22,75 93 33,49 126,22 18,49

46 22,59 41,47 21,36 94 60,43 47,25 23,05

47 59,83 44,55 24,58 95 2,07 0,00 24,25

48 51,55 41,27 22,59 96 -9,19 0,00 20,37

Monday values



 

Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 -4,07 52,21 20,66 49 53,38 61,08 20,44

2 51,01 47,23 20,12 50 36,59 38,12 22,54

3 1,91 26,65 21,26 51 12,56 27,98 22,58

4 -0,40 0,00 19,49 52 6,43 27,84 23,91

5 7,55 50,21 19,02 53 8,12 47,68 22,14

6 37,26 44,94 18,68 54 20,57 41,08 22,02

7 1,79 25,85 21,70 55 3,66 28,56 23,56

8 0,09 23,81 21,67 56 12,04 31,65 21,11

9 10,92 41,75 22,80 57 32,73 37,63 20,03

10 44,29 36,94 16,73 58 41,03 39,78 0,00

11 0,19 16,89 20,38 59 47,72 40,03 4,05

12 1,45 24,45 23,20 60 43,37 36,32 16,34

13 1,07 32,21 21,90 61 28,68 40,32 21,69

14 14,81 27,72 20,30 62 47,70 41,13 2,73

15 5,35 25,83 22,65 63 56,05 47,24 0,00

16 4,72 26,19 20,75 64 42,07 39,92 19,12

17 0,00 27,77 20,18 65 11,59 34,35 23,06

18 0,69 25,78 20,78 66 1,43 32,51 23,42

19 1,93 25,08 20,20 67 11,49 31,26 16,15

20 9,86 26,52 19,55 68 33,47 38,37 19,02

21 2,41 26,74 21,41 69 11,58 26,56 24,01

22 0,00 12,52 21,01 70 4,97 33,17 24,71

23 0,09 28,62 22,96 71 14,72 35,28 19,56

24 4,43 34,55 20,85 72 45,13 45,51 0,00

25 3,48 33,99 21,73 73 39,98 41,32 21,81

26 -0,84 0,00 21,63 74 9,43 29,92 23,54

27 7,06 33,61 24,30 75 14,53 36,50 21,35

28 43,22 44,75 22,38 76 19,79 36,02 21,49

29 6,25 30,53 19,87 77 19,08 40,42 22,24

30 0,19 28,21 22,56 78 25,76 41,01 20,34

31 20,53 45,67 21,61 79 22,67 40,97 16,62

32 79,51 57,44 0,00 80 35,10 41,66 20,49

33 26,39 38,75 24,02 81 24,71 39,99 21,65

34 2,20 35,92 22,54 82 13,66 36,59 21,80

35 37,37 47,79 20,33 83 4,77 25,27 23,86

36 113,35 72,47 0,00 84 0,00 0,00 23,51

37 46,86 42,05 21,37 85 18,41 53,47 24,78

38 23,35 42,65 22,04 86 31,51 41,05 18,04

39 18,71 37,70 19,86 87 2,27 16,34 22,55

40 45,92 39,78 21,97 88 0,00 0,00 23,58

41 29,62 40,39 20,93 89 7,50 88,38 20,04

42 22,81 41,60 22,62 90 62,71 49,46 21,52

43 22,45 39,70 22,89 91 -0,47 0,00 20,79

44 20,04 36,00 21,04 92 -4,31 0,00 21,88

45 38,78 47,65 22,34 93 1,92 68,59 21,91

46 38,93 39,51 21,09 94 78,88 66,58 21,68

47 43,29 40,55 23,52 95 -11,20 0,00 21,76

48 37,83 36,15 21,84 96 -12,15 0,00 21,80

Tuesday values



 

Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 -0,02 56,55 20,47 49 24,70 39,92 23,20

2 50,32 48,48 18,68 50 17,29 34,32 23,77

3 6,58 22,07 22,36 51 14,83 30,03 21,15

4 -12,37 0,00 23,05 52 11,07 29,38 19,51

5 13,87 55,58 19,72 53 9,95 36,63 24,13

6 53,77 45,84 21,96 54 11,39 32,93 23,36

7 -0,15 0,00 21,65 55 4,60 29,76 24,07

8 -0,02 0,00 21,58 56 9,29 34,03 20,99

9 -1,88 33,96 22,90 57 30,11 42,19 23,07

10 12,39 33,17 21,72 58 34,20 38,01 22,72

11 -0,70 0,00 23,49 59 10,74 35,32 22,87

12 -2,15 0,00 21,55 60 14,72 38,26 21,06

13 -0,08 31,30 21,59 61 31,82 39,29 22,02

14 2,91 27,68 21,40 62 32,59 43,10 22,79

15 -0,02 15,83 22,83 63 34,99 33,15 21,93

16 -1,07 0,00 21,74 64 35,01 37,96 20,99

17 1,73 27,60 21,25 65 36,05 42,19 20,76

18 6,89 27,34 14,77 66 27,07 34,12 20,96

19 5,24 25,68 18,24 67 48,41 41,71 20,35

20 3,21 26,69 20,72 68 48,13 43,89 22,69

21 3,56 30,73 22,68 69 37,22 32,60 21,63

22 -0,14 28,00 21,51 70 7,99 43,02 24,14

23 3,67 26,68 22,66 71 28,68 46,34 0,00

24 3,61 31,40 22,07 72 58,27 53,17 0,00

25 4,07 27,17 21,18 73 60,21 49,91 21,52

26 -1,23 15,28 23,81 74 14,57 34,71 22,95

27 10,81 34,70 21,04 75 23,38 42,09 20,78

28 40,31 36,51 18,31 76 42,23 46,54 22,19

29 -0,56 24,92 18,31 77 42,85 45,26 21,09

30 -0,31 0,00 22,86 78 5,29 31,11 23,38

31 21,95 42,25 17,77 79 7,40 30,59 23,32

32 85,79 60,42 0,00 80 12,20 29,88 23,12

33 24,98 34,38 23,42 81 31,18 57,17 23,10

34 0,00 0,00 24,31 82 10,43 37,52 22,36

35 12,81 50,13 21,47 83 3,42 26,40 22,83

36 93,91 87,26 8,61 84 2,30 26,33 24,49

37 38,47 47,81 24,86 85 13,79 50,13 22,76

38 8,37 37,01 22,34 86 18,15 43,71 24,36

39 28,51 40,21 23,08 87 0,00 0,00 24,92

40 35,59 43,99 22,02 88 -0,77 26,76 25,05

41 47,15 42,59 24,26 89 8,20 56,73 21,55

42 12,30 33,86 23,65 90 27,85 40,86 18,59

43 36,89 40,12 21,30 91 0,87 15,66 22,01

44 15,70 36,75 23,36 92 -5,91 0,00 24,16

45 23,87 41,69 20,96 93 27,63 114,65 21,38

46 23,81 42,00 19,77 94 81,58 55,03 22,50

47 23,67 33,61 22,75 95 -0,18 0,00 23,31

48 16,12 33,46 27,08 96 -30,93 0,00 20,99

Wednesday values



 

Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 -8,34 68,37 20,69 49 35,88 40,52 21,00

2 72,47 51,20 20,49 50 19,57 34,43 18,99

3 -1,83 15,81 22,79 51 9,27 36,12 21,99

4 -17,76 0,00 22,29 52 13,57 35,43 23,59

5 -9,23 43,36 22,25 53 34,72 51,64 21,33

6 23,75 36,69 20,67 54 48,59 46,13 20,22

7 0,00 0,00 23,41 55 18,31 38,88 23,72

8 -8,97 0,00 20,43 56 23,91 37,62 20,34

9 0,45 35,42 21,96 57 11,12 49,87 22,05

10 25,41 32,34 20,29 58 30,91 44,23 20,30

11 5,19 24,67 21,41 59 56,07 38,82 21,53

12 -0,31 0,00 22,60 60 26,39 40,43 21,17

13 -0,13 26,57 23,69 61 31,31 42,36 21,92

14 10,63 28,65 20,58 62 28,11 34,25 19,02

15 2,95 27,53 20,96 63 37,61 39,73 20,00

16 -0,55 22,56 23,49 64 60,73 39,73 21,02

17 0,27 23,89 22,17 65 21,33 36,50 23,78

18 4,65 28,42 20,21 66 4,05 34,66 22,95

19 1,07 23,34 22,77 67 17,11 41,41 0,00

20 1,74 24,82 21,07 68 44,41 47,04 10,51

21 1,79 26,47 20,62 69 14,21 34,81 22,79

22 4,71 27,82 19,51 70 16,59 39,73 21,70

23 4,30 33,66 21,57 71 27,39 41,43 22,13

24 13,37 34,80 20,24 72 47,51 48,71 5,17

25 10,26 35,27 22,70 73 27,79 46,83 21,87

26 0,00 26,17 21,91 74 6,56 35,63 25,87

27 12,55 39,17 20,81 75 17,75 41,96 21,42

28 25,95 39,72 21,85 76 40,53 47,39 20,84

29 2,45 27,05 23,68 77 29,10 47,90 20,96

30 -1,69 34,86 25,47 78 17,93 35,18 28,20

31 43,87 51,22 20,12 79 21,02 39,99 24,56

32 91,09 55,67 13,03 80 32,42 38,51 22,92

33 44,18 44,60 21,81 81 45,52 50,52 22,25

34 5,17 38,66 24,42 82 42,93 39,67 21,30

35 26,55 61,16 17,76 83 24,60 33,48 21,08

36 84,19 60,40 0,00 84 10,53 34,65 22,17

37 43,16 41,91 24,22 85 32,15 68,72 20,98

38 32,30 44,69 21,52 86 43,11 38,76 23,00

39 46,51 44,26 20,59 87 0,05 0,00 23,23

40 62,11 44,15 18,70 88 -0,55 13,13 24,56

41 43,56 45,96 21,19 89 12,06 53,33 20,92

42 14,51 40,00 22,49 90 47,31 48,38 22,07

43 26,89 43,41 20,82 91 1,31 17,50 19,58

44 47,19 41,62 20,65 92 -1,29 0,00 22,16

45 42,55 47,44 22,57 93 21,50 92,65 22,57

46 34,00 39,67 20,74 94 55,39 47,85 20,67

47 25,84 36,25 15,68 95 0,25 0,00 20,99

48 27,21 41,08 16,14 96 -1,05 0,00 22,53

Thursday values



 

Quarter Amount Ramp up price Ramp down price Quarter Amount Ramp up price Ramp down price

1 8,18 63,43 23,13 49 30,71 50,22 23,15

2 64,24 42,21 20,77 50 33,00 40,87 21,02

3 3,95 26,54 20,39 51 16,15 34,33 19,61

4 -13,88 0,00 20,12 52 9,09 37,39 20,29

5 1,74 41,99 21,72 53 45,89 51,93 16,24

6 45,09 52,68 21,14 54 42,81 44,61 22,98

7 5,91 27,06 21,44 55 24,89 33,97 23,17

8 -3,65 0,00 21,55 56 14,24 31,22 21,40

9 0,14 38,32 23,09 57 18,79 41,33 18,67

10 25,08 34,56 20,50 58 40,67 41,86 21,28

11 0,58 27,95 20,78 59 17,10 36,01 22,75

12 0,00 25,73 21,72 60 19,06 36,44 22,49

13 2,21 28,45 24,77 61 16,33 38,26 21,38

14 16,69 32,74 20,38 62 11,67 36,53 23,07

15 6,60 27,04 21,64 63 22,00 34,82 21,57

16 0,56 23,70 21,26 64 19,33 36,10 22,67

17 -0,50 24,93 21,93 65 4,37 28,58 25,09

18 1,26 28,45 20,43 66 8,31 27,62 18,13

19 1,41 28,24 21,94 67 17,81 34,54 21,91

20 4,99 30,11 15,28 68 24,89 36,48 23,03

21 13,84 31,61 23,49 69 5,33 27,85 23,12

22 0,00 18,28 22,67 70 5,41 37,90 26,69

23 0,71 29,18 21,92 71 9,29 36,37 22,04

24 11,69 30,38 15,27 72 23,76 45,09 0,00

25 6,35 32,49 23,25 73 37,39 46,49 21,42

26 -0,12 28,09 22,09 74 12,86 30,07 21,01

27 17,79 37,99 21,27 75 15,59 29,24 22,73

28 67,13 43,01 16,29 76 11,50 31,02 24,24

29 16,47 29,26 19,63 77 17,73 36,34 24,01

30 2,05 36,05 22,29 78 16,71 28,57 21,03

31 15,97 41,96 19,48 79 13,61 31,89 23,35

32 68,07 58,72 0,00 80 19,40 30,21 21,98

33 13,57 30,85 18,13 81 23,45 46,03 22,32

34 0,00 36,61 24,22 82 27,40 35,85 21,85

35 40,93 55,73 21,14 83 7,79 27,53 22,53

36 78,41 60,09 0,00 84 1,93 24,02 22,63

37 74,91 51,33 20,96 85 16,09 54,71 22,54

38 34,36 41,32 20,48 86 35,42 40,43 21,09

39 39,05 48,14 20,51 87 0,81 0,00 21,43

40 63,07 52,69 22,84 88 -5,55 27,43 22,21

41 40,79 46,66 21,92 89 9,21 54,47 21,14

42 40,65 45,26 23,08 90 68,27 53,37 25,17

43 46,36 49,34 18,34 91 0,16 15,50 22,76

44 51,30 43,15 19,27 92 -0,08 15,19 23,45

45 53,33 43,25 19,66 93 17,67 123,30 21,04

46 32,54 39,92 18,93 94 74,69 57,07 18,23

47 25,17 39,43 21,72 95 11,11 32,06 22,03

48 27,01 42,55 17,74 96 1,14 28,70 25,56

Friday values



Appendix III: Testing the model

In this appendix, the results of the tests of the model can be found. There are 9
experiments to be run, which are all shown here. The variables that can be adjusted can
be found in table 10.1. The constants are adjusted one by one and not simultaneously.

Constant Low Medium High
Bid percentage 0.8 1.0 1.2
Buy threshold 15 20 30
Sell threshold 30 35 45

Table 8.2: Design of experiments to run with the model
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Figure 8.6: Experiment 1: All constants on low

Figure 8.7: Experiment 2: All constants on medium
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Figure 8.8: Experiment 3: All constants on high

Figure 8.9: Experiment 4: All constants low, Bid percentage on medium
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Figure 8.10: Experiment 5: All constant low, Bid percentage on high

Figure 8.11: Experiment 6: All constants low, Buy threshold on medium
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Figure 8.12: Experiment 7: All constant low, Buy threshold on high

Figure 8.13: Experiment 8: All constants low, Sell threshold on medium
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Figure 8.14: Experiment 10: All constant low, Sell threshold on high
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Appendix IV: Verification of the
R-model

The verification of the R-model for testing the trading algorithm focusses on the im-
plementation of the described decision logic in R. This means that the computerized
model (R) has to represent the conceptual model (decision logic) well enough for the
purpose of the model. In the R-model in this research, a lot of indices are used to in-
dicate the present day and hour at time in the model during calculation. These indices
became complex, and have been check manually if they indeed represented the correct
time instant. The rest of the verification is done by assessing one or multiple lines of
R-code. The verification process requires that a line of code correctly represents the
model formalization.

DAbuyvector = array(data = 0, dim = 96) DAsellvector = array(data = 0, dim
= 96) SRbuyvector = array(data = 0, dim = 96) SRsellvector = array(data = 0,

dim = 96)
SellThreshold = 45 BuyThreshold = 30 BidPercentage = 1.2

Efficiency = 0.7 Charge = array(data = NA, dim = 35233) Profit = array(data
= NA, dim = 35233) Charge[1] = 5 Profit[1] = 0 MaxPower = 4 MaxCharge =
10 CountCharge = 0 CountDischarge = 0 CountNothing = 0 ChargeChange =

array(data = rep(0, 35232), dim = 35232)

These lines of code simply set the model parameters. A number of them are arrays
and a number of them are constants. The efficiency of the battery system is set at 0.7,
the initial profit is 0 and initial charge is 5.

for (i in 1:367){ # At the beginning of each day: empty the schedules of last day
DAbuyvector = array(data = 0, dim = 96) DAsellvector = array(data = 0, dim
= 96) SRbuyvector = array(data = 0, dim = 96) SRsellvector = array(data = 0,
dim = 96) TradingMinimum = 0 DAtradevector = array(data = 0, dim = 96)

SRtradevector = array(data = 0, dim = 96)
# Check for forecasted negative imbalance if (sum(ForecastMatrix $

SRamount[(((i-1)*96 + 1):(i*96))] < 0) > 0){ for (j in (which(ForecastMatrix $
SRamount[(((i-1)*96 + 1):(i*96))] < 0))){ SRbuyvector[j] = 1 } }
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The first step is a for-loop. The code runs for 367 days, which explains that the
for-loop runs for 367 times. The first step of each day is to empty all the trading-
schedules, as each day a new one is formed. Then, as said in the decision logic, the
first step is to check for negative imbalance demand. All of the forecasts are in the
matrix "ForecastMatrix" and the column "SRamount" holds the forecast for the demand
on the Secondary Reserve market. As the matrix is one long matrix with 367 days of
96 quarters of data, each time a new subset of a column of length 96 must be used.
This length of 96 represents one day. The "SRbuyvector" is set to 1 when the expected
demand on the market is lower than 0, meaning a ramp-down demand.

# Check other prices for (j in (which(ForecastMatrix$APXforecast[(((i-1)*96 +
1):(i*96))] > SellThreshold))){ DAsellvector[j] =
ForecastMatrix$APXforecast[((i-1)*96 + j)] }

for (j in (which(ForecastMatrix$APXforecast[(((i-1)*96 + 1):(i*96))] <
BuyThreshold))){ DAbuyvector[j] = ForecastMatrix$APXforecast[((i-1)*96 +

j)] }
for (j in (which(ForecastMatrix$SRupPrice[(((i-1)*96 + 1):(i*96))] >

SellThreshold & ForecastMatrix$SRamount[(((i-1)*96 + 1):(i*96))] > 10))){
SRsellvector[j] = ForecastMatrix$SRupPrice[((i-1)*96 + j)] }

After the ramp-down demand, the prices on the other markets are checked. These
prices are again checked for the 96 quarters for the ith day. If a price on a market is
forecasted to be profitable enough to trade, the relevant quarter is stored in a vector.
Profitable enough means above the sell-threshold, or below the buy-threshold.

# Next step is to identify the amount of quarters that can be used for trading
TradingMinimum = min((Efficiency * (sum(SRbuyvector[SRbuyvector != 0]) +

sum(DAbuyvector[DAbuyvector != 0]))), (Charge[(i-1)*96 + 1] +
(sum(SRsellvector[SRsellvector != 0]) + sum(DAsellvector [DAsellvector !=

0]))))

The next step is to determine the amount of quarters that can be used for trading.
On one hand, this is influenced by the amount of electricity that is bought - but this
amount is lowered by the round-trip efficiency of the complete battery system (AC âĂŞ
DC - Storage - DC - AC). This efficiency namely causes a loss of electricity, resulting in
a lower amount that can be sold again. This amount is compared to the amount that
can be sold and the minimum of those is determined.
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# Now that the minimum is known, the buying / selling can be scheduled if
(is.na(TradingMinimum) == FALSE){ for (j in 1:TradingMinimum){

DAtradevector[(which(ForecastMatrix$APXforecast[(((i-1)*96 + 1):(i*96))] ==
sort(ForecastMatrix$APXforecast[(((i-1)*96 + 1):(i*96))], decreasing =

TRUE)[j]))] = -1
SRtradevector[(which(ForecastMatrix$SRupPrice[(((i-1)*96 + 1):(i*96))] ==

sort(ForecastMatrix$SRupPrice[(((i-1)*96 + 1):(i*96))], decreasing =
TRUE)[j]))] = -1

} }
if (is.na(TradingMinimum) == FALSE){ for (j in

1:(1/Efficiency)*TradingMinimum){
DAtradevector[(which(ForecastMatrix$APXforecast[(((i-1)*96 + 1):(i*96))] ==

sort(ForecastMatrix$APXforecast[(((i-1)*96 + 1):(i*96))])[j]))] = 1
SRtradevector[(which(ForecastMatrix$SRupPrice[(((i-1)*96 + 1):(i*96))] ==

sort(ForecastMatrix$SRupPrice[(((i-1)*96 + 1):(i*96))])[j]))] = 1
} }

Then, if there is at least 1 quarter for the day to trade upon, the scheduling is
executed. This means that for the selling, all the prices are sorted from high to low.
The highest price is scheduled first, then the second-highest price, and so on until the
maximum amount of quarters to trade upon (determined earlier) is reached. For the
buying, the same process is executed. However, the efficiency losses in the battery
system need to be accounted for in the process of buying electricity. Therefore, the
amount of quarters that the system buys electricity per day is multiplied by the inverse
of the efficiency, ensuring the surplus of electricity bought to cope with efficiency losses.

for (j in 1:96){ SRtradevector[j] = SRbuyvector[j]
if (DAtradevector[j] != 0 & SRbuyvector[j] == 1){ DAtradevector[j] = 0 } }

Then, the buying on the Secondary Reserve market gets priority over all other sched-
ules - as this ensures the maximization of the amount of quarters scheduled for that day
to buy electricity when the price is expected to be negative.
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DayIndex = (i * 96) - 96
for (j in 1:96){

if (SRtradevector[j] > 0 & PriceAmountMatrix$RDD[(DayIndex + j)] > 0 &
PriceAmountMatrix$RDP[(DayIndex + j)] < 0){

ChargeChange[(DayIndex + j)] =
max(min((max(PriceAmountMatrix$RDD[(DayIndex + j)], 0)), MaxPower,

((MaxCharge - Charge[(DayIndex + j)])*1)), 0) Charge[(DayIndex + j + 1)] =
Charge[(DayIndex + j)] + ((ChargeChange[(DayIndex + j)] / 4) * Efficiency)

Profit[(DayIndex + j + 1)] = Profit[(DayIndex + j)] +
((ChargeChange[(DayIndex + j)] / 4) * (-PriceAmountMatrix$RDP[(DayIndex

+ j)])) CountCharge = CountCharge + 1 }

Then, the actual trading is done. The "DayIndex" is a variable used to reduce the
complexity of the code. Then, a loop is executed for 1 till 96 - because there are 96
quarters in one day. Then, for the Secondary Reserve market, there must be planned
for a specific quarter to trade, but the price on the market must also be ’right’ (see
explanation about buy- and sell-thresholds). This reflects reality as a party can decide
per quarter (or actually per minute) to trade on this market or not. Then, the amount
traded on this market is limited by the demand on the market, the capacity of the
battery, and the maximum power. After this calculation, the charge of the battery and
the profit are adjusted accordingly.

if (DAtradevector[j] > 0 & ((1 / BidPercentage) *
ForecastMatrix$APXforecast[DayIndex + j] > PriceAmountMatrix$‘APX

price‘[DayIndex + j])){
ChargeChange[(DayIndex + j)] = max(min(MaxPower, ((MaxCharge -

Charge[(DayIndex + j)])*1)), 0) Charge[(DayIndex + j + 1)] =
Charge[(DayIndex + j)] + ((ChargeChange[(DayIndex + j)] / 4) * Efficiency)

Profit[(DayIndex + j + 1)] = Profit[(DayIndex + j)] +
((ChargeChange[(DayIndex + j)] / 4) * (-PriceAmountMatrix$‘APX

price‘[(DayIndex + j)])) CountCharge = CountCharge + 1 }

On the Day-Ahead market, the buying is slightly different. On this market, the bid
has to be low enough in order to win. Therefore, the bid is compared to the actual
market price. Also, a "bid percentage" is incorporated that adjusts the bid to increase
the chance of winning. After it is determined that the bid has won, the same process as
for the other market is done.
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if (SRtradevector[j] < 0 & PriceAmountMatrix$RUD[(DayIndex + j)] > 0 &
PriceAmountMatrix$RUP[(DayIndex + j)] > SellThreshold) {

ChargeChange[(DayIndex + j)] =
max(min((max(PriceAmountMatrix$RUD[(DayIndex + j)], 0)), MaxPower,

((Charge[(DayIndex + j)])*1)), 0) Charge[(DayIndex + j + 1)] =
Charge[(DayIndex + j)] - ((ChargeChange[(DayIndex + j)] / 4) * Efficiency)

Profit[(DayIndex + j + 1)] = Profit[(DayIndex + j)] +
((ChargeChange[(DayIndex + j)] / 4) * (PriceAmountMatrix$RUP[(DayIndex

+ j)])) CountDischarge = CountDischarge + 1
}

For selling on the Secondary Reserve market, the demand on this market is checked,
the schedule, and the sell-threshold. If all these are ’right’, then electricity is sold on this
market. This reflects reality as it can be decided per quarter (or actually per minute)
to trade on this market. The process after these checks is the same, except that the
battery is emptied instead of filled, and the profit increases.

if (DAtradevector[j] < 0 & (BidPercentage *
ForecastMatrix$APXforecast[DayIndex + j] > PriceAmountMatrix$‘APX

price‘[DayIndex + j])){
ChargeChange[(DayIndex + j)] = max(min(MaxPower, ((Charge[(DayIndex +

j)])*1)), 0) Charge[(DayIndex + j + 1)] = Charge[(DayIndex + j)] -
((ChargeChange[(DayIndex + j)] / 4) * Efficiency) Profit[(DayIndex + j + 1)] =

Profit[(DayIndex + j)] + ((ChargeChange[(DayIndex + j)] / 4) *
(PriceAmountMatrix$‘APX price‘[(DayIndex + j)])) CountDischarge =

CountDischarge + 1
}

This is the code for selling on the Day-Ahead market. On this market, the bid has
to be low enough to win. Therefore, again, there is a "BidPercentage" incorporated to
increase the chance of winning the bid. The process thereafter is the same: the battery
is emptied and the profit increases.

if (DAtradevector[j] == 0 & SRtradevector[j] == 0){ CountNothing =
CountNothing + 1 }

if (is.na(Charge[(DayIndex + j + 1)]) == TRUE){ Charge[(DayIndex + j + 1)]
= Charge[(DayIndex + j)] }

if (is.na(Profit[(DayIndex + j + 1)]) == TRUE){ Profit[(DayIndex + j + 1)] =
Profit[(DayIndex + j)] } } }

These last lines of code are present to ensure that the model keeps running and
gets no errors. These errors occurred when there was no trading at a given instant.
The arrays used for the profit and charge are namely initially filled with NA-values.
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The model is unable to cope with NA-values, and therefore, if no trading is done at an
instant, the profit and charge are equal to the previous instant.
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